APPLICATIONS POISSON DISTRIBUTION AND RUSCHEWEYH DERIVATIVE OPERATOR FOR BI-UNIVALENT FUNCTIONS

ABBAS KAREEM WANAS ${ }^{1}$ AND JANUSZ SOKÓモ ${ }^{2}$

Abstract

In this paper we establish upper bounds for the second and third coefficients of holomorphic and bi-univalent functions in a new family which involve the Bazilevič functions and β-pseudo-starlike functions under a new operator joining Poisson distribution with Ruscheweyh derivative operator. Also, we discuss FeketeSzegö problem of functions in this family.

1. Introduction

Let \mathcal{A} be the collection of functions f that are holomorphic in the unit disk $\mathbb{D}=$ $\{|z|<1\}$ in the complex plane \mathbb{C} and that have the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{D} . \tag{1.1}
\end{equation*}
$$

Further, let \mathcal{S} be the sub-collection of \mathcal{A} containing of functions which are univalent in \mathbb{D}. According to the Koebe one-quarter theorem (see [3]), every function $f \in \mathcal{S}$ has an inverse f^{-1} such that $f^{-1}(f(z))=z, z \in \mathbb{D}$, and $f\left(f^{-1}(w)\right)=w,|w|<r_{0}(f)$, $r_{0}(f) \geq \frac{1}{4}$. If f is of the form (1.1), then

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots, \quad|w|<r_{0}(f) . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{D} if both f and f^{-1} are univalent in \mathbb{D}. We denote by Σ the set of bi-univalent functions in \mathbb{D}. Srivastava et al. [19] have apparently resuscitated the study of holomorphic and bi-univalent functions in

[^0]recent years. It was followed by such works as those by Frasin and Aouf [5], Goyal and Goswami [6], Srivastava and Bansal [15] and others (see, for example [2,16-18,20]).

For the polynomials $M(x)$ and $N(x)$ with real coefficients, the (M, N)-Lucas Polynomials $L_{M, N, k}(x)$ are defined by the following recurrence relation (see [8]):

$$
L_{M, N, k}(x)=M(x) L_{M, N, k-1}(x)+N(x) L_{M, N, k-2}(x), \quad k \geq 2,
$$

with

$$
\begin{equation*}
L_{M, N, 0}(x)=2, \quad L_{M, N, 1}(x)=M(x) \quad \text { and } \quad L_{M, N, 2}(x)=M^{2}(x)+2 N(x) . \tag{1.3}
\end{equation*}
$$

The Lucas Polynomials play an important role in a diversity of disciplines in the mathematical, statistical, physical and engineering sciences (see, for example [4,9,21]). The generating function of the (M, N)-Lucas Polynomial $L_{M, N, k}(x)$ (see [9]) is given by

$$
\begin{equation*}
T_{M(x), N(x)}(z)=\sum_{k=2}^{\infty} L_{M, N, k}(x) z^{k}=\frac{2-M(x) z}{1-M(x) z-N(x) z^{2}} . \tag{1.4}
\end{equation*}
$$

Let the functions f and g be holomorphic in \mathbb{D}, we say that the function f is subordinate to g, if there exists a function w, holomorphic in \mathbb{D} with $w(0)=0$ and $|w(z)|<1, z \in \mathbb{D}$, such that $f(z)=g(w(z))$. This subordination is indicated by $f \prec g$ or $f(z) \prec g(z), z \in \mathbb{D}$. Furthermore, if the function g is univalent in \mathbb{D}, then we have the following equivalence (see [10])

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{D}) \subset g(\mathbb{D}) .
$$

A function $f \in \mathcal{A}$ is called Bazilevič function of order $\alpha, \alpha \geq 0$, if (see [14])

$$
\operatorname{Re}\left\{\frac{z^{1-\alpha} f^{\prime}(z)}{(f(z))^{1-\alpha}}\right\}>0, \quad z \in \mathbb{D} .
$$

A function $f \in \mathcal{A}$ is called β-pseudo-starlike function of order $\beta, \beta \geq 1$, if (see [1])

$$
\operatorname{Re}\left\{\frac{z\left(f^{\prime}(z)\right)^{\beta}}{f(z)}\right\}>0, \quad z \in \mathbb{D}
$$

Recall that a random variable X has the Poisson distribution with parameter θ, if

$$
P(X=r)=\frac{\theta^{r} e^{-\theta}}{r!}, \quad r=0,1,2,3, \ldots
$$

Recently, Porwal [11] introduced a power series whose coefficients are probabilities of "Poisson distribution"

$$
K(\theta, z)=z+\sum_{n=2}^{\infty} \frac{\theta^{n-1}}{(n-1)!} e^{-\theta} z^{n}, \quad z \in \mathbb{D}
$$

where $\theta>0$. By ratio test the radius of convergence of the above series is infinity.

In 2016, Porwal and Kumar [12] introduced and investigated a linear operator $I(\theta, z): \mathcal{A} \rightarrow \mathcal{A}, \theta>0$, by using the Hadamard product (or convolution) and defined as follows

$$
I(\theta, z) f(z)=K(\theta, z) * f(z)=z+\sum_{n=2}^{\infty} \frac{\theta^{n-1}}{(n-1)!} e^{-\theta} a_{n} z^{n}, \quad z \in \mathbb{D},
$$

where "*" indicate the Hadamard product (or convolution) of two power series.
In this paper, for $f \in \mathcal{A}$ we introduce a new linear operator $\mathcal{I}_{\theta}^{\delta}: \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\begin{equation*}
\mathcal{I}_{\theta}^{\delta} f(z)=I(\theta, z) * \mathcal{R}^{\delta} \tag{1.5}
\end{equation*}
$$

where $\mathcal{R}^{\delta}, \delta \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$, denote the Ruscheweyh derivative operator [13] given by

$$
\mathcal{R}^{\delta} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(\delta+n)}{\Gamma(\delta+1) \Gamma(n)} a_{n} z^{n}, \quad z \in \mathbb{D}
$$

It is easy to obtain from (1.5) that

$$
\mathcal{J}_{\theta}^{\delta} f(z)=z+\sum_{n=2}^{\infty} \frac{\theta^{n-1} \Gamma(\delta+n)}{\Gamma(\delta+1)(\Gamma(n))^{2}} e^{-\theta} a_{n} z^{n}, \quad z \in \mathbb{D}
$$

where $\theta>0, \delta \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$.

2. Main Results

We begin this section by defining the family $\Upsilon_{\Sigma}(\lambda, \alpha, \beta, \delta, \theta ; h)$ as follows.
Definition 2.1. Assume that $\alpha \geq 0, \beta \geq 1, \delta \in \mathbb{N}_{0}, 0 \leq \lambda \leq 1, \theta>0$ and h is analytic in $\mathbb{D}, h(0)=1$. The function $f \in \Sigma$ is in the family $\Upsilon_{\Sigma}(\alpha, \beta, \delta, \lambda, \theta ; h)$ if it fulfills the subordinations:

$$
(1-\lambda) \frac{z^{1-\alpha}\left(\partial_{\theta}^{\delta} f(z)\right)^{\prime}}{\left(\partial_{\theta}^{\delta} f(z)\right)^{1-\alpha}}+\lambda \frac{z\left(\left(\partial_{\theta}^{\delta} f(z)\right)^{\prime}\right)^{\beta}}{\mathcal{J}_{\theta}^{\delta} f(z)} \prec h(z)
$$

and

$$
(1-\lambda) \frac{w^{1-\alpha}\left(\mathcal{J}_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}}{\left(\mathcal{J}_{\theta}^{\delta} f^{-1}(w)\right)^{1-\alpha}}+\lambda \frac{w\left(\left(\mathcal{J}_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}\right)^{\beta}}{\mathcal{J}_{\theta}^{\delta} f^{-1}(w)} \prec 1+e_{1} z+e_{2} z^{2}+\cdots
$$

where f^{-1} is given by (1.2).
In particular, if we choose $\lambda=1$ in Definition 2.1, the family $\Upsilon_{\Sigma}(\alpha, \beta, \delta, \lambda, \theta ; h)$ reduces to the family $\mathcal{L}_{\Sigma}(\beta, \delta, \theta ; h)$ of β-pseudo bi-starlike functions which satisfying the following subordinations:

$$
\frac{z\left(\left(\partial_{\theta}^{\delta} f(z)\right)^{\prime}\right)^{\beta}}{\partial_{\theta}^{\delta} f(z)} \prec h(z)
$$

and

$$
\frac{w\left(\left(\mathcal{J}_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}\right)^{\beta}}{\mathcal{J}_{\theta}^{\delta} f^{-1}(w)} \prec h(w) .
$$

If we choose $\lambda=0$ in Definition 2.1, the family $\Upsilon_{\Sigma}(\alpha, \beta, \delta, \lambda, \theta ; h)$ reduces to the family $\mathcal{B}_{\Sigma}(\alpha, \delta, \theta ; h)$ of Bazilevič bi-univalent functions which satisfying the following subordinations:

$$
\frac{z^{1-\alpha}\left(\mathfrak{J}_{\theta}^{\delta} f(z)\right)^{\prime}}{\left(\mathfrak{J}_{\theta}^{\delta} f(z)\right)^{1-\alpha}} \prec h(z)
$$

and

$$
\frac{w^{1-\alpha}\left(\mathcal{J}_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}}{\left(\partial_{\theta}^{\delta} f^{-1}(w)\right)^{1-\alpha}} \prec h(w) .
$$

If we choose $\lambda=\beta=1$ in Definition 2.1, the family $\Upsilon_{\Sigma}(\alpha, \beta, \delta, \lambda, \theta ; h)$ reduces to the family $\mathcal{S}_{\Sigma}(\delta, \theta ; h)$ of bi-starlike functions which satisfying the following subordinations:

$$
\frac{z\left(\mathfrak{f}_{\theta}^{\delta} f(z)\right)^{\prime}}{\mathfrak{f}_{\theta}^{\delta} f(z)} \prec h(z)
$$

and

$$
\frac{w\left(\partial_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}}{\mathcal{J}_{\theta}^{\delta} f^{-1}(w)} \prec h(w) .
$$

Theorem 2.1. Assume that $\alpha \geq 0, \beta \geq 1, \delta \in \mathbb{N}_{0}, 0 \leq \lambda \leq 1$ and $\theta>0$. If $f \in \Sigma$ of the form (1.1) is in the class $\Upsilon_{\Sigma}(\alpha, \beta, \delta, \lambda, \theta ; h)$, with $h(z)=1+e_{1} z+e_{2} z^{2}+\cdots$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|e_{1}\right|}{[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)](\delta+1) \theta e^{-\theta}}=\frac{\left|e_{1}\right|}{A} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\max \left\{\left|\frac{e_{1}}{B}\right|,\left|\frac{e_{2}}{B}-\frac{C e_{1}^{2}}{A^{2} B}\right|\right\}, \max \left\{\left|\frac{e_{1}}{B}\right|,\left|\frac{e_{2}}{B}-\frac{(2 B+C) e_{1}^{2}}{A^{2} B}\right|\right\}\right\}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
& A=[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)](\delta+1) \theta e^{-\theta}, \tag{2.3}\\
& B=\frac{1}{4}[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]\left(\delta^{2}+3 \delta+2\right) \theta^{2} e^{-\theta}, \\
& C=\left[\frac{1}{2}(1-\lambda)(\alpha+2)(\alpha-1)+\lambda(2 \beta(\beta-2)+1)\right](\delta+1)^{2} \theta^{2} e^{-2 \theta} .
\end{align*}
$$

Proof. Suppose that $f \in \Upsilon_{\Sigma}\left(\alpha, \beta, \delta, \lambda, \theta ; ; e_{1} ; e_{2}\right)$. Then there exist two holomorphic functions $\phi, \psi: \mathbb{D} \rightarrow \mathbb{D}$ given by

$$
\begin{equation*}
\phi(z)=r_{1} z+r_{2} z^{2}+r_{3} z^{3}+\cdots, \quad z \in \mathbb{D}, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(w)=s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots, \quad w \in \mathbb{D}, \tag{2.5}
\end{equation*}
$$

with $\phi(0)=\psi(0)=0,|\phi(z)|<1,|\psi(w)|<1, z, w \in \mathbb{D}$ such that

$$
\begin{equation*}
(1-\lambda) \frac{z^{1-\alpha}\left(\mathcal{J}_{\theta}^{\delta} f(z)\right)^{\prime}}{\left(\mathcal{J}_{\theta}^{\delta} f(z)\right)^{1-\alpha}}+\lambda \frac{z\left(\left(\mathcal{J}_{\theta}^{\delta} f(z)\right)^{\prime}\right)^{\beta}}{\mathcal{J}_{\theta}^{\delta} f(z)}=1+e_{1} \phi(z)+e_{2} \phi^{2}(z)+\cdots \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{w^{1-\alpha}\left(\partial_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}}{\left(\partial_{\theta}^{\delta} f^{-1}(w)\right)^{1-\alpha}}+\lambda \frac{w\left(\left(\partial_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}\right)^{\beta}}{\mathcal{J}_{\theta}^{\delta} f^{-1}(w)}=1+e_{1} \psi(w)+e_{2} \psi^{2}(w)+\cdots \tag{2.7}
\end{equation*}
$$

Combining (2.4), (2.5), (2.6) and (2.7), yield

$$
\begin{equation*}
(1-\lambda) \frac{z^{1-\alpha}\left(\mathcal{J}_{\theta}^{\delta} f(z)\right)^{\prime}}{\left(\partial_{\theta}^{\delta} f(z)\right)^{1-\alpha}}+\lambda \frac{z\left(\left(\partial_{\theta}^{\delta} f(z)\right)^{\prime}\right)^{\beta}}{\mathcal{J}_{\theta}^{\delta} f(z)}=1+e_{1} r_{1} z+\left[e_{1} r_{2}+e_{2}(x) r_{1}^{2}\right] z^{2}+\cdots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{w^{1-\alpha}\left(\partial_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}}{\left(\mathcal{J}_{\theta}^{\delta} f^{-1}(w)\right)^{1-\alpha}}+\lambda \frac{w\left(\left(\partial_{\theta}^{\delta} f^{-1}(w)\right)^{\prime}\right)^{\beta}}{\mathcal{J}_{\theta}^{\delta} f^{-1}(w)}=1+e_{1} s_{1} w+\left[e_{1} s_{2}+e_{2} s_{1}^{2}\right] w^{2}+\cdots . \tag{2.9}
\end{equation*}
$$

It is quite well-known that if $|\phi(z)|<1$ and $|\psi(w)|<1, z, w \in \mathbb{D}$, we get

$$
\begin{equation*}
\left|r_{j}\right| \leq 1 \quad \text { and } \quad\left|s_{j}\right| \leq 1, \quad j \in \mathbb{N} . \tag{2.10}
\end{equation*}
$$

In the light of (2.8) and (2.9), after simplifying, we find that

$$
\begin{align*}
& {[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)](\delta+1) \theta e^{-\theta} a_{2}=e_{1} r_{1}, } \tag{2.11}\\
& \frac{1}{4}[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]\left(\delta^{2}+3 \delta+2\right) \theta^{2} e^{-\theta} a_{3} \\
& +\left[\frac{1}{2}(1-\lambda)(\alpha+2)(\alpha-1)+\lambda(2 \beta(\beta-2)+1)\right](\delta+1)^{2} \theta^{2} e^{-2 \theta} a_{2}^{2} \\
= & e_{1} r_{2}+e_{2} r_{1}^{2}, \tag{2.12}\\
& -[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)](\delta+1) \theta e^{-\theta} a_{2}=e_{1} s_{1} \tag{2.13}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{4}[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]\left(\delta^{2}+3 \delta+2\right) \theta^{2} e^{-\theta}\left(2 a_{2}^{2}-a_{3}\right) \\
& +\left[\frac{1}{2}(1-\lambda)(\alpha+2)(\alpha-1)+\lambda(2 \beta(\beta-2)+1)\right](\delta+1)^{2} \theta^{2} e^{-2 \theta} a_{2}^{2} \\
= & e_{1} s_{2}+e_{2} s_{1}^{2} . \tag{2.14}
\end{align*}
$$

Inequality (2.1) follows from (2.11) and (2.13). If we apply notation (2.3), then (2.11) and (2.12) become

$$
\begin{equation*}
A a_{2}=e_{1} r_{1}, \quad B a_{3}+C a_{2}^{2}=e_{1} r_{2}+e_{2} r_{1}^{2} \tag{2.15}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\frac{B}{e_{1}} a_{3}=r_{2}+\left(\frac{e_{2}}{e_{1}}-\frac{C e_{1}}{A^{2}}\right) r_{2}^{2}, \tag{2.16}
\end{equation*}
$$

and on using the known sharp result [7, page 10]:

$$
\begin{equation*}
\left|r_{2}-\mu r_{1}^{2}\right| \leq \max \{1,|\mu|\}, \tag{2.17}
\end{equation*}
$$

for all $\mu \in \mathbb{C}$, we obtain

$$
\begin{equation*}
\left|\frac{B}{e_{1}}\right|\left|a_{3}\right| \leq \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{C e_{1}}{A^{2}}\right|\right\} . \tag{2.18}
\end{equation*}
$$

In the same way, (2.13) and (2.14) become

$$
\begin{equation*}
-A a_{2}=e_{1} s_{1}, \quad B\left(2 a_{2}^{2}-a_{3}\right)+C a_{2}^{2}=e_{1} s_{2}+e_{2} s_{1}^{2} . \tag{2.19}
\end{equation*}
$$

This gives

$$
\begin{equation*}
-\frac{B}{e_{1}} a_{3}=s_{2}+\left(\frac{e_{2}}{e_{1}}-\frac{(2 B+C) e_{1}}{A^{2}}\right) s_{2}^{2} . \tag{2.20}
\end{equation*}
$$

Applying (2.17), we obtain

$$
\begin{equation*}
\left|\frac{B}{e_{1}}\right|\left|a_{3}\right| \leq \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(2 B+C) e_{1}}{A^{2}}\right|\right\} . \tag{2.21}
\end{equation*}
$$

Inequality (2.2) follows from (2.18) and (2.21).
If we take the generating function (1.4) of the (M, N)-Lucas polynomials $L_{M, N, k}(x)$ as $h(z)+1$, then from (1.3), we have $e_{1}=M(x)$ and $e_{2}=M^{2}(x)+2 N(x)$ and Theorem 2.1 becomes the following corollary.

Corollary 2.1. If $f \in \Sigma$ of the form (1.1) is in the class $\Upsilon_{\Sigma}\left(\alpha, \beta, \delta, \lambda, \theta ; T_{M(x), N(x)}-1\right)$, then

$$
\left|a_{2}\right| \leq \frac{|M(x)|}{[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)](\delta+1) \theta e^{-\theta}}
$$

and

$$
\begin{aligned}
\left|a_{3}\right| \leq \min & \left\{\max \left\{\left|\frac{M(x)}{B}\right|,\left|\frac{M^{2}(x)+2 N(x)}{B}-\frac{C M^{2}(x)}{A^{2} B}\right|\right\},\right. \\
& \left.\max \left\{\left|\frac{M(x)}{B}\right|,\left|\frac{M^{2}(x)+2 N(x)}{B}-\frac{(2 B+C) M^{2}(x)}{A^{2} B}\right|\right\}\right\},
\end{aligned}
$$

for all $\alpha, \beta, \delta, \lambda, \theta, x$ such that $\alpha \geq 0, \beta \geq 1, \delta \in \mathbb{N}_{0}, 0 \leq \lambda \leq 1, \theta>0$ and $x \in \mathbb{R}$, where A, B, C are given by (2.3) and $T_{M(x), N(x)}$ is given by (1.4).

In the next theorem, we discuss a bound for $\left|a_{3}-\eta a_{2}^{2}\right|$ called "the Fekete-Szegö problem".

Theorem 2.2. If $f \in \Sigma$ of the form (1.1) is in the class $\Upsilon_{\Sigma}(\alpha, \beta, \delta, \lambda, \theta ; h)$, then (2.22)

$$
\leq \frac{\left|a_{3}-\eta a_{2}^{2}\right|}{B} \min \left\{\max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(C-\eta B) e_{1}}{A^{2}}\right|\right\}, \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(2 B+C-\eta B) e_{1}}{A^{2}}\right|\right\}\right\},
$$

for all $\alpha, \beta, \delta, \lambda, \theta, \eta$ such that $\alpha \geq 0, \beta \geq 1, \delta \in \mathbb{N}_{0}, 0 \leq \lambda \leq 1, \theta>0$ and $\eta \in \mathbb{C}$, where A, B, C are given by (2.3).

Proof. We apply the notations from the proof of Theorem 2.1. From (2.15) and from (2.16), we have

$$
\begin{equation*}
a_{3}-\eta a_{2}^{2}=\frac{e_{1}}{B}\left(r_{2}+\left(\frac{e_{2}}{e_{1}}-\frac{(C-\eta B) e_{1}}{A^{2}}\right) r_{1}^{2}\right) \tag{2.23}
\end{equation*}
$$

and on using the known sharp result $\left|r_{2}-\mu r_{1}^{2}\right| \leq \max \{1,|\mu|\}$, we get

$$
\begin{equation*}
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{\left|e_{1}\right|}{B} \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(C-\eta B) e_{1}}{A^{2}}\right|\right\} . \tag{2.24}
\end{equation*}
$$

In the same way, from (2.19) and from (2.20), we have

$$
\begin{equation*}
a_{3}-\eta a_{2}^{2}=-\frac{e_{1}}{B}\left(s_{2}+\left(\frac{e_{2}}{e_{1}}-\frac{(2 B+C-\eta B) e_{1}}{A^{2}}\right) s_{1}^{2}\right) \tag{2.25}
\end{equation*}
$$

and on using $\left|s_{2}-\mu s_{1}^{2}\right| \leq \max \{1,|\mu|\}$, we get

$$
\begin{equation*}
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{\left|e_{1}\right|}{B} \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(2 B+C-\eta B) e_{1}}{A^{2}}\right|\right\} \tag{2.26}
\end{equation*}
$$

Inequality (2.22) follows from (2.24) and (2.26).

Corollary 2.2. If $f \in \Sigma$ of the form (1.1) is in the class $\Upsilon_{\Sigma}\left(\alpha, \beta, \delta, \lambda, \theta ; T_{M(x), N(x)}-1\right)$, then

$$
\begin{aligned}
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{|M(x)|}{B} \min & \left\{\max \left\{1,\left|\frac{M^{2}(x)+2 N(x)}{M(x)}-\frac{(C-\eta B) M(x)}{A^{2}}\right|\right\}\right. \\
& \left.\max \left\{1,\left|\frac{M^{2}(x)+2 N(x)}{M(x)}-\frac{(2 B+C-\eta B) M(x)}{A^{2}}\right|\right\}\right\}
\end{aligned}
$$

for all $\alpha, \beta, \delta, \lambda, \theta, \eta, x$ such that $\alpha \geq 0, \beta \geq 1, \delta \in \mathbb{N}_{0}, 0 \leq \lambda \leq 1, \theta>0, \eta \in \mathbb{C}$ and $x \in \mathbb{R}$, where A, B, C are given by (2.3) and $T_{M(x), N(x)}$ is given by (1.4).

References

[1] K. O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal. 3(2) (2013), 137-147. https: //doi.org//10.7153/jca-03-12
[2] M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41 (2017), 694-706. https://doi.org/10.3906/ mat-1602-25
[3] P. L. Duren, Univalent Functions, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[4] P. Filipponi and A. F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, Applications of Fibonacci Numbers 4 (1991), 99-108. https://doi.org/10.1007/ 978-94-011-3586-3_12
[5] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573. https://doi.org//10.1016/j.aml.2011.03.048
[6] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179-182. https: //doi.org//10.1016/j.joems.2012.08.020
[7] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org//10.2307/2035949
[8] G. Y. Lee and M. Asci, Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math. 2012, Article ID 264842. https://doi.org/10.1155/2012/264842
[9] A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Mathematical Magazine 7 (1999), 2-12.
[10] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York, Basel, 2000.
[11] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014 (2014), Article ID 984135, 1-3. https://doi.org/10.1155/2014/984135
[12] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afrika Math. 27 (2016), 1021-1027. https://doi.org/10.1007/ s13370-016-0398-z
[13] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.2307/2039801
[14] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc. 38(2) (1973), 261-271. https://doi. org/10.1090/S0002-9939-1973-0311887-9
[15] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242-246. https://doi.org//10.1016/j.joems. 2014.04.002
[16] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845. https://doi.org/10.2298/FIL1508839S
[17] H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc. 44(1) (2018), 149-157. https://doi.org/10.1007/s41980-018-0011-3
[18] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Math. 28 (2017), 693-706. https://doi.org/10. 1007/s13370-016-0478-0
[19] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml. 2010. 05.009
[20] A. K. Wanas and A. L. Alina, Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions, Journal of Physics: Conference Series 1294 (2019), 1-6. https://doi.org/10.1088/1742-6596/1294/3/032003
[21] T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie 55 (2012), 95-103. https://doi.org/10. 3390/math6120334
${ }^{1}$ Department of Mathematics, College of Science, University of Al-Qadisiyah,
IraQ
Email address: abbas.kareem.w@qu.edu.iq
${ }^{2}$ College of Natural Sciences,
University of Rzeszów,
ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland
Email address: jsokol@ur.edu.pl

[^0]: Key words and phrases. Bi-univalent function, (M, N)-Lucas polynomial, coefficient bound, FeketeSzegö problem, Poisson distribution, subordination, Ruscheweyh derivative.

 2010 Mathematics Subject Classification. Primary: 30C45. Secondary: 30C80.
 DOI 10.46793/KgJMat2401.089W
 Received: May 03, 2020.
 Accepted: March 05, 2021.

