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BEST PROXIMITY POINT THEOREMS IN NON-ARCHIMEDEAN

MENGER PROBABILISTIC SPACES

ARIFE AYSUN KARAASLAN1 AND VATAN KARAKAYA2

Abstract. In this work, we prove best proximity point theorems for γ-contractions
with conditions the weak P-property in non-Archimedean Menger probabilistic met-
ric spaces. We give the notion of γ- proximal contractions of Ąrst and second type
in non-Archimedean Menger probabilistic metric spaces and also we establish best
proximity point theorems for these proximal contractions. Lastly, we complete our
study by giving examples that support our results.

1. Introduction

The concept of the probabilistic metric spaces were introduced by Menger [15].
When x and y are two elements of a probabilistic metric space, the idea of distance
between these points is changed with function Fx,y(t). Fx,y(t) is a distribution function
that is explained as probability that the distance between x and y is less than t. In
fact, studies in these spaces improved with Schweizer and Sklar’ s leading works [20].
The probabilistic interpretation of Banach contraction principle is demonstrated by
Sehgal and Bharucha-Reid in [22]. Some studies about probabilistic metric spaces are
given in list [7, 8, 12, 16–18].

On the other hand, best proximity point was started by Fan [9]. For more details,
references are listed in [1, 3, 4, 11, 13, 14, 19, 24]. Sezen introduced γ-contraction and
γ-weak contraction in non-Archimedean fuzzy metric spaces [23]. In this paper, we
prove some best proximity point theorems for γ-contractions in a non-Archimedean
Menger probabilistic metric space.

Key words and phrases. Fixed point, best proximity point, γ-contraction, non-Archimedean
Menger probabilistic metric space
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2. Preliminaries

Definition 2.1 ([20]). A triangular norm (shorter ∆ − norm/ t − norm) is a binary
operation ∆ which is defined on the closed interval [0,1],

∆ : [0, 1] × [0, 1] → [0, 1]

that satisfies the following requirements:

(∆1) ∆(a1, 1) = a1, ∆(0, 0) = 0;
(∆2) ∆(a1, a2) = ∆(a2, a1);
(∆3) ∆(a3, a4) ≥ ∆(a1, a2) for a3 ≥ a1, a4 ≥ a2;
(∆4) for all a1, a2, a3 ∈ [0, 1] , ∆(∆(a1, a2), a3) = ∆(a1, ∆(a2, a3)).

Principal examples of ∆ − norms are:

(i) ∆M(a1, a2) = min(a1, a2);
(ii) ∆P (a1, a2) = a1.a2;
(iii) ∆L(a1, a2) = max(a1 + a2 − 1, 0);

(iv) ∆D(a1, a2) =







min(a1, a2), if max(a1, a2) = 1,

0, otherwise.

Definition 2.2 ([20]). Let F be a function defined from R to R
+. If it is nondecreasing,

left-continuous with

inf ¶F (t) : t ∈ R♢ = 0 and sup ¶F (t) : t ∈ R♢ = 1,

then F is called a distribution function. In addition, if F (0) = 0, then F is called a
distance distribution function. L+ indicate the set of all distance distribution functions
and H is a special example of distance distribution function (also known as Heaviside
function) defined by

H(t) =







0, t ≤ 0,

1, t > 0.

Definition 2.3 ([20]). Let X is a nonempty set and F is a mapping defined from
X × X into L+. The value of F at the point (x, y) is denoted by Fx,y. If the following
conditions hold, (X, F ) ordered pair is called a probabilistic metric space:

(PM-1) Fx,y(t) = H(t) if and only if x = y;
(PM-2) Fx,y(t) = Fy,x(t);
(PM-3) Fx,y(t) = 1, Fy,z(s) = 1, then Fx,z(t + s) = 1 for all x, y, z ∈ X, t, s ≥ 0.

Every metric space (X, d) can always be realized as a probabilistic metric space by
taking into account that F : X × X → L+ defined as

Fx,y(t) = H(t − d(x, y)), for all x, y ∈ X.

Definition 2.4 ([20]). Let (X, F ) be a probabilistic metric space and ∆ is a t − norm
that provides the following inequality,

Fx,z(t + s) ≥ ∆ (Fx,y(t), Fy,z(s)) , for all x, y, z ∈ X and t, s ≥ 0.
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Then, triplet (X, F, ∆) is named as a Menger probabilistic metric space.

Definition 2.5 ([20]). Let (X, F, ∆) be a Menger space.
(i) A sequence (xn) is called a convergent sequence to x ∈ X if for every t > 0 and

0 < ε < 1, there exists n0 = n0(t, ε) ∈ N such that Fxn,x(t) > 1 − λ for all n ≥ N.
(ii) A sequence (xn) in X is called Cauchy sequence if for every t > 0 and 0 < ε < 1,

there exists n0 = n0(t, ε) ∈ N such that Fxn,xm
(t) > 1 − ε for each n, m ≥ n0.

(iii) A Menger space is said to be complete , if each Cauchy sequence in X is
convergent to a point in X.

Definition 2.6 ([5]). A probabilistic metric space (X, F ) is called non-Archimedean
probabilistic metric space if Fx,y(t) = 1, Fy,z(s) = 1, then Fx,z(max¶t, s♢) = 1 for
every x, y, z ∈ X and t, s ≥ 0.

Definition 2.7 ([5, 6]). A Menger probabilistic metric space (X, F, ∆) is called non-
Archimedean if Fx,z(max¶t, s♢) = ∆ (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Note. We observe that (X, F, ∆) is non-Archimedean if and only if

Fx,z(t) ≥ ∆ (Fx,y(t), Fy,z(t)) , for all x, y, z ∈ X and t ≥ 0.

Definition 2.8 ([19]). Let (X, F, ∆) be a Menger probabilistic metric space and A, B

be two nonempty subsets of this space. A mapping T : A → B satisfies the following
equality

Fx,T x(t) = FA,B(t), for t > 0.

Then x in A is said to be a best proximity point of T .

Definition 2.9 ([3]). Let (X, F, ∆) be a Menger probabilistic metric space and
A, B two nonempty subsets of this space. A set A is said to be approximatively
compact with respect to a set B if every sequence (xn) in A satisfies the condition that
Fy,xn

(t) → Fy,A(t) for some y ∈ B and for each t > 0 has a convergent subsequence.

Definition 2.10. Let γ : [0, 1) → R be a function that has the following properties:
(a) strictly increasing;
(b) continuous mapping;
(c) for each sequence (αn) of positive numbers, lim

n→∞
αn = 1 if and only if lim

n→∞
γ(αn) =

+∞.
Also, Γ represents the family of all γ functions.
Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric space. A mapping

T : X → X is said to be a γ-contraction if there exists a δ ∈ (0, 1) such that
for all x, y ∈ X and γ ∈ Γ

(2.1) FT x,T y(t) < 1 ⇒ γ(FT x,T y(t)) ≥ γ(Fx,y(t)) + δ.
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3. Main Results

In this section, we present some definitions and some best proximity point results
in non-Archimedean Menger probabilistic metric spaces. Let A and B two nonempty
subsets of a Menger probabilistic metric space (X, F, ∆). We will use the following
notations:

FA,B(t) = sup¶Fx,y(t) : x ∈ A, y ∈ B♢.

A0(t) =¶x ∈ A : Fx,y(t) = FA,B(t) for some y ∈ B♢,

B0(t) =¶y ∈ B : Fx,y(t) = FA,B(t) for some x ∈ A♢.

Now, let us give our main results.

Definition 3.1. Let (A, B) be a pair of nonempty subsets of a non-Archimedean
Menger probabilistic metric space X with A0(t) ̸= 0. Then the pair (A, B) is said to
have the weak P-property if and only if

Fx1,y1(t) = FA,B(t), Fx2,y2(t) = FA,B(t) ⇒ Fx1,x2(t) ≥ Fy1,y2(t),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 3.1. Let X = R × R and d defined as the standard metric d(x, y) = ♣x − y♣
for all x ∈ X, ∆(a, b) = min(a, b) and the distribution function defined as

Fx,y(t) =
t

t + d(x, y)
, for all t > 0.

(X, F, ∆) is a non-Archimedean Menger probabilistic metric space. Let A = ¶(0, 0)♢,

B = ¶(1, 0), (−1, 0)♢. From here, d(A, B) = 1 and FA,B(t) = t
t+d(A,B)

= t
t+1

. Now we

consider

Fx1,y1(t) =FA,B(t), Fx2,y2(t) = FA,B(t).

We get (x1, y1) = ((0, 0), (1, 0)) and (x2, y2) = ((0, 0), (−1, 0)), Fx1,x2(t) =
F(0,0),(0,0)(t) = 1 and Fy1,y2(t) = F(1,0),(−1,0)(t) = t

t+2
implies Fx1,x2(t) > Fy1,y2(t).

Thus, (A, B) is said to have the weak P-property.

Definition 3.2. Let A, B be nonempty subsets of a non-Archimedean Menger proba-
bilisitc metric space (X, F, ∆). The mapping g : A → A is said to be a probabilistic
isometry if

Fgx1,gx2(t) = Fx1,x2(t),

for all x1, x2 ∈ A.

Definition 3.3. Let A, B be nonempty subsets of a non-Archimedean Menger prob-
abilistic metric space (X, F, ∆). Given S : A → B and a probabilistic isometry
g : A → A, the mapping S is said to preserve probabilistic distance with respect to g

if

FSgx1,Sgx2(t) = FSx1,Sx2(t),
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for all x1, x2 ∈ A.

Example 3.2. Let X = [0, 1] ×R and d defined as the standart metric d(x, y) = ♣x − y♣
for all x ∈ X and the distribution function defined as

Fx,y(t) =
t

t + d(x, y)
, for all t > 0.

Let A = ¶(0, x) : x ∈ R♢. g : A → A is defined as g(0, x) = (0, −x). Fx,y(t) =
t

t+d(x,y)
= Fgx,gy(t), where x = (0, x1), y = (0, y1) ∈ A. This indicates that g is a

probabilistic isometry.

Theorem 3.1. A and B be nonempty, closed subsets of a complete non-Archimedean

Menger probabilistic metric space (X, F, ∆) such that A0(t) is nonempty. Let T : A →
B be a γ-contraction such that T (A0(t)) ⊆ B0(t). Suppose that the pair (A, B) has

the weak P-property. Then T has a unique x∗ in A such that Fx∗,T x∗(t) = FA,B(t).

Proof. Let start by choosing an element x0 in A0(t). Since T (A0(t)) ⊆ B0(t), we can
find x1 ∈ A0(t) such that Fx1,T x0(t) = FA,B(t). Further, since T (A0(t)) ⊆ B0(t), it
follows that there is an element x2 in A0(t) such that Fx2,T x1(t) = FA,B(t). Recursively,
we obtain a sequence (xn) ∈ A0(t) satisfying for all n ∈ N,

(3.1) Fxn+1,T xn
(t) = FA,B(t).

(A, B) satisfies the weak P-property, from (3.1) we obtain

(3.2) Fxn,xn+1(t) ≥ FT xn−1,T xn
(t), for all n ∈ N.

Now we will prove that the sequence (xn) is convergent in A0(t). If there exists n0 ∈ N

such that FT xn0−1,T xn0
(t) = 1, then by (3.2) we get Fxn0 ,xn0+1(t) = 1 which implies

xn0 = xn0+1. Hence, we get

(3.3) Txn0 = Txn0+1 ⇒ FT xn0 ,T xn0+1(t) = 1.

From (3.2) and (3.3), we have that

Fxn0+2,xn0+1(t) ≥ FT xn0+1,T xn0
(t) = 1 ⇒ xn0+2 = xn0+1.

Therefore, for all n ≥ n0, xn = xn0 and (xn) is convergent in A0(t). Also, we get

Fxn0 ,T xn0
(t) = Fxn0+1,T xn0

(t) = FA,B(t).

From this equality we can say that xn0 is a probabilistic best proximity point of T and
the proof is finished. For this reason, we suppose that, for all n ∈ N, FT xn−1,T xn

(t) ̸= 1.
From the definition of γ-contraction and (3.2), we have

(3.4)

γ(Fxn,xn+1(t)) ≥γ(Fxn−1,xn
(t)) + δ

≥γ(Fxn−2,xn−1(t)) + 2δ

...

≥γ(Fx0,x1(t)) + nδ.
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Letting n → ∞, from (3.4) we have

lim
n→∞

γ(Fxn,xn+1(t)) = +∞.

Using the property of γ function we have,

(3.5) lim
n→∞

Fxn,xn+1(t) = 1.

We shall show that (xn) is a Cauchy sequence. Suppose that (xn) is not a Cauchy
sequence. Then there exist ε ∈ (0, 1) and t0 > 0 and two sequences m(j), n(j) of
positive integers such that m(j) > n(j) + 1 and

(3.6) Fxm(j),xn(j)
(t0) < 1 − ε and Fxm(j)−1,xn(j)

(t0) ≥ 1 − ε.

So, for all j ∈ N we get

(3.7)

1 − ε >Fxm(j),xn(j)
(t0)

≥∆(Fxm(j),xm(j)−1
(t0), Fxm(j)−1,xn(j)

(t0))

≥∆(Fxm(j),xm(j)−1
(t0), (1 − ε)).

By taking j → ∞ in (3.7) and using (3.5) we have,

(3.8) lim
j→∞

Fxm(j),xn(j)
(t0) = 1 − ε.

From the property of t-norm

Fxm(j)+1,xn(j)+1
(t0) ≥∆(Fxm(j)+1,xm(j)

(t0), Fxm(j),xn(j)+1
(t0))

≥∆(Fxm(j)+1,xm(j)
(t0), ∆(Fxm(j),xn(j)

(t0), Fxn(j),xn(j)+1
(t0))).

On letting limit as j → ∞ in previous inequality, we obtain

(3.9) lim
j→∞

Fxm(j)+1,xn(j)+1
(t0) = 1 − ε.

By applying inequality in (2.1) with x = xm(j) and y = xn(j),

(3.10) γ(Fxm(j)+1,xn(j)+1
(t)) ≥ γ(Fxm(j),xn(j)

(t)) + δ.

Taking the limit as j → ∞ in (3.10), using definition of γ-contraction, from (3.8) and
(3.9), we obtain

γ(1 − ε) ≥ γ(1 − ε) + δ.

This is a contraction. Therefore, (xn) is a Cauchy sequence in X. We know that
(X, F, ∆) is complete and A0(t) is a closed subset of this space, there exists x∗ ∈ A0(t)
such that

lim
n→∞ xn = x∗.

From the continuity of T , we have Txn → Tx∗ and Fxn+1,T xn
(t) = Fx∗,T x∗(t). From

(3.1), Fx∗,T x∗(t) = FA,B(t). This shows that x∗ is a probabilistic best proximity point
of T . Now, we show that uniqueness of the best proximity point of T . Suppose
that x1 and x2 are two best proximity points of T . For x1, x2 ∈ A, x1 ̸= x2 and
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Fx1,T x1(t) = Fx2,T x2(t) = FA,B(t). Since (A, B) has the weak P-property, we can write
Fx1,x2(t) ≥ FT x1,T x2(t). T is a γ-contraction and x1 ̸= x2 implies Fx1,x2(t) ̸= 1,

γ(Fx1,x2(t)) ≥ γ(FT x1,T x2(t)) ≥ γ(Fx1,x2(t)) + δ > γ(Fx1,x2(t)),

which is a contradiction. Hence, T has a unique best proximity point. □

Example 3.3. Let X = R × [0, 1] and (X, F, ∆) be the non-Archimedean Menger
probabilistic metric space given in Example 3.2. Let A = ¶(x, 0) : for all x ∈ R♢,
B = ¶(y, 1) : for all y ∈ R♢. Then, here A0(t) = A, B0(t) = B, d(A, B) = 1 and
FA,B(t) = t

t+1
. γ : [0, 1) → R defined as γ = 1

1−x
, for all x ∈ X. Let T : A → B and

T (x, 0) =
(

x
6
, 1


. Then, T (A0(t)) = B0(t). Let us consider

Fa1,T x1(t) =FA,B(t), Fa2,T x2(t) = FA,B(t).

We have (a1, x1) =
((

−b1

6
, 0


, (−b1, 0)


or (a2, x2) =
((

−b2

6
, 0


, (−b2, 0)


. Then using

γ-contraction, we have

γ(Fa1,a2(t)) =γ



F(− b1
6

,0),(− b2
6

,0)(t)


= γ





t

t + |b1−b2|
6



(3.11)

=
1

1 − t

t+
|b1−b2|

6

>
1

1 − t
t+|b1−b2|

= γ

(

t

t + ♣b1 − b2♣



=γ(Fx1,x2(t)).

From (3.11), γ(Fa1,a2(t)) > γ(Fx1,x2(t)). So, we can find a δ ∈ (0, 1) such that
γ(Fa1,a2(t)) ≥ Fx1,x2(t)) + δ. Then T is a γ-contraction and (0, 0) is a unique best
proximity point of T .

Corollary 3.1. Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric space

and A0(t) is a nonempty closed subset of X. Let T : A → A be a γ-contraction. Then

there exists a unique x∗ in A.

Definition 3.4. Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric
space and A, B be two nonempty subsets of this space such that A0(t) is nonempty.
A mapping T : A → B is said to be a γ-proximal contraction of first type if there
exists a δ ∈ (0, 1) for all u1, u2,x1, x2 ∈ X such that

Fu1,T x1(t) = FA,B(t), Fu2,T x2(t) = FA,B(t), Fu1,u2(t), Fx1,x2(t) < 1,(3.12)

⇒γ(Fu1,u2(t)) ≥ γ(Fx1,x2(t)) + δ.

Definition 3.5. Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric
space and A, B be two nonempty subsets of this space such that A0(t) is nonempty.
A mapping T : A → B is said to be a γ-proximal contraction of second type if there
exists a δ ∈ (0, 1) for all u1, u2,x1, x2 ∈ X such that

Fu1,T x1(t) = FA,B(t), Fu2,T x2(t) = FA,B(t), FT u1,T u2(t), FT x1,T x2(t) < 1,(3.13)

⇒γ(FT u1,T u2(t)) ≥ γ(FT x1,T x2(t)) + δ.
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Theorem 3.2. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic

metric space and A, B be two nonempty, closed subsets of this space such that A0(t)
is nonempty. Let T : A → B and g : A → A satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of first type;

(3) g is an isometry;

(4) A0(t) ⊆ g(A0(t)).

Then there exist a unique element x ∈ A such that Fgx,T x(t) = FA,B(t).

Proof. We will start the proof by choosing an element x0 in A0(t). Since T (A0(t)) ⊆
B0(t) and A0(t) ⊆ g (A0(t)), we can find x1 ∈ A0(t) such that Fgx1,T x0(t) = FA,B(t).
Since Tx1 ∈ T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g (A0(t)), it follows that there is an
element x2 in A0(t) such that Fgx2,T x1(t) = FA,B(t). Recursively, we obtain a sequence
(xn) ∈ A0(t) satisfying for all n ∈ N,

(3.14) Fgxn+1,T xn
(t) = FA,B(t).

Now we will prove that the sequence (xn) is convergent in A0(t). If there exists n0 ∈ N

such that Fgxn0 ,gxn0+1(t) = 1, then it is clear that the sequence (xn) is convergent. So,
let for all n ∈ N, Fgxn0 ,gxn0+1(t) ̸= 1. From the hypothesis of the theorem, T is a
γ-proximal contraction of first type

γ(Fgxn,gxn+1(t)) ≥γ(Fxn−1,xn
(t)) + δ(3.15)

γ(Fxn,xn+1(t)) ≥γ(Fxn−1,xn
(t)) + δ

...

≥γ(Fx0,x1(t)) + nδ.

Letting n → ∞, in previous inequality we have lim
n→∞ γ(Fxn,xn+1(t)) = +∞. If we

continue with the same way that used in proof of Theorem 3.1, we can say (xn) is a
Cauchy sequence. Since complete non-Archimedean Menger probabilistic metric space
(X, F, ∆) has closed subsets, there exist x ∈ A0(t) such that lim

n→∞ xn = x. Applying

limit when n → ∞ in (3.14), we have

Fgx,T x(t) = FA,B(t).

To show the uniqueness, we will suppose the contrary. Let x∗ ∈ A0(t) and it satisfy
the equality Fgx∗,T x∗(t) = FA,B(t) such that x ̸= x∗. Hence, Fx,x∗(t) ̸= 1. Since g is
an isometry and T is a γ-proximal contraction of the first kind, it follows that

γ(Fx,x∗(t)) = γ(Fgx,gx∗(t)) ≥ γ(Fx,x∗(t)) + δ > γ(Fx,x∗(t)),

which is a contradiction. Consequently, x = x∗. □

Example 3.4. Let X = [−2, 2] × R and (X, F, ∆) be the non-Archimedean Menger
probabilistic metric space given in Example 3.2.
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Let A = ¶(−2, x) : for all x ∈ R♢, B = ¶(2, y) : for all y ∈ R♢. Then, here
A0(t) = A, B0(t) = B, d(A, B) = 4 and FA,B(t) = t

t+4
. γ : [0, 1) → R defined

as γ(x) = 1
1−x2 , for all x ∈ X. Let T : A → B and g : A → A, these are defined

as T (−2, x) =
(

2, x
2



and g(−2, x) = (−2, −x). Then, T (A0(t)) = B0(t), A0(t) =

g(A0(t)) and g is a isometry. Let us consider

Fa1,T x1(t) =FA,B(t), Fa2,T x2(t) = FA,B(t).

We have (a1, x1) =
((

−2, b1

2



, (−2, b1)


or (a2, x2) =
((

−2, b2

2



, (−2, b2)


. We must

show that, T is a γ-proximal contraction of first type

γ(Fa1,a2(t)) =γ



F(−2,
b1
2 ),(−2,

b2
2 )(t)



= γ





t

t + |b1−b2|
2



(3.16)

=
1

1 −


t

t+
|b1−b2|

2

2 >
1

1 −
(

t
t+|b1−b2|

2 = γ

(

t

t + ♣b1 − b2♣



=γ(Fx1,x2(t)).

From (3.16), we have γ(Fa1,a2(t)) > γFx1,x2(t)). So, we can find a δ ∈ (0, 1) such
that γ(Fa1,a2(t)) ≥ Fx1,x2(t)) + δ. Then T is a γ-proximal contraction of first type and
(−2, 0) is a unique best proximity point of T .

If we assume that g is the identity mapping, we can give the following result.

Corollary 3.2. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic

metric space and A, B be two nonempty, closed subsets of this space such that A0(t)
is nonempty. Let T : A → B satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of first type.

Then T has a unique best proximity point in A.

Theorem 3.3. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic

metric space and A, B be two nonempty, closed subsets of this space such that A0(t)
is nonempty. Suppose that A is approximatively compact with respect to B. Let

T : A → B and g : A → A satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of second type;

(3) g is an isometry;

(4) A0(t) ⊆ g(A0(t));
(5) T preserves probabilistic distance with respect to g.

Then there exists a unique element x ∈ A such that Fgx,T x(t) = FA,B(t).

Proof. Let start by choosing an element Tx0 in T (A0(t)). Using the hypothesis,
T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g (A0(t)), we can find x1 ∈ A0(t) such that Fgx1,T x0(t) =
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FA,B(t). Further, since Tx1 ∈ T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g (A0(t)), it follows that
there is an element x2 in A0(t) such that Fgx2,T x1(t) = FA,B(t). Recursively, we obtain
a sequence (Txn) ∈ B satisfying for all n ∈ N

(3.17) Fgxn+1,T xn
(t) = FA,B(t).

Now we will prove that the sequence (Txn) is convergent in B. If there exists n0 ∈ N

such that FT gxn0 ,T gxn0+1(t) = 1, then it is clear that the sequence (Txn) is convergent.
So, let for all n ∈ N, FT gxn0 ,T gxn0+1(t) ̸= 1. From the hypothesis of the theorem, T is
a γ-proximal contraction of second type

γ(FT gxn,T gxn+1(t)) ≥γ(FT xn−1,T xn
(t)) + δ(3.18)

γ(FT xn,T xn+1(t)) ≥γ(FT xn−1,T xn
(t)) + δ

...

≥γ(FT x0,T x1(t)) + nδ.

Letting n → ∞, in previous inequality we have lim
n→∞ γ(FT xn,T xn+1(t)) = +∞. If we

continue same way that used in proof of Theorem 3.1, we can say that (Txn) is a
Cauchy sequence in B. In theorem hyphothesis, complete non-Archimedean Menger
probabilistic metric space (X, F, ∆) has closed subsets, there exists y ∈ B such that
lim

n→∞ Txn = y. Using the triangle inequality

Fy,A(t) ≥ Fy,gxn
(t) ≥∆(Fy,T xn−1(t), FT xn−1,gxn

(t))(3.19)

=∆(Fy,T xn−1(t), FA,B(t))

≥∆(Fy,T xn−1(t), Fy,A(t)).

In (3.19), if we take the limit as n → ∞, we have lim
n→∞

Fy,gxn
(t) = Fy,A(t). Due to the

fact that A is approximatively compact with respect to B, there exists a subsequence
(gxnk

) of (gxn) such that converges to some w ∈ A.
Hence, Fw,y(t) = lim

k→∞
Fgxnk

,T gxnk−1(t) = Fy,A(t). It implies that w ∈ A0(t). A0(t) ⊆

g(A0(t)), there exists x ∈ A0(t) such that w = gx. As we know, lim
n→∞ gxnk

= gx and g

is an isometry, we have lim
n→∞

xnk
= x. (Txn) converges to y and the continuity of T , we

can write lim
n→∞ Txnk

= Tx = y. As a result that, Fgx,T x(t) = lim
n→∞ Fgxnk

,T gxnk
= FA,B(t).

The uniqueness can be shown using the same way in Theorem 3.1. □

Example 3.5. Let X = R × [0, 1] and (X, F, ∆) be the non-Archimedean Menger
probabilistic metric space given in Example 3.2. Let A = ¶(x, 0) : for all x ∈ R♢,
B = ¶(y, 1) : for all y ∈ R♢. Then, here A0(t) = A, B0(t) = B, d(A, B) = 1 and
FA,B(t) = t

t+1
. γ : [0, 1) → R defined as γ(x) = 1√

1−x
, for all x ∈ X. Let T : A → B

and g : A → A, these are defined as T (x, 0) =
(

x
3
, 1


and g(x, 0) = (−x, 0). Then,

T (A0(t)) = B0(t), A0(t) = g(A0(t)) and g is an isometry. Let us consider

Fa1,T x1(t) =FA,B(t), Fa2,T x2(t) = FA,B(t).
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Also, FT gx1,T gx2(t) = FT x1,T x2(t) and this says that T preserves isometric distance with

respect to g. We have (a1, x1) =
((

b1

3
, 0


, (b1, 0)


or (a2, x2) =
((

b2

3
, 0


, (b2, 0)


. We

must show that, T is a γ-proximal contraction of second type

(3.20)

γ(FT a1,T a2(t)) = γ



F( b1
9

,1),( b2
9

,1)(t)


= γ





t

t + |b1−b2|
9





=
1

√

1 −


t

t+
|b1−b2|

9



>
1

√

1 −


t

t+
|b1−b2|

3



= γ





t

t + |b1−b2|
3





= γ(FT x1,T x2(t)).

From (3.20), we have γ(FT a1,T a2(t)) > γ(FT x1,T x2(t)). So, we can find a δ ∈ (0, 1) such
that γ(FT a1,T a2(t)) ≥ FT x1,T x2(t)) + δ. Then T is a γ-contraction of second type and
(0, 0) is a unique best proximity point of T .

If we assume that g is the identity mapping, we can give the following result.

Corollary 3.3. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic

metric space and A, B be two nonempty, closed subsets of this space such that A0(t) is

nonempty. Assume that A is approximately compact with respect to B. Let T : A → B

and g : A → A satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of second type.

Then, T has a unique probabilistic best proximity point in A.

4. Conclusion

The purpose of this paper is to give best proximity point theorems for γ-contractions
and also γ-proximal contractions of first and second type. These are proved and
supported with examples.

Acknowledgements. First author was supported by the Scientifc and Technological
Research Council of Turkey (TUBITAK) Programme, 2211-A.

References

[1] F. Ali, J. Ali and I. Uddin, A novel approach for the solution of BVPs via Green’s function and

fixed point iterative method, J. Appl. Math. Comput. 60 (2020), 1Ű15. https://doi.org/10.

1007/s12190-020-01431-7

[2] J. Ali, M. Imdad and D. Bahuguna, Common fixed point theorems in Menger spaces with common

property (E.A), Comput. Math. Appl. 60(12) (2010), 3152Ű3159. https://doi.org/10.1016/j.

camwa.2010.10.020

[3] G. A. Anastassiou, Y. J. Cho, R. Saadati and Y. O. Yang, Common best proximity points for

proximally commuting mappings in non-Archimedean pm-spaces, J. Comput. Anal. Appl. 20(6)
(2016), 1021Ű1030.

https://doi.org/10.1007/s12190-020-01431-7
https://doi.org/10.1007/s12190-020-01431-7
https://doi.org/10.1016/j.camwa.2010.10.020
https://doi.org/10.1016/j.camwa.2010.10.020


342 A. A. KARAASLAN AND V. KARAKAYA

[4] M. Asim, I. Uddin and M. Imdad, Fixed point results in Mv-metrices with an application, J.
Inequal. Appl. 280 (2019), 1Ű19. https://doi.org/10.1186/s13660-019-2223-3

[5] S. S. Chang, On some fixed point theorems in probabilistic metric space and its application,
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 63 (1983), 463Ű474.

[6] S. S. Chang, On some fixed point theorems for generalized Meir-Keeler type mappings, Journal
of Sichuan University (Natural Science Edition) (1983), 17Ű20.

[7] L. Ćirić, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric

spaces, Nonlinear Anal. 72(3-4) (2010), 2009Ű2018. https://doi.org/10.1016/j.na.2009.10.

001

[8] P. Das, S. Som, S. Ghosal and V. Karakaya, A notion of αβ-statistical convergence of order γ in

probability, Kragujevac J. Math. 42(1) (2018), 51Ű67.
[9] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234Ű240.
[10] O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Mathematics and Its

Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
[11] M. Imdad, J. Ali and M. Tanveer, Coincidence and common fixed point theorems for nonlinear

contractions in Menger pm spaces, Chaos Solitons Fractals 42(5) (2009), 3121Ű3129. https:

//doi.org/10.1016/j.chaos.2009.04.017

[12] J. Jachymski, On probabilistic φ-contractions on Menger spaces, Nonlinear Anal. 73(7) (2010),
2199Ű2203. https://doi.org/10.1016/j.na.2010.05.046

[13] M. Jamali and S. M. Vaezpour, Best proximity point for certain nonlinear contractions in

Menger probabilistic metric spaces, J. Adv. Math. Stud. 9(2) (2016), 338Ű347.
[14] M. Jamali and S. M. Vaezpour, Existence and convergence of best proximity points in new type

of contractions in Menger probabilistic metric spaces, J. Nonlinear Funct. Anal. 2016 (2016),
Article ID 36.

[15] K. Menger, Statistical metrics, Proc. Amer. Math. Soc. 28(12) (1942), 535Ű537. https://doi.

org/10.1073/pnas.28.12.535

[16] D. Mihet, Fixed point theorems in probabilistic metric spaces, Chaos Solitions Fractals 41(2)
(2009), 1014Ű1019. https://doi.org/10.1016/j.chaos.2008.04.030

[17] D. Mihet, Altering distances in probabilistic Menger spaces, Nonlinear Anal. 71(7Ű8) (2009),
2734Ű2738. https://doi.org/10.1016/j.na.2009.01.107

[18] D. OŠRegan and R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math.
Comput. 195(1) (2008), 86Ű93. https://doi.org/10.1016/j.amc.2007.04.070

[19] R. Saadati, Best proximity point theorems for probabilistic proximal cyclic contraction with

applications in nonlinear programming, Fixed Point Theory and Algorithms for Sciences and
Engineering 2015 (2015), Article ID 79. https://doi.org/10.1186/s13663-015-0330-5

[20] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland series in Probability and
Applied Mathematics, North-Holland Publishing Co., New York, 1983.

[21] V. M. Sehgal, Some fixed point theorems in functional analysis and probability, Ph.D. Thesis,
Wayne State University, 1966.

[22] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic

metric spaces, Mathematical Systems Theory 6 (1972), 97Ű102.
[23] M. Sangurlu Sezen, Fixed point theorems for new type contractive mappings, J. Funct. Spaces

2019 (2019). https://doi.org/10.1155/2019/2153563

[24] Y. Su and J. Zhang, Fixed point and best proximity point theorems for contractions in new class

of probabilistic metric spaces, Fixed Point Theory and Algorithms for Sciences and Engineering
2014 (2014), Article ID 170.

https://doi.org/10.1186/s13660-019-2223-3
https://doi.org/10.1016/j.na.2009.10.001
https://doi.org/10.1016/j.na.2009.10.001
https://doi.org/10.1016/j.chaos.2009.04.017
https://doi.org/10.1016/j.chaos.2009.04.017
https://doi.org/10.1016/j.na.2010.05.046
https://doi.org/10.1073/pnas.28.12.535
https://doi.org/10.1073/pnas.28.12.535
https://doi.org/10.1016/j.chaos.2008.04.030
https://doi.org/10.1016/j.na.2009.01.107
https://doi.org/10.1016/j.amc.2007.04.070
https://doi.org/10.1186/s13663-015-0330-5
https://doi.org/10.1155/2019/2153563


BEST PROXIMITY POINT THEOREMS IN NON-ARCHIMEDEAN MENGER PS 343

1Department of Mathematics,
Faculty of Arts and Science,
Işik University
Email address: karaaslan.aysun@gmail.com

2Department of Mathematical Engineering,
Faculty of Chemistry-Metallurgical,
Yildiz Technical University
Email address: vkkaya@yildiz.edu.tr





Kragujevac Journal of Mathematics

Volume 48(3) (2024), Pages 345–364.

THREE-WEIGHT AND FIVE-WEIGHT LINEAR CODES OVER

FINITE FIELDS

PAVAN KUMAR1 AND NOOR MOHAMMAD KHAN1

Abstract. Recently, linear codes constructed from defining sets have been studied
extensively. For an odd prime p, let Trm

e be the trace function from Fpm onto Fpe ,
where e is a divisor of m. In this paper, for the defining set D = ¶x ∈ F∗

pm :

Trm
e (x2 + x) = 0♢ = ¶d1, d2, . . . , dn♢ (say), we define a pe-ary linear code CD by

CD = {cx =
(

Trm
e

(xd1), Trm
e

(xd2), . . . , Trm
e

(xdn)
)

: x ∈ Fpm}

and present three-weight and five-weight linear codes with their weight distributions.
We show that each nonzero codeword of CD is minimal for m

e
≥ 5 and, thus, such

codes are applicable in secret sharing schemes.

1. Introduction

Throughout this paper, let p be an odd prime, and let Fpm be the finite field with
pm elements for any positive integer m. Denote by F∗

pm = Fpm \ ¶0♢ the multiplicative
group of Fpm .

An (n,M) code over Fpe , where e ♣ m and m
e
> 2, is a subset of Fn

pe of size M. Since
linear codes are easier to describe, encode and decode than nonlinear codes, they have
been an interesting topic in both theory and practice for many years. A linear code C

over Fpe is a subspace of Fn
pe . An [n, k, d] linear code C is a k-dimensional subspace of

Fn
pe with minimum Hamming-distance d. The vectors in a linear code C are known as

codewords. The number of nonzero coordinates in c ∈ C is called the Hamming-weight
wt(c) of a codeword c. Let Ai denote the number of codewords with Hamming weight

Key words and phrases. Linear code, weight distribution, Gauss sum, cyclotomic number, secret
sharing.
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i in a linear code C of length n. The weight enumerator of C is defined by

1 + A1z + A2z
2 + · · · + Anz

n,

where (1, A1, . . . , An) is called the weight distribution of C. Throughout the paper,
#¶·♢ denotes the cardinality of the set. If #¶i : Ai ≠ 0, 1 ≤ i ≤ n♢ = t, then the
code C is said to be t-weight code. Several classes of linear codes with various weights
have been constructed in [3, 5, 6, 8, 19], and a lot of literature is present on the weight
distributions of some special linear codes [1, 2, 14,15].

Let D = ¶d1, d2, . . . , dn♢ ⊆ Fpm . A linear code CD of length n over Fp is defined by

CD = ¶
(

Trm
1 (xd1),Trm

1 (xd2), . . . ,Trm
1 (xdn)



: x ∈ Fpm♢,

where Trm
1 denotes the absolute trace function from Fpm onto Fp. The set D is known

as the defining set of this code CD. Ding et al. introduced this construction (see
[6, 7]), and many others used it to obtain linear codes with few weights [8, 17]. In
[3, 6, 11, 14, 17, 19], the authors constructed the code CD over Fp with few weights
by considering certain defining sets with absolute trace function. In particular, the
authors, in [11], give linear codes over Fp by employing Gauss sums and Pless Power
Moments [10, page 260].

In this paper, we use Gauss sums and cyclotomic numbers to find linear codes over
Fpe by considering a new defining set obtained by replacing Tr by Trm

e in the defining
set D given in [11]. Let m, s and e are positive integers with s > 2 and m = es. Now
we define the trace function Trm

e from Fpm onto Fpe as follows:

Trm
e (x) =

s−1
∑

k=0

xpke

.

Now, set

D = ¶x ∈ F∗

pm : Trm
e (x2 + x) = 0♢ = ¶d1, d2, . . . , dn♢,

CD = ¶cx = (Trm
e (xd1),Trm

e (xd2), . . . ,Trm
e (xdn)) : x ∈ Fpm♢.(1.1)

Then we present the weight distribution of the proposed linear code CD of (1.1) in
the Section 4.

2. Preliminaries

We begin with some preliminaries by introducing the concept of cyclotomic numbers.
Let a be a primitive element of Fpm and pm = Nh+ 1 for two positive integers N > 1,

h > 1. The cyclotomic classes of order N in Fpm are the cosets C
(N,pm)
i = ai⟨aN⟩

for i = 0, 1 . . . , N − 1, where ⟨aN⟩ denotes the subgroup of F∗

pm generated by aN . It

is obvious that #C
(N,pm)
i = h. For fixed i and j, we define the cyclotomic number

(i, j)(N,pm) to be the number of solutions of the equation

xi + 1 = xj, xi ∈ C
(N,pm)
i , xj ∈ C

(N,pm)
j ,
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where 1 = a0 is the multiplicative identity of Fpm . That is, (i, j)(N,pm) is the number
of ordered pairs (s, t) such that

aNs+i + 1 = aNt+j, 0 ≤ s, t ≤ h− 1.

Now, we present some notions and results about group characters and Gauss sums
for later use (see [12] for details).

An additive character χ of Fpm is a mapping from Fpm into the multiplicative
group of complex numbers of absolute value 1 with χ (g1 + g2) = χ (g1)χ(g2) for all
g1, g2 ∈ Fpm . By ([12], Theorem 5.7), for any b ∈ Fpm ,

(2.1) χb(x) = ζTrm
1 (bx)

p , for all x ∈ Fpm ,

defines an additive character of Fpm , where ζp = e
2π

√
−1

p , and every additive character
can be obtained in this way. An additive character defined by χ0(x) = 1 for all
x ∈ Fpm is called the trivial character while all other characters are called nontrivial
characters. The character χ1 in (2.1) is called the canonical additive character of Fpm .

The orthogonal property of additive characters of Fpm can be found in ([12], Theorem
5.4) and is given as

(2.2)
∑

x∈Fpm

χ(x) =







pm, if χ trivial,

0, if χ non-trivial.

Characters of the multiplicative group F∗

pm of Fpm are called multiplicative character
of Fpm . By [12, Theorem 5.8], for each j = 0, 1, . . . , pm − 2, the function ψj with

ψj(g
k) = e

2π
√

−1jk

pm−1 , for k = 0, 1, . . . , pm − 2

defines a multiplicative character of Fpm , where g is a generator of F∗

pm . For j = pm
−1

2
,

we have the quadratic character η = ψ pm−1
2

defined by

η(gk) =







−1, if 2 ∤ k,

1, if 2 ♣ k.

Moreover, we extend this quadratic character by letting η(0) = 0.
The quadratic Gauss sum G = G(η, χ1) over Fpm is defined by

G(η, χ1) =
∑

x∈F∗
pm

η(x)χ1(x).

Now, let η and χ1 denote the quadratic and canonical character of Fpe respectively.
Then we define the quadratic Gauss sum G = G(η, χ1) over Fpe by

G(η, χ1) =
∑

x∈F∗
pe

η(x)χ1(x).

The explicit values of quadratic Gauss sums are given by the following lemma.
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Lemma 2.1. ([12, Theorem 5.15]). Let the symbols be the same as before. Then

G(η, χ1) = (−1)m−1
√

−1
(p−1)2m

4
√
pm, G(η, χ1) = (−1)e−1

√
−1

(p−1)2e

4
√
pe.

Lemma 2.2. ([13, Lemma 2]). Let the symbols be the same as before. Then the

following hold.

1. If s ≥ 2 is even, then η(y) = 1 for each y ∈ F∗

pe;

2. If s is odd, then η(y) = η(y) for each y ∈ F∗

pe.

Lemma 2.3. ([16]). When N = 2, the cyclotomic numbers are given by

1. h even: (0, 0)(2,pm) = h−2
2

, (0, 1)(2,pm) = (1, 0)(2,pm) = (1, 1)(2,pm) = h
2
;

2. h odd: (0, 0)(2,pm) = (1, 0)(2,pm) = (1, 1)(2,pm) = h−1
2

, (0, 1)(2,pm) = h+1
2
.

Lemma 2.4. ([12, Theorem 5.33]). Let χ be a non-trivial additive character of Fpm,

and let f(x) = a2x
2 + a1x+ a0 ∈ Fpm [x] with a2 ̸= 0. Then
∑

x∈Fpm

χ(f(x)) = χ(a0 − a2
1(4a2)

−1)η(a2)G(η, χ).

Lemma 2.5. ([12, Theorem 2.26]). Let Trm
1 and Tre

1 be absolute trace functions over

Fpm and Fpe respectively, and let Trm
e be the trace function from Fpm onto Fpe. Then

Trm
1 (x) = Tre

1(Trm
e (x)),

for all x ∈ Fpm.

3. Basic Results

In this section, we provide some important results to establish our main results.

Lemma 3.1. For each λ ∈ Fpe, set Sλ = #¶x ∈ Fpm : Trm
e (x2) = λ♢. If s is odd, then

Sλ =







pm−e + p−eη(−1)η(λ)GG, if λ ̸= 0,

pm−e, if λ = 0.

Proof. For each λ ∈ Fpe , we have

Sλ =
1

pe

∑

x∈Fpm



∑

y∈Fpe

ζTre
1(y(Trm

e (x2)−λ))
p



=
1

pe

∑

x∈Fpm



1 +
∑

y∈F∗
pe

ζTrm
e (yx2)−Tre

1(λy)
p



= pm−e +
∑

y∈F∗
pe

ζ−Tre
1(λy)

p

∑

x∈Fpm

χ1(yx
2)

= pm−e +G
∑

y∈F∗
pe

χ1(−λy)η(y).

This completes the proof. □
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Lemma 3.2. For λ, µ ∈ Fpe, define

N(λ, µ) = #¶x ∈ Fpm : Trm
e (x2) = λ and Trm

e (x) = µ♢.
Then the following assertions hold.

1. If 2 ♣ s and p ♣ s, then

N(λ, µ) =



























pm−2e + p−e(pe − 1)G, if λ = 0 and µ = 0,

pm−2e, if λ = 0 and µ ̸= 0,

pm−2e − p−eG, if λ ̸= 0 and µ = 0,

pm−2e, if λ ̸= 0 and µ ̸= 0.

2. If 2 ♣ s and p ∤ s, then

N(λ, µ) =



























pm−2e, if λ = 0 and µ = 0,

pm−2e + p−eG, if λ = 0 and µ ̸= 0,

pm−2e, if λ ̸= 0 and µ2 − sλ = 0,

pm−2e + η(µ2 − sλ)p−eG, if λ ̸= 0 and µ2 − sλ ̸= 0.

3. If 2 ∤ s and p ♣ s, then

N(λ, µ) =















pm−2e, if λ = 0,

pm−2e + η(−λ)p−eGG, if λ ̸= 0 and µ = 0,

pm−2e, if λ ̸= 0 and µ ̸= 0.

4. If 2 ∤ s and p ∤ s, then

N(λ, µ) =







pm−2e + η(−s)p−2e(pe − 1)GG, if µ2 − sλ = 0,

pm−2e − η(−s)p−2eGG, if µ2 − sλ ̸= 0.

Proof. By the properties of additive character and Lemma 2.4, we have

N(λ, µ) = p−2e
∑

x∈Fpm



∑

y∈Fpe

ζTre
1(y(Trm

e (x2)−λ))
p



∑

z∈Fpe

ζTre
1(z(Trm

e (x)−µ))
p



= p−2e
∑

x∈Fpm



1 +
∑

y∈F∗
pe

ζTre
1(yTrm

e (x2)−yλ)
p



1 +
∑

z∈F∗
pe

ζTre
1(zTrm

e (x)−zµ)
p



= pm−2e + p−2e(S1 + S2 + S3),(3.1)

where

S1 =
∑

x∈Fpm

∑

z∈F∗
pe

ζTre
1(zTrm

e (x)−zµ)
p =

∑

z∈F∗
pe

χ1(−zµ)
∑

x∈Fpm

χ1(zx) = 0,

S2 =
∑

x∈Fpm

∑

y∈F∗
pe

ζTre
1(yTrm

e (x2)−yλ)
p =

∑

y∈F∗
pe

χ1(−yλ)
∑

x∈Fpm

χ1(yx
2),

S3 =
∑

x∈Fpm

∑

y∈F∗
pe

ζTre
1(yTrm

e (x2)−yλ)
p

∑

z∈F∗
pe

ζTre
1(zTrm

e (x)−zµ)
p
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=
∑

y∈F∗
pe

χ1(−yλ)
∑

z∈F∗
pe

χ1(−zµ)
∑

x∈Fpm

χ1(yx
2 + zx).

By Lemma 2.4, it is easy to prove that

S2 =



























G(pe − 1), if λ = 0 and 2 ♣ s,
0, if λ = 0 and 2 ∤ s,

−G, if λ ̸= 0 and 2 ♣ s,
η(−λ)GG, if λ ̸= 0 and 2 ∤ s.

By Lemma 2.4, we have

S3 =
∑

y∈F∗
pe

χ1(−yλ)
∑

z∈F∗
pe

χ1(−zµ)
∑

x∈Fpm

χ1(yx
2 + zx)

= G
∑

y∈F∗
pe

χ1(−λy)η(y)
∑

z∈F∗
pe

χ1

(

−sz2

4y
− µz

)

,

and there are the following cases to consider.
Case I. Suppose that 2 ♣ s and p ♣ s. Then

S3 = G
∑

y∈F∗
pe

χ1(−λy)
∑

z∈F∗
pe

χ1(−µz) =



























G(pe − 1)2, if λ = 0 and µ = 0,

−G(pe − 1), if λ = 0 and µ ̸= 0,

−G(pe − 1), if λ ̸= 0 and µ = 0,

G, if λ ̸= 0 and µ ̸= 0.

Case II. We consider that 2 ♣ s and p ∤ s. Then, from Lemma 2.4, we have

S3 = G
∑

y∈F∗
pe

χ1(−λy)
∑

z∈F∗
pe

χ1

(

−sz2

4y
− µz

)

= G
∑

y∈F∗
pe

χ1

(

µ2 − sλ

s
y

)

η

(

− s

4y

)

G−G
∑

y∈F∗
pe

χ1(−λy)

=



























−G(pe − 1), if λ = 0 and µ = 0,

G, if λ = 0 and µ ̸= 0,

G, if λ ̸= 0 and µ2 − sλ = 0,
(

η(µ2 − sλ)pe + 1


G, if λ ̸= 0 and µ2 − sλ ̸= 0.

Case III. Assume that 2 ∤ s and p ♣ s. Then

S3 = G
∑

y∈F∗
pe

χ1(−λy)η(y)
∑

z∈F∗
pe

χ1(−µz) =















0, if λ = 0,

η(−λ)(pe − 1)GG, if λ ̸= 0 and µ = 0,

−η(−λ)GG, if λ ̸= 0 and µ ̸= 0.
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Case IV. Suppose that 2 ∤ s and p ∤ s. Then, by Lemma 2.4, we have

S3 = G
∑

y∈F∗
pe

χ1(−λy)η(y)
∑

z∈F∗
pe

χ1

(

−sz2

4y
− µz

)

= GG
∑

y∈F∗
pe

χ1(−λy)η(y)χ1

(

µ2y

s

)

η

(

− s

4y

)

−G
∑

y∈F∗
pe

χ1(−λy)η(y)

= η(−s)GG
∑

y∈F∗
pe

χ1

(

µ2 − sλ

s
y

)

−G
∑

y∈F∗
pe

χ1(−λy)η(y)

=



























η(−s)(pe − 1)GG, if λ = 0 and µ = 0,

−η(−s)GG, if λ = 0 and µ ̸= 0,
(

(pe − 1)η(−s) − η(−λ)


GG, if λ ̸= 0 and µ2 − sλ = 0,

−
(

η(−s) + η(−λ)


GG, if λ ̸= 0 and µ2 − sλ ̸= 0.

Combining (3.1) and the values of S1, S2 and S3, we get the complete proof. □

Lemma 3.3. Let the symbols be the same as before, and let

Ω1 =
∑

y∈F∗
pe

∑

x∈Fpm

ζTre
1(yTrm

e (x2+x))
p .

Then

Ω1 =



























(pe − 1)G, if 2 ♣ s and p ♣ s,
−G, if 2 ♣ s and p ∤ s,

0, if 2 ∤ s and p ♣ s,
η(−s)GG, if 2 ∤ s and p ∤ s.

Proof. By Lemmas 2.4 and 2.5, we have

Ω1 =
∑

y∈F∗
pe

∑

x∈Fpm

χ1(yx
2 + yx) = G

∑

y∈F∗
pe

χ1



−y

4



η(y)

= G
∑

y∈F∗
pe

η(y)ζ
Trm

1 (− y

4
)

p = G
∑

y∈F∗
pe

η(y)ζ
Tre

1(− y

4
Trm

e (1))
p

=



















G
∑

y∈F∗
pe

η(y), if p ♣ s,

G
∑

y∈F∗
pe

η(y)ζ
Tre

1(− ys

4
)

p , if p ∤ s.
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=























































G
∑

y∈F∗
pe

1, if 2 ♣ s and p ♣ s,

G
∑

y∈F∗
pe

ζ
Tre

1(− ys

4
)

p , if 2 ♣ s and p ∤ s,

G
∑

y∈F∗
pe

η(y), if 2 ∤ s and p ♣ s,

G
∑

y∈F∗
pe

η(y)ζ
Tre

1(− ys

4
)

p , if 2 ∤ s and p ∤ s,

=



























(pe − 1)G, if 2 ♣ s and p ♣ s,
−G, if 2 ♣ s and p ∤ s,

0, if 2 ∤ s and p ♣ s,
η(−s)GG, if 2 ∤ s and p ∤ s,

as required. □

Lemma 3.4. For b ∈ F∗

pm and c ∈ F∗

pe, let

Ω3 =
∑

z∈F∗
pe

∑

y∈F∗
pe

∑

x∈Fpm

χ1(yx
2 + yx+ bzx).

Then we have the following statemets.
1. If Trm

e (b2) ̸= 0 and Trm
e (b) ̸= 0, then

Ω3 =















































η(−1)GG
2 − G(pe − 1), if 2 ♣ s and p ♣ s,

G, if 2 ♣ s, p ∤ s and
(

Trm
e (b)

)2
= sTrm

e (b2),

η
(

sTrm
e (b2) − (Trm

e (b) + 2c)2
)

GG
2

+ G, if 2 ♣ s, p ∤ s and
(

Trm
e (b)

)2 ̸= sTrm
e (b2),

−η
(

− Trm
e (b2)

)

GG, if 2 ∤ s and p ♣ s,

η
(

− Trm
e (b2)

)

GG(pe − 1) − η(−s)GG, if 2 ∤ s, p ∤ s and
(

Trm
e (b)

)2
= sTrm

e (b2),

−η
(

− Trm
e (b2)

)

GG − η(−s)GG, if 2 ∤ s, p ∤ s and
(

Trm
e (b)

)2 ̸= sTrm
e (b2).

2. If Trm
e (b2) ̸= 0 and Trm

e (b) = 0, then

Ω3 =



























−(pe − 1)G, if 2 ♣ s and p ♣ s,
η(sTrm

e (b2))GG
2

+G, if 2 ♣ s and p ∤ s,

η(−Trm
e (b2))(pe − 1)GG, if 2 ∤ s and p ♣ s,

−
(

η(−Trm
e (b2)) + η(−s)



GG, if 2 ∤ s and p ∤ s.

3. If Trm
e (b2) = 0 and Trm

e (b) ̸= 0, then

Ω3 =



























−(pe − 1)G, if 2 ♣ s and p ♣ s,
G, if 2 ♣ s and p ∤ s,

0, if 2 ∤ s and p ♣ s,
−η(−s)GG, if 2 ∤ s and p ∤ s.
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4. If Trm
e (b2) = 0 and Trm

e (b) = 0, then

Ω3 =



























(pe − 1)2G, if 2 ♣ s and p ♣ s,
−(pe − 1)G, if 2 ♣ s and p ∤ s,

0, if 2 ∤ s and p ♣ s,
η(−s)(pe − 1)GG, if 2 ∤ s and p ∤ s.

Proof. By Lemma 2.4, we have

Ω3 =
∑

z∈F∗
pe

∑

y∈F∗
pe

∑

x∈Fpm

χ1(yx
2 + yx+ bzx)

= G
∑

z∈F∗
pe

∑

y∈F∗
pe

η(y)χ1

(

−(y + bz)2

4y

)

= G
∑

z∈F∗
pe

∑

y∈F∗
pe

η(y)χ1

(

−y2 − 2byz − b2z2

4y

)

= G
∑

y∈F∗
pe

η(y)χ1



−y

4



∑

z∈F∗
pe

χ1

(

−bz

2
− b2z2

4y

)

= G
∑

y∈F∗
pe

η(y)χ1



−y

4



∑

z∈F∗
pe

ζ
Trm

1 (− bz
2

−
b2z2

4y
)

p

= G
∑

y∈F∗
pe

η(y)χ1



−y

4



∑

z∈F∗
pe

ζ
Tre

1

(

−
z
2

Trm
e (b)− z2

4y
Trm

e (b2)



p .

Note that, in the first part, Trm
e (b2) ̸= 0 and Trm

e (b) ̸= 0. Therefore,

Ω3 = G
∑

y∈F∗
pe

η(y)χ1(−y

4
)
∑

z∈F∗
pe

χ1

(

− z2

4y
Trm

e (b2) − z

2
Trm

e (b)

)

= G
∑

y∈F∗
pe

η(y)χ1



−y

4







∑

z∈Fpe

χ1

(

− z2

4y
Trm

e (b2) − z

2
Trm

e (b)

)

− 1





= G
∑

y∈F∗
pe

η(y)χ1



−y

4



∑

z∈Fpe

χ1

(

− z2

4y
Trm

e (b2) − z

2
Trm

e (b)

)

− G
∑

y∈F∗
pe

η(y)χ1



−y

4



= G
∑

y∈F∗
pe

η(y)χ1



−y

4



χ1

(

y (Trm
e (b))2

4Trm
e (b2)

)

η
(

−yTrm
e (b2)



G − G
∑

y∈F∗
pe

η(y)χ1



−y

4



= η
(

−Trm
e (b2)



GG
∑

y∈F∗
pe

η(y)χ1

(

(Trm
e (b))2 − sTrm

e (b2)

4Trm
e (b2)

y

)

η(y) − G
∑

y∈F∗
pe

η(y)χ1



−y

4
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=















































η(−1)GG
2 − G(pe − 1), if 2 ♣ s and p ♣ s,

G, if 2 ♣ s, p ∤ s and
(

Trm
e (b)

)2
= sTrm

e (b2),

η
(

sTrm
e (b2) − (Trm

e (b))2
)

GG
2

+ G, if 2 ♣ s, p ∤ s and
(

Trm
e (b)

)2 ̸= sTrm
e (b2),

−η
(

− Trm
e (b2)

)

GG, if 2 ∤ s and p ♣ s,

η
(

− Trm
e (b2)

)

GG(pe − 1) − η(−s)GG, if 2 ∤ s, p ∤ s and
(

Trm
e (b)

)2
= sTrm

e (b2),

−η
(

− Trm
e (b2)

)

GG − η(−s)GG, if 2 ∤ s, p ∤ s and
(

Trm
e (b)

)2 ̸= sTrm
e (b2).

This completes the proof of the first part.
Following the similar arguments used in the first part, one can easily prove the

remaining parts. □

Lemma 3.5. For µ ∈ F∗

pe, let V = #
{

x ∈ Fpm : Trm
e (x) = µ and

(

Trm
e (x)

)2
= sTrm

e (x2)
}

.

Then, for p ∤ s, we have

V =







pm−2e, if 2 ♣ s,
pm−2e + η(−s)p−2e(pe − 1)GG, if 2 ∤ s.

Proof. We can rewrite V as

V = #

{

x ∈ Fpm : Trm
e (x) = µ and Trm

e (x2) =
µ2

s

}

.

Then, by definition, we have

V = p−2e
∑

x∈Fpm





∑

y∈Fpe

ζ
Tre

1

(

y(Trm
e (x2)− µ2

s
)



p









∑

z∈Fpe

ζ
Tre

1

(

z(Trm
e (x)−µ)



p





= p−2e
∑

x∈Fpm





1 +
∑

y∈F∗
pe

ζ
Tre

1(Trm
e (yx2)− yµ2

s
)

p











1 +
∑

z∈F∗
pe

ζTre
1(Trm

e (zx)−zµ)
p







= pm−2e + p−2e(N1 +N2 +N3),

where

N1 =
∑

z∈F∗
pe

∑

x∈Fpm

ζTrm
1 (zx)−Tre

1(zµ)
p = 0, N2 =

∑

y∈F∗
pe

∑

x∈Fpm

ζ
Trm

1 (yx2)−Tre
1

(

yµ2

s



p ,

N3 =
∑

y∈F∗
pe

∑

z∈F∗
pe

∑

x∈Fpm

ζ
Trm

1 (yx2+zx)−Tre
1

(

yµ2

s
+zµ



p .

Now, by Lemma 2.4, we obtain

N2 =
∑

y∈F∗
pe

ζ
−Tre

1

(

yµ2

s



p χ(0)η(y)G
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=























G
∑

y∈F∗
pe

ζ
−Tre

1

(

yµ2

s



p , if 2 ♣ s,

η(−s)G ∑

y∈F∗
pe

η
(

−yµ2

s



χ1

(

−yµ2

s



, if 2 ∤ s,

=







−G, if 2 ♣ s,
η(−s)GG, if 2 ∤ s,

and

N3 =
∑

z∈F∗
pe

∑

y∈F∗
pe

ζ
−Tre

1

(

yµ2

s
+zµ



p

∑

x∈Fpm

χ1(yx
2 + zx)

=
∑

z∈F∗
pe

∑

y∈F∗
pe

ζ
−Tre

1

(

yµ2

s
+zµ



p χ1

(

− z2

4y

)

η(y)G

= G
∑

y∈F∗
pe

η(y)χ1

(

−yµ2

s

)

∑

z∈F∗
pe

χ1

(

−sz2

4y
− zµ

)

= G
∑

y∈F∗
pe

η(y)χ1

(

−yµ2

s

)

∑

z∈Fpe

χ1

(

−sz2

4y
− zµ

)

−G
∑

y∈F∗
pe

η(y)χ1

(

−yµ2

s

)

= G
∑

y∈F∗
pe

η(y)χ1

(

−yµ2

s

)

χ1

(

µ2

s
y

)

η

(

− s

4y

)

G−G
∑

y∈F∗
pe

η(y)χ1

(

−yµ2

s

)

= η(−s)GG
∑

y∈F∗
pe

η(y)η
(

y) −G
∑

y∈F∗
pe

η(y)χ1

(

−yµ2

s

)

=







G, if 2 ♣ s,
η(−s)(pe − 1)GG− η(−s)GG, if 2 ∤ s.

Also

V = pm−2e + p−2e(N1 +N2 +N3).

Thus, we get the desired result. □

Lemma 3.6. Suppose that λ, µ ∈ F∗

pe. For i ∈ ¶1,−1♢, let Ki denote the number of

pairs (λ, µ) such that η(µ2 − sλ) = i. Then we have

K1 =
1

2
(pe − 1)(pe − 3), K−1 =

1

2
(pe − 1)2.

Proof. We can rewrite µ2 − sλ ̸= 0 as

(3.2)
sλ

µ2 − sλ
+ 1 =

µ2

µ2 − sλ
.
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Set pe = 2h+ 1. Now, for any fixed µ2 − sλ such that η(µ2 − sλ) = 1, the number of
the pairs (λ, µ2) satisfying (3.2) is equal to

(0, 0)(2,pe) + (1, 0)(2,pe) = h− 1 (by Lemma 2.2).

Similarly, for a fixed µ2 − sλ such that η(µ2 − sλ) = −1, the number of pairs (λ, µ2)
satisfying (4.1) is equal to

(0, 1)(2,pe) + (1, 1)(2,pe) = h (from Lemma 2.2).

Consequently, the number of the pairs (λ, µ) such that η(µ2 − sλ) = 1 (resp. η(µ2 −
sλ) = −1) is 2(h− 1) (resp. 2h). We conclude that K1 = (pe − 1)(h− 1) (resp. K−1 =
(pe − 1)h), and hence the result follows. □

Lemma 3.7. Suppose that λ, µ ∈ F∗

pe and µ2 − sλ ≠ 0. For i ∈ ¶1,−1♢, let ψi denote

the number of the pairs (λ, µ) such that η(−λ) = i. Then we have

ψ1 =







1
2
(pe − 1)(pe − 3), if η(−s) = 1,

1
2
(pe − 1)2, if η(−s) = −1,

and

ψ−1 =







1
2
(pe − 1)2, if η(−s) = 1,

1
2
(pe − 1)(pe − 3), if η(−s) = −1.

Proof. The proof of the lemma is similar to the proof of Lemma 3.6 and is omitted
here. □

4. Main Results

Our task in this section is to prove some lemmas needed to obtain a class of 3-weight
and 5-weight linear codes over Fpe .

Now, let D be the defining set defined by

D = ¶x ∈ F∗

pm : Trm
e (x2 + x) = 0♢.

Assume that l0 = ♣D♣ + 1. Then

l0 =
1

pe

∑

x∈Fpm

∑

y∈Fpe

ζTre
1(yTrm

e (x2+x))
p = pm−e +

1

pe

∑

x∈Fpm

∑

y∈F∗
pe

ζTre
1(yTrm

e (x2+x))
p .

Define Nb = #¶x ∈ Fpm : Trm
e (x2 + x) = 0 and Trm

e (bx) = 0♢. Let wt(cb) denote the
Hamming-weight of the codeword cb of the code CD. It is easy to verify that

(4.1) wt(cb) = l0 −Nb.

For b ∈ F∗

pm , we have

Nb =p−2e
∑

x∈Fpm





∑

y∈Fpe

ζTre
1(yTrm

e (x2+x))
p









∑

z∈Fpe

ζTre
1(zTrm

e (bx))
p
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=p−2e
∑

x∈Fpm





1 +
∑

y∈F∗
pe

ζTre
1(yTrm

e (x2+x))
p











1 +
∑

z∈F∗
pe

ζTre
1(zTrm

e (bx))
p







=pm−2e + p−2e
∑

y∈F∗
pe

∑

x∈Fpm

ζTre
1(Trm

e (yx2+yx))
p + p−2e

∑

y∈F∗
pe

∑

x∈Fpm

ζTre
1(Trm

e (zbx))
p

+ p−2e
∑

y∈F∗
pe

∑

z∈F∗
pe

∑

x∈Fpm

ζTre
1(Trm

e (yx2+yx+bzx))
p

=pm−2e + p−2e
∑

y∈F∗
pe

∑

x∈Fpm

ζTrm
1 (yx2+yx)

p + p−2e
∑

y∈F∗
pe

∑

z∈F∗
pe

∑

x∈Fpm

ζTrm
1 (yx2+yx+bzx)

p .(4.2)

In this section, we calculate l0, Nb and give the proofs of the main results.

4.1. The first case of three-weight linear codes. In this subsection, we consider
that 2 ♣ s and p ♣ s. In order to determine the weight distribution of CD of (1.1), we
need the following lemma.

Lemma 4.1. Let b ∈ F∗

pm and the symbols be the same as before. Then

Nb =



























pm−2e, if Trm
e (b2) = 0 and Trm

e (b) ̸= 0,

or Trm
e (b2) ̸= 0 and Trm

e (b) = 0,

pm−2e + p−e(pe − 1)G, if Trm
e (b2) = 0 and Trm

e (b) = 0,

pm−2e + p−eG, if Trm
e (b2) ̸= 0 and Trm

e (b) ̸= 0.

Proof. The proof of the lemma directly follows from (4.2), Lemmas 3.3 and 3.4. □

Theorem 4.1. Let s be even and p ♣ s. Then the code CD of (1.1) is a [pm−e −
1 + p−e(pe − 1)G, s] linear code with the weight distribution given in Table 1, where

G = −(−1)
m(p−1)2

8 p
m
2 .

Table 1. The weight ditribution of the codes in Theorem 4.1

Weight w Frequency Aw

0 1
(pe − 1)pm−2e pm−2e − 1 + p−e(pe − 1)G
(pe − 1)pm−2e + p−e(pe − 1)G 2(pe − 1)pm−2e − p−e(pe − 1)G
(pe − 1)pm−2e + p−e(pe − 2)G (pe − 1)2pm−2e

Proof. By Lemma 3.3, we have

l0 = pm−e + p−e(pe − 1)G.

Combining (4.1) and Lemma 4.1, we have the following distinct cases.
Case I. If Trm

e (b2) = 0 and Trm
e (b) ̸= 0 or Trm

e (b2) ̸= 0 and Trm
e (b) = 0, then we

obtain

wt(cb) = l0 −Nb = (pe − 1)pm−2e + p−e(pe − 1)G.
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By Lemma 3.2, wt(cb) = (pe −1)pm−2e +p−e(pe −1)G occurs 2(pe −1)pm−2e −p−e(pe −
1)G times.

Case II. If Trm
e (b2) = 0 and Trm

e (b) = 0, then we have wt(cb) = l0 − Nb =
(pe − 1)pm−2e. By Lemma 3.2, the frequency is pm−2e − 1 + p−e(pe − 1)G.

Case III. If Trm
e (b2) ̸= 0 and Trm

e (b) ̸= 0, then we have

wt(cb) = (pe − 1)pm−2e + p−e(pe − 2)G.

From Lemma 3.2, the frequency is (pe −1)2pm−2e. Hence, the result is established. □

Example 4.1. Let (p,m, s, e) = (3, 12, 6, 2). Then the corresponding code CD has pa-
rameters [58400, 6, 51840] and the weight enumerator 1+105624z51840 +419904z51921 +
5912z52488.

4.2. The second case of three-weight linear codes. In this subsection, suppose
2 ♣ s and p ∤ s. By (4.2), Lemmas 3.3 and 3.4, it is easy to get the following lemma.

Lemma 4.2. Let b ∈ F∗

pm. Then

Nb =



































































pm−2e, if Trm
e (b2) = 0 and Trm

e (b) ̸= 0,

pm−2e + η(−sTrm
e (b2))p−eG, if Trm

e (b2) ̸= 0 and Trm
e (b) = 0,

pm−2e − p−eG, if Trm
e (b2) = 0 and Trm

e (b) = 0,

pm−2e, if Trm
e (b2) ̸= 0, Trm

e (b) ̸= 0

and
(

Trm
e (b)

2
= sTrm

e (b2),

pm−2e + η
(

(Trm
e (b))2 − sTrm

e (b2)


p−eG, if Trm
e (b2) ̸= 0, Trm

e (b) ̸= 0

and
(

Trm
e (b)

2 ̸= (sTrm
e (b2)).

Theorem 4.2. Let 2 ♣ s and p ∤ s. Then the code CD of (1.1) is a [pm−e −p−eG−1, s]

linear code with the weight distribution given in Table 2, where G = −(−1)
m(p−1)2

8 p
m
2 .

Table 2. The weight distribution for the codes in Theorem 4.2

Weight w Frequency Aw

0 1
(pe − 1)pm−2e − p−eG (pe − 1)(2pm−2e + p−eG)
(pe − 1)pm−2e 1

2
(pe − 1)(pm−e −G) + pm−2e − 1

(pe − 1)pm−2e − 2p−eG 1
2
(pe − 1)(pe − 2)(pm−2e + p−eG)

Proof. If 2 ♣ s and p ∤ s, then by Lemma 3.3, we have

l0 = pm−e − p−eG.

By (4.2) and Lemma 4.2, we have following distinct cases to consider.
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Case I. If Trm
e (b2) = 0 and Trm

e (b) ̸= 0 or Trm
e (b2) ̸= 0 and

(

Trm
e (b)

2
= sTrm

e (b2),

then we can acquire

wt(cb) = l0 −Nb = (pe − 1)pm−2e − p−eG.

By Lemmas 3.2 and 3.5, the frequency is (pe − 1)(2pm−2e + p−eG).
Case II. If Trm

e (b2) ̸= 0, Trm
e (b) = 0 and η(−sTrm

e (b2)) = 1 or Trm
e (b2) ̸=

0,Trm
e (b) ̸= 0,

(

Trm
e (b)

2
≠ sTrm

e (b2) and η
(

(Trm
e (b))2 − sTrm

e (b2)


= 1, then we

have

wt(cb) = l0 −Nb = (pe − 1)pm−2e − 2p−eG.

From Lemmas 3.2 and 3.5, the frequency is 1
2
(pe − 1)(pe − 2)(pm−2e + p−eG).

Case III. If Trm
e (b2) = 0 and Trm

e (b) = 0 or Trm
e (b2) ̸= 0, Trm

e (b) = 0 and

η(−sTrm
e (b2)) = −1 or Trm

e (b2) ̸= 0,
(

Trm
e (b)

2
≠ sTrm

e (b2) and η
(

(Trm
e (b))2 −

sTrm
e (b2)



= −1, then

wt(cb) = l0 −Nb = (pe − 1)pm−2e.

It follows from Lemmas 3.2 and 3.5 that wt(cb) = (pe − 1)pm−2e − 2p−eG occurs
1
2
(pe − 1)(pm−e −G) + pm−2e − 1 times. Thus, the proof is completed. □

Example 4.2. Let (p,m, s, e) = (3, 8, 4, 2). Then the corresponding code CD has
parameters [737, 4, 648] and the weight enumerator 1 + 3320z648 + 1224z657 + 2016z666.

4.3. The first case of 5-weight linear codes. In this subsection, we assume that
2 ∤ s and p ♣ s. By (4.2), Lemma 3.3 and Lemma 3.4, we get the following lemma.

Lemma 4.3. For b ∈ F∗

pm and Trm
e (b2) ̸= 0, we have

Nb =































pm−2e − p−2eη(−1)GG, if Trm
e (b) ̸= 0 and η

(

Trm
e (b2)



= 1,

pm−2e + p−2eη(−1)GG, if Trm
e (b) ̸= 0 and η

(

Trm
e (b2)



= −1,

pm−2e + p−2eη(−1)(pe − 1)GG, if Trm
e (b) = 0 and η

(

Trm
e (b2)



= 1,

pm−2e − p−2eη(−1)(pe − 1)GG, if Trm
e (b) = 0 and η

(

Trm
e (b2)



= −1.

Moreover, if Trm
e (b2) = 0, then Nb = pm−2e.

Theorem 4.3. Let 2 ∤ s and p ♣ s. Then the linear code CD of (1.1) has parameters

[pm−e − 1, s] and weight distribution in Table 3, where GG = (−1)m+e−2(−1)
(p−1)2(m+e)

8 p
(m+e)

2 .

Proof. Note that 2 ∤ s and p ♣ s. By Lemma 3.3, we have l0 = pm−e, which gives
the length of the code CD. It follows from (4.1) and Lemma 4.3 that wt(cb) has five
distinct values under following cases.

Case I. If Trm
e (b2) = 0, then we have wt(cb) = l0 −Nb = (pe − 1)pm−2e. By Lemma

3.1, the frequency of such codewords is pm−e − 1.
Case II. If Trm

e (b2) ̸= 0, Trm
e (b) ̸= 0 and η(Trm

e (b2)) = 1, then we can acquire

wt(cb) = l0 −Nb = (pe − 1)pm−2e + p−2eη(−1)GG.



360 P. KUMAR AND N. M. KHAN

From Lemma 3.2, the frequency is 1
2
(pe − 1)2pm−2e.

Case III. If Trm
e (b2) ̸= 0, Trm

e (b) ̸= 0 and η(Trm
e (b2)) = −1, then we can obtain

wt(cb) = l0 −Nb = (pe − 1)pm−2e − p−2eη(−1)GG.

It follows from Lemma 3.2 that the frequency is 1
2
(pe − 1)2pm−2e.

Case IV. If Trm
e (b2) ̸= 0, Trm

e (b) = 0 and η(Trm
e (b2)) = 1, then we can obtain

wt(cb) = l0 −Nb = (pe − 1)pm−2e − p−2eη(−1)(pe − 1)GG.

By Lemma 3.2, the frequency is 1
2
(pe − 1)(pm−2e + p−eη(−1)GG).

Case V. If Trm
e (b2) ̸= 0, Trm

e (b) = 0 and η(Trm
e (b2)) = −1, then we have

wt(cb) = l0 −Nb = (pe − 1)pm−2e + p−2eη(−1)(pe − 1)GG.

From Lemma 3.2, the frequency is 1
2
(pe − 1)(pm−2e − p−eη(−1)GG). Hence, the result

is established. □

Example 4.3. Let (p,m, s, e) = (3, 6, 3, 2). Then the corresponding code CD has
parameters [80, 3, 64] and the weight enumerator 1 + 72z64 + 288z71 + 80z72 + 288z73.
By Table 3, CD in Theorem 4.3 is a four-weight linear code if and only if p = s = 3.

Table 3. The weight distribution of the codes in Theorem 4.3

Weight w Frequency Aw

0 1
(pe − 1)pm−2e pm−e − 1
(pe − 1)pm−2e + p−2eη(−1)GG 1

2
(pe − 1)2pm−2e

(pe − 1)pm−2e − p−2eη(−1)GG 1
2
(pe − 1)2pm−2e

(pe − 1)pm−2e − p−2eη(−1)(pe − 1)GG 1
2
(pe − 1)(pm−2e + p−eη(−1)GG)

(pe − 1)pm−2e + p−2eη(−1)(pe − 1)GG 1
2
(pe − 1)(pm−2e − p−eη(−1)GG)

Example 4.4. Let (p,m, s, e) = (5, 10, 5, 2). Then the corresponding code CD has
parameters [58 − 1, 5, 24 × 56 − 600] and the weight enumerator 1 +Aw1z

w1 +Aw2z
w2 +

Aw3z
w3 + Aw4z

w4 + Aw5z
w5 , where the values of Awi

and wi for 1 ≤ i ≤ 5, are given
in Table 4.

Table 4. The weight distribution of the code in Theorem 4.3 for
(p,m, s, e) = (5, 10, 5, 2)

Weight Frequency
w1 = 24 × 56 − 600 Aw1 = 12(56 + 54)
w2 = 24 × 56 − 25 Aw2 = 12 × 24 × 56

w3 = 24 × 56 Aw3 = 58 − 1
w4 = 24 × 56 + 25 Aw4 = 12 × 24 × 56

w5 = 24 × 56 + 600 Aw5 = 12(56 − 54)
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4.4. The second case of five-weight linear codes. In this subsection, suppose
2 ∤ s and p ∤ s. The auxiliary result that we need is the following.

Lemma 4.4. Let b ∈ F∗

pm and the symbols be the same as before. Then

Nb =



































































pm−2e, if Trm
e (b2) = 0 and Trm

e (b) ̸= 0,

pm−2e + p−eη(−s)GG, if Trm
e (b2) = 0 and Trm

e (b) = 0,

pm−2e − p−2eη
(

− Trm
e (b2)



GG, if Trm
e (b2) ̸= 0 and Trm

e (b) = 0,

pm−2e + p−2eη(−s)(pe − 1)GG, if Trm
e (b2) ̸= 0,Trm

e (b) ̸= 0 and
(

Trm
e (b)

2
= sTrm

e (b2),

pm−2e − p−2eη
(

− Trm
e (b2)



GG, if Trm
e (b2) ̸= 0, Trm

e (b) ̸= 0 and
(

Trm
e (b)

2 ̸= sTrm
e (b2).

Proof. The proof of the lemma follows from (4.2), Lemmas 3.3 and 3.4. □

Theorem 4.4. Let s be odd with p ∤ s. Then the linear code CD of (1.1) has

parameters [pm−e + p−eη(−s)GG − 1, s] and weight distribution in Tables 5 and 6,

where GG = (−1)m+e−2(−1)
(p−1)2(m+e)

8 p
(m+e)

2 .

Proof. Firstly, we assume that η(−s) = 1. For 2 ∤ s and p ∤ s, by Lemma 3.3, we have

l0 = pm−e + p−eGG.

It follows from (4.1) and Lemma 4.4 that wt(cb) has five distinct values under following
cases.

Case I. If Trm
e (b2) = 0 and Trm

e (b) ̸= 0, then we have

wt(cb) = l0 −Nb = (pe − 1)pm−2e + p−eGG.

By Lemma 3.2, the frequency is (pe − 1)(pm−2e − p−2eGG).
Case II. If Trm

e (b2) = 0 and Trm
e (b) = 0, then wt(cb) = l0 − Nb = (pe − 1)pm−2e.

From Lemma 3.2, the frequency is pm−2e + p−2e(pe − 1)GG− 1.

Case III. If Trm
e (b2) ̸= 0, Trm

e (b) ̸= 0 and
(

Trm
e (b)

2
= sTrm

e (b2), then we can

obtain

wt(cb) = l0 −Nb = (pe − 1)pm−2e + p−2eGG.

It follows from Lemmas 3.2 and 3.5 that the frequency of such codewords is (pe −
1)pm−2e + p−2e(pe − 1)2GG.

Case IV. If Trm
e (b2) ̸= 0, Trm

e (b) = 0 and η(−Trm
e (b2)) = 1 or Trm

e (b2) ̸= 0,

Trm
e (b) ̸= 0,

(

Trm
e (b)

2 ̸= sTrm
e (b2) and η(−Trm

e (b2)) = 1, then we can obtain

wt(cb) = l0 −Nb = (pe − 1)pm−2e + p−2e(pe + 1)GG.

By Lemmas 3.2 and 3.7, the frequency is 1
2
(pe − 1)(pm−e − p−eGG).
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Case V. If Trm
e (b2) ̸= 0, Trm

e (b) = 0 and η(−Trm
e (b2)) = −1 or Trm

e (b2) ̸= 0,

Trm
e (b) ̸= 0,

(

Trm
e (b)

2 ̸= sTrm
e (b2) and η(−Trm

e (b2)) = −1, then we have

wt(cb) = l0 −Nb = (pe − 1)pm−2e + p−2e(pe − 1)GG.

From Lemmas 3.2 and 3.7, the frequency is 1
2
(pe − 1)(pe − 2)(pm−2e − p−2eGG),

which completes the Table 5. Similarly, we can complete the Table 6 by taking
η(−s) = −1. □

Table 5. The weight distribution of the codes in Theorem 4.4 with
η(−s) = 1

Weight w Frequency Aw

0 1
(pe − 1)pm−2e + p−eGG (pe − 1)(pm−2e − p−2eGG)
(pe − 1)pm−2e pm−2e + p−2e(pe − 1)GG− 1
(pe − 1)pm−2e + p−2eGG (pe − 1)pm−2e + p−2e(pe − 1)2GG

(pe − 1)pm−2e + p−2e(pe + 1)GG 1
2
(pe − 1)(pm−e − p−eGG)

(pe − 1)pm−2e + p−2e(pe − 1)GG 1
2
(pe −1)(pe −2)(pm−2e −p−2eGG)

Table 6. The weight distribution of the codes in Theorem 4.4 with
η(−s) = −1

Weight w Frequency Aw

0 1
(pe − 1)pm−2e − p−eGG (pe − 1)(pm−2e + p−2eGG)
(pe − 1)pm−2e pm−2e − p−2e(pe − 1)GG− 1
(pe − 1)pm−2e − p−2eGG (pe − 1)pm−2e − p−2e(pe − 1)2GG

(pe − 1)pm−2e − p−2e(pe − 1)GG 1
2
(pe − 1)(pm−e + p−eGG)

(pe − 1)pm−2e − p−2e(pe + 1)GG 1
2
(pe −1)(pe −2)(pm−2e +p−2eGG)

Example 4.5. Let (p,m, s, e) = (5, 6, 3, 2). Then the corresponding code CD has
parameters [649, 3, 600] and the weight enumerator as 1+48z600 +1176z601 +6624z624 +
576z625 + 7200z626.

5. Concluding Remarks

In this paper, we have presented a class of three-weight and five-weight linear codes.
A number of three-weight and five-weight codes were discussed in [1,3,4,6,9,14,19,20].

Let w0 and w∞ denote the minimum and maximum non-zero weight of a linear
code CD, respectively. The linear code CD with w0

w∞
>

(pe
−1)

pe can be used to construct

a secret sharing scheme with interesting access structures (see [18]).
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For the linear code CD in Theorem 4.1, we have

w0

w∞

=
(pe − 1)pm−2e − (pe − 1)p

m−2e
2

(pe − 1)pm−2e
or

w0

w∞

=
(pe − 1)pm−2e

(pe − 1)pm−2e + (pe − 1)p
m−2e

2

.

Let m
e
> 4. Then by simple computation, we have

w0

w∞

=
(pe − 1)pm−2e

(pe − 1)pm−2e + (pe − 1)p
m−2e

2

>
(pe − 1)pm−2e − (pe − 1)p

m−2e
2

(pe − 1)pm−2e
>

(pe − 1)

pe
.

For the linear code CD of Theorem 4.2, we have

w0

w∞

=
(pe − 1)pm−2e − 2p

m−2e
2

(pe − 1)pm−2e
or

w0

w∞

=
(pe − 1)pm−2e

(pe − 1)pm−2e + 2p
m−2e

2

.

Then it can easily be checked that

w0

w∞

=
(pe − 1)pm−2e

(pe − 1)pm−2e + 2p
m−2e

2

>
(pe − 1)pm−2e − 2p

m−2e
2

(pe − 1)pm−2e
>

(pe − 1)

pe
, for

m

e
> 4.

For the linear code CD of Theorem 4.3, we have

w0

w∞

=
(pe − 1)pm−2e − (pe − 1)p

m−3e
2

(pe − 1)pm−2e + (pe − 1)p
m−3e

2

>
(pe − 1)

pe
, for

m

e
≥ 5.

For the linear code CD of Theorem 4.4, we have

w0

w∞

=
(pe − 1)pm−2e − (pe + 1)p

m−3e
2

(pe − 1)pm−2e
or

w0

w∞

=
(pe − 1)pm−2e

(pe − 1)pm−2e + (pe + 1)p
m−3e

2

.

Let m
e

≥ 5. Then by simple calculation, we can show that

w0

w∞

=
(pe − 1)pm−2e

(pe − 1)pm−2e + (pe + 1)p
m−3e

2

>
(pe − 1)pm−2e − (pe + 1)p

m−3e
2

(pe − 1)pm−2e
>

(pe − 1)

pe
.

Consequently, one can easily see that the codewords of the linear code CD are minimal
for m

e
≥ 5. These linear codes can be used in secret sharing schemes.
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IDENTITIES WITH MULTIPLICATIVE GENERALIZED

(α, α)-DERIVATIONS OF SEMIPRIME RINGS

GURNINDER SINGH SANDHU1, AYŞE AYRAN2, AND NEŞET AYDIN2

Abstract. Let R be a semiprime ring and α be an automorphism of R. A mapping
F : R → R (not necessarily additive) is called multiplicative generalized (α, α)-
derivation if there exists a unique (α, α)-derivation d of R such that F (xy) =
F (x)α(y) + α(x)d(y) for all x, y ∈ R. In the present paper, we intend to study
several algebraic identities involving multiplicative generalized (α, α)-derivations
on appropriate subsets of semiprime rings and collect the information about the
commutative structure of these rings.

1. Introduction

Troughout this paper, R denotes an associative semiprime ring with center Z(R). A
ring R is said to be prime if for any a, b ∈ R, aRb = (0) implies either a = 0 or b = 0
and is called semiprime if aRa = (0) implies a = 0. It is straight forward to observe
that every prime ring is semiprime but the converse is not true in general, e.g., Z×Z,

which is a semiprime ring but not prime. For a Ąxed integer n ≥ 1, a ring is said to
be n-torsion free if nx = 0 for all x ∈ R implies x = 0. For any x, y ∈ R, we denote
the commutator xy − yx and the anti-commutator xy + yx by the symbols [x, y] and
(x ◦ y), respectively. An additive mapping d : R → R is said to be a derivation if
d(xy) = d(x)y + xd(y) for all x, y ∈ R. The very Ąrst example of a derivation is the
differential operator ∆ on C[0, 1], the ring of the real valued differentiable functions
on [0, 1]. The notion of derivation has been generalized in many directions. Brešar
[6] introduced the notion of generalized derivation, which is an additive mapping

Key words and phrases. Semiprime ring, multiplicative generalized (α, α)-derivation, (α, α)-
derivation, automorphism.
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F : R → R satisfying the relation F (xy) = F (x)y + xd(y) for all x, y ∈ R, where
d is the associated derivation of R. An additive mapping H : R → R such that
H(xy) = H(x)y for all x, y ∈ R is called the left multiplier of R. Clearly, with d = 0,

every left multiplier is a generalized derivation and with F = d, every derivation is a
generalized derivation. Let α : R → R be an automorphism of R. Then an additive
mapping δ : R → R is said to be an (α, α)-derivation if δ(xy) = δ(x)α(y) + α(x)δ(y)
for all x, y ∈ R. Note that every (1R, 1R)-derivation is the ordinary derivation of
R, where 1R stands for the identity mapping of R. Thus one can now think of the
notion of generalized (α, α)-derivation, which is a uniĄed notion of both generalized
derivation and (α, α)-derivation. Accordingly, an additive mapping ξ : R → R is said
to be a generalized (α, α)-derivation if there exists a unique (α, α)-derivation δ of R

such that ξ(xy) = ξ(x)α(y) + α(x)δ(y) for all x, y ∈ R. If we drop the assumption of
additivity of ξ, then it is called multiplicative generalized (α, α)-derivation associated
with (α, α)-derivation δ, e.g. let S be any ring and R = ¶ae12+be13+ce23 : ∀a, b, c ∈ S♢
be a subring of M3(S), the ring of 3×3 matrices over S. DeĄne a mapping F : R → R

by ae12 + be13 + ce23 7→ (bc)e13, d : R → R by ae12 + be13 + ce23 7→ −ae12 + be13 and
α : R → R by ae12 + be13 + ce23 7→ −ae12 + be13 − ce23. Then α is an automorphism
of R and F is a multiplicative generalized (α, α)-derivation associated with (α, α)-
derivation δ.

The study of commutative structure of prime rings with derivations has been
initiated long back by Posner [15]. Precisely, Posner proved that: If R is a prime ring

and d is a derivation of R such that [d(x), x] ∈ Z(R) for all x ∈ R, then either R is

commutative or d = 0. Since then this result has been extended in many directions
by a number of algebraists. In 1987, Bell and Martindale [4] extended this result
to the class of semiprime rings and proved that: if a semiprime ring R admits a
derivation d which is nonzero and centralizing on a left ideal U of R, then R contains
a nonzero central ideal. In the same line of investigation, Daif [7] examined the
commutativity of semiprime rings admitting derivations that satisfy the identities:
(i) d([x, y]) − [xy] = 0, (ii) d([x, y]) + [x, y] = 0. Further, Fošner et al. [12] studied a
more general situation and proved that: if R is a 2-torsion free semiprime ring and d

is a derivation of R such that [[d(x), x], d(x)] = 0 for all x ∈ R, then D maps R into
Z(R). Dhara [8] discussed the generalized derivations of semiprime rings that act as
homomorphisms and anti-homomorphism on appropriate subsets of the ring. More
speciĄcally, he proved the following.

1. Let R be a semiprime ring, I a nonzero ideal of R and F a nonzero generalized
derivation of R associated with a derivation d. If F (xy) = F (x)F (y) for all
x, y ∈ I, then d(I) = (0), F is commuting left multiplier mapping on I.

2. Let R be a semiprime ring, I a nonzero ideal of R and F a nonzero generalized
derivation of R associated with a derivation d. If F (xy) = F (y)F (x) for all
x, y ∈ I, then d(I) = (0), R contains a nonzero central ideal.

Moreover, Dhara and Mozumder [10] generalized these results by studying the iden-
tities F (xy) ± F (x)F (y) ∈ Z(R) and F (xy) ± F (y)F (x) ∈ Z(R) on (semi)prime
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ring R, where F is multiplicative generalized derivation of R. Very recently, Tiwari
and Sharma [17] studied the following identities: (i) G(xy) ± F (x)F (y) ∈ Z(R);
(ii) G(xy) ± F (x)F (y) ± α(yx) = 0; (iii) G(xy) ± F (x)F (y) ± α(xy) ∈ Z(R); (iv)
G(xy) ± F (x)F (y) ± α([x, y]) = 0; (v) G(xy) ± F (x)F (y) ± α(x ◦ y) = 0 on Lie
ideals of prime rings, where F and G are generalized (α, α)-derivations and α is an
automorphism.

On the other hand, Atteya [2] proved that a semiprime ring R that admits a
generalized derivation F, contains a nonzero central ideal if any one of the following
identity holds true: (i) F (xy) ± xy ∈ Z(R); (ii) F (xy) ± yx ∈ Z(R); (iii) F (x)F (y) −
xy ∈ Z(R); (iv) F (x)F (y) + yx ∈ Z(R) for all x, y ∈ I, a nonzero ideal of R. In
2013, Dhara et al. [9] studied the following identities: (i) [d(x), F (y)] = ±[x, y]; (ii)
[d(x), F (y)] = ±(x ◦ y); (iii) d(x) ◦ F (y) = ±(x ◦ y); (iv) d(x) ◦ F (y) = ±[x, y] on
ideals of semiprime rings, where F is generalized derivation with associated derivation
d. Then it seems more interesting to consider such identities with multiplicative
derivations. In this direction, Kumar and Sandhu [14] investigated the following
identities: (i) F ([x, y]) ± xy = 0; (ii) F ([x, y]) ± yx = 0; (iii) F (x ◦ y) ± xy = 0;
(iv) F (x ◦ y) ± yx = 0; (v) d(x)F (y) ± xy = 0; (vi) d(x)F (y) ± yx = 0; (vii)
[F (x), y] ± x ◦ G(y) = 0; (viii) F (x) ◦ y ± x ◦ G(y) = 0 on semiprime R, where F and
G are multiplicative (generalized)-derivations with the associated mappings d and g

respectively. In 2017, Tiwari et al. [16] examined the structure of semiprime rings
involving two multiplicative (generalized)-derivations that satisfy a list of algebraic
identities on appropriate subsets of the ring.

In light of the above discussion, in this paper, our aim is to study certain identities
with multiplicative generalized (α, α)-derivations of semiprime rings. More precisely,
we characterize the following situations: (i) G(xy) ± F (x)F (y) = 0; (ii) G(xy) ±
F (x)F (y) ± xy = 0; (iii) F (x)y + yG(x) = 0; (iv) F (xy) ± G(xy) = 0; (v) F (xy) ±
G(yx) = 0; (vi) α(x) ◦ F (y) ± G(yx) = 0; (vii) [α(x), F (y)] ± G(yx) = 0; (viii) α(x) ◦
F (y)±α([x, y]) = 0; (ix) [α(x), F (y)]±α(x◦y) = 0; (x) [F (x), d(y)]±x◦α(y) = 0; (xi)
d(x)◦d(y)±F (xy) = 0; (xii) [d(x), d(y)]±F (xy) = 0; (xiii) [d(x), F (y)]±F ([x, y]) = 0;
(xiv) d(x)◦F (y)±F (x◦y) = 0, for all x, y in an appropriate subset of R, where F and
G are multiplicative generalized (α, α)-derivations with associated (α, α)-derivations
d and g, respectively.

2. Preliminary Results

Lemma 2.1 (BrauerŠs trick [11]). A group G cannot be the union of two of its proper

subgroups.

Lemma 2.2. ([1, Lemma 2.1]). If R is a semiprime ring and I is an ideal of R, then

I is a semiprime ring.

Lemma 2.3. ([4, Theorem 3]). Let R be a semiprime ring and U be a nonzero left

ideal of R. If R admits a derivation D which is nonzero on U and centralizing on U,

then R contains a nonzero central ideal.
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Lemma 2.4. ([13, Lemma 1.1.5]). Let R be a semiprime ring and ρ be a right ideal

of R. Then Z(ρ) ⊂ Z(R).

Lemma 2.5. ([3, Lemma 3.1]). Let R be a 2-torsion free semiprime ring and U be

a nonzero left ideal of R. If a, b ∈ R such that axb + bxa = 0 for all x ∈ U, then

axb = 0 = bxa for all x ∈ U.

Lemma 2.6. ([12, Theorem 1]). Let R be a 2-torsion free semiprime ring and

D : R → R be a derivation satisfying the relation [[D(x), x], D(x)] = 0 for all x ∈ R.

In this case D maps R into Z(R).

Lemma 2.7. ([5, Lemma 1]). Let R be a semiprime ring, I be a nonzero ideal of R

and a ∈ I and b ∈ R. If aIb = (0), then ab = ba = 0.

Lemma 2.8. Let R be a 2-torsion free semiprime ring and I be a nonzero ideal of

R. If R admits an (α, α)-derivation d such that d(I) ⊆ Z(R), then d(R) ⊆ Z(R).

Proof. By hypothesis, we have

(2.1) [r, d(x)] = 0, for all x ∈ I, r ∈ R.

Replacing x by xs in (2.1), where s ∈ R, we get

(2.2) d(x)[r, α(s)] + [r, α(x)]d(s) + α(x)[r, d(s)] = 0.

Replacing x by sx in (2.2), we Ąnd

d(s)α(x)[r, α(s)] + α(s)d(x)[r, α(s)] + α(s)[r, α(x)]d(s)(2.3)

+ [r, α(s)]α(x)d(s) + α(s)α(x)[r, d(s)] = 0.

Utilization of equation (2.2) in (2.3) gives that

d(s)α(x)[r, α(s)] + [r, α(s)]α(x)d(s) = 0, for all x ∈ I, r, s ∈ R.

Applying Lemma 2.5, we have

(2.4) d(s)α(x)[r, α(s)] = 0.

Taking xα−1(p) instead of x in (2.4), we get

d(s)α(x)p[r, α(s)] = 0, for all x ∈ I, r, s, p ∈ R.

We now can easily arrive at d(s)[α(x), α(s)]pd(s)[α(x), α(s)] = 0 for all x ∈ I and
s, p ∈ R. It forces that d(s)[α(x), α(s)] = 0 for all x ∈ I and s ∈ R. Linearizing on s,
we get

(2.5) d(r)[α(x), α(s)] + d(s)[α(x), α(r)] = 0, for all x ∈ I, r, s ∈ R.

Substituting sx in place of s in (2.5), we get

(2.6) d(r)[α(x), α(s)]α(x) + d(s)α(x)[α(x), α(r)] + α(s)d(x)[α(x), α(r)] = 0.

Right multiply (2.5) by α(x) and then subtract from (2.6) to obtain

d(s)[α(x), [α(x), α(r)]] + α(s)d(x)[α(x), α(r)] = 0, for all x ∈ I, r, s ∈ R.
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In particular, taking r = x in (2.5), we get d(x)[α(x), α(s)] = 0 for all x ∈ I and
s ∈ R. Using this in the above relation, we get

(2.7) d(s)[α(x), [α(x), α(r)]] = 0, for all x ∈ I, r, s ∈ R.

Replacing r by rp in (2.7), where p ∈ R, we Ąnd

d(s)α(r)[α(x), [α(x), α(p)]] + 2d(s)[α(x), α(r)][α(x), α(p)]

+ d(s)[α(x), [α(x), α(r)]]α(p) = 0.

Using (2.7), we get

d(s)α(r)[α(x), [α(x), α(p)]] + 2d(s)[α(x), α(r)][α(x), α(p)] = 0.

In view of (2.7), it can be re-written as

−α(s)d(r)[α(x), [α(x), α(p)]] + 2d(s)[α(x), α(r)][α(x), α(p)] = 0.

Again using (2.7), we get 2d(s)[α(x), α(r)][α(x), α(p)] = 0 for all x ∈ I and r, s, p ∈ R.

Since R is 2-torsion free, we obtain

d(s)[α(x), α(r)][α(x), α(p)] = 0.

Replacing p by qp, where q ∈ R, we get

d(s)[α(x), α(r)]α(q)[α(x), α(p)] = 0.

Replacing q by qα−1(d(s)) and put p = r in the above relation, we get

d(s)[α(x), α(r)]Rd(s)[α(x), α(r)] = (0), for all x ∈ I, r, s ∈ R.

Since R is semiprime, we get

d(s)[α(x), α(r)] = 0, for all x ∈ I, r, s ∈ R.

Replacing s by su in the above relation

(2.8) d(s)α(u)[α(x), α(r)] = 0, for all x ∈ I, r, s, u ∈ R.

Replacing u by xu in (2.8), we get

(2.9) d(s)α(x)α(u)[α(x), α(r)] = 0, for all x ∈ I, r, s, u ∈ R.

Left multiply (2.8) by α(x) and then subtract from (2.9), we obtain

[d(s), α(x)]α(u)[α(x), α(r)] = 0.

In particular, put r = α−1(d(s)), we get

[α(x), d(s)]α(u)[α(x), d(s)] = 0, for all x ∈ I, u, s ∈ R.

It implies that [α(x), d(s)] = 0 for all x ∈ I and s ∈ R. That means d(R) ⊆ Z(I
′

),
where I

′

= α(I). And hence by Lemma 2.4, we are done. □
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3. Main Results

Theorem 3.1. Let R be a semiprime ring, I be a nonzero ideal of R and α be an

automorphism of R. Let F and G be multiplicative generalized (α, α)-derivations of R

associated with nonzero (α, α)-derivations d and g respectively. If G(xy)±F (x)F (y) =
0 for all x, y ∈ I, then R contains a nonzero central ideal and d and g maps R into

Z(R).

Proof. Assume that

(3.1) G(xy) + F (x)F (y) = 0, for all x, y ∈ I.

Replacing y by yr in (3.1), where r ∈ R, we Ąnd

0 = G(xyr) + F (x)F (yr)

= G(xy)α(r) + α(xy)g(r) + F (x)F (y)α(r) + F (x)α(y)d(r).

By using (3.1), we get

(3.2) 0 = α(xy)g(r) + F (x)α(y)d(r), for all x, y ∈ I, r ∈ R.

Replacing x by xs in (3.2), where s ∈ R, we get

(3.3) 0 = α(xsy)g(r) + F (x)α(s)α(y)d(r) + α(x)d(s)α(y)d(r).

Putting sy instead of y in (3.2), where s ∈ R, we get

(3.4) 0 = α(xsy)g(r) + F (x)α(sy)d(r).

Combining (3.3) and (3.4), we obtain

0 = α(x)d(s)α(y)d(r), for all x, y ∈ I, r, s ∈ R.

Substituting wy for y and then putting y = x and s = r, where w ∈ R, we have

0 = α(x)d(r)α(w)α(x)d(r), for all x ∈ I, r, w ∈ R.

Since R is semiprime ring, we Ąnd that

(3.5) 0 = α(x)d(r), for all x ∈ I, r ∈ R.

Replacing x by xy in (3.5), where y ∈ I, we have

(3.6) 0 = α(x)α(y)d(r), for all x, y ∈ I, r ∈ R.

Because I is ideal of R, α(I) is ideal of R. In view of Lemma 2.7, we have α(x)d(r) = 0
and d(r)α(x) = 0 for all x ∈ I, r ∈ R. That is

(3.7) 0 = [α(x), d(r)] , for all x ∈ I, r ∈ R.

Moreover, a particular case of (3.7) implies that [x, φ(x)] = 0 for all x ∈ I, where
φ = α−1d is an ordinary derivation of R. By Lemma 2.3, R contains a nonzero central
ideal of R. Further, from equation (3.7), we have d(r) ∈ Z(I) for all r ∈ R. In view
of Lemma 2.4, we conclude that d maps R into Z(R).
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Using (3.4) in (3.5), we obtain 0 = α(x)α(s)α(y)g(r) for all x, y ∈ I and r, s ∈ R.

Taking α−1(g(r))s instead of s in the last expression, we get in particular

(0) = α(x)g(r)Rα(x)g(r), for all x ∈ I, r ∈ R.

It yields that
0 = α(x)g(r), for all x ∈ I, r ∈ R.

Since this expression is same as (3.5) but with g instead of d. Therefore, the same
technique implies g maps R into Z(R), as desired.

Using similar approach, we conclude that the same result holds for G(xy) −
F (x)F (y) = 0 for all x, y ∈ I. □

Theorem 3.2. Let R be a semiprime ring, I be a nonzero ideal of R and α be an

automorphism of R. Let F and G be multiplicative generalized (α, α)-derivations of R

associated with nonzero (α, α)-derivations d and g respectively. If G(xy)±F (x)F (y)±
xy = 0 for all x, y ∈ I then R contains a nonzero central ideal and, d and g maps R

into Z(R).

Proof. Assume that

(3.8) G(xy) + F (x)F (y) + xy = 0, for all x, y ∈ I.

Replacing y by yr in (3.8), where r ∈ R, we have

(3.9) 0 = G(xy)α(r) + α(xy)g(r) + F (x)F (y)α(r) + F (x)α(y)d(r) + xyr.

Right multiplying (3.8) by α(r), we get

(3.10) 0 = G(xy)α(r) + F (x)F (y)α(r) + xyα(r), for all x, y ∈ I, r ∈ R.

Subtracting (3.10) from (3.9), we obtain

(3.11) 0 = α(xy)g(r) + F (x)α(y)d(r) + xyr − xyα(r), for all x, y ∈ I, r ∈ R.

Replacing x by xs in (3.11), where s ∈ R, we have

(3.12) 0 = α(xsy)g(r) + F (x)α(s)α(y)d(r) + α(x)d(s)α(y)d(r) + xsyr − xsyα(r).

Again replacing y by sy in (3.11), where s ∈ R, we get

(3.13) 0 = α(xsy)g(r) + F (x)α(sy)d(r) + xsyr − xsyα(r).

Combining (3.12) and (3.13), we obtain

(3.14) 0 = α(x)d(s)α(y)d(r), for all x, y ∈ I, r, s ∈ R.

Substituting wx for y and r for s in (3.14), where w ∈ R, we have

0 = α(x)d(r)α(w)α(x)d(r), for all x ∈ I, r, w ∈ R.

It follows that
0 = α(x)d(r), for all x ∈ I, r ∈ R.

This expression also appeared as equation (3.5) in Theorem 3.1, so the result is
followed in the same way.
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Now replacing x by ux in (3.9), where u ∈ R, we get

0 = α(u)α(xy)g(r) + uxyr − uxyα(r).

Combining with the above relation, it implies that (α(u) − u)α(xy)g(r) = 0 for all
x, y ∈ I and u, r ∈ R. Using (3.11), it gives

(α(u) − u)xy(α(r) − r) = 0, for all x, y ∈ I, r, u ∈ R.

It implies that xα(r) = xr for all x ∈ I and r ∈ R. Now, using this in (3.11),
we obtain 0 = α(xy)g(r) for all x, y ∈ I and r ∈ R. That is, α(x)α(y)g(r) = 0.

Since α is an automorphism, replacing x by xα−1(g(r)) in the last relation to get
α(x)g(r)α(y)g(r) = 0. Further it implies that α(x)g(r)Rα(y)g(r) = (0) for all x, y ∈ I

and r ∈ R. In particular, α(x)g(r)Rα(x)g(r) = (0) for all x ∈ I and r ∈ R. Hence,
we get 0 = α(x)g(r) for all x ∈ I and r ∈ R. By repeating the similar argument as
above, we get our conclusion.

Using similar approach, we conclude that the same result holds for G(xy) −
F (x)F (y) − xy = 0, G(xy) − F (x)F (y) + xy = 0 and G(xy) + F (x)F (y) − xy = 0 for
all x, y ∈ I. □

Theorem 3.3. Let R be a semiprime ring, I be a nonzero ideal of R and α be an

automorphism on R such that α(I) = I. Let F and G be multiplicative generalized

(α, α)-derivations of R associated with nonzero (α, α)-derivations d and g respectively.

If F (x)y + yG(x) = 0 for all x, y ∈ I, then F maps I into Z(R) and G maps I into

Z(R). Moreover, R contains a nonzero central ideal and d + g maps R into Z(R).

Proof. Assume that

(3.15) F (x)y + yG(x) = 0, for all x, y ∈ I.

Substituting xz in place of x in (3.15), where z ∈ I, we obtain

(3.16) 0 = F (x)α(z)y + α(x)d(z)y + yG(x)α(z) + yα(x)g(z).

Replacing y by α(z)y in (3.15), we have

(3.17) 0 = F (x)α(z)y + α(z)yG(x), for all x, y ∈ I, z ∈ R.

Subtracting (3.17) from (3.16) and using (3.15), we get

(3.18) 0 = −F (x)yα(z) + α(z)F (x)y + α(x)d(z)y + yα(x)g(z).

Combining (3.16) and (3.18), we get

0 = [α(z), F (x)] y, for all x, y, z ∈ I.

Since I is semiprime, we have

0 = [α(z), F (x)] , for all x, z ∈ I.

That is F (I) ⊂ Z(I). In view of Lemma 2.4, we Ąnd F (I) ⊂ Z(R). Now right
multiplying (3.15) by α(z), where z ∈ I, we obtain

(3.19) 0 = F (x)yα(z) + yG(x)α(z), for all x, y, z ∈ I.
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Replacing y with yα(z) in (3.15), we have

(3.20) 0 = F (x)yα(z) + yα(z)G(x), for all x, y, z ∈ I.

Application (3.19) and (3.20) yields that

0 = y [α(z), G(x)] , for all x, y, z ∈ I.

By semiprimeness of I, we get

0 = [α(z), G(x)] , for all x, y, z ∈ I.

That is G(I) ⊂ Z(I). In view of Lemma 2.4, we Ąnd G(I) ⊂ Z(R). In view of
F (I) ⊂ Z(I) and G(I) ⊂ Z(I), our hypothesis yields

(3.21) 0 = y(F + G)(x), for all x, y ∈ I.

Replacing x by xr in (3.21), where r ∈ R, we Ąnd

(3.22) 0 = y(F + G)(x)α(r) + yα(x)(d + g)(r), for all x, y ∈ I, r ∈ R.

Application of (3.21) in (3.22), we have

(3.23) 0 = yα(x)(d + g)(r), for all x, y ∈ I, r ∈ R.

In view of Lemma 2.7 and the fact that α(I) = I, we have y(d + g)(r) = 0 and
(d + g)(r)y = 0 for all x ∈ I, r ∈ R. That is

(3.24) 0 = [y, (d + g)(r)], for all y ∈ I, r ∈ R.

Moreover, a particular case of (3.24) implies that [α(y), (d + g)(y)] = 0 for all y ∈ I.

That is [y, φ(y)] = 0 for all y ∈ I, where φ = α−1(d + g) is an ordinary derivation of
R. By Lemma 2.3, R contains a nonzero central ideal of R. Applying Lemma 2.4 on
relation (3.24), we Ąnd that (d + g)(R) ⊆ Z(R). □

Theorem 3.4. Let R be a semiprime ring, I be a nonzero ideal of R and α be

an automorphism of R. Let F and G be multiplicative generalized (α, α)-derivations

associated with nonzero (α, α)-derivations d and g respectively. If F (xy) ± G(xy) = 0
for all x, y ∈ I, then d ± g maps R into Z(R) and R contains a nonzero central ideal.

Proof. By the given hypothesis, we have

F (xy) ± G(xy) = 0 = (F ± G)(xy), for all x, y ∈ I.

Since sum of two multiplicative generalized (α, α)-derivations is a multiplicative gener-
alized (α, α)-derivation, we take H in place of F ± G, therefore our condition becomes
H(xy) = 0 for all x, y ∈ I. Which is a particular case of our Theorem 3.1 (with F = 0).
Hence, we are done. □

Theorem 3.5. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. Let F and G be multiplicative generalized (α, α)-
derivations of R associated with nonzero (α, α)-derivations d and g respectively. If

F (xy) ± G(yx) = 0 for all x, y ∈ I, then d and g maps R into Z(R) and R contains

a nonzero central ideal.
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Proof. Assume that

(3.25) F (xy) + G(yx) = 0, for all x, y ∈ I.

Replacing x by xr in (3.25), where r ∈ R, we have

(3.26) 0 = F (xry) + G(yxr), for all x, y ∈ I, r ∈ R.

Again replace y with ry in (3.25), we Ąnd

(3.27) 0 = F (xry) + G(ryx), for all x, y ∈ I, r ∈ R.

Combining (3.26) and (3.27), we get

G(yxr) = G(ryx), for all x, y ∈ I, r ∈ R.

Putting yz instead of y in (3.25), where z ∈ I and using (3.25), we get

(3.28) 0 = −G(yx)α(z) + G(yz)α(x) + α(xy)d(z) + α(yz)g(x), for all x, y, z ∈ I.

Substituting xs in place of x in (3.28), where s ∈ R, we obtain

(3.29) − G(yxs)α(z) + G(yz)α(xs) + α(xsy)d(z) + α(yz)g(xs) = 0.

Taking sy instead of y in (3.28), where s ∈ R, we have

(3.30) − G(syx)α(z) + G(syz)α(x) + α(xsy)d(z) + α(syz)g(x) = 0.

Combining (3.29) and (3.30) and using G(yxs) = G(syx), we get

0 = G(yz)α(xs) + α(yz)g(xs) − G(syz)α(x) − α(syz)g(x).

Using G(syz) = G(yzs) in last expression, we Ąnd

G(yz)α(xs) + α(yz)g(xs) − G(yzs)α(x) − α(syz)g(x) = 0, for all x, y, z ∈ I, s ∈ R.

That is
(3.31)

G(yz)α([x, s]) + α(yz)(g(x)α(s) − g(s)α(x)) + α(yzx)g(s) − α(syz)g(x) = 0,

for all x, y, z ∈ I, s ∈ R. Replacing s by x in (3.31), we Ąnd

(3.32) 0 = α([yz, x])g(x), for all x, y, z ∈ I.

Putting wy instead of y in (3.32), where w ∈ I, we have 0 = α([w, x])α(y)α(z)g(x)
for all x, y, z, w ∈ I. It is implies that (0) = α([w, x])α(I)α(z)g(x) for all x, y, z ∈ I.

Because I is an ideal of R, α(I) is an ideal of R. In view of Lemma 2.7, we have

(3.33) 0 = α([w, x])α(z)g(x), for all x, y, z ∈ I.

That is, [I, x] I ((α−1g) (x)) = (0) for all x ∈ I. Since I is a semiprime ring in itself,
it must contains a family P of prime ideals such that ∩Pλ = (0). Let Pλ1

be a typical
member of this family and x ∈ I; by (3.33), we have Ąnd

[I, x] ⊂ Pλ1
or



α−1g


(x)


⊂ Pλ1
.
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Let A = ¶x ∈ I : [I, x] ⊂ Pλ1
♢ and B = ¶x ∈ I : ((α−1g) (x)) ⊂ Pλ1

♢ . Note that A

and B are additive subgroups of I such that A ∪ B = I. By using BrauerŠs trick, we
obtain

[I, I] ⊂ Pλ1
or



α−1g


(I)


⊂ Pλ1
.

Together with these both cases, we have [I, I] ((α−1g) (I)) = (0). That is

(3.34) α([x, y])g(z) = 0, for all x, y, z ∈ I.

Replacing y by ry in (3.34), where r ∈ R, we have α([x, r])α(y)g(z) = 0. That is

(3.35) [α(x), r] α(y)g(z) = 0, for all x, y, z ∈ I, r ∈ R.

Right multiplying (3.35) by α(x), we get

(3.36) [α(x), r] α(y)g(z)α(x) = 0.

Substituting yx for y in (3.35), we have

(3.37) [α(x), r] α(y)α(x)g(z) = 0.

Combining (3.36) and (3.37), we obtain [α(x), r] α(y) [α(x), g(z)] = 0 for all x, y, z ∈
I, r ∈ R. In particular, we have [α(x), g(z)] α(I) [α(x), g(z)] = (0) for all x, z ∈ I.

Since α(I) is semiprime ring, we obtain

(3.38) [α(x), g(z)] = 0, for all x, z ∈ I.

That is g(I) ⊂ Z(I
′

), where I
′

= α(I). By Lemma 2.4, g(I) ⊂ Z(R). In view of
Lemma 2.8, we get g(R) ⊂ Z(R). Moreover, a particular case of (3.38) implies that
[x, φ(x)] = 0 for all x ∈ I, where φ = α−1g is an ordinary derivation of R. By Lemma
2.3, R contains a nonzero central ideal of R.

Now from (3.25), by replacing y by yr, where r ∈ R, we get

(3.39) F (xyr) + G(yrx) = 0, for all x, y ∈ I, r ∈ R.

And replacing x by rx in (3.25), we obtain

(3.40) F (rxy) + G(yrx), for all x, y ∈ I, r ∈ R.

Combining (3.39) and (3.40), we get

F (xyr) = F (rxy), for all x, y ∈ I, r ∈ R.

Interchanging the role of x and y in this expression, we obtain

F (yxr) = F (ryx), for all x, y ∈ I, r ∈ R.

This relation has already existed in the above proof for G. Hence by repeating the
same arguments, we get that d maps R into Z(R). □

Theorem 3.6. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. Let F and G be multiplicative generalized (α, α)-
derivations of R associated with nonzero (α, α)-derivations d and g respectively. If

α(x) ◦ F (y) ± G(yx) = 0 for all x, y ∈ I, then d maps R into Z(R) and R contains a

nonzero central ideal.
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Proof. Assume that α(x) ◦ F (y) ± G(yx) = 0 for all x, y ∈ I. That is

(3.41) α(x)F (y) + F (y)α(x) ± G(yx) = 0.

Replacing y by yx in (3.41), we Ąnd

α(x)F (y)α(x) + α(x)α(y)d(x) + F (y)α(x)α(x)

+ α(y)d(x)α(x) ± G(yx)α(x) ± α(yx)g(x) = 0.

Expression (3.41) reduces it to

(3.42) α(x)α(y)d(x) + α(y)d(x)α(x) ± α(yx)g(x) = 0.

Taking zy in place of y in (3.42), where z ∈ I, we get

(3.43) α(x)α(z)α(y)d(x) + α(z)α(y)d(x)α(x) ± α(z)α(yx)g(x) = 0.

By using (3.42), we Ąnd [α(x), α(z)]α(y)d(x) = 0 for all x, y, z ∈ I. By using Lemma
2.7, it yields that [α(x), α(y)]d(x) = 0 for all x, y ∈ I. Replacing y by α−1(r)y, where
r ∈ R, we get

[α(x), r]α(y)d(x) = 0, for all x, y ∈ I, r ∈ R.

It implies that

(3.44) [α(x), R]Rα(I)d(x) = (0).

Since R contains a family S of prime ideals such that ∩Pλ = (0). Let P be a typical
member of this family and x ∈ I, by (3.44), we Ąnd

[α(x), R] ⊂ P or α(I)d(x) ⊂ P.

Let A = ¶x ∈ I : [α(x), R] ⊂ P♢ and B = ¶x ∈ I : α(I)d(x) ⊂ P♢. Note that A and
B are the additive subgroups of R such that A ∪ B = I. By using BrauerŠs trick, we
obtain

[α(I), R] ⊂ P or α(I)d(I) ⊂ P.

Together with these both cases, we have [α(I), R]d(I) = 0. That is

(3.45) [α(x), r]d(y) = 0, for all x, y ∈ I, r ∈ R.

Replacing y by yt, in (3.45), where t ∈ I, we Ąnd

(3.46) [α(x), r]α(y)d(t) = 0.

This expression is same as (3.35) of Theorem 3.5 with d instead of g. With the similar
arguments, we get our conclusion. □

By the same implications as in Theorem 3.6 with necessary modiĄcations, we can
get the following result.

Theorem 3.7. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. Let F and G be multiplicative generalized (α, α)-
derivations of R associated with nonzero (α, α)-derivations d and g, respectively. If

[α(x), F (y)] ± G(yx) = 0 for all x, y ∈ I, then d maps R into Z(R) and R contains a

nonzero central ideal.
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Theorem 3.8. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation

of R associated with a nonzero (α, α)-derivation d. If α(x) ◦ F (y) ± α([x, y]) = 0 for

all x, y ∈ I, then d maps R into Z(R) and R contains a nonzero central ideal.

Proof. Assume that

(3.47) α(x) ◦ F (y) ± α([x, y]) = 0, for all x, y ∈ I.

Replacing y by yx in (3.47), we Ąnd

(α(x) ◦ F (y))α(x) + (α(x) ◦ α(y)d(x)) ± α([x, y])α(x) = 0, for all x, y ∈ I.

Equation (3.47) reduces it to

(3.48) (α(x) ◦ α(y)d(x)) = 0.

Replacing y by zy in (3.48), where z ∈ I, and using it, we get [α(x), α(z)]α(y)d(x) = 0
for all x, y, z ∈ I. This expression also appeared in Theorem 3.6, hence the conclusion
follows in the similar manner. □

By the same implications as in Theorem 3.8 with necessary modiĄcations, we can
get the following result.

Theorem 3.9. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation

of R associated with a nonzero (α, α)-derivation d. If [α(x), F (y)] ± α(x ◦ y) = 0 for

all x, y ∈ I, then d maps R into Z(R) and R contains a nonzero central ideal.

Theorem 3.10. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation

of R associated with a nonzero (α, α)-derivation d. If [F (x), d(y)] ± (x ◦ α(y)) = 0 for

all x, y ∈ I, then d maps R into Z(R) and R contains a nonzero central ideal.

Proof. Assume that [F (x), d(y)] − (x ◦ α(y)) = 0 for all x, y ∈ I. That is

(3.49) F (x)d(y) − d(y)F (x) − xα(y) − α(y)x = 0.

Replacing y by yz in (3.49), where z ∈ I, we Ąnd

F (x)d(y)α(z) + F (x)α(y)d(z) − d(y)α(z)F (x)

− α(y)d(z)F (x) − xα(y)α(z) − α(y)α(z)x = 0.

Right multiplying (3.49) by α(z) and then comparing with the above expression to
obtain

(3.50) [F (x), α(y)d(z)] + d(y)[F (x), α(z)] − α(y)[α(z), x] = 0, for all x, y, z ∈ I.

Taking zy instead of y in (3.50), we have

α(z)[F (x), α(y)d(z)] + [F (x), α(z)]α(y)d(z) + d(z)α(y)[F (x), α(z)]

+ α(z)d(y)[F (x), α(z)] − α(z)α(y)[α(z), x] = 0, for all x, y, z ∈ I.
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Application of (3.50) yields

[F (x), α(z)]α(y)d(z) + d(z)α(y)[F (x), α(z)] = 0, for all x, y, z ∈ I.

In view of Lemma 2.5, it follows that

[F (x), α(z)]α(y)d(z) = 0 = d(z)α(y)[F (x), α(z)], for all x, y, z ∈ I.

Let us consider the expression

(3.51) [F (x), α(z)]α(y)d(z) = 0.

Replacing x by xz in (3.51), we get

(3.52) [F (x), α(z)]α(z)α(y)d(z) + [α(x)d(z), α(z)]α(y)d(z) = 0.

Substituting zy in place of y in (3.51) and then subtracting it from (3.52) in order to
Ąnd

(3.53) [α(x)d(z), α(z)]α(y)d(z) = 0, for all x, y, z ∈ I.

Replacing x by wx in (3.53), where w ∈ R, and using it to obtain

[α(w), α(z)]α(x)d(z)α(y)d(z) = 0, for all x, y, z, w ∈ I.

In particular, taking y = r[w, z]x in above expression, where r ∈ R, we get

[α(w), α(z)]α(x)d(z)R[α(w), α(z)]α(x)d(z) = (0), for all x, z, w ∈ I.

Since R is semiprime ring, it implies that [α(w), α(z)]α(x)d(z) = 0 for all x, z, w ∈ I.

This expression also appeared in Theorem 3.6, so the result is followed in the same
way.

Using similar approach we conclude that the same result holds for [F (x), d(y)] +
(x ◦ α(y)) = 0 for all x, y ∈ I. □

Theorem 3.11. Let R be a 2-torsion free semiprime ring and α be an automorphism

of R. Let F be a multiplicative generalized (α, α)-derivation of R associated with a

nonzero (α, α)-derivation d. If d(x) ◦ d(y) ± F (xy) = 0 for all x, y ∈ R, then d maps

R into Z(R) and R contains a nonzero central ideal.

Proof. We assume that d(x) ◦ d(y) ± F (xy) = 0 for all x, y ∈ R. That is

(3.54) d(x)d(y) + d(y)d(x) ± F (xy) = 0.

Replacing y by yz in (3.54) and using it, we get

(3.55) d(x)α(y)d(z) + α(y)d(z)d(x) + d(y)[α(z), d(x)] ± α(xy)d(z) = 0.

Taking xy in place of y in (3.55) to get

d(x)α(x)α(y)d(z) + α(x)α(y)d(z)d(x) + d(x)α(y)[α(z), d(x)](3.56)

+ α(x)d(y)[α(z), d(x)] ± α(x)α(xy)d(z) = 0, for all x, y, z ∈ R.

Application of (3.55) in (3.56) yields

[d(x), α(x)]α(y)d(z) + d(x)α(y)[α(z), d(x)] = 0, for all x, y, z ∈ R.
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In particular for x = z, we get

(3.57) [d(x), α(x)]α(y)d(x) = d(x)α(y)[d(x), α(x)], for all x, y ∈ R.

Replacing y by yα−1(d(x)) in (3.57) and using it, we have

d(x)α(y)[d(x), [d(x), α(x)]] = 0, for all x, y ∈ R.

It implies that

[d(x), [d(x), α(x)]]α(y)[d(x), [d(x), α(x)]] = 0, for all x, y ∈ R.

Using semiprimeness of R, we get [d(x), [d(x), α(x)]] = 0 for all x ∈ R. That is
equivalent to [φ(x), [φ(x), x]] = 0 for all x ∈ R, where φ = α−1d, which is an ordinary
derivation of R. Invoking Lemma 2.6, we get φ maps R into Z(R), i.e.,

[φ(x), y] = 0, for all x, y ∈ R.

In particular, we have [φ(x), x] = 0 for all x ∈ R, and hence R contains a nonzero
central ideal by Lemma 2.3. □

Theorem 3.12. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation

of R associated with a nonzero (α, α)-derivation d. If [d(x), d(y)] ± F (xy) = 0 for all

x, y ∈ I, then R contains a nonzero central ideal.

Proof. Following the same arguments as in Theorem 3.11, instead of equation (3.57),
we have

[d(x), α(x)]α(y)d(x) + d(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

By Lemma 2.5, we Ąnd

(3.58) d(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

Taking xy in place of y in (3.58), we get

(3.59) d(x)α(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

Left multiply (3.58) by α(x) to obtain

(3.60) α(x)d(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

Comparing (3.59) and (3.60), we obtain [d(x), α(x)]α(y)[d(x), α(x)] = 0 for all x, y ∈ I.

By semiprimeness of α(I), we Ąnd [α(x), d(x)] = 0 for all x ∈ I. It implies that
[x, φ(x)] = 0 for all x ∈ I, where φ = α−1d, which is an ordinary derivation. Hence,
in light of Lemma 2.3, we are done. □

Now onwards, we consider that F is a two sided multiplicative generalized (α, α)-
derivation associated with (α, α)-derivation d, i.e., F satisĄes the following conditions:

F (xy) = F (x)α(y) + α(x)d(y) = d(x)α(y) + α(x)F (y), for all x, y ∈ R.



380 G. S. SANDHU, A. AYRAN, AND N. AYDIN

Theorem 3.13. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R

and α be an automorphism of R. If [d(x), F (y)] ± F ([x, y]) = 0 for all x, y ∈ I, then

R contains a nonzero central ideal.

Proof. Assume that

(3.61) [d(x), F (y)] ± F ([x, y]) = 0, for all x, y ∈ I.

Replacing y by yx in (3.61) and using it, we get

(3.62) F (y)[d(x), α(x)] + [d(x), α(y)]d(x) ± α([x, y])d(x) = 0, for all x, y ∈ I.

Replacing y by xy in (3.62), we have

α(x)F (y)[d(x), α(x)] + d(x)α(y)[d(x), α(x)] + α(x)[d(x), α(y)]d(x)

+ [d(x), α(x)]α(y)d(x) ± α(x)α([x, y])d(x) = 0, for all x, y ∈ I.

Using (3.62), we get

d(x)α(y)[d(x), α(x)] + [d(x), α(x)]α(y)d(x) = 0, for all x, y ∈ I.

This expression also appeared in Theorem 3.12, so the result is followed in the same
way. □

Theorem 3.14. Let R be a 2-torsion free semiprime ring and α be an automorphism

of R. If d(x) ◦ F (y) ± F (x ◦ y) = 0 for all x, y ∈ R, then d maps R into Z(R) and R

contains a nonzero central ideal.

Proof. Assume that

(3.63) (d(x) ◦ F (y)) ± F (x ◦ y) = 0, for all x, y ∈ I.

Replacing y by yx in (3.63) and using it, we get

(3.64) − F (y)[d(x), α(x)] + (d(x) ◦ α(y))d(x) ± α(x ◦ y)d(x) = 0, for all x, y ∈ I.

Replacing y by xy in (3.64), we Ąnd

− α(x)F (y)[d(x), α(x)] − d(x)α(y)[d(x), α(x)] + α(x)(d(x) ◦ α(y))d(x)

+ [d(x), α(x)]α(y)d(x) ± α(x)α(x ◦ y)d(x) = 0, for all x, y ∈ I.

Using (3.64), we obtain

d(x)α(y)[d(x), α(x)] = [d(x), α(x)]α(y)d(x), for all x, y ∈ I.

This expression also appeared as equation (3.57) in Theorem 3.11, so the result is
followed in the same way. □
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NEW MIXED RECURRENCE RELATIONS OF TWO-VARIABLE

ORTHOGONAL POLYNOMIALS VIA DIFFERENTIAL

OPERATORS

MOSAED M. MAKKY1 AND MOHAMMAD SHADAB2

Abstract. In this paper, we derive new recurrence relations for two-variable or-
thogonal polynomials for example Jacobi polynomial, BatemanŠs polynomial and
Legendre polynomial via two different differential operators Ξ =

(

∂

∂z
+

√
w

∂

∂w

)

and

∆ =
(

1

w

∂

∂z
+ 1

z

∂

∂w

)

. We also derive some special cases of our main results.

1. Introduction and Preliminaries

In recent decades, the study of the multi-variable orthogonal polynomials has been
substantially developed by many authors [3,5,15]. The properties of the multi-variable
orthogonal polynomials have been analyzed by different approaches. The analytical
properties of two-variable orthogonal polynomials like generating functions, recurrence
relations, partial differential equations, and orthogonality have remained the main
attraction of the topic due to its wide range of applications in different research areas
[1, 4, 7, 10,16].

Some new classes of two-variables analogues of the Jacobi polynomials have been
introduced from Jacobi weights by Koornwinder [9]. These all classes are introduced
by means of two different partial differential operators D1 and D2, where D1 has
order two, and D2 may have any arbitrary order. Koornwinder constructed bases of
orthogonal polynomials in two-variables by using a tool given by Agahanov [2].

In 2017, M. Marriaga et al. [11] derived some new recurrence relations involving
two-variable orthogonal polynomials in a different way. In 2019, G. V. Milovanović et

Key words and phrases. Jacobi polynomials, Legendre polynomials, BatemanŠs polynomials, dif-
ferential operators.
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al. [12] presented the study of various recurrence relations, generating functions and
series expansion formulas for two families of orthogonal polynomials in two-variables.
Motivated by these two studies, we present here some recurrence relations of two-
variables orthogonal polynomials via differential operators.

The generalized hypergeometric function [14, p. 42Ű43] can be deĄned as

pFq



α1, . . . , αp;
β1, . . . , βq;

z

]

=
∞
∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

· zn

n!
,

with certain convergence conditions given in [14, p. 43].
The Pochhammer symbol (λ)ν (λ, ν ∈ C) [13, p. 22, (1)], is deĄned by

(λ)ν :=
Γ (λ + ν)

Γ (λ)
=







1,

λ (λ + 1) · · · (λ + n − 1) ,

ν = 0, λ ∈ C \ ¶0♢,

ν = n ∈ N, λ ∈ C,

being understood conventionally that (0)0 = 1 and assumed tacitly that the Γ quo-
tient exists.

The classical Jacobi polynomial P (α,β)
n (x) of degree n, n = 0, 1, 2, . . . , [13, p. 254

(1)] is deĄned as

P (α,β)
n (x) =

(1 + α)n

n!
2F1

(

−n, 1 + α + β + n; 1 + α;
1 − x

2

)

,

Re (α) > −1, Re (β) > −1, x ∈ (−1, 1).

The generating function of the Jacobi polynomial P (α,β)
n (x) of degree n [13, p. 270,

(2)] is deĄned by

∞
∑

n=0

P (α,β)
n (x) tn = F4

(

1 + β, 1 + α; 1 + α, 1 + β;
1

2
t(x − 1),

1

2
t(x + 1)

)

,

where

F4

(

1 + β, 1 + α; 1 + α, 1 + β;
1

2
t(x − 1),

1

2
t(x + 1)

)

,

is an Appell polynomial [14, p. 53, (7)].
An elementary generating function of the Jacobi polynomial P (α,β)

n (x) [13, p. 271,
(6)] can be presented in the form

∞
∑

n=0

P (α,β)
n (x)tn = ρ−1



2

1 + t + ρ

β 

2

1 − t + ρ

α

or
∞
∑

n=0

P (α,β)
n (x)tn = 2α+βρ−1 (1 + t + ρ)−β (1 − t + ρ)−α

,

where ρ = (1 − 2xt + t2)
1

2 and on setting α = β = 0, the Jacobi polynomial reduce to
the Legendre polynomial.
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Recently, R. Khan et al. [8] introduced generalization of two-variable Jacobi poly-
nomial

P (α,β)
n (x, y) =

n
∑

k=0

(1 + α)n (1 + α + β)n+k

k!(n − k)! (1 + α)k (1 + α + β)n



x − √
y

2

k

,(1.1)

n = 0, 1, 2, . . . , Re (α) > −1, Re (β) > −1, x, y ∈ (−1, 1),

which can be presented in the alternate form

P (α,β)
n (x, y) =

∞
∑

n,k=0

(1 + α)n (1 + β)n

k!(n − k)! (1 + α)k (1 + β)n−k



x − √
y

2

k 

x +
√

y

2

n−k

and

P (α,β)
n (x, y) =

(1 + α)n

n!



x +
√

y

2

n

2F1



−n, −β − n; 1 + α;
x − √

y

x +
√

y



or

P (α,β)
n (x, y) =

(1 + α)n

n!
2F1



−n, 1 + α + β + n; 1 + α;

√
y − x

2



.

The generating functions of generalized Jacobi polynomial of two-variables P (α,β)
n (x, y)

[8] can be presented as follows

∞
∑

n=0

P (α,β)
n (x, y) tn = µ−1



2

1 +
√

yt + µ

β 

2

1 − √
yt + µ

α

or
∞
∑

n=0

P (α,β)
n (x, y)tn = 2α+βµ−1 (1 +

√
yt + µ)−β (1 − √

yt + µ)−α
,

where µ = (1 − 2xt + y t2)
1

2 .

In another way, the generating function of generalized Jacobi polynomials of two
variables P (α,β)

n (x, y) [8] can be presented as follows

∞
∑

n=0

P (α,β)
n (x, y)tn = F4

(

1 + β, 1 + α; 1 + α, 1 + β;
1

2
t(x − √

y),
1

2
t(x +

√
y)
)

,

which can be written in the form

∞
∑

n=0

P (α,β)
n (x, y) tn =

∞
∑

n,k=0

(1 + α)n+k (1 + β)n+k
1
2



x − √
y
)k

1
2



x +
√

y
)n

tn

k!n! (1 + α)k (1 + β)n

.

BatemanŠs generating function for P (α,β)
n (x, y) [8] can be presented as follows

B(α,β)
n (x, y; t) =





∞
∑

n=0

1
2



x − √
y
)n

tn

n! (1 + α)n









∞
∑

n=0

1
2



x +
√

y
)n

tn

n! (1 + β)n



 ,

Re (α) > −1, Re (β) > −1, ♣x♣ < 1, ♣y♣ < 1,
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where

B(α,β)
n (x, y; t) =

∞
∑

n=0

P (α,β)
n (x, y)tn

(1 + α)n (1 + β)n

.

The generalized Jacobi polynomial of two-variables P (α,β)
n (x, y) reduces to the Le-

gendre polynomial of two variables Pn(x, y) for α = β = 0 in (1.1)

Pn(x, y) =
n
∑

k=0

(n + k)!

(k!)2 (n − k)!



x − √
y

2

k

,

and its generating function can be given by

∞
∑

n=0

Pn(x, y) tn =


1 − 2xt + yt2
)

−
1

2

.

Also, Khan and Abukhammash [6] deĄned the Legendre Polynomials of two-variables
Pn(x, y) as

Pn(x, y) =
[n/2]
∑

k=0

(−y)k


1
2

)

n−k
(2x)n−2k

k!(n − k)!

and the generating function for Pn(x, y) is given by

n
∑

k=0

Pn(x, y) tn =


1 − 2xt + y t2
)

1

2

.

2. Recurrence Relations for Jacobi Polynomials

In this section, we will study the action of the following differential operator

(2.1) Ξ =



∂

∂z
+

√
w

∂

∂w



on complex bivariate Jacobi polynomial P (α,β)
n (z, w) (2.2) to obtain the desired results.

Now, we present complex bivariate Jacobi polynomial by replacing x, y ∈ R by
z, w ∈ C such that

P (α,β)
n (z, w) =

n
∑

k=0

(1 + α)n (1 + α + β)n+k

k!(n − k)! (1 + α)k (1 + α + β)n



z − √
w

2

k

,(2.2)

Re (α) > −1, Re (β) > −1, ♣z♣ < 1, ♣w♣ < 1.

Following conjugate relations will be use frequently in the paper.

(1 + α + β)n+k+1 = (1 + α + β) (2 + α + β) [1 + (1 + α) + (1 + β)](n−1)+k ,

(1 + α)k+1 = (1 + α) (1 + (1 + α))k ,

(1 + α)n = (1 + α) (1 + (1 + α))n−1 ,

(1 + α + β)n+1 = (1 + α + β)n (1 + α + β + n) .
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Theorem 2.1. Following recurrence relation for the Jacobi Polynomial P (α,β)
n (z, w),

it holds true

∂

∂z
P (α,β)

n (z, w) +
√

w
∂

∂w
P (α,β)

n (z, w)

− (1 + α + β + n)

4



z − √
w

2



P
(1+α),(1+β)
n−1 (z, w) = 0,

Re (α) > −1, Re (β) > −1, ♣z♣ < 1, ♣w♣ < 1.

Proof. On applying the operator (2.1) in (2.2), we get


∂

∂z
+

√
w

∂

∂w



P (α,β)
n (z, w)

=



∂

∂z
+

√
w

∂

∂w



n
∑

k=0

(1 + α)n (1 + α + β)n+k

k!(n − k)! (1 + α)k (1 + α + β)n



z − √
w

2

k

=
n
∑

k=0

k (1 + α)n (1 + α + β)n+k

k!(n − k)! (1 + α)k (1 + α + β)n



z − √
w

2

k−1 (
1

2
− 1

4

)

=
1

4

n
∑

k=0

k (1 + α)n (1 + α + β)n+k

k!(n − k)! (1 + α)k (1 + α + β)n



z − √
w

2

k−1

.

Now, on replacing k → k + 1 and simpliĄcations, we get

1

4

n
∑

k=0

(1 + α)n (1 + α + β)n+k+1

k! [n − (k + 1)]! (1 + α)k+1 (1 + α + β)n



z − √
w

2

k

=
1

4

n
∑

k=0

(1 + α) (1 + (1 + α))n−1 (1 + α + β) (2 + α + β)

k! ((n − 1) − k)! (1 + α) (1 + (1 + α))k

×
(1 + (1 + α) + (1 + β))(n−1)+k (1 + α + β + n)

(1 + (1 + α) + (1 + β))(n−1) (1 + α + β) (2 + α + β)



z − √
w

2

k

=
1 + (α + β + n)

4



z − √
w

2



×
n
∑

k=0

(1 + (1 + α))n−1 [1 + (1 + α) + (1 + β)](n−1)+k

k! ((n − 1) − k)! (1 + (1 + α))k [1 + (1 + α) + (1 + β)]n−1



z − √
w

2

k−1

=
(1 + α + β + n)

4



z − √
w

2



P
(1+α),(1+β)
n−1 (z, w).

Therefore, we get the desired result. □

Corollary 2.1. Following recurrence relation for the Jacobi Polynomial P (α,β)
n (z, 1),

it holds true

∂

∂z
P (α,β)

n (z, 1) − (1 + α + β + n)

2

(

z − 1

2

)

P
(1+α),(1+β)
n−1 (z, 1) = 0,
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Re (α) > −1, Re (β) > −1, ♣z♣ < 1.

Proof. First, put w = 1 in (2.2) we consider the Jacobi polynomials

P (α,β)
n (z, 1) =

n
∑

k=0

(1 + α)n (1 + α + β)n+k

k!(n − k)! (1 + α)k (1 + α + β)n

(

z − 1

2

)k

.

Taking differential operator Ξz =


∂
∂z

)

then following the same process used in the

above theorem leads to the desired result. □

Corollary 2.2. Following recurrence relation for the Jacobi Polynomial P (α,β)
n (1, w),

it holds true
√

w
∂

∂w



P (α,β)
n (1, w) +

(1 + α + β + n)

4



1 − √
w

2



P
(1+α),(1+β)
n−1 (1, w) = 0,

Re (α) > −1, Re (β) > −1, ♣w♣ < 1.

Proof. By puting z = 1 in (2.2) we get

P (α,β)
n (1, w) =

n
∑

k=0

(1 + α)n (1 + α + β)n+k

k!(n − k)! (1 + α)k (1 + α + β)n



1 − √
w

2

k

.

Taking differential operator Ξw =
√

w ∂
∂w

)

then following the same process used in

the above theorem leads to the desired result. □

3. Recurrence Relations for Bateman’s Generating Function

Now, we present complex bivariate BatemanŠs generating function by replacing
x, y ∈ R by z, w ∈ C such that

B(α,β)
n (z, w; t) =



∞
∑

n=0

1
2

(z − √
w)

n
tn

n! (1 + α)n

] 

∞
∑

n=0

1
2

(z +
√

w)
n

tn

n! (1 + β)n

]

(3.1)

and

B(α,β)
n (z, w; t) =

∞
∑

n=0

P (α,β)
n (z, w)tn

(1 + α)n (1 + β)n

, Re (α) > −1, Re (β) > −1, ♣z♣ < 1, ♣w♣ < 1.

We can also write the conjugate relationships for the purpose to use these relations
in this section

(1 + α)n+1 = (1 + α) (1 + (1 + α))n ,

(1 + β)n+1 = (1 + β) (1 + (1 + β))n .

Theorem 3.1. Following recurrence relation for the Bateman’s generating function

B(α,β)
n (z, w; t), it holds true

∂

∂z
B(α,β)

n (z, w; t) +
√

w
∂

∂w
B(α,β)

n (z, w; t) − t

2 (1 + α)
B[(1+α),β]

n (z, w; t)

− 3 t

2 (1 + β)
B[α,(1+β)]

n (z, w; t) = 0, Re (α) > −1, Re (β) > −1, ♣z♣ < 1, ♣w♣ < 1.



NEW MIXED RECURRENCE RELATIONS 389

Proof. Using the differential operator Ξ for the BatemanŠs generating function
B(α,β)

n (z, w; t), we see that

Ξ B(α,β)
n (z, w; t)

=



∂

∂z
+

√
w

∂

∂w



∞
∑

n=0

1
2

(z − √
w)

n
tn

n! (1 + α)n

] 

∞
∑

n=0

1
2

(z +
√

w)
n

tn

n! (1 + β)n

]

=
t

2 (1 + α)



∞
∑

n=0

1
2

(z − √
w)

n
tn

n! [1 + (1 + α)]n

] 

∞
∑

n=0

1
2

(z +
√

w)
n

tn

n! (1 + β)n

]

+
3 t

2 (1 + β)



∞
∑

n=0

1
2

(z − √
w)

n
tn

n! (1 + α)n

] 

∞
∑

n=0

1
2

(z +
√

w)
n

tn

n! [1 + (1 + β)]n

]

=
t

2 (1 + α)
B[(1+α),β]

n (z, w; t) − 3 t

2 (1 + β)
B[α,(1+β)]

n (z, w; t).

Therefore, we get the desired result. □

Corollary 3.1. Following recurrence relation for the Bateman’s generating function

B(α,β)
n (z, 1), it holds true

∂

∂z
B(α,β)

n (z, 1; t) − t

(1 + α)
B[(1+α),β]

n (z, 1; t) − t

(1 + β)
B[α,(1+β)]

n (z, 1; t) = 0,

Re (α) > −1, Re (β) > −1, ♣z♣ < 1.

Proof. First, substitute w=1 in the BatemanŠs generating function (3.1), we have

B(α,β)
n (z, 1; t) =

∞
∑

n=0

1
2

(z − 1)n
tn

n! (1 + α)n

∞
∑

n=0

1
2

(z + 1)n
tn

n! (1 + β)n

.

Taking differential operator Ξz =


∂
∂z

)

then following the same process used in the

above theorem leads to the desired result. □

Corollary 3.2. Following recurrence relation for the Bateman’s generating function

B(α,β)
n (1, w), it holds true

√
w

∂

∂w
B(α,β)

n (1, w; t) +
t

2(1 + α)
B[(1+α),β]

n (1, w; t) − t

2(1 + β)
B[α,(1+β)]

n (1, w; t) = 0,

Re (α) > −1, Re (β) > −1, ♣w♣ < 1.

Proof. Put z = 1 in the BatemanŠs generating function (3.1), we get

B(α,β)
n (1, w; t) =



∞
∑

n=0

1
2

(1 − √
w)

n
tn

n! (1 + α)n

] 

∞
∑

n=0

1
2

(1 +
√

w)
n

tn

n! (1 + β)n

]

.

Taking differential operator Ξw =
√

w ∂
∂w

)

then following the same process used in

the above theorem leads to the desired result. □
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4. Recurrence Relations for Legendre Polynomials

In this sections, we will study the action of the following differential operator

∆ =



1

w

∂

∂z
+

1

z

∂

∂w



,

on complex bivariate Legendre polynomial Pn(z, w) (2.2) to obtain the desired results.
Now, we present complex bivariate Legendre polynomial by replacing x, y ∈ R by

z, w ∈ C such that

(4.1) Pn(z, w) =
[n/2]
∑

k=0

(−w)k


1
2

)

n−k
(2z)n−2k

k!(n − k)!
,

where Re (α) > −1, Re (β) > −1, ♣z♣ < 1, ♣w♣ < 1.

Theorem 4.1. Following recurrence relation for the Legendre polynomials Pn(z, w),
it holds true

1

w

∂

∂z
Pn(z, w) +



1

z

∂

∂w



Pn(z, w) −
(

n

zw

)

Pn(z, w) +
(

1

2z2

)

Pn−1(z, w) = 0,

Re (α) > −1, Re (β) > −1, ♣z♣ < 1, ♣w♣ < 1.

Proof. For Legendre polynomials (4.1) of two variables Pn(z, w) we see that

∆ Pn(z, w) =



1

w

∂

∂z
+

1

z

∂

∂w

 [n/2]
∑

k=0

(−w)k


1
2

)

n−k
(2z)n−2k

k!(n − k)!
.

After applying the differential operator, we get

− 2
∑

k=0

(−w)k−1


1
2

)

n−k
(n − 2k) (2z)n−2k−1

k!(n − k)!
− 2

[n/2]
∑

k=0

k (−w)k−1


1
2

)

n−k
(2z)n−2k−1

k!(n − k)!

= − 2
[n/2]
∑

k=0

(n − k) (−w)k−1


1
2

)

n−k
(2z)n−2k−1

k!(n − k)!
.

= − 2n

[n/2]
∑

k=0

(−w)k−1


1
2

)

n−k
(2z)n−2k−1

k!(n − k)!
− 2

[n/2]
∑

k=0

k (−w)k−1


1
2

)

n−k
(2z)n−2k−1

k!(n − k)!

=
(

n

zw

) [n/2]
∑

k=0

(−w)k


1
2

)

n−k
(2z)n−2k

k!(n − k)!

− 2
(

1

2z

)2 [n/2]
∑

k=0

(−w)k


1
2

)

(n−1)−k
(2z)[(n−1)−2(k−1)]

k! [(n − 1) − k)]!
.

=
(

n

zw

)

Pn(z, w) −
(

1

2z2

)

Pn−1(z, w).

Now, on some simpliĄcation, we get our desired result. □
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Corollary 4.1. Following recurrence relation for the Legendre polynomials Pn(z, 1),
it holds true

1

w

∂

∂z
Pn(z, 1) −

(

n

z

)

Pn(z, 1) +
(

1

2z2

)

Pn−1(z, 1) = 0,

Re (α) > −1, Re (β) > −1, ♣z♣ < 1.

Proof. First, substitute w = 1 in equation (4.1) we get

Pn(z, 1) =
[n/2]
∑

k=0

(−1)k


1
2

)

n−k
(2z)n−2k

k!(n − k)!
.

Taking differential operator ∆z =


1
w

∂
∂z

)

then following the same process used in

the above theorem leads to the desired result. □

Corollary 4.2. Following recurrence relation for the Legendre polynomials Pn(1, w),
it holds true

1

z

∂

∂w
Pn(1, w) −

(

n

w

)

Pn(1, w) +
(

1

2

)

Pn−1(1, w) = 0,

Re (α) > −1, Re (β) > −1, ♣w♣ < 1.

Proof. Put z = 1 in equation (4.1) we get

Pn(1, w) =
[n/2]
∑

k=0

(−w)k


1
2

)

n−k
(2)n−2k

k!(n − k)!
.

Taking differential operator ∆w =


1
z

∂
∂w

)

then following the same process used in

the above theorem leads to the desired result. □
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GEOMETRIC INEQUALITIES FOR STATISTICAL

SUBMANIFOLDS IN COSYMPLECTIC STATISTICAL MANIFOLDS

MUSTAFA KAZAZ1, MOHD ASLAM2, AND MOHD AQUIB3

Abstract. In this paper, we obtain two important geometric inequalities namely,
EulerŠs inequality and ChenŠs inequality for statistical submanifolds in cosymplectic
statistical manifolds with constant curvature, and discuss the equality case of the
inequalities. We also give some applications of the inequalities obtained.

1. Introduction

Since Lauritzen introduced the notion of statistical manifolds in 1987 [18], the
geometry of statistical manifolds has been developed in close relations with affine
differential geometry and Hessian geometry as well as information geometry [2,17,28].

The notion of statistical submanifold was introduced in 1989 by Vos [27]. Though, it
has made very little progress due to the hardness to find classical differential geometric
approaches for study of statistical submanifolds. However, in the recent years many
research has been published in the area and it remains a hot topic for the researchers
[4, 6, 13,14,23,25,26].

On the other hand, in 1993, B.-Y. Chen [8] established the simple relationships
between the main intrinsic invariants and the main extrinsic invariants of the sub-
manifolds know as the theory of Chen invariants, which is one of the most interesting
research area of differential geometry.

Since then different geometers obtained the similar inequalities for different subman-
ifolds and ambient spaces due to its rich geometric importance [5,9,10,12,16,20,21,24].
In [22], A. Mihai and I. Mihai established a Chen-Ricci inequality with respect to a

Key words and phrases. ChenŠs inequality, statistical manifolds, Cosymplectic statistical manifolds.
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sectional curvature of the ambient Hessian manifold. In [3], Aquib obtained Chen’s in-
equality for totally real statistical submanifolds of quaternion Kaehler-like statistical
space forms. Recently, Chen et al. [11] obtained Chen first inequality for statis-
tical submanifolds in Hessian manifolds of constant Hessian curvature. In [19], F.
Malek and H. Akbari, obtained bounds for Casorati curvatures of submanifolds in
Cosymplectic statistical space forms.

In the present article, motivated by the problems proposed in [7] we derive Chen’s
inequality for statistical manifolds in Cosymplectic statistical manifold with constant
curvature and investigate the equality case of the inequality. We also give some
applications of the inequalities we derived.

2. Preliminaries

Let (M, g) be a Riemannian manifold and ∇ and ∇
∗

be torsion-free affine connec-
tions on M such that

Zg(X, Y ) = g(∇ZX, Y ) + g(X, ∇
∗

ZY ),

for X, Y, Z ∈ Γ(TM). Then Riemannian manifold (M, g) is called a statistical man-
ifold. It is denoted by (M, g, ∇, ∇

∗
). The connections ∇ and ∇

∗
are called dual

connections. The pair (∇, g) is said to be a statistical structure.
If (∇, g) is a statistical structure on M , then (∇

∗
, g) is also statistical structure on

M .
For the dual connections ∇ and ∇

∗
we have

2∇
◦

= ∇ + ∇
∗
,(2.1)

where ∇
◦

is Levi-Civita connection for g.
Let M be a (2n + 1)-dimensional manifold and let M be an (m + 1)-dimensional

submanifolds of M . Then, the Gauss formulae are [27]
{

∇XY = ∇XY + h(X, Y ),
∇

∗

XY = ∇∗
XY + h∗(X, Y ),

where h and h∗ are symmetric, bilinear, imbedding curvature tensors of M in M for
∇ and ∇

∗
, respectively.

Let R and R
∗

be Riemannian curvature tensor fields of ∇ and ∇
∗
, respectively.

Then [27]

g(R(X, Y )Z, W ) =g(R(X, Y )Z, W ) + g(h(X, Z), h∗(Y, W ))

− g(h∗(X, W ), h(Y, Z))(2.2)

and

g(R
∗
(X, Y )Z, W ) =g(R∗(X, Y )Z, W ) + g(h∗(X, Z), h(Y, W ))

− g(h(X, W ), h∗(Y, Z)),(2.3)
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where

g(R
∗
(X, Y )Z, W ) = −g(Z, R(X, Y )W ).

Let us denote the normal bundle of M by TM⊥. The linear transformations AN

and A∗
N are defined by

{

g(ANX, Y ) = g(h(X, Y ), N),
g(A∗

NX, Y ) = g(h∗(X, Y ), N),

for any N ∈ Γ(TM⊥) and X, Y ∈ Γ(TM). The corresponding Weingarten formulae
are [27]

{

∇XN = −A∗
NX + ∇⊥

XN,

∇
∗

XN = −ANX + ∇∗⊥
X N,

where N ∈ Γ(TM⊥), X ∈ Γ(TM) and ∇⊥
X and ∇∗⊥

X are Riemannian dual connections
with respect to the induced metric on Γ(TM⊥).

For a statistical manifod (M, g, ∇), the difference (1,2)-tensor K of the torsion free
affine connection ∇ and levi-Civita connection ∇

◦
is defined as (see [15])

KXY = K(X, Y ) = ∇XY − ∇
◦

XY.

K is a difference tensor field on M , that is, KXY = KY X and

g(KXY, Z) = g(Y, KXZ).

Now, we consider a cosymplectic statistical structure on a cosymplectic manifold and
define cosymplectic statistical manifold and cosymplectic statistical space form.

Definition 2.1 ([19]). (∇, g, ϕ, ξ, η) is called cosymplectic statistical structure on
M if (∇, g) is a statistical structure and ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕ(ξ) = 0,
g(ϕX, Y ) = −g(X, ϕY ), ∇

◦

Xϕ = 0. That means (g, ϕ, ξ, η) is a cosymplectic structure
on M , and the formula KXϕY + ϕKXY = 0 holds for any X, Y ∈ Γ(TM).

Let (M, ∇, g) be a statistical manifold. The tensor field R(X, Y, Z, W ) is not skew-
symmetric relative to Z and W . Then, the sectional curvature on M can not be
defined by the standard definition. In [15] Furuhata and Hasegawa have defined the
statistical curvature tensor field S for a statistical manifold (M, ∇, g) as follows:

S(X, Y )Z =
1

2
¶R(X, Y )Z + R

∗
(X, Y )Z♢.(2.4)

Definition 2.2 ([19]). (M, ∇, g, ϕ, ξ) be cosymplectic statistical manifold and c a real
constant. The cosymplectic statistical structure is said to be of constant ϕ-sectional
curvature c if

S(X, Y )Z =
c

4
¶g(Y, Z)X − g(X, Z)Y + g(X, ϕZ)ϕY

− g(Y, ϕZ)ϕX + 2g(X, ϕY )ϕZ + η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ♢(2.5)
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holds for any X, Y, Z ∈ Γ(TM).

Let ξ be tangent to the submanifolds M and let ¶e1, . . . , em+1 = ξ♢ and ¶em+2, . . . ,

e2n+1♢ be tangent orthonormal frame and normal orthonormal frame, respectively, on
M . Then, the mean curvature vector fields H, H∗, H◦ are given by

H =
1

m + 1

m+1
∑

i=1

h(ei, ei),

H∗ =
1

m + 1

m+1
∑

i=1

h∗(ei, ei)

and

H◦ =
1

m + 1

m+1
∑

i=1

h◦(ei, ei).

We also set

∥h∥2 =
m+1
∑

i,j=1

g(h(ei, ej), h(ei, ej)),

∥h∗∥2 =
m+1
∑

i,j=1

g(h∗(ei, ej), h∗(ei, ej))

and

∥h◦∥2 =
m+1
∑

i,j=1

g(h◦(ei, ej), h◦(ei, ej)).

The second fundamental form h◦(resp. h, or h∗) has several geometric properties due
to which we got following different classes of the submanifolds.

• A submanifold is said to be totally geodesic submanifold with respect to ∇
◦

(resp. ∇ or ∇
∗
), if the second fundamental form h◦ (resp. h or h∗) vanishes

identically, that is h◦ = 0 (resp. h = 0 or h∗ = 0).
• A submanifold is said to be minimal submanifold with respect to ∇

◦
(resp. ∇

or ∇
∗
), if the mean curvature vector H◦ (resp. H or H∗) vanishes identically,

that is H◦ = 0 (resp. H = 0 or H∗ = 0).

Let K(π) denotes the sectional curvature of a Riemannian manifold M of the plane
section π ⊂ TpM at a point p ∈ M . If ¶e1, . . . , em+1♢ be an orthonormal basis of TpM

and ¶em+2, . . . , e2n+1♢ be an orthonormal basis of T ⊥
p M at any p ∈ M , then

τ(p) =
∑

1≤i<j≤m+1

K(ei ∧ ej),

where τ is the scalar curvature. The normalized scalar curvature ρ is defined as

2τ = m(m + 1)ρ.

We also put
h

γ
ij = g(h(ei, ej), eγ), h

∗γ
ij = g(h∗(ei, ej), eγ),
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where i, j ∈ ¶1, . . . , m + 1♢, γ ∈ ¶m + 2, . . . , 2n + 1♢.
The square norm P at p ∈ M is defined as

♣♣P ♣♣2 =
m+1
∑

i,j=1

g2(ei, ϕej).

Lemma 2.1 ([11]). For m + 1 ≥ 3, a1, a2, . . . , am+1, m + 1 real numbers

∑

1≤i<j≤m+1

aiaj − a1a2 ≤
m − 1

2m



m+1
∑

i=1

ai

2

.

Moreover, equality holds if and only if a1 + a2 = a3 = · · · = am+1.

3. Euler’s Inequality for Cosymplectic Manifold

In this section we will prove the Euler’s inequality for statistical submanifolds of
Cosymplectic manifold. To be precise we will prove the following.

Theorem 3.1. Let M be a statistical submanifold in a cosymplectic statistical manifold

M(c). Then

2τ ≥
c

4
[m(m − 1) + 3♣♣P ♣♣2] − ♣♣h◦♣♣2 + (m + 1)2g(H, H∗).

Further, equality case of the inequality holds if and only if h = h∗.

Proof. From (2.2), (2.3) and (2.5), we have

g(S(X, Y )Z, W ) =g(S(X, Y )Z, W ) −
1

2
[g(h(X, Z), h∗(Y, W ))

− g(h∗(X, W ), h(Y, Z)) + (h∗(X, Z), h(Y, W ))

− g(h(X, W ), h∗(Y, Z))]

=
c

4
[g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )

+ g(X, ϕZ)g(ϕY, W ) − g(Y, ϕZ)g(ϕX, W )

+ 2g(X, ϕY )g(ϕZ, W ) + η(X)η(Z)g(Y, W )

− η(Y )η(Z)g(X, W ) + g(X, Z)η(Y )g(ξ, W )

− g(Y, Z)η(X)g(ξ, W )]

−
1

2
[g(h(X, Z), h∗(Y, W )) − g(h∗(X, W ), h(Y, Z))

+ g(h∗(X, Z), h(Y, W )) − g(h(X, W ), h∗(Y, Z))].

Put X = W = ei, Y = Z = ej, we have

g(S(ei, ej)ej, ei) =
c

4
¶g(ej, ej)g(ei, ei) − g(ei, ej)g(ej, ei)

+ g(ei, ϕej)g(ϕej, ei) − g(ej, ϕej)g(ϕei, ei)

+ 2g(ei, ϕej)g(ϕej, ei) + η(ei)η(ej)g(ej, ei)
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− η(ej)η(ej)g(ei, ei) + g(ei, ej)η(ej)g(ξ, ei)

− g(ej, ej)η(ei)g(ξ, ei)♢

−
1

2

[

g


h(ei, ej), h∗(ej, ei)
)

− g


h∗(ei, ei), h(ej, ej)
)

+ g


h∗(ei, ej), h(ej, ei)
)

− g


h(ei, ei), h∗(ej, ej)
)]

.

Taking summation, we derive

2τ =
c

4

[

(m + 1)2 − (m + 1)

+ 3
m+1
∑

i,j=1

g2(ei, ϕej) + 1 − (m + 1) + 1 − (m + 1)
]

−
1

2

m+1
∑

i,j=1

[

g


h(ei, ej), h∗(ej, ei)
)

− g


h∗(ei, ei), h(ej, ej)
)

+ g


h∗(ei, ej), h(ej, ei)
)

− g


h(ei, ei), h∗(ej, ej)
)]

=
c

4

[

m(m − 1) + 3♣♣P ♣♣2
]

−
1

2

m+1
∑

i,j=1

[

2g


h(ei, ej), h∗(ej, ei)
)

− g


h∗(ei, ei), h(ej, ej)
)

− g


h(ei, ei), h∗(ej, ej)
)]

=
c

4

[

m(m − 1) + 3♣♣P ♣♣2
]

−
1

2

[

2g


h(ei, ej), h∗(ej, ei)
)

− 2(m + 1)2g(H, H∗)

=
c

4

[

m(m − 1) + 3♣♣P ♣♣2
]

− g


h(ei, ej), h∗(ej, ei)
)

+ (m + 1)2g(H, H∗)

=
c

4

[

m(m − 1) + 3♣♣P ♣♣2
]

+ (m + 1)2g(H, H∗) −
2n+1
∑

α=m+2

m+1
∑

i,j=1

hα
ijh

∗α
ij

=
c

4

[

m(m − 1) + 3♣♣P ♣♣2
]

+ (m + 1)2g(H, H∗)

−
1

4

2n+1
∑

α=m+2

m+1
∑

i,j=1

[

(hα
ij + h∗α

ij )2 − (hα
ij − h∗α

ij )2
]

=
c

4

[

m(m − 1) + 3♣♣P ♣♣2
]

+ (m + 1)2g(H, H∗) − ♣♣h◦♣♣2

+
1

4

2n+1
∑

α=m+2

m+1
∑

i,j=1

[

(hα
ij − h∗α

ij )2

≥
c

4

[

m(m − 1) − ♣♣h◦♣♣2 + 3♣♣P ♣♣2
]

+ (m + 1)2g(H, H∗),

which is the required result. □

An immediate consequence of the Theorem 3.1 is the following result.
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Corollary 3.1. Let M be a statistical submanifold in a cosymplectic statistical mani-

fold M(c). Then

Angle between H

and H∗

Inequalities

θ 2τ ≥ c
4
[m(m − 1) + 3∥P∥2] − ♣♣h◦♣♣2 + (m + 1)2∥H∥∥H∗∥ cos θ

0◦ 2τ ≥ c
4
[m(m − 1) + 3∥P∥2] − ♣♣h◦♣♣2 + (m + 1)2∥H∥∥H∗∥

90◦ 2τ ≥ c
4
[m(m − 1) + 3∥P∥2] − ♣♣h◦♣♣2

4. Chen’s Inequality for Cosymplectic Statistical Manifolds

This section is devoted to the main result of the article. Here, we obtain Chen’s
inequality for statistical submanifolds of Cosymplectic statistical manifolds with con-
stant ϕ-sectional curvature.

Theorem 4.1. Let M be a statistical submanifold in a cosymplectic statistical manifold

M(c). Then

τ − K(π) ≥2τ◦ − k◦(π) +
c

4
[(1 + m − m2) − 3♣♣P ♣♣2

+ 3Θ(π) − Φ(π)] −
(m + 1)2(m − 1)

4m
(♣♣H♣♣2 + ♣♣H∗♣♣2),

where Θ(π) = g2(ϕe1, e2), Φ(π) = η2(e1) + η2(e2), π = e1 ∧ e2. Moreover, the equality

holds if and only if

hα
11 + hα

22 = hα
33 = · · · = hα

m+1m+1,

h∗α
11 + h∗α

22 = h∗α
33 = · · · = h∗α

m+1m+1,

hα
ij = h∗α

ij , 1 ≤ i ̸= j ≤ m + 1, (i, j) ̸= (1, 2), (2, 1), α ∈ ¶m + 2, . . . , 2n + 1♢.(4.1)

Proof. From (2.2), (2.3) and (2.4), we have

2g(S(X, Y )Z, W ) =2g(S(X, Y )Z, W ) + g(h(X, Z), h∗(Y, W ))

− g(h∗(X, W ), h(Y, Z)) + g(h∗(X, Z), h(Y, W ))

− g(h(X, W ), h∗(Y, Z)).(4.2)
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Using (2.5) in (4.2) and putting X = W = ei, Y = Z = ej, we get

2g(S(ei, ej)ej, ei) =
c

2
[g(ej, ej)g(ei, ej) − g(ei, ej)g(ej, ei)

+ g(ei, ϕej)g(ϕej, ei) − g(ej, ϕej)g(ϕei, ej)

+ 2g(ei, ϕej)g(ϕej, ei) + η(ei)η(ej)g(ej, ei)

− η(ej)η(ej)g(ei, ei) + g(ei, ej)η(ej)g(ξ, ei)

− g(ej, ej)η(ei)g(ξ, ei)] − g(h(ei, ej), h∗(ej, ei))

+ g(h∗(ei, ei), h(ej, ej)) − g(h∗(ei, ej), h(ej, ei))

+ g(h(ei, ei), h∗(ej, ej)).

Applying summation over i, j = 1, 2, . . . , m + 1, we obtain

∑

1≤i<j≤m+1

2g(S(ei, ej)ej, ei) =
c

2
[(m + 1)2 − (m + 1)

+ 3
m+1
∑

i,j=1

g2(ϕej, ei) + 1 − (m + 1) + 1 − (m + 1)]

− g(h(ei, ej), h∗(ej, ei)) + g(h∗(ei, ei), h(ej, ej))

− g(h∗(ei, ej), h(ej, ei)) + g(h(ei, ei), h∗(ej, ej))

=
c

2
[m2 − m + 3♣♣P ♣♣2]

− g(h(ei, ej), h∗(ej, ei)) + g(h∗(ei, ei), h(ej, ej))

− g(h∗(ei, ej), h(ej, ei)) + g(h(ei, ei), h∗(ej, ej)),

which implies

τ =
3

4
c♣♣P ♣♣2 +

c

4
m(m − 1) +

1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

(h∗α
ii hα

jj + hα
iih

∗α
jj − 2hα

ijh
∗α
ij )

=
3

4
c♣♣P ♣♣2 +

c

4
m(m − 1)

+
1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

[(hα
ii + h∗α

ii )(hα
jj + h∗α

jj ) − hα
iih

α
jj − h∗α

ii h∗α
jj

− (hα
ij + h∗α

ij )2 + (hα
ij)

2 + (h∗α
ij )2]

=
3

4
c♣♣P ♣♣2 +

c

4
m(m − 1)

+
2n+1
∑

α=m+2

m+1
∑

i,j=1

{

2[h◦α
ii h◦α

jj − (h◦α
ij )2] −

1

2
[hα

iih
α
jj − (hα

ij)
2] −

1

2
[h∗α

ii h∗α
jj − (h∗α

ij )2]







.

(4.3)
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Further, with respect to Levi-Civita connection, we have

τ◦ =
3

4
c♣♣P ♣♣2 +

c

4
m(m − 1) +

2n+1
∑

α=m+2

m+1
∑

i,j=1

[h◦α
ii h◦α

jj − (h◦α
ij )2].(4.4)

We also have

K(π) =
1

2
[g(R(e1, e2)e2, e1) + g(R∗(e1, e2)e2, e1)]

=
1

2
[g(R(e1, e2)e2, e1) + g(R

∗
(e1, e2)e2, e1)

− 2g(h∗(e1, e2), h(e2, e1)) + 2g(h∗(e1, e1), h(e2, e2))]

=g(S(e1, e2)e2, e1) +
2n+1
∑

α=m+2

[

1

2
h∗α

11 hα
22 +

1

2
hα

11h
∗α
22 − h∗α

12 hα
12



=g(S(e1, e2)e2, e1) +
1

2

2n+1
∑

α=m+2

[(hα
11 + h∗α

11 )(hα
22 + h∗α

22 )

− hα
11h

α
22 − h∗α

11 h∗α
22 − (hα

12 + h∗α
12 )2 + (hα

12)
2 + (h∗α

12 )2]

=g(S(e1, e2)e2, e1) +
2n+1
∑

α=m+2

[

2¶h◦α
11 h◦α

22 − (h◦α
12 )2♢

−
1

2
¶hα

11h
α
22 − (hα

12)
2♢ −

1

2
¶h∗α

11 h∗α
22 − (h∗α

12 )2♢


.(4.5)

On the other hand

g(S(e1, e2)e2, e1) =
c

4
[g(e2, e2)g(e1, e1) − g(e1, e2)g(e2, e1) + g(e1, ϕe2)g(ϕe2, e1)

− g(e2, ϕe2)g(ϕe1, e1) + 2g(e1, ϕe2)g(ϕe2, e1)

+ η(e1)η(e2)g(e2, e1) − η(e2)η(e2)g(e1, e1)

+ g(e1, e2)η(e2)g(ξ, e1) − g(e2, e2)η(e1)g(ξ, e1)]

=
c

4
[1 + 3g2(e1, ϕe2) − η(e1)

2 − η(e2)],

=
c

4
[1 + 3θ(π) − Φ(π)].(4.6)

From (4.5) and (4.6), we get

K(π) =
c

4
[1 + 3θ(π) − Φ(π)] +

2n+1
∑

α=m+2

[2¶h◦α
11 h◦α

22 − (h◦α
12 )2♢

−
1

2
¶hα

11h
α
22 − (hα

12)
2♢ −

1

2
¶h∗α

11 h∗α
22 − (h∗α

12 )2♢].(4.7)

Also, with respect to Levi-Civita connection, we get

K◦(π) =
c

4
[1 + 3θ(π) − Φ(π)] +

2n+1
∑

α=m+2

¶h◦α
11 h◦α

22 − (h◦α
12 )2♢.(4.8)
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Substract (4.7) from (4.3), we get

τ − K(π) =
3

4
c♣♣P ♣♣2 +

c

4
m(m − 1) −

c

4
[1 + 3θ(π) − Φ(π)]

+
2n+1
∑

α=m+2

m+1
∑

i,j=1

{

2[h◦α
ii h◦α

jj − (h◦α
ij )2] −

1

2
[hα

iih
α
jj − (hα

ij)
2]

−
1

2
[h∗α

ii h∗α
jj − (h∗α

ij )2]







−
2n+1
∑

α=m+2

[

2¶h◦α
11 h◦α

22 − (h◦α
12 )2♢

−
1

2
¶hα

11h
α
22 − (hα

12)
2♢ −

1

2
¶h∗α

11 h∗α
22 − (h∗α

12 )2♢


=
c

4
¶3♣♣P ♣♣2 + (m2 − m) − 1 − 3θ(π) + Φ(π)♢

+
2n+1
∑

α=m+2

m+1
∑

i,j=1

2h◦α
ii h◦α

jj − 2
2n+1
∑

α=m+2

m+1
∑

i,j=1

(h◦α
ij )2 −

1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

hα
iih

α
jj

+
1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

(hα
ij)

2 −
1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

h∗α
ii h∗α

jj +
1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

(h∗α
ij )2

− 2
2n+1
∑

α=m+2

h◦α
11 h◦α

22 + 2
2n+1
∑

α=m+2

(h◦α
12 )2 +

1

2

2n+1
∑

α=m+2

hα
11h

α
22

−
1

2

2n+1
∑

α=m+2

(hα
12)

2 +
1

2

2n+1
∑

α=m+2

h∗α
11 h∗α

22 −
1

2

2n+1
∑

α=m+2

(h∗α
12 )

≥
c

4
¶3♣♣P ♣♣2 + (m2 − m) − 1 − 3θ(π) + Φ(π)♢

−
1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

(hα
iih

α
jj − hα

11h
α
22) −

1

2

2n+1
∑

α=m+2

m+1
∑

i,j=1

(h∗α
ii h∗α

jj − h∗α
11 h∗α

22 )

+ 2
2n+1
∑

α=m+2

m+1
∑

i,j=1

[(h◦α
ii h◦α

jj ) − h◦α
11 h◦α

22 ] − 2





2n+1
∑

α=m+2

m+1
∑

i,j=1

(h◦α
ij )2 − (h◦α

12 )2





≥
c

4
¶3♣♣P ♣♣2 + (m2 − m) − 1 − 3θ(π) + Φ(π)♢

−
(m + 1)2(m − 1)

4m
(♣♣H♣♣2 + ♣♣H∗♣♣2)

+ 2
2n+1
∑

α=m+2

m+1
∑

i,j=1

[h◦α
ii h◦α

jj − (h◦α
ij )] − 2

2n+1
∑

α=m+2

m+1
∑

i,j=1

[h◦α
11 h◦α

22 − (h◦α
12 )].

Using (4.4) and (4.8), we have

τ − K(π) ≥
c

4
¶3♣♣P ♣♣2 + (m2 − m) − 1 − 3θ(π) + Φ(π)♢

−
(m + 1)2(m − 1)

4m
(♣♣H♣♣2 + ♣♣H∗♣♣2) + 2

[

τ◦ −
3

4
c♣♣P ♣♣2
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−
c

4
m(m − 1) − 2

[

−
c

4
(1 + 3θ(π) − Φ(π) + Kπ



=
3

4
♣♣P ♣♣2 +

c

4
(m2 − m) −

c

4
−

3

4
cθ(π) +

c

4
Φ(π)

−
(m + 1)2(m − 1)

4m
(♣♣H♣♣2 + ♣♣H∗♣♣2) + 2τ◦ −

3

2
c♣♣P ♣♣2

−
c

2
(m2 − m) +

c

2
+

3

2
cθ(π) −

c

2
Φ(π) − 2K◦(π)

≥
c

4
−

3

4
c♣♣P ♣♣2 −

c

4
(m2 − m) +

3

4
cθ(π) −

c

4
Φ(π)

−
(m + 1)2(m − 1)

4m
(♣♣H♣♣2 + ♣♣H∗♣♣2) + 2τ◦ − K◦(π)

≥
c

4
[(1 + m − m2) − 3♣♣P ♣♣2 + 3θ(π) − Φ(π)]

−
(m + 1)2(m − 1)

4m
(♣♣H♣♣2 + ♣♣H∗♣♣2) + 2τ◦ − K◦(π),

which is the required inequality. Moreover, equality holds if and only if it satisfies
(4.1). □

From the above theorem we have the following non-existence result of minimal
statistical submanifolds in cosymplectic statistical manifold.

Corollary 4.1. Let M be a statistical submanifold in a cosymplectic statistical mani-

fold M(c) such that

(τ − K(π)) − (2τ◦ − K◦(π)) <
c

4
[(1 + m − m2) − 3♣♣P ♣♣2 + 3θ(π) − Φ(π)],

then M can not be minimally immersed in M(c) with respect to ∇ and ∇
∗

symulte-

neously.
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PROPERTIES OF SEMIGROUPS THROUGH THEIR PRIME m-BI

IDEALS
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Abstract. We introduce the concepts of the prime m-bi ideal and their associated
types in the semigroups. Different characterizations of the semigroups using these
m-bi ideals are presented. The forms of the topologies induced by the prime and
strongly prime m-bi ideals in the semigroups are also explored. The result shows
that either both the conditions of m-regularity and m-intraregularity or existence
of pairwise comaximal m-bi ideals in a semigroup is necessary for strongly prime
m-bi ideals to induce a topology; whereas the existence of pairwise comaximal m-bi
ideals is necessary for the prime m-bi ideals to induce topology on the semigroups.
We concluded that the prime m-bi ideals are as important to study the semigroups
as the prime bi ideals.

1. Introduction and Preliminaries

A short introduction to our work and the important concepts are described in this
section.

1.1. Introduction. A non-empty set M together with a given associative binary
operation · is called a semigroup. A semigroup primarily need not to possess the
additive identity 0 or absorbing zero [15], or the multiplicative identity e as against
many other algebraic structures which do possess these two or one of these elements.
Moreover, different powers of semigroups through a positive integer so-called index

also produce sub-structures like subsemigroups and ideals which have different forms,
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and behave differently. In order to explore these properties, the author of this article
generalized the bi ideals in the semirings and semigruops respectively in articles [9]
and [10] through the indices. As a follow-up of these generalizations, it was felt
that the major classes of the m-bi ideals like, the prime, strongly prime, semiprime,
maximal and minimal, irreducible and strongly irreducible should also be studied in a
similar way so that the hidden properties of the semigroups should also be uncovered.
To meet this end, we started this work to explore the algebraic and consequently
topological properties of these ideals in the semigroups. Our work is aimed at mainly
semigroups without zero. We divide this article into six sections.

In Subsection 1.2, we present the preliminary concepts from the literature consisting
of books on semigroups especially [5] and [2], and the research articles in the Ąeld of
semigroup theory. We demonstrate the major results of our work on the prime and
associated m-bi ideals in semigroups in Section 2. Section 3 deals with the charac-
terization of semigroups through maximal m-bi ideals. In Section 4, we characterize
the m-regular and m-intraregular semirings using the prime, semiprime and strongly
m-bi ideals. We present the forms of the topologies formed by these m-bi ideals in
Section 5. The conclusion of the whole work is given in Section 6.

1.2. Preliminaries. A nonempty subset K of M is called its subsemirgoup if K itself
is a semigroup under the operation · of M . The subsemigroup K of M becomes a left
(right) ideal of M if the condition MK ⊆ K (KM ⊆ K) is imposed on M [13]. If K
is a left as well as a right ideal, then it is called an ideal (or a two-sided ideal ) of M .
The intersection (if it is nonempty) and sum of two (ideals, left-ideals, right-rights) of a
semgroup is (an ideal, a left-ideal, a right-ideal). Right and left ideals generalize to the
quasi ideals. A quasi ideal Q of semigroup M is a subsemigroup if MQ∩QM ⊆ Q. A
further generalization of quasi ideals gives introduction to bi ideals. A subsemigroup
B of M is called a bi ideal of M if BMB ⊆ B. Every bi ideals is a quasi ideal,
however every quasi ideal may or may not be a bi ideal. An m-bi ideal B of M is a
subsemigroup of M such that BMmB ⊆ B, where m ≥ 1 is a positive integer. Every
bi ideal B of M is a 1-bi ideal of M , but every m-bi ideals is not a bi ideal. An m-bi
ideal is called principal m-bi ideal if it is generated by a single element. If a ∈ M , the
m-bi ideal generated by M is ⟨a⟩m−b = ¶a♢ ∪ ¶a2♢ ∪ aMma. A semigroup having no
nontrivial two-sided ideals is called a simple semigroup [13].

2. Prime m-Bi Ideals

In this section, we develop the deĄnitions of prime m-bi and their associated types,
and characterize the semigroups using their properties.

Definition 2.1. An m-bi ideal B of a semigroup M is known as a prime m-bi ideal
(strongly prime m-bi ideal) if the proposition ŞB1B2 ⊆ BŤ (ŞB1B2 ∩ B2B1 ⊆ BŤ)
infers either ŞB1 ⊆ BŤ or ŞB2 ⊆ BŤ for any two m-bi ideals B1 and B2 of M .

Definition 2.2. An m-bi ideal B of a semigroup M is known as semiprime m-bi ideal
if the proposition ŞB2

1
⊆ B1Ť implies ŞB1 ⊆ BŤ for any m-bi ideal B1 of M .
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This is very obvious that each strongly prime m-bi ideal of M is its prime m-bi
ideal and its each prime m-bi-ideal is its semiprime m-bi ideal; but the converses do
not hold. The prime (strongly prime) bi ideals as deĄned in [15] are the 1-bi ideals,
but the prime (strongly prime) m-bi-ideal of M are not its prime (strongly prime) bi
ideals. Similarly, semiprime bi ideals are the semiprime 1-bi ideals; but the converse
does not follow.

Example 2.1. The semigroup M itself is always a prime, a semiprime and a strongly
m-bi ideal of M . Moreover, M can have these type of ideals different from M .

Example 2.2. Consider the semigroup M = ¶α, β, γ, δ♢ with the binary operation ·
given in the following table:

· α β γ δ
α α α α α
β α β α α
γ α α γ α
δ α α α α

.

Taking m = 2, we get M2 = ¶α, β, γ♢. Then the 2-bi ideals in M are ¶α♢, ¶α, β♢,
¶α, γ♢, ¶α, β, γ♢ and ¶α, β, γ, δ♢. The prime 2-bi ideals are ¶α♢ , ¶α, β♢ , ¶α, γ♢ and
¶α, β, γ, δ♢ and so are semiprime 2-bi-ideals of M . These are also strongly prime
except the prime 2-bi ideal, ¶α♢, which is not strongly prime 2-bi ideal because
¶α, β♢¶α, γ♢ ∩ ¶α, γ♢¶α, β♢ = ¶α, β♢ ∩ ¶α, γ♢ = ¶α♢, but none of ¶α, β♢ and ¶α, γ♢ is
contained in ¶α♢. More comments on the ideal viz., ¶α, β, γ♢ will be given in Section
3, Remark 3.1.

The following two successive examples demonstrate when the m-bi ideals and the
subsets of a semigroup are also the prime and semiprime m-bi ideals.

Example 2.3. In a right zero semigroup M with the cardinality ♣M ♣ > 1, we have
yx = x for all x, y ∈ M . So, for an arbitrary x ∈ M , xx = x, i.e., x is idempotent,
M2 = M . Consequently, Mm = M for any integer m ≥ 1. If S is a subset of M , then
SMS = MS = S, i.e., S is bi ideal of M . Moreover, since SMmS = S, every bi ideal
is an m-bi ideal. That is, every subset is m-bi ideal of M .

In this case, all m-bi ideals of M coincide with the prime m-bi ideal, and so with
the semiprime m-bi ideals. This is because for m-bi ideals B1, B2, we have B1B2 = B2.
On the other hand, if B is any m-bi ideal of M such that ♣M −B♣ ≥ 2, then B is not
strongly prime since for distinct a, b ∈ M−B, (B∪¶a♢)(B∪¶b♢)∩(B∪¶b♢)(B∪¶a♢) =
(B ∪ ¶a♢) ∩ (B ∪ ¶b♢) = B, but none of (B ∪ ¶a♢), (B ∪ ¶b♢) is contained in B.

Example 2.4. Let M be a Kronecker delta semigroup, that is, M has a zero 0 and

xy =







x, if x = y,

0, otherwise,
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and assume that ♣M ♣ > 2. Since x2 = x for all x ∈ M , so consequently, Mm = M .
Clearly, every subset B of M is its m-bi ideals because B2 = B and BMmB =
BMB = B. Moreover, if B2

1
⊆ B, then since and B2

1
= B1 for any subsets B1, B of

M , so B1 ⊆ B imply that all subsets of M are all semiprime m-bi ideals of M . If B
is an m-bi ideal of M such that ♣M −B♣ > 2, then B is not a prime m-bi ideal of M
since for distinct a, b ∈ M−B, (B∪¶a♢)(B∪¶b♢) = (B∪¶a♢)∩(B∪¶b♢) = B, neither
(B ∪ ¶a♢) nor (B ∪ ¶b♢) is contained in B. In particular case, ¶0♢ is a semiprime m-bi
ideal of M which is not a prime m-bi ideal.

Definition 2.3. An m-bi ideal B of a semigroup M is known as an irreducible
(strongly irreducible) m-bi ideal if the proposition ŞB1 ∩ B2 = BŤ (ŞB1 ∩ B2 ⊆ BŤ)
infers either ŞB1 = BŤ or ŞB2 = BŤ (either ŞB1 ⊆ BŤ or ŞB2 ⊆ BŤ), for any two
m-bi ideals B1 and B2 of M .

In a semigroup, strongly irreducible m-bi ideal irreducible m-bi ideal, but the
converse is not true. This is evident by the following example.

Example 2.5. For the semigroup, M = ¶π, ρ, σ, τ, ϕ, ψ, ω♢ with binary operation ·
deĄned in the Table 1. We take m = 2, M2 = ¶π, ρ, σ, τ, ϕ, ψ♢. The m-bi ideals

Table 1.

. π ρ σ τ ϕ ψ ω
π π π π π π π π
ρ π ρ ρ ρ ρ ρ ρ
σ π ρ σ τ ρ ρ ρ
τ π ρ ρ ρ σ τ ρ
ϕ π ρ ϕ ψ ρ ρ ρ
ψ π ρ ρ ρ ϕ ψ ρ
ω π ρ ρ ρ ρ ρ ρ

in M are ¶π♢, ¶π, ρ♢, ¶π, ρ, σ♢, ¶π, ρ, τ♢, ¶π, ρ, ϕ♢, ¶π, ρ, ψ♢, ¶π, ρ, σ, ϕ♢, ¶π, ρ, τ, ψ♢,
¶π, ρ, σ, τ♢, ¶π, ρ, ϕ, ψ♢ and M itself. The irreducible m-bi ideals are ¶π♢, ¶π, ρ, σ, ϕ♢,
¶π, ρ, τ, ψ♢, ¶π, ρ, σ, τ♢, ¶π, ρ, ϕ, ψ♢ and M . Strongly irreducible m-bi ideal is ¶π♢.

Remark 2.1. (a) The intersection of any collection of prime (strongly prime) m-bi
ideals in a semigroup M is generally not a prime (strongly prime) m-bi ideal. M be
the semigroup of non-zero integers under ordinary multiplication. Let B1 be the 2-bi
ideal of M divisible by 2 and B2 is the 3-bi ideal of M divisible by 3. Both of them
are prime m-bi ideals of M as 2 and 3 are prime integers. Now B1 ∩ B2 consists of
non-zero integers divisible by 6, and B1B2 = B1 ∩ B2, but neither B1 ∩ B1 ∩ B2 nor
B2 ∩B1 ∩B2 implying that B1 ∩B2 ⊆ B1 ∩B2 is not prime.

(b) The intersection of any collection of semiprime m-bi ideals in M is a semiprime

m-bi ideal.
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This is to be reminded that each prime m-bi ideal of a semigroup is semiprime m-bi
ideal. The following proposition describes the conditions when the semiprime m-bi
ideal is a prime m-bi ideal in a semigroup.

Proposition 2.1. If a semiprime m-bi ideal B of a semigroup M is strongly irre-

ducible, then B is a strongly prime m-bi-ideal.

Proof. We consider B1, B2 as two m-bi ideals of M with the additional assumption
that

(2.1) B1B2 ∩B2B1 ⊆ B.

Then, after a little simpliĄcation, we get,

(2.2) (B1 ∩B2)
2 ⊆ B1B2 ∩B2B1.

Combining (2) and (2.2) by the transitive property of inclusion, we get, (B1∩B2)2 ⊆ B,
which gives B1 ∩ B2 ⊆ B, because B is a semiprime. Moreover, since B is strongly
irreducible m-bi ideal of M , so we obtain B1 ⊆ B or B2 ⊆ B, making B a strongly
prime m-bi ideal of M . □

Proposition 2.2. For any m-bi B of a semigroup M , such that c ∈ M and c /∈ B,

there exists an irreducible m-bi ideal I such that B ⊆ I and c /∈ I.

Proof. Take B = ¶B : B is an m-bi ideal of M so that c ∈ M and c /∈ B♢. Then
B ≠ ∅, because B ∈ B. B is clearly a partially ordered set under the binary
operation of inclusion of m-bi ideals in B. If S is any totally ordered subset of B,
then S = ∪

Sα∈S,α∈∧
Sα is an m-bi ideal of M containing B. So we can Ąnd a maximal

m-bi ideal, J , in B [6]. To show that J is an irreducible, we suppose J = J1 ∩ J2 for
two m-bi ideals J1 and J2 of M . If, on contrary, both J1 and J2 contain J properly,
then c ∈ J1 and c ∈ J2. Hence c ∈ J1 ∩ J2 = J , which contradicts the hypothesis that
c /∈ J . Thus, J = J1 or J = J2; implying that J is an irreducible m-bi ideal. □

The last theorem in this section characterizes the semigroups in which each m-bi
ideal is irreducible and strongly irreducible.

Theorem 2.1. The following statements are equivalent for a given semigroup M .

(a) The set B of all m-bi ideals of M is a totally ordered set under binary operation

of inclusion of sets.

(b) Each m-bi ideal of M is strongly irreducible m-bi ideal.

(c) Each m-bi ideal of M is irreducible m-bi ideal.

Proof. (a) ⇒ (b) Suppose B is an m-bi ideal of M and for B1, B2 to be any two m-bi
ideals of M , the statement B1 ∩ B2 ⊆ B holds. Since B is totally ordered set under
inclusion, so B1 ⊆ B2 or B2 ⊆ B1. This implies, either B1 ∩B2 = B1 or B1 ∩B2 = B2.
So, from our previous articulation B1 ∩B2 ⊆ B, we derive either B1 ⊆ B or B2 ⊆ B,
making B a strongly irreducible m-bi ideal of M .
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(b) ⇒ (c) Straightforward as strongly irreducible m-bi ideal of M is irreducible m-bi

ideal.

(c) ⇒ (a) For any two m-bi ideals of M , namely B1 and B2, we can compose
the statement B1 ∩ B2 = B1 ∩ B2. Since each m-bi ideal of M is irreducible m-bi,
B1 = B1 ∩B2 or B2 = B1 ∩B2, which further implies, B1 ⊆ B2 or B2 ⊆ B1. That is,
B1 and B2 are comparable making the collection of m-bi ideals of M a totally ordered
set. □

3. Maximal m-Bi Ideals

Maximal ideals of semigroups, like all other algebraic structures, are an important
category of ideals used to characterize semigroups in a different way along with the
prime, strong prime and semiprime ideals. In the following section, we deĄne the
maximal m-bi ideals and characterize semigroups through their properties.

Definition 3.1. An m-bi ideal S of a semigroup M is called its maximal m-bi ideal
if S ⊂ M (M contains S properly) and there exists no m-bi ideal S1 of M to give
S ⊂ S1 ⊂ M [14].

In Example 2.2 of Section 2, M = ¶α, β, γ♢ is the maximal m-bi ideals of the
semigroup, M = ¶α, β, γ, δ♢.

Theorem 3.1. Every maximal m-bi ideal S of a semigroup M is a prime m-bi ideal

of M , if M = M2.

Proof. Suppose M−S = P , where P is the set complement of the ideal S with respect
to the semigroup M . Then, M = (S ∪ P )2 = S2 ∪ SP ∪ PS ∪ P 2 ⊂ S ∪ P 2. That is,
M ⊂ S ∪ P 2. This gives that M ∩ P ⊂ S ∩ P ∪ P 2. But S ∩ P ̸= ∅, therefore, we
get P ⊂ P 2. Assume B1B2 ⊂ S for two m-bi ideals B1 and B2 of M . Suppose on
contrary that neither B1 nor B2 is contained in S. Since B1 ⊈ S and S is maximal,
we have B1 ∪ S = M , hence P ⊂ B1. Analogously, P ⊂ B2. Thus, P 2 ⊂ B1B2, hence
P ⊂ B1B2, which is contradiction to B1B2 ⊂ S. □

Remark 3.1. If M ̸= M2, then every maximal m-bi ideal of M is not prime m-bi
ideal. This is evident in Example 2.2. The maximal m-bi ideal ¶α, β, γ♢ is not prime
because ¶α, β, γ, δ♢¶α, β, γ, δ♢ ⊆ ¶α, β, γ♢, but ¶α, β, γ, δ♢ ⊈ ¶α, β, γ♢, so ¶α, β, γ♢ is
not prime.

Intersection of maximal ideals performs an important role in characterizing semi-
groups [3]. The following theorems deal with the sets of maximal m-bi ideals, their
intersections and their complement sets in the semigroups. These help us in deĄning
the topologies on the semigroups, and tell when the prime m-bi ideals are maximal
m-bi ideals. Š. Schwarz proved these theorem in [14] for ideals in semigroups, we
prove them for the maximal m-bi ideals in semigroups.
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Theorem 3.2. Let ¶Sα : α ∈ ∧♢ be the set of different maximal m-bi ideals of a

semigroup M . Suppose ♣ ∧ ♣ ≥ 2 and denote Qα = Mm − Sα and S = ∩
α∈∧

Sα, we have

the following.

(a) Qα ∩Qβ = ∅ for α ̸= β.

(b) Mm =


∪
α∈∧

Qα



∪ S.

(c) For every ν ̸= α, we have Qα ⊂ Sν.

(d) If J is an m-bi ideal of M and J ∩Qα ̸= ∅, then Qα ⊂ J .

(e) For α ̸= β, we have QαQ
m
β Qα ⊂ S, that is S is not empty.

Proof. The case ♣ ∧ ♣ = 1 is obvious.
(a) We have Sα ∪Sβ = Mm for α ̸= β. Thus, Qα ∩Qβ = (Mm −Sα)∩ (Mm −Sβ) =

Mm − (Sα ∪ Sβ) = ∅.
(b) Since S = ∩

α∈∧
Sα = ∩

α∈∧
(Mm −Qα) = Mm − ∪

α∈∧
Qα. Thus, Mm = ( ∪

α∈∧
Qα) ∪ S.

(c) For ν ̸= α, we have Qα = Mm ∩Qα = (Sν ∪Qν)∩Qα = Sν ∩Qα. Thus, Qα ⊂ Sν .
(d) Since J ∩Qα ̸= ∅ and J is an m-bi ideal of M whereas Sα is the maximal m-bi

ideal, therefore union set Sα∪J is anm-bi ideal ofM greater than Sα. So, Sα∪J = Mm.
Since Sα ∩Qα = ∅, we have Qα ∩ Sα ∪ J = Qα ∩Mm, i.e., Qα ∩ (Sα ∪ J) = Qα ∩Mm,
which gives that (Qα∩Sα)∪(Qα∩Sα) = Qα, and ∅∪(Qα∩Sα) = Qα i.e., (Qα∩J) = Qα,
which gives that Qα ⊂ J .

(e) Suppose on contrary that there exist uα, uδ ∈ Qα and uβ ∈ Qβ such that
uαuβuδ = uγ and uγ /∈ S. Using (ii), we can Ąnd Qγ such that uγ ∈ Qγ. If Qγ ̸= Qα.
Then Qα ⊂ Mm − Qγ = Sγ. That is, Qα ⊂ Sγ and similarly, Qδ ⊂ Sγ. This gives,
QαQ

m
β Qα ⊂ SγQ

m
β Sγ ⊂ SγM

mSγ ⊂ Sγ, hence, uγ ∈ Sγ, which is a contradiction
to uγ ∈ Qγ = Mm\Sγ. Suppose now, Qγ = Qβ. Then, Qβ ⊂ Mm − Qγ = Sγ and
QαQ

m
β Qα ⊂ SαM

mSα ⊂ Sα, hence uγ ∈ Sα = Mm −Qα, which is a contradiction to
uγ ∈ Qγ. Thus, QαQ

m
β Qα ⊂ S and S is not empty. □

Theorem 3.3. Let M be a semigroup containing maximal m-bi ideals and let S be

the intersection of all maximal m-bi ideals of M . Then every prime m-bi ideal of M
containing S and different from M is a maximal m-bi ideal of M .

Proof. Let U be a prime m-bi ideal of M containing S and U ≠ M . Then Theorem
3.2, part (iv),

U = Mm −


∪
ν∈Λ

Qν



= ∩
ν∈Λ

(Mm −Qν) = ∩
ν∈Λ

Sν ,

where Λ ⊆ ∧ and Λ ̸= ∅. If ♣Λ♣ = 1, we have U = Sν , i.e. U is a maximal m-bi
ideal of M and the theorem is proved. We shall show that ♣Λ♣ ≥ 2 is not possible.
Suppose on contrary that ♣Λ♣ ≥ 2. Let β ∈ Λ and denote H = ∪

ν∈Λ,ν ̸=β
Sν . Then we

have U = H ∩ Sβ. Since both H and Sβ are m-bi ideals, their product is also m-bi
ideal, and so HSβ ⊂ H ∩ Sβ = U . Since U is prime m-bi ideal, so either H ⊂ U or
Sβ ⊂ U . We discuss these two possibilities separately.
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(a) Let H ⊂ U . Since U ⊂ H also, so U = H. Further H = U = H ∩ Sβ implies
H ⊆ Sβ, by Theorem 3.2, part (iii), we have Qβ ⊆ ∪

ν∈Λ,ν ̸=β
Sν = H. Hence

Qβ ⊂ Sβ, a contradiction with Qβ ∩ Sβ = ∅.
(b) Let Sβ ⊂ U . Since also U ⊂ Sβ, so U = Sβ. Now U = Sβ = H ∩ Sβ would

imply Sβ ⊂ H. Since Sβ is maximal and H is a proper subset of M , so H = Sβ.
The relation Qβ ⊂ H = Sβ gives an another contradiction.

These two cases complete the proof of the theorem. □

Theorem 3.4. If M is a semigroup containing at least one maximal m-bi ideal, then

a prime m-bi ideal U different from M is a maximal m-bi ideal of M if and only if

S ⊂ U , where S = ∩
α∈∧

Sα.

Proof. If U is a maximal ideal, then clearly S ⊂ U . Conversely, if S ⊂ U , then by
Theorem 3.3, U is a maximal ideal of M . □

Definition 3.2. An m-bi ideal N different from ¶0♢ (if 0 ∈ M) of a semigroup M is
known as its minimal m-bi ideal if there does exist any other proper m-bi ideal in M
which is contained in N properly.

In Example 2.2, N = ¶α♢ is a minimal m-bi ideal of M . Detailed studies of the
maximal and minimal m-bi ideals of a semigroup will be given in a future article on
chains of the m-bi ideals in a semigroup.

4. Charterizing m-Regular and m-Intraregular Semigroups

In this section, we describe the m-regular and m-intraregular semigroups using the
properties of their m-bi ideals, prime, semiprime and strongly prime m-bi ideals.

Definition 4.1. An element a of a semigroup M is called m-regular if axa = a for
some x ∈ Mm. A semigroup M is called m-regular if every element of M is m-regular.
M is m-regular if a ∈ aMma for all a ∈ M [11].

Definition 4.2. An element a of a semigroup M is called m-intraregular if ya2z = a
for some elements y, z ∈ Mm. Semigroup M is called m-intraregular if every element
of M is m-intraregular [11].

Theorem 4.1. For a semigroup M , the given conditions are equivalent.

(a) M is m-regular & m-intraregular.

(b) B2 = B for all m-bi ideal B in M .

(c) B1 ∩B2 = B1B2 ∩B2B1 for all m-bi ideals B1, B2 in M .

(d) Every m-bi ideal of M is semiprime.

(e) For any proper m-bi ideal B of M , if B = ∩
α∈∧

¶Bα : Bα is irreducible semiprime

m-bi ideals of M containing B♢.

Proof. (a) ⇒ (b) Let M be m-regular and m-intraregular. Trivially, B2 ⊆ B. For
the converse, let b ∈ B. So, b ∈ M , using (a), we have b = bsb and b = ub2w,
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for some s ∈ Mm, y, w ∈ Mm. So, b = bsb = bsbsb = bs(sb2u)sb = (bssb)(busb).
As b ∈ B, therefore, b(ss)b ∈ BMmB ⊆ B. Also, b(us)b ∈ BMmB ⊆ B. So,
b = (bssb)(busb) ∈ BB = B2. We get B ⊆ B2.

(b) ⇒ (c) Since (B1∩B2) being intersection of two m-bi ideal is again an m-bi ideals,
by the truth of part (b), we have B1 ∩B2 = (B1 ∩B2)2. After a short simpliĄcation,
we

(4.1) B1 ∩B2 ⊆ B1B2 ∩B2B1.

Since B1B2 ∩ B2B1 being the intersection of the products B1B2 and B2B1 of m-bi
ideals of M is again an m-bi ideal [10]. So, by (b), we obtain B1B2 ∩ B2B1 =
(B1B2 ∩ B2B1)2 ⊆ B1B2B2B1 ⊆ B1M

mB1 ⊆ B1. Analogously, B1B2 ∩ B2B1 ⊆ B2.
Thus,

(4.2) B1B2 ∩B2B1 ⊆ B1 ∩B2.

Consequently, by (4.1) and (4.2), we get B1 ∩B2 = B1B2 ∩B2B1.
(c) ⇒ (d) In order to show that each m-bi ideal B of M is semiprime, we take

another arbitrary m-bi C of M and assume that C2 ⊆ B. By the truth of (c), we get
C = C ∩ C = CC ∩ CC = C2. This gives that C ⊆ B. Thus, every m-bi ideal of M
is semiprime.

(d) ⇒ (e) For a proper m-bi ideal B of M , let B = ∩
α∈∧

¶Bα : Bα is irreducible

semiprime m-bi ideals of M containing B♢. Clearly, B ⊆ B. We claim that B ⊆ B,
because if not, let c ∈ B and c /∈ B. Then, Proposition 2.2 says that there exists an
irreducible m-bi ideal in M say Bγ , for some γ ∈ ∧, such that Bγ ⊃ B and c /∈ Bγ . By
our assumption, every m-bi ideal is semiprime, and so each Bγ is irreducible semiprime
m-bi ideal. But c /∈ Bγ creates contradiction to the assumption that c ∈ Bγ for all
γ ∈ ∧. Hence, our claim is valid that B ⊆ B. This completes the proof of the theorem.

(e) ⇒ (b) Assuming the validity of (v), we have to show that each m-bi ideals B of
M is idempotent i.e., B2 = B. Clearly, B2 ⊆ B. We again claim that B ⊆ B2, because
if not, let c ∈ B such that c /∈ B2. Two possibilities arise. Firstly, when B2 is contained
inM properly, then, by (e), B2 = ∩

α∈∧
¶Bα : Bα is irreducible semiprime m-bi ideals of

M containing B2♢. That is, B2 ⊆ Bα for all α. But Bα is semiprime, so B ⊆ ∩
α∈∧

Bα =

B2, i.e., B ⊆ B2. Lastly, B2 = B. Secondly, when B2 is not a proper m-bi ideal of
M , then B2 = M , so B is idempotent, i.e., B2 = B. □

Proposition 4.1. An m-bi ideal B of an m-regular and m-intraregular semigroup M
is strongly irreducible if and only if B is strongly prime.

Proof. Suppose that B is strongly irreducible m-bi ideal of M , then from (4.1) of
Theorem 4.1, for any two m-bi ideals B1 and B2 of M , B1 ∩ B2 ⊆ B1B2 ∩ B2B1 ⊆
B(say). But by our hypothesis ŞB is strongly irreducibleŤ, we obtain B1 ⊆ B or
B2 ⊆ B, resulting B into a strongly prime m-bi ideal of M .
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Conversely, suppose that B is strongly prime, then (4.2) of Theorem 4.1 leads to
B1B2 ∩B2B1 ⊆ B1 ∩B2 ⊆ B (say). This produces B1 ⊆ B or B2 ⊆ B because of our
hypothesis. Thus, B becomes a strongly irreducible m-bi ideal. □

The following theorem characterizes the semigroups in which all m-bi ideals are
strongly prime.

Theorem 4.2. Each m-bi ideal of a semigroup M is strongly prime if and only if M
is m-regular, m-intraregular and all the m-bi ideals of M become a totally ordered set

with respect to inclusion.

Proof. Assume that all m-bi ideal of M are strongly prime, so are also semiprime. By
Theorem 4.1, M is m-regular and m-intraregular, and B1B2 ∩ B2B1 = B1 ∩ B2 for
two m-bi ideals B1 and B2 of M . It stays to show that the collection of all m-bi ideals
of M is totally ordered with regards to the inclusion of m-bi ideals. Since B1 ∩ B2

being an m-bi ideal of M is strongly prime, so the result, B1B2 ∩ B2B1 = B1 ∩ B2

gives either B1 ⊆ B1 ∩ B2 or B2 ⊆ B1 ∩ B2. Eventually, either B1 ⊆ B2 or B2 ⊆ B1.
Thus, the collection of m-bi ideals of M is totally ordered set.

Conversely, assume that M is m-regular, m-intraregular and the collection of m-bi
ideals of M is totally ordered under the set inclusion. Let B be any m-bi ideal of M .
We want to show B is strongly prime. Suppose B1, B2 be any two m-bi ideals of M
with the property that B1B2 ∩B2B1 ⊆ B. By Theorem 4.1, B1B2 ∩B2B1 = B1 ∩B2.
So, B1 ∩ B2 ⊆ B. By our assumption, either B1 ⊆ B2 or B2 ⊂ B1, that is, either
B1 ∩ B2 = B1 or B1 ∩ B2 = B2. Along these lines, either B1 ⊆ B or B2 ⊆ B.
Subsequently B is strongly prime. □

Theorem 4.3. If the collection of all m-bi ideals in a semigroup M becomes a totally

ordered set under the inclusion, then M is m-regular and m-intraregular if and only

if each m-bi ideal of M is prime.

Proof. Assume M is m-regular and m-intraregular and that B, B1 and B2 be any
three m-bi ideals of M with the assumption that B1B2 ⊆ B. This to be noted, by
theorem 4.1, B is semiprime. Since the collection of m-bi ideals of M is totally ordered,
so by the deĄnition of the total order on B1 and B2, one gets B1 ⊆ B2 or B2 ⊆ B1.
Without loss of generality, let B1 ⊆ B2, this produces B2

1
⊆ B1B2 ⊆ B. At this point,

B1 ⊆ B because B is semiprime. Thus, B is a prime m-bi ideal.
For the converse, suppose that every m-bi ideal of M is prime. It is given that the

collection of m-bi standards of M is totally ordered, therefore the prime m-bi ideals
coincide with the semiprime m-bi. Eventually, by Theorem 4.2, M is both m-standard
and m-intraregular. □

5. Topologies of m-Bi Ideals

Topology studies the set structures that are aimed to generalize the geometrical
properties of the objects [1]. The ideals in all algebraic structures form topological
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spaces called the structure space [8]. Such structure spaces are compact and T1. All
algebraic structures have different families of ideals, so these families represent the
topologies intrinsically [4]. A natural way in which to study this situation is the
semigroups. Detailed procedures of deĄning the topologies in semigroups and other
algebraic structures are given in [8] and [4]. In the beginning of this section, we deĄne
the comaximal m-bi ideals in semigroups, which will be used later in the section.

Definition 5.1. We say that two m-bi ideals A and B in a semigroup M intersect
transversally or said to be comaximal m-bi ideals ([7, 12]), if A ∩B = AB.

We shall use the following notations in our onward work.

Notation 5.1. Let B is set of all the m-bi ideals of M , we deĄne for each B ∈ B, the
collections.

(a) P be the set of all prime proper m-bi ideals of M , KB = ¶I ∈ P : B ⊈ I♢ and
T(P) = ¶KB : B is an m-bi ideal of M♢.

(b) S be the set of all strongly prime proper m-bi ideals of M , CB = ¶I ∈ S : B ⊈ I♢
and T(S) = ¶CB : B is an m-bi ideal of M♢.

(c) H be the family of all properly containing semiprime m-bi ideals in M , YB =
¶I ∈ H : B ⊈ I♢ and T(H) = ¶YB : B is an m-bi ideal of M♢.

Notation 5.2. Let L be the set of all m-left ideals of M , we deĄne for each L ∈ L, the
collections.

(a) PL be the set of all prime proper m-bi ideals of M , KL = ¶I ∈ P : L ⊈ I♢ and
TL(PL) = ¶KL : L is m-left ideal in M♢.

(b) S be the set of all strongly prime proper m-bi ideals of M , CL = ¶I ∈ S : L ⊈ I♢
and TL(SL) = ¶CL : L is m-left ideal in M♢.

(c) H be the family of all properly containing semiprime m-bi ideals of M , YL =
¶I ∈ H : L ⊈ I♢ and TL(HL) = ¶YL : L is m-left ideal in M♢.

Notation 5.3. Let R be the set of all m-right ideals of M , we deĄne for each R ∈ R,
the collections.

(a) PR be the set of all prime proper m-bi ideals of M , KR = ¶I ∈ P : R ⊈ I♢ and
TR(PR) = ¶KR : R is m-right ideal in M♢.

(b) SR be the set of all strongly prime properm-bi ideals ofM , CR = ¶I ∈ S : R ⊈ I♢
and TR(SR) = ¶CR : R is m-right ideal in M♢.

(c) HR be the collection of all properly containing semiprime m-bi ideals of M ,
YR = ¶I ∈ H : R ⊈ I♢ and TR(HR) = ¶YR : R is m-right ideal in M♢.

Theorem 5.1. If, in the semigroup M containing 0, the m-bi ideals are pairwise

comaximal in the sense of Definition 5.1, then the T(P) forms a topology on the

set P.

Proof. We show that T(P) satisĄes all the three axioms of a topology.
(a) Since ¶0♢ is an m-bi ideal of M , K¶0♢ = ¶I ∈ P : ¶0♢ ⊈ I♢ = ∅ because 0

belongs to every m-bi ideal of M . So, ∅ ∈ T(P). Since M is also an m-bi ideal of M
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whereas P is the family of all properly containing strongly prime m-bi ideals of M , so
KM = ¶I ∈ P : M ⊈ I♢ = P. Therefore, P ∈ T(P).

(b) Let ¶KBα
: α ∈ I♢ be an arbitrary collection from T(P). Then

∪
α∈I

KBα
= ¶I ∈ P : Bα ⊈ I for some α ∈ I♢ =

{

I ∈ P :
∧
⋃

α∈I

Bα ⊈ I

}

= K ∧
⋃

α∈I

Bα

,

where
∧
⋃

α∈I
Bα is the m-bi ideal of M generated by ∪

α∈I
Bα. Therefore, ∪

α∈I
KBα

∈ T(P).

(c) Let KB1
and KB2

∈ T(P). If I ∈ KB1
∩ KB2

, then I ∈ P and neither B1 ⊈ I
nor B2 ⊈ I. Let B1 ∩B2 ⊆ I. Since B1 and B2 are two comaximal, B1 ∩B2 = B1B2.
So, B1B2 ⊆ I. But I is strongly prime m-bi ideal, so either B1 ⊆ I or B2 ⊂ I. This
is contradiction. Therefore, I does not contain B1 ∩ B2, and so I ∈ KB1∩B2

. Thus
KB1

∩KB2
⊆ KB1∩B2

. On the other hand, I ∈ KB1∩B2
gives that I ∈ P, butB1∩B2 ⊈ I.

That is, B1 ⊈ I and B2 ⊈ I. Thus I ∈ KB1
, I ∈ KB2

. Therefore, I ∈ KB1
∩ KB2

.
Hence KB1∩B2

⊆ KB1
∩ KB2

. Thus, KB1
∩ KB2

KB1∩B2
. So, KB1

∩ KB2
∈ T(P). This

shows that T(P) is a topology on P. □

Corollary 5.1. The collection TL(PL) as defined in Notations 5.2 for the m-left ideals

forms topology.

Corollary 5.2. The collection TR(PR) as defined in Notations 5.3 for the m-right

ideals forms a topology.

Theorem 5.2. If M is an m-regular and m-intraregular semigroup containing 0, then

T(S) forms a topology on the set S.

Proof. We show that T(S) satisĄes all the three axioms of a topology.
(a) Similar to (a) of proof of Theorem 5.1.
(b) Similar to (b) of proof of Theorem 5.1.
(c) Let CB1

and CB2
∈ T(S). If I ∈ CB1

∩ CB2
, then I ∈ S and B1 ⊈ I, B2 ⊈ I.

Suppose B1 ∩ B2 ⊆ I. Since M is both m-regular and m-intraregular, B1 ∩ B2 =
B1B2 ∩ B2B1. Hence, B1B2 ∩ B2B1 ⊆ I. This implies either B1 ⊆ I or B2 ⊂ I; a
contradiction. Therefore, B1 ∩B2 ⊈ I, and so I ∈ CB1∩B2

. Thus CB1
∩ CB2

⊆ CB1∩B2
.

If I ∈ CB1∩B2
, then we have I ∈ S and B1 ∩ B2 ⊈ I. This implies that B1 ⊈ I

and B2 ⊈ I. Thus, I ∈ CB1
and I ∈ CB2

, and therefore I ∈ CB1
∩ CB2

. Hence
CB1∩B2

⊆ CB1
∩ CB2

. Consequently, CB1
∩ CB2

CB1∩B2
. So, CB1

∩ CB2
∈ T(S).

This shows that T(S) is a topology on S. □

Corollary 5.3. The collection TL(SL) as defined in Notations 5.2 for the m-left ideals

forms topology.

Corollary 5.4. The collection TR(SR) as defined in Notations 5.2 for the m-right

ideals forms a topology.
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Remark 5.1. (a) In Theorem 5.2 and Theorem 5.1, and their associated corollaries, we
took semigroups with 0 in order to present more explicit form of topologies; however,
semigroups without 0 also form the topologies.

(b) The m-regularity and m-intraregularity alone on the semigroup M are not
enough to prove Theorem 5.1. Theorem 5.2 can also be proved if M possesses
the pairwise comaximal m-bi ideals, even if in the absence of m-regularity and m-
intraregularity property. The imposition of both these two conditions on M does not
admit the collection T(Y) deĄned in Notation 5.1, (iii) to form a topology on H.

(c) We can compare the strength of these two conditions with that of the pairwise
comaximal m-bi ideals of M in the domain of the topological spaces. This signi-
Ąes that the pairwise comaximal property is stronger than the m-regularity and m-
intraregularity.

(d) The collection TL(HL) as deĄned in Notations 5.2 for the m-left ideals does not
admit topology.

(e) The collection TR(HR) as deĄned in Notations 5.2 for the m-right ideals does
not admit a topology.

6. Conclusions

The main conclusions of the article are summarized in the following lines.
(a) The concepts of the prime, semiprime and strongly prime m-bi in the semigroups

were introduced. With the help of the examples, we showed that the m-bi ideals have
different properties than the bi ideals in semigroups.

(b) We also presented the concept of the maximal, minimal, irreducible and strongly
irreducible m-bi ideals and gave the important characterizations of m-regular and
m-intraregular semigroups using these m-bi ideals.

(c) We showed that the prime m-bi ideals form topology when the pairwise comaxi-

mal property is satisĄed. The strongly prime m-bi ideals form the topology separately
when the semigroups is m-regular and m-intraregular. And also, when the pairwise
comaximal property holds in it. However, the semiprime m-bi ideals do not admit
the topology even if both the properties are satisĄed by the semigroups.

(d) In the future, we can extend this work to explore more topologies of these m-bi
ideals. We can explore metric topologies on these ideals. We can extend the work on
the chains of the m-bi deals and characterize the semigroups through the maximal
m-bi ideals, and other classes of prime m-bi ideals. The work can be extended to
other algebraic structures, especially semirings. The idea of the m-bi ideal is also of
importance to explore the properties of the simple semigroups.
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L-FUZZY HOLLOW MODULES AND L-FUZZY MULTIPLICATION

MODULES

SHRIRAM K. NIMBHORKAR1 AND JYOTI A. KHUBCHANDANI2

Abstract. In this paper, we give some characterizations of L-fuzzy hollow modules
and of L-fuzzy multiplication modules.

1. Introduction

The concept of a fuzzy set, which is a generalization of a crisp set, was introduced
by Zadeh [13]. Rosenfeld [12] used this concept to develop the theory of fuzzy sub-
groups. Naegoita and Ralescu [9] applied this concept to modules and defined a fuzzy
submodule of a module.

Barnad [3] introduced the concept of a multiplication module. An R-module M is
called a multiplication module if every submodule of M is of the form IM , for some
ideal I of R. Also, Elbast and Smith [4] have studied multiplication modules.

Lee and Park [6] studied fuzzy prime submodules of a fuzzy multiplication module.
Recently, Atani [2] introduced and investigated L-fuzzy multiplication modules over
a commutative ring with nonzero identity. He has proved a relation between a
multiplication module and an L-fuzzy multiplication module.

In this paper we introduce a notion of a hollow fuzzy module and prove some results.
Our notion is different from that of Rahman [11]. We prove some results on L-fuzzy
multiplication modules. We also show that an L-hollow fuzzy module is an L-fuzzy
multiplication module.

Key words and phrases. L-Fuzzy hollow module, L-fuzzy multiplication module, L-fuzzy Noether-
ian module.
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2. Preliminaries

Throughout in this paper R denotes a commutative ring with identity, M a unitary
R-module with zero element θ. We recall some definitions and results from Moderson
and Malik [8] which will be used in this paper.

Definition 2.1. ([8, Definition 1.1.1]). A fuzzy subset of an R-module M is a mapping
µ : M → [0, 1]. We denote the set of all fuzzy subsets of M by [0, 1]M .

If µ is a mapping from M to L, where L is a complete Heyting algebra, then µ is
called an L-subset of M . We denote the set of all L-subsets of R by LR and the set
of all L-subsets of M by LM .

Definition 2.2. ([8, Definition 1.1.3]). If N ⊆ M and α ∈ [0, 1]M , then αN is defined
as

αN(x) =







α, if x ∈ N,

0, otherwise.

If N = ¶x♢, then αx is often called a fuzzy point and is denoted by χα. If α = 1, then
1N is known as the characteristic function of N and is denoted by χN .

If µ, σ ∈ [0, 1]M , then for x, y, z ∈ M , we define

(i) µ ⊆ σ if and only if µ(x) ≤ σ(x);
(ii) (µ ∪ σ)(x) = max¶µ(x), σ(x)♢ = µ(x) ∨ σ(x);
(iii) (µ ∩ σ)(x) = min¶µ(x), σ(x)♢ = µ(x) ∧ σ(x);
(iv) (µ + σ)(x) = ∨¶µ(y) ∧ σ(z) ♣ y, z ∈ M, y + z = x♢.

Definition 2.3. ([8, Definition 4.1.6]). Let ζ ∈ LR and µ ∈ LM . Define ζ · µ as

(ζ · µ)(x) = ∨¶ζ(r) ∧ µ(y) ♣ r ∈ R, y ∈ M, ry = x♢, for all x ∈ M .

Definition 2.4. ([8, Definition 3.1.7]). Suppose that µ ∈ LR satisfies the following
conditions:

(i) µ(x − y) ≥ µ(x) ∧ µ(y);
(ii) µ(xy) ≥ µ(x) ∨ µ(y) for all x, y ∈ R.

Then µ is called an L-ideal of R.
We denote the set of all L-ideals of R by LI(R).

Definition 2.5. ([8, Definition 4.1.8]). Let M be a module over a ring R and L be a
complete Heyting algebra. An L subset µ in M is called an L-submodule of M , if for
every x, y ∈ M and r ∈ R the following conditions are satisfied:

(i) µ(θ) = 1;
(ii) µ(x − y) ≥ µ(x) ∧ µ(y);
(iii) µ(rx) ≥ µ(x).

Definition 2.6. ([8, Definition 4.5.1]). For µ, ν ∈ LM and ζ ∈ LR, define the residual
quotients µ : ν ∈ LR and µ : ζ ∈ LM as follows:
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µ : ν = ∪¶η ♣ η ∈ LR, η · ν ⊆ µ♢,
µ : ζ = ∪¶ξ ♣ ξ ∈ LM , ζ · ξ ⊆ µ♢.

Theorem 2.1. ([8, Theorem 4.5.3] ). Let µ, ν ∈ LM and ζ ∈ LR. Then

(1) (µ : ν)ν ⊆ µ;

(2) ζ · ν ⊆ µ if and only if ζ ⊆ (µ : ν) if and only if ν ⊆ µ : ζ.

Definition 2.7 ([8]). Let c ∈ L\¶1♢. Then
(i) c is called a prime element of L if a ∧ b ≤ c, implies that a ≤ c or b ≤ c for all a,

b ∈ L;
(ii) c is called a maximal element if there does not exist a ∈ L\¶1♢ such that

c < a < 1.

Remark 2.1 ([8]). If µ, ν ∈ LI(R), then (µ ◦ ν)(x) = ∨¶µ(y) ∧ ν(z) ♣ y, z ∈ R, yz = x♢.
We write µ∗ = ¶x ∈ R ♣ µ(x) = µ(0)♢.

Definition 2.8. ([8, Definition 3.5.1]). Let ξ ∈ LI(R). Then ξ is called a prime
L-ideal of R if ξ is non-constant and µ ◦ ν ⊆ ξ, µ, ν ∈ LI(R) implies either µ ⊆ ξ or
ν ⊆ ξ.

Definition 2.9. ([8, Definition 3.6.1]). Let ξ ∈ LI(R) and let ρξ be the family of all
prime L-ideals µ of R such that ξ ⊆ µ. The L-radical of ξ, denoted by

√
ξ, is defined

by

√
ξ =







∩¶µ ♣ µ ∈ ρξ♢, if ρξ ̸= ϕ,

1R, if ρξ = ϕ.

Definition 2.10. ([8, Definition 3.7.1]). Let ξ ∈ LI(R). Then ξ is called a primary
L-ideal of R if ξ is nonconstant and for any µ, ν ∈ LI(R), µ ◦ ν ⊆ ξ implies µ ⊆ ξ or
ν ⊆ √

ξ.

Theorem 2.2. ([8, Theorem 3.5.3]). If ξ is a prime L-ideal of R, then ξ∗ is a prime

ideal of R.

Theorem 2.3. ([8, Theorem 3.5.5]). Let ξ ∈ LR. Then ξ is a prime L-ideal of R

if and only if ξ(0) = 1, ξ∗ is a prime ideal of R, ξ(R) = ¶1, c♢, where c is a prime

element in L.

Definition 2.11 ([5]). A ring R is called regular if, for each element x ∈ R, there
exists y ∈ R such that xyx = x.

Definition 2.12. A dense chain in a lattice L is a non-empty sublattice C such that,
for all ordered pairs x < y with x, y ∈ C, there exists some z ∈ C such that x < y < z.

Theorem 2.4 ([8]). Let R be a ring with identity, L be a dense chain and ξ be a

primary L-ideal of R. Then
√

ξ is a prime L-ideal of R.

Theorem 2.5. ([7, Theorem 3.10]). Let R be a ring with 1 and A be a nonconstant

fuzzy left (right) ideal of R. Then there exists a fuzzy maximal left (right) ideal B of

R such that A ⊆ B.
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Definition 2.13. ([5, Definition 4.3.2]). A fuzzy ideal µ of a ring R is called fuzzy
semiprime if, for any fuzzy ideal ζ of R, the condition ζn ⊆ µ implies that ζ ⊆ µ,
where n ∈ Z+.

Theorem 2.6. ([5, Theorem 4.4.3]). A commutative ring with unity is regular if and

only if each of its fuzzy ideal is fuzzy semiprime.

Definition 2.14 ([2]). Let M be a module over a commutative ring R. M is called
an L-fuzzy multiplication module provided for each L-fuzzy submodule µ of M , there
exists ζ ∈ LI(R) with ζ(0R) = 1 such that µ = ζχM .

One can easily show that if µ = ζχM for some ζ ∈ LI(R) with ζ(0R) = 1, then
µ = (µ : χM)χM .

Theorem 2.7. ([2, Theorem 10]). Let M be an R-module. Then M is a multiplication

module if and only if M is an L-fuzzy multiplication module.

Theorem 2.8. ([1, Theorem 2]). Let P be a primary ideal of R and M a faithful

multiplication R-module. Let a ∈ R, x ∈ M satisfy ax ∈ PM . Then a ∈
√

P or

x ∈ PM .

Definition 2.15. ([10, Definition 4.1]). Let M be a module over a ring R and
µ ∈ L(M). Then µ is said to be a small L-submodule of M , if for any ν ∈ L(M)
satisfying ν ̸= χM implies µ + ν ̸= χM .

Definition 2.16. ([11, Definition 2.10]). A fuzzy submodule µ(̸= χθ) of a module M

is said to be fuzzy indecomposable if there do not exist fuzzy submodules σ, γ of M

with σ ̸= χθ, γ ̸= χθ and σ ̸= µ, γ ̸= µ such that µ = σ ⊕ γ.

Theorem 2.9. ([10, Theorem 5.2]). Let µ ∈ LM . Then µ is a maximal L-submodule

of M if and only if µ can be expressed as µ = χµ∗
∪ αM , where µ∗ is a maximal

submodule of M and α is a maximal element of L − ¶1♢.

Definition 2.17. ([11, Definition 3.1]). A fuzzy submodule ν with ν∗ ̸= ¶θ♢ of M is
said to be a fuzzy hollow submodule if for every fuzzy submodule µ of ν with µ∗ ≠ ν∗,
µ is a fuzzy small submodule of ν. We say that an R-module M ≠ ¶θ♢ is fuzzy hollow
module if for every σ ∈ F (M) with σ∗ ̸= M implies σ ≪f M .

Theorem 2.10. ([11, Theorem 3.6]). Every fuzzy hollow submodule is indecomposable.

Theorem 2.11. ([2, Theorem 14]). Let M be a non-zero L-fuzzy multiplication R-

module. Then every L-fuzzy submodule µ ̸= χM of M is contained in a generalized

maximal L-fuzzy submodule of M .

Proposition 2.1. ([2, Proposition 18]). Suppose that M is a faithful L-fuzzy multi-

plication R-module. Let ζ be an L-fuzzy prime ideal of R. If η is an L-fuzzy ideal of

R such that ηχM ⊆ ζχM and ζχM ≠ χM , then η ⊆ ζ. In particular, (ζχM : χM) = ζ.
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Notations:

fspec(R): the set of all prime L-submodules of R;
MaxL(M): the set of all maximal L-submodules of M ;
JLR(M): the intersection of all maximal L-submodules of M is known as Jacobson

L-radical of M .

Definition 2.18 ([2]). An R-module M is called an L-fuzzy Noetherian module, if
every ascending chain of L-fuzzy submodules is stationary.

Definition 2.19. A module M is called L-local if M has exactly one maximal L-
submodule.

Definition 2.20. A module M is called L-serial if any two L-submodules of M are
comparable with respect to inclusion.

3. L-Fuzzy Hollow Modules and L-Fuzzy Multiplication Modules

In this section we introduce a slightly different notion of L-fuzzy hollow modules.
Also, we obtain some properties of the same and L-fuzzy multiplication module.

Definition 3.1. Let M be a module over a commutative ring R. M is called an L-
fuzzy hollow module if either MaxL(M) = χθ or for each maximal L-fuzzy submodule
µ of M and for each L-fuzzy submodule σ of M , the equality µ + σ = χM implies
that σ = χM .

Theorem 3.1. Let M be a non-zero module. Then the following statements are

equivalent.

(1) M is an L-fuzzy hollow module and MaxL(M) ̸= χθ.

(2) M is a cyclic and an L-local module.

(3) M is a finitely generated L-local module.

Proof. (1) ⇒ (2) Let µ be a maximal L-submodule of M and for m ∈ M , χ¶m♢ be an
L-submodule of M such that χ¶m♢ ⊈ µ. Since, µ + χ¶m♢ = χM , and as M is a L-fuzzy
hollow module we have χM = χ¶m♢. Hence, M has only one maximal L-submodule.

Also, as χM = ⟨χ¶m♢⟩ = χRm implies that, M = Rm. Hence, M is cyclic.
(2) ⇒ (3) It is obivous.
(3) ⇒ (1) Let µ be a maximal L-submodule of M and σ be an L-fuzzy submodule

of M . If µ + σ = χM and σ ̸= χM , then by Zorn’s lemma there exists a maximal
L-submodule δ of M containing σ. Since, M is an L-local module, δ = µ and so
χM = µ + σ = µ, a contradiction. Thus, σ = χM . □

Theorem 3.2. Let M be an R-module and µ be an L-fuzzy submodule of M . Then

the following statements are equivalent.

(1) µ is a serial submodule.

(2) µ is an L-fuzzy hollow submodule.

(3) µ is fuzzy indecomposable.
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Proof. (1) ⇒ (2) Suppose that MaxL(µ) ̸= χθ and µ1, µ2 ∈ L(M) be such that
µ1 + µ2 = µ, where µ1 is a maximal L-submodule of µ and µ2 is an L-submodule of
µ. Since, µ1, µ2 are L-submodules of µ and µ is a serial submodule either µ1 ⊆ µ2 or
µ2 ⊆ µ1.

If µ1 ⊆ µ2, then µ = µ1 + µ2 = µ2. If µ2 ⊆ µ1, then µ = µ1 + µ2 = µ1, which
is not possible as µ1 is a maximal L-submodule of µ. Thus, µ is an L-fuzzy hollow
submodule of M .

(2) ⇒ (3) Follows from Theorem 2.10.
(3) ⇒ (1) Let µ1, µ2 be L-fuzzy submodules of µ with µ1 ̸= χθ, µ2 ̸= χθ, µ1 ̸= µ,

µ2 ≠ µ and µ1 ⊈ µ2. As µ is fuzzy indecomposable, µ1, µ2 does not satisfy µ1 +µ2 = µ

and µ1 ∩ µ2 = χθ. Then, µ2 ⊆ µ1, thus µ is a serial submodule. □

Lemma 3.1. Let M be an L-fuzzy multiplication module and µ be an L-fuzzy sub-

module of M . Then the following are equivalent.

(1) µ ⊆ JLR(M).
(2) µ is an L-small submodule in M .

Proof. (1) ⇒ (2) Let σ be an L-fuzzy submodule of M such that χM = µ + σ. If
σ ≠ χM , then by Theorem 2.11, there exists a maximal L-submodule δ of M such
that σ ⊆ δ. But, µ ⊆ JLR(M) ⊆ δ implies that µ + σ ⊆ δ ≠ χM . Thus, σ = χM

implies that µ is an L-small submodule in M .
(2) ⇒ (1) Assume that µ is an L-small submodule of M . Suppose that µ ⊈ JLR(M).

Then there exists a maximal L-submodule β of M such that µ ⊈ β. Thus, µ+β = χM .
But β ̸= χM , a contradiction. Hence, µ ⊆ β. □

Theorem 3.3. If M is an L-fuzzy hollow module, then M is an L-fuzzy multiplication

module.

Proof. As M is an L-fuzzy hollow module, by Theorem 3.1, M is cyclic. But, we
know that every cyclic module is a multiplication module. Thus, by Theorem 2.7, M

is an L-fuzzy multiplication module. □

We give an example of an L-fuzzy multiplication module by using Theorem 3.3.

Example 3.1. Let L = ¶0, 0.25, 0.5, 0.75, 1♢. Then L is a complete Heyting algebra
together with the operations minimium (meet), maximium (join) and ≤ (partial
ordering), then 0.75 is a maximal element of L − ¶1♢.

Consider, M = Z27 = ¶0, 1, 2, . . . , 26♢ under addition modulo 27, then M is a
module over the ring Z. Let A = ¶0, 3, 6, . . . , 24♢.

Define, µ ∈ [0, 1]M as follows:

µ(x) =







1, if x ∈ A,

0.75, otherwise.

Then µ∗ = ¶0, 3, 6, . . . , 24♢ = A, which is a maximal submodule of Z27. Also, µ =
χµ∗

∪ 0.75M , where 0.75 is a maximal element of L − ¶1♢. So, by Theorem 2.9, µ is a
maximal L-submodule of Z27. Infact, µ is the only maximal L-submodule of Z27.
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Let B = ¶0, 9, 18♢ and define ν ∈ [0, 1]M as follows,

ν(x) =







1, if x ∈ B,

α, otherwise,

where α < 0.75. Then clearly µ, ν are the only fuzzy submodules of M . Also, here
ν ̸= χM implies that µ + ν ̸= χM . This shows that M is an L-fuzzy hollow module
and by Theorem 3.3, M is an L-fuzzy multiplication module.

Corollary 3.1. For ξ1, ξ2 ∈ LR with ξ1 ⊆ ξ2, then ξ1 · χM ⊆ ξ2 · χM and thus

(ξ1χM : χM) ⊆ (ξ2χM : χM).

Proof. We have

(ξ1 · χM)(x) =
∨

¶ξ1(r) ∧ χM(y) ♣ r ∈ R, y ∈ M ∧ ry = x♢
=

∨

¶ξ1(r) ♣ r ∈ R, x ∈ rM♢
≤

∨

¶ξ2(r) ♣ r ∈ R, x ∈ rM♢
≤

∨

¶ξ2(r) ∧ χM(y) ♣ r ∈ R, y ∈ M ∧ ry = x♢
= (ξ2 · χM)(x).

Hence, ξ1 · χM ⊆ ξ2 · χM , for all x ∈ M .
Again we have

(ξ1χM : χM) =
∨

¶η ♣ η ∈ LR, η · χM ⊆ ξ1 · χM♢
≤

∨

¶η ♣ η ∈ LR, η · χM ⊆ ξ2 · χM♢
≤ (ξ2χM : χM).

Hence, (ξ1χM : χM) ⊆ (ξ2χM : χM). □

Theorem 3.4. Let M be an L-fuzzy multilpication module. Then µ is a maximal

L-fuzzy submodule of M if and only if there exists a maximal ideal ξ of LI(R) such

that µ = ξχM ̸= χM .

Proof. By Theorem 2.11, if ξ is a maximal L-fuzzy ideal of R and χM ≠ ξχM , then
ξχM is a maximal L-submodule of M .

Conversely, assume that µ is a maximal L-submodule of M . Then there exists an
L-ideal ν of LI(R) such that µ = νχM . Suppose that ν is not a maximal L-ideal of
R. Then ν ⊆ β for some β ∈ LI(R) and so νχM ⊆ βχM implies that µ ⊆ βχM . This
implies µ is not a maximal L-submodule of M , a contradiction. Thus, ν is a maximal
L-fuzzy ideal of R. □
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Theorem 3.5. Let M be a faithful L-fuzzy Noetherian R-module. Then R satisfies

the ascending chain condition on L-prime ideals.

Proof. Let ξ1 ⊆ ξ2 ⊆ ξ3 ⊆ · · · be an ascending chain of L-prime ideals of R. Then
by Corollary 3.1, ξ1χM ⊆ ξ2χM ⊆ ξ3χM ⊆ · · · . But as M is an L-fuzzy Noetherian
R-module, there exists some n ∈ N such that ξnχM = ξn+1χM = · · · . Hence, by
Proposition 2.1, ξ1 ⊆ ξ2 ⊆ ξ3 ⊆ · · · ⊆ ξn. □

Theorem 3.6. Let R be regular ring with unity which satisfies ascending chain con-

dition on fuzzy semiprime ideals and M be an L-fuzzy multiplication module. Then

M is an L-fuzzy Noetherian module.

Proof. Let µ1 ⊆ µ2 ⊆ µ3 ⊆ · · · be an ascending chain of L-fuzzy submodules of M .
Then by Corollary 3.1, (µ1 : χM) ⊆ (µ2 : χM) ⊆ (µ3 : χM) ⊆ · · · is an ascending
chain of ideals of R. By Theorem 2.6, (µ1 : χM) ⊆ (µ2 : χM) ⊆ (µ3 : χM) ⊆ · · · is an
ascending chain of fuzzy semiprime ideals of R. By assumption there exists positive
integer t such that (µt : χM) = (µt+s : χM), for every positive integer s. Hence,
µt = (µt : χM)χM = (µt+s : χM)χM = µt+s gives µt = µt+s for every s and so the
chain is stationary. Hence, M is an L-fuzzy Noetherian module. □

Theorem 3.7. Let M be an faithful L-fuzzy multiplication module. Then for every

L-fuzzy submodule µ of M , if µχM ⊆ ξχM , where ξ ∈ fspec(R), then µ ⊆ ξ.

Proof. Given, µχM ⊆ ξχM . As, µ ⊆ (µχM : χM) ⊆ (ξχM : χM) = ξ by Proposition
2.1. Hence, µ ⊆ ξ. □

Theorem 3.8. Let R be a ring and M be an L-fuzzy multiplication R-module. Then

ξχM ̸= χM for any proper fuzzy ideal ξ of R.

Proof. As ξ is a proper fuzzy ideal of R, by Theorem 2.5, there exists a maximal
fuzzy ideal η of R such that ξ ⊆ η. Let µ be a proper L-fuzzy submodule of M .
As M is an L-fuzzy multiplication module, by Theorem 2.11, µ is contained in a
generalized maximal L-fuzzy submodule of M say ν. Then, ν is a maximal L-fuzzy
submodule of M . Hence, by Theorem 3.4, ν = ηχM ≠ χM . But as ξ ⊆ η implies that
ξχM ⊆ ηχM ̸= χM and so ξχM ̸= χM . □

Theorem 3.9. Let L be a dense chain and M be a faithful L-fuzzy multiplication

R-module. Let µ be a primary L-fuzzy ideal of R, a, b ∈ L and raxb ∈ µχM for some

r ∈ R and x ∈ M . Then ra ∈ µ or xb ∈ µχM .

Proof. As µ is a primary L-fuzzy ideal of R and L is a dense chain, then by Theorem
2.4

√
µ is prime L-fuzzy ideal of R. Now, by Theorem 2.3, for each r ∈ R, there exist

a prime ideal P of R and a prime element c ∈ L such that

√

µ(r) =







1, if r ∈ P,

c, otherwise.
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(I) As raxb ∈ µχM , it follows that µχM(rx) ≥ a ∧ b.
But, (II)

µχM(rx) = ∨¶µ(s) ∧ χM(y) ♣ s ∈ R, y ∈ M, rx = sy♢
= ∨¶µ(s) ♣ s ∈ R, rx ∈ sM♢.

Let A = {s ∈ P ♣ rx ∈ sM}.
Case(I). If A = ∅, then there does not exist s ∈ P such that rx ∈ sM . Hence, from

(I) µχM(rx) = c ≥ a ∧ b. As c is a prime element of L, either c ≥ a or c ≥ b.

(i) Suppose that c ≥ a. As µ(r) ∈ ¶1, c♢, we have
√

µ(r) ≥ a and so ra ∈ √
µ.

(ii) If c ≥ b, then similarly from (II) µχM(x) = ∨¶µ(s′) : s′ ∈ R, x ∈ s′M♢. So,
µχM(x) ∈ ¶1, c♢. Therefore, µχM(x) ≥ b and so xb ∈ µχM .

Case (II). If A ≠ ∅, then there exists s′ ∈ P such that rx ∈ s′M . Therefore, using
(I) we have µχM(rx) = ∨¶µ(s) ♣ s ∈ R, rx ∈ sM♢ = 1 and rx ∈ s′M ⊆ PM . Now,
by using Theorem 2.7 and Theorem 2.8, we get either r ∈ P or x ∈ PM .

(i) If r ∈ P , then
√

µ(r) = 1 ≥ a implies that ra ∈ √
µ.

(ii) If x ∈ PM , then x = r1x1 + · · · + rnxn for some ri ∈ P and xi ∈ M such
that i = 1, 2, . . . , n. Hence, µχM(x) = µχM(Σrixi) ≥ µχM(r1x1) ∧ · · · ∧
µχM(rnxn) = 1 ≥ b and so, xb ∈ µχM . □

Corollary 3.2. Assume that M is a faithful L-fuzzy multiplication R-module and µ

is a primary L-fuzzy ideal of R such that χM ̸= µχM . Then µχM is a primary L-fuzzy

submodule of M .

Proof. Let µ be a primary L-fuzzy ideal of R and M be a faithful L-fuzzy multiplication
R-module. If raxb ∈ µχM , for r ∈ R and x ∈ M , then by Theorem 3.9, ra ∈ √

µ ⊆
√

(µχM : χM) or xb ∈ µχM . Thus, µχM is a primary L-fuzzy submodules of M . □

4. Conclusion

In this article, we have defined an L-fuzzy hollow submodule in a different way and
some of its properties are investigated. Also, some theorems on L-fuzzy multiplication
modules are proved. Thus, this concept of an L-fuzzy multiplication module can be
extended to an L-fuzzy fully invariant multiplication modules.

Acknowledgements. The authors are thankful to the referee for helpful suggestions,
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FAULT-TOLERANT METRIC DIMENSION OF BARYCENTRIC

SUBDIVISION OF CAYLEY GRAPHS

ALI AHMAD1, MUHAMMAD A. ASIM1, AND MARTIN BAČA2

Abstract. Metric dimension and fault-tolerant metric dimension of any graph G

is subject to size of resolving set. It has become more important in modern GPS
and sensors based world as resolving set ensures that in case of semi outage system
is still scalable using redundant interfaces. Metric dimension of several interesting
classes of graphs have been investigated like Cayley digraphs, Cartesian product of
graphs, wheel graphs, convex polytopes and certain networks for categorical product
of graphs. In this paper we used the phenomena of barycentric subdivision of graph
and proved that fault-tolerant metric dimension of barycentric subdivision of Cayley
graph is constant.

1. Introduction

Concept of metric dimension in graph theory was first introduced by Slater [18],
Harary and Melter [10] in mid 70’s. In a connected graph G, the distance d(u, v)
between two vertices u, v ∈ V (G) is the length of a shortest path between them. Metric

dimension of any graph G can be defined as S ⊆ V (G) with minimum cardinality
where all other vertices of G are uniquely determined by their distances to the vertices
in S. A vertex x resolves two vertices u and v if d(x, u) ̸= d(x, v), hence minimum
cardinality of a resolving set of G is called the metric dimension and is denoted
by β(G). Similarly a resolving set R is said to be fault-tolerant, if R\¶x♢ is also
a resolving set for every x ∈ R that is why fault-tolerant metric dimension is the
minimum cardinality of a fault-tolerant resolving set of G. The fault-tolerant metric

Key words and phrases. Metric dimension, fault-tolerant metric dimension, barycentric subdivision,
Cayley graph.
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dimension of graph G is denoted by β′(G). A fault-tolerant resolving set of order
β′(G) is also called a fault-tolerant metric basis of G.

Lot of work has been done in the area of metric dimension and has used in different
domains of scientific research. Work of Slater on fault-tolerant metric dimension of
graphs carried out in different dimensions like resolvability of crystal structures, net-
work analysis, chemical structures of Methylene, mathematical formalization of woven
structures and most significant in Fast-Cluster for removing redundant sequences.
Concept of metric dimension using radio navigation by considering the vertices as
sonar or loran station ruled in last three decades but now its obsolete and is replaced
by GPS and sensor and ad-hoc networks. Through fault-tolerant resolving, a system
can continue operating somehow even in case of any failure in one or more of its
components. In case of semi outage that leads to graceful degradation of service,
system tries to act as scalable system by discovering redundant network interfaces.
Fault-tolerant metric dimension can support physical connectivity and link discovery
in distributed network based systems.

Metric dimension of several interesting classes of graphs have been investigated:
Johnson and Kneser graph [2], Grassmann graphs [3], Cayley digraphs [7] and Carte-
sian product of graphs [5]. Siddiqui et al. [17] investigated the metric dimension of
some infinite families of wheel-related graphs. Kratica et al. [16] studied the metric
dimension problem of convex polytopes. Imran et al. [13] studied further the metric
dimension of convex polytopes generated by wheel-related graphs. Ahmad et al. [1]
studied the metric dimension of Cayley graph of certain finite groups. Vetrik et al.
[19] studied the metric dimension problem for certain networks which can be obtained
as the categorical product of graphs. In [4], it has been shown that metric dimension
of a graphs is not necessarily a finite natural number. They proved that some infinite
graphs have infinite metric dimension. The computational complexity of these prob-
lems is studied in [8]. Multiprocessor interconnection networks are often required to
connect thousands of homogeneously replicated processor memory pairs, each of which
is called a processing vertex. Instead of using a shared memory, all synchronization
and communication between processing nodes for program execution is often done
via message passing. Design and use of multiprocessor interconnection networks have
recently drawn considerable attention due to the availability of inexpensive, powerful
microprocessors and memory chips.

By inserting a new vertex at any edge to split it into two equi-halves this phenomena
is known as edge subdivision. If edge subdivision is applied on multiple edges then
it is called graph subdivision, whereas if all edges are subdivided then it is called
barycentric subdivision of graph. Gross and Yellen [9] explained nice properties that
barycentric subdivided graph will be bipartite, loopless and any loopless graph will be
simple as well. Gary and Johnson [8] put an argument that problem of determining
β(G) < k is NP-Complete problem. In this paper we determined that fault-tolerant
metric dimension of barycentric subdivision of Cayley graph is constant and four
vertices are sufficient to resolve all the vertices of graph.
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2. Results

Let Pn be a path of n vertices, Chartrand et al. [6] determined the metric dimension
in the following theorem.

Theorem 2.1 ([6]). A connected graph G has metric dimension 1 if and only if

G ∼= Pn.

By considering the two endpoints of the path, the fault-tolerant metric basis ob-
tained. It is easy to observe that β(Pn) = 1 and β′(Pn) = 2, for path Pn, n ≥ 2.
From this result and the definition of the fault-tolerant metric dimension the following
inequality holds

β′(G) ≥ β(G) + 1.

Javaid et al. [14] proved in the following theorem that the difference between metric
dimension and fault-tolerant of a graph can be arbitrary large.

Theorem 2.2 ([14]). For every positive integer n, there exists a graph such that

β′(G) − β(G) ≥ n.

Let SG be a semigroup, and let H be a nonempty subset of SG. The Cayley graph
Cay(SG, H) of SG relative to H is defined as the graph with vertex set SG and edge
set E(SG) consisting of those ordered pairs (x, y) such that hx = y for some h ∈ H.
Cayley graphs of groups are significant both in group theory and in constructions of
interesting graphs with nice properties. The Cayley graph Cay(SG, H) of a group
SG is symmetric or undirected if and only if H = H−1.

The Cayley graphs Cay(Zn ⊕ Zm), n ≥ 3, m ≥ 2, is a graph which can be
obtained as the Cartesian product Pm□Cn of a path on m vertices with a cycle
on n vertices. The vertex set and the edge set of Cay(Zn ⊕ Zm) are defined as:
V (Cay(Zn ⊕ Zm)) = ¶(as, bt) : 1 ≤ s ≤ n, 1 ≤ t ≤ m♢ and E(Cay(Zn ⊕ Zm)) =
¶(as, bt)(as+1, bt) : 1 ≤ s ≤ n, 1 ≤ t ≤ m♢ ∪ ¶(as, bt)(as, bt+1) : 1 ≤ s ≤ n, 1 ≤ t ≤
m − 1♢. We have ♣V (Cay(Zn ⊕ Zm))♣ = mn, ♣E(Cay(Zn ⊕ Zm))♣ = (2m − 1)n, where
♣V (Cay(Zn ⊕ Zm))♣, ♣E(Cay(Zn ⊕ Zm))♣ denote the number of vertices, edges of the
Cayley graphs Cay(Zn ⊕ Zm), respectively.

The metric dimension of Cayley graphs Cay(Zn ⊕ Z2) has been determined in
[5] while the metric dimension of Cayley graphs Cay(Zn : H) for all n ≥ 7 and
H = ¶±1, ±3♢ has been determined in [15].

The barycentric subdivision graph BS(Cay(Zn ⊕ Zm)) can be obtained by adding
a new vertex (cs, dt) between (as, bt) and (as+1, bt) and adding a new vertex (us, vt)
between (as, bt) and (as, bt+1). Clearly, S(Cay(Zn ⊕ Zm)) has 3nm − n vertices and
4nm − 2n edges.

The metric dimension of Pm□Cn has been determined in [5] and Cayley graphs
Cay(Zn ⊕ Z2) is actually the Cartesian product of P2□Cn. In the next theorem, we
prove that the fault-tolerant metric dimension of barycentric subdivision BS(Cay(Zn⊕
Zm)) is constant and only four vertices appropriately chosen suffice to resolve all the
vertices of the BS(Cay(Zn ⊕ Zm)) for n ≥ 6 and m ≥ 2.
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Theorem 2.3. Let BS(Cay(Zn ⊕Zm)) be the barycentric subdivision of Cayley graphs

Cay(Zn ⊕ Zm). Then the fault-tolerant metric dimension of BS(Cay(Zn ⊕ Zm)) is 4
for n ≥ 6 and m ≥ 2.

Proof. Theorem will be proved for equality using double inequality.
Case 1: n ≡ 0 (mod 2). Let

R = ¶(a1, b1), (a2, b1), (an

2
+1, b1), (an, b1)♢ ⊆ V (BS(Cay(Zn ⊕ Zm)))

that shows R is a fault-tolerant resolving set for this case. With respect to R a
representation for the vertices of BS(Cay(Zn ⊕ Zm)) is as follows.

For 1 ≤ t ≤ m,

γ((as, bt)♣R)

=















































(2t − 2, 2t, 2t + n − 2, 2t), for s = 1,

(2t, 2t − 2, 2t + n − 4, 2t + 2), for s = 2,

(2t + 2s − 2, 2t + 2s − 6, 2t − 2s + n, 2t + 2s − 2), for 3 ≤ s ≤ n

2
,

(2t + n − 2, 2t + n − 4, 2t − 2, 2t + n − 4), for s = n

2
+ 1,

(2t − 2s + 2n, 2t − 2s + 2n + 2, 2t + 2s − n − 4,

2t − 2s + 2n − 2), for n

2
+ 2 ≤ s ≤ n.

For 1 ≤ t ≤ m,

γ((cs, dt)♣R)

=















































(2t − 1, 2t − 1, 2t + n − 3, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n − 1, 2t + 2s − 1), for 2 ≤ s ≤ n

2
− 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n − 1, 2t + 2s − 3), for s = n

2
,

(2t + n − 3, 2t + n − 3, 2t − 1, 2t + n − 5), for s = n

2
+ 1,

2t − 2s + 2n − 1, 2t − 2s + 2n + 1, 2t + 2s − n − 3,

2t − 2s + 2n − 3), for n

2
+ 2 ≤ s ≤ n.

For 1 ≤ t ≤ m − 1,

γ((us, vt)♣R)

=



































(2t − 1, 2t + 1, 2t + n − 1, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n + 1, 2t + 2s − 1), for 2 ≤ s ≤ n

2
,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n + 1, 2t + 2s − 5), for s = n

2
+ 1,

(2t − 2s + 2n + 1, 2t − 2s + 2n + 3, 2t + 2s − n − 3,

2t − 2s + 2n − 1), for n

2
+ 2 ≤ s ≤ n.

These vertex representation are distinct, so R is the fault-tolerant resolving set of
BS(Cay(Zn ⊕Zm)). Therefore fault-tolerant metric dimension of BS(Cay(Zn ⊕Zm))
is less than equal to 4 that means β′(BS(Cay(Zn ⊕ Zm))) ≤ 4.

Imran [12] showed that metric dimension of barycentric subdivision of Cayley graphs
Cay(Zn ⊕ Zm) is 3, for m = 2 and Ahmad et al. [1] proved that metric dimension of
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BS(Cay(Zn ⊕ Zm)) = 3 for m ≥ 3, therefore the fault-tolerant metric dimension of
BS(Cay(Zn ⊕ Zm)) must be greater than 3 that means β′(BS(Cay(Zn ⊕ Zm))) ≥ 4.
Hence proved that fault-tolerant metric dimension is β′(BS(Cay(Zn ⊕ Zm))) = 4 for
n ≥ 6 and m ≥ 2.

Case 2: n ≡ 1 (mod 2). Let

R = ¶(a1, b1), (a2, b1), (a⌈ n

2
⌉, b1), (an, b1)♢ ⊆ V (BS(Cay(Zn ⊕ Zm)))

that shows R is a fault-tolerant resolving set for this case. With respect to R a
representation for the vertices of BS(Cay(Zn ⊕ Zm)) is as follows.

For 1 ≤ t ≤ m,

γ((as, bt)♣R)

=







































































(2t − 2, 2t, 2t + n − 3, 2t), for s = 1,

(2t, 2t − 2, 2t + n − 5, 2t + 2), for s = 2,

(2t + 2s − 4, 2t + 2s − 6, 2t − 2s + n − 1,

2t + 2s − 2), for 3 ≤ s ≤ ⌈n

2
⌉ − 1,

(2t + n − 3, 2t + n − 5, 2t − 2, 2t + n − 3), for s = ⌈n

2
⌉,

(2t + n − 3, 2t + n − 3, 2t, 2t + n − 5), for s = ⌈n

2
⌉ + 1,

(2t − 2s + 2n, 2t − 2s + 2n + 2,

2t + 2s − n − 3, 2t − 2s + 2n − 2), for ⌈n

2
⌉ + 2 ≤ s ≤ n.

For 1 ≤ t ≤ m,

γ((cs, dt)♣R)

=



























































(2t − 1, 2t − 1, 2t + n − 4, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n − 2,

2t + 2s − 1), for 2 ≤ s ≤ ⌈n

2
⌉ − 1,

(2t + n − 2, 2t + n − 4, 2t − 1, 2t + n − 4), for s = ⌈n

2
⌉,

(2t − 2s + 2n − 1, 2t − 2s + 2n + 1,

2t + 2s − n − 2, 2t − 2s + 2n − 3), for ⌈n

2
⌉ + 1 ≤ s ≤ n − 1,

(2t − 1, 2t + 1, 2t + n − 2, 2t − 1), for s = n.

For 1 ≤ t ≤ m − 1,

γ((us, vt)♣R)

=















































(2t − 1, 2t + 1, 2t + n − 2, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n, 2t + 2s − 1), for 2 ≤ s ≤ ⌈n

2
⌉ − 1,

(2t + n − 2, 2t + n − 4, 2t − 1, 2t + n − 2), for s = ⌈n

2
⌉,

(2t + n − 2, 2t + n − 2, 2t + 1, 2t + n − 4), for s = ⌈n

2
⌉ + 1,

(2t − 2s + 2n + 1, 2t − 2s + 2n + 3,

2t + 2s − n − 2, 2t − 2s + 2n − 1), for ⌈n

2
⌉ + 2 ≤ s ≤ n.
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These vertex representations are distinct, so R is the fault-tolerant resolving set of
BS(Cay(Zn ⊕Zm)). Therefore, fault-tolerant metric dimension of BS(Cay(Zn ⊕Zm))
is less than or equal to 4 that means β′(BS(Cay(Zn ⊕ Zm))) ≤ 4.

Imran [12] showed that metric dimension of barycentric subdivision of Cayley graphs
Cay(Zn ⊕ Zm) is 3, for m = 2 and Ahmad et al. [1] proved that metric dimension of
BS(Cay(Zn ⊕ Zm)) = 3 for m ≥ 3, therefore the fault-tolerant metric dimension of
BS(Cay(Zn ⊕ Zm)) must be greater than 3 that means β′(BS(Cay(Zn ⊕ Zm))) ≥ 4.
Hence proved that fault-tolerant metric dimension is β′(BS(Cay(Zn ⊕ Zm))) = 4 for
n ≥ 6 and m ≥ 2. □
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A NEW FIXED POINT RESULT IN GRAPHICAL bv(s)-METRIC

SPACE WITH APPLICATION TO DIFFERENTIAL EQUATIONS

PRAVIN BARADOL1, DHANANJAY GOPAL1, AND NADA DAMLJANOVIĆ2

Abstract. In the present paper, motivated by [13, 15], Ąrst we give a notion of
graphical bv(s)-metric space, which is a graphical version of bv(s)-metric space.
Utilizing the graphical Banach contraction mapping we prove Ąxed point results in
graphical bv(s)-metric space. Appropriate examples are also presented to support
our results. In the end, the main result ensures the existence of a solution for an
ordinary differential equation along with its boundary conditions by using the Ąxed
point result in graphical bv(s)-metric space.

1. Introduction and Preliminaries

After the most renowned Banach contraction principle stated by Banach [3], many
authors have provided more general and innovative contraction mappings on a com-
plete metric space and established Ąxed point results, see [7,8,10,12]. On the contrary,
some authors generalize the concept of metric space by introducing more general
conditions instead of triangular inequality. Couple of them are given below.

Definition 1.1 ([2, 11]). Let s ≥ 1 be a given real number and X be a non-empty
set. A b-metric on X is a mapping ρ : X ×X → [0,+∞) such that for all a, b, c ∈ X

it satisĄes the following:

(i) ρ(a, b) = 0 if and only if a = b;
(ii) ρ(a, b) = ρ(b, a);
(iii) ρ(a, c) ≤ s[ρ(a, b) + ρ(b, c)].

Then (X, ρ) is called a b-metric space with coefficient s.

Key words and phrases. Graph, Ąxed point, graphical bv(s) metric, graphic Banach contraction.
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Definition 1.2 ([6]). Let a mapping ρ : X ×X → [0,+∞) deĄned on a non-empty
set X satisfy:

(i) ρ(a, b) = 0 if and only if a = b;
(ii) ρ(a, b) = ρ(b, a) for all a, b ∈ X;
(iii) ρ(a, b) ≤ ρ(a, c) + ρ(c, d) + ρ(d, b) for all a, b ∈ X and all distinct points

c, d ∈ X\¶a, b♢.

Then ρ is called a rectangular metric on X and (X, ρ) is called a rectangular metric
space.

Definition 1.3 ([6]). Let a mapping ρ : X×X → [0,+∞) be deĄned on a non-empty
set X. For v ∈ N, (X, ρ) is said to be a v-generalized metric space, if the following
hold:

(i) ρ(a, b) = 0 if and only if a = b;
(ii) ρ(a, b) = ρ(b, a), for all a, b ∈ X;
(iii) ρ(a, b) ≤ ρ(a, u1) + ρ(u1, u2) + · · · + ρ(uv, b) for all a, u1, u2, . . . , uv, b ∈ X such

that a, u1, u2, . . . , uv, b are all different.

For more details on b-metric spaces and their generalizations we refer to [1]. Recently,
Mitrović and Radenović [13] introduced the concept of bv(s)-metric space as follows.

Definition 1.4. Let a mapping ρ : X ×X → [0,+∞) be deĄned on a non-empty set
X. For v ∈ N, (X, ρ) is said to be a bv(s)-metric space, if the following hold:

(i) ρ(a, b) = 0 if and only if a = b;
(ii) ρ(a, b) = ρ(b, a) for all a, b ∈ X;
(iii) there exists a real number s ≥ 1 such that

ρ(a, b) ≤ s[ρ(a, u1) + ρ(u1, u2) + · · · + ρ(uv, b)],

for distinct points a, u1, u2, . . . , uv, b ∈ X.

Let X be a non-empty set and ∆ = ¶(x, x) : x ∈ X♢. A graph G is an ordered
pair G = (V(G),E(G)), where V(G) is the set of vertices of graph G and E(G) ⊆
V(G) × V(G) is the set of edges of graph G. In this paper, we will use the concept
of graph structure on metric space (namely, a graphical metric space) that has been
introduced by Shukla et al. [15], in which the non-empty set X is associated with a
graph G by considering the set X as the set of vertices, i.e., V(G) = X and allowing
that the set of edges E(G) contains the set ∆ of all loops (which are edges that join
a vertex to itself), i.e., ∆ ⊂ E(G). The sequence of vertices ¶ti♢l

i=0 such that t0 = a,
tl = b and (ti−1, ti) ∈ E(G) for j = 1, 2, . . . , l, represents the directed path from a to b
of length l in the graph G, in short it is written as (aPb)l

G
. If the vertex c ∈ X lies on

the path from a to b, then we use notation c ∈ (aPb)G. A connected graph G states
that there is a path between each pair vertices of the graph. A sequence ¶xn♢ is said
to be G-termwise connected, if for each n ∈ N there is a path from xn to xn+1 in the
graph G. For l ∈ N, let [a]l

G
be the set deĄned by

[a]l
G

= ¶b ∈ X : (aPb)l
G

♢.
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A connected component of the graph G is a connected sub-graph G1 of a graph G

such that there is no path between vertices of G1 and vertices of G\G1. For more
information we refer reader to [4, 5, 9, 16,17].

Definition 1.5 ([15]). Let X be a non-empty set and G be a graph associated with X.
A graphical metric on X is a mapping ρ : X ×X → [0,+∞) satisfying the following:

(i) ρ(a, b) = 0 if and only if a = b;
(ii) ρ(a, b) = ρ(b, a) for all a, b ∈ X;
(iii) for all a, b, c ∈ X such that (aPb)G and c ∈ (aPb)G implies ρ(a, b) ≤ ρ(a, c) +

ρ(c, b),

and the pair (X, ρ) is called graphical metric space.

In this paper, we introduce the concept of graphical bv(s)-metric space, which is
graphical version of bv(s)-metric space. Graphical bv(s)-metric space is a generalization
of bv(s)-metric space and graphical metric space. In the rest of the paper, all the
graphs are directed unless otherwise stated and the set N

0 = N ∪ ¶0♢.

Definition 1.6. Let G be a graph associated with a non-empty set X. For v ∈ N, a
mapping ρ : X ×X → [0,+∞) is said to be a graphical bv(s)-metric, if it satisĄes the
following:

(i) ρ(a, b) = 0 if and only if a = b;
(ii) ρ(a, b) = ρ(b, a) for all a, b ∈ X;
(iii) for distinct u1, u2, . . . , uv ∈ (aPb)G and a real number s ≥ 1 holds

ρ(a, b) ≤ s[ρ(a, u1) + ρ(u1, u2) + · · · + ρ(uv, b)],

and the pair (X, ρ) is called graphical bv(s)-metric space.

By DeĄnition 1.1Ű1.6 and [9, 15,17] it is easy to verify that the following hold.

(i) Graphical b1(1)-metric space is graphical metric space.
(ii) Graphical b1(s)-metric space is b-metric space with coefficient s.
(iii) Graphical b2(1)-metric space is graphical rectangular metric space.
(iv) Graphical b2(s)-metric space is graphical rectangular b-metric space with coeffi-

cient s.

Remark 1.1. Every bv(s)-metric space (X, ρ) is a graphical bv(s)-metric space endowed
with a graph G having E(G) = X ×X, but converse need not be true.

Example 1.1. Let X = ¶v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11♢ and let G = G1 ∪G2 ∪G3

be an undirected graph, where G1, G2 and G3 are connected components with:

V(G1) = ¶v1, v2♢, E(G1) = ¶e1♢,
V(G2) = ¶v3, v4, v5, v6, v7, v8, v9♢, E(G2) = ¶e2, e3, e4, e5, e6, e7♢,
V(G3) = ¶v10, v11♢, E(G3) = ¶e8♢.
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Figure 1. G = G1 ∪G2 ∪G3

Let ρ : X ×X → [0,+∞) be a mapping defined in a following way:

ρ(vi, vj) =











0, if vi = vj,

lvivj
, if vi, vj ∈ Gk, k = ¶1, 2, 3♢,

1, otherwise,

where lvivj
denote the length of the shortest path from vi to vj. Then (X, ρ) is graphical

b4(1)-metric space but not b4(1)-metric space.

Definition 1.7. Let (X, ρ) be a graphical bv(s)-metric space endowed with a graph G

and let ¶yn♢ be a sequence of elements in X. Then ¶yn♢ is a Cauchy sequence if for each

ϵ > 0 exists m ∈ N such that ρ(yk, yl) < ϵ, for all k, l ≥ m, i.e., limk,l→+∞ ρ(yk, yl) = 0.

The sequence ¶yn♢ converges to z ∈ X, if for each ϵ > 0, exists m ∈ N such that

ρ(yk, z) < ϵ for all k ≥ m, i.e., limk→+∞ ρ(yk, z) = 0.

Definition 1.8. If every G-termwise connected (briefly, G-TWC) Cauchy sequence

in a graphical bv(s)-metric space X endowed with a graph G converges in X, then X

is said to be G-complete.

2. Main Results

First, we provide a deĄnition of Banach contraction mapping in graphical bv(s)
metric space.

Definition 2.1. Let G be a graph associated with graphical bv(s)-metric space (X, ρ).
A graphic Banach contraction (GBC) on X is a mapping F : X → X such that:

(GBC-1) (Fa, Fb) ∈ E(G) whenever (a, b) ∈ E(G);
(GBC-2) for all (a, b) ∈ E(G), there exists η ∈ [0, 1), such that ρ(Fa, Fb) ≤ ηρ(a, b).

Remark 2.1. Every Banach contraction on a non-empty set X is a graphic Banach

contraction on X after considering the set of edges is equal to X ×X. But, converse

is not always true (see Example 2.1).

Definition 2.2. A graph G = (V(G),E(G)) is said to have property (P) if for each

convergent G-TWC F -Picard sequence ¶xn♢ there exists m ∈ N and a limit ξ of ¶xn♢
in X, such that (xk, ξ) ∈ E(G) or (ξ, xk) ∈ E(G) for all k > m.

Theorem 2.1. Let (X, ρ) be a G-complete graphical bv(s)-metric space and let F :
X → X be an injective GBC on X. Suppose that the following conditions are satisfied.



A NEW FIXED POINT RESULT IN GRAPHICAL bv(s)-METRIC SPACE 445

(i) There exists a0 ∈ X with F ka0 ∈ [a0]
lk
G

for k = 1, 2, . . . , v, where lk = mkv + 1
and mk ∈ N

0.

(ii) G has the property (P).

Then, for initial term a0 ∈ X the F -Picard sequence ¶an♢ is G-TWC and converges

to both ξ∗ and Fξ∗ in X.

Proof. For k = 1, 2, . . . , v, let a0 ∈ X be such that F ka0 ∈ [a0]
lk
G

, where lk = mkv + 1

and mk ∈ N
0. Then there exists a path ¶ek

j ♢lk
j=0 such that

a0 = ek
0 , F ka0 = ek

lk
and (ek

j−1, e
k
j ) ∈ E(G), for all j = 1, 2, . . . , lk.

Since (ek
j−1, e

k
j ) ∈ E(G), by (GBC − 1) we have

(Fek
j−1, Fe

k
j ) ∈ E(G), for j = 1, 2, . . . , lk.

Therefore, ¶Fek
j ♢lk

j=0 is a path from Fek
0 = Fa0 = a1 to Fek

lk
= F 2a0 = a2 of

length lk. Similarly, for all n ∈ N, ¶F ne1
j♢l1

j=0 is a path from F ne1
0 = F na0 = an to

F ne1
l1

= F nFa0 = an+1 of length l1. Thus, ¶an♢ is G-TWC sequence.
Therefore, for each k = 1, 2, . . . , v, and j = 1, 2, . . . , lk, we have (F nek

j−1, F
nek

j ) ∈
E(G), for all n ∈ N.

By (GBC − 2), for j = 1, 2, . . . , lk, we have

(2.1) ρ


F nek
j−1, F

nek
j



≤ ηρ


F n−1ek
j−1, F

n−1ek
j



≤ · · · ≤ ηnρ


ek
j−1, e

k
j



.

By condition (iii) of DeĄnition 1.6, for k = 1, 2, . . . , v we have

ρ(a0, ak) =ρ(ek
0, e

k
lk

)

≤s[ρ(ek
0, e

k
1) + ρ(ek

1, e
k
2) + · · · + ρ(ek

v−1, e
k
v)]

+ s2[ρ(ek
v , e

k
v+1) + ρ(ek

v+1, e
k
v+2) + · · · + ρ(ek

2v−1, e
k
2v)]

...

+ smk [ρ(ek
(mk−1)v, e

k
(mk−1)v+1) + · · · + ρ(ek

lk−1, e
k
lk

)]

=Dlk .(2.2)

On the same way, using the inequalities (2.1) and (2.2), for k = 1, 2, . . . , v, we have

ρ(an, an+k) =ρ(F na0, F
nak) = ρ(F nek

0, F
nek

lk
)

≤s[ρ(F nek
0, F

nek
1) + ρ(F nek

1, F
nek

2) + · · · + ρ(F nek
v−1, F

nek
v)]

+ s2[ρ(F nek
v , F

nek
v+1) + ρ(F nek

v+1, F
nek

v+2) + · · · + ρ(F nek
2v−1, F

nek
2v)]

...

+ smk [ρ(F nek
(mk−1)v, F

nek
(mk−1)v+1) + · · · + ρ(F nek

lk−1, F
nek

lk
)]

≤ηnDlk .(2.3)

Now, from equation (2.3) one can prove Cauchy-ness of the sequence ¶xn♢, i.e., for
all p ≥ 1, ρ(xn, xn+p) → 0 as n → +∞.
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Therefore, G-completeness of X implies an → ξ∗ for some ξ∗ ∈ X. Thanks to
Property (P), that ensures that there exists k ∈ N such that (an, ξ

∗) ∈ E(G) or
(ξ∗, an) ∈ E(G) for all n > k.

Assume that, for all n > k, (an, ξ
∗) ∈ E(G), then by (BGC − 2),

ρ(Fan, F ξ
∗) ≤ ηρ(an, ξ

∗), for all n > k.

This implies
ρ(Fan, F ξ

∗) → 0, as n → +∞,

i.e., an+1 → Fξ∗. So, Fξ∗ is also a limit of ¶an♢.
Analogously, we can prove the case (ξ∗, an) ∈ E(G) for all n > k. □

Remark 2.2. In bv(s)-metric space a sequence may converges to more than one limit,
and hence this result also holds in graphical bv(s)-metric space. To remove this
difficulty some authors use Housdorff-ness condition on such metric space.

Definition 2.3. Let a graph G is associated with a graphical bv(s)-metric space (X, ρ)
and a mapping F is a graphic Banach contraction on X. The quadruplet (X, ρ,G, F )
has the property S∗, if each G-TWC F -Picard sequence ¶an♢ in X has a unique limit.

Theorem 2.2. Let the conditions of Theorem 2.1 hold along with that the quadruple

(X, ρ,G, F ) has the Property S∗, then F has a fixed point.

Proof. From the proof of Theorem 2.1 and the Property S∗, we have Fξ∗ = ξ∗. □

Theorem 2.3. Let the conditions of Theorem 2.2 hold and suposse that for all ξ∗, ζ∗ ∈
Fix(F) there exists a path (ξ∗Pζ∗)t

G
between ξ∗ and ζ∗ of length t, where t = 1 or

t = mv + 1 for m ∈ N
0. Then F has a unique fixed point.

Proof. Let suposse that for all ξ∗, ζ∗ ∈ Fix(F) there exists a path (ξ∗Pζ∗)t
G

between
ξ∗ and ζ∗ of length t.

Case I. If t = 1, then (ξ∗, ζ∗) ∈ E(G), which implies (Fξ∗, F ζ∗) ∈ E(G) by
condition (GBC-1).

Now, by (GBC-2), we have ρ(Fξ∗, F ζ∗) ≤ η[ρ(ξ∗, ζ∗)], which implies ρ(ξ∗, ζ∗) ≤
η[ρ(ξ∗, ζ∗)]. This contradicts the fact η < 1. Hence, ξ∗ = ζ∗.

Case II. Let t = mv + 1, where m ∈ N
0 and let ¶ei♢t

i=0 be the path from ξ∗ to ζ∗,
such that e0 = ξ∗ and ek = ζ∗. Then

ρ(ξ∗, ζ∗) =ρ(F nξ∗, F nζ∗)

≤s[ρ(F ne0, F
ne1) + ρ(F ne1, F

ne2) + · · · + ρ(F nev−1, F
nev)]

+ s2[ρ(F nev, F
nev+1) + ρ(F nev+1, F

nev+2) + · · · + ρ(F ne2v−1, F
ne2v)]

...

+ sm[ρ(F ne(m−1)v, F
ne(m−1)v+1) + · · · + ρ(F net−1, F

net)]

→0 as n → +∞.

This implies ξ∗ = ζ∗. □
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Example 2.1. Let A = ¶ 1
2n : n ∈ N♢ and a set X = ¶0, 1♢ ∪A is associated with graph

G = (V(G),E(G)) such that V(G) = X, E(G) = ∆ ∪ ¶(0, 1
2n ) : n ∈ N♢ ∪ ¶( 1

2n ,
1

2m ) ∈
X ×X : n,m ∈ N, n < m♢. Let a symmetric function ρ : X ×X → [0,+∞) such that

ρ(a, b) =



























0, if a = b,

b, if a = 0, b ∈ A,

a, if a ∈ A, b = 1,
M, if a, b ∈ A,

1, if a = 0, b = 1,

where M = max¶a, b♢. Then (X, ρ) is G-complete graphical b4(1)-metric space. Now,
F : X → X be a function deĄned as:

Fx =

{

x5

2
, if x ∈ [0, 1),

1, otherwise.

Then, the mapping F satisĄes all the conditions of Theorem 2.2 and having contraction
constant η = 1

25 . Hence, 0 is the unique Ąxed point.

Remark 2.3. In Example 2.1, we observed that:

(i) the mapping F is graphic Banach contraction on X but not a Banach contrac-
tion;

(ii) (X, ρ) is not a b4(1)-metric space.

3. An Application to Differential Equation

In this section, inspired by [14], we establish the existence of solution for the
following second order ordinary differential equation:

(3.1) − d2y

dt2
= h(t, y(t))

having boundary conditions y(0) = y(1) = 0, where h : [0, 1]×R → R
+ is a continuous

function.
Let X = C([0, 1],R) be the set of all real-valued continuous functions deĄned on

[0, 1]. LetŠs deĄne a set K as:

K =

{

y ∈ X : inf
t∈[0,1]

y(t) > 0 and y(t) ≤ 1, t ∈ [0, 1]

}

.

Now, to deĄne a graph structure G = (V(G),E(G)) on X, lets consider V(G) = X

and

E(G) = ∆ ∪ ¶(a, b) ∈ K ×K : a(t) ≤ b(t) for all t ∈ [0, 1]♢
= ¶(a, a) : a ∈ X♢ ∪ ¶(a, b) ∈ K ×K : a(t) ≤ b(t) for all t ∈ [0, 1]♢.

DeĄne the mapping ρ : X ×X → R
+ as:

ρ(a, b) = sup
0≤t≤1

♣a(t) − b(t)♣,
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for all a, b ∈ X. Then, (X, ρ) is the G-complete graphical b3(1)-metric space. The
problem deĄned in (3.1) with given boundary condition is equivalent to the following
Fredholm integral equation:

(3.2) y(t) =
∫ 1

0
H(t, s)h(s, y(s))ds,

where

H(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,
s(1 − t), 0 ≤ s ≤ t ≤ 1.

Consider an injective mapping F : X → X deĄned as:

Fy(t) =
∫ 1

0
H(t, s)h(s, y(s))ds.

Then the Ąxed point of F is a solution of integral equation (3.2).

Theorem 3.1. Suppose the following assumptions hold.

(i) ψ ∈ C([0, 1],R) is the lower solution of equation (3.2), i.e.,

ψ(t) ≤
∫ 1

0
H(t, s)h(s, ψ(s))ds.

(ii) A function h(t, ·) : R → R
+ is increasing on [0, 1]. In addition, h(t, 1) = t and

inft∈[0,1] H(t, s) > 0.

(iii) For every t ∈ [0, 1], holds

♣h(s, x(s)) − h(s, y(s))♣ ≤ ♣x(s) − y(s)♣.

Then the existence of solution for equation (3.2) provides a solution for (3.1).

Proof. Clearly, the mapping F : X → X is well deĄned. Now, to prove F is GBC on
X, we consider (a, b) ∈ E(G), i.e., a, b ∈ K and a(t) ≤ b(t) for all t ∈ [0, 1]. Now, the
following holds

Fa(t) =
∫ 1

0
H(t, s)h(s, a(s))ds ≤

∫ 1

0
H(t, s)h(s, 1)ds =

∫ 1

0
H(t, s)sds =

4

27
√

3
≤ 1,

and from condition (ii), it is obvious that inft∈[0,1] Fa(t) > 0. This implies Fa(t) ∈ K.
Similarly, we can prove this for b(t) ∈ K.

Since, h(t, ·) : R → R
+ is increasing on [0,1], we have

Fa(t) =
∫ 1

0
H(t, s)h(s, a(s))ds ≤

∫ 1

0
H(t, s)h(s, b(s))ds = Fb(t).

It gives that (Fa(t), F b(t)) ∈ E(G).
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Now, for each t ∈ [0, 1], we have

♣Fa(t) − Fb(t)♣ =

∣

∣

∣

∣

∣

∫ 1

0
H(t, s)h(s, a(s))ds−

∫ 1

0
H(t, s)h(s, b(s))ds

∣

∣

∣

∣

∣

≤
∫ 1

0
H(t, s)

∣

∣

∣h(s, a(s)) − h(s, b(s))
∣

∣

∣ds

≤
∫ 1

0
H(t, s)♣a(s) − b(s)♣ds

≤ sup
t∈[0,1]

∫ 1

0
H(t, s)♣a(s) − b(s)♣ds

≤ sup
t∈[0,1]

♣a(t) − b(t)♣
∫ 1

0
H(t, s)ds

≤ 1

8
sup

t∈[0,1]
♣a(t) − b(t)♣

≤ 1

8
ρ(a, b).

This implies, ρ(Fa, Fb) ≤ 1
8
ρ(a, b). Note that for all t ∈ [0, 1],

∫ 1
0 H(t, s)ds = t

2
− t2

2

which implies that, supt∈[0,1]

∫ 1
0 H(t, s)ds = 1

8
. Thus, F is GBC on X. From the

condition (i), there exists ψ(t) ∈ X such that F kψ(t) ∈ [ψ(t)]1
G

, for each k = 1, 2, 3. It
is easy to see that, the condition (I) of the Theorem 2.3 and Property S∗ are satisĄed.
Therefore, Theorem 2.3 guarantees that F has an unique Ąxed point and hence the
integral equation (3.2) has solution in X that ensures the existence of the solution of
differential equation (3.1). □

4. Conclusion

In this paper, we initiated the concept of bv(s)-metric space equipped with graph
structure. Also, graphic Banach contraction is deĄned and it is proved that every
Banach contraction is a graphic Banach contraction but converse need not be true.
Fixed point results are established in aforementioned space. The presented results
are validated by suitable examples. In the end, obtained results are utilized to solve
ordinary differential equation which show the importance of our work.

Future Scope. One can establish the Ąxed point results in a graphical bv(s)-metric
space by using different contraction mappings, like Meir-Keeler, Kannan, Reich. More-
over, topology of the aforementioned space will helps to know the properties and whole
structure of the space.
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WARPED PRODUCT POINTWISE SEMI-SLANT SUBMANIFOLDS

OF ALMOST CONTACT MANIFOLDS

ION MIHAI1, SIRAJ UDDIN2, AND ADELA MIHAI3,4

Abstract. B.-Y. Chen and O. J. Garay studied pointwise slant submanifolds of
almost Hermitian manifolds. By using the notion of pointwise slant submanifolds,
we investigate the geometry of pointwise semi-slant submanifolds and their warped
products in Sasakian and cosymplectic manifolds. We prove that there exist no
proper pointwise semi-slant warped product submanifold other than contact CR-
warped products in Sasakian manifolds. We give non-trivial examples of such
submanifolds in cosymplectic manifolds and obtain several fundamental results,
including a characterization for warped product pointwise semi-slant submanifolds.

1. Introduction

In [7], B.-Y. Chen introduced the notion of slant submanifolds of almost Hermitian
manifolds as a natural generalization of holomorphic (invariant) and totally real (anti-
invariant) submanifolds. Afterwards, the geometry of slant submanifolds became an
active topic of research in differential geometry. Later, A. Lotta [19] has extended
this study for almost contact metric manifolds. J. L. Cabrerizo et al. investigated
slant submanifolds of a Sasakian manifold [6]. N. Papaghiuc introduced in [21] a
class of submanifolds, called semi-slant submanifolds of almost Hermitian manifolds,
which are the generalizations of slant and CR-submanifolds. Later on, Cabrerizo et
al. [5] extended this idea for semi-slant submanifolds of contact metric manifolds and
provided many examples of such submanifolds.

Next, as an extension of slant submanifolds of an almost Hermitian manifold, F.
Etayo [15] introduced the notion of pointwise slant submanifolds of almost Hermitian

Key words and phrases. Warped products, pointwise slant submanifolds, pointwise semi-slant
submanifolds, Sasakian manifolds, cosymplectic manifold.
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manifolds. In 2012, B.-Y. Chen and O. J. Garay [13] studied pointwise slant sub-
manifolds of almost Hermitian manifolds. They have obtained several fundamental
results, in particular, a characterization of these submanifolds. K. S. Park [22] has
extended this study for almost contact metric manifolds. In his definition of pointwise
slant submanifolds of almost contact metric manifolds he did not mention whether
the structure vector field ξ is either tangent or normal to the submanifold. B. Sahin
studied pointwise semi-slant submanifolds and warped product pointwise semi-slant
submanifolds by using the notion of pointwise slant submanifolds [25]. In [31] the
authors modified the definition of pointwise slant submanifolds of an almost contact
metric manifold such that the structure vector field ξ is tangent to the submanifold.
We have obtained a simple characterization for such submanifolds and studied warped
product pointwise pseudo-slant submanifolds of Sasakian manifolds.

In 1969, R. L. Bishop and B. O’Neill [3] introduced and studied warped product
manifolds. 30 years later, around the beginning of this century, B.-Y. Chen initiated
in [8, 9] the study of warped product CR-submanifolds of Kaehler manifolds. Chen’s
work in this line of research motivated many geometers to study the geometry of
warped product submanifolds by using his idea for different structures on manifolds
(see, for instance [2,16,20,26]). For a detailed survey on warped product submanifolds
we refer to Chen’s books [10,12] and his survey article [11] as well.

In [23], B. Sahin showed that there exists no proper warped product semi-slant
submanifold of Kaehler manifolds. Then, he introduced the notion of warped product
hemi-slant submanifolds of Kaehler manifolds [24]. In 2013, he defined and studied
warped product pointwise semi-slant submanifolds and showed that there exists a
non-trivial warped product pointwise semi-slant submanifold of the form MT ×f Mθ

in a Kaehler manifold M̃ , where MT and Mθ are invariant and proper pointwise slant
submanifolds of M̃ , respectively [25]. For almost contact metric manifolds, we have
seen in [18] and [1] that there are no proper warped product semi-slant submanifolds
in cosymplectic and Sasakian manifolds. Then, we have considered warped product
pseudo-slant submanifolds (warped product hemi-slant submanifolds [24], in the same
sense of almost Hermitian manifolds) of cosymplectic manifolds [28] and Sasakian
manifolds [29].

Recently, K. S. Park [22] studied warped product pointwise semi-slant submanifolds
of almost contact metric manifolds. He proved that there do not exist warped product
pointwise semi-slant submanifolds of the form Mθ ×f MT in M̃ , where M̃ is either a
cosymplectic manifold, a Sasakian manifold or a Kenmotsu manifold such that Mθ

and MT are proper pointwise slant and invariant submanifolds of M̃ , respectively.
Then he provided many examples and obtained several results for warped products by
reversing these two factors, including sharp estimations for the squared norm of the
second fundamental form in terms of the warping functions. Later, we also extended
this idea in [31] to warped product pointwise pseudo-slant submanifolds of Sasakian
manifolds.
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In this paper, we study warped product pointwise semi-slant submanifolds of the
form MT ×f Mθ of Sasakian and cosymplectic manifolds.

The present paper is organized as follows: In Section 2 we give basic definitions
and formulae needed for this paper. Section 3 is devoted to the study of pointwise
semi-slant submanifolds of almost contact metric manifolds. We define pointwise
semi-slant submanifolds and in the definition of pointwise semi-slant submanifolds we
assume that the structure vector field ξ is always tangent to the submanifold. We give
two non-trivial examples of such submanifolds for the justification of our definition
and a result which is useful to the next section. In Section 4 we study warped product
pointwise semi-slant submanifolds of Sasakian and cosymplectic manifolds. We prove
that there is no proper pointwise semi-slant warped product M = MT ×f Mθ other
than contact CR-warped product in Sasakian manifolds, but if we assume the ambient
space is cosymplectic then there exists a non-trivial class of such warped products.
We obtain several new results which are generalizations of warped product semi-slant
submanifolds and contact CR-warped product submanifolds. In Section 5 we provide
nontrivial examples of Riemannian product and warped product pointwise semi-slant
submanifolds in Euclidean spaces.

2. Preliminaries

An almost contact structure (φ, ξ, η) on a (2n+1)-dimensional manifold M̃ is defined
by a (1, 1) tensor field φ, a vector field ξ, called characteristic or Reeb vector field,
and a 1-form η satisfying the following conditions

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ξ = 0, η(ξ) = 1,

where I : TM̃ → TM̃ is the identity map [4]. There always exists a Riemannian
metric g on an almost contact manifold M̃ satisfying the following compatibility
condition

(2.1) g(φX,φY ) = g(X, Y ) − η(X)η(Y ),

for any X, Y ∈ Γ(TM̃), the Lie algebra of vector fields on M̃ . The metric g is called a
compatible metric and the manifold M̃ together with the structure (φ, ξ, η, g) is called
an almost contact metric manifold. As an immediate consequence of (2.1), one has
η(X) = g(X, ξ) and g(φX, Y ) = −g(X,φY ). If ξ is a Killing vector field with respect
to g, then the contact metric structure is called a K-contact structure. An almost
contact metric manifold is called almost cosymplectic if dη = 0 and dφ = 0, according
to D. E. Blair ([4]). In particular, a normal almost cosymplectic manifold is called
cosymplectic and satisfies

∇̃φ = 0, ∇̃ξ = 0.(2.2)

A normal contact metric manifold is said to be a Sasakian manifold. In terms of
the covariant derivative of φ, the Sasakian condition can be expressed by

(2.3) (∇̃Xφ)Y = g(X, Y )ξ − η(Y )X,
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for all X, Y ∈ Γ(TM̃), where ∇̃ is the Levi-Civita connection of g. From the formula
(2.3), it follows that

∇̃Xξ = −φX,(2.4)

for any X ∈ Γ(TM̃).
Let M be a Riemannian manifold isometrically immersed in M̃ and denote by the

same symbol g the Riemannian metric induced on M . Let Γ(TM) be the Lie algebra
of vector fields in M and Γ(T⊥M) the set of all vector fields normal to M . Let ∇ be
the Levi-Civita connection on M ; the Gauss and Weingarten formulae are respectively
given by

∇̃XY = ∇XY + h(X, Y ),(2.5)

∇̃XN = −ANX + ∇⊥

XN,(2.6)

for any X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇⊥ is the normal connection in the
normal bundle T⊥M and AN is the shape operator of M with respect to the normal
vector N . Moreover, h : TM × TM → T⊥M is the second fundamental form of M in
M̃ . Furthermore, AN and h are related by [32]

(2.7) g(h(X, Y ), N) = g(ANX, Y ),

for any X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M).
For any X tangent to M , we write

(2.8) φX = PX + FX,

where PX and FX are the tangential and normal components of φX, respectively.
Then P is an endomorphism of the tangent bundle TM and F is a normal bundle
valued 1-form on TM . Similarly, for any vector field N normal to M , we put

(2.9) φN = tN + fN,

where tN and fN are the tangential and normal components of φN , respectively.
Moreover, from (2.1) and (2.8), we have

(2.10) g(PX, Y ) = −g(X,PY ),

for any X, Y ∈ Γ(TM).
Throughout this paper, we assume that the structure vector field ξ is tangent

to M , otherwise M is a C-totally real submanifold [19]. Let M be a Riemannian
manifold isometrically immersed in an almost contact metric manifold (M̃, φ, ξ, η, g).
A submanifold M of an almost contact metric manifold M̃ is said to be slant [6] if for
each non-zero vector X tangent to M at p ∈ M such that X is not proportional to
ξp, the angle θ(X) between φX and TpM is constant, i.e., it does not depend on the
choice of p ∈ M and on the choice of X ∈ TpM − ⟨ξp⟩.

A slant submanifold is said to be proper slant if neither θ = 0 nor θ = π
2
. We note

that if θ = 0 then the submanifold is an invariant submanifold and if θ = π
2

then it is
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an anti-invariant submanifold (equivalently, a slant submanifold is said to be proper

slant if it is neither invariant nor anti-invariant).
As a natural extension of slant submanifolds, F. Etayo [15] introduced pointwise

slant submanifolds of an almost Hermitian manifold under the name of quasi-slant
submanifolds. Later on, B.-Y. Chen and O. J. Garay studied pointwise slant sub-
manifolds of almost Hermitian manifolds and obtained many interesting results [13].
In a similar way, K. S. Park [22] defined and studied pointwise slant submanifols
of almost contact metric manifolds. His definition of pointwise slant submanifolds
of almost contact metric manifold is similar to the pointwise slant submanifolds of
almost Hermitian manifolds, therefore we have modified his definition by considering
the structure vector field ξ is tangent to the submanifold and studied pointwise slant
submanifolds of almost contact metric manifolds in [31].

A submanifold M of an almost contact metric manifold M̃ is said to be pointwise

slant if for any nonzero vector X tangent to M at p ∈ M , such that X is not
propotional to ξp, the angle θ(X) between φX and T ∗

pM = TpM − ¶0♢ is independent
of the choice of nonzero vector X ∈ T ∗

pM . In this case, θ can be regarded as a function
on M , which is called the slant function of the pointwise slant submanifold.

We note that every slant submanifold is a pointwise slant submanifold, but the
converse may not be true. We also note that a pointwise slant submanifold is invariant

(respectively, anti-invariant) if for each point p ∈ M , the slant function θ = 0
(respectively, θ = π

2
). A pointwise slant submanifold is slant if and only if the slant

function θ is constant on M . Moreover, a pointwise slant submanifold is proper if
neither θ = 0, π

2
nor θ is constant.

In [31], the authors have obtained the following characterization theorem.

Theorem 2.1 ([31]). Let M be a submanifold of an almost contact metric manifold

M̃ such that ξ ∈ Γ(TM). Then M is pointwise slant if and only if

P 2 = cos2 θ (−I + η ⊗ ξ) ,(2.11)

for some real valued function θ defined on the tangent bundle TM of M .

The following relations are immediate consequences of Theorem 2.1.
Let M be a pointwise slant submanifold of an almost contact metric manifold M̃ .

Then we have

g(PX,PY ) = cos2 θ [g(X, Y ) − η(X)η(Y )],

g(FX,FY ) = sin2 θ [g(X, Y ) − η(X)η(Y )],

for any X, Y ∈ Γ(TM).
The next useful relation for a pointwise slant submanifold of an almost contact

metric manifold was obtained in [31]

(2.12) tFX = sin2 θ (−X + η(X)ξ) , fFX = −FPX,
for any X ∈ Γ(TM).
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3. Pointwise Semi-Slant Submanifolds

In [25], B. Sahin defined and studied pointwise semi-slant submanifolds of Kaehler
manifolds. In this section, we define and study pointwise semi-slant submanifolds of
almost contact metric manifolds.

Definition 3.1. A submanifold M of an almost contact metric manifold M̃ is said to
be a pointwise semi-slant submanifold if there exists a pair of orthogonal distributions
D and D

θ on M such that

(i) the tangent bundle TM admits the orthogonal direct decomposition TM =
D ⊕ D

θ ⊕ ⟨ξ⟩;
(ii) the distribution D is invariant under φ, i.e., φ (D) = D;
(iii) the distribution D

θ is pointwise slant with slant function θ.

Note that the normal bundle T⊥M of a pointwise semi-slant submanifold M is
decomposed as

T⊥M = FDθ ⊕ ν, FDθ ⊥ ν,

where ν is an invariant normal subbundle of T⊥M under φ.
We denote the dimensions of D and D

θ by m1 and m2, respectively. Then the
following hold.

(i) If m1 = 0, then M is a pointwise slant submanifold.
(ii) If m2 = 0, then M is an invariant submanifold.
(iii) If m1 = 0 and θ = π

2
, then M is an anti-invariant submanifold.

(iv) If m1 ̸= 0 and θ = π
2
, then M is a contact CR-submanifold.

(v) If θ is constant on M , then M is a semi-slant submanifold with slant angle θ.

We also note that a pointwise semi-slant submanifold is proper if neither m1,m2 = 0
nor θ = 0, π

2
and θ should not be a constant.

We provide the following non-trivial examples of pointwise semi-slant submanifolds
of almost contact metric manifolds.

Example 3.1. Let (R7, φ, ξ, η, g) be an almost contact metric manifold with cartesian
coordinates (x1, y1, x2, y2, x3, y3, z) and the almost contact structure

φ


∂

∂xi


= − ∂

∂yi

, φ


∂

∂yj


=

∂

∂xj

, φ


∂

∂z


= 0, 1 ≤ i, j ≤ 3,

where ξ = ∂
∂z

, η = dz and g is the standard Euclidean metric on R
7. Then (φ, ξ, η, g)

is an almost contact metric structure on R
7. Consider a submanifold M of R7 defined

by

ψ(u, v, w, t, z) = (u+ v, −u+ v, t cosw, t sinw, w cos t, w sin t, z),
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such that w, t (w ̸= t) are non vanishing real valued functions on M . Then the tangent
space TM is spanned by the following vector fields

X1 =
∂

∂x1

− ∂

∂y1

, X2 =
∂

∂x1

+
∂

∂y1

,

X3 = −t sinw
∂

∂x2

+ t cosw
∂

∂y2

+ cos t
∂

∂x3

+ sin t
∂

∂y3

,

X4 = cosw
∂

∂x2

+ sinw
∂

∂y2

− w sin t
∂

∂x3

+ w cos t
∂

∂y3

,

X5 =
∂

∂z
.

Thus, we observe that D = Span¶X1, X2♢ is an invariant distribution and D
θ =

Span¶X3, X4♢ is a pointwise slant distribution with pointwise slant function θ =

cos−1((t−w)/
√

(t2 + 1)(w2 + 1)). Hence, M is a pointwise semi-slant submanifold of

R7 such that ξ = ∂
∂z

is tangent to M .

Example 3.2. Consider a submanifold of R7 with almost contact structure φ given in
Example 3.1. If the immersion ψ : R5 → R

7 is given by

ψ(u1, u2, u3, u4, t) = (u1, (u
2

3 + u2

4)/2, cosu4,−u2, (u2

3 − u2

4)/2, sin u4, t), u4 ̸= 0,

then the tangent space TM is spanned by X1, X2, X3, X4 and X5 where

X1 =
∂

∂x1

, X2 = − ∂

∂y1

, X3 = u3

∂

∂x2

+ u3

∂

∂y2

,

X4 = u4

∂

∂x2

− u4

∂

∂y2

− sin u4

∂

∂x3

+ cosu4

∂

∂y3

,

X5 =
∂

∂t
.

Then, M is a pointwise semi-slant submanifold such that D = Span¶X1, X2♢ is an
invariant distribution and D

θ = Span¶X3, X4♢ is a pointwise slant distribution with

pointwise slant function θ = cos−1(
√

2u4/
√

1 + 2u2
4).

Now, we obtain the following useful results for semi-slant submanifolds of a Sasakian
(or cosymplectic) manifold.

Lemma 3.1. Let M be a pointwise semi-slant submanifold of a Sasakian (or cosy-

mplectic) manifold M̃ . Then we have

(i) sin2 θ g(∇XY, Z) = g(h(X,φY ), FZ) − g(h(X, Y ), FPZ);
(ii) sin2 θ g(∇ZW,X) = g(h(X,Z), FPW ) − g(h(φX,Z), FW ),

for any X, Y ∈ Γ(D ⊕ ⟨ξ⟩) and Z,W ∈ Γ(Dθ).
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Proof. The first and second parts of the lemma can be proved in a similar way. For
any X, Y ∈ Γ(D ⊕ ⟨ξ⟩) and Z ∈ Γ(Dθ) we have

g(∇XY, Z) = g(∇̃XY, Z) = g(φ∇̃XY, φZ).

From the covariant derivative formula of φ, we derive

g(∇XY, Z) = g(∇̃XφY, φZ) − g((∇̃Xφ)Y, φZ).

Then from (2.3), (2.8) and the orthogonality of the two distributions, we find

g(∇XY, Z) = g(∇̃XφY, PZ) + g(∇̃XφY, FZ)

= −g(∇̃XPZ, φY ) + g(h(X,φY ), FZ)

= g(φ∇̃XPZ, Y ) + g(h(X,φY ), FZ).

Again, from the covariant derivative formula of φ, we get

g(∇XY, Z) = g(∇̃XφPZ, Y ) − g((∇̃Xφ)PZ, Y ) + g(h(X,φY ), FZ).

Using (2.3), (2.8) and the orthogonality of vector fields, we obtain

g(∇XY, Z) = g(∇̃XP
2Z, Y ) + g(∇̃XFPZ, Y ) + g(h(X,φY ), FZ).

Then, from (2.11) and (2.6), we have

g(∇XY, Z) = − cos2 θ g(∇̃XZ, Y ) + sin 2θ X(θ) g(Y, Z) − g(h(X, Y ), FPZ)

+ g(h(X,φY ), FZ).

From the orthogonality of the two distributions the above equation takes the form

g(∇XY, Z) = cos2 θ g(∇̃XY, Z) − g(h(X, Y ), FPZ) + g(h(X,φY ), FZ).

Hence, (i) follows from the above relation. In a similar way we can prove (ii). □

4. Warped Product Pointwise Semi-Slant Submanifolds

In [3], R. L. Bishop and B. O’Neill introduced the notion of warped product man-
ifolds as follows: Let M1 and M2 be two Riemannian manifolds with Riemannian
metrics g1 and g2, respectively, and a positive differentiable function f on M1. Con-
sider the product manifold M1 × M2 with its projections π1 : M1 × M2 → M1 and
π2 : M1 × M2 → M2. Then their warped product manifold M = M1 ×f M2 is the
Riemannian manifold M1 ×M2 = (M1 ×M2, g) equipped with the Riemannian metric

g(X, Y ) = g1(π1⋆X, π1⋆Y ) + (f ◦ π1)
2g2(π2⋆X, π2⋆Y ),

for any vector field X, Y tangent to M , where ⋆ is the symbol for the tangent maps. A
warped product manifold M = M1 ×f M2 is said to be trivial or simply a Riemannian

product manifold if the warping function f is constant.
Let X be a vector field tangent to M1 and Z be an another vector field on M2; then

from Lemma 7.3 of [3], we have

(4.1) ∇XZ = ∇ZX = X(ln f)Z,
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where ∇ is the Levi-Civita connection on M . If M = M1 ×f M2 is a warped product
manifold, then the base manifold M1 is totally geodesic in M and the fiber M2 is
totally umbilical in M [3, 8].

By analogy to CR-warped products, which were introduced by B.-Y. Chen in [8],
we define the warped product pointwise semi-slant submanifolds as follows.

Definition 4.1. A warped product of an invariant submanifold MT and a pointwise
slant submanifold Mθ of an almost contact metric manifold M̃ is called a warped

product pointwise semi-slant submanifold.

A warped product pointwise semi-slant submanifold M = MT ×fMθ is called proper

if Mθ is a proper pointwise slant submanifold and MT is an invariant submanifold of
M̃ and the function f on M is not constant.

The non-existence of warped product pointwise semi-slant submanifolds of the form
Mθ ×f MT of Kaehler and Sasakian manifolds is proved in [25] and [22]. On the other
hand, there exist non-trivial warped product pointwise semi-slant submanifolds of the
form MT ×Mθ of Kaehler manifolds [25] and contact metric manifolds [22].

In this section, we study the warped product pointwise semi-slant submanifold
of the form M = MT ×f Mθ. Notice that a warped product pointwise semi-slant
submanifold M = MT ×f Mθ is a warped product contact CR-submanifold if the
slant function θ = π

2
. Similarly, the warped product pointwise semi-slant submanifold

M = MT ×f Mθ is a warped product semi-slant submanifold if θ is constant on M ,
i.e., Mθ is a proper slant submanifold.

Remark 4.1. On a warped product pointwise semi-slant submanifold M = MT ×f Mθ

of a Sasakian (or cosymplectic) manifold M̃ , we consider the structure vector field ξ
tangent to M ; then either ξ ∈ Γ(TMT ) or ξ ∈ Γ(TMθ).

When ξ is tangent to Mθ, then it is easy to check that warped product is trivial
(see [26] and [18]), therefore we always consider ξ ∈ Γ(TMT ).

First, we prove the following non-existence result of pointwise semi-slant warped
products.

Theorem 4.1. There do not exist any proper pointwise semi-slant warped product

submanifolds of Sasakian manifolds other than contact CR-warped products.

Proof. Let M = Mθ ×f MT be a pointwise semi-slant warped product submanifold.
Then, in a similar way of Theorem 11 and Theorem 12 of [22], we find that M is a
Riemannian product of MT and Mθ.

On the other hand, if M = MT ×f Mθ and ξ is tangent to Mθ, then by Remark
4.1, M is again a Riemannian product of MT and Mθ. Furthermore, if ξ is tangent to
MT , then from (2.3) and (2.4), we have

∇Zξ + h(Z, ξ) = −PZ − FZ,(4.2)
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for any Z ∈ Γ(TMθ). Then, equating the tangential component of (4.2) and using
(4.1), we obtain

ξ(ln f)Z = −PZ.(4.3)

Taking the inner product with W ∈ Γ(TMθ), we find

ξ(ln f)g(Z,W ) = −g(PZ,W ).(4.4)

By interchanging Z and W , we get

ξ(ln f)g(Z,W ) = g(PZ,W ).(4.5)

From (4.4) and (4.5), we find ξ(ln f) = 0. Then, from (4.3), we get PZ = 0, which
means that θ = π

2
. Hence, M is a contact CR-warped product, which proves the

theorem completely. □

Next we find that if we replace the ambient manifold Sasakian to cosymplectic,
then there exists a non-trivial class of pointwise semi-slant warped products.

Lemma 4.1. Let M = MT ×f Mθ be a warped product pointwise semi-slant submani-

fold of a cosymplectic manifold M̃ such that ξ ∈ Γ(TMT ), where MT is an invariant

submanifold and Mθ is a proper pointwise slant submanifold of M̃ . Then we have

g(h(X,W ), FPZ) − g(h(X,PZ), FW ) = sin 2θ X(θ) g(Z,W ),

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. For any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ), we have

g(∇̃XZ,W ) = X(ln f) g(Z,W ).(4.6)

On the other hand, we can obtain

g(∇̃XZ,W ) = g(φ∇̃XZ, φW ).

Using the covariant derivative formula of φ, we get

g(∇̃XZ,W ) = g(∇̃XφZ, φW ).

Then, from (2.5), (2.8), (4.1) and the orthogonality of vector fields, we find

g(∇̃XZ,W ) =g(∇̃XPZ, PW ) + g(∇̃XPZ, FW ) + g(∇̃XFZ, φW )

=X(ln f) g(PZ, PW ) + g(h(X,PZ), FW ) − g(φ∇̃XFZ,W )

= cos2 θ X(ln f) g(Z,W ) + g(h(X,PZ), FW ) − g(∇̃XφFZ,W ).

From (2.9) and (2.12), we derive

g(∇̃XZ,W ) = cos2 θ X(ln f) g(Z,W ) + g(h(X,PZ), FW ) + sin2 θ g(∇̃XZ,W )

+ sin 2θ X(θ) g(Z,W ) + g(∇̃XFPZ,W ).(4.7)

Hence, the result follows from (4.6) and (4.7) by using (2.6), (2.7) and (4.1). □
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Lemma 4.2. Let M = MT ×f Mθ be a warped product pointwise semi-slant subman-

ifold of a cosymplectic manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are

invariant and pointwise slant submanifolds of M̃ , respectively. Then

(i) ξ(ln f) = 0;

(ii) g(h(X, Y ), FZ) = 0;

(iii) g(h(X,Z), FW ) = X(ln f) g(PZ,W ) − φX(ln f) g(Z,W ),

for any X, Y ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. From (2.2), (2.5) and (2.8), we have ∇Zξ + h(Z, ξ) = 0 for any Z ∈ Γ(TMθ),
which implies that ξ(ln f) = 0 by using (4.1). (ii) is proved in [22] (see relation (100)
in [22]). Now, for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ), we have

g(h(X,Z), FW ) = g(∇̃ZX,FW ) = g(∇̃ZX,φW ) − g(∇̃ZX,PW ).

Using the covariant derivative formula of the Riemannain connection and (4.1), we
get

g(h(X,Z), FW ) = g((∇̃Zφ)X,W ) − g(∇̃ZφX,W ) −X(ln f) g(Z, PW ).

Then from (2.2), (2.5) and (4.1), we derive

g(h(X,Z), FW ) = −φX(ln f) g(Z,W ) −X(ln f) g(Z, PW ),

which is third part of the lemma. Hence, the proof is complete. □

Interchanging X and φX, for any X ∈ Γ(TMT ) in Lemma 4.2 (iii), we obtain
relation

g(h(φX,Z), FW ) = X(ln f) g(Z,W ) − φX(ln f) g(Z, PW ),(4.8)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).
Similarly, interchanging Z and PZ, for any Z ∈ Γ(TMθ) in Lemma 4.2 (iii), we

obtain

g(h(X,PZ), FW ) = φX(ln f) g(Z, PW ) − cos2 θ X(ln f) g(Z,W ),(4.9)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).
Similarly, if we interchange W and PW , for any W ∈ Γ(TMθ) in Lemma 4.2 (iii),

then we derive

g(h(X,Z), FPW ) = cos2 θ X(ln f) g(Z,W ) − φX(ln f) g(Z, PW ),(4.10)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Lemma 4.3. Let M = MT ×f Mθ be a warped product pointwise semi-slant subman-

ifold of a cosymplectic manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are

invariant and proper pointwise slant submanifolds of M̃ , respectively. Then we have

g(AF WφX,Z) − g(AF P WX,Z) = sin2 θ X(ln f) g(Z,W ),(4.11)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. Subtracting (4.10) from (4.8), we get (4.11). □
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A warped product submanifold M = M1×fM2 is mixed totally geodesic if h(X,Z) =
0, for any X ∈ Γ(TM1) and Z ∈ Γ(TM2).

From Lemma 4.3, we obtain the following result.

Theorem 4.2. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-

manifold of a cosymplectic manifold M̃ . If M is mixed totally geodesic, then either

M is warped product of invariant submanifolds or the warping function f is constant

on M .

Proof. From (4.11) and the mixed totally geodesic condition, we have

sin2 θ X(ln f) g(Z,W ) = 0.

Since g is a Riemannian metric, then either sin2 θ = 0 or X(ln f) = 0. Therefore,
either M is warped product of invariant submanifolds or f is constant on M . Thus,
the proof is complete. □

Lemma 4.4. Let M = MT ×f Mθ be a warped product pointwise semi-slant subman-

ifold of a cosymplectic manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are

invariant and pointwise slant submanifolds of M̃ , respectively. Then we have

g(AF P ZW,X) − g(AF WPZ,X) = 2 cos2 θ X(ln f) g(Z,W ),(4.12)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. Interchanging Z and W in (4.10) and using (2.10), we get

g(h(X,W ), FPZ) = cos2 θ X(ln f) g(Z,W ) + φX(ln f) g(Z, PW ),(4.13)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ). Subtracting (4.9) from (4.13), we find
(4.12). □

Also, with the help of Lemma 4.4, we find the following result.

Theorem 4.3. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-

manifold of a cosymplectic manifold M̃ . If M is mixed totally geodesic, then either

M is a contact CR-warped product of the form MT ×f M⊥ or the warping function f
is constant on M .

Proof. From (4.12) and the mixed totally geodesic condition, we have

cos2 θ X(ln f) g(Z,W ) = 0.

Since g is a Riemannian metric, then either cos2 θ = 0 or X(ln f) = 0. Therefore,
either M is a contact CR-warped product or f is constant on M , which ends the
proof. □

From Theorem 4.2 and Theorem 4.3, we conclude the following.

Corollary 4.1. There does not exist any mixed totally geodesic proper warped product

pointwise semi-slant submanifold M = MT ×f Mθ of a cosymplectic manifold.
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Also, from Lemma 4.1 and Lemma 4.4, we have the following result.

Theorem 4.4. Let M = MT ×f Mθ be a warped product pointwise semi-slant subman-

ifold of a cosymplectic manifold M̃ such that ξ ∈ Γ(TMT ), where MT is an invariant

submanifold and Mθ is a pointwise slant submanifold of M̃ . Then, either M is a

contact CR-warped product of the form M = MT ×f M⊥ or ∇(ln f) = tan θ∇θ, for

any X ∈ Γ(TMT ), where M⊥ is an anti-invariant submanifold and ∇f is the gradient

of f .

Proof. From Lemma 4.1 and Lemma 4.4, we have

cos2 θ¶X(ln f) − tan θ X(θ)♢ g(Z,W ) = 0.

Since g is a Riemannian metric, therefore we conclude that either cos2 θ = 0 or
X(ln f) − tan θ X(θ) = 0. Consequently, either θ = π

2
or X(ln f) = tan θ X(θ), which

proves the theorem completely. □

As an application of Theorem 4.4, we have the following consequence.

Remark 4.2. If we consider that the slant function θ is constant, i.e., Mθ is a proper
slant submanifold in Theorem 4.4, then Z(ln f) = 0, i.e., there are no warped product
semi-slant submanifolds of the form MT ×f Mθ in cosymplectic manifolds. Hence,
Theorem 4.1 of [18] is a special case of Theorem 4.4.

In order to give a characterization result for pointwise semi-slant submanifolds of a
cosymplectic manifold, we recall the following well-known result of Hiepko [17].

Theorem 4.5 (Hiepko’s Theorem). Let D1 and D2 be two orthogonal distribution on

a Riemannian manifold M . Suppose that both D1 and D2 are involutive such that

D1 is a totally geodesic foliation and D2 is a spherical foliation. Then M is locally

isometric to a non-trivial warped product M1 ×f M2, where M1 and M2 are integral

manifolds of D1 and D2, respectively.

By using Theorem 4.5, we prove the following theorem.

Theorem 4.6. Let M be a pointwise semi-slant submanifold of a cosymplectic man-

ifold M̃ . Then M is locally a non-trivial warped product submanifold of the form

MT ×f Mθ, where MT is an invariant submanifold and Mθ is a proper pointwise slant

submanifold of M̃ if and only if

AF WφX − AF P WX = sin2 θ X(µ)W, for all X ∈ Γ(D ⊕ ⟨ξ⟩), W ∈ Γ(Dθ),(4.14)

for some smooth function µ on M satisfying Z(µ) = 0 for any Z ∈ Γ(Dθ).

Proof. Let M = MT ×f Mθ be a warped product pointwise semi-slant submanifold of
a cosymplectic manifold M̃ . Then for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ), from
Lemma 4.2 (ii) we have

g(AF WX, Y ) = 0.(4.15)
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Interchanging X and φX in (4.15), we get g(AF WφX, Y ) = 0, which means that
AF WφX has no component in TMT . Similarly, if we interchange W and PW in
(4.15) then, we get g(AF P WX, Y ) = 0, i.e., AF P WX has no component in TMT , too.
Therefore, AF WφX − AF P WX lies in TMθ, which together with Lemma 4.3, give
(4.14).

Conversely, if M is a pointwise semi-slant submanifold such that (4.14) holds, then
from Lemma 3.1 (i), we have

g(∇XY,W ) = csc2 θ g(AF WφY − AF P WY,X),

for any X, Y ∈ Γ(D ⊕ ⟨ξ⟩) and W ∈ Γ(Dθ). From (4.14), we arrive at

g(∇XY,W ) = Y (µ)g(X,W ) = 0,

which means that the leaves of the distribution D ⊕ ⟨ξ⟩ are totally geodesic in M .
Also, from Lemma 3.1 (ii), we have

g(∇ZW,X) = csc2 θ g(AF P WX − AF WφX,Z),(4.16)

for any Z,W ∈ Γ(Dθ) and X ∈ Γ(D ⊕ ⟨ξ⟩). Interchanging Z and W , we derive

g(∇WZ,X) = csc2 θ g(AF P ZX − AF ZφX,W ).(4.17)

Subtracting (4.17) from (4.16), we get

sin2 θ g([Z,W ], X) = g(AF ZφX − AF P ZX,W ) − g(AF WφX − AF P WX,Z).

Using (4.14), we get

sin2 θ g([Z,W ], X) = X(µ) g(Z,W ) −X(µ) g(W,Z) = 0.

Since M is proper pointwise semi-slant, then sin2 θ ≠ 0, thus we conclude that the
pointwise slant distribution D

θ is integrable.
Let Mθ be a leaf of Dθ and hθ is the second fundamental form of Mθ in M . Then

from (4.17), we have

g(hθ(Z,W ), X) = g(∇ZW,X) = − csc2 θ g(AF WφX − AF P WX,Z).

Using (4.14), we find

g(hθ(Z,W ), X) = −X(µ) g(Z,W ).

Then from the definition of the gradient of a function, we arrive at

hθ(Z,W ) = −(∇⃗µ) g(Z,W ).

Hence, Mθ is a totally umbilical submanifold of M with the mean curvature vector
Hθ = −∇⃗µ, where ∇⃗µ is the gradient of the function µ. Since Z(µ) = 0, for any

Z ∈ Γ(Dθ), then we can show that Hθ = −∇⃗µ is parallel with respect to the normal
connection, say Dn, of Mθ in M (see [24, 25, 28]). Thus, Mθ is a totally umbilical

submanifold of M with a non vanishing parallel mean curvature vector Hθ = −∇⃗µ,
i.e., Mθ is an extrinsic sphere in M . Then from Heipko’s Theorem [17], we conclude
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that M is a warped product manifold of MT and Mθ, where MT and Mθ are integral
manifolds of D ⊕ ⟨ξ⟩ and D

θ, respectively. Thus, the proof is complete. □

As an application of Theorem 4.6, for θ = π
2

we obtain the following result as a
special case of Theorem 4.6.

Corollary 4.2. ([27, Theorem 4.2]). A proper CR-submanifold M of a cosymplectic

manifold M̃ tangent to the structure vector field ξ is locally a contact CR-warped

product if and only if

AφZX = − (φX(µ))Z, X ∈ Γ(D ⊕ ⟨ξ⟩), Z ∈ Γ(D⊥),

for some function µ on M satisfying Wµ = 0 for all W ∈ Γ(D⊥).

5. Examples

In this section, we provide the following non-trivial examples of Riemannian prod-
ucts and warped product pointwise semi-slant submanifolds in Euclidean spaces.

Example 5.1. Let M be a submanifold of the Euclidean 7-space R
7 with its Cartesian

coordinates (x1, x2, x3, y1, y2, y3, t) and the almost contact structure

φ

∂

∂xi


= − ∂

∂yi

, φ

∂

∂yj


=

∂

∂xj

, φ

∂

∂t


= 0, 1 ≤ i, j ≤ 3.

If M is given by the equations

x1 = u1, x2 = u3 cosu4, x3 = u2

3/2, y1 = u2, y2 = u3 sin u4, y3 = u4, t = t,

for any non-zero function u3 on M , then tangent space TM of M is spanned by
X1, X2, X3, X4 and X5, where

X1 =
∂

∂x1

, X2 =
∂

∂y1

, X3 = cosu4

∂

∂x2

+ u3

∂

∂x3

+ sin u4

∂

∂y2

,

X4 = −u3 sin u4

∂

∂x2

+ u3 sin u4

∂

∂y2

+
∂

∂y3

, X5 =
∂

∂t
.

Then M is a pointwise semi-slant submanifold with invariant distribution D =
Span¶X1,X2♢ and the pointwise slant distribution D

θ = Span¶X3,X4♢. Clearly, the

slant function is θ = cos−1(2u3/
√

1 + u2
3). Moreover, D and D

θ are integrable. If MT

and Mθ are integral manifolds of D and D
θ, respectively, then, M = MT × Mθ is a

Riemannian product of MT and Mθ in R
9.

Example 5.2. Consider the Euclidean 9-space R
9 with its Cartesian coordinates

(x1, x2, x3, x4, y1, y2, y3, y4, t) and the almost contact structure

φ

∂

∂xi


= − ∂

∂yi

, φ

∂

∂yj


=

∂

∂xj

, φ

∂

∂t


= 0, 1 ≤ i, j ≤ 4.

Let M be a submanifold of R9 defined by the following immersion:

ψ(u, v, w, s, t) =

u+ v,

1

2
w2, s cosw, s sinw,−u+ v,

1

2
s2,−w sin s, w cos s, t


,
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for any non-zero functions w and s. The tangent space of M is spanned by the
following vectors

X1 =
∂

∂x1

− ∂

∂y1

, X2 =
∂

∂x1

+
∂

∂y1

,

X3 = w
∂

∂x2

− s sinw
∂

∂x3

+ s cosw
∂

∂x4

− sin s
∂

∂y3

+ cos v
∂

∂y4

,

X4 = cosw
∂

∂x3

+ sinw
∂

∂x4

+ s
∂

∂y2

− w cos s
∂

∂y3

− w sin s
∂

∂y4

,

X5 =
∂

∂t
.

Then, M is a pointwise semi-slant submanifold with the structure vector field ξ = ∂
∂t

tangent to M , D = Span¶X1,X2♢ is an invariant distribution and D
θ = Span¶X3,X4♢

is a pointwise slant distribution with slant function

θ = cos−1


(1 − ws) sin(w − s) − ws

1 + w2 + s2


.

It is easy to observe that both the distributions are integrable. If we denote the
integral manifolds of D and D

θ by MT and Mθ, respectively, then M is a Riemannian
product of invariant and pointwise slant submanifolds in R

9.

Example 5.3. Let M be a submanifold of R13 given by the immersion ψ : R5 → R
13

as follows:

ψ(u1, v1, u2, v2, t) =(u1 − v1, u1 cos(u2 + v2), u1 sin(u2 + v2), v2, u1 cos(u2 − v2),

u1 sin(u2 − v2), u1 + v1, v1 cos(u2 + v2), v1 sin(u2 + v2), u2,

v1 cos(u2 − v2), v1 sin(u2 − v2), t),

for non-zero functions u1 and v1. We use the almost contact structure from Example
5.2. Then, we have

X1 =
∂

∂x1

+ cos(u2 + v2)
∂

∂x2

+ sin(u2 + v2)
∂

∂x3

+ cos(u2 − v2)
∂

∂x5

+ sin(u2 − v2)
∂

∂x6

+
∂

∂y1

,

X2 = − ∂

∂x1

+
∂

∂y1

+ cos(u2 + v2)
∂

∂y2

+ sin(u2 + v2)
∂

∂y3

+ cos(u2 − v2)
∂

∂y5

+ sin(u2 − v2)
∂

∂y6

,

X3 = − u1 sin(u2 + v2)
∂

∂x2

+ u1 cos(u2 + v2)
∂

∂x3

− u1 sin(u2 − v2)
∂

∂x5

+ u1 cos(u2 − v2)
∂

∂x6

− v1 sin(u2 + v2)
∂

∂y2

, +v1 cos(u2 + v2)
∂

∂y3
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+
∂

∂y4

− v1 sin(u2 − v2)
∂

∂y5

+ v1 cos(u2 − v2)
∂

∂y6

,

X4 = − u1 sin(u2 + v2)
∂

∂x2

+ u1 cos(u2 + v2)
∂

∂x3

+
∂

∂x4

+ u1 sin(u2 − v2)
∂

∂x5

− u1 cos(u2 − v2)
∂

∂x6

− v1 sin(u2 + v2)
∂

∂y2

+ v1 cos(u2 + v2)
∂

∂y3

+ v1 sin(u2 − v2)
∂

∂y5

− v1 cos(u2 − v2)
∂

∂y6

,

X5 =
∂

∂t
.

By direct computations we find that D = Span¶X1,X2♢ is an invariant distribution
and D

θ = Span¶X3,X4♢ is a pointwise slant distribution with slant function θ =

cos−1


1

1+2u2

1
+2v2

1


. Hence, M is a pointwise semi-slant submanifold of R13. It is easy

to observe that both distributions are integrable. If we denote the integral manifolds
of D and D

θ by MT and Mθ, respectively, then the product metric structure of M is
given by

g = 4(du2

1 + dv2

1) + (1 + 2u2

1 + 2v2

1)(du2

2 + dv2

2) = gMT
+ f 2gMθ

.

Hence, M = MT ×f Mθ is a warped product submanifold in R
13 with warping function

f =
√

1 + 2u2
1 + 2v2

1.
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CERTAIN PROPERTIES ON MEROMORPHIC FUNCTIONS

DEFINED BY A NEW LINEAR OPERATOR INVOLVING THE

MITTAG-LEFFLER FUNCTION

AQEEL KETAB AL-KHAFAJI1 AND ABBAS KAREEM WANAS2

Abstract. Our paper introduces a new linear operator using the convolution
between a MittagŰLeffler Function and basic hypergeometric function. Use of the
linear operator creates a new class of meromorphic functions deĄned in the punctured
open unit disk. Consequently, the paper examines different aspects Apps and assets
like, extreme points, coefficient inequality, growth and distortion. In conclusion, the
work discusses modiĄed Hadamard product and closure theorems.

1. Introduction

Let Σ indicate the class of type functions

(1.1) h (z) = z−1 +
∞
∑

j=1

ajz
j, j ∈ N = ¶1, 2, 3, . . . ♢ ,

which are analytic in the punctured open unit disk U∗ = ¶z ∈ C : 0 < ♣z♣ < 1♢ =
U\ ¶0♢.

Denote by Σi (δ) and Σ∗ (δ) the subclasses of Σ that are meromorphically convex
function of order δ, and meromorphically starlike of order δ, respectively. Function
h ∈ Σ of the type (1.1), is in the class Σi (δ), if it meets

Re

{

−


1 +
zh′′ (z)

h′ (z)

}

> δ, z ∈ U∗,

Key words and phrases. Linear operator, basic hypergeometric function, meromorphic function,
MittagŰLeffler function, coefficient inequality, convex linear combination, growth and distortion
theorem, extreme points, Hadamard product.
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and h is in the class Σ∗ (δ), if it meets

Re

{

−zh′ (z)

h (z)

}

> δ, z ∈ U∗.

The Hadamard product (or convolution) h ∗ k for two analytic functions h given by
(1.1) in U∗ and

k (z) = z−1 +
∞
∑

j=1

bjz
j,

is define by

(h ∗ k) (z) = z−1 +
∞
∑

j=1

ajbjz
j.

For complex components q, bk, ai, bk ∈ C\ ¶0,−1,−2, . . . ♢, k = 1, . . . , r, i =
1, . . . ,m, the basic hypergeometric function or (q-hypergeometric function) ψm

r is
defined by:
(1.2)

ψm
r (a1, . . . , am; b1, . . . , br; q, z) =

∞
∑

j=0

(a1, q)j · · · (am, q)j

(q, q)j (b1, q)j · · · (br, q)j



(−1)jq
j(1−j)

2

1+r−m

zj,

where q ̸= 0, when m > r + 1, m, r ∈ N0 = N ∪ ¶0♢, and (a, q)j is q-analogue of the

Pochhammer symbol (a)j is defined by

(a, q)j =







(1 − a) (1 − aq) (1 − aq2) · · · (1 − aqj−1) , j = 1, 2, 3, . . . ,

1, j = 0.

Initially, the function ψm
r given by (1.2), was introduced and referred to by Heine

in 1846, as the series of Heine. For readers to refer to further q-theory information
can be found in (see [9] and [11]).

Now, for ♣q♣ < 1, m = r + 1 and z ∈ U = ¶z ∈ C : ♣z♣ < 1♢, the q-hypergeometric
function [25] defined in Equation (1.2), takes the form below

ψm
r (a1, . . . , am; b1, . . . , br; q, z) =

∞
∑

j=0

(a1, q)j · · · (am, q)j

(q, q)j (b1, q)j · · · (br, q)j

zj

that absolutely converges in the open unit disk U.
With regard to the function ψm

r (a1, . . . , am; b1, . . . , br; q, z), for meromorphic func-
tion h ∈ Σ that includes functions in shape of (1.1) (see work of [1] and [18]), which
is shown below, have successfully introduced the q-analogue of the Liu–Srivastava
operator

Gm
r (a1, . . . , am; b1, . . . , br; q, z)h (z) = z−1

l ψm
r (a1, . . . , am; b1, . . . , br; q, z) ∗ h (z)

= z−1 +
∞
∑

j=1

∏m
i=1 (ai, q)j+1

(q, q)j+1
∏r

k=1 (bk, q)j+1

ajz
j.
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Before we continue moving on, the Mittag-Leffler function Eδ (z), suggested by
Mittag-Leffler (see [16] and [17]) and defined by

Eα (z) =
∞
∑

j=0

zj

Γ (αj + 1)
, z ∈ U, α ∈ C,Re (α) > 0,

where Γ (δ) denotes the Gamma function.
Also, Wiman [26], studied another function Eδ,µ (z) have numerous similarities of

Eδ (z), and given by

(1.3) Eα,µ (z) =
∞
∑

j=0

zj

Γ (αj + µ)
, z ∈ U, α, µ ∈ C, Re (α) > 0, Re (µ) > 0.

In recent years, there has been growing interest in Mittag-Leffler for application
problems including, electric network, fluid flow, probability, statistical distribution
theory, etc. (see [2, 4, 8, 12, 15, 19, 22–24] and [27] for more information about this
function and its applications). Bansal and Prajapat recently investigated geometric
characteristics in [5] for the function Eα,µ (z) , like starlikeness, convexity and closed
to convex. In addition, certain results were obtained in [21] for the partial sum of the
Mettag-Leffler function.

We note that, the function given by (1.3), is not part of class Σ. Therefore, the
function Eα,µ (z), is then normalized on the basis of the following:

(1.4) Eα,µ (z) = Γ (µ) z−1Eα,µ (z) = z−1 +
∞
∑

j=1

Γ (µ)

Γ (α (j + 1) + µ)
zj.

Application of the function Eα,µ (z) defined by (1.4), a new operator Jα,µ : Σ→Σ,
is defined in terms of Hadamard product as follows

Jα,µh (z) = Eα,µ (z) ∗ Gm
r (a1, . . . , am; b1, . . . , br; q, z)h (z)

= z−1 +
∞
∑

j=1

∆(j+1,α,µ) (am, br)ajz
j,

where

δ(j+1,α,µ) (am, br, q) =

∏m
i=1 (ai, q)j+1

(q, q)j+1
∏r

k=1 (bk, q)j+1



Γ (µ)

Γ (α (j + 1) + µ)



.

Remark 1.1. You can see that when the parameters are defined r, m, α, µ, q, a1, . . . , am

and b1, . . . , br, it’s here noted that the operator defined Jα,µh (z), performs different
operators. For further explanation, examples are given.

(a) For α = 0, µ = 1, ai = qai , bk = qbk , ai > 0, bk > 0, i = 1, . . . ,m, k = 1, . . . , r,
m = r + 1 and q → 1, we obtain the operator defined in [14].

(b) For m = 2, r = 1, α = 0, µ = 1, a2 = q and q → 1, we obtain the operator
defined in [13].

(c) For m = 1, r = 0, α = 0, µ = 1, a1 = λ+ 1 and q → 1, we obtain the operator
defined in [10], and it was then generalized through [29].
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Some other authors have studied various classes of meromorphic univalent functions,
such as, see [3, 6, 7, 20, 28] and [30]). Such works encouraged us to create the new
class Tτ

α,µ (am, br, d) of Σ, that includes the operator Jα,µh (z), and it is presented as
follows.

Definition 1.1. For d ≥ 1, τ > 0, the function h ∈ Σ is in the class Tτ
α,µ (am, br, d) if

it satisfies the inequality

(1.5)

∣

∣

∣

∣

∣

∣

∣

z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z)
− 1

z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z)
+ d

∣

∣

∣

∣

∣

∣

∣

< τ.

Denote by Σ∗ the subclass of Σ composed of the form functions

(1.6) h (z) = z−1 +
∞
∑

j=1

♣aj♣ zj.

Define the class Tτ,∗
α,µ (am, br, d) by

Tτ,∗
α,µ (am, br, d) = Tτ

α,µ (am, br, d) ∩ Σ∗.

2. Main Results

This section introduces work to obtain sufficient conditions for the function h given
by (1.6), in the class Tτ,∗

α,µ (am, br, d) , it also shows that for functions belonging to this
class, this requirement is necessary, as well as growth and distortion bounds, extreme
points and linear combinations are submitted for the class Tτ,∗

α,µ (am, br, d) .

Theorem 2.1. A function h given by (1.6) is in the class Tτ,∗
α,µ (am, br, d) if and only

if

(2.1)
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj♣ ≤τ (1 + d) .

Proof. Assume that the inequality (1.6) holds true. We have
∣

∣

∣

∣

∣

∣

∣

z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z)
− 1

z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z)
+ d

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

z2(Jα,µh (z))′′+z(Jα,µh (z))′− Jα,µh (z)

τ
[

z2(Jα,µh (z))′′+z(Jα,µh (z))′+dJα,µh (z)
]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

∞

j=1 [j2 − 1] ∆(j+1,α,µ) (am, br) ♣aj♣ zj

(1 + d) +
∑

∞

j=1 [j2 + d] ∆(j+1,α,µ) (am, br) ♣aj♣ zj

∣

∣

∣

∣

∣

∣

< τ, z ∈ U∗.

So, we have h ∈ T
τ ,∗
α,µ (am, br, d) (by the maximum modulus theorem).
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Conversely, let h ∈ T
τ,∗
α,µ (am, br, d) where h given by (1.6), then we obtain from

inequality (1.5),
∣

∣

∣

∣

∣

z2(Jα,µh (z))′′+z(Jα,µh (z))′− Jα,µh (z)

z2(Jα,µh (z))′′+z(Jα,µh (z))′+dJα,µh (z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

∞

j=1 [j2 − 1] ∆(j+1,α,µ) (am, br) ♣aj♣ zj

(1 + d) +
∑

∞

j=1 [j2 + d] ∆(j+1,α,µ) (am, br) ♣aj♣ zj

∣

∣

∣

∣

∣

∣

< τ,(2.2)

since the last inequality is real for all z ∈ U∗, choose values of z on the real axis.
Following explanation, the denominator in (2.2) and letting z→1− through real values,
we obtain

∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj♣ ≤τ (1 + d) .

Therefore, we get the required inequality (2.1) of Theorem 2.1. □

Corollary 2.1. If the function h given by (1.6) is in the class Tτ,∗
α,µ (am, br, d), then

(2.3) ♣aj♣ ≤ τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)
, j ≥ 1,

the result is sharp of the function

h (z) = z−1 +
τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)
zj, j ≥ 1.

Theorem 2.2. Let ho (z) = z−1 and

hj (z) = z−1 +
τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)
zj.

Then, h ∈ T
τ ,∗
α,µ (am, br, d) if and only if it can be expressed form

(2.4) h (z) = z−1 +
∞
∑

j=0

vjhj (z) ,

where

vj ≥ 0 and
∞
∑

j=0

vj = 1.

Proof. Using the function h which is defined in (2.4), then

h (z) = z−1 +
∞
∑

j=0

vj

τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)
zj,
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and for last function, we get

∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br)

× vj

τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)

=
∞
∑

j=1

vjτ (1 + d) = τ (1 + d) (1 − vo) = τ (1 + d) ,

that is, condition (2.1) is met. Therefore, h ∈ T
τ,∗
α,µ (am, br, d).

Conversely, we assume that h ∈ T
τ,∗
α,µ (am, br, d) , from equation (2.3), we have:

♣aj♣ ≤ τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)
, j ≥ 1,

we set

vi =
[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)

τ (1 + d)
♣aj♣ , j ≥ 1,

and

v0 = 1 −
∞
∑

j=1

vj.

That is the result

h (z) =
∞
∑

j=0

vjfj.

The declaration of Theorem 2.2, is thus complete. □

Theorem 2.3. If a function h defined by (1.6), is in the class Tτ,∗
α,µ (am, br, d) , then

for ♣z♣ = r, we have

1

r
− τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
r

≤ ♣h (z)♣ ≤ 1

r
+

τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
r

and

1

r2
− τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)

≤ ♣h′ (z)♣ ≤ 1

r2
+

τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
.
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Proof. By Theorem 2.1, we have

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
∞
∑

j=1

♣aj♣

≤
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj♣

≤τ (1 + d) ,

which results
∞
∑

j=1

♣aj♣≤
τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
.

Therefore,

♣h (z)♣ ≤ 1

♣z♣ + ♣z♣
∞
∑

j=1

♣aj♣≤
1

♣z♣ +
τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
♣z♣

and

♣h (z)♣ ≥ 1

♣z♣ − ♣z♣
∞
∑

j=1

♣aj♣≥
1

♣z♣ − τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
♣z♣ .

On the other hand, for (1.6), differentiating both sides with respect to z, we get:

♣h′ (z)♣ ≤ 1

♣z♣2
+

∞
∑

j=1

♣aj♣≤
1

♣z♣ +
τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)

and

♣h′ (z)♣ ≥ 1

♣z♣2
−

∞
∑

j=1

♣aj♣≥
1

♣z♣ − τ (1 + d)

[(1 − τ) − (1 + τd)] ∆(2,α,µ) (am, br)
.

Define the functions hi, i = 1, 2, by

□(2.5) hi (z) = z−1 +
∞
∑

j=1

♣aj,i♣ zj, z ∈ U∗.

Theorem 2.4. Let the functions hi, i = 1, 2, which are defined in (2.5), be in the

class Tτ,∗
α,µ (am, br, d). Then for 0 ≤ s ≤ 1, the function h (z) = sh1 (z) + (1 − s)h2 (z),

in the class Tτ,∗
α,µ (am, br, d).

Proof. Using

hi (z) = z−1 +
∞
∑

j=1

♣aj,i♣ zj, i = 1, 2,

we have:

h (z) = z−1 +
∞
∑

j=1

¶s ♣aj,1♣ + (1 − s) ♣aj,2♣♢ zj, 0 ≤ s ≤ 1.
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Now, by Theorem 2.1, we obtain
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ¶s ♣aj,1♣ + (1 − s) ♣aj,2♣♢

=s
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj,1♣

+ (1 − s)
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj,2♣

≤sτ (1 + d) + (1 − s) τ (1 + d) = τ (1 + d) ,

that demonstrates h(z) ∈ T
τ,∗

α,µ (am, br, d). □

Theorem 2.5. Let the function hi, i = 1, 2, which are defined in (2.5), be in the class

Tτ,∗
α,µ (am, br, d). Then h1 ∗ h2 ∈ Tδ,∗

α,µ (am, br, d), where

δ≤ (j2 − 1) ∆(j+1,α,µ) (am, br)

τ (1 + d) + (j2 + d) ∆(j+1,α,µ) (am, br)
.

Proof. It’s enough to find the Littlest δ, such that

∞
∑

j=1

[j2 (1 − δ) − (1 + δd)] ∆(j+1,α,µ) (am, br)

δ (1 + d)
aj,1aj,2 ≤ 1.

Since hi∈Tτ,∗
α,µ (am, br, d), i = 1, 2, then

∞
∑

j=1

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)

τ (1 + d)
aj,1aj,2≤1.

By Cauchy-Schwarz inequality, we get

(2.6)
∞
∑

j=1

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)

τ (1 + d)

√
aj,1aj,2≤1.

We just want to demonstrate that

∞
∑

j=1

[j2 (1 − δ) − (1 + δd)] ∆(j+1,α,µ) (am, br)

δ (1 + d)
aj,1aj,2

≤
∞
∑

j=1

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)

τ (1 + d)

√
aj,1aj,2,

or equivalent to
√
aj,1aj,2≤

[j2 (1 − δ) − (1 + δd)] τ

[j2 (1 − τ) − (1 + τd)] δ
.

From (2.6), we get

√
an,1an,2≤

τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)
.
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Therefore, it is sufficient to show that

τ (1 + d)

[j2 (1 − τ) − (1 + τd)] ∆(j+1,α,µ) (am, br)
≤ [j2 (1 − δ) − (1 + δd)] τ

[j2 (1 − τ) − (1 + τd)] δ
.

Finally, we have

δ≤ (j2 − 1) ∆(j+1,α,µ) (am, br)

τ (1 + d) + (j2 + d) ∆(j+1,α,µ) (am, br)
. □

Theorem 2.6. If the function hi, i = 1, 2, given by equation (2.5) is in the class

Tτ,∗
α,µ (am, br, d), then h1 ∗ h2 ∈ Tτ,∗

α,µ (am, br, d).

Proof. Because h1 ∈ Tτ,∗
α,µ (am, br, d), by Theorem 2.1, we obtain

∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj♣ ≤τ (1 + d) .

Since
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj,1aj,2♣

=
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj,1♣ ♣aj,2♣

≤
∞
∑

j=1

[

j2 (1 − τ) − (1 + τd)
]

∆
(j+1,α,µ)

(am, br) ♣aj,1♣

≤1,

we have h1 ∗ h2 ∈ Tτ,∗
α,µ (am, br, d). □
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