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LORENTZIAN PARA-SASAKIAN MANIFOLDS AND ∗-RICCI

SOLITONS

ABDUL HASEEB1 AND SUDHAKAR K. CHAUBEY2

Abstract. We study the properties of Lorentzian para-Sasakian manifolds en-
dowed with ∗-Ricci solitons and gradient ∗-Ricci solitons. Finally, the existence of
∗-Ricci soliton on a 4-dimensional Lorentzian para-Sasakian manifold is proved by
constructing a non-trivial example.

1. Introduction

A Ricci soliton (g, F, λ) [12] on a semi-Riemannian manifold (M, g) is a generaliza-
tion of Einstein metric such that

1

2
£F g + S + λg = 0,

where S is the Ricci tensor, £F is the Lie derivative operator along the vector field F

on M , g represents the semi-Riemannian metric of M and λ is a real number. The
Ricci soliton is said to be shrinking, steady and expanding according to λ being less
than 0, 0 and greater than 0, respectively.

In 1959, the notion of ∗-Ricci tensor on almost Hermitian manifolds was introduced
by Tachibana [23] and further studied by Hamada [11] on real hypersurfaces of non-flat
complex space forms. A semi-Riemannian metric g on a smooth manifold M is called
a ∗-Ricci soliton [16] if there exists a smooth vector field F (called soliton vector field)
and a real number λ, such that

(1.1) £F g + 2S∗ = −2λg,

Key words and phrases. Lorentzian para-Sasakian manifolds, ∗-Ricci solitons, gradient ∗-Ricci
solitons, generalized η-Einstein manifolds.
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168 A. HASEEB AND S. K. CHAUBEY

where

S∗(U, V ) = g(Q∗U, V ) = Trace ¶ϕ ◦ R(U, ϕV )♢ ,

for all vector fields U, V on M [6]. Here, ϕ is the (1, 1) tensor field and Q∗ is the
(1, 1) ∗-Ricci operator. If we choose λ as a smooth function in (1.1), then the soliton
(g, F, λ) satisfying equation (1.1) is known as an almost ∗-Ricci soliton on M . In this
connection, we recommend the papers [4, 10, 13, 15,17,21, 22,24,25] for more details
about the study of Ricci solitons, η-Ricci solitons and ∗-Ricci solitons in the context
of contact Riemannian geometry. As far as our knowledge goes, the study of ∗-Ricci
solitons in the context of Lorentzian para-Sasakian manifolds is left. The main motive
of this article is to fill this gap.

In 1989, K. Matsumoto [18] introduced the notion of LP−Sasakian manifolds, while
in 1992, the same notion was independently studied by I. Mihai and R. Rosca [19]
and they obtained several results on this manifold. The Lorentzian para-Sasakian
manifolds have also been studied by various authors such as [1,2,7–9,14,26] and many
others.

We present our work as follows. In Section 2, we collect the basic results and
some basic definitions of Lorentzian para-Sasakian manifolds. The ∗-Ricci solitons
and gradient ∗-Ricci solitons on Lorentzian para-Sasakian manifolds are discussed in
Section 3 and Section 4, respectively. We present a 4-dimensional non-trivial example
of Lorentzian para-Sasakian manifold admitting a ∗-Ricci soliton in Section 5.

2. Preliminaries

Let M be an n-dimensional smooth manifold equipped with a quartet (ϕ, ξ, η, g),
where ϕ is a tensor field of type (1, 1), ξ is the unit timelike vector field, η is a 1-form
and a Lorentzian metric g on M such that [5, 20]

(2.1) ϕ2 = I + η ⊗ ξ, η(ξ) = −1,

which implies

(2.2) ϕξ = 0, η(ϕU) = 0, rank(ϕ) = n − 1,

for all U ∈ X(M), where X(M) denotes the collection of all smooth vector fields of M .
The manifold M is said to have an almost para-contact metric structure (ϕ, ξ, η, g)
when it admits a Lorentzian metric g, such that

(2.3) g(ϕU, ϕV ) = g(U, V ) + η(U)η(V ), g(U, ξ) = η(U),

for all U, V ∈ X(M).
If moreover,

(∇Uϕ)V =η(V )ϕ2U + g(ϕU, ϕV )ξ,(2.4)

∇Uξ =ϕX ⇔ (∇Uη)V = g(ϕU, V ) = g(U, ϕV ),(2.5)

where ∇ denotes the Levi-Civita connection of the manifold.
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An n-dimensional Lorentzian para-Sasakian manifold satisfies the following relations
(see [9]):

g(R(U, V )W, ξ) =g(V, W )η(U) − g(U, W )η(V ),(2.6)

R(U, V )ξ =η(V )U − η(U)V,(2.7)

S(U, ξ) =(n − 1)η(U) ⇔ Qξ = (n − 1)ξ,(2.8)

for all U, V, W ∈ X(M), where R denotes the curvature tensor and S denotes the Ricci
tensor of M such that S(U, V ) = g(QU, V ) for all U, V ∈ X(M).

A Lorentzian para-Sasakian manifold M is said to be a generalized η-Einstein [3] if
its non-vanishing Ricci tensor S is of the form

(2.9) S(U, V ) = ρ1g(U, V ) + ρ2η(U)η(V ) + ρ3g(ϕU, V ),

where ρ1, ρ2 and ρ3 are smooth functions on M . If ρ3 = 0 (resp. ρ2 = ρ3 = 0), then
M is called an η-Einstein (resp. Einstein) manifold.

Lemma 2.1. An n-dimensional Lorentzian para-Sasakian manifold satisfies the fol-

lowing relations

(∇UQ)ξ =(n − 1)ϕU − QϕU,(2.10)

(∇ξQ)U = − 2QϕU + 2aU + 2aη(U)ξ,(2.11)

where Q is the Ricci operator.

Proof. Differentiating Qξ = (n − 1)ξ along U and using (2.5), we get (2.10). Next
differentiating (2.7) then using (2.5), we find

(2.12) (∇ER)(V, W )ξ = −R(V, W )ϕE + g(ϕE, W )V − g(ϕE, V )W.

Let ¶ei♢
n

i=1 be a local orthonormal basis on M . Putting V = E = ei in (2.12) and
summing over i leads to

n
∑

i=1

ϵig((∇ei
R)(ei, W )ξ, U) =S(W, ϕU) + (n − 1)g(ϕW, U)(2.13)

− 2ag(W, U) − 2aη(V )η(W ),

where ϵi = g(ei, ei) and a = tr ϕ. Here tr stands for trace. From Bianchi’s second
identity, we can easily obtain that

(2.14)
n
∑

i=1

ϵig((∇ei
R)(U, ξ)W ), ei) = (∇US)(ξ, W ) − (∇ξS)(U, W ).

By considering (2.13) in (2.14), equation (2.11) follows. □

On a Lorentzian para-Sasakian manifold (M, ϕ, ξ, η, g), we have the following lem-
mas.
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Lemma 2.2. On a Lorentzian para-Sasakian manifold (M, ϕ, ξ, η, g), we have

R̄(U, V, ϕW, ϕE) =R̄(U, V, W, E) − g(U, W )g(V, E) + g(V, W )g(U, E)(2.15)

+ 2[g(V, W )η(U)η(E) − g(U, W )η(V )η(E)

+ g(U, E)η(V )η(W ) − g(V, E)η(U)η(W )]

+ g(U, ϕW )g(V, ϕE) − g(V, ϕW )g(U, ϕE),

for any U, V, W, E on M, where R̄(U, V, W, E) = g(R(U, V )W, E).

Proof. By virtue of the well-known definition of curvature tensor, we can write

R̄(U, V, ϕW, ϕE) =g(∇U∇V ϕW, ϕE) − g(∇V ∇UϕW, ϕE) − g(∇[U,V ]ϕW, ϕE).(2.16)

By making use of (2.2), (2.4) and (2.5), (2.16) takes the form

R̄(U, V, ϕW, ϕW ) =g(R(U, V )W, E) + η(R(U, V )W )η(E)

+ g(V, W )g(ϕU, ϕE) − g(U, W )g(ϕV, ϕE)

+ 2g(U, E)η(V )η(W ) − 2g(V, E)η(U)η(W )

+ g(U, ϕW )g(V, ϕE) − g(V, ϕW )g(U, ϕE),

which in view of (2.3) and (2.6) leads to (2.15). This completes the proof. □

Lemma 2.3. The ∗-Ricci tensor of an n-dimensional Lorentzian para-Sasakian man-

ifold (M, ϕ, ξ, η, g) is given by

(2.17) S∗(V, W ) = S(V, W ) + (n − 2)g(V, W ) − g(V, ϕW )a + (2n − 3)η(V )η(W ),

for any V, W ∈ X(M).

Proof. Let ¶ei♢
n

i=1 be an orthonormal basis of the tangent space at each point of the
manifold. By the definition of ∗-Ricci tensor, from (2.15), we have

S∗(V, W ) =
n
∑

i=1

ϵiR̄(ei, V, ϕW, ϕei)

=
n
∑

i=1

ϵiR̄(ei, V, W, ei) +
n
∑

i=1

ϵi[g(V, W )g(ei, ei) − g(ei, W )g(V, ei)]

+ 2
n
∑

i=1

ϵi[g(V, W )η(ei)η(ei) − g(ei, W )η(V )η(ei)

+ g(ei, ei)η(V )η(W ) − g(V, ei)η(ei)η(W )]

+
n
∑

i=1

ϵi[g(ei, ϕW )g(V, ϕei) − g(V, ϕW )g(ei, ϕei)],

which leads to (2.17), where ϵi = g(ei, ei), i.e., ϵ1 = ϵ2 = · · · = ϵn−1 = 1, ϵn = −1. □
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3. Lorentzian Para-Sasakian Manifolds Admitting ∗-Ricci Solitons

In this section, we characterize the properties of Lorentzian para-Sasakian manifold
endowed with ∗-Ricci solitons. Now, we prove the following.

Theorem 3.1. If an n-dimensional Lorentzian para-Sasakian manifold admits a ∗-

Ricci soliton (g, F, λ), then the ∗-Ricci soliton is steady.

Proof. By using (2.17) in (1.1), we have

(£F g)(U, V ) = − 2S(U, V ) − 2[λ + (n − 2)]g(U, V ) − 2(2n − 3)η(U)η(V )(3.1)

+ 2g(U, ϕV )a.

Taking covariant differentiation of (3.1) with respect to W , we get

(∇W £F g)(U, V ) = − 2(∇W S)(U, V ) − 2(2n − 3)[g(ϕW, U)η(V )(3.2)

+ g(ϕW, V )η(U)] + 2[g(V, W )η(U)

+ g(U, W )η(V ) + 2η(U)η(V )η(W )]a.

Following Yano [27], the following formula

(£F ∇Ug − ∇U£F g − ∇[F,U ]g)(V, W ) = −g((£F ∇)(U, V ), W ) − g((£F ∇)(U, W ), V )

is well-known for any U, V, W on M . As g is parallel with respect to ∇, the above
relation becomes

(3.3) (∇U£F g)(V, W ) − g((£F ∇)(U, V ), W ) − g((£F ∇)(U, W ), V ) = 0,

for any U, V, W . Since £F ∇ is a symmetric tensor of type (1, 2), then from (3.3) it
follows that

g((£F ∇)(U, V ), W ) =
1

2
(∇V £F g)(U, W ) +

1

2
(∇U£F g)(V, W ) −

1

2
(∇W £F g)(U, V ).

(3.4)

Using (3.2) in (3.4), we have

g((£F ∇)(U, V ), W ) =(∇W S)(U, V ) − (∇V S)(W, U) − (∇US)(V, W )

− 2(2n − 3)g(ϕU, V )η(W ) + 2g(ϕU, ϕV )η(W )a,

which by putting V = ξ reduces to

(3.5) g((£F ∇)(U, ξ), W ) = (∇W S)(U, ξ) − (∇US)(ξ, W ) − (∇ξS)(W, U).

By considering (2.10) and (2.11) in (3.5), we obtain

(3.6) (£F ∇)(U, ξ) = 2QϕU − 2aU − 2aη(U)ξ.

Taking the covariant derivative of (3.6) with respect to V , we have

(∇V £F ∇)(U, ξ) =2(∇V Q)ϕU − (£F ∇)(U, ϕV ) + 2Q(∇V ϕ)U

− 2ag(U, ϕV )ξ − 2aη(U)ϕV.



172 A. HASEEB AND S. K. CHAUBEY

Again from [27], we have

(£F R)(U, V )W + (∇V £F ∇)(U, W ) − (∇U£F ∇)(V, W ) = 0.

Thus the last two equations give

(£F R)(U, V )ξ =2(∇UQ)ϕV − 2(∇V Q)ϕU(3.7)

+ 2Q(η(V )U − η(U)V ) + 2a(η(U)ϕV − η(V )ϕU)

+ (£F ∇)(U, ϕV ) − (£F ∇)(V, ϕU).

Setting V = ξ in (3.7) and making use of (2.11), it follows that

(3.8) (£F R)(U, ξ)ξ = 2QU + 2Qη(U)ξ − 2aϕU − (£F ∇)(ξ, ϕU).

Taking the Lie derivative of R(U, ξ)ξ = −U − η(U)ξ along F , we have

(3.9) (£F R)(U, ξ)ξ − g(U, £F ξ)ξ + 2η(£F ξ)U = −(£F η)(U)ξ.

By using (3.9), (3.8) takes the form

(£F η)(U)ξ = − 2QU − 2Qη(U)ξ + 2aϕU + (£F ∇)(ξ, ϕU) + g(U, £F ξ)ξ(3.10)

− 2η(£F ξ)U.

Now taking the Lie derivative of g(U, ξ) = η(U), we find

(3.11) (£F η)U = g(U, £F ξ) + (£F g)(U, ξ).

By putting V = ξ in (3.1) and using (2.1)–(2.3), we find

(3.12) (£F g)(U, ξ) = −2λη(U).

Again putting U = ξ in (3.12), we arrive

(3.13) η(£F ξ) = −λ.

By making use of (3.11)-(3.13), we get from (3.10) that

(λI − Q)ϕ2U = −aϕU −
1

2
(£F ∇)(ξ, ϕU),

which by virtue of (3.6) leads to λ = 0, where ϕ2U ̸= 0. This shows that ∗-Ricci
soliton on M is steady. This completes the proof. □

Theorem 3.2. An n-dimensional Lorentzian para-Sasakian manifold endowed with

an almost ∗-Ricci soliton (g, ξ, λ) is a generalized η-Einstein. Also, the soliton is

steady.

Proof. Let the Lorentzian metric of an n-dimensional Lorentzian para-Sasakian mani-
fold be an almost ∗-Ricci soliton (g, ξ, λ), then (1.1)) turns into

(3.14) g(∇Uξ, V ) + g(U, ∇V ξ) + 2S∗(U, V ) + 2λg(U, V ) = 0,

for all vector fields U and V on M . By making use of equations (2.5) and (2.17),
equation (3.14) transforms to

S = ρ1g + ρ2η ⊗ η + ρ3g(·, ϕ ·),
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where ρ1 = −(λ + n − 2), ρ2 = −(2n − 3) and ρ3 = a − 1. Also, in view of (2.1)–(2.3),
(2.8) and the above equation, we can easily find that λ = 0. This gives the statement
of Theorem 3.2. □

Particularly, if we suppose that a = tr ϕ = 1, then from Theorem 3.2, we infer that

(3.15) S = ρ1g + ρ2η ⊗ η.

Let us consider an orthonormal frame field on a Lorentzian para-Sasakian manifold
and contracting (3.15), we lead

r = nρ1 − ρ2 = −n2 + 4n − 3.

Now, we state the following.

Corollary 3.1. If an n-dimensional Lorentzian para-Sasakian manifold admits an

almost ∗-Ricci soliton (g, ξ, λ), with tr ϕ = 1, then it has constant scalar curvature.

A non-flat semi-Riemannian manifold is called pseudo Ricci symmetric and denoted
by (PRS)n if the non-zero Ricci tensor S of type (0, 2) of the manifold satisfies the
condition [28]

(3.16) (∇US)(V, W ) = 2A(U)S(V, W ) + A(V )S(U, W ) + A(W )S(U, V ),

where A is a non-zero 1-form such that g(U, σ) = A(U), for all vector fields U ; σ being
the vector field corresponding to the associated 1-form A. In partcular, if A = 0, then
the manifold is called Ricci symmetric.

Taking the covariant derivative of (3.15) leads to

(3.17) (∇US)(V, W ) = ρ2[g(ϕU, V )η(W ) + g(ϕU, W )η(V )].

Now using (3.15) and (3.17), (3.16) becomes

ρ2[g(ϕU, V )η(W ) + g(ϕU, W )η(V )] =2A(U)[ρ1g(V, W ) + ρ2η(V )η(W )](3.18)

+ A(V )[ρ1g(U, W ) + ρ2η(U)η(W )]

+ A(W )[ρ1g(U, V ) + ρ2η(U)η(V )].

Taking U = W = ξ in (3.18), we get A(V ) = 3A(ξ)η(V ), which by putting V = ξ

gives A(ξ) = 0. This implies that A(V ) = 0. Thus we have the following.

Theorem 3.3. A pseudo Ricci symmetric Lorentzian para-Sasakian manifold admit-

ting an almost ∗-Ricci soliton (g, ξ, λ), with tr ϕ = 1 is Ricci symmetric.

4. Gradient ∗-Ricci Solitons on η-Einstein Lorentzian Para-Sasakian
Manifolds

This section is concerned with the study of gradient ∗-Ricci solitons within the
context of η-Einstein Lorentzian para-Sasakian manifolds.

Let an n-dimensional Lorentzian para-Sasakian manifold be η-Einstein, then it is
noticed that the equation (2.9) takes the form

(4.1) S = ρ1g(U, V ) + ρ2η(U) ⊗ η(V ).
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Setting V = U = ei in (4.1), where ¶ei♢
n

i=1 represents a set of orthonormal frame field
of M , and taking the summation over i, 1 ≤ i ≤ n, we have

(4.2) r = ρ1n − ρ2.

On the other hand, putting U = V = ξ in (4.1) and making use of (2.1) and (2.3),
we also have

(4.3) − (n − 1) = −ρ1 + ρ2.

Hence, it follows from (4.2) and (4.3) that

ρ1 =
r

n − 1
− 1, ρ2 =

r

n − 1
− n.

Thus, the Ricci tensor S of an η-Einstein Lorentzian para-Sasakian manifold is given
by

(4.4) S(U, V ) =


r

n − 1
− 1



g(U, V ) +


r

n − 1
− n



η(U)η(V ).

Definition 4.1. A semi-Riemannian metric g of a semi-Riemannian manifold M is
called a gradient ∗-Ricci soliton if it satisfies

(4.5) Hessf + S∗ + λg = 0,

for some smooth function f , where Hess f (Hessian f) is defined by Hess f = ∇∇f . It
is noticed that if we choose F = Df in equation (1.1), where D denotes the gradient
operator of g, then we get (4.5).

Let the η-Einstein Lorentzian para-Sasakian manifold M admit a gradient ∗-Ricci
soliton. Then from (4.5) it follows that

(4.6) ∇UDf + Q∗U + λU = 0,

for all U on M . First we prove the following lemmas for later use.

Lemma 4.1. An n-dimensional η-Einstein Lorentzian para-Sasakian manifold satis-

fies

(4.7) (∇UQ∗)ξ − (∇ξQ
∗)U = −



r

n − 1
+ n − 3



ϕU +



a −
ξ(r)

n − 1



(U + η(U)ξ),

for all X on M .

Proof. By using (4.4) in (2.17), we find

S∗(V, W ) =


r

n − 1
+ n − 3



(g(V, W ) + η(V )η(W )) − g(V, ϕW )a.

It yields

(4.8) Q∗V =


r

n − 1
+ n − 3



(V + η(V )ξ) − ϕV a.
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Differentiating (4.8) along U , we get

(∇UQ∗)V =


r

n − 1
+ n − 3



[(∇Uη)(V )ξ + η(V )∇Uξ](4.9)

− (g(U, V )ξ + η(V )U + 2η(U)η(V )ξ)a +
U(r)

n − 1
(V + η(V )ξ),

which by replacing V by ξ and using (2.1), (2.3) and (2.5) reduces to

(4.10) (∇UQ∗)ξ = −


r

n − 1
+ n − 3



ϕU + (U + η(U)ξ)a.

Again replacing U by ξ in (4.9) and using same equations, we find

(4.11) (∇ξQ
∗)U =

ξr

n − 1
(U − η(U)ξ).

By subtracting (4.11) from (4.10), (4.7) follows. □

Lemma 4.2. If an η-Einstein Lorentzian para-Sasakian manifold admits a gradient

∗-Ricci soliton, then we have

(4.12) R(U, V )Df = (∇V Q∗)U − (∇UQ∗)V.

Proof. Differentiating (4.6) covariantly along Y , we have

(4.13) ∇V ∇UDf + ∇V Q∗U + λ∇V U = 0,

which by interchanging U and V becomes

(4.14) ∇U∇V Df + ∇UQ∗V + λ∇UV = 0.

Also from (4.6), we find

(4.15) ∇[U,V ]Df = −Q∗[U, V ] − λ[U, V ].

By making use of (4.13)–(4.15), Lemma 4.2 follows. □

Theorem 4.1. Let the metric of an η-Einstein Lorentzian para-Sasakian manifold

M admit a gradient ∗-Ricci soliton. Then the gradient of the potential function is

pointwise collinear with the potential vector field of M .

Proof. Putting U = ξ in (4.12), we have

R(ξ, V )Df = (∇V Q∗)ξ − (∇ξQ
∗)V,

which by virtue of the Lemma 4.1 leads to

(4.16) g(R(ξ, V )Df, ξ) = 0.

By using (2.8), we have

(4.17) g(R(ξ, V )Df, ξ) = −(V f) − η(V )(ξf).

From (4.16) and (4.17), we find (V f) = −η(V )(ξf). This implies that

Df = −(ξf)ξ.

This completes the proof. □
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Taking the covariant derivative of Df = −(ξf)ξ along U , we have

(4.18) ∇UDf = −(U(ξf))ξ − (ξf)ϕU,

which gives

g(∇UDf, ξ) = U(ξf),

where (2.1) and (2.2) are used. Using the last equation in (4.18), we obtain

(4.19) ∇UDf = −g(∇UDf, ξ)ξ − (ξf)ϕU.

From equations (2.17) and (4.6), we conclude that

(4.20) ∇UDf = −QU − (λ + n − 2)U − (2n − 3)η(U)ξ + ϕUa,

which implies that

(4.21) g(∇UDf, ξ) = −λη(U).

Thus from the equations (2.1), (2.2), (2.8), and (4.19)–(4.21), we obtain

QU = −(λ + n − 2)U − (λ + 2n − 3)η(U)ξ + (a + (ξf))ϕU,

which informs that the manifold M under the consideration is generalized η-Einstein.
Hence, we can state the following.

Corollary 4.1. Every η-Einstein Lorentzian para-Sasakian manifold of dimension n

endowed with a gradient ∗-Ricci metric is generalized η-Einstein.

5. Example

In this section, we construct a non-trivial example of a Lorentzian para-Sasakian
manifold.

We consider the 4-dimensional manifold M = ¶(u, v, w, t) ∈ R
4♢, where (u, v, w, t)

are the standard coordinates in R
4. Let ζ1, ζ2, ζ3 and ζ4 be the vector fields on M

given by

ζ1 = et ∂

∂u
, ζ2 = et ∂

∂v
, ζ3 = et



∂

∂v
+

∂

∂w



, ζ4 = −
∂

∂t
.

Let g be the semi-Riemannian metric defined by

g(ei, ej) =















1, 1 ≤ i = j ≤ 3,

−1, i = j = 4,

0, 1 ≤ i ̸= j ≤ 4.

Let η be the 1-form on M defined by η(U) = g(U, ζ4) = g(U, ξ) for all U ∈ X(M). Let
ϕ be the (1, 1) tensor field on M defined by

ϕζ1 = ζ1, ϕζ2 = ζ2, ϕζ3 = ζ3, ϕζ4 = 0.
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By applying the linearity of ϕ and g, we have

η(ξ) = − 1, ϕ2U = U + η(U)ξ, η(ϕU) = 0,

g(U, ξ) =η(U), g(ϕU, ϕV ) = g(U, V ) + η(U)η(V ),

for all U, V ∈ X(M). Then we have

[ζ1, ζ2] =[ζ1, ζ3] = [ζ2, ζ3] = 0,

[ζ1, ζ4] =ζ1, [ζ2, ζ4] = ζ2, [ζ3, ζ4] = ζ3.

Using Koszul’s formula, we can easily calculate

∇ζ1
ζ1 =ζ4, ∇ζ1

ζ2 = 0, ∇ζ1
ζ3 = 0, ∇ζ1

ζ4 = ζ1,

∇ζ2
ζ1 =0, ∇ζ2

ζ2 = ζ4, ∇ζ2
ζ3 = 0, ∇ζ2

ζ4 = ζ2,

∇ζ3
ζ1 =0, ∇ζ3

ζ2 = 0, ∇ζ3
ζ3 = ζ4, ∇ζ3

ζ4 = ζ3,

∇ζ4
ζ1 =0, ∇ζ4

ζ2 = 0, ∇ζ4
ζ3 = 0, ∇ζ4

ζ4 = 0.

From the above values it can be easily verified that for ζ4 = ξ, M is a Lorentzian
para-Sasakian manifold. We found that the non-vanishing components of curvature
tensor are given by

R(ζ1, ζ2)ζ1 = − ζ2, R(ζ1, ζ3)ζ1 = −ζ3, R(ζ1, ζ4)ζ1 = −ζ4,

R(ζ1, ζ2)ζ2 =ζ1, R(ζ2, ζ3)ζ2 = −ζ3, R(ζ2, ζ4)ζ2 = −ζ4,

R(ζ1, ζ3)ζ1 =ζ1, R(ζ2, ζ3)ζ3 = ζ2, R(ζ3, ζ4)ζ3 = −ζ4,

R(ζ1, ζ4)ζ4 = − ζ1, R(ζ2, ζ4)ζ4 = −ζ2, R(ζ3, ζ4)ζ3 = −ζ3.

From the above expressions of curvature tensors, we obtain

S(ζ1,ζ1) = S(ζ2, ζ2) = S(ζ3, ζ3) = 3, S(ζ4, ζ4) = −3.

In view of 2.17, L.H.S. of (1.1) can be expressed as

(£F g)(V, W ) + 2S∗(V, W ) + 2λg(V, W ) =g(∇V F, W ) + g(V, ∇W F )

+ 2S(V, W ) + 4g(V, W )

− 6g(V, ϕW )a + 10η(V )η(W ).

Let V =
∑4

i=1 V iei, W =
∑4

i=1 W iei and F =
∑4

i=1 F iei, where V i, W i and F i are
scalars for i = 1, 2, 3, 4 such that

F 4 =
F 1(V 1W 4 + W 1V 4) + F 2(V 2W 4 + W 2V 4) + F 3(V 3W 4 + W 3V 4)

2(V 1W 1 + V 2W 2 + V 3W 3)
− 2,

provided V 1W 1 + V 2W 2 + V 3W 3 ≠ 0. Then by the straight forward calculations, we
can notice that

2(V 1W 1F 4 + V 2W 2F 4 + V 3W 3F 4) − (V 1F 1W 4 + V 2F 2W 4 + V 3F 3W 4

+ W 1F 1V 4 + W 2F 2V 4 + W 3F 3V 4) + 4(V 1W 1 + V 2W 2 + V 3W 3) = 0,
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for a = 3 and hence we have £F g + 2S∗ + 2λg = 0, provided λ = 0. Thus, we can
say that the Lorentzian para-Sasakian manifold of dimension 4 admits a steady type
∗-Ricci soliton, which proves Theorem 3.1.
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WOVEN (WEAVING) FRAMES IN BANACH SPACES

ASGHAR RAHIMI1, SARA BASATI1, BAYAZ DARABY1, AND FIRDOUS A. SHAH2

Abstract. Banach frames are defined by the straightforward generalization of
Hilbert space frames. Woven (weaving) frames are the recent generalization of
standard frames which appeared in the applications of distributed signal processing.
In this paper, we introduce the concepts of woven (weaving) Bessel and frame
sequences in Banach spaces and characterize the woven frames in terms of bounded
operators. We also give some equivalent conditions for woven Xd-frame in Banach
spaces.

1. Introduction

The origin of frame theory can be traced back to the early 1950s with the seminal
work of Duffin and Schaeffer [13] in nonharmonic Fourier series. Today, the theory
of frames has expanded into an independent and broad field of research with wide-
spread applications to signal processing, image processing, data compression, pattern
matching, sampling theory, spherical codes, wavelet analysis, communication and data
transmission [4,8,11,18,19]. Inspired by a problem raised in distributed signal process-
ing, Bemrose et al. [1] introduced the concept of weaving frames in separable Hilbert
spaces and observed that the weaving frames may be applied in sensor networks which
requires distributed processing under different frames. In recent years, a considerable
amount of research has been conducted to extend the notion of weaving frames to
different settings which include weaving frames in Banach spaces, continuous weav-
ing frames, generalized weaving frames, weaving Riesz bases, weaving fusion frames,
weaving controlled frames and weaving vector-valued frames [5,6,20,22,24–26,31–34].

Key words and phrases. frame, woven frame, Banach frame, semi-inner product.
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Frames in Hilbert spaces were extended to Banach spaces by Feichtinger and
Gröchenig [15] who introduced the concept of atomic decompositions in Banach
spaces. Later on, Gröchenig [17] laid down the foundations for the theory of coherent
Banach frames and constructed Banach frames for a wide class of Banach spaces,
the so-called coorbit spaces. Keeping in view the fact that the weaving frames have
potential applications in wireless sensor networks and other allied areas, we are deeply
motivated to extend the concept of woven (weaving) frames to Banach spaces by
invoking certain fundamental concepts of operator theory.

This article is organized as follows. Section 2 contains basic definitions and results
regarding frames and weaving frames in Hilbert spaces. In Section 3, we introduce
the notion of weaving frames in Banach spaces and then generalize the definitions of
Xd-frame and p-frame for the woven.

2. Frames and Woven Frames in Hilbert Spaces

In this section, we give a short review of the concept of frames and woven frames
in Hilbert spaces and make some preparatory observations. For a complete treatment
of frame theory, we recommend the excellent book of Christensen [8], the tutorials
of Casazza [2, 3] and the memoir of Han and Larson [21]. Throughout this paper, H
denotes a separable infinite-dimensional Hilbert space, X, Y, Z the separable Banach
spaces with dual X∗, Y ∗, Z∗, Xd a Banach sequence space and I an index set which
is finite or countable. Let N be the set of all positive integers and let m ∈ N be
fixed. Then for this choice of m, we set [m] = ¶1, 2, . . . ,m♢ and [m]c = I \ [m] =
¶m+ 1,m+ 2, . . . ♢. Let us start with the well-known notion of Hilbert space frames.

2.1. Discrete frame in Hilbert spaces. In this section, we give a short review of
the concept of frames in Hilbert spaces, and make some preparatory observations. Let
us start with the well known notion of Hilbert space frames.

Definition 2.1. A family of vectors Φ = ¶φi♢i∈I
in a Hilbert space H is said to be a

frame if there exist constants 0 < A ≤ B < ∞ so that for all x ∈ H

A∥x∥2 ≤
∑

i∈I

♣⟨x, φi⟩♣2 ≤ B∥x∥2,

where A and B are lower and upper frame bounds, respectively. If only B is assumed,
then it is called B-Bessel sequence. If A = B, it is said to be a tight frame and if
A = B = 1, it is called a Parseval frame.

If Φ = ¶φi♢i∈I
is a Bessel sequence for H, then the synthesis operator of Φ defined

as

T : l2(I) → H, T ¶ci♢ :=
∑

i∈I

ciφi,

and the adjoint of T is the analysis operator

T ∗ : H → l2(I), T ∗x := ¶⟨x, φi⟩♢i∈I.
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The frame operator S : H → H is defined by S := TT ∗

Sx = TT ∗x =
∑

i∈I

⟨x, φi⟩φi, for all x ∈ H.

The operator S is positive, self-adjoint, invertible and AI ≤ S ≤ BI. Any x ∈ H has
an expansion

x =
∑

i∈I

⟨S−1φi, x⟩φi =
∑

i∈I

⟨φi, x⟩S−1φi.(2.1)

The family ¶S−1φi♢i∈I is also a frame with bounds B−1, A−1 and this frame is called
the canonical dual or reciprocal frame of ¶φi♢i∈I.

Definition 2.2. A family of vectors Φ = ¶φi♢i∈I in a Hilbert space H is said to be a
Riesz sequence if there exist constants 0 ≤ A ≤ B < ∞ so that for all ¶ci♢i∈I ∈ l2(I)

A
∑

i∈I

♣ci♣2 ≤
∥

∥

∥

∥

∥

∥

∑

i∈I

ciφi

∥

∥

∥

∥

∥

∥

2

≤ B
∑

i∈I

♣ci♣2,

where A and B are the lower Riesz bound and upper Riesz bound, respectively. If in
addition, Φ is complete in H, then it is called as the Riesz basis for H.

2.2. Woven Frame in Hilbert spaces. Woven frames in Hilbert spaces were intro-
duced by Bemros et al. [1, 6] in 2015. Weaving frames have potential applications in
wireless sensor networks that require distributed processing under different frames,
as well as preprocessing of signals using Gabor frames. In this subsection, we review
the notions of woven and weaving frames in Hilbert spaces and present certain new
examples.

Definition 2.3. A family of frames ¶fij♢i∈I with j ∈ [m] for a Hilbert space H is
said to be woven if there exist universal constants A and B so that for every partition
¶σj♢j∈[m] of I, the family ¶fij♢i∈σj

,j∈[m] is a frame for H with lower and upper frame
bounds A and B, respectively. For every j ∈ [m], the frames ¶fij♢i∈σj

are called
weaving frames.

The following proposition shows that every weaving frame has always a universal
upper frame bound.

Proposition 2.1. If each ϕ = ¶φij♢i∈I,j∈[m] is a Bessel sequence for H with bounds

Bj for all j ∈ [m] , then every weaving frame is a Bessel sequence with
∑m

j=1 Bj as a

Bessel bound.

Proof. For every partition ¶σj♢j∈[m] of I and every x ∈ H, the inequality

m
∑

j=1

∑

i∈σj

♣⟨x, φij⟩♣2 ≤
m

∑

j=1

∑

i∈I

♣⟨x, φij⟩♣2 ≤ ∥x∥2
m

∑

j=1

Bj,

yields the desired bound. □
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Example 2.1. There exist two Parseval frames that yield weaving frames with arbitrary

weaving bounds. For showing this, assume ε > 0, set δ = (1 + ε2)
− 1

2 , and let
¶e1, e2, e3♢ be the standard orthonormal basis of R3. Then the sets ϕ = ¶φi♢n

i=1 =
¶δe1+δεe1, δe2+δεe2, δe3+δεe3♢ and ψ = ¶ψi♢n

i=1 = ¶δεe2+δe2, δεe1+δe1, δεe3+δe3♢,
are Parseval frames, which are woven since any choice of σ gives the spaning set. Since
they are Parseval, as a consequence of Proposition 2.1, the universal frame bound for
every weaving frame can be chosen to be n. For σ = ¶2, 4, 6♢, we have

∑

i∈σ

♣⟨x, φi⟩♣2 +
∑

i∈σc

♣⟨x, ψi⟩♣2

=♣⟨x, δe1 + δεe1⟩♣2 + ♣⟨x, δe2 + δεe2⟩♣2

+ ♣⟨x, δe3 + δεe3⟩♣2 + ♣⟨x, δεe2 + δe2⟩♣2 + ♣⟨x, δεe1 + δe1⟩♣2 + ♣⟨x, δεe3 + δe3⟩♣2

=2
(

δ2 + δ2ε2
)

♣⟨x, e1⟩♣2 + 2
(

δ2ε2 + δ2
)

♣⟨x, e2⟩♣2 + 2
(

δ2ε2 + δ2
)

♣⟨x, e3⟩♣2

=2δ2
(

1 + ε2
)

∥x∥2 =
2ε2

1 + ε2
∥x∥2,

which lies between 0, 3 for arbitrary choice of ε ∈ (0,∞) .

The following proposition demonstrates that the perturbed frames are obtained as
the image of a bounded and invertible operator of a given frame.

Proposition 2.2. Let ¶φi♢i∈I be a frame with bounds A,B and V be a bounded

operator. If ∥Id − V ∥2 ≤ A
B

and ∥V − V 2∥2 ≤ A
B
, then the frames ¶φi♢i∈I, ¶V φi♢i∈I

and ¶V 2φi♢i∈I are woven.

Proof. Note that by Neumann’s Theorem V is invertible and thus ¶V φi♢i∈I and
¶V 2φi♢i∈I automatically constitute frames. For every partitions σ,∆ ⊂ I and every
x ∈ H by using Minkowski,s inequality:





∑

i∈σ

♣⟨x, φi⟩♣2 +
∑

i∈∆

♣⟨x, V φi⟩♣2 +
∑

i∈I\(σ∪∆)

∣

∣

∣

〈

x, V 2φi

〉∣

∣

∣

2





1

2

=





∑

i∈σ

♣⟨x, φi⟩♣2 +
∑

i∈∆

♣⟨x, φi⟩♣2 −
∑

i∈∆

♣⟨x, φi⟩♣2 +
∑

i∈∆

♣⟨V ∗x, φi⟩♣2

+
∑

i∈I\(σ∪∆)

♣⟨V ∗x, φi⟩♣2 −
∑

i∈I\(σ∪∆)

♣⟨V ∗x, φi⟩♣2 +
∑

i∈I\(σ∪∆)

∣

∣

∣

〈

(V 2)∗x, φi

〉∣

∣

∣

2





1

2

=





∑

i∈σ

♣⟨x, φi⟩♣2 +
∑

i∈∆

♣⟨x, φi⟩♣2 −
∑

i∈∆

♣⟨(I − V ∗)x, φi⟩♣2 +
∑

i∈I\(σ∪∆)

♣⟨V ∗x, φi⟩♣2

−
∑

i∈I\(σ∪∆)

∣

∣

∣

〈

(V ∗ − (V 2)∗)x, φi

〉∣

∣

∣

2





1

2
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≥




∑

i∈I

♣⟨x, φi⟩♣2




1

2

−




∑

i∈∆

♣ ⟨(I − V ∗)x, φi⟩ ♣2




1

2

+





∑

i∈∆∪(I\(σ∪∆))

♣⟨V ∗x, φi⟩♣2




1

2

−




∣

∣

∣

〈(

V ∗ − (V 2)∗
)

x, φi

〉∣

∣

∣

2





1

2

≥
√
A ∥x∥ −

√
B∥(I − V ∗)x∥ +

√
B∥V ∗x∥ −

√
B∥(V ∗ − (V 2)∗)x∥

≥
(√

A−
√
B∥I − V ∗∥ +

√
B∥V ∗∥ −

√
B∥V ∗∥∥I − V ∗∥

)

∥x∥.
Thus, ¶φ♢i∈σ ∪ ¶V φi♢i∈∆ ∪ ¶V 2φi♢i∈I\(σ∪∆) forms a woven frames having

(√
A−

√
B∥I − V ∗∥ +

√
B∥V ∗∥ −

√
B∥V ∗∥∥I − V ∗∥

)2
> 0.

□

3. Woven Frames in Banach Space

3.1. Frames in Banach Space. Frames were extended to Banach spaces by Fe-
ichtinger and Gröchenig [15] who introduced the notion of atomic decompositions
for Banach spaces. Later, Gröchenig [17] introduced a more general concept called
Banach frame. Banach frames were further studied in [4]. An analysis of p-frames in
general Banach spaces first appeared in [9]. The aim of an atomic decomposition for
a space of functions or distributions is to represent every element as a sum of simple
functions usually called atoms. If this is possible, some properties of these function
spaces, such as duality, interpolation, or operator theory for them, can be understood
better by means of the atomic decomposition. Decomposition methods have been
used for many important theoretical contributions. A Banach space of scalar valued
sequences (often called BK-space) is a linear space of sequences equipped with a
norm under which it constitutes a Banach Space (i.e., it is complete in the norm)
and for which the coordinate functionals are continuous. In a Banach space of scalar
valued sequences, the unit vectors are the elements ei’s defined by ei (j) = δij (δij the
Kronechker delta).

Definition 3.1. A sequence space Xd is called BK-space, if it is a Banach space
and the coordinate functionals ¶ak♢ → ak are continuous on Xd, that is, the relations

xn = ¶α(n)
j ♢, x = ¶αj♢ ∈ Xd, limn→∞ xn = x imply

lim
n→∞

α
(n)
j = αj, j = 1, 2, . . .

A BK-space is called solid if whenever ¶ak♢ and ¶bk♢ are sequences with ¶bk♢ ∈ Xd

and ♣ak♣ ≤ ♣bk♣ for each k ∈ I, then it follows that ¶ak♢ ∈ Xd and

∥¶ak♢∥Xd
≤ ∥¶bk♢∥Xd

.

A sequence space Xd is called an AK-space if it is a topological vector space and

¶ak♢ = lim
n
ρn (¶ak♢) , for all ¶ak♢ ∈ Xd,
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where ρn (¶ak♢) = (a1, a2, . . . , an, 0, . . . ) .

If the canonical vectors form a Schauder basis for Xd, then Xd is called a CB-space
and its canonical basis is denoted by ¶ej♢∞

i=1. If Xd is reflexive and a CB-space, then
Xd is called an RCB-space. Also, the dual of Xd is denoted by X∗

d .

Definition 3.2. Let X be a Banach space and Xd be a BK-space. A countable
family ¶gi♢i∈I in the dual X∗ is called an Xd-frame for X if

(a) ¶gi(f)♢i∈I ∈ Xd for all f ∈ X;
(b) the norms ∥f∥X and ∥¶gi(f)♢i∈I∥Xd

are equivalent, that is, there exist constants
A,B > 0 such that

A∥f∥X ≤ ∥¶gi(f)♢i∈I∥Xd
≤ B∥f∥X , for all f ∈ X.

A and B are called Xd-frame bounds.

If at least (a) and the upper condition in (b) are satisfied, ¶gi♢i∈I is called an
Xd-Bessel sequence for X. In case Xd = ℓp, the Xd-frame is called p-frame which is
introduced by Christensen and Stoeva [9, 30].

Definition 3.3. A countable family ¶gi♢i∈I ⊂ X∗ is a p-frame for X, 1 < p < ∞, if
there exist A,B > 0 such that

A∥f∥X ≤




∑

i∈I

♣gi(f)♣p




1

p

≤ B∥f∥X , for all f ∈ X.

The family ¶gi♢i∈I is a p-Bessel sequence if at least the upper p-frame condition is
satisfied.

Lemma 3.1 ([28]). If X is a Banach space and ¶fn♢ ⊂ X∗ is total over X, then X

is linearly isometric to the Banach space X = ¶¶fn(x)♢ : x ∈ X♢, where the norm is

given by ∥¶fn(x)♢∥X = ∥x∥X for x ∈ X.

Definition 3.4. Let X be a Banach space and let Xd be an associated Banach space
of scalar valued sequences indexed by N. Let ¶fn♢ ⊂ X∗ and S : Xd → X be given.
The pair (¶fn♢, S) is called a Banach frame for X with respect to Xd if

(a) ¶fn(x)♢ ∈ Xd for each x ∈ X;
(b) there exist positive constants A and B with 0 < A ≤ B < ∞ such that

A∥x∥X ≤ ∥¶fn(x)♢∥Xd
≤ B∥x∥X , for all x ∈ X;(3.1)

(c) S is a bounded linear operator such that S(¶fn(x)♢) = x for all x ∈ X.

The positive constants A and B are called the lower and upper frame bounds of
the Banach frame (¶fn♢, S), respectively. The operator S : Xd → X is called the
reconstruction operator (or the pre-frame operator). The inequality (b) is called the
frame inequality. The Banach frame (¶fn♢, S) is called tight if A = B and normalized
tight if A = B = 1.
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Example 3.1. Let X = lp and ¶en♢ be the sequence of unit vectors in X. Define
¶fn♢ ⊂ X∗ by

fn = fn+2 = en, n ∈ I.

Then by Lemma 3.1, there exists an associated Banach space Xd = ¶¶fn(x)♢ : x ∈ X♢
and a reconstruction operator S : Xd → X such that (¶fn♢, S) is a Banach frame for
X.

3.2. Woven in Banach spaces. As we mentioned earlier, Bemrose, Casazza et al.
in [1, 6] proposed weaving frames in a separable Hilbert space. Weaving frames have
potential applications in wireless sensor networks that require distributed processing
under different frames, frames in Hilbert spaces. Improving and extending this notion
on Hilbert spaces, we generalize the concept of woven (weaving) on Banach spaces.

Definition 3.5. Let X be a Banach space and Xd be a BK-space. The family of
Banach frames ¶gij♢i∈I for j ∈ [m] is woven Xd-frame for dual X∗ with universal
bounds A,B if

(a) ¶gij(f)♢i∈I,j∈[m] ∈ Xd, f ∈ X;
(b) the norms ∥f∥X and ∥¶gij(f)♢i∈I,j∈[m]∥Xd

are equivalent, that is, there exist
constants A, B > 0 such that

A∥f∥X ≤ ∥¶gij(f)♢i∈I,j∈[m]∥Xd
≤ B∥f∥X , f ∈ X.

The constants A and B are called woven Xd-frame bounds. If at least (a) and the
upper condition in (b) are satisfied, ¶gij♢i∈I,j∈[m] is called a woven Xd-Bessel for X.

Definition 3.6. Let X be a Banach space and let Xd be an associated Banach space
of scalar valued sequences indexed by I. Let ¶fij♢i∈I,j∈[m] ⊂ X∗ and S : Xd → X be

given. The pair
(

¶fij♢i∈I,j∈[m], S
)

is called a woven Banach frame for X with respect

to Xd if the pair
(

¶fij♢i∈σj ,j∈[m], S
)

is a Banach frame for each partitions ¶σj♢j∈[m] of

I.

The lack of an inner-product in Banach spaces led G. Lumer [23] in 1961 to intro-
ducing the theory of semi-inner product spaces. His procedure suggested the existence
of a general theory which it seemed should be useful in the study of operator (normed)
algebras by providing better insight on known facts, a more adequate language to
”classify“ special types of operators, as well as new techniques. This notion was further
modified by J. R. Giles [16] and other researchers thereon, and the same is presented
below.

Definition 3.7 ([16]). Let X be a complex (real) vector space. A complex (real)
semi-inner product defined on X is a function from [·, ·] : X ×X → C such that for
all f, g, h ∈ X, λ ∈ C complex (real)

(a) [λf + g, h] = λ [f, h] + [g, h], [f, λg] = λ [f, g];
(b) [f, f ] ≥ 0 for f ∈ X and [f, f ] = 0 implies f = 0;
(c) ♣ [f, g] ♣2 ≤ [f, f ] [g, g] .
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We call X a complex (real) semi-inner product space, abbreviated with S.I.P.S. An
S.I.P.S need not satisfy the following properties

(a) [f, g] = [g, f ];
(b) [f, g + h] = [f, g] + [f, h] .

If [·, ·] is a S.I.P.S. on X then ∥f∥ := [f, f ]
1

2 is a norm on X. Conversely, if X is a
normed vector space then it has a S.I.P.S. that induces its norm in this manner which
is called the compatible semi-inner product [23]. Let X be a Banach space. We define
a duality map ΦX : X → X∗ as follows. Given f ∈ X, by the Hahn-Banach theorem,
there exists an f ∗ ∈ X∗ such that ∥f∥ = ∥f ∗∥ and f ∗(f) = ∥f∥2. Set ΦX (f) = f ∗,

and ΦX (λf) = λf ∗, and define ΦX on the rest of X in the same manner. In general,
ΦX is not unique, linear or continuous. The duality map ΦX induces a semi-inner
product [·, ·] if we set [f, g] = g∗ (f) [29]. We shall use this definition for g∗, g ∈ X.

Note that if X is a Banach space, then the duality map is unique [29]. Recall that a
Banach space X is called strictly convex, if for any pair of vectors f, g ̸= 0 in X, the
equation ∥f + g∥ = ∥f∥X + ∥g∥X , implies that there exists a λ > 0 such that f = λg

[12]. In these spaces, the duality mapping from X to X∗ is unique and bijective when
X is reflexive [12,14].

In 2011, H. Zhang and J. Zhang [35] introduced frames in Banach space X via
S.I.P.S. that is presented in the following definition. The extra condition in Definition
3.5 means that S is a left-inverse of U and thus US is a bounded linear projection of
Xd onto the range R (U) of the operator U .

Lemma 3.2 ([10]). If Xd is a CB-space with the canonical unit vectors ei, i ∈ J , then

the space X⊛

d := ¶¶G(ei) ♢∞
i=1 : G ∈ X∗

d♢ with the norm ∥¶G(ei) ♢∞
i=1∥X⊛

d
:= ∥G∥X∗

d
is

a BK-space isometrically isomorphic to X∗
d . Also, every continuous linear functional

Ψ on Xd has the form

Ψ(¶cj♢) =
∑

j

cjdj,

where ¶dj♢ ∈ X⊛

d is uniquely determined by dj = Ψ(ej), ∥Ψ∥ = ∥¶Ψ(ei)♢∞
i=1∥X⊛

d
. When

X∗
d is a CB-space then its canonical basis is denoted by ¶e∗

j♢.

Remark 3.1. It is easy to see that Lemma 3.2 holds in the following more general
case: If Y is a Banach space and ¶yi♢∞

i=1 is a complete system in Y, then Y ⊛ :=
¶¶Gyi♢∞

i=1 : G ∈ Y ∗♢ normed by ∥¶Gyi♢∞
i=1∥Y ⊛ := ∥G∥Y ∗ is a BK-space, isometrically

isomorphic to Y ∗. Thus, the dual of every separable Banach space can be considered
as a BK-space, because every separable Banach space has a complete system [28].

In the following theorem, we will see that the Bessel woven condition can be
expressed in terms of the synthesis operator T on Xd. As a prerequisite for analysis,
synthesis and frame operators of weaving frames, we define the following space.
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For j ∈ [m], let (Xd)j :=
{

¶cij♢i∈σj
: σj ⊂ I, ∥¶cij♢i∈σj

∥Xd
< ∞

}

. Define the space




∑

j∈[m]

⊕ (Xd)j



 =
{

¶cij♢i∈I,j∈[m] : ¶cij♢i∈I ∈ (Xd)j for all j ∈ [m]
}

,

with the semi-inner product
[

¶cij♢i∈I,j∈[m], ¶c′
ij♢i∈I,j∈[m]

]

=
∑

i∈I,j∈[m]

∣

∣

∣cijc
′
ij

∣

∣

∣ .

The following proposition characterizes a woven Bessel in term of a bounded operator.

Theorem 3.1. Let ¶(Xd)1 , (Xd)2 , . . . ♢ be a sequence of Banach spaces. (Xd)i and

(X∗
d)i’s are BK-spaces. Then,

((Xd)1 ⊕ (Xd)2 ⊕ · · · )∗
Xd

= ((X∗
d)1 ⊕ (X∗

d)2 ⊕ · · · )X∗

d
.

Proof. We shall establish the result when Xd, X
∗
d are BK-space. Assume that

C = (¶ci1♢ , ¶ci2♢ , . . . ) ∈ ((Xd)1 ⊕ (Xd)2 ⊕ · · · )Xd

and
C∗ = (¶c∗

i1♢ , ¶c∗
i2♢ , . . . ) ∈ ((X∗

d)1 ⊕ (X∗
d)2 ⊕ · · · )X∗

d
.

Then the mapping C∗ 7→ φC∗ , where

φc∗(¶ci1♢ , ¶ci2♢ , . . . ) =
∞

∑

i=1

c∗
in (cin) ,

is an isometry from ((X∗
d)1 ⊕ (X∗

d)2 ⊕ · · · )X∗

d
onto ((Xd)1 ⊕ (Xd)2 ⊕ · · · )Xd

. Fix C∗ ∈
((X∗

d)1 ⊕ (X∗
d)2 ⊕ · · · )

X∗

d

. For each C = (¶ci1♢ , ¶ci2♢ , . . . ) in ((Xd)1 ⊕ (Xd)2 ⊕ · · · )Xd
,

the mapping φC∗(¶ci1♢ , ¶ci2♢ , . . . ) =
∑∞

i=1 c
∗
in (cin) defines a continuous linear func-

tional on ((Xd)1 ⊕ (Xd)2 ⊕ · · · )Xd
satisfying ∥φC∗∥ ≤ ∥C∗∥X∗

d
, since using Lemma 3.2

we have

∥φC∗(¶ci1♢, ¶ci2♢, . . . )∥ =
∥

∥

∥

∑

c∗
in(cin)

∥

∥

∥

= sup
g∈X∗,∥g∥≤1

∣

∣

∣g
(

∑

c∗
in(cin)

)∣

∣

∣

= sup
g∈X∗,∥g∥≤1

∣

∣

∣Gg

(

∑

c∗
in(cin)

)∣

∣

∣

≤ sup
g∈X∗,∥g∥≤1

∥¶g(cin)♢∥Xd
∥¶c∗

in(cin)♢∥X∗

d

≤ ∥g∥∥ ¶c∗
in(cin)♢ ∥X∗

d
.

Thus,

∥φC∗∥ ≤ ∥C∗∥X∗

d
,(3.2)

for all C∗ ∈ ((X∗
d)1 ⊕ (X∗

d)2 ⊕ · · · )X∗

d
.

Fix 0 < ε < 1. For each n pick some ¶cin♢ ∈ (Xd) with ∥cin∥ = 1 and c∗
in(cin) ≥

ε∥c∗
in∥.
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Using Lemma 3.2, we have

ε∥c∗
in∥X∗

d
= ε sup

g∈X∗,∥g∥≤1
♣g(c∗

in)♣ = ε sup
g∈X∗,∥g∥≤1

♣Gg(c∗
in)♣

≤ ε∥g∥∥¶c∗
in(cin)♢∥ ≤ ε∥g∥∥

∞
∑

i=1

c∗
in(cin)∥.

This implies that C∗ = (¶c∗
i1♢ , ¶c∗

i2♢ , . . . ) ∈ ((X∗
d)1 ⊕ (X∗

d)2 ⊕ · · · )X∗

d
, ∥C∗∥X∗

d
≤

∥φC∗∥. Finally, as a consequence of (3.2), we conclude that C∗ 7→ φC∗ is an onto
linear isometry. □

Proposition 3.1. Suppose that Xd is a BK-space, for which the canonical unit vectors

¶eij♢i∈I,j∈[m] forms a Schauder basis. Then ¶fij♢i∈I,j∈[m] ⊆ X∗ is an X∗
d -Bessel woven

for X with universal bound B if and only if the operator

T : ¶ cij♢ →
∑

i∈I,j∈[m]

cijfij

is well defined (hence bounded) from
∑ ⊕Xd into X∗ and ∥T∥ ≤ B.

Proof. Let ¶fij♢i∈I,j∈[m] ⊂ X∗ be an X∗
d -Bessel woven for X with universal bound B

and let ¶eij♢i∈I,j∈[m] be the canonical unit vector basis of Xd. Define

R : X →
∑

⊕ (Xd)∗

by

R (g) = ¶fij (g)♢i∈I,j∈[m].

We have

∥R (g) ∥ = ∥¶fij (g)♢i∈I,j∈[m]∥ = sup ♣fij (g (f)) ♣ = sup
g∈X∗,∥g∥=1

♣Gg (fij (g (f))) ♣

≤ sup ∥Gg∥∥fij (g (f)) ∥.
Then ∥R∥ ≤ B, the linear bounded operator R∗ :

∑ ⊕ (Xd)∗∗ → X∗ satisfies:

R∗(eij)(g) = eij (R(g)) = fij (g) , for all g ∈ X,

and thus R∗eij = fij. Letting T = R∗♣∑ ⊕Xd
, we have

∥T∥ ≤ ∥R∗∥ = ∥R∥ ≤ B.

Finally, T
(

¶cij♢i∈I,j∈[m]

)

= T
(

∑

i∈I,j∈[m] cijeij

)

=
∑

i∈I,j∈[m] cijfij.

Now suppose that T :
∑ ⊕Xd −→ X∗ given by T (¶cij♢) =

∑

i∈I,j∈[m] cijfij is well
defined and thus bounded by the Banach-Steinhaus theorem. Then T (eij) = fij and
for every g ∈ X the operator

T ∗ : X∗∗ →
∑

⊕ (Xd)∗
, T ∗(g) (eij) = g (T (eij)) = g (fij) ,

is bounded. That is, ¶fij (g)♢i∈I,j∈[m] = ¶T ∗(g) (eij)♢i∈I,j∈[m] which is identified with
T ∗ (g) (by Lemma 3.2). So, ¶fij♢i∈I,j∈[m] is a X∗

d - Bessel sequence for X with a bound
∥T ∗∥ = ∥T∥ ≤ B. □
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Theorem 3.2. The family ¶φij♢i∈I,j∈[m] ⊂ X∗ is a Bessel woven with Bessel bound

B if and only if the operator

T : ¶lij♢∞
i=1,j∈[m] →

∞
∑

i=1,j∈[m]

lijφij, for all ¶lij♢∞
i=1,j∈[m] ∈





∑

j∈[m]

⊕ (Xd)j



 ,

is a well-defined bounded operator from
(

∑

j∈[m] ⊕ (Xd)j

)

into X and ∥T∥ ≤
√
B.

Proof. First assume that ¶φij♢i∈I,j∈[m] is a Bessel woven with bound B.

Let ¶lij♢∞
i=1,j∈[m] be in

(

∑

j∈[m] ⊕ (Xd)j

)

. We show that T¶lij♢∞
i=1,j∈[m] is well-defined,

that is,
∑∞

i=1,j∈[m] lijφij is convergent. Consider n,m ∈ I, n > m. Then
∥

∥

∥

∥

∥

∥

n
∑

i=1,j∈[m]

li,jφij −
m

∑

i=1,j∈[m]

lijφij

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

n
∑

i=m+1,j∈[m]

lijφij

∥

∥

∥

∥

∥

∥

= sup
∥g∗∥=1,g∈X

g∗





n
∑

i=m+1,j∈[m]

lijφij



 = ∗.

Using the duality mappings ΦX and its induced semi-inner product [f, g] = g∗(f) we
have

∗ = sup
∥g∥=1

∣

∣

∣

∣

∣

∣





n
∑

i=m+1,j∈[m]

lijφij, g





∣

∣

∣

∣

∣

∣

≤ sup
∥g∥=1

n
∑

i=m+1,j∈[m]

♣lij [φij, g] ♣

≤ sup ∥¶lij♢∥Xd
∥ [φij, g] ∥X∗

d
≤ sup ∥¶lij♢∥Xd

B∥g∥X .

Since ¶lij♢∞
i=1,j∈[m] ∈

(

∑

j∈[m] ⊕ (Xd)j

)

, we know that ∥¶lij♢n
i=1,j∈[m]∥Xd

is a Cauchy

sequence in C, The above calculation shows that ¶∑n
i=1,j∈[m] lijφij♢∞

n=1 is a Cauchy
sequence in X, and therefore convergent. Thus, T¶lij♢∞

i=1,j∈[m] is well-defined. Clearly
T is linear, and

∥

∥

∥T¶lij♢∞
i=1,j∈[m]

∥

∥

∥ = sup
∥f∥=1

∣

∣

∣

[

T¶lij♢∞
i=1,j∈[m], f

]∣

∣

∣ ,

that is, ∥T∥ ≤
√
B.

Conversely, suppose T well-defined and that ∥T∥ ≤
√
B, for every f ∈ X, we have

[T¶lij♢, f ] =
[

∑

lijfij, f
]

= [¶lij♢, ¶[f, fij]♢] ,

therefore

T ∗f = ¶[f, fij]♢i∈I,j∈[m]

and
∑

i∈I,j∈[m]

♣ [f, fij] ♣2 = ∥T ∗f∥2 ≤ ∥T ∗∥2∥f∥2 ≤
√
B∥f∥2.

Hence, we conclude that the family ¶φij♢i∈I,j∈[m] is Bessel woven. □
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Theorem 3.3. Let the sequence ¶φij♢i∈I,j∈[m] in X be woven for X, and the series
∑∞

i=1,j∈[m] lijφij converges for all ¶lij♢∞
i=1,j∈[m] ∈

(

∑

j∈[m] ⊕ (Xd)j

)

. Then the operator

T :





∑

j∈[m]

⊕ (Xd)j



 → X, T¶lij♢∞
i=1,j∈[m] :=

∞
∑

i=1,j∈[m]

lijφij,

defines a bounded linear operator. The adjoint operator is given by

T ∗ : X∗ →




∑

j∈[m]

⊕(Xd)j





∗

, T ∗φ = ¶[φ, φij]♢∞
i=1,j∈[m].

Furthermore,
∞

∑

i=1,j∈[m]

♣ [φ, φij] ♣2 ≤ ∥T∥2∥φ∥2.

Proof. Consider the sequence of bounded linear operators

Tn :





∑

j∈[m]

⊕(Xd)j



 → X, Tn¶lij♢∞
i=1,j∈[m] :=

n
∑

i=1,j∈[m]

lijφij.

Clearly Tn → T pointwise as n → ∞, so T is bounded. In order to find the expression

for T ∗, let f, φ ∈ X, ¶lij♢∞
i=1,j∈[m] ∈

(

∑

j∈[m] ⊕ (Xd)j

)

. Then

[

φ, T ¶lij♢∞
i=1,j∈[m]

]

X
=



φ,
∞

∑

i=1,j∈[m]

lijφij



 =
∞

∑

i=1,j∈[m]

[φ, φij] lij.

Alternatively, when T :
(

∑

j∈[m] ⊕ (Xd)j

)

→ X is bounded, then clearly T ∗ is a

bounded operator from X∗ to
(

∑

j∈[m] ⊕ (Xd)j

)∗
. Therefore, the i-th coordinate func-

tion is bounded from X to C; by Riesz representation theorem, T ∗ has the form

T ∗φ = ¶[φ, φij]♢∞
i=1,j∈[m],

for some ¶φij♢i∈I,j∈[m] in X. By definition of T ∗, we conclude

∞
∑

i=1,j∈[m]

[φ, fij] lij =
∞

∑

i=1,j∈[m]

[φ, φij] lij, for all ¶lij♢∞
i=1,j∈[m] ∈





∑

j∈[m]

⊕ (Xd)j



 , f ∈ X.

It follows from here that fij = φij. The adjoint of a bounded operator T is itself
bounded, and ∥T∥ = ∥T ∗∥. Under the assumption in Theorem 3.2, we have

∥T ∗φ∥2 ≤ ∥T∥2∥φ∥2, for all φ ∈ X,

which leads to
∞

∑

i=1,j∈[m]

♣ [φ, φij] ♣2 ≤ ∥T∥2∥φ∥2, for all φ ∈ X. □
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Definition 3.8. Let X be a Banach space and Xd a sequence space. Given a bounded

linear operator S :
(

∑

j∈[m] ⊕ (Xd)j

)

→ X and a
(

∑

j∈[m] ⊕ (Xd)j

)

-woven ¶gij♢ ⊂ X∗,

we say that (¶gij♢, S) is a Banach frame for X with respect to
(

∑

j∈[m] ⊕ (Xd)j

)

if

S (¶gij(f)♢) = f, for all f ∈ X.(3.3)

Note that (3.3) can be considered as some kind of generalized reconstruction formula,
in the sense that it tells how to come back to f ∈ X via the coefficients ¶gij(f)♢.

The condition, however, does not imply reconstruction via an infinite series, as we
will see later. For more information on Banach frames we refer to [7, 17].

The wovenXd-frame condition implies that one can define the following isomorphism

U : X →




∑

j∈[m]

⊕ (Xd)j



 , Uf := ¶gij(f)♢, f ∈ X.

The extra condition in Definition 3.8 means that S is a left-inverse of U, and thus

US is a bounded linear projection of
(

∑

j∈[m] ⊕ (Xd)j

)

onto the range R(U) of the

operator U.

Proposition 3.2. Suppose that Xd is a BK-space and ¶gij♢i∈I,j∈[m] ⊂ X∗ is a woven

Xd-frame for X. Then, the following conditions are equivalent.

(a) R(U) is complemented in Xd.

(b) The operator U−1 : R(U) → X can be extended to a bounded linear operator

V : Xd → X.

(c) There exists a linear bounded operator S, such that
(

¶gij♢i∈I,j∈[m], S
)

is a

Banach woven for X with respect to Xd.

Also, the condition

(d) there exists a family ¶fij♢i∈I,j∈[m] ⊂ X such that ¶∑

cijfij♢i∈I,j∈[m] is convergent

for all ¶cij♢i∈I,j∈[m] ∈ Xd and

f =
∑

i∈I,j∈[m]

gij(f)fij, for all f ∈ X;

implies each of (a)-(c).
If we also assume that the canonical unit vectors ¶eij♢i∈I,j∈[m] form a basis

for Xd, (d) is equivalent to (a)-(c).
(e) There exists an X∗

d -Bessel woven ¶fij♢i∈I,j∈[m] ⊂ X ⊆ X∗∗ for X∗ such that

f =
∑

i∈I,j∈[m]

gij (f) fij, for all f ∈ X.

If the canonical unit vectors form a basis for both Xd and X∗
d , (a)-(e) is equiv-

alent to

(f) there exists an X∗
d -Bessel woven ¶fij♢i∈I,j∈[m] ⊂ X ⊂ X∗∗ for X∗ such that

g =
∑

i∈I,j∈[m]

g(fij)gij, for all g ∈ X∗.
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In each of the cases (e) and (f), ¶fij♢i∈I,j∈[m] is actually an X∗
d -woven for

X∗.

Proof. For convenience, we index ¶fij♢i∈I,j∈[m] and ¶gij♢i∈I,j∈[m] by the natural num-
bers. Suppose that Xd is a BK-space. (a) → (b) is trivial. For the converse, assume
(b) and let V : Xd → X be a linear bounded extension of U−1. Now consider the
bounded operator P : Xd → R(U) defined by P = UV. Using the fact that V U = I

(on X), we get P 2 = P. For every f ∈ X, we have

Uf = UV Uf = P (Uf) ∈ R(P ).

Hence R(P ) = R(U), i.e., the range of U equals the range of a bounded projection.
Thus, R(U) is complemented (see [27, page 127]). The equivalence (b) ↔ (c) is clear.
We now relate the condition (d) to (a)-(c). First, assume that (d) is satisfied. By
assumption, we can define an operator

V : Xd → X, V : ¶cij♢i∈I,j∈[m] →
∑

i∈I,j∈[m]

cijfij.

By the Banach-Steinhaus theorem, V is bounded. Let ¶gij (f)♢i∈I,j∈[m] ∈ R(U).
Furthermore,

V (gij (f)) =
∑

i∈I,j∈[m]

gij(f)fij = f = U−1Uf = U−1¶gij (f)♢i∈I,j∈[m],

that is, V is an extension of U−1. That is, (b) holds, according to the equivalences
proved so far, this means that (a)-(c) holds.

Assume now that the canonical unit vectors ¶eij♢i∈I,j∈[m] form a basis for Xd.

Assuming that (b) is satisfied, we show that (d) holds. Let fij := V eij. Since V is
linear and bounded, for all ¶cij♢i∈I,j∈[m] ∈ Xd, we have

n
∑

i=1,j∈[m]

cijfij = V





n
∑

i=1,j∈[m]

cijeij



 → V (cij) .

That is,
∑

i∈I,j∈[m] cijfij is convergent. Also, by construction, for all f ∈ X we have

f = V Uf =
∑

i∈I,j∈[m]

gij (f) fij.(3.4)

Thus, (d) holds as claimed.
Under the assumption that the canonical unit vectors ¶eij♢i∈I,j∈[m] form a basis for

Xd, we now prove the equivalence of (d) and (e). First, assume that (d) holds. Due
to the equivalence of (b) and (d), we can define fij := Leij, and (3.4) is available. By
Lemma 3.2, for every g ∈ X∗ we have

¶g(fij)♢i∈I,j∈[m] = ¶gV (eij)♢i∈I,j∈[m] ∈ X∗
d

and

∥¶g (fij)♢i∈I,j∈[m]∥X∗

d
= ∥gV ∥ ≤ ∥V ∥ ∥g∥X∗ ,
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hence ¶fij♢i∈I,j∈[m], considered as a sequence in X∗∗, is an X∗
d -Bessel sequence for

X∗. Thus, we have proved the claims in (e). On the other hand, if (e) is valid, then
Proposition 3.1 shows that

∑

i∈I,j∈[m] cijfij is convergent for all ¶cij♢i∈I,j∈[m] ∈ Xd and
hence (d) holds.

Now, assume that the canonical unit vectors form a basis for both Xd and X∗
d ; in

this case, we want to prove the equivalence of (e) and (f). Let B denote a Bessel
bound for the Xd-Bessel sequence ¶gij♢i∈I,j∈[m]. Denote the canonical basis for Xd by
¶eij♢i∈I,j∈[m] and the canonical basis for X∗

d by ¶zij♢i∈I,j∈[m]. Assume that (e) is valid.
Let g ∈ X∗. For given n ∈ N

∥

∥

∥

∥

∥

∥

g −
n

∑

i=1,j∈[m]

g (fij) gij

∥

∥

∥

∥

∥

∥

X∗

= sup
f∈X,∥f∥=1

∣

∣

∣

∣

∣

∣

g(f) −
n

∑

i=1,j∈[m]

g (fij) gij (f)

∣

∣

∣

∣

∣

∣

= sup
f∈X,∥f∥=1

∣

∣

∣

∣

∣

∣

∞
∑

i=1,j∈[m]

g (fij) gij (f) −
n

∑

i=1,j∈[m]

g (fij) gij (f)

∣

∣

∣

∣

∣

∣

= sup
f∈X,∥f∥=1

∣

∣

∣

∣

∣

∣

∞
∑

i=n+1,j∈[m]

g(fij)gij (f)

∣

∣

∣

∣

∣

∣

≤ B

∥

∥

∥

∥

∥

∥

∞
∑

i=n+1,j∈[m]

g (fij) zij

∥

∥

∥

∥

∥

∥

→ 0 as n → ∞,

and hence (f) holds. Assume (f) and let K be an X∗
d -Bessel bound for ¶fij♢i∈I,j∈[m].

For every g ∈ X∗, ¶g (fij)♢i∈I,j∈[m] belongs to X∗
d , which by Lemma 3.2 is isometrically

isomorphic to the space ¶¶G (eij)♢i∈I,j∈[m] ♣G ∈ X∗
d♢, and hence ¶g(fij)♢i∈I,j∈[m] can

be identified with ¶Gg(eij)♢i∈I,j∈[m] for a unique Gg ∈ X∗
d . Then for every f ∈ X

∥

∥

∥

∥

∥

∥

f −
n

∑

i=1,j∈[m]

gij (f) fij

∥

∥

∥

∥

∥

∥

X

= sup
g∈X∗,∥g∥=1

∣

∣

∣

∣

∣

∣

g (f) −
n

∑

i=1,j∈[m]

g (fij) gij (f)

∣

∣

∣

∣

∣

∣

= sup
g∈X∗,∥g∥=1

∣

∣

∣

∣

∣

∣

∞
∑

i=1,j∈[m]

g (fij) gij (f) −
n

∑

i=1

g (fij) gij (f)

∣

∣

∣

∣

∣

∣

= sup
g∈X∗,∥g∥=1

∣

∣

∣

∣

∣

∣

∞
∑

i=n+1,j∈[m]

g (fij) gij (f)

∣

∣

∣

∣

∣

∣

= sup
g∈X∗,∥g∥=1

∥

∥

∥

∥

∥

∥

Gg





∞
∑

i=n+1,j∈[m]

gij (f) eij





∥

∥

∥

∥

∥

∥

≤ sup
g∈X∗,∥g∥=1

∥Gg∥
∥

∥

∥

∥

∥

∥

∞
∑

i=n+1,j∈[m]

gij(f)eij

∥

∥

∥

∥

∥

∥

= sup
g∈X∗,∥g∥=1

∥

∥

∥

∥

∥

∥

¶g (fij)♢
∞

∑

i=n+1,j∈[m]

gij (f) eij

∥

∥

∥

∥

∥

∥
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≤ K

∥

∥

∥

∥

∥

∥

∞
∑

i=n+1,j∈[m]

gij (f) eijT

∥

∥

∥

∥

∥

∥

→ 0 as n → ∞.

Hence, (f) is valid. Moreover, by a similar calculations as above, for every g ∈ X∗ we
have

∥g∥ = sup
f∈X∗,∥f∥=1

♣g (f) ♣ = sup
f∈X∗,∥f∥=1

∣

∣

∣

∣

∣

∣

∑

i∈I,j∈[m]

g (fij) gij (f)

∣

∣

∣

∣

∣

∣

≤ B
∥

∥

∥¶g (fij)♢i∈I,j∈[m]

∥

∥

∥

X∗

d

,

and hence ¶fij♢i∈I,j∈[m] is a woven X∗
d -frame for X∗. □
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A NEW INERTIAL-PROJECTION METHOD FOR SOLVING SPLIT

GENERALIZED MIXED EQUILIBRIUM AND HIERARCHICAL

FIXED POINT PROBLEMS

OLAWALE KAZEEM OYEWOLE1,2 AND OLUWATOSIN TEMITOPE MEWOMO1

Abstract. In this paper, we introduce a new iterative algorithm of inertial form
for approximating the common solution of Split Generalized Mixed Equilibrium
Problem (SGMEP) and Hierarchical Fixed Point Problem (HFPP) in real Hilbert
spaces. Motivated by the subgradient extragradient method, we incorporate the
inertial technique to accelerate the convergence of the proposed method. Under
standard and mild assumption of monotonicity and lower semicontinuity of the
SGMEP and HFPP associated mappings, we establish the strong convergence of
the iterative algorithm. Some numerical experiments are presented to illustrate the
performance and behaviour of our method as well as comparing it with some related
methods in the literature.

1. introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H and
T : C → C be a nonlinear mapping. T is said to be:

(i) firmly nonexpansive, if for each x, y ∈ C

∥Tx − Ty∥2 ≤ ⟨Tx − Ty, x − y⟩;

(ii) a contraction, if for every x, y ∈ C and c ∈ (0, 1)

∥Tx − Ty∥ ≤ c∥x − y∥.

If c = 1, then T is called nonexpansive.

Key words and phrases. Pseudomonotone, equilibrium problem, hierachical Ąxed point, inertial,
strong convergence, Hilbert space.
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We denote by Fix(T ), the set of fixed points of the mapping T, that is Fix(T ) =
¶x ∈ C : x = Tx♢. The mapping T is called quasi nonexpansive if Fix(T ) ̸= ∅ and

∥Tx − p∥ ≤ ∥x − p∥, for all p ∈ Fix(T ), x ∈ C.

It is known that if T is quasinonexpansive, then Fix(T ) is closed and convex (see
[45]).

Let F : C × C → R be a bifunction. The Equilibrium Problem (EP) in the sense
of Blum and Oetlli [9], is to find a point x∗ ∈ C such that

F (x∗, y) ≥ 0, for all y ∈ C.(1.1)

We denote by EP (F, C), the set of solutions of EP (1.1). The EP unifies many
important mathematical problems, such as optimization problems, complementary
problems, fixed point problems, variational inequality problems, see [4, 6, 9, 25,36,37].
Let B : C → H be a nonlinear mapping. The Variational Inequality Problem (VIP)
is to obtain a point x∗ ∈ C such that

⟨Bx∗, y − x∗⟩ ≥ 0, for all y ∈ C.(1.2)

The set of solutions of the VIP is denoted V IP (B, C). Solution to these class of prob-
lems, fixed point problems and related optimization problems have been investigated
and iterative algorithm for approximating them have been proposed and studied by
several authors, see [2, 5, 10, 14, 15, 17, 19, 20, 27, 28, 32, 35]. Let ϕ : C → R be a real
valued function, then the Minimization Problem (MP), consists of finding a point
x∗ ∈ C such that

ϕ(x∗) ≤ ϕ(y), for all y ∈ C.(1.3)

The set of solutions of MP (1.3) will be denoted by MP (ϕ, C). For more on MP (see
[1, 8, 23,42]) and the references therein.

Let F : C × C → R be a bifunction, B : C → H a nonlinear mapping and
ϕ : C → R a proper, convex and lower semicontinuous function. The Generalized
Mixed Equilibrium Problem (GMEP) [10,24,26,33,38,48] is the problem of finding a
point x∗ ∈ C such that

F (x∗, y) + ⟨Bx∗, y − x∗⟩ + ϕ(y) − ϕ(x∗) ≥ 0, for all y ∈ C.(1.4)

We use GMEP (F, B, ϕ) to denote the set of solutions of GMEP (1.4). The GMEP
includes several optimization problems as special cases. The relationship with the
VIP and MP are easily observed by setting some maps to the zero map in inequality
(1.4). Numerous problems in economics, science and engineering can be reduced to
the problem of finding a solution to the GMEP (see [26,34,37]).

Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and
H2 respectively and L : H1 → H2 a bounded linear operator. In 1994, Censor and
Elfving [12] introduced the notion of Split Feasibility Problem (SFP), which is defined
as follows: find a point

x∗ ∈ C such that Lx∗ ∈ Q.(1.5)
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The SFP is a special case of the Split Inverse Problem (SIP) first studied by Censor
et al. [13]. In SIP, there are two given vector spaces X and Y and a linear operator
L : X → Y. The first Inverse Problem, IPX say, is formulated in space X and the
second one IPY formulated in space Y. Given this information, the SIP is formulated
as follows: find x∗ ∈ X that solves IPX , such that y∗ = Lx∗ ∈ Y solves IPY . The
SIP is used as a model for sensor networks, radiation therapy treatment planning,
color imaging and other image restoration problems, see [11].

Furthermore, SFP over EP have been studied by some authors in the literature. For
example, Moudafi [30] considered a SFP over EP and called this the Split Equilibrium
Problem (SEP), see [22]. Let F : C × C → R and G : Q × Q → R be two bifunctions
and L : H1 → H2 be a bounded linear operator. The SEP is given as follows: find
x∗ ∈ C such that

F (x∗, x) ≥ 0, for all x ∈ C,

and such that

y∗ = Lx∗ ∈ Q solves G(y∗, y) ≥ 0, for all y ∈ Q.

For more, see [37, 46] and the references therein.
Since then, there have been several research in this direction where both bifunctions

have same mononotonicity property and others with different monotonicity properties.
Dinh et al. [16], studied the SEP involving pseudomonotone and monotone bifunctions.
Also, in 2017 Rattanaseeha et al. [40], studied a split generalized equilibrium problem
which involves both pseudomonotone bifunction and a monotone bifunction. For more
literature on this class of problems (see [16,40,43]) and the references therein.

Moudafi and Mainge [31] introduced and studied the following Hierarchical Fixed
Point Problem (HFPP) for a nonexpansive mapping S with respect to another non-
expansive mapping T on C. The HFPP consists of finding a point x∗ ∈ Fix(S) such
that

⟨(I − T )x∗, y − x∗⟩ ≥ 0, for all y ∈ Fix(S).(1.6)

It is easy to see that the HFPP is equivalent to the problem of finding the fixed point
of a map A = PF ix(S) ◦ T. Let Ω denote the solution set of the HFPP (1.6). Note
that if Ω ̸= ∅, then Ω is closed and convex. The HFPP is general in the sense that it
includes as special case the monotone VIP on fixed point sets, MP over equilibrium
constraints, hierarchical MP... Very recently, Alansari et al. [7], studied an hybrid
iterative scheme for approximating a common solution of a split EP involving both
monotone and pseudomonotone bifiunction and a HFPP for a nonexpansive and quasi
nonexpansive mappings. They proved a weak convergence theorem for their proposed
algorithm.

Inspired by the works above and current research interest in this direction, in
particular, in order to provide a partial answer to the future research posed by Alansari
et al. [7] in conclusion of their work. We propose an iterative algorithm which combines
the inertial technique, projection method, diagonal subgradient method and viscosity
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approach [8, 24], see Section 3. We prove a strong convergence theorem using the
proposed algorithm to a solution of a SGMEP involving a pseudomonotone bifunction
and a monotone bifunction which is also a solution of a HFPP. In our proposed method,
the inertial extrapolation step was included to accelerate the rate of convergence of
the algorithm, (see [1,3,25,39]) for more literature on inertial algorithms. We present
some numerical examples to illustrate the behaviour and performance of our method
as well as comparing it with some related methods in the literature.

2. preliminaries

We denote by xn ⇀ v and xn → v the weak and strong convergence respectively of
a sequence ¶xn♢ in H to a point v ∈ H.

For each x ∈ H, there exists a unique nearest point y = PCx ∈ C such that

∥x − y∥ ≤ ∥x − z∥, for all z ∈ C.

The mapping PC : H → C is called the metric projection from H onto C. It is well
known that PC satisfies the following conditions.

(i) ∥PCx − PCy∥2 ≤ ⟨PCx − PCy, x − y⟩ for all x, y ∈ H.
(ii) For x ∈ H and y ∈ C, y = PCx if and only if

(2.1) ⟨x − y, y − z⟩ ≥ 0, for all z ∈ C.

Definition 2.1. A mapping T : C → C is said to be demiclosed at 0, if for any
sequence ¶xn♢ ⊂ C which converges weakly to x ∈ C with ∥xn − Txn∥ = 0, then
Tx = x.

It is well known (see [21]) that the nonexpansive mapping is demiclosed.

Definition 2.2. A bifunction f : C × C → R is said to be

(a) strongly monotone on C, if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ≤ −γ∥x − y∥2, for all x, y ∈ C;

(b) monotone on C, if f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(c) pseudomonotone on C, if f(x, y) ≥ 0 implies f(y, x) ≤ 0 for all x, y ∈ C.

It is obvious from above that a strongly pseudomonotone bifunction is contained
in the class of monotone bifunctions and a monotone bifunction is pseudomonotone.

Definition 2.3 ([18]). Let f : C × C → R be a bifunction, where f(x, ·) is convex
for each x ∈ C. Then for ϵ ≥ 0 the ϵ-subdifferential (ϵ-diagonal subdifferential) of f
at x, denoted by ∂ϵf(x, ·)(x) is given by

∂ϵf(x, ·)(x) = ¶z ∈ H1 : f(x, y) + ϵ ≥ f(x, x) + ⟨z, y − x⟩ for all y ∈ C♢.

For solving the GMEP, we assume ϕ : Q → R is proper, convex and lower semicon-
tinuous, the nonlinear mapping, B : Q → H2 is continuous and monotone and the
bifunction F : Q × Q → R satisfies the following restrictions:
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(R1) F (x, x) = 0 for all x ∈ Q;
(R2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ Q;
(R3) limt↓0 F (x + t(z − x), y) ≤ F (x, y) for all x, y, z ∈ Q;
(R4) for each x ∈ Q, the function y 7→ F (x, y) is convex and lower semicontinuous.

The following lemmas are used in the sequel.

Lemma 2.1 ([44]). In a real Hilbert space H, the following hold:

(i) ∥x − y∥2 = ∥x∥2 − 2⟨x, y⟩ + ∥y∥2 for all x, y ∈ H;
(ii) ∥x + y∥2 ≤ ∥x∥2 + 2⟨y, x + y⟩ for all x, y ∈ H;
(iii) ∥tx + (1 − t)y∥2 = t∥x∥2 + (1 − t)∥y∥2 − t(1 − t)∥x − y∥2 for all x, y ∈ H and

t ∈ (0, 1).

Lemma 2.2 ([48]). Let B : Q → H2 be a continuous and monotone mapping, ϕ :
Q → R be a proper, lower semicontinuous and convex function, and F : Q × Q → R

be a bifunction satisfying the conditions (R1)-(R4). Let r > 0 be any given number

and x ∈ H2 be any given point. Then, the following hold.

(i) There exists w ∈ Q such that

F (w, y) + ⟨B(w), y − w⟩ + ϕ(y) − ϕ(w) +
1

r
⟨y − w, w − x⟩ ≥ 0, for all y ∈ Q.

(ii) Define a mapping KF,B,ϕ
r : Q → Q by KF,B,ϕ

r (x) =


w ∈ Q : F (w, y) +

⟨B(w), y − w⟩ + ϕ(y) − ϕ(w) +
1

r
⟨y − w, w − x⟩ ≥ 0, y ∈ Q

}

, x ∈ Q.

The mapping KF,B,ϕ
r satisfies the following characteristics:

(a) KF,B,ϕ
r is single valued;

(b) KF,B,ϕ
r is fimrly nonexpansive, i.e., for all z, y ∈ H

∥KF,B,ϕ
r z − KF,B,ϕ

r y∥2 ≤ ⟨KF,B,ϕ
r z − KF,B,ϕ

r y, z − y⟩;

(c) Fix(KF,B,ϕ
r ) = GMEP (F, B, ϕ);

(d) GMEP (F, B, ϕ) is a closed and convex subset of Q.

The following restrictions are assumed to be satisfied by the pseudomonotone
bifunction f : C × C → R :

(F1) f(x, x) = 0 for all x ∈ C;
(F2) f is pseudomonotone on C with respect x ∈ EP (f, C), that is, for x ∈

EP (f, C), f(x, y) ≥ 0 implies f(y, x) ≤ 0 for all y ∈ C;
(F3) f is strict paramonotone, that is the following holds

x ∈ EP (f, C), y ∈ C, f(y, x) ≤ 0 implies y ∈ EP (f, C);

(F4) f is jointly weakly upper semicontinuous on C ×C in the sense that, if x, y ∈ C
and ¶xn♢, ¶yn♢ ⊆ C converges weakly to x and y, respectively, then f(xn, yn) →
f(x, y) as n → +∞.

The following lemmas are very useful in obtaining the strong convergence of the
sequence considered in this work.
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Lemma 2.3 ([47]). Let ¶an♢ be a sequence of nonnegative real numbers satisfying the

following inequality

an+1 ≤ (1 − αn)an + αnβn + γn, n ∈ N,

where ¶αn♢ ⊂ (0, 1), ¶βn♢ and ¶γn♢ satisfy the restrictions:

(i)
∑+∞

n=1 αn = +∞, limn→+∞ αn = 0;
(ii) lim supn→+∞ βn ≤ 0;
(iii) γn ≥ 0,

∑+∞
n=1 γn < +∞.

Then limn→+∞ an = 0.

Lemma 2.4 ([29,41]). Let ¶an♢ be a sequence of real numbers such that there exists

a subsequence ¶nj♢ of ¶n♢ with anj
≤ anj+1 for all j ∈ N. Consider the integer

¶τ(n)♢n≥n0
defined by

τ(n) := max¶j ≤ n : aj ≤ aj+1♢.

Then ¶τ(n)♢n≥n0
is a non-decreasing sequence satisfying limn→+∞ τ(n) = +∞ and for

all n ≥ n0, the following estimates hold:

aτ(n) ≤ aτ(n)+1 and an ≤ aτ(n)+1.

3. Main Result

In this section, we state and prove our main result. First, we give an explicit statement
of the proposed problem in this study. Let C and Q be nonempty, closed and convex
subsets of real Hilbert spaces H1 and H2 respectively and L : H1 → H2 be a bounded
linear operator. Let f : C × C → R and F : Q × Q → R be pseudomonotone
and monotone bifunctions respectively satisfying restrictions (F1)-(F4) and (R1)-
(R4). Let B : C → H2 be a nonlinear mapping and ϕ : Q → R a proper, convex
and lower semicontinuous function. Let S be a nonexpansive mapping and T a
quasinonexpansive mapping such that I − T is monotone. We consider the problem
of finding a point x∗ ∈ C such that

x∗ ∈ EP (f, C) ∩ Fix(PF ix(S) ◦ T )(3.1)

and such that

y∗ = Lx∗ ∈ Q solves GMEP (F, B, ϕ).(3.2)

We assume that the solution set of Problem (3.1)–(3.2) denoted by Γ is nonempty.

Remark 3.1 ([18]). If f is pseudomonotone on C with respect to EP (f, C), then by
restrictions (F1) and (F4), EP (f, C) is closed and convex. From Lemma 2.2 (d), we
have that GMEP (F, B, ϕ) is closed and convex. Also, if Fix(PF ix(S) ◦ T ) ̸= ∅, then
the solution set of the HFPP is closed and convex see [31]. We assume Γ ̸= ∅, hence
Γ is well defined.

Algorithm 3.1. Initialization. Choose x0, x1 ∈ C. Take the sequence of real numbers
¶µn♢, ¶βn♢, ¶rn♢, ¶θn♢, ¶γn♢, ¶σn♢, ¶ϵn♢, ¶αn♢ and ¶λn♢ satisfying
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(i) 0 < r < rn, 0 < a < αn < b < 1, 0 < á < λn < b́ < 1, 0 < ā < σn < b̄ < 1,
βn ≥ 0, γn ∈ (0, 2/∥L∥2) and ϵn → 0 as n → +∞;

(ii)
∑+∞

n=1 µ2
n < +∞;

(iii)
∑+∞

n=1 βn = +∞, limn→+∞ βn = 0;
(iv) ¶θn♢ ⊂ [0, θ], where θ ∈ [0, 1) and

∑+∞
n=1 θn∥xn − xn−1∥ < +∞;

(v) limn→+∞
θn

βn
= 0.

[Step 1. Given xn−1 and xn, n ≥ 1, compute

wn = xn + θn(xn − xn−1).(3.3)

Step 2. Take g(wn) ∈ ∂ϵn
(f(wn, ·))(wn), n ≥ 1. Calculate ηn = max¶1, ∥g(wn)∥♢,

λn = µn

ηn
and

zn = PC(wn − λng(wn)).(3.4)

Step 3. If wn = zn (wn ∈ EP (f, C)), then stop. Otherwise, evaluate














tn = (1 − σn)Tzn + σnzn yn = (1 − αn)wn + αnStn,

un = KF,B,ϕ
rn

Lyn,

vn = yn + γnL∗(un − Lyn).

(3.5)

Step 4. Compute

(3.6) xn+1 = βnh(xn) + (1 − βn)vn,

where h is a contraction.
Step 5. Set n := n + 1 and go to step 1.

Lemma 3.1. Let ¶xn♢ be the sequence given by Algorithm 3.1, then ¶xn♢ is bounded.

Consequently, the sequences ¶yn♢, ¶zn♢, ¶vn♢ and ¶un♢ are bounded.

Proof. Let u ∈ Γ, then from Lemma 2.1 (i) and (3.3), we have

∥wn − u∥2 =∥xn + θn(xn − xn−1) − u∥2(3.7)

=∥xn − u∥2 + 2θn⟨xn − u, xn − xn−1⟩ + θ2
n∥xn − xn−1∥

2

≤∥xn − u∥2 + 2θn∥xn − u∥∥xn − xn−1∥ + θ2
n∥xn − xn−1∥

2

=∥xn − u∥2 + θn∥xn − xn−1∥(2∥xn − u∥ + θn∥xn − xn−1∥).

It also follows from Lemma 2.1 (iii), that

∥tn − u∥2 = ∥(1 − σn)(Tzn − u) + σn(zn − u)∥2

= (1 − σn)∥Tzn − u∥2 + σn∥zn − u∥2 − σn(1 − σn)∥Tzn − zn∥2

≤ ∥zn − u∥2 − σn(1 − σn)∥Tzn − zn∥2

≤ ∥zn − u∥2.(3.8)

Next,

∥yn − u∥2 =∥(1 − αn)(wn − u) + αn(Stn − u)∥2
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≤(1 − αn)∥wn − u∥2 + αn∥Stn − u∥2 − αn(1 − αn)∥Stn − wn∥2

≤(1 − αn)∥wn − u∥2 + αn∥tn − u∥2 − αn(1 − αn)∥Stn − wn∥2

≤(1 − αn)∥wn − u∥2 + αn∥zn − u∥2 − αn(1 − αn)∥Stn − wn∥2

≤∥wn − u∥2 + 2αn⟨wn − zn, u − zn⟩ − αn(1 − αn)∥Stn − wn∥2,(3.9)

but from the definition of zn, we get

⟨wn − zn, u − zn⟩ ≤ λn⟨g(wn), u − zn⟩.

Using this in (3.9), we obtain

∥yn − u∥2 ≤∥wn − u∥2 + 2λnαn⟨g(wn), u − zn⟩ − αn(1 − αn)∥Stn − wn∥2

=∥wn − u∥2 + 2λnαn[⟨g(wn), u − wn⟩ + ⟨g(wn), wn − zn⟩]

− αn(1 − αn)∥Stn − wn∥2

≤∥wn − u∥2 + 2λnαn⟨g(wn), u − wn⟩ + 2λnαn∥g(wn)∥∥wn − zn∥

− αn(1 − αn)∥Stn − wn∥2.(3.10)

Note that by the definition of zn and wn ∈ C, we have

∥wn − zn∥2 ≤ λn⟨g(wn), wn − zn⟩ ≤ λn∥g(wn)∥∥wn − zn∥,

thus ∥wn − zn∥ ≤ λn∥g(wn)∥ and

λn∥g(wn)∥∥wn − zn∥ ≤λ2
n∥g(wn)∥2

=



µn

ηn

2

∥g(wn)∥2 = µ2
n



∥g(wn)∥

max(1, ∥g(wn)∥)

2

≤µ2
n,(3.11)

which implies

∥wn − zn∥2 ≤ µ2
n.(3.12)

Since
∑+∞

n=1 µ2
n < +∞, we obtain from above inequality, that

∥wn − zn∥ → 0 as n → +∞.(3.13)

Using (3.11) in (3.10), we have

∥yn − u∥2 ≤∥wn − u∥2 + 2λnαn⟨g(wn), u − wn⟩ + 2αnµ2
n − αn(1 − αn)∥Stn − wn∥2.

(3.14)

By using Lemma 2.2, we have

∥un − Lu∥2 =∥KF,B,ϕ
rn

Lyn − Lu∥2 = ∥KF,B,ϕ
rn

Lyn − KF,B,ϕ
rn

Lu∥2

≤⟨KF,B,ϕ
rn

Lyn − KF,B,ϕ
rn

Lu, Lyn − Lu⟩

=⟨KF,B,ϕ
rn

Lyn − Lu, Lyn − Lu⟩

=
1

2



∥KF,B,ϕ
rn

Lyn − Lu∥2 + ∥Lyn − Lu∥2 − ∥KF,B,ϕ
rn

Lyn − Lyn∥2


.
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Hence, ∥un − Lu∥2 ≤ ∥Lyn − Lu∥2 − ∥un − Lyn∥2, which implies

2⟨Lyn − Lu, un − Lyn⟩ ≤ −2∥un − Lyn∥2.(3.15)

Now, from (3.5) and (3.15), we have

∥vn − u∥2 =∥yn + γnL∗(un − Lyn) − u∥2

=∥yn − u∥2 + 2γn⟨yn − u, L∗(un − Lyn)⟩ + γ2
n∥L∗(un − Lyn)∥2

=∥yn − u∥2 + 2γn⟨Lyn − Lu, un − Lyn⟩ + γ2
n∥L∗(un − Lyn)∥2

≤∥yn − u∥2 − γn(2 − γn∥L∥2)∥un − Lyn∥2,(3.16)

which implies

∥vn − u∥2 ≤∥wn − u∥2 + 2λnαn⟨g(wn), u − wn⟩ + 2αnµ2
n

− αn(1 − αn)∥Stn − wn∥2 − γn(2 − γn∥L∥2)∥un − Lyn∥2.(3.17)

Since wn ∈ C and g(wn) ∈ ∂ϵn
f(wn, ·)(wn), we obtain

f(wn, u) + ϵn = f(wn, u) − f(wn, wn) + ϵn ≥ ⟨g(wn), u − wn⟩.

Using this in (3.17), we get

∥vn − u∥2 ≤∥wn − u∥2 + 2λnαn(f(wn, u) + ϵn) + 2αnµ2
n

− αn(1 − αn)∥Stn − wn∥2 − γn(2 − γn∥L∥2)∥un − Lyn∥2.

From the definition of λn and ηn, we obtain

λn =
µn

ηn

≤ µn.

Therefore, we get from above, that

∥vn − u∥2 ≤∥wn − u∥2 + 2λnαnf(wn, u) + 2αn(µnϵn + µ2
n)

− αn(1 − αn)∥Stn − wn∥2 − γn(2 − γn∥L∥2)∥un − Lyn∥2.(3.18)

Since u ∈ Γ and wn ∈ C, we have f(u, wn) ≥ 0, then it follows from the monotonicity
of f that f(wn, u) ≤ 0 and

∥vn − u∥2 ≤∥wn − u∥2 + 2αn(µnϵn + µ2
n) − αn(1 − αn)∥Stn − wn∥2

− γn(2 − γn∥L∥2)∥un − Lyn∥2

≤∥wn − u∥2 + 2αn(µnϵn + µ2
n),(3.19)

which implies that

∥vn − u∥ ≤ ∥wn − u∥ +
√

(2αn(µnϵn + µ2
n).(3.20)

Furthermore, we have from (3.6) and some M1, M2 > 0, that

∥xn+1 − u∥ =∥βnh(xn) + (1 − βn)vn − u∥

≤βn∥h(xn) − u∥ + (1 − βn)∥vn − u∥

≤βn∥h(xn) − h(u)∥ + βn∥h(u) − u∥ + (1 − βn)∥vn − u∥
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≤cβn∥xn − u∥ + βn∥h(u) − u∥ + (1 − βn)


∥wn − u∥

+
√

2αn(µnϵn + µ2
n)


≤cβn∥xn − u∥ + (1 − βn)


∥xn − u∥ + θn∥xn − xn−1∥

+
√

2αn(µnϵn + µ2
n)


+ βn∥h(u) − u∥

≤[1 − βn(1 − c)]∥xn − u∥ + θn(1 − βn)∥xn − xn−1∥ + βn∥h(u) − u∥

+
√

2αn(µnϵn + µ2
n)

=[1 − βn(1 − c)]∥xn − u∥ + θn(1 − βn)∥xn − xn−1∥

+
βn(1 − c)

1 − c
∥h(u) − u∥ +

√

2αn(µnϵn + µ2
n)

≤ max

{

∥xn − u∥,
∥h(u) − u∥

(1 − c)

}

+ θn(1 − βn)∥xn − xn−1∥

+
√

2αn(µnϵn + µ2
n)

≤ max

{

max

{

∥xn−1 − u∥,
∥h(u) − u∥

(1 − c)

}}

+ θn−1(1 − βn−1)∥xn−1 − xn−2∥

+
√

2αn−1(µn−1ϵn−1 + µ2
n−1) + θn(1 − βn)∥xn − xn−1∥

+
√

2αn(µnϵn + µ2
n)

...

≤ max

{

∥x1 − u∥,
∥h(u) − u∥

1 − c

}

+ M1 + M2

< + ∞,

where

M1 =
n
∑

i=1

θi(1 − βi)∥xi − xi−1∥ < +∞,

by condition (iv) and

M2 =
n
∑

i=1

√

2αi(µiϵi + µ2
i ).

Hence, ¶xn♢ is bounded. Consequently, all other sequences in Algorithm 3.1 are
bounded. □

Lemma 3.2. The following inequality is satisfied from (3.6) and all u ∈ Γ

∥xn+1 − u∥2 ≤



1 −
2βn(1 − c)

1 − cβn



∥xn − u∥2
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+
2βn(1 − c)

1 − cβn



⟨h(u) − u, xn+1 − u⟩

1 − c
+

βnM3

1 − c



+
θn(1 − βn)

1 − cβn

(∥xn − xn−1∥)(M4 + ∥xn − xn−1∥) + 2αn(µnϵn + µ2
n),

for some M3, M4 > 0.

Proof. Let u ∈ Γ, then from Lemma 2.1 (ii), (3.4) and some M3, M4 > 0, we have

∥xn+1 − u∥2 =∥βn(h(xn) − u) + (1 − βn)(vn − u)∥2

≤(1 − βn)2∥vn − u∥2 + 2βn⟨h(xn) − u, xn+1 − u⟩

≤(1 − βn)2∥yn − u∥2 + 2βn⟨h(xn) − h(u), xn+1 − u⟩

+ 2βn⟨h(u) − u, xn+1 − u⟩

≤(1 − βn)2∥wn − u∥2 + 2βn∥h(xn) − h(u)∥∥xn+1 − u∥

+ 2βn⟨h(u) − u, xn+1 − u⟩ + (1 − βn)2(2αn(µnϵn + µ2
n))

≤(1 − βn)2


∥xn − u∥2 + θn∥xn − xn−1∥(2∥xn − u∥ + θn∥xn − xn−1∥)


+ 2βn⟨h(u) − u, xn+1 − u⟩ + 2αn(µnϵn + µ2
n)

+ cβn(∥xn − u∥2 + ∥xn+1 − u∥2)

=[1 − 2βn + cβn]∥xn − u∥2 + cβn∥xn+1 − u∥2 + β2
n∥xn − u∥2

+ 2βn⟨h(u) − u, xn+1 − u⟩ + 2αn(µnϵn + µ2
n)

+ θn(1 − βn)2∥xn − xn−1∥


2∥xn − u∥ + θn∥xn − xn−1∥


,

which implies

(1 − cβn)∥xn+1 − u∥2 ≤(1 − 2βn + cβn)∥xn − u∥2 + β2
n∥xn − u∥2

+ 2βn⟨h(u) − u, xn+1 − u⟩ + 2αn(µnϵn + µ2
n)

+ θn(1 − βn)∥xn − xn−1∥


2∥xn − u∥ + θn∥xn − xn−1∥


and

∥xn+1 − u∥2 ≤



1 − 2βn + cβn

1 − cβn



∥xn − u∥2(3.21)

+
θn(1 − βn)

1 − cβn

∥xn − xn−1∥


2∥xn − u∥ + θn∥xn − xn−1∥


+
β2

n

1 − cβn

∥xn − u∥2 +
2βn

1 − cβn

⟨h(u) − u, xn+1 − u⟩

+
2αn

1 − cβn

(µnϵn + µ2
n)

≤



1 −
2βn(1 − c)

1 − cβn



∥xn − u∥2
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+
2βn(1 − c)

1 − cβn



⟨h(u) − u, xn+1 − u⟩

1 − c
+

βnM3

1 − c



+
θn(1 − βn)

1 − cβn

(∥xn − xn−1∥) (M4 + θn∥xn − xn−1∥)

+ 2αn



µnϵn + µ2
n



. □

Theorem 3.2. Let ¶xn♢ be given by Algortihm 3.1, then ¶xn♢ converges strongly to

u = PΓh(u), where PΓ is the metric projection of H1 onto Γ.

Proof. We consider the following two possible cases for the sequence ¶∥xn − u∥♢.
Case 1. Suppose there exists n ∈ N such that ¶∥xn − u∥2♢ is nonincreasing. Then

¶∥xn − u∥2♢ converges and

∥xn − u∥2 − ∥xn+1 − u∥2 → 0 as n → +∞.

From (3.3) and condition (iv), we get

∥wn − xn∥ =∥xn + θn(xn − xn−1) − xn∥ ≤ θn∥xn − xn−1∥ → 0 as n → +∞.

(3.22)

Observe from (3.7) and (3.18), that

∥vn − u∥2 ≤∥wn − u∥2 + 2αn(µnϵn + µ2
n)

− αn(1 − αn)∥Stn − wn∥2 − γn(2 − γn∥L∥2)∥un − Lyn∥2

≤∥xn − u∥2 + θn∥xn − xn−1∥


2∥xn − u∥ + θn∥xn − xn−1∥


− αn(1 − αn)∥Stn − wn∥2

− γn(2 − γn∥L∥2)∥un − Lyn∥2 + 2αn(µnϵn + µ2
n),

using this in (3.21), we get

∥xn+1 − u∥2 ≤(1 − βn)


∥xn − u∥2 + θn∥xn − xn−1∥(2∥xn − u∥ + θn∥xn − xn−1∥)

+ 2αn(µnϵn + µ2
n)


+ 2βn⟨h(xn) − h(u), xn+1 − u⟩

− αn(1 − αn)∥Stn − wn∥2 − γn(2 − γn∥L∥2)∥un − Lyn∥2.

This implies

αn(1 − αn)(1 − βn)∥Stn − wn∥2 ≤(1 − βn)


θn∥xn − xn−1∥(2∥xn − u∥

+ θn∥xn − xn−1∥) + 2αn(µnϵn + µ2
n)


+ 2βn⟨h(xn) − h(u), xn+1 − u⟩

+ ∥xn − u∥2 − ∥xn+1 − u∥2 − βn∥xn − u∥2.

Using conditions (i)-(iv), we get

lim
n→+∞

∥Stn − wn∥ = 0.(3.23)



HIERARCHICAL FIXED POINT PROBLEMS 211

Similarly, one gets,

γn(2 − γn∥L∥2)∥un − Lyn∥2 ≤(1 − βn)
[

θn∥xn − xn−1∥


2∥xn − u∥

+ θn∥xn − xn−1∥


+ 2αn(µnϵn + µ2
n)
]

+ 2βn⟨h(xn) − h(u), xn+1 − u⟩ + ∥xn − u∥2

− ∥xn+1 − u∥2 − βn∥xn − u∥2.

Since γn ∈


0, 2
∥L∥2



, we have

∥un − Lyn∥ → 0 as n → +∞.(3.24)

Recall from (3.18) that

∥vn − u∥2 ≤∥wn − u∥2 + 2λnαnf(wn, u) + 2αn(µnϵn + µ2
n)

− αn(1 − αn)∥Stn − wn∥2 − γn(2 − γn∥L∥2)∥un − Lyn∥2,

using this in (3.21), we obtain

2(1 − βn)λnαn(f(−wn, u)) ≤∥xn − u∥2 − ∥xn+1 − u∥2

+ (1 − βn)θn∥xn − xn−1∥


2∥xn − u∥ + θn∥xn − xn−1∥


− βn∥xn − u∥2 + 2βn⟨h(xn) − u, xn+1 − u⟩

+ 2αn(µnϵn + µ2
n).

Taking limit as n → +∞ and using (iv), we get

2 lim
n→+∞

(1 − βn)λnαn(−f(wn, u)) = 0.

Since 0 < á < λn < b́ < 1, 0 < a < αn < b < 1 and −f(wn, u) ≥ 0, we have that

lim sup
n→+∞

f(wn, u) = 0.(3.25)

Next we show ∥Tzn − zn∥ → 0 as n → +∞. Observe that

∥zn − u∥2 = ∥zn − wn + wn − u∥2 ≤ ∥wn − u∥2 + 2⟨zn − u, zn − wn⟩.

It follows from this, (3.8), (3.9) and (3.16), that

∥vn − u∥2 ≤∥wn − u∥2 + 2αn⟨zn − u, zn − wn⟩

− αnσn(1 − σn)∥Tzn − zn∥2 − αn(1 − αn)∥Stn − wn∥2

− γn(2 − γn∥L∥2)∥un − Lyn∥2.(3.26)

Substituting (3.26) into (3.21), we get

σnαn(1 − βn)(1 − αn)∥Tzn − zn∥2 ≤∥xn − u∥2 − ∥xn+1 − u∥2

+ (1 − βn)θn∥xn − xn−1∥


2∥xn − u∥

+ θn∥xn − xn−1∥


− βn∥xn − u∥2

+ 2βn⟨h(xn) − u, xn+1 − u⟩
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+ 2αn∥zn − u∥∥zn − wn∥.

Again, since 0 < a < αn < b < 1, 0 < ā < σn < b̄ < 1, it follows that

lim
n→+∞

∥Tzn − zn∥ = 0.(3.27)

Observe that

∥Stn − zn∥2 ≤∥Stn − wn∥2 + 2⟨wn − zn, Stn − zn⟩

≤∥Stn − wn∥2 + 2∥wn − zn∥∥Stn − zn∥,

which implies by condition, (3.13) and (3.23), that

lim
n→+∞

∥Stn − zn∥2 = 0.(3.28)

The following holds by triangular inequality, (3.27) and (3.28)

∥Tzn − Stn∥ ≤∥Tzn − zn∥ + ∥zn − Stn∥ → 0 as n → +∞.(3.29)

Also,

lim
n→+∞

∥tn − zn∥ = lim
n→+∞

(1 − σn)∥zn − Tzn∥ = 0.(3.30)

It follows again by triangular inequality, that
(3.31)






































limn→+∞ ∥tn − wn∥ ≤ limn→+∞(∥tn − zn∥ + ∥zn − wn∥) = 0,

limn→+∞ ∥Stn − tn∥ ≤ limn→+∞(∥Stn − zn∥ + ∥zn − tn∥) = 0,

limn→+∞ ∥yn − tn∥ ≤ limn→+∞(1 − αn)∥wn − tn∥ + limn→+∞ αn∥Stn − tn∥ = 0,

limn→+∞ ∥yn − wn∥ ≤ limn→+∞(∥yn − tn∥ + ∥tn − wn∥) = 0,

limn→+∞ ∥yn − xn∥ ≤ limn→+∞(∥yn − wn∥ + ∥xn − wn∥) = 0.

Again,

∥Szn − zn∥2 =∥Szn − Stn + Stn − zn∥2

≤∥Szn − Stn∥2 + 2⟨Stn − zn, Szn − zn⟩

≤∥zn − tn∥2 + 2(∥Stn − zn∥ × ∥Szn − zn∥),

we obtain by (3.28) and (3.30), that

∥Szn − zn∥2 → 0 as n → +∞.(3.32)

Finally, we show that ∥xn+1 − xn∥ → 0 as n → +∞. Indeed, we have from (3.5) and
(3.24), that

lim
n→+∞

∥vn − yn∥ = lim
n→+∞

∥yn + γnL∗(un − Lyn) − yn∥

≤ lim
n→+∞

γn∥L∥∥un − Lyn∥ = 0(3.33)

and

∥xn+1 − vn∥ =∥βnh(xn) + (1 − βn)vn − vn∥ ≤ βn∥h(xn) − vn∥,
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which by condition (iii), implies that

∥xn+1 − vn∥ → 0 as n → +∞.(3.34)

Hence, by (3.22), (3.31), (3.33) and (3.34), we obtain

lim
n→+∞

∥xn+1 − xn∥ ≤ lim
n→+∞



∥xn+1 − vn∥ + ♣vn − yn∥ + ∥yn − wn∥ + ∥wn − xn∥


= 0.

Since ¶xn♢ is bounded, then there exists a subsequence ¶xnj
♢ such that xnj

⇀ v
and lim supn→+∞ f(xn, u) = limj→+∞ f(xnj

, u). It follows from (3.13), (3.23), (3.30)
and (3.31), that the sequences ¶wn♢, ¶tn♢, ¶zn♢ and ¶yn♢ all converge weakly to v.
Consequently, Lznj

⇀ Lv and Lynj
⇀ Lv. It follows from the demiclosedness of I − S

and (3.32), that v ∈ Fix(S). Next we show that v = (PF ix(S) ◦ T )v. It follows from
(3.5), that

tn − Stn = σn(I − T )zn + (Tzn − Stn),

which implies

1

σn

(tn − Stn) = (I − T )zn +
1

σn

(Tzn − Stn),(3.35)

thus for all w ∈ Fix(S), the monotonicity of (I − T ) and (3.35), we have


tn − Stn

σn

, zn − w
〉

=⟨(I − T )zn − (I − T )w, zn − w⟩

+ ⟨(I − T )w, zn − w⟩ +
1

σn

⟨Tzn − Stn, zn − w⟩

≥⟨(I − T )w, zn − w⟩ +
1

σn

⟨Tzn − Stn, zn − w⟩.(3.36)

Since ¶zn♢ and ¶zn − w♢ are bounded, it follows from (3.29), (3.31) and (3.36), that

lim sup
n→+∞

⟨(I − T )w, zn − w⟩ ≤ 0, for all w ∈ Fix(S).(3.37)

Replacing n with nj and letting j → +∞ in (3.37), we obtain

⟨(I − T )w, v − w⟩ ≤ 0, for all w ∈ Fix(S).

Note that tw + (1 − t)v ∈ F(S) for t ∈ (0, 1), since Fix(S) is convex. Hence,

⟨(I − T )(tw + (1 − t)v), v − w⟩ ≤ 0, for all w ∈ Fix(S).

Setting t → 0+ and using the continuity of (I − T ), we obtain

⟨(I − T )v, v − w⟩ ≤ 0, for all w ∈ Fix(S).

Thus v ∈ F (PF ix(S) ◦ T ). Next, we show that v ∈ EP (f, C). Since xnj
⇀ v,

∥wnj
−xnj

∥ → 0 and lim supn→+∞ f(wn, u) = limj→+∞ f(wnj
, u), by the upper weakly

continuity of f(·, u) and (3.25), we have

f(v, u) ≥ lim sup
j→+∞

f(wnj
, u) = lim

j→+∞
f(wnj

, u) = lim sup
n→+∞

f(wn, u) = 0.
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Since u ∈ Γ and v ∈ C, we have f(u, v) ≥ 0. By the pseudomonotone property of f,
we have f(v, u) ≤ 0. Consequently, we obtain f(v, u) = 0, and by restriction F3, we
get v ∈ EP (f, C). Furthermore, we show that Lv ∈ Fix(KF,B,ϕ

rn
) = GMEP (F, B, ϕ).

Since limn→+∞ ∥yn − xn∥ = 0 and xnj
⇀ v, it is easy to see that ynj

⇀ v. It therefore
follows from the continuity of L, that Lynj

⇀ Lv and by (3.24), we get unj
⇀ Lv.

Now since un = KF,B,ϕ
rn

Lyn, we have

F (un, w)+⟨B(un), w−un⟩+ϕ(w)−ϕ(un)+
1

rn

⟨w−un, un −Lyn⟩ ≥ 0, for all w ∈ Q.

It follows from the monotonicity of F , that

ϕ(w) − ϕ(un) + ⟨B(un), w − un⟩ +
1

rn

⟨w − un, un − Lyn⟩ ≥ F (w, un), for all w ∈ Q,

and

ϕ(w) − ϕ(unj
) + ⟨B(unj

), w − unj
⟩ +

〈

w − unj
,
unj

− Lynj

rnj

〉

≥ F (w, unj
),(3.38)

for all w ∈ Q. This implies

⟨B(Lynj
), w − unj

⟩ ≥ϕ(unj
) − ϕ(w) + ⟨B(Lynj

), w − unj
⟩ − ⟨B(unj

), w − unj
⟩

−

〈

w − unj
,
unj

− Lnj

rnj

〉

+ F (w, unj
)

=ϕ(unj
) − ϕ(w) + ⟨B(Lynj

) − B(unj
), w − unj

⟩

−

〈

w − unj
,
unj

− Lynj

rnj

〉

+ F (w, unj
).(3.39)

Since B is continuous and limn→+∞ ∥Lyn−un∥ = 0, it follows that limn→+∞ ∥B(Lyn)−
B(un)∥ = 0. From the monotonicity of B, the weakly lower semicontinuity of ϕ and
unj

⇀ Lv, it follows from (3.39), that

(3.40) ⟨B(Lv), w − Lv⟩ ≥ ϕ(Lv) − ϕ(w) + F (w, Lv), for all w ∈ Q.

For any t ∈ (0, 1] and w ∈ Q, set zt = tw + (1 − t)Lv we have zt ∈ Q and thus satisfies
(3.40). Using assumptions (R1) and (R4), we get

0 =F (zt, zt) + ϕ(zt) − ϕ(zt)

≤tF (zt, w) + (1 − t)F (zt, Lv) + tϕ(w) + (1 − t)ϕ(Lv) − ϕ(zt)

=t[F (zt, w) + ϕ(w) − ϕ(zt)] + (1 − t)[F (zt, Lv) + ϕ(Lv) − ϕ(zt)]

≤t[F (zt, w) + ϕ(w) − ϕ(zt)] + (1 − t)t⟨B(Lv), w − Lv⟩.

This implies

F (zt, w) + ϕ(w) − ϕ(zt) + (1 − t)⟨B(Lv), w − Lv⟩ ≥ 0.

Letting t → 0+, we get

F (Lv, w) + ϕ(w) − ϕ(Lv) + ⟨B(Lv), w − Lv⟩ ≥ 0, for all w ∈ C,
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which implies Lv ∈ GMEP (F, B, ϕ).
To end Case 1, we show that ¶xn♢ converges strongly to u = PΓh(u). To do this,

it suffices to show that lim supn→+∞⟨h(u) − u, xn+1 − u⟩ ≤ 0 and apply Lemma 2.3.
Indeed, choose a subsequence ¶xnj

♢ of ¶xn♢ such that xnj
⇀ v ∈ H1 and

lim sup
n→+∞

⟨h(u) − u, xn+1 − u⟩ = lim
j→+∞

⟨h(u) − u, xnj+1 − u⟩.

We have that xn+1 ⇀ v since ∥xn+1 − xn∥ → 0 as n → +∞. By applying (2.1), we
have

lim sup
n→+∞

⟨h(u) − u, xn+1 − u⟩ = lim
j→+∞

⟨h(u) − u, xnj+1 − u⟩ = ⟨h(u) − u, v − u⟩ ≤ 0.

Using (2.1), (3.21) and Lemma 2.3, we conclude that ∥xn − u∥ → 0 as n → +∞.
Case 2. Assume that ¶∥xn − u∥♢ is non monotone. For some n0 large enough, let

τ : N → N be a mapping defined for all n ≥ n0 by

τ(n) := max¶j ∈ N : j ≤ n, ∥xj − u∥ ≤ ∥xj+1 − u∥♢.

By Lemma 2.4, τ(n) is nondecreasing sequence such that τ(n) → +∞ as n → +∞
and 0 ≤ ∥xτ(n) − u∥ ≤ ∥xτ(n)+1 − u∥ for all n ≥ n0. Just by using similar argument
as in Case 1, we have

lim
n→+∞

∥wτ(n) − xτ(n)∥ = lim
n→+∞

∥zτ(n) − wτ(n)∥ = lim
n→+∞

∥yτ(n) − wτ(n)∥

= lim
n→+∞

∥uτ(n) − Lyτ(n)∥ = lim
n→+∞

∥Tzτ(n) − zτ(n)∥

= lim
n→+∞

∥Szτ(n) − zτ(n)∥ = lim
n→+∞

∥xτ(n)+1 − xτ(n)∥ = 0

and

lim
n→+∞

⟨h(u) − u, xτ(n)+1 − u⟩ ≤ 0.

Since ¶xτ(n)♢ is bounded, there exists a subsequence of ¶xτ(n)♢ still denoted by ¶xτ(n)♢
such that xτ(n) ⇀ v ∈ C. Following similar argument as in Case 1, we obtain v ∈ Γ.

From (3.21), we get

∥xτ(n)+1 − u∥2 ≤



1 −
2βτ(n)(1 − c)

1 − cβτ(n)



∥xτ(n) − u∥2

+
2βτ(n)(1 − c)

1 − cβτ(n)



⟨h(u) − u, xτ(n)+1 − u⟩

1 − c
+

βτ(n)M3

1 − c



+
θτ(n)(1 − βτ(n))

1 − cβτ(n)



∥xτ(n) − xτ(n)−1∥
 

M4 + θτ(n)∥xτ(n) − xτ(n)−1∥


+ 2ατ(n)



µτ(n)ϵτ(n) + µ2
τ(n)



.

Since ∥xτ(n) − u∥ ≤ ∥xτ(n)+1 − u∥ and βτ(n) > 0, we have

2βτ(n)(1 − c)

1 − cβτ(n)

∥xτ(n) − u∥2 ≤
2βτ(n)(1 − c)

1 − cβτ(n)



⟨h(u) − u, xτ(n)+1 − u⟩

1 − c
+

βτ(n)M3

1 − c
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+ 2ατ(n)



µτ(n)ϵτ(n) + µ2
τ(n)



+
θτ(n)(1 − βτ(n))

1 − cβτ(n)

×


∥xτ(n) − xτ(n)−1∥
 

M4 + θτ(n)∥xτ(n) − xτ(n)−1∥


.

Hence,

2(1 − c)

1 − cβτ(n)

∥xτ(n) − u∥2 ≤
2(1 − c)

1 − cβτ(n)



⟨h(u) − u, xτ(n)+1 − u⟩

1 − c
+

βτ(n)M3

1 − c



+
2ατ(n)

βτ(n)

(µτ(n)ϵτ(n) + µ2
τ(n))

+
θτ(n)(1 − βτ(n))

βτ(n)(1 − cβτ(n))



∥xτ(n) − xτ(n)−1∥


×


M4 + θτ(n)∥xτ(n) − xτ(n)−1∥


.

This implies that lim supn→+∞ ∥xτ(n) − u∥2 ≤ 0 and

lim
n→+∞

∥xτ(n) − u∥ = 0.(3.41)

From (3.34) and (3.41), we obtain

∥xτ(n)+1 − u∥ ≤ ∥xτ(n) − u∥ + ∥xτ(n) − xτ(n)+1∥ → 0 as n → +∞.

Furthermore, for n ≥ n0, it is obvious that ∥xn − u∥ ≤ ∥xτ(n) − u∥. Consequently, we
get for all n ≥ n0, that

0 ≤ ∥xn − u∥ ≤ max¶∥xτ(n) − u∥, ∥xτ(n)+1 − u∥♢ = ∥xτ(n)+1 − u∥.

Therefore, ∥xn − u∥ → 0 as n → +∞, that is xn → u. Thus completing the proof. □

If we set B = ϕ = 0 in (3.1)–(3.2), we obtain the following method for obtaining a
common solution of split EP and HFPP considered in [7].

Algorithm 3.3. Initialization. Choose x0, x1 ∈ C. Take the sequence of real numbers
¶µn♢, ¶βn♢, ¶rn♢, ¶θn♢, ¶γn♢, ¶σn♢, ¶ϵn♢, ¶αn♢ and ¶λn♢ satisfying

(i) 0 < r < rn, 0 < a < αn < b < 1, 0 < á < λn < b́ < 1, 0 < ā < σn < b̄ < 1,
βn ≥ 0, γn ∈ (0, 2/∥L∥2) and ϵn → 0 as n → +∞;

(ii)
∑+∞

n=1 µ2
n < +∞;

(iii)
∑+∞

n=1 βn = +∞, limn→+∞ βn = 0;
(iv) ¶θn♢ ⊂ [0, θ], where θ ∈ [0, 1) and

∑+∞
n=1 θn∥xn − xn−1∥ < +∞;

(v) limn→+∞
θn

βn
= 0.

Step 1. Given xn−1 and xn, n ≥ 1, compute

wn = xn + θn(xn − xn−1).(3.42)

Step 2. Take g(wn) ∈ ∂ϵn
(f(wn, ·))(wn), n ≥ 1. Calculate ηn = max¶1, ∥g(wn)∥♢,

λn = µn

ηn
and zn = PC(wn − λng(wn)).
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Step 3. If wn = zn (wn ∈ EP (f, C)), then go to step 3. Otherwise, evaluate



























tn = (1 − σn)Tzn + σnzn,

yn = (1 − αn)wn + αnStn,

un = KF
rn

Lyn,

vn = yn + γnL∗(un − Lyn).

Step 4. Compute xn+1 = βnh(xn) + (1 − βn)vn, where h is a contraction.
Step 5. Set n := n + 1 and go to step 1.

We therefore give the following result as a consequence of our main theorem.

Corollary 3.4. Let C and Q be nonempty, closed and convex subsets of real Hilbert
spaces H1 and H2 respectively. Let L : H1 → H2 be a bounded linear operator.
Let f : C × C → R and F : Q × Q → R be bifunctions satisfying restrictions
F1-F4 and R1-R4 respectively. Let S : C → C be a nonexpansive mapping and
T : C → C be a quasinonexpansive mapping such that I − T is monotone. Assume
that Γ = EP (f, C) ∩ EP (F, Q) ∩ Ω ̸= ∅. Then the sequence ¶xn♢ given by Algorithm
3.3 converges strongly to u = PΓh(u), where PΓ is the metric projection of H1 onto Γ.

4. Numerical Examples

We give some numerical examples to illustrate the behaviour and performance of
our method as well as comparing it with some related methods in the literature.

Example 4.1. Let H1 = H2 = C = Q = R with inner product ⟨x, y⟩ = xy for
all x, y ∈ R and the induced usual norm ♣ · ♣. Let f : C × C → R be defined by
f(x, y) = 2xy(y−x)+xy♣y−x♣, for all x, y ∈ H1. Define the bifunction F : Q×Q → R

by F (u, v) = −u2 + v2, for all u, v ∈ Q, B : Q → H2 by B(u) = u
5

for all u ∈ Q
and ϕ : Q → R by ϕ(u) = 0 for all u ∈ Q. For each x ∈ H1, define the mapping
L : H1 → H2 by Lx = x for all x ∈ H1. Also define the mappings S and T respectively
by Sx = x

2
and Tx = x. It is easy to see that f, F, S and T satisfy the conditions

of Theorem 3.2 and that Γ = ¶0♢. From Theorem 3.2, we can conclude that the
sequences ¶xn♢, ¶yn♢ and ¶zn♢ converge to 0. Let rn = 1, for all n ≥ 1, it is easy to
find that the resolvent KF,B,ϕ

rn
Lyn = 5yn

16
.
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Figure 1. Numerical results for Example 4.1. Left: x0 = 0.8, x1 = 0.5;
right: x0 = −1, x1 = −3.

Set σn = 1
2n2+3

, αn = 1
2n2+5

, ϵn = 0, γn = 1
5
, λn = 1

2
. Also, let µn = 1

n
, βn = 1

n+1

and θn = 1
4n2+1

. Then, after simplification Algorithm 3.1, becomes


















































































Given x0 and x1 ∈ H1,

wn = xn + θn(xn − xn−1),

wn ∈ H1 such that g(wn) ∈ ∂ϵn
f(wn, ·)(wn) = [w2

n, 3w2
n],

zn = PC(wn − λng(wn)),

tn = (1 − σn)Tzn + σnzn,

yn = (1 − αn)wn + αnStn,

un = 5yn

16
,

vn = 1
15

(3un + 2yn),

xn+1 = βnh(xn) + (1 − βn)vn.

We test our algorithm with varying values of initial terms x0 and x1, see Figure 1.

In this example, we set B = ϕ = 0.

Example 4.2. Let H1 = H2 = Q = ℓ2(R) be the linear spaces whose elements are all
2-summable sequences ¶xi♢

+∞
i=1 of scalars in R, that is

ℓ2(R) :=

{

x = (x1, x2 . . . , xi . . . ), xi ∈ R and
+∞
∑

i=1

♣xi♣
2 < +∞

}

,

with an inner product ⟨·, ·⟩ : ℓ2 × ℓ2 → R defined by ⟨x, y⟩ :=
∑+∞

i=1 xiyi, where

x = ¶xi♢
+∞
i=1 , y = ¶yi♢

+∞
i=1 and the norm ∥ · ∥ : ℓ2 → R by ∥x∥2 := (

∑+∞
i=1 ♣xi♣

2)
1

2 ,
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where x = ¶xi♢
+∞
i=1 . Let C = ¶z ∈ ℓ2(R) : ⟨a, z⟩ ≤ b♢, where 0 ̸= a ∈ ℓ2 and

b ∈ R. Let f : C × C → R be defined by f(x, y) = 2xy(y − x) + xy∥y − x∥ for all
x = ¶xi♢

+∞
i=1 , y = ¶yi♢

+∞
i=1 ∈ ℓ2. Define the bifunction F : Q × Q → R by F (u, v) =

u(v − u) for all u = ¶ui♢
+∞
i=1 , v = ¶vi♢

+∞
i=1 ∈ ℓ2. For each x ∈ ℓ2, define the mapping

L : ℓ2 → ℓ2 by Lx = (x1, x2, . . . , xi, . . . ) for all x = ¶xi♢
+∞
i=1 ∈ ℓ2. Let rn = 0.5 for

all n ≥ 1, then it is easy to see that KF
rn

Lyn = 2Lyn

3
. Also, define the mappings

S and T ,respectively by Sx = (x1

2
, x2

2
, . . . , xi

2
, . . . ) for all x = ¶xi♢

+∞
i=1 ∈ ℓ2 and

Tx = (x1 cos x1, x2 cos x2, . . . , xi cos xi, . . . ) for all x = ¶xi♢
+∞
i=1 ∈ ℓ2. It is easy to see

that f , F , S and T satisfy the conditions of Corollary 3.4 and that Γ = ¶0♢. We define
the control parameters as in Example 4.1 above and obtain the figures for varying
initial values. Using ∥xn+1 − xn∥ℓ2

< 10−3 as the stopping criterion, we compare our
Algorithm 3.3 with Algorithm Theorem 3.1 in [7], see Figure 2.

Case (i) x1 = (3.568, −5.8091, 0, . . . , 0, . . . )T , x0 = (1.521, −7.5647, 0, . . . , 0, . . . )T .
Case (ii) x1 = (1.7601, −2.1594, 0, . . . , 0, . . . )T , x0 = (0.3456, −4.1031, 0, . . . ,

0, . . . )T .
Case (iii) x1 = (10.5613, 7.2610, 0, . . . , 0, . . . )T , x0 = (5.1063, 2.1687, 0, . . . , 0, . . . )T .

We then plot the graphs of error ∥xn+1 −xn∥ℓ2
against the number of iteration in each

case.
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Figure 2. Numerical results for Example 4.2. Top left: Case (i); top
right: Case (ii); bottom: Case (iii).
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ON VERTEX-EDGE AND EDGE-VERTEX CONNECTIVITY

INDICES OF GRAPHS

SHILADHAR PAWAR1, AHMED MOHSEN NAJI1, NANDAPPA D. SONER2,
ALI REZA ASHRAFI3, AND ALI GHALAVAND3∗

Abstract. Let G be a graph with vertex set V (G) and edge set E(G). The vertex-
edge degree of the vertex v, de

G(v), equals to the number of different edges that
are incident to any vertex from the open neighborhood of v. Also, the edge-vertex
degree of the edge e = uv, dv

G(e), equals to the number of vertices of the union of
the open neighborhood of u and v. In this paper, the vertex-edge connectivity index,
φv, and the edge-vertex connectivity index, φe, of a graph G were introduced. These
are deĄned as φv(G) =

∑

v∈V (G) de
G(v)dG(v) and φe(G) =

∑

e=uv∈E(G) dG(e)dv
G(e),

where dG(v) is the degree of a vertex v ∈ V (G) and dG(e) is the number of edges
in E(G) that are adjacent to e. In this paper, we will study the main properties of
φv(G), φe(G) and establish some upper and lower bounds for them. The numbers
φv and φe for titania nanotubes are also computed.

1. Basic Definitions and Notations

In this paper we study some aspects of the vertex-edge degree of a vertex and we
are concerned only with simple graphs, i.e., Ąnite graphs having no loops, multiple
and directed edges. Let G = (V (G), E(G)) be such a graph with vertex set V (G)
and edge set E(G). As usual, the number of vertices and edges in G are denoted
by n = ♣V ♣ and m = ♣E♣, respectively. The distance dG(u, v) between two vertices
u and v of a graph G is equal to the length of (number of edges in) a shortest path
connecting them. For a vertex v ∈ V (G), the open neighborhood of v is denoted by
N(v, G) and is deĄned as N(v, G) = ¶u ∈ V (G) ♣ uv ∈ E(G)♢. The degree of a vertex

Key words and phrases. Vertex-edge degree, edge-vertex degree, vertex-edge connectivity index,
edge-vertex connectivity index.
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v in G is denoted by dG(v) and is deĄned as the number of neighbours of the vertex
v in G, i.e., degG(v) = ♣N(v, G)♣. The minimum and maximum degree of vertices in
the graph G are denoted by δ(G) and ∆(G), respectively. For any terminology or
notation not mention here, we refer to [17].

A topological index of a graph is a graph invariant calculated from a graph
representing a molecule and applicable in chemistry. The Zagreb indices have been
introduced, more than Ąfty years ago, by Gutman and Trinajestić [15], in 1972,
and elaborated in [16]. They are deĄned as M1(G) =

∑

uv∈E(G)[dG(u) + dG(v)] =
∑

v∈V (G) dG(v)2 and M2(G) =
∑

uv∈E dG(u)dG(v). Furtula and Gutman [12] intro-
duced the forgotten index of G, F (G), as F (G) =

∑

uv∈E(G)[dG(u)2 + dG(v)2] =
∑

v∈V (G) dG(v)3. For properties of the two Zagreb indices see [3,7,14,15,24,25,30] and
the references therein.

In recent years, some novel variants of ordinary Zagreb indices introduced and
studied, such as Zagreb coincides [1, 16], multiplicative Zagreb indices [13, 29, 30],
multiplicative sum Zagreb index [10] and multiplicative Zagreb coincides [31].

In 2017, Naji et al. [22], have introduced a new distance-degree-based topological
indices conceived depending on the second degrees of vertices (number of their second
neighbours), and are so-called leap Zagreb indices of a graph G. For properties and
more detail on leap Zagreb indices, we refer to [2, 22,23] and [26].

For a vertex v in V (G) the ve-dominates are every edge incident to v as well
as every edge adjacent to these incident edges. Also, for an edge e = uv in E(G),
the ev-dominates are the vertices of the set N(v, G) ∪ N(u, G). There is a natural
duality between ve-dominates and ev-dominates for any graph G: a vertex v ∈ V is
an ev-dominates for edge e ∈ E if and only if the edge e is an ve-dominates for vertex
v [6].

Definition 1.1 ([4]). Let G be a connected graph and v ∈ V (G). The vertex-edge
degree of the vertex v, de

G(v), equals the number of different edges that incident to
any vertex from the open neighborhood of v. Also, the edge-vertex degree of the edge
e = uv, dv

G(e), equals the number of vertices of the union of the open neighborhoods
of u and v.

The concepts of vertex-edge domination and edge-vertex domination were intro-
duced by Peters [21] in his Ph.D. thesis and studied further in [4, 9, 18, 19, 27]. The
following fundamental results which will be used in many of our subsequent consider-
ations are found in the earlier papers [28] and [32].

Let G be a graph. The total ev-degree, Te, total ve-degree, Tv, ev-degree Zagreb
index, S, Ąrst ve-degree Zagreb alpha index, Sα, Ąrst ve-degree Zagreb beta index,
Sβ, second ve-degree Zagreb index, Sµ, of graph G are deĄned by Chellali et al. [6]
as:

Te(G) =
∑

e∈E(G)

dv
G(e), Tv(G) =

∑

v∈V (G)

de
G(v),
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S(G) =
∑

e∈E(G)

dv
G(e)2, Sα(G) =

∑

v∈V (G)

de
G(v)2,

Sβ(G) =
∑

e=uv∈E(G)

[de
G(v) + de

G(u)], Sµ(G) =
∑

e=uv∈E(G)

de
G(v)de

G(u).

Let η(G) be the number of triangles in graph G. Authors in [6] have proved that:

Te(G) = Tv(G) = M1(G) − 3η(G), where G is an arbitrary graph,(1.1)

S(G) = F (G) + 2M2(G), where G is a triangle free connected graph,

Sβ(T ) = 2M2(T ), where T is an arbitrary tree.

In [8], Ediz deĄned ve-degree atom-bond connectivity, ve-degree geometric - arith-
metic, ve-degree harmonic and ve-degree sum-connectivity indices as parallel to their
corresponding classical degree versions. Moreover, the mathematical properties were
studied in it.

Titania nanotubes which have been produced Ąfteen years ago have many appli-
cations on the very broad of science from medicine to electronics [20]. Computing
certain topological indices of titania nanotubes have been started recently. Since 2015,
there are many studies to compute the exact value of some topological indices of
titania nanotubes [5, 11].

2. Main Results

DeĄne the ev-degree connectivity index, ϕe, and ve-degree connectivity index, ϕv,
of a graph G as:

ϕe(G) =
∑

e=uv∈E(G)

dG(e)dv
G(e),

ϕv(G) =
∑

v∈V (G)

dG(v)de
G(v),

where for e = uv ∈ E(G), dG(e) = dG(u) + dG(v) − 2.

Proposition 2.1. Let Pn, Cn, Sn, Kn and Ka,b be path, cycle, star, complete and

bipartite graphs on n ≥ 4 vertices, respectively. Then (a + b = n)

ϕe(Pn) = 8n − 18, ϕv(Pn) = 8(n − 2), ϕe(Cn) = ϕv(Cn) = 8n,

ϕe(Sn) = n(n − 1)(n − 2), ϕv(Sn) = 2(n − 1)2,

ϕe(Kn) = n2(n − 1)(n − 2), ϕv(Kn) =
n2(n − 1)2

2
,

ϕe(Ka,b) = ab(n2 − 2n), ϕv(Ka,b) = 2a2b2.

Proof. By deĄnitions,

ϕe(Pn) =
∑

e=uv∈E(Pn)

dPn
(e)dv

Pn

(e) = 2(1 × 3) + (n − 3)(2 × 4) = 8n − 18,
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ϕv(Pn) =
∑

v∈V (Pn)

dPn
(v)de

Pn

(v) = 2(1 × 2) + 2(2 × 3) + (n − 4)(2 × 4) = 8(n − 2).

The proof of other cases are similar and we omit them. □

Proposition 2.2. Let G be a triangle free graph. Then

ϕe(G) = F (G) + 2M2(G) − 2M1(G) and ϕv(G) = 2M2(G).

Proof. By deĄnitions,

ϕe(G) =
∑

e=uv∈E(G)

dG(e)dv
G(e) =

∑

e=uv∈E(G)

dG(e)[dG(u) + dG(v)]

=
∑

e=uv∈E(G)

[dG(u) + dG(v) − 2][dG(u) + dG(v)]

= F (G) + 2M2(G) − 2M1(G),

ϕv(G) =
∑

v∈V (G)

dG(v)de
G(v) =

∑

v∈V (G)

dG(v)
∑

uv∈E(G)

dG(u)

=
∑

v∈V (G)

dG(v)
∑

uv∈E(G)

dG(u) = 2
∑

uv∈E(G)

dG(u)dG(v)

= 2M2(G).

Hence, the result is obtained. □

Let G be a graph with n vertices and m edges and let ni = ♣¶v ∈ V (G) ♣ dG(v) = i♢♣,
for all integers i, 1 ≤ i ≤ n − 1. By deĄnition,

n = n1 + n2 + · · · + nn−1.(2.1)

Also, it is well-known,

2m = n1 + 2n2 + · · · + (n − 1)nn−1.(2.2)

Therefore, by (2.1), (2.2) and some simple calculations,

n1 = 2n − 2m +
n−1
∑

i=3

(i − 2)ni.(2.3)

Theorem 2.1. Let G be a triangle free graph. Then ϕe(G) − ϕv(G) ≥ 2(m − n) and

equality holds if and only if ¶dG(v) ♣ v ∈ V (G)♢ ⊆ ¶1, 2♢.

Proof. By Proposition 2.2,

ϕe(G) − ϕv(G) = F (G) − 2M1(G) =
∑

v∈V (G)

dG(v)2[dG(v) − 2]

=
n−1
∑

i=1

i2(i − 2)ni = −n1 +
n−1
∑

i=3

i2(i − 2)ni,

and by (2.3),

ϕe(G) − ϕv(G) = 2m − 2n −
n−1
∑

i=3

(i − 2)ni +
n−1
∑

i=3

i2(i − 2)ni
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= 2m − 2n +
n−1
∑

i=3

(i − 1)(i − 2)(i + 1)ni.

Therefore, ϕe(G) − ϕv(G) ≥ 2(m − n) and equality holds if and only if ¶dG(v) ♣ v ∈
V (G)♢ ⊆ ¶1, 2♢. □

Proposition 2.3. Let G be a triangle free connected graph with n vertices and m
edges. Then ϕe(G) ≤ mn(n − 2) and equality holds if and only if G ∼= Kk,n−k.

Proof. By deĄnition of triangle free graph G, dG(u)+dG(v) ≤ n for all e = uv ∈ E(G).
Thus,

ϕe(G) =
∑

uv∈E(G)



dG(u) + dG(v)


dG(u) + dG(v) − 2


≤
∑

uv∈E(G)

n(n − 2) = mn(n − 2).

Equality holds if and only if G ∼= Kk,n−k. □

A graph G is said to be ve-regular graph if and only if ♣¶de
G(v) ♣ v ∈ V (G)♢♣ = 1

and is said to be ev-regular graph if and only if ♣¶dv
G(e) ♣ e ∈ E(G)♢♣ = 1.

Theorem 2.2. For any graph G with n vertices and m edges

Sα(G) ≥
(M1(G) − 3η(G))2

n
.(2.4)

Equality holds if and only if G is a ve-regular graph. Moreover,

ϕv(G) ≤
√

Sα(G)M1(G).(2.5)

Equality holds if and only if there exists a real number c such that dG(v) = cde
G(v) for

all v ∈ V (G) and

ϕe(G) ≤

√

S(G)


F (G) + 2M2(G) − 4M1(G) + 4m


.(2.6)

Equality holds if and only if there exists a real number l such that dG(e) = ldv
G(e) for

all e ∈ E(G).

Proof. Let G be a graph with vertex set ¶v1, v2, . . . , vn♢. Nest we will use Cauchy-
Schwarz inequality

(

n
∑

i=1

aibi

2

≤

(

n
∑

i=1

a2
i

(

n
∑

i=1

b2
i



.(2.7)

To prove (2.4), we put in (2.7), ai = de
G(vi) and bi = 1. Then by (1.1)

(M1(G) − 3η(G))2 = Tv(G)2 =

(

n
∑

i=1

de
G(vi)

2

≤

(

n
∑

i=1

de
G(vi)

2

(

n
∑

i=1

1



= Sα(G)n.
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Therefore, Sα(G) ≥ (M1(G)−3η(G))2

n
and equality holds in Cauchy-Schwartz inequality if

and only if (a1, a2, . . . , an) = c(b1, b2, . . . , bn), where c is a real number. Hence equality
holds in (2.4) if and only if G is a ve-regular graph.

To prove (2.5), we put in (2.7), ai = de
G(vi) and bi = dG(vi). Then we obtain

ϕv(G)2 =

(

n
∑

i=1

de
G(vi)dG(vi)

2

≤

(

n
∑

i=1

de
G(vi)

2

(

n
∑

i=1

dG(vi)
2



= Sα(G)M1(G).

Therefore, ϕv(G) ≤
√

Sα(G)M1(G) and equality holds in Cauchy-Schwartz inequality

if and only if (a1, a2, . . . , an) = c(b1, b2, . . . , bn), where c is a real number. Hence
equality holds in Equation (2.5) if and only if there exists real number c such that
dG(v) = cde

G(v) for all v ∈ V (G).
To prove (2.6), again by Cauchy-Schwartz inequality,

ϕ2
e(G) =





∑

e=uv∈E(G)

dv
G(e)dG(e)





2

≤





∑

e=uv∈E(G)

dv
G(e)2









∑

e=uv∈E(G)

dG(e)2





= S(G)
∑

e=uv∈E(G)



dG(u) + dG(v) − 2
2

= S(G)


F (G) + 2M2(G) − 4M1(G) + 4m


.

Thus ϕe(G) ≤

√

S(G)


F (G) + 2M2(G) − 4M1(G) + 4m


and equality holds in (2.6)

if and only if there exists real number l such that dG(e) = ldv
G(e) for all e ∈ E(G). □

If G is a triangle free r-regular graph, then for all v ∈ V (G), de
G(v) =

∑

uv∈E(G) r =
r2 and for all e ∈ E(G), dv

G(e = uv) = dG(u) + dG(v) = 2dG(v). If G is a complete
graph then de

G(v) = n(n − 1)/2, v ∈ V (G) and dv
G(e = uv) = n for all e ∈ E(G).

Therefore, the Equalities (2.4), (2.5) and (2.6) hold for triangle free regular graphs
and also complete graphs.

Theorem 2.3. Let G be an r-regular graph. Then

ϕv(G) = r
[

M1(G) − 3η(G)
]

and ϕe(G) = 2(r − 1)
[

M1(G) − 3η(G)
]

.

Proof. Let G be an r-regular graph. Then (1.1) gives

ϕv(G) =
∑

v∈V (G)

de
G(v)dG(v) =

∑

v∈V (G)

de
G(v)r

= r
∑

v∈V (G)

de
G(v) = r

[

M1(G) − 3η(G)
]

,

ϕe(G) =
∑

e∈E(G)

dv
G(e)dG(e) =

∑

e∈E(G)

dv
G(e)2(r − 1)

= 2(r − 1)
∑

e∈E(G)

dv
G(e) = 2(r − 1)

[

M1(G) − 3η(G)
]

,
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as desired. □

Theorem 2.4. Let G be graph.

(a) If G is a ve-regular graph with de
G(v) = c for all v ∈ V (G), then ϕv(G) = 2cm.

(b) If G is an ev-regular graph with dv
G(e) = k for all e ∈ E(G), then ϕe(G) =

k[M1(G) − 2m].

Proof. Let G be ve-regular graph with de
G(v) = c for all v ∈ V (G). Then

ϕv(G) =
∑

v∈V (G)

de
G(v)dG(v) = c

∑

v∈V (G)

dG(v) = 2cm.

Now, let G be ev-regular graph, with dv
G(e) = k, for all e ∈ E(G). Then

ϕe(G) =
∑

e∈E(G)

dv
G(e)dG(e) = k

∑

e=uv∈E(G)

[dG(u) + dG(v) − 2] = k[M1(G) − 2m].

This completes our argument. □

Lemma 2.1. Let G be a connected graph with given vertices u and v such that

uv /∈ E(G). If G′ = G + uv, then Tv(G) = Te(G) ≤ Tv(G′) = Te(G
′) − 2.

Proof. Let x = M1(G
′) − 3η(G′) and y = M1(G) − 3η(G). By deĄnition,

x − y =(dG(u) + 1)2 + (dG(v) + 1)2 − 3
(

η(G) + ♣N(u, G) ∩ N(v, G)♣


−
[

dG(u)2 + dG(v)2 − 3η(G)
]

=2dG(u) + 2dG(v) + 2 − 3♣N(u, G) ∩ N(v, G)♣

≥4♣N(u, G) ∩ N(v, G)♣ + 2 − 3♣N(u, G) ∩ N(v, G)♣ ≥ 2.

The proof follows from (1.1). □

Let G be a graph. The path Pk := v0v2 . . . vk is called a pendant path in G if
¶v0, v1, . . . , vk♢ ⊆ V (G), dG(v0) ≥ 3, dG(vk) = 1, ¶vivi+1 ♣ 0 ≤ i ≤ k − 1♢ ⊆ E(G),
and dG(v1) = · · · = dG(vk−1) = 2, when k ≥ 2.

Lemma 2.2. Let G be a graph with two pendant paths Pk := v0v2 . . . vk and Ql :=
u0u2 . . . ul. If G′ = G − v0v1 + ulv1, then Tv(G′) = Te(G

′) < Tv(G) = Te(G) − 2.

Proof. Let x = M1(G
′) − 3η(G′) and y = M1(G) − 3η(G). By deĄnition,

y − x = dG(v0)
2 + 1 −



(dG(v0) − 1)2 + 4


= 2dG(v0) − 4 ≥ 2,

and (1.1) gives the result. □

Lemmas 2.1 and 2.2 give the following result.

Corollary 2.1. Let G be a connected graph with n vertices. Then

4n − 6 ≤ Tv(G) = Te(G) ≤
1

2
n2(n − 1).

Equality in left holds if and only if G ∼= Pn and equality in right holds if and only if

G ∼= Kn.
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Corollary 2.2. Let G be a connected graph with n vertices. Then

ϕv(G) ≤
n2(n − 1)2

2
and ϕe(G) ≤ n2(n − 1)(n − 2).

Equalities hold if and only if G ∼= Kn.

Proof. By deĄnitions,

ϕv(G) =
∑

v∈V (G)

de
G(v)dG(v) ≤ (n − 1)

∑

v∈V (G)

de
G(v) = (n − 1)Tv(G),

ϕe(G) =
∑

e∈E(G)

dv
G(e)dG(e) ≤ (2n − 4)

∑

e∈E(G)

dv
G(e) = (2n − 4)Te(G).

Now, Corollary 2.1 gives the results. □

For positive integer n ≥ 4, let C3 := v1v2v3v1 and Pn−3 := u1u2 . . . un−3 be cycle
and path graph on 3 and n−3 vertices, respectively. Then the graph Cn−3

3 is obtained
from C3 and Pn−3 by attaching vertices v1 and u1. By (1.1),

Tv(Cn−3
3 ) = Te(C

n−3
3 ) = 4n − 1.(2.8)

Lemma 2.3. Let G be a graph with n ≥ 4 vertices and minimum degree at least 2.

Then Tv(G) = Te(G) ≥ 4n, with equality if and only if G ∼= Cn.

Proof. If G ∼= Cn, then Tv(G) = Te(G) = 4n and lemma holds. Otherwise, by using
Lemmas 2.1, 2.2 and (2.8), Tv(G) = Te(G) ≥ 4n + 1 which gives the lemma. □

Corollary 2.3. Let G be a graph with n ≥ 4 vertices and minimum degree at least 2.

Then

ϕv(G) ≥ 8n and ϕe(G) ≥ 8n.

Equalities hold if and only if G ∼= Cn.

Proof. By deĄnitions,

ϕv(G) =
∑

v∈V (G)

de
G(v)dG(v) ≥ 2

∑

v∈V (G)

de
G(v) = 2Tv(G),

ϕe(G) =
∑

e∈E(G)

dv
G(e)dG(e) ≥ 2

∑

e∈E(G)

dv
G(e) = 2Te(G).

Now, Lemma 2.3 gives the results. □

Lemma 2.4 (Diaz-Metcalf inequality). Let the real numbers ai ≠ 0, bi, 1 ≤ i ≤ n,
satisfy

l ≤
bi

ai

≤ L.

Then
n
∑

i=1

b2
i + lL

n
∑

i=1

a2
i ≤ (L + l)

n
∑

i=1

aibi.

Equality holds if and only if bi = lai or bi = Lai.
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Theorem 2.5. Let G be a graph with n vertices, m edges, minimum degree δ ≥ 1 and

maximum degree ∆. Then

(i) ϕv(G) ≥ 1
2∆+δ+1

[2Sα(G) + (δ + 1)∆M1(G)] and equality holds if and only if

de
G(v) = 1

2
(δ + 1)dG(v) or de

G(v) = ∆ dG(v) for all v ∈ V (G);

(ii) ϕe(G) ≥ 1
3

[S(G) + 2F (G) + 4M2(G) − 6M1(G) + 18η(G)] and equality holds

if and only if dv
G(e) = dG(e) + 2 or 2dv

G(e) = dG(e) + 2 for all e ∈ E(G).

Proof. Suppose V (G) = ¶v1, v2, . . . , vn♢ and E(G) = ¶e1, e2, . . . , em♢. To prove (i), by
setting ai = dG(vi) and bi = de

G(vi) for all i = 1, 2, . . . , n, L = ∆ and l = 1
2
(δ + 1) in

Diaz-Metcalf inequality we get
n
∑

i=1

de
G(vi)

2 +
1

2
(δ + 1)∆

n
∑

i=1

dG(vi)
2 ≤



1

2
(δ + 1) + ∆

 n
∑

i=1

dG(vi)d
e
G(vi),

which implies that

Sα(G) +
1

2
(δ + 1)∆M1(G) ≤



1

2
(δ + 1) + ∆



ϕv(G).

Therefore,

ϕv(G) ≥
1

2∆ + δ + 1



2Sα(G) + (δ + 1)∆M1(G)


,

and equality holds if and only if de
G(v) = 1

2
(δ + 1)dG(v) or de

G(v) = ∆ dG(v) for all
v ∈ V (G).

To prove (ii), setting ai = dv
G(ei) and bi = dG(ei) + 2 for all i = 1, 2, . . . , m, L = 2

and l = 1 in Diaz-Metcalf inequality we get
m
∑

i=1

dv
G(ei)

2 + 2
m
∑

i=1

(dG(ei) + 2)2 ≤ 3
m
∑

i=1

(dG(ei) + 2)dv
G(ei),

which implies that

S(G) + 2


F (G) + 2M2(G)


≤ 3ϕe(G) + 6Te(G).

Therefore, by (1.1),

ϕe(G) ≥
1

3

[

S(G) + 2F (G) + 4M2(G) − 6M1(G) + 18η(G)
]

,

and equality holds if and only if dv
G(e) = dG(e) + 2 or 2dv

G(e) = dG(e) + 2 for all
e ∈ E(G). This completes the proof. □

If G is a triangle free r-regular graph, then for all v ∈ V (G), de
G(v) = r2 and for

all e = uv ∈ E(G), dv
G(e) = dG(e) + 2. Therefore, by Theorem 2.5,

ϕv(G) =
1

3r + 1

[

2Sα(G) + (r + 1)rM1(G)
]

,

ϕe(G) =
1

3

[

S(G) + 2F (G) + 4M2(G) − 6M1(G)
]

.



234 S. PAWAR, A. M. NAJI, N. D. SONER, A. R. ASHRAFI, AND A. GHALAVAND

Theorem 2.6. Let G be a graph with n vertices and m edges. Then

(i) ϕv(G) ≥ 2m
n

[M1(G) − 3η(G)];

(ii) ϕe(G) ≥ 1
m

[M1(G) − 2m][M1(G) − 3η(G)].
The bounds attain on the cycle Cn, n ≥ 3, and the star K1,n−1, n ≥ 2.

Proof. Suppose V (G) = ¶v1, v2, . . . , vn♢ and E(G) = ¶e1, e2, . . . , em♢. ChebyshevŠs
inequality states that, for any non-increasing sequences a1 ≥ a2 ≥ · · · ≥ an and
b1 ≥ b2 ≥ · · · ≥ bn, we have

n
n
∑

i=1

aibi ≥
n
∑

i=1

ai

n
∑

i=1

bi.

Suppose ai = dG(vi) and bi = de
G(vi), for i = 1, 2, . . . , n. By (1.1), we obtain

n
n
∑

i=1

dG(vi)d
e
G(vi) ≥

n
∑

i=1

dG(vi)
n
∑

i=1

de
G(vi),

and hence, ϕv(G) ≥ 2m
n

[M1(G) − 3η(G)]. This proves (i).
To prove (ii), we deĄne ai = dG(ei) and bi = dv

G(ei), for i = 1, 2, . . . , m. By (1.1),
we obtain

m
m
∑

i=1

dG(ei)d
v
G(ei) ≥

m
∑

i=1

dG(ei)
m
∑

i=1

dv
G(ei),

and hence, ϕe(G) ≥ 1
m

[M1(G) − 2m][M1(G) − 3η(G)]. □

It is well-known that M1(G) ≥ 4n − 6, with equality if and only if G ∼= Pn.
Therefore, Theorem 2.6, Corollary 2.1 and M1(G) ≥ 4n − 6 give the following results.

Corollary 2.4. Let G be a graph with n vertices and m edges. Then

ϕv(G) ≥
2m

n
(4n − 6) and ϕe(G) ≥

1

m
[4n − 2m − 6][4n − 6].

Lemma 2.5 (Ozeki-Izumino-Mori-Seo type inequality). Let a = (a1, . . . , an) and

b = (b1, . . . , bn) be n-tuples of real numbers satisfying 0 ≤ r1 ≤ ai ≤ R1 and 0 ≤ r2 ≤
bi ≤ R2, i = 1, . . . , n. Then

n
∑

i=1

a2
i

n
∑

i=1

b2
i −

 n
∑

i=1

aibi

2

≤
n2

3



R1R2 − r1r2

2

.

Theorem 2.7. Let G be a connected graph with n vertices and m edges. Then

(i) φv(G) ≥

√

M1(G)Sα(G) − n2

3

(

∆3 − δ(δ + 1)
2

;

(ii) φe(G) ≥

√

(

F (G) + 2M2(G) − 4M1(G) + 4m


S(G) − 16
3 m2

(

∆(∆ − 1) − δ(δ − 1)
2

.

Proof. Suppose V (G) = ¶v1, v2, . . . , vn♢ and E(G) = ¶e1, e2, . . . , em♢ . To prove (i),

we put a =
(

dG(v1), dG(v2), . . . , dG(vn)


, b =
(

de
G(v1), de

G(v2), . . . , de
G(vn)



, r1 = δ,

R1 = ∆, r2 = δ + 1 and R2 = ∆2. By Ozeki-Izumino-Mori-Seo type inequality we get

M1(G)Sα(G) − ϕv(G)2 ≤
n2

3



∆3 − δ(δ + 1)
2

,
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which implies that

ϕv(G) ≥

√

M1(G)Sα(G) −
n2

3



∆3 − δ(δ + 1)
2

.

To prove (ii), we set a =
(

dG(e1), dG(e2), . . . , dG(em)


, b =
(

dv
G(e1), dv

G(e2), . . . , dv
G(em)



,

r1 = 2(δ−1), R1 = 2(∆−1), r2 = 2δ and R2 = 2∆. Again by Ozeki-Izumino-Mori-Seo
type inequality we get


F (G) + 2M2(G) − 4M1(G) + 4m


S(G) − ϕe(G)2 ≤
m2

3



4∆(∆ − 1) − 4δ(δ − 1)
2

,

which implies that

ϕe(G) ≥

√



F (G) + 2M2(G) − 4M1(G) + 4m


S(G) −
16

3
m2



∆(∆ − 1) − δ(δ − 1)
2

.

This completes our argument. □

Corollary 2.5. Let G be a connected graph with n vertices and m edges. Then

ϕv(G) ≥
1

3

√

9(4n − 6)3

n
− 3n2



n3 − 3n2 + 3n − 3
2

.

Proof. By (1.1), (2.4) and Corollary 2.1, Sα ≥ (4n−6)2

n
. Therefore, by M1(G) ≥ 4n − 6

and Theorem 2.7,

ϕv(G) ≥
1

3

√

9(4n − 6)3

n
− 3n2



n3 − 3n2 + 3n − 3
2

,

as desired. □

3. Examples

Let G be a simple graph. The notation mi,j, 1 ≤ i ≤ j ≤ n − 1, denote the number
of edges of G connecting a vertex of degree i with a vertex of degree j.

It is preferred to show titania nanotubes as TiO2[m, n], where m and n denote
the number of octagons in a row and in a column, respectively. See Figure 1 for
details. The TNT3[m, n] is the two-parametric chemical graph of three-layered titania
nanotubes, where m and n represent the number of titanium atoms in each row and
column, respectively, Figure 2. Finally, TNT6[m, n] is the two-parametric chemical
graph of a six-layered single-walled titania nanotube, where m and n represent the
number of titanium atoms in each column and row, respectively, Figure 3.

The following proposition is a result of Table 1 and Proposition 2.2 in which the ve-
degree and ev-degree connectivity indices of TiO2[m, n], TNT3[m, n] and TNT6[m, n]
are given.

Proposition 3.1. The following hold:

ϕv

(

TiO2[m, n]


= 4m(65n + 31), ϕe

(

TiO2[m, n]


= 4m(107n + 47),
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Table 1. End point degree edges distributions of TiO2[m, n],
TNT3[m, n] and TNT6[m, n]

symbol m2,2 m2,3 m2,4 m2,5 m2,6 m3,4 m3,5 m3,6

TiO2[m, n] 0 0 6m 4mn + 2m 0 2m 6mn − 2m 0
TNT3[m, n] 0 0 4m 0 4m 4m 0 2m(6n − 5)
TNT6[m, n] 2m 2m 6m 8mn 0 2m 2m(6n − 5) 0

ϕv

(

TNT3[m, n]


= 8m(54n − 13), ϕe

(

TNT3[m, n]


= 2m(378n − 101),

ϕv

(

TNT6[m, n]


= 4m(130n − 29), ϕe

(

TNT6[m, n]


= 4m(214n − 55).

1
2

3 m − 1
m

2

n

Figure 1. The molecular graph of titania nanotubes.

4. Concluding Remarks

In this paper, two graph invariants of the vertex-edge connectivity index and the
edge-vertex connectivity index of a graph G were introduced. The main properties

1

2

n

2 3 4 m

Figure 2. The graph of 3-layered titania nanotube.
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1 2 m

2

n

1

3

4

Figure 3. The graph of six-layered single walled titania nanotubes.

of these invariants were studied and we established some upper and lower bounds for
them. These numbers for titania nanotubes are also computed.
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ON THE ZAGREB INDEX OF TOURNAMENTS

TARIQ AHMAD NAIKOO1, BILAL AHMAD RATHER2, UMA TUL SAMEE3,
AND SHARIEFUDDIN PIRZADA2

Abstract. A tournament is an orientation of a complete simple graph. The score
of a vertex in a tournament is the out degree of the vertex. The Zagreb index of
a tournament is deĄned as the sum of the squares of the scores of its vertices. In
this paper, we obtain various lower and upper bounds for the Zagreb index of a
tournament.

1. Introduction

A tournament is an orientation of a complete simple graph. Let T be a tournament
with order n and having vertex set ¶v1, v2, . . . , vn♢. The score of a vertex vi, 1 ≤
i ≤ n, denoted by svi

(or simply by si), is deĄned as the out degree of vi. Clearly,
0 ≤ si ≤ n − 1 for all i, 1 ≤ i ≤ n. The sequence [s1, s2, . . . , sn] in non-decreasing
order is called the score sequence of the tournament T . A regular tournament on n
(odd) vertices is a tournament in which score of every vertex is n−1

2
. Many of the

important properties of tournaments were Ąrst investigated by Landau [5] (1953) in
order to model dominance relations in Ćocks of chickens. Current applications of
tournaments include the study of voting theory and social choice theory among other
things. Other undeĄned notations and terminology can be seen in [8].

The following result [5], also called LandauŠs theorem, gives a necessary and suffi-
cient conditions for a sequence of non-negative integers to be the score sequence of
some tournament.

Theorem 1.1 (Landau [5]). A sequence [s1, s2, . . . , sn] of non-negative integers in

non-decreasing order is a score sequence of some tournament if and only if

Key words and phrases. Tournament, score, score sequence, Zagreb index, LandauŠs theorem.
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(1.1)
k∑

i=1

si ≥
k(k − 1)

2
, for 1 ≤ k ≤ n,

with equality when k = n.

Several results for the scores in a tournament can be seen in [3, 6, 7, 9, 13]. Also,
stronger inequalities for scores in tournaments can be found in [2]. Further the
extension of scores to oriented graphs and digraphs can be seen in [10Ű12].

For any two distinct vertices u and v of a tournament T , we have one of the following
possibilities:

(i) there is an arc directed from u to v which is denoted by u(1 − 0)v;
(ii) there is an arc directed from v to u which is denoted by u(0 − 1)v.

One of the oldest graph invariants is the well-known Zagreb index Ąrst introduced
by Gutman and Trinajstić [4], where they examined the dependence of total π-electron
energy on molecular structure. Some recent work can be seen in [1]. The (Ąrst) Zagreb
index M1(G) of a graph G is deĄned as the sum of the squares of the degrees of the
vertices of G and the second Zagreb index M2(G) is equal to the sum of the products
of the degrees of pairs of adjacent vertices. These two topological indices (M1 and M2)
reĆect the extent of branching of the molecular carbon-atom skeleton. Determining
the extremal values or bounds of these two topological indices of graphs, as well as
characterizing the corresponding extremal graphs, has attracted the attention of many
researchers. Analogous to this, we deĄne the Zagreb index M(T ) of a tournament T
as the sum of the scores of the vertices of T . That is, M(T ) =

∑n
i=1 s2

i .
The rest of the paper is organized as follows. In Section 2, we obtain the lower

bounds for the Zagreb index M(T ) of a tournament T . In Section 3, we compute the
upper bounds for M(T ).

2. Lower Bounds for the Zagreb Index M(T )

The following result gives the best general lower bound for M(T ).

Theorem 2.1. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

(2.1) M(T ) =
n∑

i=1

si
2 ≥

n

2



2m(n − m − 2) + n − 1


, where m =


n − 1

2



,

with equality if and only if si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n, where ⌊·⌋ denotes the

floor function.

Proof. Let vi and vj be two vertices of the tournament T with their respective scores
as si and sj such that si ≥ sj. Also, assume that M(T ) =

∑n
r=1 sr

2 is minimum.
We claim that si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n. To prove the claim, we assume

to the contrary that si − sj > 1 for some i, j, 1 ≤ i, j ≤ n. Then there exists a vertex
vk with score sk such that vi(1 − 0)vk and vk(1 − 0)vj. Now, reversing the orientation
of these arcs to vi(0 − 1)vk and vk(0 − 1)vj respectively, we get a new tournament T1
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with the score sequence [t1, t2, . . . , tn], where ti = si − 1, tj = sj + 1, tr = sr for all r,
1 ≤ r ≤ n with r ̸= i, j.

Thus,

n∑

r=1

tr
2 =

j−1
∑

r=1

tr
2 + t2

j +
i−1∑

r=j+1

tr
2 + t2

i +
n∑

r=i+1

tr
2

=
j−1
∑

r=1

sr
2 + (sj + 1)2 +

i−1∑

r=j+1

sr
2 + (si − 1)2 +

n∑

r=i+1

sr
2

=
n∑

r=1

sr
2 − 2(si − sj − 1).

As si − sj > 1, so we obtain
n∑

r=1

tr
2 <

n∑

r=1

sr
2,

which is a contradiction, since M(T ) =
∑n

r=1 sr
2 is minimum. Hence, si − sj ≤ 1 for

all i, j, 1 ≤ i, j ≤ n. This means that some of the vertices of T have score m and the
remaining vertices (if any) have score m + 1. If x vertices of T have score m and y
vertices have score m + 1, then

x + y = n(2.2)

and by (1.1), we have

mx + (m + 1)y =
n(n − 1)

2
.(2.3)

Solving (2.2) and (2.3), we get x = n
2
(2m − n + 3) and y = n

2
(n − 2m − 1). Therefore,

min M(T ) = min
n∑

i=1

si
2 = min¶s2

1 + s2
2 + · · · + s2

n♢

= m2 + m2 + · · · + m2

︸ ︷︷ ︸
n
2

(2m−n+3)−times

+ (m + 1)2 + (m + 1)2 + · · · + (m + 1)2

︸ ︷︷ ︸
n
2

(n−2m−1)−times

=
n

2
(2m − n + 3)m2 +

n

2
(n − 2m − 1)(m + 1)2

=
n

2
¶2m(n − m − 2) + n − 1♢.

That is,

M(T ) =
n∑

i=1

si
2 ≥

n

2
¶2m(n − m − 2) + n − 1♢.

Now, assume that equality holds in (2.1). Since M(T ) is minimal, so some of the
vertices of T have score m and the remaining vertices (if any) have score m + 1, where
m = ⌊n−1

2
⌋. Therefore, si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n.
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Conversely, assume that si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n. Then as above, we
have

M(T ) =
n∑

i=1

si
2 = s2

1 + s2
2 + · · · + s2

n

= m2 + m2 + · · · + m2

︸ ︷︷ ︸
n
2

(2m−n+3)−times

+ (m + 1)2 + (m + 1)2 + · · · + (m + 1)2

︸ ︷︷ ︸
n
2

(n−2m−1)−times

=
n

2
(2m − n + 3)m2 +

n

2
(n − 2m − 1)(m + 1)2

=
n

2
¶2m(n − m − 2) + n − 1♢.

Therefore equality holds in (2.1). □

Theorem 2.2. Let [s1, s2, . . . , sn] be the score sequence of a tournament T and m =
⌊n−2

2
⌋ and x = n−1

2
(n − 2m − 2). Then the following hold.

(i) For sn > x, we have

M(T ) =
n∑

i=1

si
2 ≥

n − 1

2
¶(2m + 1)(n − m) − m♢ + s2

n − x(2m + 1).

(ii) For sn ≤ x, we have

M(T ) =
n∑

i=1

si
2 ≥

n − 1

2
¶(2m + 1)(n − m) − m♢ + s2

n + 2x − sn(2m + 3).

Proof. Let vn be the vertex of the tournament T with score sn. Deleting the vertex
vn, we obtain a new tournament T1 = T − ¶vn♢ with score sequence [t1, t2, . . . , tn−1].
By Theorem 2.1, the minimum value of M(T ) is attained in terms of n if and only if
si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n. Using this result, we conclude that the value of
∑n−1

i=1 ti
2 (in terms of the number of vertices) will be minimum if the value of M(T )

(in terms of n and sn) is minimum. So, we have to Ąnd the minimum value of M(T )
in terms of n and sn. For this, Ąrst we Ąnd the minimum value of

∑n−1
i=1 ti

2 in terms
of the number of vertices.

As the tournament T1 has n − 1 vertices, therefore, by using Theorem 2.1, we have

n−1∑

i=1

ti
2 ≥

n − 1

2
¶2m(n − 1 − m − 2) + (n − 1) − 1♢

=
n − 1

2
¶2m(n − m − 3) + (n − 2)♢,

where m = ⌊ (n−1)−1
2

⌋ = ⌊n−2
2

⌋ and ti − tj ≤ 1 for all i, j, 1 ≤ i, j ≤ n − 1.
If x vertices of T1 have score m + 1 and y vertices have score m, then we have

x + y = n − 1.(2.4)
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Also, by (1.1), we have

(m + 1)x + my =
(n − 1)(n − 2)

2
.(2.5)

Solving (2.4) and (2.5) for x, we have x = n−1
2

(n − 2m − 2). So, T1 has x =
n−1

2
(n − 2m − 2) vertices of score m + 1 and n − 1 − x vertices of score m.

Now, we add the vertex vn of score sn and join it to the other vertices of the
tournament T1 by arcs, such that M(T ) =

∑n
i=1 si

2 is minimum. This can be done
as follows. Let vn(1 − 0)u to as many vertices u of score m + 1 as possible and then
vn(1 − 0)v to the remaining vertices v of score m till the score sn is exhausted. Note
that other arcs are directed towards vn in order to complete the tournament. Now,
we consider the following two cases.

Case (i). When sn > x, then

min M(T ) = min
n∑

i=1

si
2 = min

n−1∑

i=1

ti
2 + s2

n + (n − 1 − x)(2m + 1),

that is,

M(T ) ≥
n − 1

2
¶2m(n − m − 3) + n − 2♢ + s2

n + (n − 1)(2m + 1) − x(2m + 1)

=
n − 1

2
¶(2m + 1)(n − m) − m♢ + s2

n − x(2m + 1),

where m = ⌊n−2
2

⌋ and x = n−1
2

(n − 2m − 2).
Case (ii). When sn ≤ x, then

min M(T ) = min
n∑

i=1

si
2

= min
n−1∑

i=1

ti
2 + s2

n + (n − 1 − x)(2m + 1) + (x − sn)¶2(m + 1) + 1♢,

that is,

M(T ) ≥
n − 1

2
¶2m(n − m − 3) + n − 2♢ + s2

n + (n − 1)(2m + 1) − x(2m + 1)

+ (x − sn)(2m + 3)

=
n − 1

2
¶(2m + 1)(n − m) − m♢ + s2

n + 2x − sn(2m + 3),

where m = ⌊n−2
2

⌋ and x = n−1
2

(n − 2m − 2). □

Remark 2.1. The lower bounds given by Theorems 2.1 and 2.2 are best possible,
since these bounds hold for every score sequence [s1, s2, . . . , sn] of a tournament. In
particular, these hold for a regular tournament on n (odd) vertices having score

sequence
[

n−1
2

, n−1
2

, . . . , n−1
2

]

. Clearly
∑n

i=1 s2
i is minimum and so the equality in

Theorems 2.1 and 2.2 hold for regular tournaments.
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Theorem 2.3. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1

si
2 ≥ s2

1 + s2
n +

1

n − 2

{

n(n − 1)

2
− s1 − s2

}2

,

with equality if and only if s2 = s3 = · · · = sn−1.

Proof. Consider s2, s3, . . . , sn−1 as the weights assigned to the scores s2, s3, . . . , sn−1,
respectively. Since the arithmetic mean is greater than or equal to the harmonic mean,
therefore

n−1∑

i=2
sisi

n−1∑

i=2
si

≥

n−1∑

i=2
si

n−1∑

i=2

si

si

,

with equality if and only if s2 = s3 = · · · = sn−1. That is,

n−1∑

i=2

si
2 ≥

1

n − 2


n−1∑

i=2

si

2

,

with equality if and only if s2 = s3 = · · · = sn−1. After simpliĄcation, it is easy to see
that

n∑

i=1

si
2 − s2

1 − s2
n ≥

1

n − 2


n∑

i=1

si − s1 − sn

2

.

By using (1.1), we have

M(T ) =
n∑

i=1

si
2 ≥ s2

1 + s2
n +

1

n − 2

{

n(n − 1)

2
− s1 − sn

}2

,

equality holds if and only if s2 = s3 = · · · = sn−1. □

Theorem 2.4. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1

si
2 ≥

n

4
(n − 1)2,

with equality if and only if s1 = s2 = · · · = sn.

Proof. Applying the Cauchy-Schwartz inequality, we have

n∑

i=1

si =
n∑

i=1

si · 1 ≤
 n∑

i=1

si
2


1

2 n∑

i=1

12


1

2

,

with equality if and only if s1 = s2 = · · · = sn. This is equivalent to

n∑

i=1

si ≤
 n∑

i=1

si
2


1

2

n
1

2 ,
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which after simpliĄcation gives

 n∑

i=1

si
2


1

2

≥
1

n
1

2

n∑

i=1

si,

with equality if and only if s1 = s2 = · · · = sn. Now, by using (1.1), we have
n∑

i=1

si
2 ≥

1

n


n(n − 1)

2

2

=
n

4
(n − 1)2,

where equality occurs if and only if s1 = s2 = · · · = sn. Thus,

M(T ) ≥
n

4
(n − 1)2,

with equality if and only if s1 = s2 = · · · = sn. □

3. Upper Bounds for the Zagreb Index M(T )

In this section, we obtain the upper bounds for the Zagreb index M(T ). In a
tournament, we denote with N+

i the out-neighbor set of the vertex vi.

Theorem 3.1. Let [s1, s2, . . . , sn] be the score sequence of a tournament and M(T ) =
n∑

i=1
si

2 be maximum. Then

(a) N+
i − ¶vj♢ = N+

j − ¶vi♢ if and only if si = sj;

(b) N+
i − ¶vj♢ ⊋ N+

j − ¶vi♢ if and only if si > sj, and

(c) si < sj if vi ∈ N+
k and vj ∈ (N+

k )c − ¶vk♢, where si and sj are the scores of

the two vertices vi and vj respectively.

Proof. (a) Let si = sj. Assume to the contrary that N+
i − ¶vj♢ ̸= N+

j − ¶vi♢. Since
si = sj, therefore there exist at least two vertex vp and vq with their respective scores
sp and sq such that vi(1 − 0)vp, vp(1 − 0)vj, vj(1 − 0)vq and vq(1 − 0)vi. Now, we
consider two cases.

Case (i). When sp ≥ sq. By changing the arcs vi(1 − 0)vp and vq(1 − 0)vi to
vi(0 − 1)vp and vq(0 − 1)vi respectively, we get a new score sequence [t1, t2, . . . , tn],
where tp = sp + 1, tq = sq − 1 and tr = sr for all r, 1 ≤ r ≤ n with r ̸= p, q. Therefore,

n∑

i=1

ti
2 =

n∑

i=1
i̸=p,q

ti
2 + t2

p + t2
q =

n∑

i=1
i̸=p,q

si
2 + (sp + 1)2 + (sq − 1)2

=
n∑

i=1

si
2 + 2(sp − sq + 1) >

n∑

i=1

si
2,

since sp ≥ sq, which is a contradiction, since M(T ) =
∑n

i=1 si
2 was assumed to be

maximum.
Case (ii). When sp < sq. By changing the arcs vp(1 − 0)vj and vj(1 − 0)vq to

vp(0 − 1)vj and vj(0 − 1)vq, respectively and proceeding as in case (i), we arrive at a
contradiction. Hence, N+

i − ¶vj♢ = N+
j − ¶vi♢.
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Conversely, if N+
i − ¶vj♢ = N+

j − ¶vi♢, then si = sj.

(b) Let si > sj. Assume to the contrary that N+
i − ¶vj♢ ⊋ N+

j − ¶vi♢ is not true.

Then there exists a vertex vp ∈ N+
j − ¶vi♢, but vp /∈ N+

i − ¶vj♢. This means that
vj(1 − 0)vp and vp(1 − 0)vi, and by changing these arcs to vj(0 − 1)vp and vp(0 − 1)vi

respectively, we get a new score sequence [t1, t2, . . . , tn], where ti = si + 1, tj = sj − 1
and tr = sr for all r, 1 ≤ r ≤ n with r ̸= i, j. Then

n∑

r=1

tr
2 =

n∑

r=1
r ̸=i,j

tr
2 + t2

i + t2
j =

n∑

r=1
r ̸=i,j

sr
2 + (si + 1)2 + (sj − 1)2

=
n∑

r=1

sr
2 + 2(si − sj + 1) >

n∑

r=1

sr
2,

since si > sj, which is a contradiction, since M(T ) was assumed to be maximum.
Hence, N+

i − ¶vj♢ ⊋ N+
j − ¶vi♢.

Conversely, if N+
i − ¶vj♢ ⊋ N+

j − ¶vi♢, then si > sj.
(c) Assume to the contrary that si ≥ sj. Then, by using parts (a) and (b), we

have N+
i − ¶vj♢ ⊇ N+

j − ¶vi♢. Since vi ∈ N+
k and vj ∈ (N+

k )c − ¶vk♢, so vk(1 − 0)vi

and vj(1 − 0)vk. Therefore,

¶vk♢ ⊆ N+
j − ¶vi♢ ⊆ N+

i − ¶vj♢,

that is, vk ∈ N+
i − ¶vj♢. Thus, we obtain vi(1 − 0)vk, which is a contradiction. Hence,

the result follows. □

Lemma 3.1. Let [s1, s2, . . . , sn] be the score sequence of a tournament and let mi be

the average of the scores of the vertices vj such that vi(1 − 0)vj. Then

M(T ) =
n∑

i=1

si
2 =

n(n − 1)2

2
−

n∑

i=1

simi.

Proof. Since

simi = si

1

si

n∑

j=1

¶sj : vi(1 − 0)vj♢ =
n∑

j=1

¶sj : vi(1 − 0)vj♢,

therefore, by using (1.1), we have

n∑

i=1

simi =
n∑

i=1

n∑

j=1

¶sj : vi(1 − 0)vj♢ =
n∑

j=1

n∑

i=1

¶sj : vi(1 − 0)vj♢

=
n∑

j=1

sj(n − 1 − sj) = (n − 1)
n∑

j=1

sj −
n∑

j=1

s2
j

= (n − 1)
n(n − 1)

2
−

n∑

j=1

s2
j .
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Hence,

M(T ) =
n∑

i=1

s2
i =

n(n − 1)2

2
−

n∑

i=1

simi.

□

Theorem 3.2. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1

si
2 ≤

n(n − 1)

2
sn,(3.1)

with equality if and only if the tournament is regular.

Proof. Let mi be the average of the scores of the vertices vj such that vi(1 − 0)vj.
Then, by using (1.1), we have

simi =si

1

si

n∑

j=1

¶sj : vi(1 − 0)vj♢ ≥
n∑

j=1

sj − si − (n − 1 − si)sn

=
n(n − 1)

2
− si − (n − 1 − si)sn,(3.2)

with equality if and only if si = n−1
2

for all i, 1 ≤ i ≤ n.
Now, by Lemma 3.1, (3.2) and (1.1), we have
n∑

i=1

s2
i =

n(n − 1)2

2
−

n∑

i=1

simi ≤
n(n − 1)2

2
−

n∑

i=1



n(n − 1)

2
− si − (n − 1 − si)sn



=
n(n − 1)2

2
−

n2(n − 1)

2
+

n∑

i=1

si + n(n − 1)sn − sn

n∑

i=1

si

=
n(n − 1)2

2
−

n2(n − 1)

2
+

n(n − 1)

2
+ n(n − 1)sn − sn

n(n − 1)

2

=
n(n − 1)

2
sn.

Therefore,

M(T ) ≤
n(n − 1)

2
sn.

Now suppose that equality holds in (3.1). Then, si = n−1
2

for all i, 1 ≤ i ≤ n, that
is, the tournament is regular.

Conversely, suppose that the tournament is regular. Then, it can be easily checked
that equality holds in (3.1). □

Theorem 3.3. Let [s1, s2, . . . , sn] be the score sequence of a tournament with vertex

set V and let mi be the average of the scores of the vertices vj such that vi(1 − 0)vj.

Then

M(T ) =
n∑

j=1

s2
j ≤

n(n − 1)

4



n − 1 + max¶sj − mj : vj ∈ V ♢


,(3.3)
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with equality if and only if max¶sj − mj : vj ∈ V ♢ = n − 1 − 2mi, where 1 ≤ i, j ≤ n,

with i ̸= j.

Proof. Applying Lemma 3.1, we have

2
n∑

j=1

s2
j =

n∑

j=1

s2
j +

n∑

j=1

s2
j =

n∑

j=1

s2
j +

n(n − 1)2

2
−

n∑

j=1

sjmj

=
n(n − 1)2

2
+

n∑

j=1

sj(sj − mj) ≤
n(n − 1)2

2
+ max¶sj − mj : vj ∈ V ♢

n∑

j=1

sj

=
n(n − 1)

2



n − 1 + max¶sj − mj : vj ∈ V ♢


.

Therefore,
n∑

j=1

s2
j ≤

n(n − 1)

4



n − 1 + max¶sj − mj : vj ∈ V ♢


Equality holds in (3.3) if and only if

(3.4)
n∑

j=1

s2
j =

n(n − 1)2

4
+

n(n − 1)

4
p,

where p = max¶sj − mj : vj ∈ V ♢. By Lemma 3.1, (3.4) is equivalent to

n(n − 1)2

2
−

n∑

j=1

sjmj =
n(n − 1)2

4
+

n(n − 1)

4
p,

which after simpliĄcation gives

n(n − 1)

2


p − n + 1

2



+
n∑

j=1

sjmj = 0.

By (1.1), this implies that

n∑

j=1

sj


p − n + 1

2



+
n∑

j=1

sjmj = 0,

that is,
n∑

j=1

sj


p − n + 1

2
+ mj



= 0.

Finally, after simpliĄcation, we have

(3.5)
n∑

j=1

sj(p − n + 1 + 2mj) = 0.

Now, assume that equality holds in (3.3). Then (3.5) holds. Since each term in
this summation is non-negative and sum is equal to zero, therefore for each vi either
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si = 0 or max¶sj − mj : vj ∈ V ♢ = p = n − 1 − 2mi. But si = 0 is not possible for
each vi in any tournament (except the tournament with only one vertex), therefore

max¶sj − mj : vj ∈ V ♢ = n − 1 − 2mi.

Conversely, assume that max¶sj − mj : vj ∈ V ♢ = n − 1 − 2mi. Then, by Lemma
3.1, we have

n(n − 1)

4



n − 1 + max¶sj − mj : vj ∈ V ♢


=
n(n − 1)2

4
+

n(n − 1)

4
(n − 1 − 2mi)

=
n(n − 1)2

4
+

n(n − 1)2

4
−

n(n − 1)

2
mi

=
n(n − 1)2

2
−

n∑

i=1

simi =
n∑

i=1

s2
i .

Therefore, equality holds in (3.3). □

Theorem 3.4. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1

s2
i ≤

n(n − 1)

2
(s1 + sn) − ns1sn,(3.6)

with equality if and only if the tournament has only two types of scores s1 and sn.

Proof. By using (1.1), we have

M(T ) =
n∑

i=1

s2
i =

n∑

i=1

(s2
i − sis1 + sis1) =

n∑

i=1

¶si(si − s1) + sis1♢

≤
n∑

i=1

¶sn(si − s1) + sis1♢ =
n∑

i=1

(snsi − sns1 + sis1)

=
n∑

i=1

(sn + s1)si −
n∑

i=1

sns1 =
n(n − 1)

2
(s1 + sn) − ns1sn.

Equality holds if and only if
n∑

i=1

¶si(si − s1)♢ =
n∑

i=1

¶sn(si − s1)♢

or
n∑

i=1

¶sn(si − 1) − si(si − 1)♢ = 0

or
n∑

i=1

¶(sn − si)(si − s1)♢ = 0.(3.7)

Now, assume that equality holds in (3.6). Then equality holds in (3.7). Since each
term in this summation is non-negative and sum is equal to zero, therefore either
si = s1 or si = sn for i = 1, 2, . . . , n. So the tournament has only two types of scores
s1 and sn.
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Conversely, suppose that the tournament has only two types of scores s1 and sn.

Then
n∑

i=1
¶(sn − si)(si − s1)♢ = 0. Hence, the equality holds. □

Acknowledgements. We are highly grateful to the anonymous referees for their
valuable suggestions which improved the presentation of the paper.

References

[1] B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH
Commun. Math. Comput. Chem. 78(1) (2017), 17Ű100.

[2] R. A. Brualdi and J. Shen, Landau’s inequalities for tournament scores and a short proof of a

theorem on transitive sub-tournaments, J. Graph Theory 38 (2001), 244Ű254. https://doi.org/

10.1002/jgt.10008

[3] J. R. Griggs and K. B. Reid, Landau’s theorem revisited, Australasian J. Combin. 20 (1999),
19Ű24. https://ajc.maths.uq.edu.au/pdf/20/ocr-ajc-v20-p19.pdf

[4] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total f-electron energy of

alternant hydrocarbons, Chemical Physics Letters 17(4) (1972), 535Ű538. https://doi.org/10.

1016/0009-2614(72)85099-1

[5] H. G. Landau, On dominance relations and the structure of animal societies, III, the conditions

for a score structure, Bull. Math. Biophys 15 (1953), 143Ű148.
[6] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York 1968.
[7] T. A. Naikoo, On scores in tournaments, Acta Univ. Sapientiae Informatica 10(2) (2018), 257Ű267.

http://doi.org/10.2478/ausi-2018-0013

[8] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient BlackSwan, Hyderabad
2012.

[9] S. Pirzada U. Samee and T. A. Naikoo, Tournaments, oriented graphs and football se-

quences, Acta. Univ. Sapientiae Mathematica 9(1) (2017), 213Ű223. https://doi.org/10.1515/

ausm-2017-0014

[10] S. Pirzada, Merajuddin and U. Samee, On oriented graph scores, Matematicki Vesnik 60(3)
(2008), 187Ű191.

[11] S. Pirzada, T. A. Naikoo and N. A. Shah, Score sequences in oriented graphs, J. Appl. Math.
Comput. 23(1Ű2) (2007), 257Ű268. https://doi.org/10.1007/BF02831973

[12] S. Pirzada and U. Samee, Mark sequences in digraphs, Seminare Lotharingien de Combinatoire
55 (2006), Aricle ID B55c.

[13] K. B. Reid, Tournaments, scores, kings, generalizations and special topics, Congressus Numer-
atium 115 (1996), 171Ű211.

https://doi.org/10.1002/jgt.10008
https://doi.org/10.1002/jgt.10008
https://ajc.maths.uq.edu.au/pdf/20/ocr-ajc-v20-p19.pdf
https://doi.org/10.1016/0009-2614(72)85099-1
https://doi.org/10.1016/0009-2614(72)85099-1
http://doi.org/10.2478/ausi-2018-0013
https://doi.org/10.1515/ausm-2017-0014
https://doi.org/10.1515/ausm-2017-0014
https://doi.org/10.1007/BF02831973


ON THE ZAGREB INDEX OF TOURNAMENTS 253

1Department of Mathematics,
Islamia College of Science and Commerce,
Srinagar, Kashmir, India
Email address: tariqnaikoo@rediffmail.com

2Department of Mathematics,
University of Kashmir,
Srinagar, Kashmir, India
Email address: bilalahmadrr@gmail.com

3Institute of Technology,
University of Kashmir,
Srinagar, Kashmir, India
Email address: drumatulsamee@gmail.com

Email address: pirzadasd@kashmiruniversity.ac.in





Kragujevac Journal of Mathematics

Volume 48(2) (2024), Pages 255–266.
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Abstract. In the paper, the author presents lower and upper bounds for norms
of the sine and cosine functions along a circle on the complex plane.

1. Motivations

This paper is a companion of the formally published article [6].
In the theory of complex functions, the sine and cosine functions sin z and cos z on

the complex plane C are deĄned by

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
,

respectively, where z = x + iy, x, y ∈ R and i =
√

−1 is the imaginary unit. They
have the least positive periodicity 2π, that is,

sin(z + 2kπ) = sin z and cos(z + 2kπ) = cos z,

for k ∈ Z.
When restricting z = x ∈ R, the sine and cosine functions sin z and cos z become

sin x and cos x and satisfy

0 ≤ ♣ sin x♣ ≤ 1 and 0 ≤ ♣ cos x♣ ≤ 1.
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difference, open problem.
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When restricting z = iy for y ∈ R, the sine and cosine functions sin z and cos z reduce
to

sin(iy) =
e−y − ey

2i
= i sinh y → ±i∞

and

cos(iy) =
e−y + ey

2
= cosh y → +∞,

as y → ±∞. These imply that the sine and cosine are bounded on the real x-axis,
but unbounded on the imaginary y-axis.

In the textbook [9, page 93], Exercise 6 states that, if z ∈ C and ♣z♣ ≤ R, then

♣ sin z♣ ≤ cosh R and ♣ cos z♣ ≤ cosh R.

In [7], a criterion to justify a holomorphic function was discussed.
In [6], the author discussed and computed bounds of the sine and cosine functions

sin z and cos z along straight lines on the complex plane C. The main results in the
paper [6] can be recited as follows.

(a) The complex functions sin z and cos z are bounded along straight lines parallel
to the real x-axis on the complex plane C:
(i) along the horizontal straight line y = α on the complex plane C

(1.1) ♣ sinh α♣ ≤ ♣ sin(x + iα)♣ ≤ cosh α

and

(1.2) ♣ sinh α♣ ≤ ♣ cos(x + iα)♣ ≤ cosh α,

where α ∈ R is a constant and x ∈ R;
(ii) the equalities in the left hand side of (1.1) and in the right hand side

of (1.2) hold if and only if x = kπ for k ∈ Z;
(iii) the equalities in the right hand side of (1.1) and in the left hand side

of (1.2) hold if and only if x = kπ + π
2

for k ∈ Z.
(b) The complex functions sin z and cos z are unbounded along straight lines whose

slopes are not horizontal:
(i) along the sloped straight line y = α + βx on the complex plane C

♣ sin z♣ ≥ ♣ sinh(α + βx)♣ and ♣ cos z♣ ≥ ♣ sinh(α + βx)♣,
where α ∈ R and β ̸= 0 are constants;

(ii) along the vertical straight line x = γ on the complex plane C

♣ sin z♣ ≥ ♣ sinh y♣ and ♣ cos z♣ ≥ ♣ sinh y♣,
where γ ∈ R is a constant.

In this paper, we present bounds for norms ♣ sin(reiθ)♣ and ♣ cos(reiθ)♣ of the sine
and cosine functions sin z and cos z along a circle C(0, r) centered at the origin z = 0
of radius r > 0 on the complex plane C in terms of two double inequalities.
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2. A Double Inequality for the Norm of Sine Along a Circle

In this section, we present a double inequality for the norm ♣ sin(reiθ)♣ of the sine
function sin z along a circle C(0, r) centered at the origin z = 0 of radius r > 0 on
the complex plane C.

Theorem 2.1. Let r > 0 be a constant and let C(0, r) : z = reiθ for θ ∈ [0, 2π) denote

a circle centered at the origin z = 0 of radius r. Then

(2.1) ♣ sin r♣ ≤ ♣ sin(reiθ)♣ ≤ sinh r, θ ∈ [0, 2π).

The left equality is valid if and only if θ = 0, π, while the right equality is valid if and

only if θ = π
2
, 3π

2
.

Proof. The circle C(0, r) can be represented by

z = reiθ, θ ∈ [0, 2π).

It is not difficult to see that, for Ąxed r > 0, ♣ sin(reiθ)♣ = ♣ sin r♣ for θ = 0, π,
♣ sin(reiθ)♣ = sinh r for θ = π

2
, 3π

2
, and ♣ sin(reiθ)♣ has a least positive periodicity π

with respect to the argument θ.
Straightforward computation yields

sin(reiθ) = sin(r cos θ + ir sin θ)

(2.2)

=
ei(r cos θ+ir sin θ) − e−i(r cos θ+ir sin θ)

2i

=
e−(r sin θ−ir cos θ) − er sin θ−ir cos θ

2i

=
e−r sin θ[cos(r cos θ) + i sin(r cos θ)] − er sin θ[cos(r cos θ) − i sin(r cos θ)]

2i

=
(e−r sin θ − er sin θ) cos(r cos θ) + i(e−r sin θ + er sin θ) sin(r cos θ)]

2i
= cosh(r sin θ) sin(r cos θ) + i sinh(r sin θ) cos(r cos θ)

and

♣ sin(reiθ)♣ =
√

[cosh(r sin θ) sin(r cos θ)]2 + [sinh(r sin θ) cos(r cos θ)]2 .

In Figure 1, we plot the 3D graph of ♣ sin(reiθ)♣ for r ∈ [0, 5] and θ ∈ [0, 2π). In
Figure 2, we plot the polarized 3D graph of the norm ♣ sin(reiθ)♣ for r ∈ [0, 4] and
θ ∈ [0, 2π). In Figure 3, we plot the graph of ♣ sin(πeiθ)♣ for θ ∈ [0, 2π). These three
Ągures are helpful for analyzing and understanding the behaviour of the sine function
sin z along the circle C(0, r) centered at the origin z = 0 of radius r.

From Figure 3, we can see that the norm ♣ sin(πeiθ)♣ has only two maximums at
θ = π

2
, 3π

2
, while it has only two minimums at θ = 0, π on the interval [0, 2π).
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Figure 1. The 3D graph of ♣ sin(reiθ)♣ for r ∈ [0, 5] and θ ∈ [0, 2π)

Figure 2. The polarized 3D graph of ♣ sin(reiθ)♣ for r ∈ [0, 4] and θ ∈ [0, 2π)
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Figure 3. The graph of ♣ sin(πeiθ)♣ for θ ∈ [0, 2π)

Differentiating the square of ♣ sin(reiθ)♣ yields

d ♣ sin(reiθ)♣2
d θ

= r[cos θ sinh(2r sin θ) − sin θ sin(2r cos θ)]

= r[sinh(2r sin θ) − tan θ sin(2r cos θ)] cos θ

= r[cot θ sinh(2r sin θ) − sin(2r cos θ)] sin θ

= r2



sinh(2r sin θ)

2r sin θ
− sin(2r cos θ)

2r cos θ

]

sin(2θ).

From the Ąrst three expressions above, we conclude that the derivative d | sin(reiθ)|2

d θ
is

equal to 0 at θ = 0, π
2
, π, 3π

2
. Considering the fourth expression above on the intervals

(k π
2
, (k + 1)π

2
) for k = 0, 1, 2, 3, in order that d | sin(reiθ)|2

d θ
≠ 0 for θ ∈ (k π

2
, (k + 1)π

2
) and

r > 0, it is sufficient to Ąnd

(2.3)
sinh(2r sin θ)

2r sin θ
> 1

and

(2.4)
sin(2r cos θ)

2r cos θ
< 1,

for θ ∈ (k π
2
, (k + 1)π

2
) and r > 0. Then, for Ąxed r > 0, the square ♣ sin(reiθ)♣2 and

the norm ♣ sin(reiθ)♣ have only two maximums at θ = π
2
, 3π

2
, while they have only two

minimums at θ = 0, π on the interval [0, 2π). At θ = π
2
, 3π

2
, the values of ♣ sin(reiθ)♣

are both sinh r; at θ = 0, π, the values of ♣ sin(reiθ)♣ are both ♣ sin r♣.
Considering the odevity of sinh t and sin t, we see that two inequalities in (2.3)

and (2.4) are equivalent to

(2.5)
sinh t

t
> 1 and

sin t

t
< 1,



260 F. QI

for t ∈ (0, ∞). The Ąrst inequality in (2.5) follows from cosh x > 1 for x ̸= 0 and the
Lazarević inequality

(2.6) cosh x <



sinh x

x

3

in [2, page 270, 3.6.9]. When t ∈ (0, π
2
), the second inequality in (2.5) follows from

the right hand side of the Jordan inequality

(2.7)
π

2
≤ sin t

t
< 1, 0 < ♣t♣ ≤ π

2
,

in [2, Section 2.3] and the papers [1,3,4,8]. When t > π
2
, the second inequality in (2.5)

follows from sin t ≤ 1 on (0, ∞) and standard argument. The double inequality (2.1)
is thus proved. The proof of Theorem 2.1 is complete. □

3. A Double Inequality for the Norm of Cosine Along a Circle

In this section, we present a double inequality for the norm ♣ cos(reiθ)♣ of the cosine
function cos z along a circle C(0, r) centered at the origin z = 0 of radius r > 0 on
the complex plane C.

Theorem 3.1. Let r > 0 be a constant and let C(0, r) : z = reiθ for θ ∈ [0, 2π) denote

a circle centered at the origin z = 0 of radius r. Then

(3.1) ♣ cos r♣ ≤ ♣ cos(reiθ)♣ ≤ cosh r, θ ∈ [0, 2π).

The left equality is valid if and only if θ = 0, π, while the right equality is valid if and

only if θ = π
2
, 3π

2
.

Proof. It is easy to see that, for Ąxed r > 0, ♣ cos(reiθ)♣ = ♣ cos r♣ for θ = 0, π,
♣ cos(reiθ)♣ = cosh r for θ = π

2
, 3π

2
, and ♣ cos(reiθ)♣ has a least positive periodicity π

with respect to the argument θ.
Direct calculation yields

cos(reiθ) = cos(r cos θ + ir sin θ)

(3.2)

=
ei(r cos θ+ir sin θ) + e−i(r cos θ+ir sin θ)

2

=
e−(r sin θ−ir cos θ) + er sin θ−ir cos θ

2

=
e−r sin θ[cos(r cos θ) + i sin(r cos θ)] + er sin θ[cos(r cos θ) − i sin(r cos θ)]

2

=
(e−r sin θ + er sin θ) cos(r cos θ) + i(e−r sin θ − er sin θ) sin(r cos θ)]

2
= cosh(r sin θ) cos(r cos θ) − i sinh(r sin θ) sin(r cos θ)
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and

♣ cos(reiθ)♣ =
√

[cosh(r sin θ) cos(r cos θ)]2 + [sinh(r sin θ) sin(r cos θ)]2 .

In Figure 4, we plot the 3D graph of ♣ cos(reiθ)♣ for r ∈ [0, 5] and θ ∈ [0, 2π). In

Figure 4. The 3D graph of ♣ cos(reiθ)♣ for r ∈ [0, 5] and θ ∈ [0, 2π)

Figure 5, we plot the polarized 3D graph of the norm ♣ cos(reiθ)♣ for r ∈ [0, 4] and
θ ∈ [0, 2π). In Figure 6, we plot the graph of ♣ cos(reiθ)♣ for r = π and θ ∈ [0, 2π).
These three Ągures are helpful for analyzing and understanding the behaviour of the
cosine function cos z along the circle C(0, r) centered at the origin z = 0 of radius r.

From Figure 6, we can see that the norm ♣ cos(πeiθ)♣ has only two maximums at
θ = π

2
, 3π

2
, while it has only two minimums at θ = 0, π on the interval [0, 2π).

Differentiating the square of ♣ cos(reiθ)♣ with respect to θ gives

d ♣ cos(reiθ)♣2
d θ

= r[sin θ sin(2r cos θ) + cos θ sinh(2r sin θ)]

= r[tan θ sin(2r cos θ) + sinh(2r sin θ)] cos θ

= r[sin(2r cos θ) + cot θ sinh(2r sin θ)] sin θ

= r2



sin(2r cos θ)

2r cos θ
+

sinh(2r sin θ)

2r sin θ

]

sin(2θ).

From the Ąrst three expressions above, we conclude that the derivative d | cos(reiθ)|2

d θ
is

equal to 0 at θ = 0, π
2
, π, 3π

2
. Considering the fourth expression above on the intervals

(k π
2
, (k + 1)π

2
) for k = 0, 1, 2, 3, in order that d | cos(reiθ)|2

d θ
̸= 0, it is sufficient to show

(3.3)
sinh(2r sin θ)

2r sin θ
> 1
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Figure 5. The polarized 3D graph of ♣ cos(reiθ)♣ for r ∈ [0, 4] and θ ∈ [0, 2π)

Figure 6. The graph of ♣ cos(πeiθ)♣ for θ ∈ [0, 2π)
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and

(3.4)
sin(2r cos θ)

2r cos θ
> −1,

for θ ∈ (k π
2
, (k + 1)π

2
) and r > 0. Then, for Ąxed r > 0, the square ♣ cos(reiθ)♣2 and

the norm ♣ cos(reiθ)♣ have only two maximums at θ = π
2
, 3π

2
, while they have only two

minimums at θ = 0, π on the interval [0, 2π). At θ = π
2
, 3π

2
, the values of ♣ cos(reiθ)♣

are both cosh r, at θ = 0, π the values of ♣ cos(reiθ)♣ are both ♣ cos r♣.
Considering odevity of sinh t and sin t, two inequalities in (3.3) and (3.4) are equiv-

alent to

(3.5)
sinh t

t
> 1 and

sin t

t
> −1,

for t ∈ (0, ∞). The Ąrst inequality in (3.5) follows from cosh x > 1 for x ≠ 0 and
the Lazarević inequality (2.6). When t ∈ (0, π

2
), the second inequality in (3.5) follows

from the left hand side of the Jordan inequality (2.7). When t > π
2
, the second

inequality in (3.5) follows from sin t ≥ −1 on (0, ∞) and simple argument. The
double inequality (3.1) is thus proved. The proof of Theorem 3.1 is complete. □

4. Remarks

In this Ąnal section, we list several remarks on our main results in this paper.

Remark 4.1. Comparing Figure 1 and 4, it is not easy to see the difference between
♣ sin(reiθ)♣ and ♣ cos(reiθ)♣. However, the difference ♣ sin(reiθ)♣ − ♣ cos(reiθ)♣ for r ∈
[0, 2π] and θ ∈ [0, 2π) can be showed by Figure 7.

Figure 7. The 3D graph of ♣ sin(reiθ)♣ − ♣ cos(reiθ)♣ for r, θ ∈ [0, 2π)

Comparing Figure 2 and 5, it is not easy to Ąnd the difference between ♣ sin(πeiθ)♣
and ♣ cos(πeiθ)♣ yet. However, the difference ♣ sin(πeiθ)♣ − ♣ cos(πeiθ)♣ for θ ∈ [0, 2π)
can be presented by Figure 8.
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Figure 8. The polarized 3D graph of ♣ sin(reiθ)♣ − ♣ cos(reiθ)♣ for r ∈
[0, 4] and θ ∈ [0, 2π)

Comparing Figure 3 and 6, it is also not easy to see the difference between ♣ sin(πeiθ)♣
and ♣ cos(πeiθ)♣. However, the difference ♣ sin(πeiθ)♣ − ♣ cos(πeiθ)♣ for θ ∈ [0, 2π) can
be demonstrated by Figure 9.

Figure 9. The graph of ♣ sin(πeiθ)♣ − ♣ cos(πeiθ)♣ for θ ∈ [0, 2π)

Remark 4.2. From Figure 7, 8, and 9, we can guess that the double inequality

(4.1) − 1 ≤ ♣ sin(reiθ)♣ − ♣ cos(reiθ)♣ ≤ 1

is seemingly valid for all r > 0 and θ ∈ [0, 2π). Can one verify, deny, or strengthen
this guess?
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Remark 4.3. It is standard that

(4.2) ♣ sin(reiθ) − cos(reiθ)♣2 = ♣[sin(reiθ) − cos(reiθ)]2♣ = ♣1 − sin(2reiθ)♣.
From (4.2), it follows that

♣1 − ♣ sin(2reiθ)♣♣ ≤ ♣ sin(reiθ) − cos(reiθ)♣2 ≤ 1 + ♣ sin(2reiθ)♣.
Further by virtue of the double inequality (2.1) in Theorem 2.1, we obtain

♣ sin(reiθ) − cos(reiθ)♣2 ≤ 1 + ♣ sin(2reiθ)♣ ≤ 1 + sinh(2r).

This means that

(4.3) ♣ sin(reiθ) − cos(reiθ)♣ ≤
√

1 + sinh(2r),

for r > 0 and θ ∈ [0, 2π).
Motivated by the guess expressed in terms of the double inequality (4.1) and by the

inequality (4.3), we pose an open problem: what are the nontrivial lower and upper
bounds of the norm ♣ sin(reiθ) − cos(reiθ)♣ for r > 0 and θ ∈ [0, 2π)?

Remark 4.4. From (2.2) and (3.2), it follows that

sin(reiθ) − cos(reiθ) = cosh(r sin θ)[sin(r cos θ) − cos(r cos θ)]

+ i[cos(r cos θ) + sin(r cos θ)] sinh(r sin θ).

Hence, we have

♣ sin(reiθ) − cos(reiθ)♣ =
√

sinh2(r sin θ) − sin(2r cos θ) + cosh2(r sin θ),

which is equivalent to

(4.4) ♣ sin(reiθ) − cos(reiθ)♣2 = cosh(2r sin θ) − sin(2r cos θ).

From (4.4), it follows that

d ♣ sin(reiθ) − cos(reiθ)♣2
d θ

= 2r[sin θ cos(2r cos θ) + cos θ sinh(2r sin θ)]

= 2r[cos(2r cos θ) + cot θ sinh(2r sin θ)] sin θ

= 2r[tan θ cos(2r cos θ) + sinh(2r sin θ)] cos θ

= 2r2



cos(2r cos θ)

2r cos θ
+

sinh(2r sin θ)

2r sin θ

]

sin(2θ),

which is clearly equal to 0 at θ = 0, π for all r > 0. The function sinh t
t

is even and not
less than 1 on (−∞, ∞). The function cos t

t
is odd on (−∞, ∞). By Ąnding the set of

all zeros of the function

cos t

t
+

sinh
√

4r2 − t2

√
4r2 − t2

, t ̸= 0, r > 0,

we can obtain sharp bounds of ♣ sin(reiθ) − cos(reiθ)♣ for r > 0 and θ ∈ [0, 2π). This
is a hint, clue, sketch, or approach to solve the above open problem.
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Remark 4.5. To the best of my knowledge, the double inequalities (2.1) and (3.1) in
Theorems 2.1 and 3.1 are fundamental and new in the literature.

Remark 4.6. This paper is a revised version of the preprint [5].
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A STUDY OF MULTI-TERM TIME-FRACTIONAL DELAY

DIFFERENTIAL SYSTEM WITH MONOTONIC CONDITIONS

VIKRAM SINGH1, RENU CHAUDHARY2, AND DWIJENDRA N PANDEY1

Abstract. In this paper, the existence and uniqueness of mild solution for a class
of multi-term time-fractional delay differential system have been discussed in ordered
Banach space by enforcing monotone iterative technique. The generalized semigroup
theory, fractional calculus and measure of noncompactness have been implemented
to obtain the required results. A new set of sufficient conditions with the coefficients
in the equations satisfying some monotonic properties has been obtained. Finally,
an application is given to illustrate the obtained results.

1. Introduction

The fractional differential equations (in brief, FDEs) including Riemann-Liouville
and Caputo fractional derivatives have been magnetizing the interest of many re-
searchers, due to demonstrating applications in widespread areas of sciences and
engineering such as mathematical modeling, thermal systems, acoustics, modeling
of materials or rheology and mechanical systems. The FDEs have been viewed as
a beneficial tool, which may describe dynamical behavior of real life phenomena
more precisely. In addition, due to the memory and hereditary properties of various
materials and processes, in many areas of science like identification systems, signal
processing, robotics or control theory, fractional differential operators seem more
appropriate in modeling than the classical integer operators. One can also find the
various applications of FDEs in models of medicine (modeling of human tissue under

Key words and phrases. Fractional differential equation, upper and lower solutions, measure of
noncompactness, monotone iterative technique.
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mechanical loads), electrical engineering (transmission of ultrasound waves), biochem-
istry (modeling of proteins and polymers) etc. For more knowledge regarding to
fractional systems see the papers [2,8,9,11,12,28,32], the monographs [24,31,33] and
references therein. In addition, fractional delay differential equations have been used
frequently in various fields of science and engineering such as panorama of natural
phenomena, modeling of equations and porous media etc. For more detail, see the
cited papers [2, 3, 19].

It is very difficult to obtain the exact solutions for the nonlinear fractional differential
systems in closed forms. To overcome this difficulty, many analytical and numerical
techniques have been developed for instance, the Adomian decomposition method
[21] and the homotopy analysis method [36], have been applied to investigate various
systems of fractional or non-fractional ordered. However, in recent years, considerable
work has been reported in the literature by applying monotone iterative technique,
which is a flexible and very effective mechanism to study the existence results in a
closed set governed by the lower and upper solutions, to investigate the existence of
solutions for a class of fractional differential systems. In monotone iterative technique,
we construct two monotone sequences by choosing upper and lower solutions as two
initial iterations, which converge uniformly to a extremal mild solution of the system
between the lower and upper solutions. Due to monotone behavior, the constructed
sequences of iterations play an important role in the study of numerical solutions of
various initial value and boundary value problems.

From the last few years, multi-term time-fractional differential equations have been
generating great interest among the mathematicians and engineers. In [23,28,34], a
two-term time-fractional differential equation has been studied in the abstract context,
which include a concrete example of fractional diffusion-wave problem. In [13] and
[29], the multi-term time-fractional diffusion wave equation have been considered with
constant and variable coefficients, respectively. Moreover, in [22, 27], the analytical
and numerical solutions of multi-term time-fractional diffusion equation have been
discussed. In [32], Pardo and Lizama studied the existence of mild solutions of multi-
term time-fractional differential equations with nonlocal initial conditions by using
Caratheodory type conditions and measure of noncompactness technique. In last few
years, many authors repeatedly apply the monotone iterative technique coupled with
lower and upper solutions to various functional differential equations of integer order
as well as fractional order, see [4–7,25,26,35] and the references therein. However, in
the best of authors’ knowledge, no work is reported to the multi-term time-fractional
differential system in the literature, by enforcing monotone iterative technique.

In this paper, monotone iterative technique coupled with method of lower and upper
solutions has been applied to analyze the existence of mild solution for the following
multi-term time-fractional delay differential system

{
cD1+βy(t) +

∑n
j=1 αj

cDγjy(t) = Ay(t) + F

t, yt,

∫ t
0 h(t, s, ys)ds


, t ∈ I,

y(t) = ϕ(t) ∈ B, t ∈ (−∞, 0], y′(0) = χ,
(1.1)
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where cDη stands for the Caputo fractional derivative of order η > 0 and operational
interval I = [0, T ], T < ∞. A : D(A) ⊂ X → X is a closed linear operator on a
Banach space (X, ∥ · ∥). All γj, j = 1, 2, . . . , n, n ∈ N, are positive real numbers such
that 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1. The nonlinear functions F : I × B × X → X and
h : ∆ × B → X satisfies some suitable conditions, which will be mentioned later.
∆ := ¶(t, s) : 0 ≤ s ≤ t ≤ T♢ . The delay function yt : (−∞, 0] → X is characterized
by yt(s) = y(t+ s) for s ∈ (−∞, 0].

The system (1.1) is a general system, which includes recent investigations in this
subject [13, 23, 28, 29, 32, 34]. Anticipating a great interest in the problems modeled
as the system (1.1), this paper contributes in study of the existence results for mild
solutions by applying monotone iterative technique coupled with the method of lower
and upper solutions. It should be noticed that, the semigroup theory may not be
directly used to solve problem (1.1). However, we construct a mild solution, which is
based on the theory of resolvent families [32], which will provide an effective way to
deal such problems.

This paper is organized as follows: In Section 2, some basics of fractional calculus
and measure of noncompactness have been discussed which will be employed to obtain
mains outcomes. In Section 3, the existence and uniqueness results are obtained for
the mild solutions of the system (1.1). In Section 4, an example is provided to show
the feasibility of the theory discussed in this paper.

2. Preliminaries

Let R and N denote the real and natural numbers, respectively. Let us denote
D(A), R(A) and ρ(A) by the domain, range and resolvent of a linear operator A
on X, respectively. Define a partial ordering in X introduced by a positive cone
P = ¶y ∈ X : y ≥ θ♢ (where θ symbolizes the zero element of X) such that x ≤ y if
and only if y − x ∈ P. If x ≤ y and x ≠ y, then x < y. A cone P is called a normal
cone if there exists a constant N > 0 (called normal constant) such that θ ≤ x ≤ y

implies ∥x∥ ≤ N∥y∥. A cone P ⊂ X is said to be regular cone if every increasing,
bounded above sequence is convergent, i.e., if ¶wn♢ be a sequence such that

w1 ≤ w2 ≤ · · · ≤ wn ≤ · · · ≤ z,

for some z ∈ X, then there is a w ∈ X such that ∥wn−w∥ → 0 as n → ∞. Equivalently,
a cone P ⊂ X is said to be regular if every bounded below and decreasing sequence
is convergent. It should be notice that a regular cone is a normal cone. For more
details regarding to the cone P, see [14]. The Banach space of all continuous X-
valued functions is represented by C(I,X), on the interval I equipped with norm
∥u∥C = supt∈I ∥u(t)∥.

To facilitate the discussion, due to infinite delay an axiomatic definition of the
phase space B has been introduced by Hale and Kato [16]. Recall, the axioms of the
phase space B, by following the terminology used by Hino et al. in [19] so, we omit
the details here.
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A linear space B consists of all functions defined from (−∞, 0] into X equipped
with the seminorm ∥ · ∥B satisfying the following axioms.

(a) If y : (−∞, T ] → X, T > 0 is continuous on I and y0 ∈ B, then for every t ∈ I

the accompanying conditions hold:
(i) yt is a B-valued continuous function;
(ii) ∥y(t)∥ ≤ K∥yt∥B;
(iii) ∥yt∥B ≤ K1(t) sups∈[0,t] ∥y(s)∥ + K2(t)∥y0∥B, where K ≥ 0 is a constant

and K1(·) : [0,∞) → [0,∞) is continuous, K2(·) : [0,∞) → [0,∞) is
locally bounded and K1, K2 are independent of y(·).

(b) The space B is complete.

Now, recall some definitions and basic results on fractional calculus. Define gη(t)
for η > 0 by

gη(t) =

{
1

Γ(η)
tη−1, t > 0,

0, t ≤ 0,

where Γ denotes gamma function. The function gη has the properties (ga ∗ gb)(t) =

ga+b(t) for a, b > 0 and ĝη(λ) = 1
λη for η > 0 and Reλ > 0, where (̂·) and (· ∗ ·)(·)

denote the Laplace transformation and convolution, respectively.

Definition 2.1. The Riemann-Liouville fractional integral of a function f ∈ L1
loc

([0,∞),X) of order η > 0 with lower limit zero is defined as follows

Iηf(t) =
∫ t

0
gη(t− s)f(s)ds, t > 0,

and I0f(t) = f(t).

This fractional integral satisfies the properties Iη ◦ Ib = Iη+b for b > 0, Iηf(t) =

(gη ∗ f)(t) and Îηf(λ) = 1
λη f̂(λ) for Reλ > 0.

Definition 2.2. Let η > 0 be given and denote m = ⌈η⌉. The Caputo fractional
derivative of order η > 0 of a function f : [0,∞) → X with lower limit zero is given
by

cDηf(t) = Im−ηDmf(t) =
∫ t

0
gm−η(t− s)Dmf(s)ds,

and cD0f(t) = f(t), where Dm = dm

dtm . In addition, we have cDηf(t) = (gm−η ∗Dmf)(t)
and the Laplace transformation of Caputo fractional derivative is given by

(2.1) ĉDηf(t) = ληf̂(λ) −
m−1∑

d=0

f (d)(0)λη−1−d, λ > 0.

Remark 2.1. Let m− 1 < η ≤ m, m ∈ N, then

(2.2) (Iη ◦ cDη)f(t) = f(t) −
m−1∑

d=0

f (d)(0)gd+1(t), t > 0.
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If f (d)(0) = 0, for d = 1, 2, 3, . . . ,m − 1, then (Iη ◦ cDη)f(t) = f(t) and ĉDηf(t) =

ληf̂(λ).

To give a appropriate representation of mild solution in terms of certain family of
bounded and linear operators, we define following family of operators.

Definition 2.3 ([32]). Let A be a closed linear operator on a Banach space X with
the domain D(A) and let β > 0, γj, αj be the real positive numbers. Then A is
called the generator of a (β, γj)− resolvent family if there exists ω > 0 and a strongly
continuous function Sβ,γj

: [0,∞) → L(X) (the space of bounded linear operators on

X) such that ¶λβ+1 +
∑n

j=1 αjλ
γj : Reλ > ω♢ ⊂ ρ(A) and

λβ


λβ+1 +

n∑

j=1

αjλ
γj − A

−1

y =
∫ ∞

0
e−λt

Sβ,γj
(t)ydt, Reλ > ω, y ∈ X.(2.3)

The following result guarantees the existence of (β, γj)-resolvent family under some
suitable conditions.

Theorem 2.1 ([32]). Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αj ≥ 0 be given and let A

be a generator of a strongly continuous and bounded cosine family ¶C(t)♢t∈R. Then A

generates a bounded (β, γj)-resolvent family ¶Sβ,γj
(t)♢t≥0.

Let Ω be the set defined by

Ω = ¶y ∈ C((−∞, T ],X) : such that y♣(−∞,0]
∈ B and y♣[0,T ]

∈ X♢.

In order to define the mild solution for the system (1.1), we associate system (1.1)
with an integral equation, by comparison with the fractional differential system given
in [32]. Consider the following definition of mild solution for the system (1.1).

Definition 2.4. Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αj ≥ 0 be given and let A be a
generator of a bounded (β, γj)-resolvent family ¶Sβ,γj

(t)♢t≥0. Then a function y ∈ Ω
is called the mild solution of the system (1.1) if y′(0) = χ and satisfies the equation

y(t) =





ϕ(t), t ∈ (−∞, 0],
Sβ,γj

(t)ϕ(0) + (g1 ∗ Sβ,γj
)(t)χ

+
∑n

j=1 αj

∫ t
0

(t−s)β−γj

Γ(1+β−γj)
Sβ,γj

(s)ϕ(0)ds

+
∫ t

0 Tβ,γj
(t− s)F (s, ys,

∫ s
0 h(s, τ, yτ )dτ) ds, t ∈ I,

(2.4)

where Tβ,γj
(t) = (gβ ∗ Sβ,γj

)(t).

Definition 2.5. The resolvent family ¶Sβ,γj
(t)♢t≥0 is said to be positive on X, if the

order inequality Sβ,γj
(t)y ≥ θ holds for all y ≥ θ, y ∈ X and t ≥ 0.

Lemma 2.1 ([17]). (Generalized Gronwall inequality). Assume γ ≥ 0, δ > 0 and c(t)
is a nonnegative and locally integrable function on 0 ≤ t < T < +∞ and let z(t) be

nonnegative and locally integrable on 0 ≤ t < T + ∞ such that

z(t) ≤ c(t) + γ

∫ t

0
(t− s)δ−1z(s)ds,
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then

z(t) ≤ c(t) +
∫ t

0


∞∑

n=1

(γΓ(δ))n

Γ(nδ)
(t− s)nδ−1c(s)

]
ds, 0 ≤ t < T.

Let C1+β((−∞, T ],X) = ¶y ∈ C((−∞, T ],X) : cD1+βy(t) exists and continuous on I

and y(t) ∈ D(A) for all t ≥ 0♢. An abstract function y(t) ∈ C1+β((−∞, T ],X) is said
to be a solution of (1.1) of if y(t) satisfies the system (1.1).

Definition 2.6. The function y(0) ∈ C1+β((−∞, T ],X) is said to be a lower solution
of the system (1.1), if it satisfies the following inequalities

(2.5)





cD1+βy(0)(t) +
∑n

j=1 αj
cDγjy(0)(t) ≤ Ay(0)(t)

+F

t, y

(0)
t ,

∫ t
0 h(t, s, y(0)

s )ds

, t ∈ I,

y(0)(t) ≤ ϕ(t) ∈ B, t ∈ (−∞, 0], y′(0)(0) ≤ χ.

If all the inequalities of (2.5) are reversed, then solution is called upper solution
denoted by z(0).

Now, we recall some basic definitions and properties of Kuratowski measure of
noncompactness. For more details, we refer to the monograph [14] and paper [10,18].

Definition 2.7. Let F be a bounded subset of a Banach space X. The Kuratowski
measure of noncompactness denoted by µ(·) of F is defined by

µ(F) := inf¶δ > 0 : F = ∪n
i=1Fi with diam(Fi) ≤ δ for i = 1, 2, 3, . . . , n♢.

Lemma 2.2. Let X be a Banach space, and let F ⊂ C([a1, a2],X) be bounded and

equicontinuous. Then µ(F(t)) is continuous on [a1, a2] and

µC(F) = sup
t∈[a1,a2]

µ(F(t)).

Lemma 2.3. Let ¶yn♢∞
n=1 ⊂ L1(I,X) be a sequence and there exists g ∈ L1(I,X) such

that ∥yn(t)∥ ≤ g(t), a.e. t ∈ I, then µ(¶yn(t)♢∞
n=1) is integrable and

µ

{∫ t

0
yn(s)ds

}∞

n=1


≤ 2

∫ t

0
µ(¶yn(s)♢∞

n=1ds.

Lemma 2.4. If F is bounded subset of X, then there exists ¶yn♢∞
n=1 ⊂ F, such that

µ(F) ≤ 2µ(¶yn♢∞
n=1).

3. Main Results

Throughout in this section, we denote S0 = supt∈[0,T ] ∥Sβ,γj
(t)∥. We consider the

following assumptions.

(A1) The functions h : ∆ × B → X and F : I × B × X → X, satisfy Carathéodory
type conditions, i.e.,
(i) h(t, s, ·) : B → X is continuous for (t, s) ∈ ∆ and h(·, ·, v) : ∆ → X is

strongly measurable for all v ∈ B;
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(ii) F (t, ·, ·) : B × X → X is continuous for each t ∈ I and F (·, u, v) : I → X is
strongly measurable for all (u, v) ∈ B × X.

(A2) For lower and upper solutions y(0), z(0) ∈ C1+β((−∞, T ],X) of the system (1.1)
such that y(0) ≤ z(0) the following conditions hold:

(i) F (t, v1, w1) ≤ F (t, v2, w2) for all t ∈ I, and v1, v2 ∈ B satisfying y
(0)
t ≤

v1 ≤ v2 ≤ z
(0)
t and w1, w2 ∈ X such that

∫ t
0 h(t, s, y(0)

s )ds ≤ w1 ≤ w2 ≤∫ t
0 h(t, s, z(0)

s )ds;

(ii) h(t, s, v1) ≤ h(t, s, v2) for all (t, s) ∈ ∆ and v1, v2 ∈ B such that y
(0)
t ≤

v1 ≤ v2 ≤ z
(0)
t .

(A3) The functions F, h satisfy the followings conditions.
(i) For G ⊂ B and H ⊂ X, where G(r) = ¶φ(r) : r ∈ (−∞, 0], φ ∈ G♢ there

exists a constant L > 0 such that

µ(F (t, G,H)) ≤ L


sup

−∞<r≤0
µ(G(r)) + µ(H)

]
, a.e. t ∈ I.

(ii) For each bounded set G ⊂ B, there exists an integrable function ξ : ∆ →
[0,∞) such that

µ(h(t, s, G)) ≤ ξ(t, s) sup
−∞<r≤0

µ(G(r)),

for a.e. (t, s) ∈ ∆. For convenience, we denote ξ∗ = max
∫ t

0 ξ(t, s)ds.

In order to give operator theoretical approach, we define a operator Q : Ω → Ω by

(Qy)(t) =





ϕ(t), t ∈ (−∞, 0],
Sβ,γj

(t)ϕ(0) + (g1 ∗ Sβ,γj
)(t)χ

+
∑n

j=1 αj

∫ t
0

(t−s)β−γj

Γ(1+β−γj)
Sβ,γj

(s)ϕ(0)ds

+
∫ t

0 Tβ,γj
(t− s)F (s, ys,

∫ s
0 h(s, τ, yτ )dτ) ds, t ∈ I.

(3.1)

It is clear to see that Q is well defined.
Let us define a function u(·) : (−∞, T ] → X by

u(t) =

{
ϕ(t), t ∈ (−∞, 0],
0, t ∈ I.

For a function v : (−∞, T ] → X such that v(0) = 0, we define the function v by

v(t) =

{
0, t ∈ (−∞, 0],
v(t), t ∈ I.

If y(·) is a solution of (2.4), then it can be decompose y(·) as y(t) = u(t) + v(t),
t ∈ (−∞, T ] and v(·) satisfies

v(t) =Sβ,γj
(t)ϕ(0) + (g1 ∗ Sβ,γj

)(t)χ+
n∑

j=1

αj

∫ t

0

(t− s)β−γj

Γ(1 + β − γj)
Sβ,γj

(s)ϕ(0)ds

+
∫ t

0
Tβ,γj

(t− s)F


s, us + vs,

∫ s

0
h(s, τ, uτ + vτ )dτ


ds.
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Define X0 = ¶v ∈ Ω : v0 = 0♢. For any v ∈ X0,

∥v∥X0 = sup
t∈I

∥v(t)∥ + ∥v0∥B = sup
t∈I

∥v(t)∥.

Clearly, X0 is a Banach space equipped with the norm ∥ · ∥X0 . We assume that
(X0, ∥ · ∥X0) stands for a ordered Banach space with partial order ≤ induced by
a positive normal cone P0 = ¶v ∈ X0 : v(t) ≥ θ♢ with the normal constant N0.
Evidently C((−∞, T ],X0) is also an ordered Banach space with the partial order ≤
reduced by a positive normal cone P0 = ¶v ∈ X0 : v(t) ≥ θ, t ∈ (−∞, T ]♢ with normal
constant N0. For v, w ∈ C((−∞, T ],X0) such that v ≤ w, [v, w] denotes a ordered
interval ¶x ∈ C((−∞, T ],X0) : v ≤ x ≤ w♢ in C((−∞, T ],X0) and [v(t), w(t)] denotes
the ordered interval ¶x ∈ C((−∞, T ],X0) : v(t) ≤ x(t) ≤ w(t)♢ in X0.

Theorem 3.1. Let X0 be an ordered Banach space with a positive normal cone

P0. Suppose that the system (1.1) admits lower and upper solutions denoted by

v(0), w(0) ∈ C1+β(I,X) such that v(0) ≤ w(0), ¶Sβ,γj
(t)♢t≥0 is a positive operator and

the assumptions (A1)-(A3) are satisfied. Then the system (1.1) admits maximal and

minimal mild solutions between w(0) and v(0).

Proof. Let D = [v(0), w(0)] = ¶u ∈ C(I,X0) : v(0) ≤ u ≤ w(0)♢. Define a map
Q̃ : D → X0 by
(3.2)

(Q̃v)(t) =





0, t ∈ (−∞, 0],
Sβ,γj

(t)ϕ(0) + (g1 ∗ Sβ,γj
)(t)χ

+
∑n

j=1 αj

∫ t
0

(t−s)β−γj

Γ(1+β−γj)
Sβ,γj

(s)ϕ(0)ds

+
∫ t

0 Tβ,γj
(t− s)F (s, us + vs,

∫ s
0 h(s, τ, uτ + vτ )dτ) ds, t ∈ I.

From (A1)-(A2) for any v ∈ D we have

F


t, ut + v

(0)
t ,

∫ t

0
h(t, τ, uτ + v(0)

τ )dτ


≤F


t, ut + vt,

∫ t

0
h(t, τ, uτ + vτ )dτ



≤F


t, ut + w

(0)
t ,

∫ t

0
h(t, τ, uτ + w(0)

τ )dτ


.

Now, using normality of the cone P0, there exists a constant K > 0 such that
∥∥∥∥∥f

t, ut + vt,

∫ t

0
g(t, τ, uτ + vτ )dτ

∥∥∥∥∥ ≤ K, v ∈ D.

For convenience, we divide the proof in the following steps.
Step 1. The map Q̃ is continuous map on D.
Let ¶v(n)♢ be a sequence in D such that ¶v(n)♢ → v ∈ D as n → ∞. For t ∈ (−∞, 0]

we get

∥Q̃v(n)(t) − Q̃v(t)∥ = 0.

Also, from (A1) for t ∈ I and as n → ∞, we have
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(i)
∫ s

0 h(s, τ, uτ + v(n)
τ )dτ →

∫ s
0 h(s, τ, uτ + vτ )dτ ;

(ii) F

s, us + v(n)

s ,
∫ s

0 h(s, τ, uτ + v(n)
τ )dτ


→ F (s, us + vs,

∫ s
0 h(s, τ, uτ + vτ )dτ).

Now, by applying Lebesgue Dominated Convergence Theorem for t ∈ I, we have

∥Q̃v(n)(t) − Q̃v(t)∥ ≤
∫ t

0

∥∥∥∥∥Tβ,γj
(t− s)

∥∥∥∥∥

∥∥∥∥∥F

s, us + v(n)

s ,

∫ s

0
h(s, τ, uτ + v(n)

τ )dτ



− F


s, us + vs,

∫ s

0
h(s, τ, uτ + vτ )dτ

∥∥∥∥∥ ds

→0 as n → ∞.

Thus map Q̃ is continuous on D.
Step 2. Q̃ is a increasing monotonic operator.
Consider x, y ∈ D with x ≤ y then x(t) ≤ y(t) for t ∈ I. Therefore, xt, yt belong to

the ordered Banach space X0 such that xt ≤ yt for t ∈ I. Using (A2) and positivity
of Sβ,γj

(t), we obtain

Q̃x ≤ Q̃y.(3.3)

Now, we show that v(0) ≤ Q̃v(0) and Q̃w(0) ≤ w(0). For this, let

g(t) = cD1+βv(0)(t) +
n∑

j=1

αj
cDγjv(0)(t) − Av(0)(t)

subject to the conditions v(0)(0) = y0, v
′(0)(0) = y1.

Then by definition of lower solution, we obtain g(t) ≤ F

t, yt,

∫ t
0 h(t, s, ys)ds


for

t ∈ I. Since v(0)(t) is a lower solution of (1.1), we get

v(0)(t) =Sβ,γj
(t)y0 + (g1 ∗ Sβ,γj

)(t)y1 +
n∑

j=1

αj

∫ t

0

(t− s)β−γj

Γ(1 + β − γj)
Sβ,γj

(s)y0ds

+
∫ t

0
Tβ,γj

(t− s)g(s)ds

≤Sβ,γj
(t)ϕ(0) + (g1 ∗ Sβ,γj

)(t)χ+
n∑

j=1

αj

∫ t

0

(t− s)β−γj

Γ(1 + β − γj)
Sβ,γj

(s)ϕ(0)ds

+
∫ t

0
Tβ,γj

(t− s)F


s, us + v(0)

s ,

∫ s

0
h(s, τ, uτ + v(0)

τ )dτ


ds

≤Q̃v(0)(t), t ∈ I,

and also v(0)(t) ≤ ϕ(t), v′(0)(0) ≤ χ. Therefore, v(0)(t) ≤ Q̃v(0)(t) for all t ∈ (−∞, T ].
Similarly, we can show that w(0)(t) ≥ Q̃w(0)(t) for all t ∈ (−∞, T ]. Thus, Q̃ is a
increasing monotonic operator.

Step 3. Q̃ is an equicontinuous operator.
For any v ∈ D and t1, t2 ∈ (−∞, 0] such that t1 < t2, we have

∥Q̃v(t2) − Q̃v(t1)∥ = 0.
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Further for v ∈ D and t1, t2 ∈ I such that t1 < t2, we have

∥Q̃v(t2) − Q̃v(t1)∥ ≤∥Sβ,γj
(t2)ϕ(0) − Sβ,γj

(t1)ϕ(0)∥

+ ∥(g1 ∗ Sβ,γj
)(t2) − (g1 ∗ Sβ,γj

)(t1)∥∥χ∥

+
n∑

j=1

αjS0

∥∥∥∥∥

∫ t2

0

(t2 − s)β−γj

Γ(1 + β − γj)
ds

−
∫ t1

0

(t1 − s)β−γj

Γ(1 + β − γj)
ds

∥∥∥∥∥∥ϕ(0)∥

+
∫ t1

0
∥Tβ,γj

(t2 − s) − Tβ,γj
(t1 − s)∥

×

∥∥∥∥∥F

s, us + vs,

∫ s

0
h(s, τ, uτ + vτ )dτ

∥∥∥∥∥ ds

+
∫ t2

t1

∥Tβ,γj
(t2 − s)∥

∥∥∥∥∥F

s, us + vs,

∫ s

0
h(s, τ, uτ + vτ )dτ

∥∥∥∥∥ ds.

=
5∑

i=1

Ji.

We have

J2 = ∥(g1 ∗ Sβ,γj
(t2) − (g1 ∗ Sβ,γj

)(t1)∥∥χ∥

=
∥∥∥∥
∫ t2

0
g1(t2 − τ)Sβ,γj

(τ)dτ −
∫ t1

0
g1(t1 − τ)Sβ,γj

(τ)dτ
∥∥∥∥ ∥χ∥

≤
∫ t2

t1

∥Sβ,γj
(τ)∥dτ∥χ∥

≤ S0∥χ∥(t2 − t1)

→ 0 as t1 → t2

and

J3 ≤
n∑

j=1

αjS0

∥∥∥∥∥

∫ t2

0

(t2 − s)β−γj

Γ(1 + β − γj)
ds−

∫ t1

0

(t1 − s)β−γj

Γ(1 + β − γj)
ds

∥∥∥∥∥∥ϕ(0)∥

≤
n∑

j=1

αjS0

∣∣∣∣∣
t
1+β−γj

2 − t
1+β−γj

1

Γ(2 + β − γj)

∣∣∣∣∣∥ϕ(0)∥

→0 as t1 → t2.

From the expressions J2 and J3, we can easily deduce that J4 → 0 and J5 → 0 as
t1 → t2 independently of u ∈ D. Therefore, ∥Q̃v(t2) − Q̃v(t1)∥ → 0 as t1 → t2
independently of u ∈ D. Hence, Q(D) is equicontinuous on I.

Step 4. Now, we will show µ(¶Q̃v(n)♢∞
n=1) = 0.

Define the sequences

v(n) = Q̃v(n−1), w(n) = Qw(n−1), n = 1, 2, . . .(3.4)
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It follows from monotonicity of Q̃ that

v(0) ≤ v(1) ≤ · · · ≤ v(n) ≤ · · · ≤ w(n) ≤ · · · ≤ w(1) ≤ w(0).(3.5)

Next, we will show that ¶v(n)♢ and ¶w(n)♢ convergent uniformly in I.
We set B = ¶v(n) : n ∈ N♢ and B0 = ¶v(n−1) : n ∈ N♢. Using normality of cone

P0, we obtain that B and B0 are bounded. Since B0 = B ∪ ¶v(0)♢, it follows that
µ(B0(t)) = µ(B(t)) for t ∈ (−∞, T ]. Let

φ(t) := µ(B0(t)) = µ(B(t)), t ∈ (−∞, T ].

Since B = Q̃(B0), we have

µ(B(t)) = µ(Q̃(B0)(t)).

For t ∈ (−∞, 0], φ(t) := µ(Q̃(B0)(t)) = 0. For t ∈ I, we have

φ(t) =µ(Q̃(B0)(t)

≤ 2µ(Q̃¶v(n−1)(t)♢)

≤ 2µ


Sβ,γj

(t)ϕ(0) + (g1 ∗ Sβ,γj
)(t)χ+

n∑

j=1

αj

∫ t

0

(t− s)β−γj

Γ(1 + β − γj)
Sβ,γj

(s)ϕ(0)ds

+
∫ t

0
Tβ,γj

(t− s)F


s, us + vn−1

s ,

∫ s

0
h(s, τ, uτ + vn−1

τ )dτ


ds

]

≤ 2µ

 ∫ t

0
Tβ,γj

(t− s)F


s, us + vn−1

s ,

∫ s

0
h(s, τ, uτ + vn−1

τ )dτ


ds

]

≤
4S0

Γ(1 + β)

 ∫ t

0
(t− s)βµ

{
F


s, us + vn−1

s ,

∫ s

0
h(s, τ, uτ + vn−1

τ )dτ

}
ds

]

≤
4S0L

Γ(1 + β)

 ∫ t

0
(t− s)β

{
sup

−∞<r≤0
µ(vn−1(s+ r))

+ µ

∫ s

0
h(s, τ, uτ + vn−1

τ )dτ

}
ds

]

≤
4S0L

Γ(1 + β)

 ∫ t

0
(t− s)β

{
sup

0≤z≤s
µ(vn−1(z))

+ 2
∫ s

0
ξ(s, τ) sup

−∞<r≤0
µ(vn−1(τ + r))dτ

}
ds

]

≤
4S0L

Γ(1 + β)
(1 + 2ξ∗)

∫ t

0
(t− s)β sup

0≤z≤s
µ(vn−1(z))ds

≤
4S0L

Γ(1 + β)
(1 + 2ξ∗)

∫ t

0
(t− s)βφ(s)ds.

Now, by the Gronwall’s inequality, φ(t) ≡ 0 on I. So µ¶v(n) : n ∈ N♢ = 0. This
implies that the set ¶v(n) : n ∈ N♢ is relatively compact in D. So, we conclude
that the sequence ¶v(n)♢ admits a convergent subsequence in D. Further by (3.5),



278 V. SINGH, R. CHAUDHARY, AND D. N. PANDEY

we observe that ¶v(n)♢ itself is convergent sequence in X. So, there exists v∗ ∈ X

satisfying v(n) → v∗ as n → ∞. By (3.2) and (3.4), we have
(3.6)

v(n)(t) =





0, t ∈ (−∞, 0],
Sβ,γj

(t)ϕ(0) + (g1 ∗ Sβ,γj
)(t)χ

+
∑n

j=1 αj

∫ t
0

(t−s)β−γj

Γ(1+β−γj)
Sβ,γj

(s)ϕ(0)ds+
∫ t

0 Tβ,γj
(t− s)

×F

s, us + v(n−1)

s ,
∫ s

0 h(s, τ, uτ + v(n−1)
τ )dτ


ds, t ∈ I.

As n → ∞, then applying Lebesgue Dominated Convergence Theorem, we have
(3.7)

v∗(t) =





0, t ∈ (−∞, 0],
Sβ,γj

(t)ϕ(0) + (g1 ∗ Sβ,γj
)(t)χ

+
∑n

j=1 αj

∫ t
0

(t−s)β−γj

Γ(1+β−γj)
Sβ,γj

(s)ϕ(0)ds+
∫ t

0 Tβ,γj
(t− s)

×F


s, us + v∗

s,
∫ s

0 h(s, τ, uτ + v∗
τ )dτ


ds, t ∈ I.

Then v∗ ∈ C(I,X) and v∗ = Q̃v∗. Thus v∗ is a fixed point of Q̃ and hence v∗ will be
the solution of (3.2). Similarly, there exists w∗ ∈ C(I,X) in such a way w(n) → w∗

as n → ∞ and w∗ = Q̃w∗. If v ∈ D be a fixed point of Q̃ then by (3.3), we get
v(1) ≤ Qv(0) ≤ Qv = v ≤ Qw(0) ≤ Qw(1). Now, by induction principle v(n) ≤ v ≤ w(n).
In view of (3.5) and as n → ∞, we obtain v(0) ≤ v∗ ≤ v ≤ w∗ ≤ w(0). Hence, w∗ and v∗

are the maximal and minimal mild solutions of the system (1.1) in D, respectively. □

Corollary 3.1. Let X0 be an ordered Banach space with a positive regular cone

P0. Suppose that the system (1.1) admits lower and upper solutions denoted by

v(0), w(0) ∈ C1+β(I,X) such that v(0) ≤ w(0), ¶Sβ,γj
(t)♢t≥0 is a positive operator and

the assumptions (A1)-(A2) are satisfied. Then the system (1.1) admits maximal and

minimal mild solutions between w(0) and v(0).

Proof. By regularity of the cone P0, we have that any ordered-bounded and ordered-
monotonic sequence in X0 is convergent. Let ¶yn♢ be an increasing or decreasing se-
quence in D. Then using assumption (A2), F (t, yn

t ,
∫ t

0 h(t, s, yn
s )ds) is ordered-bounded

and ordered-monotonic sequence in X0 and hence ¶F (t, yn
t ,
∫ t

0 h(t, s, yn
s )ds)♢ is conver-

gent. Therefore, µ(¶F (t, yn
t ,
∫ t

0 h(t, s, yn
s )ds)♢) = 0. Hence, assumption (A3) holds.

Now, by Theorem 3.1, we conclude the assertion. □

Corollary 3.2. Let X0 be a weakly sequentially complete ordered Banach space with

a positive normal cone P0. Suppose that the system (1.1) admits lower and upper

solutions denoted by v(0), w(0) ∈ C1+β(I,X) such that v(0) ≤ w(0), ¶Sβ,γj
(t)♢t≥0 is a

positive operator and the assumptions (A1)-(A2) are satisfied. Then the system (1.1)
admits maximal and minimal mild solutions between w(0) and v(0).

Proof. Since, in a weakly sequentially complete and ordered Banach space, the normal
cone P0 is regular. Therefore using Corollary 3.1, we can conclude the assertion. □



A STUDY OF MULTI-TERM TIME-FRACTIONAL DIFFERENTIAL SYSTEM 279

Corollary 3.3. We assume that X0 is a reflexive and ordered Banach space space

with positive normal cone P0. Also, consider that the system (1.1) admits lower and

upper solutions v(0), w(0) ∈ C1+β(I,X) such that v(0) ≤ w(0), ¶Sβ,γj
(t)♢t≥0 is positive

and the assumptions (A1)-(A2) are satisfied. Then the system (1.1) admits maximal

and minimal mild solutions between w(0) and v(0).

Proof. Since, in a reflexive and ordered Banach space, the normal cone P0 is regular.
Now, by Corollary 3.1, we conclude the assertion. □

Next, we will show the uniqueness of the mild solution for the system (1.1). For
this we consider the following assumption.

(A4) The functions h : ∆ × B → X and F : I × B × X → X are such that
(i) h is continuous and there exists an integrable function ψ : ∆ → [0, T ] such

that

h(t, s, u2) − h(t, s, u1) ≤ ψ(t, s)[u2(r) − u1(r)],

for any (t, s) ∈ ∆ and v
(0)
t ≤ u1 ≤ u2 ≤ w

(0)
t , r ∈ (−∞, 0];

(ii) F is continuous and there exists κ ≥ 0 such that

F (t, u2, v2) − F (t, u1, v1) ≤ κ[(u2(r) − u1(r)) + (v2 − v1)], r ∈ (−∞, 0],

for any t ∈ I, u1, u2 ∈ B with v
(0)
t ≤ u1 ≤ u2 ≤ w

(0)
t and v1, v2 ∈ X with∫ t

0 g(t, s, v
(0)
s )ds ≤ v1 ≤ v2 ≤

∫ t
0 g(t, s, w

(0)
s )ds.

Theorem 3.2. Let X0 be an ordered Banach space with normal positive cone P0 with

normal constant N0. Assume that ¶Sβ,γj
(t)♢t≥0 is positive, the system (1.1) has upper

and lower solutions v(0), w(0) ∈ C1+β(I,X) such that v(0) ≤ w(0) and assumptions (A2)
and (A4) hold. Then the system (1.1) has a unique mild solution in [v(0), w(0)].

Theorem 3.3. Let X0 be an ordered Banach space with a positive normal cone P0 with

normal constant N0. Suppose that the system (1.1) admits lower and upper solutions

denoted by v(0), w(0) ∈ C(I,X) such that v(0) ≤ w(0), ¶Sβ,γj
(t)♢t≥0 is a positive operator

and the assumptions (A2)-(A4) are satisfied. Then the system (1.1) admits a unique

mild solution in [v(0), w(0)].

Proof. Let ¶xn♢ ∈ [v
(0)
t , w

(0)
t ] and ¶yn♢ ∈ [v(0), w(0)] be two monotonic increasing

sequences. For m,n = 1, 2, . . ., with m > n, for some r1, r2 ∈ (−∞, 0] using (A4), we
have

θ ≤ h(t, s, xm) − g(t, s, xn) ≤ ξ(t, s)[xm(r1) − xn(r1)]

and

θ ≤ F (t, xm, ym) − F (t, xn, yn) ≤ κ[(xm(r2) − xn(r2)) + (ym − yn)].

Using the normality of positive cone P0, we get

∥h(t, s, xm) − h(t, s, xn)∥ ≤ N0ξ(t, s)∥xm(r1) − xn(r1)∥
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and

∥F (t, xm, ym) − F (t, xn, yn)∥ ≤ N0κ∥(xm(r2) − xn(r2)) + (ym − yn)∥.

Using the property of measure of noncompactness, we have

µ(¶h(t, s, xm)♢) ≤ N0ξ(t, s) sup
−∞⩽r⩽0

µ(¶xm(r)♢)

and

µ(¶F (t, xm, ym)♢) ≤ N0κ


sup

−∞⩽r⩽0
µ(¶xm(r)♢) + µ(¶ym♢)

]
.

Now, we observed that (A4) implies (A1) and (A3). Therefore, by Theorem 3.1,
minimal and maximal mild solutions v∗ and w∗ exist for the system (1.1) on D,
respectively.

By (3.2), for any t ∈ (−∞, 0], we have

θ ≤ w∗(t) − v∗(t) = Q̃w∗(t) − Q̃v∗(t) = 0.

Using the normality of positive cone P0, we get ∥v∗(t) −w∗(t)∥ ≤ 0, i.e., v∗(t) = w∗(t)
for all t ∈ (−∞, 0].

To abbreviate the writing, we set K0 := sup0≤t≤T K1(t). Now using (A4) and the
positivity of operator ¶Sβ,γj

(t)♢t≥0, for any t ∈ I, we have

∥v∗(t) − w∗(t)∥ =∥Q̃v∗(t) − Q̃w∗(t)∥

≤N0

∥∥∥∥∥

∫ t

0
Tβ,γj

(t− s)


F


s, us + v∗

s,

∫ s

0
h(s, τ, uτ + v∗

τ )dτ



− F


s, us + w∗

s,

∫ s

0
h(s, τ, uτ + w∗

τ )dτ

]
ds

∥∥∥∥∥

≤N0κ

 ∫ t

0
∥Tβ,γj

(t− s)∥


∥v∗

s − w∗
s∥B

+
∥∥∥∥
∫ s

0
h(s, τ, uτ + v∗

τ )dτ −
∫ s

0
h(s, τ, uτ + w∗

τ )dτ
∥∥∥∥


ds

]

≤N0κ

 ∫ t

0
∥Tβ,γj

(t− s)∥


∥v∗

s − w∗
s∥B +

∫ s

0
ξ(s, τ)∥v∗

τ − w∗
τ ∥Bdτ


ds

]

≤
N0S0K0κ

Γ(1 + β)

 ∫ t

0
(t− s)β

{
sup

−∞≤r≤0
∥v∗

s(r) − w∗
s(r)∥

+
∫ s

0
ξ(s, τ) sup

−∞≤r≤0
∥v∗

τ (r) − w∗
τ (r)∥dτ

}
ds

]

≤
N0S0K0κ

Γ(1 + β)

 ∫ t

0
(t− s)β

{
sup

0≤z≤s
∥v∗(z) − w∗(z)∥

+ ξ∗ sup
0≤z≤s

∥v∗(z) − w∗(z)∥

}
ds

]
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≤
N0S0K0κ

Γ(1 + β)
(1 + ξ∗)

∫ t

0
(t− s)β∥v∗(s) − w∗(s)∥ds.

Now, by Lemma 2.1, we get v∗(t) = w∗(t) for all t ∈ [0, T ]. So, v∗(t) = w∗(t) for all
t ∈ (−∞, T ]. Hence, v∗(t) = w∗(t) = z∗(t)(say) for all t ∈ (−∞, T ] is the unique
solution of (3.2). So, we get y(t) = u(t) + z∗(t) is the unique mild solution of the
system (1.1). □

4. Example

The fractional order diffusion wave equations have great applications in various fields
of science and engineering. These equations represent propagation of mechanical waves
through viscoelastic media, charge transport in amorphous semiconductors [15,20,30],
and may be used in thermodynamics and shear in fluids, the flow of fluid through
fissured rocks [1]. In particular, the fractional delay diffusion wave equations describe
the driver reaction time, time taken for a signal traveling to the controlled object, time
consume by body to produce red blood cells and cell division time in the dynamics of
viral persistence or exhaustion.

Let β, γj > 0, j = 1, 2, 3, . . . , n be given, satisfying 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1.
Consider the following system

(4.1)



cD1+βu(t, ν) +
n∑

j=1

αj
cDγju(t, ν) = ∆u(t, ν) + L


♣ut(θ,ν)♣

♣1+ut(θ,ν)♣

+
∫ t

0(t− s)−1/2s−1/2
∫ 0

−∞ ξ(θ)ut(θ, ν)dθds

,

u(θ, ν) = u0(θ, ν), θ ∈ (−∞, 0], ∂u(t,ν)
∂t

♣t=0 = z0,

where X = L2([0, 1],R), t ∈ I = [0, 1], T > 0, ν ∈ [0, 1], L ≥ 0, xt(θ, ν) = x(t+ θ, ν),
t ∈ I, ξ : (−∞, 0] → R+, u0 : (−∞, 0] × [0, 1] → R and ∆ is the Laplace operator
with maximal domain ¶v ∈ X : v ∈ H2([0, 1],R)♢. Let P = ¶v ∈ X : v(ν) ⩾ 0 a.e. ν ∈
[0, 1]♢. Then the cone P is normal in Banach space X with normal constant N = 1.

Using the theory of cosine families, we can see that Laplacian ∆ generates a bounded
cosine function ¶C(t)♢t≥0 on the space L2([0, 1],R). Moreover, by Theorem 2.1 the
operator ∆ in system (4.1) generates a bounded ¶Sβ,γj

(t)♢t≥0-resolvent family. Let us
assume S0 = supt∈[0,1] ∥Sβ,γj

(t)∥.
For t ∈ [0, 1], ν ∈ [0, 1] and θ ∈ (−∞, 0], we set z0 = χ and

y(t) =u(t, ν),

ϕ(θ) =u0(θ, ν),

h(t, s, ys) =(t− s)−1/2s−1/2
∫ 0

−∞
ξ(θ)ut(θ, ν)dθ,

F (t, yt,

∫ t

0
h(t, s, ys)ds) =L


♣ut(θ, ν)♣

1 + ♣ut(θ, ν)♣
+
∫ t

0
h(t, s, ys)ds

]
.
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Now, we observe that the system (4.1) has a abstract form of system (1.1). Let

v(t) = 0 for t ∈ [0, 1]. Then F

t, vt,

∫ t
0 h(t, s, vs)ds


= 0 for t ∈ [0, 1] and ϕ(t) ≥ v(t)

for t ∈ (−∞, 0]. Let us suppose that there exists a function w(t) ≥ 0 such that
(4.2){

cD1+βw(t) +
∑n

j=1 αj
cDγjw(t)≥ Aw(t) + F


t, wt,

∫ t
0 h(t, s, ws)ds


, t ∈ (0, T ],

w(t) ≥ ϕ(t) ∈ B, t ∈ (−∞, 0], w′(0) ≥ χ.

Thus the system (1.1) admits lower and upper solutions v, w such that v ≤ w.
Let ϑ > 0 be a constant and

B =

y ∈ C((−∞, 0],R) : lim

θ→−∞
eϑθy(θ) exists in R

}
.

The norm of B is given by ∥y∥B = sup−∞<θ≤0 e
ϑθ♣y(θ)♣. Let y : (−∞, 0] → R such

that y0 ∈ B. Then

lim
θ→−∞

eϑθyt(θ) = lim
θ→−∞

eϑθy(t+ θ) = lim
θ→−∞

eϑ(θ−t)y(θ) = e−ϑt lim
θ→−∞

eϑθy0(θ) < ∞.

Hence, yt ∈ B. Finally, we will show that

∥yt∥B ≤ K1(t) sup
s∈[0,t]

♣y(s)♣ +K2(t)∥y0∥B,

where K1 = K2 = 1 and K = 1. We have ♣yt(θ)♣ = ♣y(t+ θ)♣. If t+ θ ≤ 0, we obtain

♣yt(θ)♣ ≤ sup
s∈(−∞,0]

♣y(s)♣.

If t+ θ ≥ 0, then we get

♣yt(θ)♣ ≤ sup
s∈[0,t]

♣y(s)♣.

Thus, for all (t+ θ) ∈ [0, 1] we have

♣yt(θ)♣ ≤ sup
s∈(−∞,0]

♣y(s)♣ + sup
s∈[0,t]

♣y(s)♣.

Then

∥yt∥B ≤ ∥y0∥B + sup
s∈[0,t]

♣y(s)♣.

One can easily check that B is a Banach space equipped with the norm ∥ · ∥B and
hence conclude that B is a phase space. Clearly, the functions f and h satisfies
the assumptions (A1) and (A2). For t ∈ [0, 1], φ1, φ2 ∈ B with 0 ≤ φ1 ≤ φ2 and
v1, v2 ∈ X, we have

0 ≤ h(t, s, φ2) − h(t, s, φ1) ≤ (t− s)−1/2s−1/2
∫ 0

−∞
ξ(θ)(φ2(θ) − φ2(θ)dθ

and

0 ≤ F (t, φ2, v2) − F (t, φ1, v1) ≤L


♣φ2(θ)♣

1 + ♣φ2(θ)♣
−

♣φ1(θ)♣

1 + ♣φ1(θ)♣
+ v2 − v1

]
.
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Using normality of cone P, we have

∥h(t, s, φ2) − h(t, s, φ1)∥ ≤(t− s)−1/2s−1/2
∫ 0

−∞
♣ξ(θ)♣∥φ2(θ) − φ1(θ)∥dθ,

∥F (t, φ2, v2) − F (t, φ1, v1)∥ ≤L[∥φ2(θ) − φ1(θ)∥ + ∥v2 − v1∥].

Now, by the property of measure of noncompactness for U ⊂ C((−∞, 0],X) and
V ⊂ X, we have

µ(h(t, s, U)) ≤ξ(t, s) sup
−∞≤θ≤0

µ(U(θ)),

µ(f(t, U, V )) ≤L[ sup
−∞<θ≤0

µ(U(θ)) + µ(V )],

where ξ(t, s) = (t − s)−1/2s−1/2
∫ 0

−∞ ♣ξ(θ)♣dθ. Let ξ∗ = supt,s∈(−∞,1] ξ(t, s). Thus,
assumptions (A3) and (A4) are fulfilled. Now by the Theorem 3.1, the system (4.1)
admits extrimal mild solutions lying between the lower solution 0 and the upper
solution w. Further, by Theorem 3.3 the system (4.1) admits unique mild solution.

5. Conclusion

The monotone iterative technique has been employed to establish the existence and
uniqueness of mild solution for a class of multi-term time-fractional delay differential
system in an ordered Banach space. Assuming the existence of the lower and upper
solutions of the system (1.1), a new set of sufficient conditions has been obtained in
which the nonlinear functions satisfy some monotonic properties. One can extend
this idea to establish the existence results for multi-term time-fractional differential
system with impulsive conditions.

Acknowledgements. The authors would like to thank the editor and anonymous
reviewers for their valuable comments and suggestions.
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MORE GENERALIZATIONS OF UNION SOFT HYPERIDEALS OF
ORDERED SEMIHYPERGROUPS

MUHAMMAD FAROOQ1, MOHAMMAD KHALAF2, AND ASGHAR KHAN1

Abstract. In this paper, we introduce the notions of (M , N )-union soft hyperide-
als and (M , N )-union soft interior hyperideals of ordered semihypergroups. Some
basic operations are investigated and some related properties are also studied. We
present characterizations of ordered semihypergroups in terms of (M , N )-union soft
hyperideals and (M , N )-union soft interior hyperideals. We prove that every (M , N )-
union soft hyperideal is an (M , N )-union soft interior hyperideal but the converse
is not true which is shown with help of an example. However we show that the
notions of (M , N )-union soft hyperideals and (M , N )-union soft interior hyperideals
coincide in a regular as well as in intra-regular ordered semihypergroups. Moreover
we introduce the notion of (M , N )-union soft simple ordered semihypergroups. Fi-
nally, we characterize (M , N )-union soft simple ordered semihypergroups by means
of (M , N )-union soft hyperideals and (M , N )-union soft interior hyperideals.

1. Introduction

There are many examples in chemistry where the sum of two elements is a set of
elements. In this case we have a hyperstructure. Algebraic hyperstructures represent
a natural extension of classical algebraic structures and they were originally proposed
in 1934 by a French mathematician Marty [8] at the 8th Congress of Scandinavian
Mathematicians. One of the main reason which attracts researches towards hyper-
structures is its unique property that in hyperstructures composition of two elements
is a set, while in classical algebraic structures the composition of two elements is an

Key words and phrases. Regular ordered semihypergroup, intra-regular ordered semihypergroup,
(M , N )-union soft hyperideal, (M , N )-union soft interior hyperideal, (M , N )-union soft simple ordered
semihypergroup.
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element. Thus algebraic hyperstructures are natural extension of classical algebraic
structures. Since then, hyperstructures are widely investigated from the theoretical
point of view and for their applications to many branches of pure and applied mathe-
matics. Especially, semihypergroups are the simplest algebraic hyperstructures which
possess the properties of closure and associativity. Nowadays many researchers have
studied different aspects of semihypergroups (see [9–15,18]).

The uncertainty appeared in economics, engineering, environmental science, medical
science and social science and so many other applied sciences is too complicated to
be solved by traditional mathematical framework. Molodstov [6], introduced soft
set theory and it has received much attention since its inception. Soft set theory
emphasizes a balanced coverage of both theory and practice. Nowadays, it has
promoted a breadth of the discipline of informations sciences with intelligent systems,
approximate reasoning, expert and decision support systems, self-adaptation and self-
organizational systems, information and knowledge, modeling and computing with
words. Soft set theory has been regarded as a new mathematical tool for dealing with
uncertainties and it has seen a wide-ranging applications in the mean of algebraic
structures such as groups [1], semirings [2], ordered semigroups [4], hemirings [5, 7],
and so on. Feng et al. discussed soft relations in semigroups (see [3]) and explored
decomposition of fuzzy soft sets with finite value spaces. Khan et al. [17], applied
soft set theory to ordered semihypergroups and introduced the notions of uni-soft
subsemihypergroups and uni-soft left (resp. right) hyperideals.

In this paper, we study the concepts of union soft interior hyperideals, (M , N )-union
soft hyperideals and (M , N )-union soft interior hyperideals in ordered semihypergroups
and present some related examples of these concepts. We show that (M , N )-union
soft hyperideals and (M , N )-union soft interior hyperideals coincide in regular ordered
semihypergroups and intra-regular ordered semihypergroups. We characterize ordered
semihypergroups in terms of (M , N )-union soft hyperideals and (M , N )-union soft
interior hyperideals. We introduce the concept of (M , N )-union soft simple ordered
semihypergroups. Moreover we characterize (M , N )-union soft simple ordered semi-
hypergroups in terms of (M , N )-union soft hyperideals and (M , N )-union soft interior
hyperideals.

2. Preliminaries

By an ordered semihypergroup we mean a structure (S, ◦, ≤) in which the following
conditions are satisfied:

(1) (S, ◦) is a semihypergroup;
(2) (S, ≤) is a poset;
(3) for all a, b, x ∈ S a ≤ b implies x ◦ a ≤ x ◦ b and a ◦ x ≤ b ◦ x.
For A ⊆ S, we denote (A] := ¶t ∈ S : t ≤ h for some h ∈ A♢. For A, B ⊆ S, we

have A ◦ B :=
⋃

¶a ◦ b : a ∈ A, b ∈ B♢.
A nonempty subset A of an ordered semihypergroup S is called a subsemihypergroup

of S if A2 ⊆ A.
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A nonempty subset A of S is called a left (resp. right) hyperideal of S if it satisfies
the following conditions:

(1) S ◦ A ⊆ A (resp. A ◦ S ⊆ A);
(2) if a ∈ A, b ∈ S and b ≤ a, implying b ∈ A.
By a two sided hyperideal or simply a hyperideal of S we mean a nonempty subset

of S which is both a left hyperideal and a right hyperideal of S.
A subsemihypergroup A of S is called an interior hyperideal of S if it satisfies the

following conditions:
(1) S ◦ A ◦ S ⊆ A;
(2) if a ∈ A, b ∈ S and b ≤ a, implying b ∈ A.
An ordered semihypergroup (S, ◦, ≤) is called regular if for every a ∈ S there exists

x ∈ S such that a ≤ a ◦ x ◦ a.
An ordered semihypergroup S is called intra-regular if for every a ∈ S, there exist

x, y ∈ S such that a ≤ x ◦ a ◦ a ◦ y.

3. Soft Sets

In what follows, we take E = S as the set of parameters, which is an ordered
semihypergroup, unless otherwise specified.

From now on, U is an initial universe set, E is a set of parameters, P (U) is the
power set of U and A, B, C, . . . ⊆ E.

Definition 3.1 (see [6]). A soft set fA over U is defined as

fA : E → P (U) such that fA(x) = ∅ if x /∈ A.

Hence, fA is also called an approximation function.

A soft set fA over U can be represented by the set of ordered pairs

fA = ¶(x, fA(x)) ♣ x ∈ E, fA(x) ∈ P (U)♢ .

It is clear that a soft set is a parameterized family of subsets of U . Note that the set
of all soft sets over U will be denoted by S(U).

Definition 3.2 (see [6]). Let fA, fB ∈ S(U). Then fA is called a soft subset of fB,
denoted by fA⊆̃fB if fA(x) ⊆ fB(x) for all x ∈ E.

Definition 3.3 (see [6]). Two soft sets fA and fB are said to be equal soft sets if
fA⊆̃fB and fB⊆̃fA and is denoted by fA=̃fB.

Definition 3.4. (see [6]). Let fA, fB ∈ S(U). Then the soft union of fA and fB,
denoted by fA∪̃fB = fA∪B, is defined by (fA∪̃fB) (x) = fA(x) ∪ fB(x) for all x ∈ E.

Definition 3.5 (see [6]). Let fA, fB ∈ S(U). Then the soft intersection of fA and fB,
denoted by fA∩̃fB = fA∩B, is defined by (fA∩̃fB) (x) = fA(x) ∩ fB(x) for all x ∈ E.

For x ∈ S, we define Ax = ¶(y, z) ∈ S × S ♣ x ≤ y ◦ z♢.
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Definition 3.6 (see [17]). Let fA and gB be two soft sets of an ordered semihypergroup
S over U . Then, the uni-soft product, denoted by fA⋄̃gB, is defined by

fA⋄̃gB : S → P (U), x 7→ (fA⋄̃gB) (x) =





⋂

(y,z)∈Ax

¶fA(y) ∪ gB(z)♢ , if Ax ̸= ∅,

U, if Ax = ∅,

for all x ∈ S.

Definition 3.7 (see [17]). Let A ⊆ S. Then the soft characteristic function

χc
A : S → P (U)

is defined by

χA(x) :=

{
U, if x ∈ A,
∅, if x /∈ A.

For the characteristic soft set χA over U , the soft set χc
A over U given as follows:

χc
A(x) :=

{
∅, if x ∈ A,
U, if x /∈ A.

For an ordered semihypergroup, the soft sets “∅S” of S over U is defined as follows:

∅S : S 7→ P (U), x 7→ ∅S (x) = ∅.

Definition 3.8 (see [17]). Let fA be a soft set of an ordered semihypergroup S over
U a subset δ such that δ ∈ P (U). The δ-exclusive set of fA is denoted by eA(fA, δ)
and defined to be the set

eA(fA, δ) = ¶x ∈ S ♣ fA (x) ⊆ δ♢ .

Definition 3.9 (see [17])). A soft set fA of an ordered semihypergroup S over U is
called a union soft subsemihypergroup of S over U if

(∀x, y ∈ S)
⋃

α∈x◦y

fA(α) ⊆ fA(x) ∪ fA(y).

Definition 3.10 (see [17]). Let fA be a soft set of an ordered semihypergroup S over
U. Then fA is called a union soft left (resp. right) hyperideal of S over U if it satisfies
the following conditions:

(1) (∀x, y ∈ S)
⋃

α∈x◦y

fA(α) ⊆ fA(y)


resp.

⋃

α∈x◦y

fA(α) ⊆ fA(x)


;

(2) (∀x, y ∈ S) x ≤ y ⇒ fA(x) ⊆ fA(y).

A soft set fA of an ordered semihypergroup S over U is called a union soft hyperideal

of S over U if it is both a union soft left hyperideal and a union soft right hyperideal
of S over U.

Definition 3.11. A union soft subsemihypergroup fA of an ordered semihypergroup
S over U is called a union soft interior hyperideal of S over U if it satisfies the following
conditions:
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(1) (∀x, y, a ∈ S)
⋃

α∈x◦a◦y

fA(α) ⊆ fA(a);

(2) (∀x, y ∈ S) x ≤ y ⇒ fA(x) ⊆ fA(y).

Example 3.1. Let (S, ◦, ≤) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

◦ e1 e2 e3 e4

e1 ¶e1♢ ¶e1♢ ¶e1♢ ¶e1♢
e2 ¶e1♢ ¶e1♢ ¶e1, e4♢ ¶e1♢
e3 ¶e1♢ ¶e1♢ ¶e1♢ ¶e1♢
e4 ¶e1♢ ¶e1♢ ¶e1♢ ¶e1♢

,

≤:= ¶(e1, e1), (e2, e2), (e3, e3), (e4, e4), (e1, e4)♢.

Suppose U = ¶1, 2, 3♢ and A = ¶e2, e3, e4♢ . Let us define fA (e1) = ∅, fA (e2) = ¶1♢ ,
fA (e3) = ¶1, 2, 3♢ and fA (e4) = ¶2, 3♢ . Then fA is a union soft interior hyperideal of
S over U.

4. (M, N)-Union Soft Hyperideals

In this section, we introduce the notions of (M , N )-union soft hyperideal of ordered
semihypergroups and investigate some related properties. From now on, ∅ ⊆ M ⊂
N ⊆ U.

For any soft sets fA and gB, we define an order relation ⊇̃[M,N ] by putting

fA⊇̃[M,N ]gB ⇔ (fA (x) ∪ M) ∩ N⊇̃ (gB (x) ∪ M) ∩ N,

for all x ∈ S.
In case fA⊇̃[M,N ]gB and gB⊇̃[M,N ]fA then fA =[M,N ] gB.

Theorem 4.1. Let (S, ◦, ≤) be an ordered semihypergroup. Then the set
(
S(U), ⋄̃, ⊇̃[M,N ]



forms an ordered semihypergroup.

Proof. Obviously, the operation “⋄̃” is well-defined.
Let fA, gB, and hC ∈ S(U) and x be any element of S. If Ax = ∅, then, clearly,

((((fA⋄̃gB) ⋄̃hC) (x)) ∪ M) ∩ N = (((fA⋄̃ (gB⋄̃hC)) (x)) ∪ M) ∩ N. Let Ax ̸= ∅, then
we have

((((fA⋄̃gB) ⋄̃hC) (x)) ∪ M) ∩ N

=





⋂

x≤y◦z

¶(fA⋄̃gB) (y) ∪ hC (z)♢


 ∪ M


 ∩ N

=





⋂

x≤y◦z




⋂

y≤u◦v

¶fA (u) ∪ gB (v)♢ ∪ hC (z)






 ∪ M


 ∩ N



292 M. FAROOQ, M. KHALAF, AND A. KHAN

=






⋂

x≤(u◦v)◦z

¶fA (u) ∪ gB (v) ∪ hC (z)♢


 ∪ M


 ∩ N

=






⋂

x≤u◦(v◦z)

¶fA (u) ∪ (gB (v) ∪ hC (z))♢


 ∪ M


 ∩ N

⊇






⋂

x≤u◦(v◦z)



fA (u) ∪




⋂

y≤v◦z

(gB (v) ∪ hC (z))










 ∪ M


 ∩ N

=






⋂

x≤u◦(v◦z)

¶fA (u) ∪ (gB⋄̃hC) (v ◦ z)♢


 ∪ M


 ∩ N

= (((fA⋄̃ (gB⋄̃hC)) (x)) ∪ M) ∩ N.

It follows that ((fA⋄̃gB) ⋄̃hC) ⊇̃[M,N ] (fA⋄̃ (gB⋄̃hC)) . Similarly, we can prove that

(fA⋄̃ (gB⋄̃hC)) ⊇̃[M,N ] ((fA⋄̃gB) ⋄̃hC). Thus we have proved that ((fA⋄̃gB) ⋄̃hC) =[M,N ]

(fA⋄̃ (gB⋄̃hC)) .
Assume that fA⊇̃[M,N ]gB and let Ax = ∅. Then obviously, (fA⋄̃hC) ⊇̃[M,N ] (gB⋄̃hC)

and (hC ⋄̃fA) ⊇̃[M,N ] (hC ⋄̃gB) . If Ax ̸= ∅, then

(((fA⋄̃hC) (x)) ∪ M) ∩ N =






⋂

(y,z)∈Ax

¶fA (y) ∪ hC (z)♢


 ∪ M


 ∩ N

=






⋂

(y,z)∈Ax

¶fA (y) ∪ hC (z) ∪ M♢


 ∪ M


 ∩ N

⊇






⋂

(y,z)∈Ax

¶gB (y) ∪ hC (z) ∩ N♢


 ∪ M


 ∩ N

=




⋂

(y,z)∈Ax

¶gB (y) ∪ hC (z) ∩ N♢


 ∪ (M ∩ N)

=






⋂

(y,z)∈Ax

¶gB (y) ∪ hC (z)♢


 ∩ N


 ∪ M

=






⋂

(y,z)∈Ax

¶gB (y) ∪ hC (z)♢


 ∪ M


 ∩ N

= (gB⋄̃hC) (x) .

In a similar way, we can show that (hC ⋄̃fA) ⊇̃[M,N ] (hC ⋄̃gB) . Thus,
(
S(U), ⋄̃, ⊇̃[M,N ]



is an ordered semihypergroup.
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Definition 4.1. A soft set fA of an ordered semihypergroup S over U is called an
(M , N )-union subsemihypergroup of S over U if

(∀x, y ∈ S)



⋃

α∈x◦y

fA(α)


 ∩ N ⊆ fA(x) ∩ fA(y) ∪ M.

Example 4.1. Let (S, ◦, ≤) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

◦ p q r s
p ¶p♢ ¶p♢ ¶p♢ ¶p♢
q ¶p♢ ¶p♢ ¶p♢ ¶p♢
r ¶p♢ ¶p♢ ¶p, q♢ ¶p♢
s ¶p♢ ¶p♢ ¶p, q♢ ¶p, q♢

,

≤:= ¶(p, p), (q, q), (r, r), (s, s), (p, q)♢.

Suppose U = ¶1, 2, 3♢ , A = ¶q, r, s♢ , M = ¶2♢ and N = ¶1, 2♢ . Let us define
fA (p) = ∅, fA (q) = ¶2♢ , fA (r) = ¶1, 2, 3♢ and fA (s) = ¶2, 3♢ . Then fA is an
(M , N )-union soft subsemihypergroup of S over U.

Theorem 4.2. A non-empty subset A of an ordered semihypergroup (S, ◦, ≤) is a

subsemihypergroup of S if and only if the soft set fA, defined by

fA (x) =

{
δ1, if x ∈ A,
δ2, if x /∈ A,

is an (M , N )-union soft subsemihypergroup of S over U , where δ1, δ2 ⊆ U such that

M ⊆ δ1 ⊆ δ2 ⊆ N ⊆ U.

Proof. Suppose A is a subsemihypergroup of S. Suppose x, y ∈ S. If x, y ∈ A, then
x◦y ⊆ A. We have to show that

⋃

β∈x◦y

fA (β)∩N ⊆ fA (x)∩fA (y)∪M. Let β ∈ x◦y ⊆ A.

Then fA (β) = δ1. Also fA (x) = δ1 = fA (y) . So fA (β) = δ1 = fA (x) ∪ fA (y) . Hence⋃

β∈x◦y

fA (β)∩N = δ1∩N = δ1 = fA (x)∪fA (y)∪M. If x or y is not in A, then x◦y ⊆ A

or x ◦ y ⊈ A. If x ◦ y ⊆ A, then for β ∈ x ◦ y ⊆ A, we have fA (β) ∩ N = δ1 ∩ N = δ1.
If x ◦ y ⊈ A, then for β ∈ x ◦ y ⊈ A, we have fA (β) ∩ N = δ2 ∩ N = δ2. But

fA (x) ∪ fA (y) ∪ M = δ2 ∪ M = δ2. Thus,
⋃

β∈x◦y

fA (β) ∩ N ⊆ fA (x) ∪ fA (y) ∪ M.

Conversely, assume that fA is an (M , N )-union soft subsemihypergroup of S over
U. Let x, y ∈ A. Then fA (x) = δ1 = fA (y) . By our supposition

⋃

β∈x◦y

fA (β) ∩ N ⊆

fA (x) ∪ fA (y) ∪ M = δ1 ∪ M = δ1. But M ⊆ δ1 ⊆ δ2 ⊆ N. So, fA (β) ⊆ δ1 for every
β ∈ x ◦ y. Thus, β ∈ A. This implies that x ◦ y ⊆ A. Hence, A is subsemihypergroup
of S. □

Theorem 4.3. If fA and gB are two (M , N )-union soft subsemihypergroup of S over

U, then their union fA ∪ gB is an (M , N )-union soft subsemihypergroup of S over U.
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Proof. Let x, y ∈ S. Since fA and gB are two (M , N )-union soft subsemihypergroup
of S over U. Then for every α ∈ x ◦ y, we have

(fA ∪ gB) (α) ∩ N = (fA (α) ∪ gB (α)) ∩ N

= (fA (α) ∩ N) ∪ (gB (α) ∩ N)

⊆ (fA (x) ∪ fA (y) ∪ M) ∪ (gB (x) ∪ gB (y) ∪ M)

= ((fA (x) ∪ gB (x)) ∪ (fA (y) ∪ gB (y))) ∪ M

= (fA ∪ gB) (x) ∪ (fA ∪ gB) (y) ∪ M.

Hence,
⋃

α∈x◦y

(fA ∪ gB) (α)∩N ⊆ (fA ∪ gB) (x)∪ (fA ∪ gB) (y)∪M. Therefore, fA ∪gB

is an (M , N )-union soft subsemihypergroup of S over U. □

Definition 4.2. A soft set fA of an ordered semihypergroup S over U is called an
(M , N )-union soft left (resp. right) hyperideal of S over U if it satisfies the following
conditions:

(1)



⋃

α∈x◦y

fA(α)


 ∩ N ⊆ fA(y) ∪ M


resp.

⋃

α∈x◦y

fA(α)) ∩ N ⊆ fA(x) ∪ M


;

(2) x ≤ y ⇒ fA(x) ∩ N ⊆ fA(y) ∪ M ,
for all x, y ∈ S.

A soft set fA of an ordered semihypergroup S over U is called an (M , N )-union

soft hyperideal of S over U if it is both an (M , N )-union soft left hyperideal and an
(M , N )-union soft right hyperideal of S over U.

Example 4.2. Let (S, ◦, ≤) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

◦ 1 2 3 4
1 ¶1♢ ¶1♢ ¶1♢ ¶1♢
2 ¶1♢ ¶1♢ ¶1♢ ¶1♢
3 ¶1♢ ¶1♢ ¶1♢ ¶1, 2♢
4 ¶1♢ ¶1♢ ¶1, 2♢ ¶1, 2, 3♢

,

≤:= ¶(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4)♢.

Suppose U = ¶h1, h2, h3♢ , A = ¶1, 3, 4♢ , M = ¶h1♢ and N = ¶h1, h3♢ . Let us
define fA (1) = ∅, fA (2) = ¶h1♢ , fA (3) = ¶h1, h2♢ and fA (4) = ¶h1, h2, h3♢ . Then
fA is an (M , N )-union soft hyperideal of S over U.

Theorem 4.4. Let (S, ◦, ≤) be an ordered semihypergroup and ∅ ≠ A ⊆ S. Then A is

a left (resp. right) hyperideal of S if and only if the soft set χc
A of A is an (M , N )-union

soft left (resp. right) hyperideal of S over U.

Proof. Suppose that A is a left hyperideal of S. Let x, y ∈ S. Then


⋃

α∈x◦y

χc
A (α)


 ∩ N ⊆ χc

A(y) ∪ M.
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Indeed, if y /∈ A then χc
A (y) = U. Since χc

A (x) ⊆ U for all x ∈ S and ∅ ⊆ M ⊂ N ⊆ U,
we have 


⋃

α∈x◦y

χc
A (α)


 ∩ N ⊆ U = χc

A(y) ∪ M.

Let y ∈ A. Since A is a left hyperideal of S and x ∈ S, we have x ◦ y ⊆ S ◦ A ⊆ A.
Thus, in this case χc

A (α) = ∅ for any α ∈ x ◦ y. Hence,


⋃

α∈x◦y

χc
A (α)


 ∩ N = ∅ ⊆ χc

A(y) ∪ M.

Let now x, y ∈ S, x ≤ y. Then χc
A (x) ∩ N ⊆ χc

A(y) ∪ M. In fact, if y ∈ A, then
χc

A(y) = ∅. Since S ∋ x ≤ y ∈ A, by hypothesis we have x ∈ A, then χc
A(x) = ∅.

Thus χc
A(x) ∩ N = ∅ ⊆ M = χc

A(y) ∪ M. If y /∈ A, then χc
A(y) = U. Since x ∈ S,

∅ ⊆ M ⊂ N ⊆ U, we have χc
A(x) ∩ N ⊆ U = χc

A(y) ∪ M. Consequently, χc
A is an

(M , N )-union soft left hyperideal of S over U.
Conversely, let A be a non-empty subset of S such that χc

A is an (M , N )-union soft
left hyperideal of S over U. We claim that S ◦ A ⊆ A. To prove our claim, let x ∈ S
and y ∈ A. By hypothesis,



⋃

α∈x◦y

χc
A (α)


 ∩ N ⊆ χc

A(y) ∪ M = ∅ ∪ M = M.

Thus, by ∅ ⊆ M ⊂ N ⊆ U,
⋃

α∈x◦y

χc
A (α)∩N ⊆ M. Hence for any α ∈ x◦y, χc

A (α) = ∅,

i.e., α ∈ A. It thus follows that S ◦ A ⊆ A. Furthermore, let x ∈ A, S ∋ y ≤ x. Then
y ∈ A. Indeed, it is enough to prove that χc

A (y) = ∅. By x ∈ A, we have χc
A (x) = ∅.

Since χc
A is an (M , N )-union soft left hyperideal of S over U and y ≤ x, we have

χc
A (y) ∩ N ⊆ χc

A (x) ∪ M = ∅ ∪ M = M. Notice that ∅ ⊆ M ⊂ N ⊆ U, we conclude
that χc

A (y) = ∅. Therefore, A is a left hyperideal of S.
Similarly we can show that χc

A is an (M , N )-union soft right hyperideal of S over
U, if and only if A is a right hyperideal of S. □

Corollary 4.1. Let (S, ◦, ≤) be an ordered semihypergroup and ∅ ̸= A ⊆ S. Then

A is a hyperideal of S if and only if the soft set χc
A of A is an (M , N )-union soft

hyperideal of S over U.

Theorem 4.5. Let fA be a soft set of an ordered semihypergroup S over U and

δ ∈ P (U) . Then fA is an (M , N )-union soft hyperideal of S over U if and only if the

nonempty δ-exclusive set eA(fA, δ) of fA is a hyperideal of S and M ⊂ δ ⊆ N.

Proof. Assume that fA is an (M , N )-union soft hyperideal of S over U. Let x ∈
eA(fA, δ) for M ⊂ δ ⊆ N and y ∈ S. Then fA (x) ⊆ δ. It follows from Definition 4.2,
that 


⋃

α∈x◦y

fA (α)


 ∩ N ⊆ fA (x) ∪ M ⊆ δ ∪ M = δ
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and 

⋃

α∈y◦x

fA (α)


 ∩ N ⊆ fA (x) ∪ M ⊆ δ ∪ M = δ.

Notice that δ ⊆ N we can deduce that
⋃

α∈x◦y

fA (α) ⊆ δ and
⋃

α∈y◦x

fA (α) ⊆ δ. Thus

it can be easily shown that x ◦ y ⊆ eA(fA, δ) and y ◦ x ⊆ eA(fA, δ). Furthermore,
let x ∈ eA(fA, δ), S ∋ y ≤ x. Then y ∈ eA(fA, δ). Indeed, since x ∈ eA(fA, δ),
fA (x) ⊆ δ and fA is an (M , N )-union soft hyperideal of S over U, we have fA (y)∩N ⊆
fA (x) ∪ M ⊆ δ ∪ M = δ. By δ ⊂ N, we have fA (y) ⊆ δ, i.e., y ∈ eA(fA, δ). Therefore,
eA(fA, δ) is a hyperideal of S.

Conversely, let eA(fA, δ) ̸= ∅ be a hyperideal of S for all M ⊂ δ ⊆ N. If there exist
x1, y1 ∈ S such that




⋃

α∈x1◦y1

fA (α)


 ∩ N ⊃ fA (y1) ∪ M,

then there exists M ⊂ δ ⊆ N such that



⋃

α∈x1◦y1

fA (α)


 ∩ N ⊃ δ ⊇ fA (y1) ∪ M

and we have fA (y1) ⊆ δ and
⋃

α∈x1◦y1

fA (α) ⊃ δ. Thus, y1 ∈ eA(fA, δ) and x1 ◦ y1 ⊈

eA(fA, δ), which is a contradiction. Hence,


⋃

α∈x◦y

fA (α)


 ∩ N ⊆ fA (y) ∪ M,

for all x, y ∈ S. Moreover if x ≤ y then fA (x) ∩ N ⊆ fA (y) ∪ M. Indeed, if there
exist x1, y1 ∈ S such that x1 ≤ y1 and fA (x1) ∩ N ⊃ fA (y1) ∪ M then there exists
M ⊂ δ ⊆ N such that fA (x1) ∩ N ⊃ δ ⊇ fA (y1) ∪ M and we have fA (y1) ⊆ δ
and fA (x1) ⊃ δ. Then y1 ∈ eA(fA, δ) and x1 /∈ eA(fA, δ). This is a contradiction that
eA(fA, δ) is a hyperideal of S. Therefore fA is an (M , N )-union soft left hyperideal of S
over U. In a similar way we can show that fA is an (M , N )-union soft right hyperideal
of S over U and thus fA is an (M , N )-union soft hyperideal of S over U. □

Theorem 4.6. Let (S, ◦, ≤) be an ordered semihypergroup and fA be a soft set of S
over U. Then fA is an (M , N )-union soft left hyperideal of S over U if and only if fA

satisfies the following conditions:

(1) ∅S ⋄̃fA⊇̃[M,N ]fA;
(2) (∀x, y ∈ S) x ≤ y ⇒ fA(x) ∩ N ⊆ fA(y) ∪ M.

Proof. Suppose that fA is an (M , N )-union soft left hyperideal of S over U . Then by
Definition 4.2, condition (2) holds. To prove the condition (1) holds, it is enough to
prove that (∅S ⋄̃fA) (x) ∪ M ⊇ fA (x) ∩ N for any x ∈ S. Indeed, let x ∈ S. If Ax = ∅,
then (∅S ⋄̃fA) (x) ∪ M ⊇ fA (x) ∩ N. Let Ax ̸= ∅. Then there exist y, z ∈ S such that
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x ≤ y ◦ z and there exists v ∈ y ◦ z such that x ≤ v. Since fA is an (M , N )-union soft
left hyperideal of S over U , we have for any x ≤ y ◦ z. Thus,

((∅S ⋄̃fA) (x) ∪ M) ∩ N =






⋂

(y,z)∈Ax

¶∅S (y) ∪ fA (z)♢


 ∪ M


 ∩ N

=






⋂

(y,z)∈Ax

¶∅ ∪ fA (z) ∪ M♢


 ∪ M


 ∩ N

=






⋂

(y,z)∈Ax

¶fA (z) ∪ M♢


 ∪ M


 ∩ N

⊇






⋂

(y,z)∈Ax

¶fA (x) ∩ N♢


 ∪ M


 ∩ N

= [¶fA (x) ∩ N♢ ∪ M ] ∩ N

= (fA (x) ∩ N) ∪ (M ∩ N)

= (fA (x) ∩ N) ∪ M

= (fA (x) ∪ M) ∩ N.

Thus, ∅S ⋄̃fA⊇̃[M,N ]fA for all x ∈ S.
Conversely, assume that the conditions (1) and (2) hold. Let y, z ∈ S. Then we can

prove that
⋃

x∈yαz

fA (x) ∩ N ⊆ fA (z) ∪ M for any x ∈ y ◦ z. In fact, since x ∈ y ◦ z,

x ≤ x, we have x ≤ y ◦ z. Thus by hypothesis, we have

fA (x) ∩ N ⊆ (fA (x) ∩ N) ∪ M

⊆ ((∅S ⋄̃fA) (x) ∩ N) ∪ M

=






⋂

(p,q)∈Ax

¶∅S (p) ∪ fA (q)♢


 ∩ N


 ∪ M

⊆ (¶∅S (y) ∪ fA (z)♢ ∩ N) ∪ M

= (¶∅ ∪ fA (z)♢ ∩ N) ∪ M

= (fA (z) ∩ N) ∪ M

= (fA (z) ∪ M) ∩ (N ∪ M)

= (fA (z) ∪ M) ∩ N

⊆ fA (z) ∪ M.

Hence,
⋃

x∈yαz

fA (x) ∩ N ⊆ fA (z) ∪ M for any x ∈ y ◦ z. Hence, fA is an (M , N )-union

soft left hyperideal of S over U □

Similarly we can prove the following theorem.
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Theorem 4.7. Let (S, ◦, ≤) be an ordered semihypergroup and fA be a soft set of S
over U. Then fA is an (M , N )-union soft right hyperideal of S over U if and only if

fA satisfies the following conditions:

(1) fA⋄̃∅S⊇̃[M,N ]fA;
(2) (∀x, y ∈ S) x ≤ y ⇒ fA(x) ∩ N ⊆ fA(y) ∪ M.

5. (M, N)-Union Soft Interior Hyperideals

In this section, we introduce the notion of (M , N )-union soft interior hyperideal of
ordered semihypergroups and will study some related properties.

Definition 5.1. Let fA be a soft set of an ordered semihypergroup S over U. Then
fA is called an (M , N )-union soft interior hyperideal of S over U if it satisfies the
following conditions:

(1) (∀x, y ∈ S)



⋃

α∈x◦y

fA(α)


 ∩ N ⊆ fA(x) ∪ fA(y) ∪ M ;

(2) (∀x, a, y ∈ S)




⋃

α∈x◦a◦y

fA(α)


 ∩ N ⊆ fA(a) ∪ M ;

(3) (∀x, y ∈ S) x ≤ y ⇒ fA(x) ∩ N ⊆ fA(y) ∪ M.

Example 5.1. Let (S, ◦, ≤) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

◦ a b c d e
a ¶a, b♢ ¶a, b♢ ¶a, b♢ ¶a, b♢ ¶a, b♢
b ¶a, b♢ ¶a, b♢ ¶a, b♢ ¶a, b♢ ¶a, b♢
c ¶a, b♢ ¶a, b♢ ¶c♢ ¶c♢ ¶e♢
d ¶a, b♢ ¶a, b♢ ¶c♢ ¶d♢ ¶e♢
e ¶a, b♢ ¶a, b♢ ¶c♢ ¶c♢ ¶e♢

,

≤:=¶(a, a), (b, b), (c, c), (d, d), (e, e) , (a, c), (a, d), (a, e) , (b, c) , (b, d), (b, e) ,

(c, d), (c, e)♢.

Let U = ¶1, 2, 3♢, A = ¶c, d, e♢ , M = ¶2♢ and N = ¶1, 2♢ . The soft set fA is
defined by

fA =

{
∅, if x ∈ ¶a, b♢ ,
U, if x ∈ ¶c, d, e♢ .

Then fA is an (M , N )-union soft interior hyperideal of S over U.

Theorem 5.1. Let (S, ◦, ≤) be an ordered semihypergroup and A be a nonempty

subset of S. Then A is an interior hyperideal of S if and only if the soft set χc
A of A

is an (M , N )-union soft interior hyperideal of S over U.
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Proof. Suppose that A is an interior hyperideal of S. Let x, y and a be any elements

of S. Then




⋃

α∈x◦a◦y

χc
A(α)


 ∩ N ⊆ χc

A (a) ∪ M. Indeed, if a ∈ A, then χc
A (a) = ∅.

Since A is an interior hyperideal of S, we have α ∈ x ◦ a ◦ y ⊆ S ◦ A ◦ S ⊆ A we have

χc
A (α) = ∅ and ∅ ⊆ M ⊂ N ⊆ U. Thus,




⋃

α∈x◦a◦y

χc
A (α)


 ∩ N = ∅ ⊆ χc

A (a) ∪ M. If

a /∈ A, then χc
A (a) = U. Since χc

A (x) ⊆ U for all x ∈ S, thus,




⋃

α∈x◦a◦y

χc
A (α)


∩ N ⊆

U = χc
A (a) ∪ M. Let x, y ∈ S with x ≤ y. Then χc

A (x) ∩ N ⊆ χc
A (y) ∪ M. Indeed, if

y /∈ A, then χc
A (y) = U and ∅ ⊆ M ⊂ N ⊆ U so χc

A (x) ∩ N ⊆ U = χc
A (y) ∪ M. If

y ∈ A then χc
A (y) = ∅. Since x ≤ y and A is an interior hyperideal of S, we have x ∈ A

and thus χc
A (x)∩N = ∅ ⊆ χc

A (y)∪M. Since A is an interior hyperideal of S., we have,

A is a subsemihypergroup of S. Let x, y ∈ S. Then we have



⋃

α∈x◦y

χc
A (α)


 ∩ N ⊆

χc
A (x) ∪ χc

A (y) ∪ M. Indeed, if x ◦ y ⊈ A, then there exists α ∈ x ◦ y such that α /∈ A,

and we have
⋃

α∈x◦y

χc
A (α) = U. Besides that x◦y ⊈ A implies that x /∈ A or y /∈ A. Then

χc
A (x) = U or χc

A (y) = U and hence



⋃

α∈x◦y

χc
A (α)


∩N ⊆ U = χc

A (x)∪χc
A (y)∪M. Let

x◦y ⊆ A. Then χc
A (α) = ∅ for any α ∈ x◦y. It implies that

⋃

α∈x◦y

χc
A (α) = ∅. Since we

have χc
A (x) ⊇ ∅ for any x ∈ A, it follows,



⋃

α∈x◦y

χc
A (α)


∩N = ∅ ⊆ χc

A (x)∪χc
A (y)∪M.

Therefore, χc
A is an (M , N )-union soft interior hyperideal of S over U.

Conversely, let ∅ ≠ A ⊆ S such that χc
A is an (M , N )-union soft interior hyperideal

of S over U. We claim that A◦A ⊆ A. To prove the claim, let x, y ∈ A. By hypothesis,

⋃

α∈x◦y

χc
A (α)


 ∩ N ⊆ χc

A (x) ∪ χc
A (y) ∪ M, which implies that



⋃

α∈x◦y

χc
A (α)


 ∩ N ⊆

∅ ∩ ∅ ∪ M = M. Thus by ∅ ⊆ M ⊂ N ⊆ U,
⋃

α∈x◦y

χc
A (α) ∩ N ⊆ M. Thus for

any α ∈ x ◦ y, χc
A (α) = ∅ implies that α ∈ A. It thus follows that A ◦ A ⊆ A.

Let α ∈ S ◦ A ◦ S, then there exist x, y ∈ S and a ∈ A such that α ∈ x ◦ a ◦ y.

Since




⋃

α∈x◦a◦y

χc
A (α)


 ∩ N ⊆ χc

A (a) ∪ M, and a ∈ A we have χc
A (a) = ∅. Hence

for each α ∈ S ◦ A ◦ S, we have




⋃

α∈x◦a◦y

χc
A (α)


 ∩ N ⊆ ∅ ∪ M = M. Thus, by

∅ ⊆ M ⊂ N ⊆ U,
⋃

α∈x◦a◦y

χc
A (α) ∩ N ⊆ M. Thus, for any α ∈ x ◦ a ◦ y, χc

A (α) = ∅
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implies that α ∈ A. Thus S ◦ A ◦ S ⊆ A. Furthermore, let x ∈ A, S ∋ y ≤ x. Then
y ∈ A. Indeed, it is enough to prove that χc

A (y) = ∅. By x ∈ A we have χc
A (x) = ∅.

Since χc
A is an (MN )-union soft interior hyperideal of S over U and y ≤ x, we have

χc
A (y) ∩ N ⊆ χc

A (x) ∪ M = ∅ ∪ M = M. Notice that ∅ ⊆ M ⊂ N ⊆ U, we conclude
that χc

A (y) = ∅. Hence y ∈ A. Therefore A is a interior hyperideal of S. □

Theorem 5.2. Let fA be a soft set of an ordered semihypergroup S over U and

δ ∈ P (U) . Then fA is an (M , N )-union soft interior hyperideal of S over U if and

only if each nonempty δ-exclusive set eA(fA, δ) of fA is an interior hyperideal of S
and M ⊂ δ ⊆ N.

Proof. Assume that fA is an (M , N )-union soft interior hyperideal of S over U. Let
M ⊂ δ ⊆ N and eA(fA, δ) ̸= ∅. Let x, y ∈ eA(fA, δ). Then fA (x) ⊆ δ and fA (y) ⊆ δ.

By hypothesis, we have



⋃

α∈x◦y

fA (α)


 ∩ N ⊆ fA (x) ∪ fA (y) ∪ M ⊆ δ ∪ δ ∪ M = δ.

Since M ⊂ δ ⊆ N, we can write as
⋃

α∈x◦y

fA (α) ⊆ δ. Thus for any α ∈ x ◦ y,

we have fA (α) ⊆ δ, implies that α ∈ eA(fA, δ). It follows that x ◦ y ⊆ eA(fA, δ).
Hence eA(fA, δ) is a subsemihypergroup of S. Let y ∈ eA(fA, δ) and x, z ∈ S. Then
fA (y) ⊆ δ. Since fA is an (M , N )-union soft interior hyperideal of S over U. Thus,


⋃

w∈x◦y◦z

fA (w)


 ∩ N ⊆ fA (y) ∪ M ⊆ δ ∪ M = δ. Since ∅ ⊆ M ⊂ δ ⊆ N ⊆ U, we

can write as
⋃

w∈x◦y◦z

fA (w) ⊆ δ. Hence, fA (w) ⊆ δ for any w ∈ x ◦ y ◦ z implies that

w ∈ eA(fA, δ). Thus, S ◦ eA(fA, δ) ◦ S ⊆ eA(fA, δ). Furthermore, let x ∈ eA(fA, δ),
S ∋ y ≤ x. Then y ∈ eA(fA, δ). Indeed, since x ∈ eA(fA, δ), fA (x) ⊆ δ and fA is an
(M , N )-union soft interior hyperideal of S over U, we have fA (y) ∩ N ⊆ fA (x) ∪ M ⊆
δ ∪M = δ. By M ⊂ δ ⊆ N, we have fA (y) ⊆ δ, i.e., y ∈ eA(fA, δ). Therefore, eA(fA, δ)
is an interior hyperideal of S.

Conversely, suppose that eA(fA, δ) ̸= ∅ is an interior hyperideal of S for all M ⊂ δ ⊆

N . If there exist x1, y1 ∈ S such that




⋃

α∈x1◦y1

fA (α)


∩N ⊃ fA (x1)∪fA (y1)∪M, then

there exists M ⊂ δ ⊆ N such that




⋃

α∈x1◦y1

fA (α)


 ∩ N ⊃ δ ⊇ fA (x1) ∪ fA (y1) ∪ M,

and we have fA (x1) ⊆ δ, fA (y1) ⊆ δ and
⋃

α∈x1◦y1

fA (α) ⊃ δ which implies that x1, y1 ∈

eA(fA, δ) and x1 ◦ y1 ⊈ eA(fA, δ). It contradicts the fact that eA(fA, δ) is an interior

hyperideal of S. Consequently,



⋃

α∈x◦y

fA (α)


∩N ⊆ fA (x)∪fA (y)∪M for all x, y ∈ S.

Next we show that




⋃

α∈x◦a◦y

fA (α)


∩ N ⊆ fA (a) ∪ M for all x, a, y ∈ S. If there exist
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x1, a1, y1 such that




⋃

α∈x1◦a1◦y1

fA (α)


 ∩ N ⊃ fA (a1) ∪ M, and M ⊂ δ ⊆ N such that




⋃

α∈x1◦a1◦y1

fA (α)


 ∩ N ⊃ δ ⊇ fA (a1) ∪ M, so fA (a1) ⊆ δ and

⋃

α∈x1◦a1◦y1

fA (α) ⊃ δ

then a1 ∈ eA(fA, δ) and x1 ◦ a1 ◦ y1 ⊈ eA(fA, δ). This is a contradiction that eA(fA, δ)
is an interior hyperideal of S. Moreover if x ≤ y, then fA (x)∩N ⊆ fA (y)∪M. Indeed,
if there exist x1, y1 ∈ S such that x1 ≤ y1 and fA (x1) ∩ N ⊃ fA (y1) ∪ M , then there
exists M ⊂ δ ⊆ N such that fA (x1) ∩ N ⊃ δ ⊇ fA (y1) ∪ M and we have fA (y1) ⊆ δ
and fA (x1) ⊃ δ. Then y1 ∈ eA(fA, δ) and x1 /∈ eA(fA, δ). This is a contradiction that
eA(fA, δ) is an interior hyperideal of S. Thus if x ≤ y then fA (x)∩N ⊆ fA (y)∪M. □

Theorem 5.3. Let (S, ◦, ≤) be an ordered semihypergroup and fA be an (M , N )-union

soft hyperideal of S over U. Then fA is an (M , N )-union soft interior hyperideal of S
over U.

Proof. Suppose that fA is an (M , N )-union soft hyperideal of S over U. Let x, y ∈ S.

Then by hypothesis



⋃

α∈x◦y

fA (α)


 ∩ N ⊆ fA (x) ∪ M ⊆ fA (x) ∪ fA (y) ∪ M. Let

x, a, y ∈ S. Since fA is an (M , N )-union soft hyperideal of S over U , then for any
α ∈ x ◦ a ◦ y, and ∅ ⊆ M ⊂ N ⊆ U we have




⋃

α∈x◦a◦y

fA (α)


 ∩ N =






⋃

α∈x◦a◦y

fA (α)


 ∩ N


 ∩ N

=







⋃

α∈x◦β
β∈a◦y

fA (α)


 ∩ N


 ∩ N

⊆(fA (β) ∪ M) ∩ N

=(fA (β) ∩ N) ∪ (N ∩ M) = (fA (β) ∩ N) ∪ M

⊆





⋃

β∈a◦y

fA (β)


 ∩ N


 ∪ M

⊆(fA (a) ∪ M) ∪ M

=fA (a) ∪ M.

Thus, 


⋃

α∈x◦a◦y

fA (α)


 ∩ N ⊆ fA (a) ∪ M.

Therefore, fA is an (M , N )-union soft interior hyperideal of S over U. □

The converse of above theorem is not true in general. We can illustrate it by the
following example.
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Example 5.2. Let (S, ◦, ≤) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

◦ v1 v2 v3 v4

v1 ¶v1♢ ¶v1♢ ¶v1♢ ¶v1♢
v2 ¶v1♢ ¶v1♢ ¶v1♢ ¶v1♢
v3 ¶v1♢ ¶v1♢ ¶v1, v2♢ ¶v1, v2♢
v4 ¶v1♢ ¶v1♢ ¶v1, v2♢ ¶v1♢

,

≤:= ¶(v1, v1), (v2, v2), (v3, v3) , (v4, v4), (v1, v2), (v1, v3), (v1, v4), (v4, v2), (v4, v3)♢.

Suppose U = ¶x, y, z♢, A = ¶v2, v3♢ , M = ¶y♢ and N = ¶y, z♢ . Let us define
fA (v1) = ∅, fA (v2) = ¶x, z♢ , fA (v3) = ¶x, y, z♢ and fA (v4) = ∅. Then fA is an
(M , N )-union soft interior hyperideal of S over U. This is not an (M , N )-union soft
left hyperideal as

⋃

α∈v3◦v4=¶v1,v2♢

fA (α) ∩ N = fA (v1) ∪ fA (v2) ∩ N = ¶z♢ ⊈ ∅ ∪ ¶y♢ = ¶y♢ = fA (v4) ∪ M.

Theorem 5.4. Let (S, ◦, ≤) be a regular ordered semihypergroup and fA is an (M , N )-
union soft interior hyperideal of S over U. Then fA is an (M , N )-union soft hyperideal

of S over U.

Proof. Let x, y ∈ S. Since fA is an (M , N )-union soft interior hyperideal of S over U ,

then



⋃

α∈x◦y

fA (α)


 ∩ N ⊆ fA (x) ∪ M. Indeed, since S is regular and x ∈ S, then

there exists z ∈ S such that x ≤ x ◦ z ◦ x. Then we have x ◦ y ≤ (x ◦ z ◦ x) ◦ y =
(x ◦ z) ◦ (x ◦ y) . So, there exist α ∈ x ◦ y, v ∈ x ◦ z and β ∈ v ◦ x ◦ y such that α ≤ β.
So fA (α) ∩ N ⊆ fA (β) ∪ M. Since fA is an (M , N )-union soft interior hyperideal of
S over U, and ∅ ⊆ M ⊂ N ⊆ U, we have

fA (α) ∩ N =(fA (α) ∩ N) ∩ N

⊆(fA (β) ∪ M) ∩ N

=(fA (β) ∩ N) ∪ (N ∩ M) = (fA (β) ∩ N) ∪ M

⊆






⋃

β∈v◦x◦y

fA (β)


 ∩ N


 ∪ M ⊆ (fA (x) ∪ M) ∪ M

=fA (x) ∪ M.

Thus, 

⋃

α∈x◦y

fA (α)


 ∩ N ⊆ fA (x) ∪ M.

Therefore fA is an (M , N )-union soft right hyperideal of S over U. In a similar way
we prove that fA is an (M , N )-union soft left hyperideal of S over U. □

By Theorem 5.3 and 5.4 we have the following.
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Theorem 5.5. In regular ordered semihypergroups the concepts of (M , N )-union soft

hyperideals and (M , N )-union soft interior hyperideals coincide.

Theorem 5.6. Let (S, ◦, ≤) be an intra-regular ordered semihypergroup and fA is an

(M , N )-union soft interior hyperideal of S over U. Then fA is an (M , N )-union soft

hyperideal of S over U.

Proof. Let a, b ∈ S. Then



⋃

u∈a◦b

fA (u)


 ∩ N ⊆ fA (a) ∪ M. Indeed, since S is intra-

regular and a ∈ S, there exist x, y ∈ S such that a ≤ x ◦ a ◦ a ◦ y. Then a ◦ b ≤
(x ◦ a ◦ a ◦ y)◦b = x◦a◦(a◦y ◦b). So there exist u ∈ a◦b, v ∈ a◦y ◦b and α ∈ x◦a◦v
such that u ≤ α. So fA (u)∩N ⊆ fA (α)∪M. Since fA is an (M , N )-union soft interior
hyperideal of S over U, we have

fA (u) ∩ N =(fA (u) ∩ N) ∩ N

⊆(fA (α) ∪ M) ∩ N

=(fA (α) ∩ N) ∪ (N ∩ M) = (fA (α) ∩ N) ∪ M

⊆

((
⋃

α∈x◦a◦v

fA (α)

)
∩ N

)
∪ M ⊆ (fA (a) ∪ M) ∪ M

=fA (a) ∪ M.

Thus, 

⋃

u∈a◦b

fA (u)


 ∩ N ⊆ fA (a) ∪ M.

Hence, fA is an (M , N )-union soft right hyperideal of S over U. Similarly we can
prove that fA is an (M , N )-union soft left hyperideal of S over U. Therefore, fA is an
(M , N )-union soft hyperideal of S over U. □

By Theorem 5.3 and 5.6, we have the following.

Theorem 5.7. In intra-regular ordered semihypergroups the concepts of (M , N )-union

soft hyperideals and (M , N )-union soft interior hyperideals coincide.

6. Characterizations of (M, N)-Union Soft Simple Ordered
Semihypergroups in Terms of (M, N)-Union Soft Hyperideals and

(M, N)-Union Soft Interior Hyperideals

In this section, we introduce the concept of (M , N )-union soft simple ordered
semihypergroups and characterize this type of ordered semihypergroups in terms
of (M , N )-union soft hyperideals and (M , N )-union soft interior hyperideals.

Definition 6.1 (see [16]). An ordered semihypergroup (S, ◦, ≤) is called simple if it
has no a proper hyperideal, that is for any hyperideal A ̸= ∅ of S we have A = S.



304 M. FAROOQ, M. KHALAF, AND A. KHAN

Lemma 6.1 (see [16]). An ordered semihypergroup (S, ◦, ≤) is a simple ordered

semihypergroup if and only if for every a ∈ S, (S ◦ a ◦ S] = S.

Definition 6.2. An ordered semihypergroup (S, ◦, ≤) is called (M , N )-union soft
simple if for any (M , N )-union soft hyperideal fA of S over U, we have fA (a) ∩ N ⊆
fA (b) ∪ M for all a, b ∈ S.

Theorem 6.1. Let be (S, ◦, ≤) an ordered semihypergroup. Then S is (M , N )-union

soft simple if and only if for any (M , N )-union soft hyperideal fA of S over U, we

have eA(fA, δ) = S for all ∅ ⊆ M ⊂ δ ⊆ N ⊆ U if eA(fA, δ) ̸= ∅.

Proof. Suppose that S is an (M , N )-union soft simple ordered semihypergroup and
fA is an (M , N )-union soft hyperideal of S over U . Let M ⊂ δ ⊆ N be such that
eA(fA, δ) ̸= ∅. We need to prove that x ∈ eA(fA, δ) for all x ∈ S. Since eA(fA, δ) ̸= ∅,
we can suppose that there exits y ∈ eA(fA, δ), i.e., fA (y) ⊆ δ. Hence fA (x) ∩ N ⊆
fA (y) ∪ M ⊆ δ ∪ M = δ. Since M ⊂ δ, we can conclude that fA (x) ⊆ δ, which implies
that x ∈ eA(fA, δ).

Conversely, for any (M , N )-union soft hyperideal fA of S over U, suppose that
eA(fA, δ) = S for all ∅ ⊆ M ⊂ δ ⊆ N ⊆ U if eA(fA, δ) ̸= ∅. We claim that fA (a)∩N ⊆
fA (b) ∪ M for all a, b ∈ S. If there exist x, y ∈ S such that fA (x) ∩ N ⊃ fA (y) ∪ M,
then we have fA (x) ∩ N ⊃ δ ⊇ fA (y) ∪ M for some M ⊂ δ ⊆ N. Thus, fA (x) ⊃ δ,
i.e., x /∈ eA(fA, δ) = S, which is a contradiction. Therefore fA (a) ∩ N ⊆ fA (b) ∪ M
holds for all a, b ∈ S. Thus, S is (M , N )-union soft simple. □

Let (S, ◦, ≤) be an ordered semihypergroup and a ∈ S, and fA be a soft set of S
over U we denote by Ia the subset of S defines as follows:

Ia = ¶b ∈ S ♣ fA (b) ∩ N ⊆ fA (a) ∪ M♢ .

Clearly Ia ̸= ∅, since a ∈ Ia.

Theorem 6.2. Let (S, ◦, ≤) be an ordered semihypergroup and fA is an (M , N )-union

soft left hyperideals of S over U. Then the set Ia is a left hyperideal of S for every

a ∈ S.

Proof. Suppose that fA is an (M , N )-union soft left hyperideals of S over U. Let b ∈ Ia

and s ∈ S. Then s ◦ b ⊆ Ia. Indeed, since fA is an (M , N )-union soft left hyperideal

of S over U and b, s ∈ S, we have



⋃

α∈s◦b

fA (α)


 ∩ N ⊆ fA (b) ∪ M. Since b ∈ Ia, we

have fA (b) ∩ N ⊆ fA (a) ∪ M. Thus,

fA (α) ∩ N =(fA (α) ∩ N) ∩ N

⊆





⋃

α∈s◦b

fA (α)


 ∩ N


 ∩ N ⊆ (fA (b) ∪ M) ∩ N

=(fA (b) ∩ N) ∪ (M ∩ N)
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⊆(fA (a) ∪ M) ∪ M

=fA (a) ∪ M.

Thus, α ∈ Ia and hence s ◦ b ⊆ Ia. Let b ∈ Ia and S ∋ s ≤ b. Then s ∈ Ia. Indeed,
since fA is an (M , N )-union soft left hyperideals of S over U , b, s ∈ S and s ≤ b, we
have fA (s) ∩ N ⊆ fA (b) ∪ M. Since b ∈ Ia, we have fA (b) ∩ N ⊆ fA (a) ∪ M. Then
fA (s) ∩ N ⊆ fA (a) ∪ M, so s ∈ Ia. □

In a similar way we prove the following.

Theorem 6.3. Let (S, ◦, ≤) be an ordered semihypergroup and fA is an (M , N )-union

soft right hyperideals of S over U. Then the set Ia is a right hyperideal of S for every

a ∈ S.

By Theorem 6.2 and 6.3 we have the following.

Theorem 6.4. Let (S, ◦, ≤) be an ordered semihypergroup and fA is an (M , N )-union

soft hyperideals of S over U. Then the set Ia is a hyperideal of S for every a ∈ S.

Theorem 6.5. Let (S, ◦, ≤) be an ordered semihypergroup. Then S is simple if and

only if it is (M , N )-union soft simple.

Proof. Assume that S is a simple ordered semihypergroup. Let fA is an (M , N )-union
soft hyperideal of S over U and a, b ∈ S. By Theorem 6.4, we obtain Ia is a hyperideal
of S. Since S is simple, Ia = S. Then b ∈ Ia, that is fA (b)∩N ⊆ fA (a)∪M. Therefore,
S is (M , N )-union soft simple.

Conversely, suppose that S is (M , N )-union soft simple. Let I be a hyperideal of
S. By Corollary 4.1, we obtain the characteristic function χc

I is an (M , N )-union soft
hyperideal of S over U. We claim that I = S. To prove our claim, let x ∈ S. Since
S is (M , N )-union soft simple, χc

I (x) ∩ N ⊆ χc
I (y) ∪ M for all y ∈ S. Since I ̸= ∅,

let a ∈ I. Then χc
I (x) ∩ N ⊆ χc

I (a) ∪ M = ∅ ∪ M = M. So, χc
I (x) ∩ N ⊆ M. Since

M ⊂ N, we conclude that χc
I (x) = ∅, i.e., x ∈ I. Thus, we have shown that S ⊆ I,

and so, S = I. Hence, S is simple. □

Theorem 6.6. Let (S, ◦, ≤) be an ordered semihypergroup. Then S is a simple if

and only if for every (M , N )-union soft interior hyperideal fA of S over U, we have

fA (a) ∩ N ⊆ fA (b) ∪ M for all a, b ∈ S.

Proof. Suppose that S is a simple ordered semihypergroup. Let fA be an (M , N )-
union soft interior hyperideal of S over U and a, b ∈ S. By Lemma 6.1, we have
S = (S ◦ b ◦ S] . Thus by a ∈ S, we have a ∈ (S ◦ b ◦ S] . Then there exist x, y ∈ S
such that a ≤ x ◦ b ◦ y. Then a ≤ α for some α ∈ x ◦ b ◦ y. Since fA is an (M , N )-union
soft interior hyperideal of S over U, we have fA (a) ∩ N ⊆ fA (α) ∪ M. Also since


⋃

α∈x◦b◦y

fA (α)


 ∩ N ⊆ fA (b) ∪ M. Thus,

fA (a) ∩ N =(fA (a) ∩ N) ∩ N
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⊆(fA (α) ∪ M) ∩ N

=(fA (α) ∩ N) ∪ (M ∩ N) = (fA (α) ∩ N) ∪ M

⊆






⋃

α∈x◦b◦y

fA (α)


 ∩ N


 ∪ M ⊆ (fA (b) ∪ M) ∪ M

=fA (b) ∪ M.

Conversely, assume that for every (M , N )-union soft interior hyperideal fA of S over
U, we have fA (a) ∩ N ⊆ fA (b) ∪ M for all a, b ∈ S. Let fA be any (M , N )-union soft
hyperideal of S over U. Then by Theorem 5.3, fA is an (M , N )-union soft interior
hyperideal of S over U. Hence S is (M , N )-union soft simple by Definition 6.2. It thus
follows from Theorem 6.5 that S is a simple ordered semihypergroup. □

As a consequence of Lemma 6.1, Theorem 6.5, and Theorem 6.6, we present char-
acterizations of a simple ordered semihypergroup as the following theorem.

Theorem 6.7. Let (S, ◦, ≤) be an ordered semihypergroup. Then the following state-

ments are equivalent:

(1) S is a simple ordered semihypergroup;

(2) S = (S ◦ a ◦ S] for every a ∈ S;

(3) S is (M , N )-union soft simple;

(4) for every (M , N )-union soft interior hyperideal of S over U, we have fA (a)∩N ⊆
fA (b) ∪ M for all a, b ∈ S.

7. Conclusion

Ideal theory play a vital role in hyperstructures, in this paper, we introduced the
notions of (M , N )-union soft hyperideals and (M , N )-union soft interior hyperideals
of ordered semihypergroups and studied them. When M = ∅ and N = U, we meet
union soft hyperideals and union soft interior hyperideals. From this view, we say that
(M , N )-union soft hyperideals and (M , N )-union soft interior hyperideals are more
general concepts than ordinary union soft ones. Moreover we introduced the notion
of (M , N )-union soft simple ordered semihypergroup. We characterized (M , N )-union
soft simple ordered semihypergroups by means of (M , N )-union soft hyperideals and
(M , N )-union soft interior hyperideals. Hopefully that the obtained new character-
izations of ordered semihypergroup in terms of (M , N )-union soft hyperideals will
be very useful for future study of ordered semihypergroups. In future we will define
other (M , N )-union soft hyperideals of ordered semihypergroups and will study their
applications.
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POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY

VALUE PROBLEM WITH LIDSTONE LIKE BOUNDARY

CONDITIONS

JEFFREY T. NEUGEBAUER1 AND AARON G. WINGO2

Abstract. We consider a higher order fractional boundary value problem with
Lidstone like boundary conditions, where the nonlinearity is an L1-Carathèodory
function. We Ąrst consider the lower order problem. Then, by using a convolution to
construct the GreenŠs function for the higher order problem, we are able to apply a
recent Ąxed point theorem to show the existence of positive solutions of the boundary
value problem.

1. Introduction

Let n ∈ N, n ≥ 3, n − 1 < α ≤ n and 1 ≤ β ≤ n − 1. We study existence and
nonexistence of solutions of the fractional differential equation

(1.1) Dα
0+u+ f(t, u) = 0, t ∈ (0, 1),

satisfying the boundary conditions

(1.2) u(i)(0) = 0, i = 0, 1, . . . , n− 2, Dβ

0+u(1) = 0,

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville derivatives. Here f : (0, 1) ×
[0,∞) → [0,∞) is an L1-Carathèodory function, i.e., f satisfies the following proper-
ties:

(a) f(·, u) is a measurable function for all u ≥ 0;
(b) f(t, ·) is continuous for a.e. t ∈ (0, 1) and
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(c) for all r > 0 there exists a ψr ∈ L1[0, 1] such that ♣f(t, u)♣ ≤ ψr(t) for a.e. t ∈
(0, 1) and for all ♣u♣ ≤ r.

We then consider a higher order problem with boundary conditions inspired by
Lidstone boundary conditions. Let m ∈ N, m ≥ 3, n ∈ N, 2n− 1 +m < γ ≤ 2n+m,
1 ≤ β ≤ n− 1 and consider the boundary value problem

(1.3) Dγ

0+u(t) + (−1)ng(t, u) = 0, 0 < t < 1,

satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ

0+u(1) = 0,(1.4)

Dγ−2l

0+ u(0) = Dγ−2l

0+ u(1) = 0, l = 1, . . . , n− 1,

where g : (0, 1) × [0,∞) → [0,∞) is an L1-Carathèodory function. To construct
the Green’s function for this problem, we use a convolution. The Green’s function
for the higher order problem therefore inherits properties of the Green’s function
corresponding to (1.1), (1.2) and similar arguments can be made to show the existence
of positive solutions of the boundary value problem.

Fixed point theory has been used extensively to study the existence of positive
solutions of fractional boundary value problems [2, 7, 8, 10–12,20,23,25] and singular
fractional boundary value problems [1,9,14,16,18,21,22,24,26] where the nonlinearity
may be singular at t = 0 or t = 1. Of particular interest to this work is the recent
paper by Benmezaï, Chentout and Henderson [3], where the authors prove a new fixed
point theorem using strongly positive-like operators and then apply their fixed point
theorem to a fractional boundary value problem. The use of convolution to construct
Green’s functions for higher order problems can be found first in [6]. In [15], the
authors used convolution to study positive solutions of some different higher order
fractional boundary value problems.

2. Preliminaries

We start with the definition of the Riemann-Liouville fractional integral and frac-
tional derivative.

Definition 2.1. Let ν > 0. The Riemann-Liouville fractional integral of a function
u of order ν, denoted Iν

0+u, is defined as

Iν
0+u(t) =

1

Γ(ν)

∫ t

0
(t− s)ν−1u(s)ds,

provided the right-hand side exists. Moreover, let n denote a positive integer and
assume n− 1 < α ≤ n. The Riemann-Liouville fractional derivative of order α of the
function u : [0, 1] → R, denoted Dα

0+u, is defined as

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1u(s)ds = DnIn−α

0+ u(t),
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provided the right-hand side exists. We refer to [4,13,17,19] for a more in depth study
of fractional calculus and fractional differential equations.

Let B be a Banach space over R. A closed nonempty subset P of B is said to be a
cone provided

(i) αu+ βv ∈ P for all u, v ∈ P and all α, β ≥ 0 and
(ii) u ∈ P and −u ∈ P implies u = 0.

Cones generate a natural partial ordering on a Banach space. Let P be a cone in a
real Banach space B. If u, v ∈ B, u ⪯ v if v − u ∈ P, u ≺ v if v − u ∈ P, u ≠ v, and
u ̸⪯ v if v − u /∈ P. If both M,N : B → B are continuous mappings, M ⪯ N if for
all u ∈ P, Mu ⪯ Nu. The relations N ≺ M and N ̸⪯ M are defined similarly. The
notation ⪰, ≻ and ̸⪰ define the reverse situations.

Definition 2.2. An operator L ∈ LC(B), where LC(B) is the set of all linear compact
self-mappings of B, is said to be positive if L : P → P and strongly positive if P◦ ̸= ∅
and L : P \ ¶0♢ → P

◦.

Definition 2.3. Let L ∈ LC(B) be positive. L is said to be lower bounded if
inf¶∥Lu∥ : u ∈ P ∩ ∂B(0, 1)♢ > 0.

For all positive operators L ∈ LC(B), define the subsets

ΛL = ¶λ ≥ 0 : there exists u ≻ 0B such that Lu ⪰ λu♢

and

ΓL = ¶λ ≥ 0 : there exists u ≻ 0B such that Lu ⪯ λu♢.

The proof of the following lemma can be found in [3].

Lemma 2.1. Let L ∈ LC(B) be strongly positive. Then

r(L) = sup ΛL = inf ΓL.

Definition 2.4. A positive operator L ∈ LC(B) is said to be a strong positive-like
operator if r(L) = sup ΛL = inf ΓL > 0.

The following two theorems are the model for which our main result is based. The
proofs can be found in the work of Benmezai, Chentout, and Henderson [3]. The
first deals with nonexistence of positive fixed points and the second with existence of
positive fixed points.

Theorem 2.1. Let T : P → P be a continuous mapping and let L ∈ LC(B) be a

strongly positive-like operator. If either

r(L) > 1 and Tu ⪰ Lu, for all u ∈ P,

or

r(L) < 1 and Tu ⪯ Lu, for all u ∈ P,

then T has no fixed points in P.
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Theorem 2.2. Let T : P → P be a completely continuous mapping and assume

that there exist two strongly positive-like operators L1, L2 ∈ Lc(B) and two functions

F1, F2 : P → P such that L1 is lower bounded on P, r(L2) < 1 < r(L1), and for all

u ∈ P

L1u− F1u ⪯ Tu ⪯ L2u+ F2u.

If either

F1u = o(∥u∥) as u → ∞ and F2u = o(∥u∥) as u → 0,

or

F1u = o(∥u∥) as u → 0 and F2u = o(∥u∥) as u → ∞,

then T has a fixed point in P.

3. Eigenvalue Criteria

Let E = C[0, 1] be the Banach space of continuous functions with the usual supre-
mum norm ∥u∥ = maxt∈[0,1] ♣u(t)♣. Define the Banach space X as

X =

{

u ∈ C[0, 1] : lim
t→0

u(t)

tα−1
exists

}

endowed with the norm

∥u∥X = sup
t∈[0,1]

∣

∣

∣

∣

∣

u(t)

tα−1

∣

∣

∣

∣

∣

.

Fix δ ∈ (0, 1). Define the cones

E+ =¶u ∈ E : u(t) ≥ 0 for all t ∈ [0, 1]♢,

P =¶u ∈ E+ : u(t) ≥ δα−1∥u∥0 for all t ∈ [δ, 1]♢

and

X+ = ¶u ∈ X : u(t) ≥ 0 for all t ∈ [0, 1]♢.

Define the sets

L
1
+ = ¶m ∈ L

1(0, 1) : m(t) ≥ 0 a.e. t ∈ [0, 1]♢

and

L
1
++ = ¶m ∈ L

1
+ : m > 0 on a subset of positive measure♢.

We also introduce the subset S ⊂ X by

S =

{

u ∈ X : u(t) > 0 for all t ∈ (0, 1] and lim
t→0

u(t)

tα−1
> 0

}

.

The following theorem is given in [3].

Lemma 3.1. S is open in X.
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The Green’s function for −Dα
0+u = 0 satisfying the boundary conditions (1.2) is

given by (see, for example, [5])

(3.1) G(t, s) =







tα−1(1−s)α−1−β

Γ(α)
− (t−s)α−1

Γ(α)
, 0 ≤ s < t ≤ 1,

tα−1(1−s)α−1−β

Γ(α)
, 0 ≤ t ≤ s < 1.

Therefore, u is a solution of (1.1), (1.2) if and only if

u(t) =
∫ 1

0
G(t, s)f(s, u(s))ds, 0 ≤ t ≤ 1.

Define v(t, s) by

v(t, s) =











(1−s)α−1−β

Γ(α)
−

(1−
s
t )

α−1

Γ(α)
, 0 ≤ s < t ≤ 1,

(1−s)α−1−β

Γ(α)
, 0 ≤ t ≤ s < 1.

Notice G(t, s) = tα−1v(t, s). The following lemma gives sign properties of G and v.
The proof of (1)–(3) of the following lemma can be found in [15]. The proof of (4)

is trivial.

Lemma 3.2. Let G be defined as in (3.1).

(1) G(t, s) ∈ C ([0, 1] × [0, 1)) with G(t, s) > 0 for (t, s) ∈ (0, 1] × (0, 1).
(2) tα−1G(1, s) ≤ G(t, s) ≤ G(1, s) for (t, s) ∈ [0, 1] × [0, 1).
(3) G(t, s) ≥ δα−1G(1, s) for all t ∈ [δ, 1] and all s ∈ [0, 1).
(4) v(0, s) > 0 for all s ∈ [0, 1).

Let m ∈ L
1
++. Define Lm : E → E by

Lmu(t) =
∫ 1

0
G(t, s)m(s)u(s)ds.

For u ∈ X, define LX
x : X → E by LX

mu = Lmu.

Lemma 3.3. For m ∈ L
1
++, the operator Lm is compact and positive. Moreover,

Lm : E+ → P.

Proof. The proof that Lm is compact is standard. Let u ∈ E+. Then u(t) ≥ 0 for
t ∈ [0, 1]. Since m > 0 for a.e. t ∈ [0, 1], then by Lemma 3.2 (1),

Lmu(t) =
∫ 1

0
G(t, s)m(s)u(s)ds ≥ 0.

So Lmu ∈ E+ and Lm : E+ → E+. Furthermore, Lemma 3.2 (3) gives that

∥Lmu∥ = ♣Lmu(1)♣0

and

Lmu(t) =
∫ 1

0
G(t, s)m(s)u(s)ds ≥ δα−1

∫ 1

0
G(1, s)m(s)u(s)ds = δα−1∥Lmu∥.

So Lmu ∈ P and Lm : E+ → P. □
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Lemma 3.4. For m ∈ L
1
++, Lm is a strongly positive-like operator which is lower

bounded on the cone P.

Proof. We start by proving that for m ∈ L
1
+[0, 1] ∩ C[0, 1], LX

m is a strongly positive
operator. Using the Arzelà-Ascoli theorem, similar to the argument in [3], we have
that LX

m compact. Next, let u ∈ X+ \ ¶0♢. For all t ∈ (0, 1], by Lemma 3.2,

LX
mu(t) =

∫ 1

0
G(t, s)m(s)u(s)ds > 0.

Also,

lim
t→0

LX
mu(t)

tα−1
=

∫ 1

0
v(0, s)m(s)u(s)ds > 0.

So LX
m : X \ ¶0♢ → S ⊂ X+◦

. So LX
m is strongly positive, and by Lemma 2.1,

r(LX
m) = sup ΛLX

m
= inf ΓLX

m
.

Since LX
m is an embedding of the operator Lm into X, ΛLX

m
⊂ ΛLm

and ΓLX
m

⊂ ΓLm
.

Next, let λ ≥ 0 and u ∈ E+ \ ¶0♢ be such that Lmu ⪰ λu. Then, from an argument
similar to that above, U = Lmu ∈ X+ \ ¶0♢. Now

LX
mU = LX

m (Lmu) = Lm (Lmu) ⪰ λLmU.

So, λ ∈ ΛLX
m

, and ΛLX
m

= ΛLm
. Similarly, ΓLX

m
= ΓLm

. So,

r(Lm) = sup ΛLm
= inf ΓLm

.

So, Lm is a strongly positive-like operator.
Finally, for u ∈ P,

∥Lmu∥ = Lmu(1) =
∫ 1

0
G(1, s)m(s)u(s)ds ≥ δα−1

∫ 1

0
G(1, s)m(s)δα−1ds∥u∥.

So Lm is lower bounded on the cone P.
□

4. Existence and Nonexistence Results

Define the operator T : E+ → E by

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds.

Notice that u is a solution of the boundary value problem (1.1), (1.2) if and only if u
is a fixed point of T .

We have the following lemma.

Lemma 4.1. T : E+ → E is compact and T : E+ → P.

Proof. The fact that T is compact is a standard application of the Arzela-Ascoli
theorem. Next, let u ∈ E+. Then by Lemmma 3.2 (1) and (3),

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds ≥ 0,
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and, since ∥Tu∥ = Tu(1),

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds ≥ δα−1

∫ 1

0
G(1, s)f(s, u(s))ds = δα−1∥u∥.

So, T : E+ → P. □

Let m ∈ L
1
++. Consider the linear boundary value problem

(4.1) Dα
0+u(t) + µm(t)u(t) = 0, a.e. t ∈ (0, 1),

satisfying the boundary conditions (1.2), where µ is a real parameter.

Lemma 4.2. For all m ∈ L
1
++, (4.1), (1.2) admit a unique positive eigenvalue µα(m).

Proof. Now (µ, u) is a solution of (4.1), (1.2) if and only if Lmu = µ−1u. Lemma
3.4 gives that µ−1 = r(Lm) is the unique positive eigenvalue of Lm. Thus, µα(m) =
1/r(Lm) is the unique positive eigenvalue of (4.1), (1.2). □

Theorem 4.1. Assume that there exists m ∈ L
1
+ such that one of the following

hypotheses is satisfied:

(4.2) µα(m) < 1 and f(t, u) ≥ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),

(4.3) µα(m) > 1 and f(t, u) ≤ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),

Then (1.1), (1.2) has no positive solutions.

Proof. Let u ∈ P, and suppose (4.2) holds. Then f(t, u) ≥ m(t)u, which implies
Tu ⪰ Lmu. But Lm is a strongly positive-like operator with r(Lm) = 1/µα(m) > 1.
Theorem 2.1 is therefore satisfied and T has no positive fixed points. A similar
argument can be made if (4.3) holds. □

Theorem 4.2. Assume that there exist m1,m2 ∈ L
1
++, q1, q2 ∈ L

1
+, and two functions

ϕ1, ϕ2 : [0,∞) → [0,∞) such that µα(m1) < 1 < µα(m2) and for all u ≥ 0 and a.e.

t ∈ (0, 1),

(4.4) m1(t)u− q1(t)ϕ1(u) ≤ f(t, u) ≤ m2(t)u+ q2(t)ϕ2(u).

If either

(H1) ϕ1(u) = o(∥u∥) as u → ∞, ϕ2(u) = o(∥u∥) as u → 0, ϕ1 is nondecreasing, and

ϕ2 is nondecreasing near 0 or

(H2) ϕ1(u) = o(∥u∥) as u → 0, ϕ2(u) = o(∥u∥) as u → ∞, ϕ1 is nondecreasing near

0, and ϕ2 is nondecreasing,

then (1.1), (1.2) has at least one positive solution.

Proof. For i = 1, 2, let Fi : P → P be defined by

Fiu(t) =
∫ 1

0
G(t, s)ϕi(u(s))ds.

From (4.4), we have that for all u ∈ P,

Lm1
u− F1u ⪯ Tu ⪯ Lm2

u+ F2u,
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with

r(Lm2
) =

1

µα(m2)
< 1 < r(Lm1

) =
1

µα(m1)
.

Suppose (H1) holds. Then, we have,

∥Fiu∥∞

∥u∥∞

= sup
t∈[0,1]

Fiu(t)

∥u∥∞

≤
∫ 1

0
G(1, s)qi(s)

ϕi(u(s))

∥u∥∞

ds ≤
∫ 1

0
G(1, s)qi(s)ds,

which progresses to our conclusion,

F1u = o(∥u∥) as u → ∞ and F2u = o(∥u∥) as u → 0.

We therefore have from Theorem 2.2 that T has a fixed point, which finally is a
positive solution to (1.1), (1.2). The case for (H2) is similar. □

5. An Extension to a Higher Order Problem

In this section, we consider the fractional boundary value problem (1.3), (1.4),
motivated by the two-point Lidstone boundary value problem for ordinary differential
equations. Define G0(t, s) = G(t, s) from (3.1) to be the Green’s function for −Dα

0+u =

0, u(i)(0) = 0, i = 0, 1, . . . ,m − 2, Dβ

0+u(1) = 0. Denote by Gn(t, s) the Green’s
function for the BVP −Dγ

0+u = 0, (1.4).
The construction for Gn(t, s) is similar to the construction in [6] and is given here

for completeness. Define Gk(t, s) by

(5.1) Gk(t, s) = −
∫ 1

0
Gk−1(t, r)Gconj(r, s)dr,

k = 2, . . . , n− 1, where

(5.2) Gconj(t, s) =

{

t(1 − s), 0 ≤ t < s ≤ 1,
s(1 − t), 0 ≤ s < t ≤ 1,

is the Green’s function for −u′′ = 0, u(0) = u(1) = 0. Thus the Green’s function
Gn(t, s) for (1.3), (1.4) is of the form

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)Gconj(r, s)dr,

where Gn−1(t, s) is the Green’s function for

Dγ−2
0+ u(t) + h(t) = 0, 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ

0+u(1) = 0,

Dγ−2l

0+ u(0) = Dγ−2l

0+ u(1) = 0, l = 1, . . . , n− 2.

To see this, for the base case, first consider the linear differential equation

Dα+2
0+ u(t) + h(t) = 0,

satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ

0+u(1) = 0,
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D
γ−2(n−1)
0+ u(0) = 0, D

γ−2(n−1)
0+ u(1) = 0.

Make the change of variable v(t) = Dα+2−2
0+ u(t). Then D2v(t) = D2Dα+2

0+ u(t) =
Dα

0+u(t) = −h(t). Since α = γ− 2n+ 2, v(0) = Dα
0+u(0) = 0 and v(1) = Dα

0+u(1) = 0.
Thus v satisfies the Dirichlet boundary value problem

v′′ + h(t) = 0, 0 < t < 1,

v(0) = 0, v(1) = 0.

Also, u now satisfies a lower order boundary value problem,

Dα
0+u(t) = v(t), 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ

0+u(1) = 0,

and so,

u(t) =
∫ 1

0
G0(t, s)(−v(s))ds

=
∫ 1

0



−
∫ 1

0
G0(t, s)Gconj(s, r)ds



h(r)dr

=
∫ 1

0
G1(t, s)h(s)ds,

where G1(t, s) = −
∫ 1

0 G0(t, r)Gconj(r, s)dr.
For the inductive step, consider

Dγ

0+u(t) + k(t) = 0,

satisfying (1.4). The argument here is similar to above. Make the change of variable
v(t) = Dγ−2

0+ u(t). Thus D2v(t) = D2Dγ−2
0+ u(t) = Dγ

0+u(t) = −k(t). Since v(0) =

Dγ−2
0+ u(0) = 0 and v(1) = Dγ−2

0+ u(1) = 0, then v satisfies the Dirichlet boundary value
problem

v′′ + k(t) = 0, 0 < t < 1,

v(0) = 0, v(1) = 0.

Here u now satisfies a lower order boundary value problem,

Dγ−2
0+ u(t) = v(t), 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ

0+u(1) = 0,

Dγ−2l
0+ u(0) = 0, Dγ−2l

0+ u(1) = 0, l = 2, . . . , k,

and by the induction hypothesis,

u(t) =
∫ 1

0
Gn−1(t, s)(−v(s))ds

=
∫ 1

0



−
∫ 1

0
Gn−1(t, s)Gconj(s, r)ds



k(r)dr
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=
∫ 1

0
Gn(t, s)k(s)ds,

where Gn(t, s) = −
∫ 1

0 Gn−1(t, r)Gconj(r, s)dr.
Define vn(t, s) so that tα−1vn(t, s) = Gn(t, s). The following lemma follows from

Lemma 3.2.

Lemma 5.1. Let Gn be defined inductively as above.

(1) Gn(t, s) ∈ C ([0, 1] × [0, 1)) with (−1)nGn(t, s) > 0 for (t, s) ∈ (0, 1] × (0, 1).
(2) tα−1(−1)nG(1, s) ≤ (−1)nG(t, s) ≤ (−1)nG(1, s) for (t, s) ∈ [0, 1] × [0, 1).
(3) (−1)nG(t, s) ≥ (−1)nδα−1G(1, s) for all t ∈ [δ, 1] and all s ∈ [0, 1).
(4) (−1)nv(0, s) ≥ 0 for all s ∈ [0, 1).

Proof. We start by showing (1) holds. For the base case, consider that G0(t, s) =
G(t, s) from Lemma 3.2 which does belong to C ([0, 1] × [0, 1]) and is positive. Since

G1(t, s) = −
∫ 1

0
G0(t, r)Gconj(r, s)ds,

and Gconj(r, s) ∈ C([0, 1] × [0, 1]) and Gconj(t, s) > 0, it follows that G1(t, s) ∈
C([0, 1] × [0, 1]) and −G1(t, s) > 0. For the inductive step, assume Gn−1(t, s) ∈
C([0, 1] × [0, 1)) and (−1)n−1Gn−1(t, s) > 0 for (t, s) ∈ (0, 1] × (0, 1). Then by
definition

(−1)nGn(t, s) = −
∫ 1

0
(−1)n−1Gn−1(t, r)Gconj(r, s)dr,

we see that since Gconj(t, s) ∈ C([0, 1] × [0, 1]) and Gconj(t, s) > 0 for (t, s) ∈ (0, 1) ×
(0, 1), then (−1)nGn(t, s) > 0 for (t, s) ∈ (0, 1] × (0, 1) and Gn(t, s) ∈ C([0, 1] × [0, 1)).

For (2), similar to the first item, the base case follows from Lemma 3.2. Since for
G0(t, s) = G(t, s), we have

tα−1G0(1, s) ≤ G0(t, s) ≤ G0(1, s),

and by the definition of G1(t, s) we have

−tα−1G1(1, s) =
∫ 1

0
tα−1G0(1, r)Gconj(r, s)dr

≤
∫ 1

0
G0(t, r)Gconj(r, s)dr

= −G1(t, s)

≤
∫ 1

0
G0(1, r)Gconj(r, s)dr

= −G1(1, s).

For the inductive step, in a similar fashion, assume

tα−1(−1)n−1Gn−1(1, s) ≤ (−1)n−1Gn−1(t, s) ≤ (−1)n−1Gn−1(1, s).
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Then by the definition of Gn(t, s), we have

tα−1(−1)nGn(1, s) = (−1)n+1tα−1
∫ 1

0
Gn−1(1, r)Gconj(r, s)dr

≤ (−1)n+1
∫ 1

0
Gn−1(t, r)Gconj(r, s)dr

= (−1)nGn(t, s)

≤ (−1)n+1
∫ 1

0
Gn−1(1, r)Gconj(r, s)dr

= (−1)nGn(1, s).

Notice that (3) is a direct result of (2), and a proof of (4) can similarly be obtained
using induction. □

Define the sets

Ln
1
+ = ¶m ∈ L

1(0, 1) : (−1)nm(t) ≥ 0 a.e. t ∈ [0, 1]♢

and

Ln
1
++ = ¶m ∈ Ln

1
+ : (−1)nm(t) > 0 on a subset of positive measure♢.

Let m ∈ Ln
1
++. Define Lnm : E → E by

Lnmu(t) =
∫ 1

0
Gn(t, s)m(s)u(s)ds.

Define Ln
X
m : X → E by, for u ∈ X, Ln

X
mu = Lnmu.

Lemma 5.2. For m ∈ Ln
1
+, the operator Lnm is compact and positive. Moreover,

Lnm : E+ → P.

Proof. Let u ∈ E+. Then

Lnmu(t) =
∫ 1

0
Gn(t, s)m(s)u(s)ds

=
∫ 1

0
(−1)nGn(t, s)♣m(s)♣u(s)ds > 0,

and, since ∥Lnmu∥ = ♣Lnmu(1)♣0,

Lnmu(t) =
∫ 1

0
Gn(t, s)m(s)u(s)ds

=
∫ 1

0
(−1)nGn(t, s)♣m(s)♣u(s)ds

≥ δα−1
∫ 1

0
(−1)nGn(1, s)♣m(s)♣u(s)ds

= δα−1∥Lnmu∥,

concluding the proof. □
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Lemma 5.3. For m ∈ Ln
1
++, Lnm is a strongly positive-like operator which is lower

bounded on the cone P.

Proof. As in the proof of Lemma 3.4, if we can show Ln
X
m : X+ \ ¶0♢ → S ⊂ X+◦

, the
result follows. Let u ∈ X+. First, notice for t ∈ (0, 1],

Ln
X
mu(t) =

∫ 1

0
(−1)nGn(t, s)♣m(s)♣u(s)ds > 0.

Again, since m and vn(0, s) have the same sign,

lim
t→0

Lm
X
n u(t)

tα−1
=

∫ 1

0
(−1)nvn(0, s)♣m(s)♣u(s)ds > 0.

So LX
m : X \ ¶0♢ → S ⊂ X+◦

, and the result follows. □

Define the operator Tn : E+ → E by

Tnu(t) =
∫ 1

0
Gn(t, s)(−1)ng(s, u(s))ds.

Notice that u is a solution of the boundary value problem (1.3), (1.4) if and only if u
is a fixed point of Tn.

The following lemma is a direct result of the Arzelà-Ascoli theorem and Lemma
5.1.

Lemma 5.4. Tn : E+ → E is compact and Tn : E+ → P.

The proofs of the main results are similar to the proofs from Section 4 and are
therefore omitted.

Let m ∈ Ln
1
++. Consider the linear boundary value problem

(5.3) Dγ

0+u(t) + µm(t)u(t) = 0, a.e. t ∈ (0, 1),

satisfying the boundary conditions (1.4), where µ is a real parameter.

Lemma 5.5. For all m ∈ Ln
1
++, (5.3), (1.4) admits a unique positive eigenvalue

µα(m).

Theorem 5.1. Assume that there exists m ∈ Ln
1
+ such that one of the following

hypotheses is satisfied.

µα(m) < 1 and (−1)ng(t, u) ≥ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),(5.4)

µα(m) > 1 and (−1)ng(t, u) ≤ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),(5.5)

then (1.3), (1.4) has no positive solutions.

Theorem 5.2. Assume that there exist m1,m2 ∈ Ln
1
++, q1, q2 ∈ Ln

1
+, and two func-

tions ϕ1, ϕ2 : [0,∞) → [0,∞) such that µα(m1) < 1 < µα(m2) and, for all u ≥ 0 and

a.e. t ∈ (0, 1)

(5.6) m1(t)u− q1(t)ϕ1(u) ≤ (−1)ng(t, u) ≤ m2(t)u+ q2(t)ϕ2(u).

If either
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(H1) ϕ1(u) = o(∥u∥) as u → ∞, ϕ2(u) = o(∥u∥) as u → 0, ϕ1 is nondecreasing, and

ϕ2 is nondecreasing near 0 or

(H2) ϕ1(u) = o(∥u∥) as u → 0, ϕ2(u) = o(∥u∥) as u → ∞, ϕ1 is nondecreasing near

0, and ϕ2 is nondecreasing,

then (1.3), (1.4) has at least one positive solution.

We conclude the paper by remarking that the hypotheses of Theorems 4.2 and 5.2
are similar to the hypotheses of the main theorem in [3]. Therefore, the examples of
nonlinearities provided in that work could be easily modified for the problems given
in this paper.
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