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FAULT-TOLERANT METRIC DIMENSION OF BARYCENTRIC
SUBDIVISION OF CAYLEY GRAPHS

ALI AHMAD1, MUHAMMAD A. ASIM1, AND MARTIN BAČA2

Abstract. Metric dimension and fault-tolerant metric dimension of any graph G
is subject to size of resolving set. It has become more important in modern GPS
and sensors based world as resolving set ensures that in case of semi outage system
is still scalable using redundant interfaces. Metric dimension of several interesting
classes of graphs have been investigated like Cayley digraphs, Cartesian product of
graphs, wheel graphs, convex polytopes and certain networks for categorical product
of graphs. In this paper we used the phenomena of barycentric subdivision of graph
and proved that fault-tolerant metric dimension of barycentric subdivision of Cayley
graph is constant.

1. Introduction

Concept of metric dimension in graph theory was first introduced by Slater [18],
Harary and Melter [10] in mid 70’s. In a connected graph G, the distance d(u, v)
between two vertices u, v ∈ V (G) is the length of a shortest path between them. Metric
dimension of any graph G can be defined as S ⊆ V (G) with minimum cardinality
where all other vertices of G are uniquely determined by their distances to the vertices
in S. A vertex x resolves two vertices u and v if d(x, u) ̸= d(x, v), hence minimum
cardinality of a resolving set of G is called the metric dimension and is denoted
by β(G). Similarly a resolving set R is said to be fault-tolerant, if R\{x} is also
a resolving set for every x ∈ R that is why fault-tolerant metric dimension is the
minimum cardinality of a fault-tolerant resolving set of G. The fault-tolerant metric
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dimension of graph G is denoted by β′(G). A fault-tolerant resolving set of order
β′(G) is also called a fault-tolerant metric basis of G.

Lot of work has been done in the area of metric dimension and has used in different
domains of scientific research. Work of Slater on fault-tolerant metric dimension of
graphs carried out in different dimensions like resolvability of crystal structures, net-
work analysis, chemical structures of Methylene, mathematical formalization of woven
structures and most significant in Fast-Cluster for removing redundant sequences.
Concept of metric dimension using radio navigation by considering the vertices as
sonar or loran station ruled in last three decades but now its obsolete and is replaced
by GPS and sensor and ad-hoc networks. Through fault-tolerant resolving, a system
can continue operating somehow even in case of any failure in one or more of its
components. In case of semi outage that leads to graceful degradation of service,
system tries to act as scalable system by discovering redundant network interfaces.
Fault-tolerant metric dimension can support physical connectivity and link discovery
in distributed network based systems.

Metric dimension of several interesting classes of graphs have been investigated:
Johnson and Kneser graph [2], Grassmann graphs [3], Cayley digraphs [7] and Carte-
sian product of graphs [5]. Siddiqui et al. [17] investigated the metric dimension of
some infinite families of wheel-related graphs. Kratica et al. [16] studied the metric
dimension problem of convex polytopes. Imran et al. [13] studied further the metric
dimension of convex polytopes generated by wheel-related graphs. Ahmad et al. [1]
studied the metric dimension of Cayley graph of certain finite groups. Vetrik et al.
[19] studied the metric dimension problem for certain networks which can be obtained
as the categorical product of graphs. In [4], it has been shown that metric dimension
of a graphs is not necessarily a finite natural number. They proved that some infinite
graphs have infinite metric dimension. The computational complexity of these prob-
lems is studied in [8]. Multiprocessor interconnection networks are often required to
connect thousands of homogeneously replicated processor memory pairs, each of which
is called a processing vertex. Instead of using a shared memory, all synchronization
and communication between processing nodes for program execution is often done
via message passing. Design and use of multiprocessor interconnection networks have
recently drawn considerable attention due to the availability of inexpensive, powerful
microprocessors and memory chips.

By inserting a new vertex at any edge to split it into two equi-halves this phenomena
is known as edge subdivision. If edge subdivision is applied on multiple edges then
it is called graph subdivision, whereas if all edges are subdivided then it is called
barycentric subdivision of graph. Gross and Yellen [9] explained nice properties that
barycentric subdivided graph will be bipartite, loopless and any loopless graph will be
simple as well. Gary and Johnson [8] put an argument that problem of determining
β(G) < k is NP-Complete problem. In this paper we determined that fault-tolerant
metric dimension of barycentric subdivision of Cayley graph is constant and four
vertices are sufficient to resolve all the vertices of graph.
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2. Results

Let Pn be a path of n vertices, Chartrand et al. [6] determined the metric dimension
in the following theorem.
Theorem 2.1 ([6]). A connected graph G has metric dimension 1 if and only if
G ∼= Pn.

By considering the two endpoints of the path, the fault-tolerant metric basis ob-
tained. It is easy to observe that β(Pn) = 1 and β′(Pn) = 2, for path Pn, n ≥ 2.
From this result and the definition of the fault-tolerant metric dimension the following
inequality holds

β′(G) ≥ β(G) + 1.

Javaid et al. [14] proved in the following theorem that the difference between metric
dimension and fault-tolerant of a graph can be arbitrary large.
Theorem 2.2 ([14]). For every positive integer n, there exists a graph such that
β′(G) − β(G) ≥ n.

Let SG be a semigroup, and let H be a nonempty subset of SG. The Cayley graph
Cay(SG, H) of SG relative to H is defined as the graph with vertex set SG and edge
set E(SG) consisting of those ordered pairs (x, y) such that hx = y for some h ∈ H.
Cayley graphs of groups are significant both in group theory and in constructions of
interesting graphs with nice properties. The Cayley graph Cay(SG, H) of a group
SG is symmetric or undirected if and only if H = H−1.

The Cayley graphs Cay(Zn ⊕ Zm), n ≥ 3, m ≥ 2, is a graph which can be
obtained as the Cartesian product Pm□Cn of a path on m vertices with a cycle
on n vertices. The vertex set and the edge set of Cay(Zn ⊕ Zm) are defined as:
V (Cay(Zn ⊕ Zm)) = {(as, bt) : 1 ≤ s ≤ n, 1 ≤ t ≤ m} and E(Cay(Zn ⊕ Zm)) =
{(as, bt)(as+1, bt) : 1 ≤ s ≤ n, 1 ≤ t ≤ m} ∪ {(as, bt)(as, bt+1) : 1 ≤ s ≤ n, 1 ≤ t ≤
m − 1}. We have |V (Cay(Zn ⊕ Zm))| = mn, |E(Cay(Zn ⊕ Zm))| = (2m − 1)n, where
|V (Cay(Zn ⊕ Zm))|, |E(Cay(Zn ⊕ Zm))| denote the number of vertices, edges of the
Cayley graphs Cay(Zn ⊕ Zm), respectively.

The metric dimension of Cayley graphs Cay(Zn ⊕ Z2) has been determined in
[5] while the metric dimension of Cayley graphs Cay(Zn : H) for all n ≥ 7 and
H = {±1, ±3} has been determined in [15].

The barycentric subdivision graph BS(Cay(Zn ⊕ Zm)) can be obtained by adding
a new vertex (cs, dt) between (as, bt) and (as+1, bt) and adding a new vertex (us, vt)
between (as, bt) and (as, bt+1). Clearly, S(Cay(Zn ⊕ Zm)) has 3nm − n vertices and
4nm − 2n edges.

The metric dimension of Pm□Cn has been determined in [5] and Cayley graphs
Cay(Zn ⊕ Z2) is actually the Cartesian product of P2□Cn. In the next theorem, we
prove that the fault-tolerant metric dimension of barycentric subdivision BS(Cay(Zn⊕
Zm)) is constant and only four vertices appropriately chosen suffice to resolve all the
vertices of the BS(Cay(Zn ⊕ Zm)) for n ≥ 6 and m ≥ 2.
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Theorem 2.3. Let BS(Cay(Zn ⊕Zm)) be the barycentric subdivision of Cayley graphs
Cay(Zn ⊕ Zm). Then the fault-tolerant metric dimension of BS(Cay(Zn ⊕ Zm)) is 4
for n ≥ 6 and m ≥ 2.

Proof. Theorem will be proved for equality using double inequality.
Case 1: n ≡ 0 (mod 2). Let

R = {(a1, b1), (a2, b1), (an
2 +1, b1), (an, b1)} ⊆ V (BS(Cay(Zn ⊕ Zm)))

that shows R is a fault-tolerant resolving set for this case. With respect to R a
representation for the vertices of BS(Cay(Zn ⊕ Zm)) is as follows.

For 1 ≤ t ≤ m,

γ((as, bt)|R)

=



(2t − 2, 2t, 2t + n − 2, 2t), for s = 1,

(2t, 2t − 2, 2t + n − 4, 2t + 2), for s = 2,

(2t + 2s − 2, 2t + 2s − 6, 2t − 2s + n, 2t + 2s − 2), for 3 ≤ s ≤ n
2 ,

(2t + n − 2, 2t + n − 4, 2t − 2, 2t + n − 4), for s = n
2 + 1,

(2t − 2s + 2n, 2t − 2s + 2n + 2, 2t + 2s − n − 4,

2t − 2s + 2n − 2), for n
2 + 2 ≤ s ≤ n.

For 1 ≤ t ≤ m,

γ((cs, dt)|R)

=



(2t − 1, 2t − 1, 2t + n − 3, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n − 1, 2t + 2s − 1), for 2 ≤ s ≤ n
2 − 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n − 1, 2t + 2s − 3), for s = n
2 ,

(2t + n − 3, 2t + n − 3, 2t − 1, 2t + n − 5), for s = n
2 + 1,

2t − 2s + 2n − 1, 2t − 2s + 2n + 1, 2t + 2s − n − 3,

2t − 2s + 2n − 3), for n
2 + 2 ≤ s ≤ n.

For 1 ≤ t ≤ m − 1,

γ((us, vt)|R)

=



(2t − 1, 2t + 1, 2t + n − 1, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n + 1, 2t + 2s − 1), for 2 ≤ s ≤ n
2 ,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n + 1, 2t + 2s − 5), for s = n
2 + 1,

(2t − 2s + 2n + 1, 2t − 2s + 2n + 3, 2t + 2s − n − 3,

2t − 2s + 2n − 1), for n
2 + 2 ≤ s ≤ n.

These vertex representation are distinct, so R is the fault-tolerant resolving set of
BS(Cay(Zn ⊕Zm)). Therefore fault-tolerant metric dimension of BS(Cay(Zn ⊕Zm))
is less than equal to 4 that means β′(BS(Cay(Zn ⊕ Zm))) ≤ 4.

Imran [12] showed that metric dimension of barycentric subdivision of Cayley graphs
Cay(Zn ⊕ Zm) is 3, for m = 2 and Ahmad et al. [1] proved that metric dimension of
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BS(Cay(Zn ⊕ Zm)) = 3 for m ≥ 3, therefore the fault-tolerant metric dimension of
BS(Cay(Zn ⊕ Zm)) must be greater than 3 that means β′(BS(Cay(Zn ⊕ Zm))) ≥ 4.
Hence proved that fault-tolerant metric dimension is β′(BS(Cay(Zn ⊕ Zm))) = 4 for
n ≥ 6 and m ≥ 2.

Case 2: n ≡ 1 (mod 2). Let

R = {(a1, b1), (a2, b1), (a⌈ n
2 ⌉, b1), (an, b1)} ⊆ V (BS(Cay(Zn ⊕ Zm)))

that shows R is a fault-tolerant resolving set for this case. With respect to R a
representation for the vertices of BS(Cay(Zn ⊕ Zm)) is as follows.

For 1 ≤ t ≤ m,

γ((as, bt)|R)

=



(2t − 2, 2t, 2t + n − 3, 2t), for s = 1,

(2t, 2t − 2, 2t + n − 5, 2t + 2), for s = 2,

(2t + 2s − 4, 2t + 2s − 6, 2t − 2s + n − 1,

2t + 2s − 2), for 3 ≤ s ≤ ⌈n
2 ⌉ − 1,

(2t + n − 3, 2t + n − 5, 2t − 2, 2t + n − 3), for s = ⌈n
2 ⌉,

(2t + n − 3, 2t + n − 3, 2t, 2t + n − 5), for s = ⌈n
2 ⌉ + 1,

(2t − 2s + 2n, 2t − 2s + 2n + 2,

2t + 2s − n − 3, 2t − 2s + 2n − 2), for ⌈n
2 ⌉ + 2 ≤ s ≤ n.

For 1 ≤ t ≤ m,

γ((cs, dt)|R)

=



(2t − 1, 2t − 1, 2t + n − 4, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n − 2,

2t + 2s − 1), for 2 ≤ s ≤ ⌈n
2 ⌉ − 1,

(2t + n − 2, 2t + n − 4, 2t − 1, 2t + n − 4), for s = ⌈n
2 ⌉,

(2t − 2s + 2n − 1, 2t − 2s + 2n + 1,

2t + 2s − n − 2, 2t − 2s + 2n − 3), for ⌈n
2 ⌉ + 1 ≤ s ≤ n − 1,

(2t − 1, 2t + 1, 2t + n − 2, 2t − 1), for s = n.

For 1 ≤ t ≤ m − 1,

γ((us, vt)|R)

=



(2t − 1, 2t + 1, 2t + n − 2, 2t + 1), for s = 1,

(2t + 2s − 3, 2t + 2s − 5, 2t − 2s + n, 2t + 2s − 1), for 2 ≤ s ≤ ⌈n
2 ⌉ − 1,

(2t + n − 2, 2t + n − 4, 2t − 1, 2t + n − 2), for s = ⌈n
2 ⌉,

(2t + n − 2, 2t + n − 2, 2t + 1, 2t + n − 4), for s = ⌈n
2 ⌉ + 1,

(2t − 2s + 2n + 1, 2t − 2s + 2n + 3,

2t + 2s − n − 2, 2t − 2s + 2n − 1), for ⌈n
2 ⌉ + 2 ≤ s ≤ n.
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These vertex representations are distinct, so R is the fault-tolerant resolving set of
BS(Cay(Zn ⊕Zm)). Therefore, fault-tolerant metric dimension of BS(Cay(Zn ⊕Zm))
is less than or equal to 4 that means β′(BS(Cay(Zn ⊕ Zm))) ≤ 4.

Imran [12] showed that metric dimension of barycentric subdivision of Cayley graphs
Cay(Zn ⊕ Zm) is 3, for m = 2 and Ahmad et al. [1] proved that metric dimension of
BS(Cay(Zn ⊕ Zm)) = 3 for m ≥ 3, therefore the fault-tolerant metric dimension of
BS(Cay(Zn ⊕ Zm)) must be greater than 3 that means β′(BS(Cay(Zn ⊕ Zm))) ≥ 4.
Hence proved that fault-tolerant metric dimension is β′(BS(Cay(Zn ⊕ Zm))) = 4 for
n ≥ 6 and m ≥ 2. □
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