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ITERATIVE ALGORITHM OF SPLIT MONOTONE VARIATIONAL

INCLUSION PROBLEM FOR NEW MAPPINGS

MOHAMMAD FARID1, SYED SHAKAIB IRFAN2, AND IQBAL AHMAD3

Abstract. In this paper, we developed a new type iterative scheme to approximate
a common solution of split monotone variational inclusion, variational inequality
and fixed point problems for an infinite family of nonexpansive mappings in the
framework of Hilbert spaces. Further, we proved that the sequence generated by
the proposed iterative method converges strongly to a common solution of split
monotone variational inclusion, variational inequality and fixed point problems.
Furthermore, we give some consequences of the main result. Finally, we discuss a
numerical example to demonstrate the applicability of the iterative algorithm. The
result presented in this paper unifies and extends some known results in this area.

1. Introduction

Throughout the paper, let C1 and C2 be nonempty subsets of real Hilbert spaces
H1 and H2, respectively.

A mapping S1 : C1 → C1 is said to be nonexpansive if

∥S1x1 − S1x2∥ ≤ ∥x1 − x2∥, for all x1, x2 ∈ C1.

Let Fix(S1) denotes the fixed points of S1 that is Fix(S1) = ¶x1 ∈ C1 : S1x1 = x1♢.
The classical scalar nonlinear variational inequality problem (in brief, VIP) is: Find

x1 ∈ C1 such that

(1.1) ⟨Bx1, x2 − x1⟩ ≥ 0, for all x2 ∈ C1,

Key words and phrases. Iterative method, strong convergence, fixed point problem, split monotone
variational inclusion problem, nonexpansive mapping, variational inequality problem.
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494 M. FARID, S. S. IRFAN, AND I. AHMAD

where B : C1 → H1 is a nonlinear mapping. It was introduced by Hartman and
Stampacchia [10].

A mapping T : H1 → H1 is said to be

(i) monotone, if

⟨Tx1 − Tx2, x1 − x2⟩ ≥ 0, for all x1, x2 ∈ H1;

(ii) γ-inverse strongly monotone (in brief, ism), if

⟨Tx1 − Tx2, x1 − x2⟩ ≥ γ∥Tx1 − Tx2∥
2, for all x1, x2 ∈ H1 and γ > 0;

(iii) firmly nonexpansive, if

⟨Tx1 − Tx2, x1 − x2⟩ ≥ ∥Tx1 − Tx2∥
2, for all x1, x2 ∈ H1;

(iv) L-Lipschitz continuous, if

∥Tx1 − Tx2∥ ≤ L∥x1 − x2∥, for all x1, x2 ∈ H1 and L > 0.

A set valued mapping M1 : H1 → 2H1 is called monotone if for every x1, x2 ∈ H1,
u1 ∈ M1x1 and u2 ∈ M1x2 such that

⟨x1 − x2, u1 − u2⟩ ≥ 0.

And it is maximal if G(M1), graph of M1 defined as G(M1) = ¶(x1, u1) : u1 ∈ M1x1♢
does not contain properly in the graph of other. Note that, M1 is maximal if and
only if for (x1, u1) ∈ H1 × H1, ⟨x1 − x2, u1 − u2⟩ ≥ 0, for all (x2, u2) ∈ G(M1) implies
u1 ∈ M1x1.

An operator JM1

ρ1
: H1 → H1 is defined as

JM1

ρ1
x1 = (I + ρ1M1)

−1x1, for all x1 ∈ H1,

known as resolvent operator, where ρ1 > 0 and I stands for identity mapping on H1.
In this paper, we consider the split monotone variational inclusion problem (in brief,

SPMVIP). Find x̃ ∈ H1 such that

(1.2) 0 ∈ g1(x̃) + M1(x̃)

and

(1.3) ỹ = Dx̃ ∈ H2 solves 0 ∈ g2(ỹ) + M2(ỹ),

where g1 : H1 → H1, g2 : H2 → H2 be inverse strongly monotone mappings, D :
H1 → H2 be a bounded linear mapping and M1 : H1 → 2H1 , M2 : H2 → 2H2 be
multi-valued maximal monotone mappings, which is introduced by Moudafi [17]. Let
Λ = ¶x̃ ∈ H1 : x̃ ∈ Sol(MVIP(1.2)) and Dx̃ ∈ Sol(MVIP(1.3))♢ denote the solution
of SPMVIP (1.2)–(1.3).

The split feasibility, split zero and the split fixed point problems include as a special
cases. It studied broadly by various authors and solved real life problems essentially
in modelling of inverse problems, sensor networks in computerised tomography and
radiation therapy; for details [3, 5, 7].
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If g1 ≡ 0 and g2 ≡ 0 then we find a split null point problem (in brief, SPNPP):Find
x̃ ∈ H1 such that

(1.4) 0 ∈ M1(x̃)

and

(1.5) ỹ = Dx̃ ∈ H2 solves 0 ∈ M2(ỹ).

The iterative algorithm for SPMVIP (1.2)–(1.3) was introduced and studied by
Moudafi [17]:

x0 ∈ H1, xn+1 = P (xn + ηD∗(Q − I)Dxn), for ρ > 0,

where P := JM1

ρ (I − ρg1), Q := JM2

ρ (I − ρg2), D∗ be the adjoint operator of D and

0 < η < 1
ς
, ς be the spectral radius of D∗D.

The convergence analysis was studied by Byrne et al. [4] of some iterative algorithm
for SPNPP (1.4)–(1.5). Moreover, Kazmi et al. [15] established an iterative method to
find a common solution of SPNPP (1.4)–(1.5) and fixed point problem. For instance,
see [1, 12–14,20–22].

Recently, Qin et al. [19] proposed an algorithm for infinite family of nonexpansive
mappings as:

x0 ∈ C1, xn+1 = µnθg(xn) + ηnxn + ((1 − ηn)I − µnD)Wnun,

where g be a contraction mapping on H1, D be a strongly positive bounded linear
operator, Wn generated by S1, S2, . . . as:

Vn,n+1 := I,

Vn,n := λnSnVn,n+1 + (1 − λn)I,

Vn,n−1 := λn−1Sn−1Vn,n + (1 − λn−1)I,

...

Vn,m := λmSmVn,m+1 + (1 − λm)I,

Vn,m−1 := λm−1Sm−1Vn,m + (1 − λm−1)I,

...

Vn,2 := λ2S2Vn,3 + (1 − λ3)I,

Wn ≡ Vn,1 := λ1S1Vn,2 + (1 − λ1)I,(1.6)

where S1, S2, . . . , Wn are nonexpansive mappings, ¶λn♢ ⊂ (0, 1], for n ≥ 1. For
further work see [8, 11].

Inspirited by Moudafi [17], Byrne et al. [4], Kazmi et al. [14,15], Qin et al. [19] and
by continuing work, we propose and analyze a new type iterative algorithm to find a
common solution of split monotone variational inclusion, variational inequality and
fixed point problems for an infinite family of nonexpansive mappings in the framework
of Hilbert spaces. Further, we endowed that the sequence generated by the algorithm
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converges strongly to common solution. Furthermore, we listed some consequences of
our established theorem. Finally, we provide a numerical example to demonstrate the
applicability of algorithm. We emphasize that the result accounted in manuscript is
unifies and extends of various results in this field of study.

2. Preliminaries

This section is devoted to recall few definitions, entailing mathematical tools and
helpful results that are required in the sequel.

To each x1 ∈ H1, there exists a unique nearest point PC1
x1 to x1 in C1 such that

∥x1 − PC1
x1∥ ≤ ∥x1 − x2∥, for all x2 ∈ C1,

where PC1
is a metric projection of H1 onto C1. Also, PC1

is nonexpansive and holds

⟨x1 − x2, PC1
x1 − PC1

x2⟩ ≥ ∥PC1
x1 − PC1

x2∥
2, for all x1, x2 ∈ H1.

Moreover, PC1
x1 is characterized by the fact that PC1

x1 ∈ C1 and

⟨x1 − PC1
x1, x2 − PC1

x1⟩ ≤ 0, for all x2 ∈ C1.

This implies that

∥x1 − x2∥
2 ≥ ∥x1 − PC1

x1∥
2 + ∥x2 − PC1

x1∥
2, for all x1 ∈ H1, for all x2 ∈ C1,

and

∥µx1 + (1 − µ)x2∥
2 = µ∥x1∥

2 + (1 − µ)∥x2∥
2 − µ(1 − µ)∥x1 − x2∥

2,

for all x1, x2 ∈ H1 and µ ∈ [0, 1].
Also, on H1 holds following inequalities.

(a) Opial’s condition [18], that is for any ¶xn♢ with xn ⇀ x1 and

lim inf
n→∞

∥xn − x1∥ < lim inf
n→∞

∥xn − x2∥,

holds, for all x2 ∈ H1 with x2 ̸= x1.
(b)

(2.1) ∥x1 + x2∥
2 ≤ ∥x1∥

2 + 2⟨x2, x1 + x2⟩, for all x1, x2 ∈ H1.

Definition 2.1. ([2]) A mapping T1 : H1 → H1 is called averaged if and only if

T1 = (1 − λ)I + λS1,

where λ ∈ (0, 1), I be the identity mapping on H1 and S1 : H1 → H1 be nonexpansive
mapping.

Lemma 2.1. ([17])

(i) If T2 = (1 − λ)T1 + λS1, where T1 : H1 → H1 be averaged, S1 : H1 → H1 be
nonexpansive and 0 < λ < 1, then T2 is averaged.

(ii) If T1 is γ-ism, then βT1 is γ

β
-ism, for β > 0.

(iii) T1 is averaged if and only if I − T is γ-ism for some γ > 1
2

.
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Lemma 2.2. ([17]) Let ρ > 0, f be a γ-ism and M be a maximal monotone mapping.
If ρ ∈ (0, 2γ), then JM

ρ (I − ρf) is averaged.

Lemma 2.3. ([17]) Let ρ1, ρ2 > 0 and M1, M2 be maximal monotone mapping. Then

x̃ solves (1.2)–(1.3) ⇔ x̃ = JM1

ρ1
(I − ρ1f1)x̃ and Bx̃ = JM2

ρ2
(I − ρ2f2)Bx̃.

Lemma 2.4. ([24]) Let ¶un♢ and ¶vn♢ be bounded sequences in E, a Banach space
and let 0 < µn < 1 with 0 < lim inf

n→∞
µn ≤ lim sup

n→∞
µn < 1. Consider vn+1 = (1−µn)vn +

µnun, n ≥ 0, and lim sup
n→∞

(∥vn+1 − vn∥ − ∥un+1 − un∥) ≤ 0. Then

lim
n→∞

∥vn − un∥ = 0.

Lemma 2.5. ([16]) Assume that B is a strongly positive self-adjoint bounded linear
operator on H1 with coefficient γ > 0 and 0 < ρ ≤ ∥B∥−1. Then ∥I − ρB∥ ≤ 1 − ργ.

Lemma 2.6. ([25]) Let ¶an♢ be a sequence of nonnegative real numbers with

an+1 ≤ (1 − λn)an + αn, n ≥ 0,

where λn ∈ (0, 1) and ¶αn♢ in R with

(i)
∞
∑

n=1
λn = ∞;

(ii) lim sup
n→∞

αn

λn
≤ 0 or

∞
∑

n=1
♣αn♣ < +∞.

Then lim
n→∞

an = 0.

Lemma 2.7. ([9]) Let S1 : C1 → H1 be a nonexpansive mapping. If S1 has a
fixed point, then (I − S1), where I be the identity mapping, be demiclosed that is if
xn ⇀ x1 ∈ H1 and xn − S1xn → x2, then (I − S1)x1 = x2.

Lemma 2.8. ([23]) Let C1 ̸= ∅ be closed convex subset of a strictly convex Banach

space E. Let S1, S2, . . . be nonexpansive mappings of C1 to C1 such that
∞
⋂

i=1
Fix(Si) ̸= ∅

and let λ1, λ2, . . . be real numbers satisfying 0 < λi < 1 for all i ≥ 1. Then lim
i→∞

Vi,jx̃

exists for all x̃ ∈ C1 and j ∈ N.

Remark 2.1. By Lemma 2.8, define a mapping W : C1 → C1 such that Wx̃ =
lim
i→∞

Wix̃ = lim
i→∞

Vi,1x̃ for all x̃ ∈ C1, which is called the W-mapping generated by

S1, S2, . . . and λ1, λ2, . . . In the whole paper, we consider 0 < λi < 1 for all i ≥ 1.

Lemma 2.9. ([23]) Let C1 ̸= ∅ be closed convex subset of a strictly convex Banach

space E. Let S1, S2, . . . be nonexpansive mappings of C1 to C1 such that
∞
⋂

i=1
Fix(Si) ̸=

∅ and let λ1, λ2, . . . be real numbers satisfying 0 < λi < 1 for all i ≥ 1. Then

Fix(W) =
∞
⋂

i=1
Fix(Si).
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Lemma 2.10. ([6]) Let C1 ̸= ∅ be closed convex subset of H1. Let S1, S2, . . . be

nonexpansive mappings of C1 to C1 such that
∞
⋂

i=1
Fix(Si) ̸= ∅ and let λ1, λ2, . . . be real

numbers satisfying 0 < λi < 1 for all i ≥ 1. If K be any bounded bounded subset of
C1, then lim

i→∞
supx̃∈K ∥Wix̃ − Wx̃∥ = 0.

3. Main Result

We study the following convergence result for a new type iterative method to find
a common solution of SPMVIP (1.2)–(1.3), VIP (1.1) and fixed point problem.

Theorem 3.1. Let H1 and H2 denote the Hilbert spaces and C1 ⊂ H1 be nonempty
closed convex subset of H1. Let B : H1 → H1 be a γ-inverse strongly monotone
mapping, D : H1 → H2 be a bounded linear operator with its adjoint operator D∗,
M1 : H1 → 2H1 ,M2 : H2 → 2H2 be multi-valued maximal monotone operators
and g1 : H1 → H1, g2 : H2 → H2 be α1, α2-inverse strongly monotone mappings,
respectively. Let f : C1 → C1 be a contraction mapping with constant τ ∈ (0, 1), A be
a strongly positive bounded linear self adjoint operator on C1 with constant θ̄ > 0 such

that 0 < θ < θ̄
τ

< θ + 1
τ

and ¶Si♢
∞
i=1 : C1 → C1 be an infinite family of nonexpansive

mappings such that Γ := Λ ∩ Sol(VIP(1.1)) ∩ (∩∞
i=1Fix(Si)) ̸= ∅. Let ¶xn♢ be the

sequence generated as:

x1 ∈ C1,
zn = R(I + ξD∗(S − I)D)xn,
un = PC1

(zn − σnBzn),
vn = δnun + (1 − δn)Wnun,
xn+1 = µnθf(xn) + ηnxn + ((1 − ηn)I − µnA)vn, n ≥ 1,



























where R = J (g1,M1)
ρ1

(I − ρ1g1), S = J (g2,M2)
ρ2

(I − ρ2g2), Wn defined in (1.6), ¶µn♢, ¶ηn♢,

¶δn♢ ⊂ (0, 1) and ξ ∈ (0, 1
ϵ
), ϵ be the spectral radius of D∗D. Let the control sequences

satisfying conditions:

(i) lim
n→∞

µn = 0,
∞
∑

n=0
µn = ∞;

(ii) 0 < ρ1 < 2α1, 0 < ρ2 < 2α2;
(iii) 0 < lim inf

n→∞
ηn ≤ lim sup

n→∞
ηn < 1;

(iv) 0 < lim inf
n→∞

σn ≤ lim sup
n→∞

σn < 2γ;

(v) lim
n→∞

δn = 0.

Then, the sequence ¶xn♢ converges strongly to some x̃ ∈ Γ, where x̃ = PΓ(θf+(I−A))x̃
which solves:

⟨(A − θf)x̃, v − x̃⟩ ≥ 0, for all v ∈ Γ.

Proof. For sake of simplicity, we divide the proof into several steps.
Step 1. We prove that ¶xn♢ is bounded.
Let x̃ ∈ Γ then x̃ ∈ Λ and thus Rx̃ = x̃, S(Dx̃) = Dx̃ and Px̃ = x̃, where

P = I +ηD∗(S −I)D. By Lemma 2.2 and firmly nonexpansive, R and S are averaged.
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Also, P is averaged since it is ν
ϵ
-ism for some ν > 1

2
. From Lemma 2.1 (iii), I − S is

ν-ism. Thus, we obtain

⟨D∗(I − S)Dx1 − D∗(I − S)Dx2, x1 − x2⟩ =⟨(I − S)Dx1 − (I − S)Dx2, Dx1 − Dx2⟩

≥ν∥(I − S)Dx1 − (I − S)Dx2∥
2

≥
ν

ϵ
∥D∗(I − S)Dx1 − D∗(I − S)Dx2∥

2.

This implies that ηD∗(I − S)D is ν
ξϵ

-ism. Since 0 < ξ < 1
ϵ

therefore its complement

(I − ξD∗(I − S)D) is averaged and hence R(I + ξD∗(S − I)D) = Z(say). Thus,
I + ξD∗(S − I)D, R, S and Z are nonexpansive mappings.

Next, we calculate

∥zn − x̃∥2 = ∥Jg1,M1

ρ1
(I − ρ1g1)(xn + ξD∗(S − I)Dxn) − Jg1,M1

ρ1
(I − ρ1g1)x̃∥2

≤ ∥xn + ξD∗(S − I)Dxn − x̃∥2

= ∥xn − x̃∥2 + ξ2∥D∗(S − I)Dxn∥2 + 2ξ⟨xn − x̃, D∗(S − I)Dxn⟩.(3.1)

Now,

ξ2∥D∗(S − I)Dxn∥2 = ξ2⟨(S − I)Dxn, DD∗(S − I)Dxn⟩

≤ ϵξ2⟨(S − I)Dxn, (S − I)Dxn⟩

= ϵξ2∥(S − I)Dxn∥2.(3.2)

Consider Υn := 2ξ⟨xn − x̃, D∗(S − I)Dxn⟩ and we estimate

Υn = 2ξ⟨xn − x̃, D∗(S − I)Dxn⟩

= 2ξ⟨D(xn − x̃) + (S − I)Dxn − (S − I)Dxn, (S − I)Dxn⟩

= 2ξ[⟨S(D(xn) − Dx̃, (S − I)Dxn⟩ − ∥(S − I)Dxn∥2]

≤ 2ξ


1

2
∥(S − I)Dxn∥2 − ∥(S − I)Dxn∥2



= −ξ∥(S − I)Dxn∥2.(3.3)

From (3.1), (3.2), (3.3), we obtain

(3.4) ∥zn − x̃∥2 ≤ ∥xn − x̃∥2 + ξ(ϵξ − 1)∥(S − I)Dxn∥2.

Since 0 < ξ < 1
ϵ
, therefore

(3.5) ∥zn − x̃∥ ≤ ∥xn − x̃∥.

Using γ-ism and 0 < σn < 2γ, we have

∥un − x̃∥2 = ∥PC1
(zn − σnBzn) − PC1

(zn − σnBx̃)∥2

≤ ∥zn − σnBzn − (zn − σnBx̃)∥2

= ∥(zn − x̃) − σn(Bzn − Bx̃)∥2

= ∥zn − x̃∥2 − 2σn⟨Bzn − Bx̃, zn − x̃⟩ + σ2
n∥Bzn − Bx̃∥2
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≤ ∥zn − x̃∥2 − 2σnγ∥Bzn − Bx̃∥2 + σ2
n∥Bzn − Bx̃∥2

= ∥zn − x̃∥2 + σn(σn − 2γ)∥Bzn − Bx̃∥2

≤ ∥zn − x̃∥2,(3.6)

this implies

(3.7) ∥un − x̃∥ ≤ ∥zn − x̃∥.

By using (3.5) and (3.6), we calculate

∥vn − x̃∥ ≤ δn∥un − x̃∥ + (1 − δn)∥Wnun − x̃∥

= δn∥un − x̃∥ + (1 − δn)∥un − x̃∥

≤ ∥un − x̃∥

= ∥zn − x̃∥

= ∥xn − x̃∥.(3.8)

By using (3.7) and (3.8), we calculate

∥xn+1 − x̃∥ = ∥µnθf(xn) + ηnxn + ((1 − ηn)I − µnA)vn − x̃∥

=∥µn(θf(xn) − Ax̃) + ηn(xn − x̃)

+ ((1 − ηn)I − µnA)(vn − x̃)∥

≤µn∥θf(xn) − Ax̃∥ + ηn∥xn − x̃∥

+ ((1 − ηn)I − µnθ)∥vn − x̃∥

≤µn∥θf(xn) − θf(x̃) + θf(x̃) − Ax̃∥

+ ηn∥xn − x̃∥ + ((1 − ηn)I − µnθ)∥un − x̃∥

≤ µnθ∥f(xn) − f(x̃)∥ + µn∥θf(x̃) − Ax̃∥

+ ηn∥xn − x̃∥ + ((1 − ηn)I − µnθ)∥xn − x̃∥

≤µnθτ∥xn − x̃∥ + µn∥θf(x̃) − Ax̃∥

+ (1 − µnθ)∥xn − x̃∥

≤(1 − µn(θ − θτ))∥xn − x̃∥ + µn∥θf(x̃) − Ax̃∥

≤ max

{

∥xn − x̃∥,
∥θf(x̃) − Ax̃∥

θ − θτ

}

, n ≥ 1.

Using induction, we get

∥xn+1 − x̃∥ ≤ max

{

∥x1 − x̃∥,
∥θf(x̃) − Ax̃∥

θ − θτ

}

.

Thus, ¶xn♢ is bounded. Also, ¶zn♢, ¶un♢, ¶vn♢, ¶f(xn)♢ and ¶W(xn)♢ are bounded
due to (3.4), (3.7) and (3.8).

Step 2. We show that lim
n→∞

∥xn+1 − xn∥ = 0, lim
n→∞

∥xn − Wnun∥ = 0, lim
n→∞

∥vn −

xn∥ = 0 and lim
n→∞

∥vn − un∥ = 0.
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Since R(I + ξD∗(S − I)D) is nonexpansive therefore

∥zn+1 − zn∥ = ∥R(I + ξD∗(S − I)D)xn+1 − R(I + ξD∗(S − I)D)xn∥

≤ ∥xn+1 − xn∥.(3.9)

Using (3.9), we estimate

∥un+1 − un∥ = ∥PC(I − σn+1B)zn+1 − PC(I − σnB)zn∥

≤ ∥(I − σn+1B)zn+1 − (I − σnB)zn∥

= ∥(I − σn+1B)zn+1 − (I − σn+1B)zn + (σn − σn+1)Avn∥

≤ ∥zn+1 − zn∥ + ♣σn − σn+1♣∥Bzn∥

≤ ∥xn+1 − xn∥ + ♣σn − σn+1♣∥Bzn∥

≤ ∥xn+1 − xn∥ + N1♣σn − σn+1♣,(3.10)

where N1 = supn≥1 ∥Bzn∥.
For i ∈ 1, 2, . . . , n, Si and Vn,i, are nonexpansive therefore from (1.6), we obtain

∥Wn+1un − Wnun∥ = ∥λ1S1Vn+1,2un − λ1S1Vn,2un∥

≤ λ1∥Vn+1,2un − Vn,2un∥

≤ λ1∥λ2S2Vn+1,3un − λ2S2Vn,3un∥

≤ λ1λ2∥Vn+1,3un − Vn,3un∥

...

≤ λ1λ2 · · · λn∥Vn+1,n+1un − Vn,n+1un∥

≤ N2

n
∏

i=1

λi,(3.11)

where N2 ≥ 0 with ∥Vn+1,n+1un − Vn,n+1un∥ ≤ N2 for all n ≥ 1.
Using (3.10) and (3.11), we estimate

∥vn+1 − vn∥ ≤∥δn+1un+1 + (1 − δn+1)Wn+1un+1 − δnun − (1 − δn)Wnun∥

≤∥δn+1un+1 + (1 − δn+1)Wn+1un+1 − δnun − (1 − δn)Wnun

+ (1 − δn)Wn+1un − (1 − δn)Wn+1un∥

≤(1 − δn)∥Wn+1un − Wnun∥ + ∥Wn+1un+1 − Wn+1un∥

+ δn+1∥Wn+1un+1 − un+1∥ + δn∥Wn+1un − un∥

≤(1 − δn)N2

n
∏

i=1

λi + ∥un+1 − un∥ + δn+1N3 + δnN4

≤(1 − δn)N2

n
∏

i=1

λi + ∥xn+1 − xn∥ + N1♣σn − σn+1♣ + δn+1N3 + δnN4,(3.12)
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where N3 = supn≥1 ∥Wn+1un+1 − un+1∥ and N4 = supn≥1 ∥Wn+1un − un∥. Setting

xn+1 = (1 − ηn)sn + ηnxn, then we have sn = xn+1−ηnxn

1−ηn
and

sn+1 − sn =
µn+1θf(xn+1) + ((1 − ηn+1)I − µn+1A)vn+1

1 − ηn+1

−
µnθf(xn) + ((1 − ηn)I − µnA)vn

1 − ηn

=
µn+1

1 − ηn+1

(θf(xn+1) − Avn+1) +
µn

1 − ηn

(Avn − θf(xn)) + vn+1 − vn.

Hence,

∥sn+1 − sn∥ ≤
µn+1

1 − ηn+1

(∥θf(xn+1)∥ + ∥Avn+1∥)

+
µn

1 − ηn

(∥Avn∥ + ∥θf(xn)∥) + ∥vn+1 − vn∥

≤
µn+1

1 − ηn+1

N5 +
µn

1 − ηn

N6 + ∥vn+1 − vn∥,

where N5 = supn≥1(∥θf(xn+1)∥ + ∥Avn+1∥) and N6 = supn≥1(∥Avn∥ + ∥θf(xn)∥).
Using (3.12) in above inequality

∥sn+1 − sn∥ ≤
µn+1

1 − ηn+1

N5 +
µn

1 − ηn

N6 + (1 − δn)N2

n
∏

i=1

λi

+ ∥xn+1 − xn∥ + N1♣σn − σn+1♣ + δn+1N3 + δnN4,

and thus

∥sn+1 − sn∥ − ∥xn+1 − xn∥ ≤
µn+1

1 − ηn+1

N5 +
µn

1 − ηn

N6

+ N1♣σn − σn+1♣ + (1 − δn)N2

n
∏

i=1

λi + δn+1N3 + δnN4.

Using the given conditions in above inequality, we have

lim sup
n→∞

(∥sn+1 − sn∥ − ∥xn+1 − xn∥) ≤ 0.

By Lemma 2.4, we get
lim

n→∞
∥sn − xn∥ = 0.

As xn+1 = (1 − ηn)sn + ηnxn, therefore

∥xn+1 − xn∥ = ∥(1 − ηn)(sn − xn)∥,

which yields

(3.13) lim
n→∞

∥xn+1 − xn∥ = 0.

Now,

∥xn − Wnun∥ =∥xn − xn+1 + xn+1 − Wnun∥

≤∥xn+1 − xn∥ + ∥µnθf(xn) + ηnxn
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+ ((1 − ηn)I − µnA)vn − Wnun∥

=∥xn+1 − xn∥ + ∥µn(θf(xn) − Avn)∥

+ ((1 − ηn)I − µnA)(vn − Wnun) + ηn(xn − Wnun)

≤∥xn+1 − xn∥ + µn∥θf(xn) − Avn∥ + ηn∥xn − Wnun∥.(3.14)

Hence,

(1 − ηn)∥xn − Wnun∥ ≤ ∥xn+1 − xn∥ + µn∥θf(xn) − Avn∥.

Using the given conditions and (3.13) in (3.14), we get

(3.15) lim
n→∞

∥xn − Wnun∥ = 0.

By (3.5) and (3.7), we compute

∥xn+1 − x̃∥2 =∥µnθf(xn) + ηnxn + ((1 − ηn)I − µnA)vn − x̃∥2

≤∥(1 − ηn)(vn − x̃) + ηn(xn − x̃)∥2

+ 2⟨µnθf(xn) − µnAvn, xn+1 − x̃⟩

≤(1 − ηn)∥vn − x̃∥2 + ηn∥xn − x̃∥2

− ηn(1 − ηn)∥xn − vn∥2

+ 2µn∥θf(xn) − Avn∥∥xn+1 − x̃∥

≤ηn∥xn − x̃∥2 + (1 − ηn)∥vn − x̃∥2 + 2µnN7,(3.16)

where N7 = max¶supn≥1 ∥θf(xn) − Avn∥, supn≥1 ∥xn+1 − x̃∥♢. From (3.4) and (3.8),
we get

∥xn+1 − x̃∥2 ≤ηn∥xn − x̃∥2 + (1 − ηn)∥xn − x̃∥2

+ (1 − ηn)ξ(ϵξ − 1)∥(S − I)Dxn∥2 + 2µnN7

≤∥xn − x̃∥2 + (1 − ηn)ξ(ϵξ − 1)∥(S − I)Dxn∥2 + 2µnN7,

which yields

(1 − ηn)ξ(1 − ϵξ)∥(S − I)Dxn∥2 ≤ ∥xn − x̃∥2 − ∥xn+1 − x̃∥2 + 2µnN7.

Since ϵ(1 − ϵξ) > 0, lim
n→∞

µn = 0 and ¶xn♢, ¶un♢ are bounded, and using (3.13), we

have

(3.17) lim
n→∞

∥(S − I)Dxn∥ = 0.

Next, prove that lim
n→∞

∥zn − xn∥ = 0.

By using firmly nonexpansive of J (g1,M1)
ρ1

, we compute

∥zn − x̃∥2 =∥J (g1,M1)
ρ1

(xn + ξD∗(S − I)Dxn) − J (g1,M1)
ρ1

x̃∥2

≤⟨zn − x̃, xn + ξD∗(S − I)Dxn − x̃⟩

=
1

2

{

∥zn − x̃∥2 + ∥xn + ξD∗(S − I)Dxn − x̃∥2 − ∥(zn − x̃)
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− [xn + ξD∗(S − I)Dxn − x̃] ∥2
}

=
1

2

{

∥zn − x̃∥2 + ∥xn − x̃∥2 − ∥zn − xn − ξD∗(S − I)Dxn∥2
}

=
1

2

{

∥zn − x̃∥2 + ∥xn − x̃∥2 −
[

∥zn − xn∥2 + ξ2∥D∗(S − I)Dxn∥2

− 2ξ⟨zn − xn, D∗(S − I)Dxn⟩
]

}

.

Hence, we obtain

∥zn − x̃∥2 ≤ ∥xn − x̃∥2 − ∥zn − xn∥2 + 2ξ∥D(zn − xn)∥∥(S − I)Dxn∥.

Using (3.7), (3.8) and (3.16) in above inequality, we obtain

∥xn+1 − x̃∥2 ≤ηn∥xn − x̃∥2 + (1 − ηn)∥xn − x̃∥2

− (1 − ηn)∥zn − xn∥2

+ 2(1 − ηn)ξ∥D(zn − xn)∥∥(S − I)Dxn∥ + 2µnN7

(1 − ηn)∥zn − xn∥2 ≤∥xn − x̃∥2 − ∥xn+1 − x̃∥2

+ 2(1 − ηn)ξ∥D(zn − xn)∥∥(S − I)Dxn∥ + 2µnN7

≤(∥xn − x̃∥ + ∥xn+1 − x̃∥)∥xn − xn+1∥

+ 2(1 − ηn)ξ∥D(zn − xn)∥∥(S − I)Dxn∥ + 2µnN7.

By (3.13), (3.17) and the given conditions, we have

(3.18) lim
n→∞

∥zn − xn∥ = 0.

Next, prove that lim
n→∞

∥zn − un∥ = 0.

We estimate

∥xn+1 − x̃∥2 =∥(1 − ηn)(vn − x̃) + ηn(xn − x̃)

+ µn(θf(xn) − Avn)∥2

≤(1 − ηn)∥vn − x̃∥2 + ηn∥xn − x̃∥2

+ 2µn⟨κn, xn+1 − x̃⟩

≤(1 − ηn)∥vn − x̃∥2 + ηn∥xn − x̃∥2 + 2ω2µn

≤(1 − ηn)∥un − x̃∥2 + ηn∥xn − x̃∥2 + 2ω2µn.

In the above inequality we set κn = θf(xn)−Avn and let ω > 0 be a suitable constant
with ω ≥ supn¶∥κn∥, ∥xn − x̃∥♢. Thus,

∥xn+1 − x̃∥2 ≤(1 − ηn)
{

∥PC1
(zn − σnBzn) − PC1

(x̃ − σnBx̃)∥2
}

+ ηn∥xn − x̃∥2 + 2ω2µn

≤(1 − ηn)
{

∥zn − x̃∥2 + σn(σn − 2γ)∥Bzn − Bx̃∥2
}
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+ ηn∥xn − x̃∥2 + 2ω2µn

≤(1 − ηn)
{

∥xn − x̃∥2 + σn(σn − 2γ)∥Bzn − Bx̃∥2
}

+ ηn∥xn − x̃∥2 + 2ω2µn

≤(1 − ηn)σn(σn − 2ω)∥Bzn − Bx̃∥2 + ∥xn − x̃∥2 + 2ω2µn,(3.19)

which implies

(1 − ηn)σn(2ω − σn)∥Bzn − Bx̃∥2 ≤∥xn − x̃∥2 − ∥xn+1 − x̃∥2 + 2ω2µn

≤(∥xn − x̃∥ + ∥xn+1 − x̃∥)∥xn − xn+1∥ + 2ω2µn.

By (3.13) and the given conditions, we get

(3.20) lim
n→∞

∥Bzn − Bx̃∥ = 0.

From (2.1), we compute

∥un − x̃∥2 =∥PC1
(zn − σnBzn) − PC1

(x̃ − σnBx̃)∥2

≤⟨un − x̃, (zn − σnBzn) − (x̃ − σnBx̃)⟩

≤
1

2

{

∥un − x̃∥2 + ∥(zn − σnBzn)

− (x̃ − σnBx̃)∥2 − ∥(un − zn) + σn(Bzn − Bx̃)∥2
}

≤
1

2

{

∥un − x̃∥2 + ∥zn − x̃∥2 − ∥(un − zn) + σn(Bzn − Bx̃)∥2
}

≤∥zn − x̃∥2 − ∥un − zn∥2 − σ2
n∥Bzn − Bx̃∥2

+ 2σn⟨un − zn, Bun − Bx̃⟩

≤∥zn − x̃∥2 − ∥un − zn∥2 + 2σn∥un − zn∥∥Bzn − Bx̃∥

≤∥xn − x̃∥2 − ∥un − zn∥2 + 2σn∥un − zn∥∥Bzn − Bx̃∥.

By (3.19), we obtained

∥xn+1 − x̃∥2 ≤(1 − ηn)∥un − x̃∥2 + ηn∥xn − x̃∥2 + 2ω2µn

≤(1 − ηn)
{

∥xn − x̃∥2 − ∥un − zn∥2

+ 2σn∥un − zn∥∥Bzn − Bx̃∥
}

+ ηn∥xn − x̃∥2 + 2ω2µn,

which implies

(1 − ηn)∥un − zn∥2 ≤∥xn − x̃∥2 − ∥xn+1 − x̃∥2

+ 2(1 − ηn)σn∥un − zn∥∥Bzn − Bx̃∥ + 2ω2µn

≤(∥xn − x̃∥ + ∥xn+1 − x̃∥)∥xn − xn+1∥

+ 2(1 − ηn)σn∥un − zn∥∥Bzn − Bx̃∥ + 2ω2µn.
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Using (3.13), (3.20) and the given conditions, we get

(3.21) lim
n→∞

∥un − zn∥ = 0.

From (3.18) and (3.21), we have

(3.22) lim
n→∞

∥un − xn∥ = 0.

By (3.15) and (3.22), we get

(3.23) lim
n→∞

∥Wnun − un∥ = 0.

Further, using (3.22) and (3.23)

∥vn − xn∥2 ≤ ∥δnun + (1 − δn)Wnun − xn∥

≤ δn∥un − xn∥ + (1 − δn)∥Wnun − xn∥

→ 0 as n → ∞.(3.24)

Therefore, by (3.22) and (3.24), we get

(3.25) lim
n→∞

∥un − vn∥ = 0.

Step 3. We claim that x̃ ∈ Γ.
Since ¶xn♢ is bounded therefore consider x̃ ∈ H1 be any weak cluster point of ¶xn♢.

Hence, there exists a subsequence ¶xnj
♢ of ¶xn♢ with xnj

⇀ x̃. By Lemma 2.7 and
(3.23), we have x̃ ∈ ∩∞

i=1Fix(Si).
And znj

= R[xnj
+ ηD∗(S − I)Dxnj

] can write as

(3.26)
(xnj

− znj
) + D∗(S − I)Dxnj

ρ1

∈ M1znj
.

Taking j → ∞ in (3.26) and by (3.17), (3.18) and the concept of the graph of a
maximal monotone mapping and 1

α1
-Lipschitz continuity of g1, we get 0 ∈ M1x̃ +

g1x̃ that is x̃ ∈ Sol(MVIP(1.2)). Furthermore, since ¶xn♢ and ¶zn♢ have the same
asymptotical behaviour, Dxnj

⇀ Dx̃. As S is nonexpansive, by (3.17) and Lemma
2.7, we get (I − S)Dx̃ = 0. Hence, by Lemma 2.3, 0 ∈ g2(Dx̃) + M2Dx̃ that is
Dx̃ ∈ Sol(MVIP(1.3)). Thus, x̃ ∈ Λ.

Next, we prove x̃ ∈ Sol(VIP(1.1)). Since lim
n→∞

∥zn −un∥ = 0 and lim
n→∞

∥zn −xn∥ = 0,

there exist subsequences ¶zni
♢ and ¶uni

♢ of ¶zn♢ and ¶un♢, respectively such that
zni

⇀ x̃ and uni
⇀ x̃.

Define the mapping M as

M(p1) =

{

D(p1) + NC1
(p1), if p1 ∈ C1,

∅, if p1 /∈ C1,

where NC1
(p1) := ¶p2 ∈ H1 : ⟨p1 − y, p2⟩ ≥ 0 for all y ∈ C1♢ is the normal cone to

C1 at p1 ∈ H1. Thus, M is a maximal monotone and hence 0 ∈ Mp1 mapping if
and only if p1 ∈ Sol(VIP(1.1)). Let (p1, p2) ∈ graph(M). Then, we have p2 ∈ Mp1 =
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Bp1 +NC1
(p1) and hence p2 − Bp1 ∈ NC1

(p1). So, we have ⟨p1 − y, p2 − Bp1⟩ ≥ 0, for
all y ∈ C1. On the other hand, from un = PC1

(zn − σnBzn) and z1 ∈ C1, we have

⟨(zn − σnBzn) − un, un − p1⟩ ≥ 0.

This implies that
〈

p1 − un,
un − zn

σn

+ Bzn

〉

≥ 0.

Since ⟨p1 − y, p2 − Bp1⟩ ≥ 0 for all y ∈ C1 and uni
∈ C1, using monotonicity of B, we

have

⟨p1 − uni
, p2⟩ ≥⟨p1 − uni

, Bp1⟩

≥⟨p1 − uni
, Bp1⟩ −

〈

p1 − uni
,
uni

− zni

σni

+ Buni

〉

=⟨p1 − uni
, Bp1 − Buni

⟩ + ⟨p1 − uni
, Buni

− Bzni
⟩

−

〈

p1 − uni
,
uni

− zni

σni

〉

≥⟨p1 − uni
, Buni

− Bzni
⟩ −

〈

p1 − uni
,
uni

− zni

σni

〉

.

Since B is continuous therefore on taking limit i → ∞, we have ⟨p1 − x̃, p2⟩ ≥ 0. Since
M is maximal monotone, we have x̃ ∈ M

−1(0) and hence x̃ ∈ Sol(VIP(1.1)). Thus,
x̃ ∈ Γ.

Step 4. Finally, we prove that lim sup
n→∞

⟨(θf − A)z, xn − z⟩ ≤ 0, where z =

PΓ(I − A + θf)z and xn → x̃.
By (3.24), we obtain

lim sup
n→∞

⟨(θf − A)z, xn − z⟩ = lim sup
n→∞

⟨(θf − A)z, vn − z⟩

≤ lim sup
i→∞

⟨(θf − A)z, vni
− z⟩

= ⟨(θf − A)z, x̃ − z⟩

≤ 0.(3.27)

Using (3.5) and (3.7), we calculate

∥xn+1 − x̃∥2 =⟨µn(θf(xn) − Ax̃) + ηn(xn − x̃)

+ ((1 − ηn)I − µnA)(vn − x̃), xn+1 − x̃⟩

=µn⟨θf(xn) − Ax̃, xn+1 − x̃⟩ + ηn⟨xn − x̃, xn+1 − x̃⟩

+ ⟨((1 − ηn)I − µnA)(vn − x̃), xn+1 − x̃⟩

≤µn (θ⟨f(xn) − f(x̃), xn+1 − x̃⟩ + ⟨θf(x̃) − Ax̃, xn+1 − x̃⟩)

+ ηn∥xn − x̃∥∥xn+1 − x̃∥ + ∥(1 − ηn)I − µnA∥∥vn − x̃∥∥xn+1 − x̃∥

≤µnτθ∥xn − x̃∥∥xn+1 − x̃∥ + µn⟨θf(x̃) − Ax̃, xn+1 − x̃⟩
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+ ηn∥xn − x̃∥∥xn+1 − x̃∥ + (1 − ηn − µnθ̄)∥vn − x̃∥∥xn+1 − x̃∥

=[1 − µn(θ̄ − θτ)]∥xn − x̃∥∥xn+1 − x̃∥ + µn⟨θf(x̃) − Ax̃, xn+1 − x̃⟩,

∥xn+1 − x̃∥2 ≤
1 − µn(θ̄ − θτ)

2



∥xn − x̃∥2 + ∥xn+1 − x̃∥2


+ µn⟨θf(x̃) − Ax̃, xn+1 − x̃⟩

≤
1 − µn(θ̄ − θτ)

2
∥xn − x̃∥2 +

1

2
∥xn+1 − x̃∥2 + µn⟨θf(x̃) − Ax̃, xn+1 − x̃⟩,

which yields that

∥xn+1 − x̃∥2 ≤ [1 − µn(θ̄ − θτ)]∥xn − x̃∥2 + 2µn(⟨θf(x̃) − Ax̃, xn+1 − x̃⟩

= [1 − µn(θ̄ − θτ)]∥xn − x̃∥2 + 2µn⟨θf(x̃) − Ax̃, xn+1 − x̃⟩.(3.28)

Thus, by (3.27), (3.28), Lemma 2.6 and using lim
n→∞

µn = 0, we get xn → x̃, where

x̃ = PΓ(I + θf − A). □

Now, we listed following consequences from Theorem 3.1.

Corollary 3.1. Let H1 and H2 denote the Hilbert spaces and C1 ⊂ H1 be nonempty
closed convex subset of H1. Let B : H1 → H1 be a γ-inverse strongly monotone
mapping, D : H1 → H2 be a bounded linear operator with its adjoint operator D∗,
M1 : H1 → 2H1, M2 : H2 → 2H2 be multi-valued maximal monotone operators
and g1 : H1 → H1, g2 : H2 → H2 be α1, α2-inverse strongly monotone mappings,
respectively. Let f : C1 → C1 be a contraction mapping with constant τ ∈ (0, 1), A
be a strongly positive bounded linear self adjoint operator on C1 with constant θ̄ > 0

such that 0 < θ < θ̄
τ

< θ + 1
τ

and S : C1 → C1 be a nonexpansive mapping such that
Γ := Λ ∩ Sol(VIP(1.1)) ∩ Fix(S)) ̸= ∅. Let ¶xn♢ be the sequence generated as:

x1 ∈ C1,
zn = R(I + ξD∗(S − I)D)xn,
un = PC1

(zn − σnBzn),
vn = δnun + (1 − δn)Sun,
xn+1 = µnθf(xn) + ηnxn + ((1 − ηn)I − µnA)vn, n ≥ 1,



























where R = J (g1,M1)
ρ1

(I − ρ1g1), S = J (g2,M2)
ρ2

(I − ρ2g2), ¶µn♢, ¶ηn♢, ¶δn♢ ⊂ (0, 1) and

ξ ∈ (0, 1
ϵ
), ϵ be the spectral radius of D∗D. Let the control sequences satisfying

conditions:

(i) lim
n→∞

µn = 0,
∞
∑

n=0
µn = ∞;

(ii) 0 < ρ1 < 2α1, 0 < ρ2 < 2α2;
(iii) 0 < lim inf

n→∞
ηn ≤ lim sup

n→∞
ηn < 1;

(iv) 0 < lim inf
n→∞

σn ≤ lim sup
n→∞

σn < 2γ;

(v) lim
n→∞

δn = 0.
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Then, the sequence ¶xn♢ converges strongly to some x̃ ∈ Γ, where x̃ = PΓ(θf+(I−A))x̃
which solves:

⟨(A − θf)x̃, v − x̃⟩ ≥ 0, for all v ∈ Γ.

If we consider ρ1 = ρ2, g1 = g2 = B ≡ 0 and ηn = 0 in Theorem 3.1 then we have
following corollary.

Corollary 3.2. Let H1 and H2 denote the Hilbert spaces. Let D : H1 → H2 be a
bounded linear operator with its adjoint operator D∗, M1 : H1 → 2H1, M2 : H2 → 2H2

be multi-valued maximal monotone operators, respectively. Let f : H1 → H1 be a
contraction mapping with constant τ ∈ (0, 1), A be a strongly positive bounded linear

self adjoint operator on H1 with constant θ̄ > 0 such that 0 < θ < θ̄
τ

< θ + 1
τ

and ¶Si♢
∞
i=1 : H1 → H1 be an infinite family of nonexpansive mappings such that

Γ := Λ ∩ (∩∞
i=1Fix(Si)) ̸= ∅. Let ¶xn♢ be the sequence generated as:

x1 ∈ H1,
zn = JM1

ρ (I + ξD∗(JM2

ρ − I)D)xn,
vn = δnzn + (1 − δn)W⋉zn,
xn+1 = µnθf(xn) + (I − µnA)vn, n ≥ 1,



















where Wn defined in (1.6), ¶µn♢, ¶δn♢ ⊂ (0, 1) and ξ ∈ (0, 1
ϵ
), ϵ be the spectral radius

of D∗D. Let the control sequences satisfying conditions:

(i) lim
n→∞

µn = 0,
∞
∑

n=0
µn = ∞;

(ii) lim
n→∞

δn = 0.

Then, the sequence ¶xn♢ converges strongly to some x̃ ∈ Γ, where x̃ = PΓ(θf+(I−A))x̃
which solves:

⟨(A − θf)x̃, v − x̃⟩ ≥ 0, for all v ∈ Γ.

4. Numerical Example

Example 4.1. Let H1 = H2 = R, the set of all real numbers, with the inner product
defined by ⟨u, v⟩ = uv for all u, v ∈ R, and induced usual norm ♣ · ♣. Let C1 = [0, ∞);
let the mappings g1 : R → R and g2 : R → R be defined by g1(u) = 3

2
u for all u ∈ H1

and g2(v) = v +3 for all v ∈ H2. Let M1, M2 : R → 2R be defined by M1(u) = ¶u−1♢
for all u ∈ R and M2(v) = ¶4v♢ for all v ∈ R. Let the mapping D : R → R be defined
by D(u) = −3

2
u for all u ∈ R. Let the mappings ¶Si♢

∞
i=1 : C1 → C1 be defined by

Siu = u+2i
1+5i

for each i ∈ N, let the mapping B : H1 → R be defined by Bu = 5u − 2
for all u ∈ H1. Let the mapping f : C1 → C1 be defined by f(u) = u

5
for all u ∈ C1

and Au = u
2

with θ = 1
10

. Setting ¶µn♢ = ¶ 1
10n

♢, ¶ηn♢ = ¶ 1
2n2 ♢, ¶σn♢ = 1

4
, ¶δn♢ = 1

n

and ¶λn♢ = ¶ 1
3n2 ♢ for all n ≥ 1. Let Wn be the W-mapping generated by S1, S2, . . .

and λ1, λ2, . . . , which is defined by (1.6). Then, there are sequences ¶xn♢, ¶zn♢, ¶un♢
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and ¶vn♢ as: Given x1,

tn = SDxn = J (g2,M2)
ρ2

(I − ρ2g2)Dxn

rn = xn + ξD∗(tn − Dxn)
zn = J (g1,M1)

ρ1
rn

un = PC1
(zn − σnBzn),

vn = δnzn + (1 − δn)W⋉zn,
xn+1 = µnθf(xn) + ηnxn + ((1 − ηn)I − µnA)vn,







































Then, ¶xn♢ converges to x̃ = ¶2
5
♢ ∈ Γ.

Proof. Obviously, D is a bounded linear operator on R with adjoint D∗ and ∥D∥ =
∥D∗∥ = 3

2
, and hence ξ ∈ (0, 4

9
). Therefore, we choose ξ = 0.1. Further, g1 and g2

are 3 and 1-ism, therefore ρ1 ⊂ (0, 4
3
) and ρ2 ⊂ (0, 2), thus choose ρ1 = 1

3
> 0 and

ρ2 = 1
3

> 0. For each i, Si is nonexpansive with Fix(Si) =
{

2
5

}

. Further, B is 5-ism and

Sol(VIP(1.1)) = ¶2
5
♢. Furthermore, Sol(MVIP(1.2)) =

{

2
5

}

and Sol(MVIP(1.3)) =
{

−3
5

}

, and thus Λ = ¶2
5

∈ C : 2
5

∈ Sol(MVIP(1.2)) : D(2
5
) ∈ Sol(MVIP(1.3))♢ =

{

2
5

}

.

Therefore, Γ := Λ ∩ Sol(VIP(1.1)) ∩ (∩∞
i=1Fix(Si)) ̸= ∅. Thus,

tn =
−6xn + 9

14
; rn =

31xn − 6tn

40
; zn =

3rn + 1

4
;

un = PC1
(zn − σnBzn) =











0, if x < 0,
1, if x > 1,
−zn+2

4
otherwise;

Wn = un;

Step 1:

i = 1;

Wn =
1

3n2

(Wn + 2i)

1 + 5i
+



1 −
1

3n2



un;

i = i + 1;

if (i ≤ N) go to Step 1;

vn =
1

n
un +



1 −
1

n



Wnun,

xn+1 =
1

100n

xn

5
+

1

2n2
xn +



1 −
1

2n2



vn −
1

10n

vn

2
,

which show that ¶xn♢ converges to x̃ = 2
5

as n → +∞ and lim
n→∞

∥Wnx − Wx∥ = 0 for

each x ∈ C1. □

5. Figures

Finally, by the software Matlab 7.8.0, we obtain following figures which show that
¶xn♢ converges to x̃ = 2

5
as n → +∞, and lim

n→∞
∥Wnx − Wx∥ = 0 for each x ∈ C1.
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Figure 1. Convergence of ¶xn♢ when x1 = 2.
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Figure 2. Convergence of ∥Wnx − Wx∥.
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PRABHAKAR AND HILFER-PRABHAKAR FRACTIONAL

DERIVATIVES IN THE SETTING OF Ψ-FRACTIONAL CALCULUS

AND ITS APPLICATIONS

SACHIN K. MAGAR1, PRAVINKUMAR V. DOLE1, AND KIRTIWANT P. GHADLE2

Abstract. The aim of this paper is to study to fractional calculus for class of Ψ
function. The present study is designed to study generalized fractional derivatives
and find their generalized transforms called Ψ-Laplace transform and Ψ-Sumudu
transform. Moreover, find the analytical solutions of some applications in physics
the form of generalized fractional derivatives by transform technique.

1. Introduction

In recent years, many researchers investigated generalization of integration and
differentiation operators in the field of fractional calculus. In literature several different
definitions of fractional integrals and derivatives are available, like Riemann-Liouville
integral and derivative Caputo fractional derivative etc. (see [3,18,19]). In [13] defined
new fractional derivative called Hilfer fractional derivative which is generalization of
Riemann and Caputo fractional derivative. The first investigated generalized Mittage-
Leffler function by Prabhakar [17]. The so-called Prabhakar integral is defined in a
similar way Riemann-Lioville integral [12,14,17]. Roberto Garra et al. [12] introduced
fractional derivative by definition of Hilfer derivative replacing Riemann-Liouville
integral operator by Prabhakar integral operator called Hilfer-Prabhakar derivative
also defined Prabhakar and Hilfer-Prabhakar derivatives regularized version. Dorrego
defined generalization of Prabhakar integral and derivative called k-Prabhakar integral

Key words and phrases. Ψ-Fractional calculus, fractional calculus, k-Prabhakar derivative, k-
Hilfer-Prabhakar derivative, k-Mittag-Leffler function, generalized integral transforms.
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and k-Prabhakar derivative [7]. In [5, 6] Dorrego and Cerutti defined the kernel of k-
Mittage-Leffler function and generalized derivative called k-fractional Hilfer derivative.
Recently Dole et al. [15, 16] defined generalized fractional derivative like k-Hilfer-
Prabhakar derivative as well as defined regularized version of k-Prabhakar derivative.
Moreover, find Laplace and Sumudu transform to regularized version of k-Prabhakar
derivative also k-Hilfer-Prabhakar derivative and its regularized version. In [11] Sausa
and Oliviera introduced new fractional derivative in the setting of Ψ-fractional operator
called Ψ-Hilfer fractional derivative defined as

Dµ,ν,Ψ = Iν(m−µ),Ψ

(
1

Ψ′(t)
·

d

dt

)m
I(1−ν)(m−µ),Ψf(t).

The new generalized integral transform called Ψ-Laplace transform published on an
arXiv, by Fahad et al. and obtain for Ψ-Hilfer fractional derivative as follows

LΨ

{
Dµ,ν,Ψf(t)

}
= sµLΨ

{
f(t)

}
−

m−1∑

k=0

sm(1−ν)+µν−k−1(I(1−ν)(m−µ)−k,Ψf(t)).

In this paper, we define new integral transform called Ψ-Sumudu transform. Define
some generalized definitions of fractional derivatives in the setting of Ψ-fractional
calculus like Ψ-Prabhakar, Ψ-Hilfer-Prabhakar, Ψ-k-RL-fractional, Ψ-k-Hilfer, Ψ-k-
Prabhakar, Ψ-k-Hilfer-Prabhakar fractional integrals and derivatives as well as define
all these new fractional derivatives regularized versions. These results are used to
obtain the relation between Ψ-Prabhakar fractional derivative and its regularized
version and also the relation between Ψ-Hilfer-Prabhakar fractional derivative and its
regularized version involving Mittag-Leffler function. Moreover, we obtain Ψ-Laplace
transform [9] and Ψ-Sumudu transform to find solutions of fractional differential
equations.

2. Preliminaries

Definition 2.1 ([17]). Let n ∈ N, α, µ, γ ∈ C, Re (α) > 0, Re (µ) > 0. The Mittag-
Leffler function is defined as

Eγ
α,µ(z) =

∞∑

n=0

(γ)n
Γ(αn + µ)

·
zn

n!
,

where (γ)n = γ(γ + 1)(γ + 2) · · · (γ + (n − 1)) is the Pochhammer symbol.

Definition 2.2 ([5]). Let n ∈ N, α, µ, γ ∈ C, Re (α) > 0, Re (µ) > 0. The k-Mittag-
Leffler function is defined as

E
γ
k,α,µ(z) =

∞∑

n=0

(γ)n,k
Γk(αn + µ)

·
zn

n!
,

where (γ)n,k = γ(γ + k)(γ + 2k) · · · (γ + (n − 1)k) is the Pochhammer symbol.

Definition 2.3 ([8, 10]). Let µ be a real number such that µ > 0, −∞ ≤ a < b ≤ ∞,
m = µ+1, f be an integrable function defined on [a, b] and Ψ ∈ C1([a, b]) be increasing
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function such that Ψ
′

(t) ̸= 0 for all t ∈ [a, b]. Then, the Ψ-RL-fractional integral and
Ψ-RL fractional derivative of a function f of order µ are defined as

I
µ,Ψ
0 f(t) =

1

Γ(µ)

∫ ∞

0
(Ψ(t) − Ψ(s))µ−1Ψ

′

(s)f(s)ds,(2.1)

D
µ,Ψ
0 =

(
1

Ψ′(t)
·

d

dt

)m
I
m−µ,Ψ
0 f(t).(2.2)

It is to be noted that for Ψ(t) → t, I
µ,Ψ
0 f(t) → I

µ
0 f(t) which is the standard

Riemann- Liouville integral. Moreover for Ψ(t) → ln(t) the integral defined in equation
(2.1) towards Hadamard fractional integral.

Inspired by Caputo’s concept [2] of fractional derivative, Almeidea [1] presents the
following Caputo version of equation (2.2) and studies some important properties of
fractional calculus.

Definition 2.4 ([1]). Let µ be a real number such that µ > 0, −∞ ≤ a < b ≤ ∞,
m = µ + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and Ψ

′

(t) ̸= 0
for all t ∈ [a, b]. Then, the Ψ-C-fractional derivative of a function f of order µ is
defined as

CD
µ,Ψ
0 = I

m−µ,Ψ
0

(
1

Ψ′(t)
·

d

dt

)m
f(t).

Definition 2.5 ([11]). Let µ be a real number such that µ > 0, −∞ ≤ a < b ≤ ∞,
and f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and Ψ

′

(t) ̸= 0 for all
t ∈ [a, b]. Then, the Ψ-Hilfer fractional derivative of a function f of order µ and type
0 ≤ ν ≤ 1 is given by

D
µ,ν,Ψ
0 = I

ν(m−µ,Ψ)
0

(
1

Ψ′(t)
·

d

dt

)m
I

(1−ν)(m−µ),Ψ
0 f(t).

Definition 2.6 ([9]). Let f : [0, ∞) → R be a real valued function and Ψ be a
non-negative increasing function such that Ψ(0) = 0. Then the Ψ-Laplace transform
of f is denoted by LΨ¶f♢ and is defined by

T (u) := LΨ¶f(t)♢ :=
∫ ∞

0
e−uΨ(t)Ψ

′

(t)f(t)dt, for all u.

3. Main Result

We consider functions in the set A is defined by

A = ¶f(t) ♣ exists M, τ1, τ2♣f(t)♣ ≤ Me|t|/Tj , if tϵ(−1j) × [0, ∞)♢.

Definition 3.1. Let f : [0, ∞) → R be a real valued function and Ψ be a non-negative
increasing function such that Ψ(0) = 0. Then the Ψ-ST of f is denoted by SΨ¶f♢
and is defined by

T (u) := SΨ¶f(t)♢ :=
1

u

∫ ∞

0
e−

Ψ(t)
u Ψ

′

(t)f(t)dt, for all u.
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3.1. New definitions of Ψ-fractional derivatives.

Definition 3.2. Let µ be a real number such that µ > 0, −∞ ≤ a < b ≤ ∞ and
f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and Ψ

′

(t) ̸= 0 for all
t ∈ [a, b]. Then, the Ψ-Prabhakar fractional integral and derivative of a function f of
order µ and type 0 ≤ ν ≤ 1 is given by

(
P γ,Ψ
α,µ,ωf

)
(x) =

∫ x

0
(Ψ(x) − Ψ(t))µ−1Eγ

α,µ[ω(Ψ(x) − Ψ(t))α]Ψ
′

(t)f(t)dt

= (εγα,µ,ω ∗Ψ f)(x),(3.1)

where ∗Ψ denotes the convolution operation, α, µ, ω, γ ∈ C, Re (α) > 0, Re (µ) > 0
and

(3.2) εγα,µ,ωΨ(t) =

{
(Ψ(t))µ−1Eγ

α,µ(ω(Ψ(t))α), t > 0,

0, t ≤ 0.

For γ = 0,
(
P 0
α,µ,ωf

)
(x) =

(
Iµ,Ψf

)
(x) and for γ = µ = 0,

(
P 0
α,0,ωf

)
(x) = f(x),

(3.3) Dγ,Ψ
ρ,µ,ωf(t) =

(
1

Ψ′
·

d

dt

)m
P

−γ,Ψ
ρ,m−µ,ωf(t).

Definition 3.3. Let µ be a real number such that µ > 0, −∞ ≤ a < b ≤ ∞,
m = µ + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and Ψ

′

(t) ̸= 0
for all t ∈ [a, b]. Then, the regularized version of Ψ-Prabhakar fractional derivative of
a function f of order µ is defined as

(3.4) CDγ,Ψ
ρ,µ,ωf(t) = P

−γ,Ψ
ρ,m−µ,ω

(
1

Ψ′
·

d

dt

)m
f(t).

Definition 3.4. Let µ be a real number such that µ > 0, −∞ ≤ a < b ≤ ∞,
m = µ + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and Ψ

′

(t) ̸= 0

for all t ∈ [a, b] and type 0 ≤ ν ≤ 1 and
(
f ∗ ε

−γ(1−ν)
ρ,(1−ν)(m−µ),ω

)
Ψ(t) ∈ AC1[0, b]. Then,

the Ψ-Hilfer-Prabhakar fractional derivative of a function f of order µ defined as

(3.5) D
γ,µ,ν,Ψ
α,ω,0+ f(t) =

(
P

−γν,Ψ
α,ν(m−µ),ω,0+

(
1

Ψ′
·

d

dt

)m(
P

−γ(1−ν),Ψ
α,(1−ν)(m−µ,ω,0+f

))
(t).

Definition 3.5. Let µ be a real number such that µ > 0, −∞ ≤ a < b ≤ ∞,
m = µ + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and Ψ

′

(t) ̸= 0
for all t ∈ [a, b]. Then, the regularized version of Ψ-Hilfer-Prabhakar fractional
derivative of a function f of order µ is defined as

(3.6) C
D
γ,µ,ν,Ψ
α,ω,0+ f(t) =

(
P

−γν,Ψ
α,ν(m−µ),ω,0+P

−γ(1−ν),Ψ
α,(1−ν)(m−µ,ω,0+

(
1

Ψ′
·

d

dt

)m
f

)
(t).

Definition 3.6. Let µ be a real number and let k ∈ R
+, such that µ > 0, −∞ ≤ a <

b ≤ ∞, m = [µ
k
]+1, f be an integrable function defined on [a, b] and Ψ ∈ C1([a, b]) be



PRABHAKAR AND HILFER-PRABHAKAR FRACTIONAL DERIVATIVES 519

increasing function such that Ψ
′

(t) ̸= 0 for all t ∈ [a, b]. Then, the Ψ-k-RL fractional
integral and Ψ-k-RL fractional derivative of a function f of order µ are defined as

I
µ,Ψ
k f(t) =

1

kΓk(µ)

∫ ∞

0
(Ψ(t) − Ψ(s))

µ
k

−1Ψ
′

(s)f(s)ds,

D
µ,Ψ
k =

(
1

Ψ′(t)

d

dt

)m
kmI

m−µ,Ψ
k f(t).

Definition 3.7. Let µ be a real number and let k ∈ R
+ such that µ > 0, −∞ ≤ a <

b ≤ ∞, m = [µ
k
] + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and

Ψ
′

(t) ̸= 0 for all t ∈ [a, b]. Then, the Ψ-k-Caputo fractional derivative of a function f

of order µ is defined as

C
k D

µ,Ψ
0 = kmI

m−µ,Ψ
k

(
1

Ψ′(t)
·

d

dt

)m
f(t).

Definition 3.8. Let µ be a real number and let k ∈ R
+ such that µ > 0, −∞ ≤ a <

b ≤ ∞, m = [µ
k
] + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and

Ψ
′

(t) ̸= 0 for all t ∈ [a, b]. Then, the Ψ-k-Hilfer fractional derivative of a function f

of order µ and type 0 ≤ ν ≤ 1 is given by

D
µ,ν,Ψ
k = I

ν(m−µ,Ψ)
k

(
1

Ψ′(t)

d

dt

)m
I

(1−ν)(m−µ),Ψ
k f(t).

Definition 3.9. Let µ be a real number and let k ∈ R
+ such that µ > 0, −∞ ≤ a <

b ≤ ∞, m = [µ
k
] + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing and

Ψ
′

(t) ̸= 0 for all t ∈ [a, b]. Then, the Ψ-k-Prabhakar fractional integral and derivative
of a function f of order µ and type 0 ≤ ν ≤ 1 is given by

(

kP
γ,Ψ
α,µ,ωf

)
(x) =

∫ x

0

(Ψ(x) − Ψ(t))
µ
k

−1

k
E
γ
k,α,µ[ω(Ψ(x) − Ψ(t))

α
k ]Ψ

′

(t)f(t)dt

= (kε
γ
α,µ,ω ∗Ψ f)(x),(3.7)

where ∗Ψ denotes the convolution operation, α, µ, ω, γ ∈ C, Re (α) > 0, Re (µ) > 0
and

kε
γ
α,µ,ωΨ(t) =





(Ψ(t))
µ
k

−1

k
E
γ
k,α,µ(ω(Ψ(t))

α
k , t > 0,

0, t ≤ 0,
(3.8)

for γ = 0,
(
kP

0
α,µ,ωf

)
(x) =

(
I
µ,Ψ
k f

)
(x) and for γ = µ = 0,

(
kP

0
α,0,ωf

)
(x) = f(x),

(3.9) kD
γ,Ψ
ρ,µ,ωf(t) =

(
1

Ψ′(t)
·

d

dt

)m
kmkP

−γ,Ψ
ρ,mk−µ,ωf(t).

Definition 3.10. Let µ be a real number and let k ∈ R
+ such that k, µ > 0,

−∞ ≤ a < b ≤ ∞, m = [µ
k
] + 1, f, Ψ ∈ Cm([a, b]) be the functions such that
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Ψ is increasing and Ψ
′

(t) ̸= 0 for all t ∈ [a, b]. Then, the regularized version of
Ψ-k-Prabhakar fractional derivative of a function f of order µ is defined as

(3.10) k
CDγ,Ψ

ρ,µ,ωf(t) = kmkP
−γ,Ψ
ρ,mk−µ,ω

(
1

Ψ′(t)
·

d

dt

)m
f(t).

Definition 3.11. Let µ be a real number and let k ∈ R
+ such that k, µ > 0, −∞ ≤

a < b ≤ ∞, m = [µ
k
] + 1, f, Ψ ∈ Cm([a, b]) be the functions such that Ψ is increasing

and Ψ
′

(t) ̸= 0 for all t ∈ [a, b] and type 0 ≤ ν ≤ 1 and
(
f ∗ ε

−γ(1−ν)
ρ,(1−ν)(mk−µ),ω

)
Ψ(t) ∈

AC1[0, b]. Then, the Ψ-k-Hilfer-Prabhakar fractional derivative of a function f of
order µ is defined as

(3.11) kD
γ,µ,ν,Ψ
α,ω,0+ f(t) = km

(

kP
−γν,Ψ
α,ν(mk−µ),ω,0+

(
1

Ψ′(t)
·

d

dt

)m(
kP

−γ(1−ν),Ψ
α,(1−ν)(mk−µ),ω,0+f

))
(t).

Definition 3.12. Let µ be a real number and let k ∈ R
+ such that k, µ > 0,

−∞ ≤ a < b ≤ ∞, m = [µ
k
] + 1, f, Ψ ∈ Cm([a, b]) be the functions such that

Ψ is increasing and Ψ
′

(t) ̸= 0 for all t ∈ [a, b]. Then, the regularized version of
Ψ-k-Hilfer-Prabhakar fractional derivative of a function f of order µ is defined as

(3.12) C
kD

γ,µ,ν,Ψ
α,ω,0+ f(t) = km

(

kP
−γν,Ψ
α,ν(mk−µ),ω,0+kP

−γ(1−ν),Ψ
α,(1−ν)(mk−µ),ω,0+

(
1

Ψ′(t)
·

d

dt

)m
f

)
(t).

4. Ψ-Laplace Transform and Ψ-Sumudu Transform of Ψ-Fractional
Derivatives

Let F (s) be the Ψ-Laplace transform of f(t).

Lemma 4.1. The Ψ-Laplace transform of Ψ-Prabhakar fractional integral equation

(3.1) is

(4.1) LΨ

(
P γ
α,µ,ωf

)
(x) = s−µ(1 − ω(s)−α)−γF (s).

Lemma 4.2. The Ψ-Laplace transform of Ψ-Prabhakar fractional derivative equation

(3.3) is

LΨ

(
Dγ,Ψ
α,µ,ωf(t)

)
(s) = sµ

(
1 − ω(s)−α

)γ
F (s) −

m−1∑

k=0

sm−k−1
[
P

−γ,Ψ
α,(m−µ)−k,ωf(0+)

]
.

For the case [µ] + 1 = m = 1

(4.2) LΨ

(
Dγ,Ψ
α,µ,ωf(t)

)
(s) = sµ

(
1 − ω(s)−α

)γ
F (s) −

[
P

−γ,Ψ
α,(m−µ),ωf(t)

]
t=0+

,

with ♣ω(s)−α♣ < 1.

Proof. Taking Ψ-Laplace transforms of Ψ-Prabhakar fractional derivative in (3.3) and
using (3.1), (3.2), (4.1) we get

LΨ

(
Dγ,Ψ
α,µ,ωf(t)

)
(s) =L

((
1

Ψ′
·

d

dt

)m
P

−γ,Ψ
α,(m−µ),ωf(t)

)
(s)
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=smLΨ

((
ε

−γ,Ψ
α,(m−µ),ω ∗ f

)
(t)

)
(s)

−
m−1∑

k=0

sm−k−1

[(
1

Ψ′
·

d

dt

)k
P

−γ,Ψ
α,(m−µ),ωf(t)

]

t=0+

=smLΨ

(
(Ψ(t))(m−µ)−1E

−γ,Ψ
α,(m−µ)

(
ω(Ψ(t))α

))
F (s)

)

−
m−1∑

k=0

sm−k−1

[(
1

Ψ′
·

d

dt

)k
P

−γ,Ψ
α,(m−µ),ωf(0+)

]

=sµ
(
1 − ω(s)−α

)γ
F (s) −

m−1∑

k=0

sm−k−1
(
P

−γ,Ψ
α,(m−µ)−k,ωf(0+)

)
.

For the case [µ] + 1 = m = 1, we have

LΨ

(
Dγ,Ψ
α,µ,ωf(t)

)
(s) = sµ

(
1 − ω(s)−α

)γ
F (s) −

[
P

−γ,Ψ
α,(m−µ),ωf(t)

]
t=0+

. □

Lemma 4.3. The Ψ-Laplace transform of regularized version of Ψ-Prabhakar frac-

tional derivative equation (3.4) is

LΨ

(
CD

γ,Ψ

α,µ,ωf(t)
)
(s) =sµ

(
1 − ω(s)−α

)γ
F (s) −

m−1∑

k=0

sµ−k−1
(
1 − ω(s)−α

)γ
f (k)(0+),

(4.3)

with ♣ω(s)−α♣ < 1.

Proof. Taking Ψ-Laplace transform of regularized version of Ψ-Prabhakar fractional
derivative in (3.4) and using (3.1), (3.2), (4.1) we get

LΨ

(
CD

γ,Ψ

α,µ,ωf(t)
)
(s), = LΨ

((
ε

−γ
α,(m−µ),ω ∗Ψ

(
1

Ψ′
·

d

dt
f

)m
(t)

)
(s)

= s−(m−µ)
(
1 − ω(s)α

)γ
{

smF (s) −
m−1∑

k=0

sm−k−1fk(0+)

}

= sµ
(
1 − ω(s)α

)γ
F (s) −

m−1∑

k=0

sµ−k−1
(
1 − ω(s)α

)γ
fk(0+). □

For absolutely continuous function f ∈ AC1[0, b],
[
P

−γ,Ψ
α,(m−µ),ωf(t)

]
t=0+

= 0.

Then in view of equation (4.2) and equation (4.3) (m = 1) we have

LΨ

(
CD

γ,Ψ

α,µ,ωf(t)
)
(s) = L

(
Dγ,Ψ
α,µ,ωf(t)

)
(s) − (s)µ−1

(
1 − ω(s)−α

)γ
f(0+).

Taking inverse Ψ-Laplace transform, we get

CD
γ,Ψ

α,µ,ωf(t) = Dγ,Ψ
α,µ,ωf(t) − (Ψ(t))−µE

−γ
α,m−µ(ω(Ψ(t))α)f(0+),
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for f ∈ AC1[0, b]. This is the relation between Ψ-Prabhakar fractional derivative and
its regularized version.

Lemma 4.4. The Ψ-Laplace transform of Ψ-Hilfer-Prabhakar fractional derivative

equation (3.5) is

LΨ

(
D
γ,µ,ν,Ψ
α,ω,0+ f(t)

)
(s) =sµ

(
1 − ω(s)−α

)γ
F (s) −

m−1∑

k=0

sm(1−ν)+νµ−k−1[1 − ω(s)−α]γν

×
(
P

−γ(1−ν)
α,(1−ν)(m−µ)−k,ω, Ψf(0+)

)
.

Proof. Taking Ψ-Laplace transform of Ψ-Hilfer-Prabhakar fractional derivative in (3.5)
and using (3.1), (3.2), (4.1) we have

LΨ

(
D
γ,µ,ν,Ψ
α,ω,0+ f(t)

)
(s) =LΨ

[(
ε

−γν
α,ν(m−µ),ω ∗Ψ

(
1

Ψ′
·

d

dt

)m(
P

−γ(1−ν),Ψ
α,(1−ν)(m−µ),ω,0+f

))
(t)

]
(s)

=sm(s)−ν(m−µ)
(
1 − ω(s)−α

)γν
LΨ

((
ε

−γ(1−ν)
α,(1−ν)(m−µ),ω ∗ f

)
(t)

)
(s)

−
m−1∑

k=0

sm(s)−ν(m−µ)
(
1 − ω(s)−α

)γν[
P

−λ(1−ν),Ψ
α,(1−ν),(m−µ)−k,ωf(0+)

]

=sµ
(
1 − ω(s)−α

)γ
F (s)

−
m−1∑

k=0

sm(1−ν)+νµ−k−1[1 − ω(s)−α]γν
(
P

−γ(1−ν)(m−µ),ψ
α,(1−ν)(m−µ)−k,ωf(0+)

)
.□

Lemma 4.5. The Ψ-Laplace transforms of the regularized version of Ψ-Hilfer-

Prabhakar fractional derivative equation (3.6) of order µ is

LΨ

(
C
D
γ,µ,ν,Ψ

α,ω,0+ f(t)
)
(s) =sµ

(
1 − ω(s)−α

)γ
F (s) −

m−1∑

k=0

sµ−k−1
(
1 − ω(s)−α

)γ
fk(0+).

Proof. Taking Ψ-Laplace transforms of regularized version of Ψ-Hilfer-Prabhakar frac-
tional derivative in (3.6) and using (3.1), (3.2), (4.1) we have

LΨ

(
C
D
γ,µ,ν,Ψ

α,ω,0+ f(t)
)
(s) =LΨ

((
ε

−γν
α,ν(m−µ),ω ∗Ψ

(
P

−γ(1−ν),Ψ
α,(1−ν)(k−µ),ω,0+

(
1

Ψ′
·

d

dt

)m
f
))

(t)

)
(s)

= sµ
(
1 − ω(s)−α

)γ
F (s) −

m−1∑

k=0

sµ−k−1
(
1 − ω(s)−α

)γ
fk(0+). □

Again for absolutely continuous function f ∈ AC1[0, b]

C
D
γ,µ,ν,Ψ

α,ω,0+ f(t) = D
γ,µ,ν,Ψ
α,ω,0+ f(t) − (Ψ(t))−µE

−γ
α,(m−µ)(ω(Ψ(t))α)f(0+).

This is the relation between Ψ-Hilfer-Prabhakar fractional derivative and its regular-
ized version.

Let F (u) be the Ψ-Sumudu transform of f(t).
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Lemma 4.6. The Ψ-Sumudu transform of Ψ-Prabhakar integral equation (3.1) is

SΨ

(
P γ,Ψ
α,µ,ωf(t)

)
(u) = u−1(u)µ

(
1 − ω(u)α

)−γ
F (u),

provided ♣ω(u)α♣ < 1.

Lemma 4.7. The Ψ-Sumudu transform of Ψ-Prabhakar fractional derivative equation

(3.3) is

SΨ

(
Dγ,Ψ
α,µ,ωf(t)

)
(u) = u−µ

(
1 − ω(u)α

)γ
F (u) −

m−1∑

n=0

u−m+k
[
P
γ,Ψ
α,(m−µ)−k,ωf(0+)

]
.

For the case [µ] + 1 = m = 1

SΨ

(
Dγ,Ψ
α,µ,ωf(t)

)
(u) = u−µ

(
1 − ω(u)α

)γ
F (u) −

1

u

[
P

−γ,Ψ
α,(1−µ),ωf(t)

]
t=0+

,

with ♣ω(u)α♣ < 1.

Lemma 4.8. The Ψ-Sumudu transform of regularized version of Ψ-Prabhakar frac-

tional derivative equation (3.4) is

SΨ

(
CD

γ,Ψ

α,µ,ωf(t)
)
(u) = u−µ

(
1 − ω(u)α

)γ
F (u) −

m−1∑

n=0

u−(µ−k)

(
1 − ω

(
1

u

)α)γ
f (n)(0),

with ♣ω(u)α♣ < 1.

Lemma 4.9. The Ψ-Sumudu transform of Ψ-Hilfer-Prabhakar fractional derivative

equation (3.5) is

SΨ

(
D
γ,µ,ν,Ψ
α,ω,0+ f(t)

)
(u) =u−µ

(
1 − ω(u)α

)γ
F (u) −

m−1∑

k=0

um(ν−1)−νµ+k
(
1 − ω(u)α

)γν

×
[
P

−γ(1−ν),Ψ
α,ν(1−ν)(m−µ)−k,ωf(0+)

]
.

Lemma 4.10. The Ψ-Sumudu transforms of the regularized version of Ψ-Hilfer-

Prabhakar fractional derivative equation (3.6) of order µ is

SΨ

(
C
D
γ,µ,ν,Ψ

α,ω,0+ f(t)
)
(u) = u−µ

(
1 − ω(u)α

)γ
F (u) −

m−1∑

k=0

u−µ+k
(
1 − ω(u)α

)γ
fk(0+).

4.1. Ψ-Laplace and Ψ-Sumudu transform of Ψ-k-fractional derivatives.

Lemma 4.11. The Ψ-Laplace transform of Ψ-k-Prabhakar fractional integral equation

(3.7) is

(4.4) LΨ

(
kP

γ,Ψ
α,µ,ωf

)
(x) = (ks)

−µ
k

(
1 − ωk(ks)

−α
k

)−γ
k

F (s).

Lemma 4.12. The Ψ-Laplace transform of Ψ-k-Prabhakar fractional derivative equa-

tion (3.9) is

LΨ

(
kD

γ,Ψ
α,µ,ωf(t)

)
(s) =(ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k

F (s)
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− km
m−1∑

n=0

sm−n−1
[
kP

−γ,Ψ
α,(mk−µ)−n,ωf(0+)

]
.

For the case [µ
k
] + 1 = m = 1

(4.5) LΨ

(
kD

γ,Ψ
α,µ,ωf(t)

)
(s) = (ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s) − k

[
kP

−γ,Ψ
α,(k−µ),ωf(t)

]
t=0+

,

with ♣ωk(ks)
−α
k ♣ < 1.

Proof. Taking Ψ-Laplace transforms of Ψ-k-Prabhakar fractional derivative in (3.9)
and using (3.7), (3.8), (4.4) we get

LΨ

(
kD

γ,Ψ
α,µ,ωf(t)

)
(s) =L

((
1

Ψ′(t)
·

d

dt

)m
kmkP

−γ,Ψ
α,(mk−µ),ωf(t)

)
(s)

=kmsmLΨ

((
kε

−γ,Ψ
α,(mk−µ),ω ∗ f

)
(t)
)
(s)

− km
m−1∑

n=0

sm−n−1

[(
1

Ψ′(t)
·

d

dt

)n
kP

−γ,Ψ
α,(mk−µ),ωf(t)

]

t=0+

=(ks)mLΨ

(
(Ψ(t))

(mk−µ)
k

−1E
−γ
k,α,(mk−µ)

(
ω(Ψ(t))

α
k

))
F (s)

)

− km
m−1∑

n=0

sm−n−1

[(
1

Ψ′(t)
·

d

dt

)k
kP

−γ,Ψ
α,(mk−µ),ωf(0+)

]

=(ks)
µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s)

− km
m−1∑

n=0

sm−n−1
(
kP

−γ,Ψ
α,(mk−µ)−n,ωf(0+)

)
. □

For the case [µ
k
] + 1 = m = 1, we have

LΨ

(
kD

γ,Ψ
α,µ,ωf(t)

)
(s) = (ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s) − k

[
kP

−γ,Ψ
α,(k−µ),ωf(t)

]
t=0+

.

Lemma 4.13. The Ψ-Laplace transform of regularized version of Ψ-k-Prabhakar

fractional derivative equation (3.10) is

LΨ

(
k
CD

γ,Ψ

α,µ,ωf(t)
)
(s) =(ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s)(4.6)

− km
m−1∑

n=0

(ks)
µ−n−1

k

(
1 − ωk(ks)

−α
k

) γ
k
f (n)(0+),

with ♣ωk(ks)
−α
k ♣ < 1.

Proof. Taking Ψ-Laplace transform of regularized version of Ψ-k-Prabhakar fractional
derivative in (3.10) and using (3.7), (3.8), (3.9), (4.4) we get

LΨ

(
k
CD

γ,Ψ

α,µ,ωf(t)
)
(s) =LΨ

(

kε
−γ
α,(mk−µ),ω ∗Ψ

(
1

Ψ′(t)
·

d

dt
f

)m
(t)

)
(s)
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=(ks)m(ks)
−(mk−µ)

k

(
1 − ωk(ks)

−α
k

) γ
k

×

{
F (s) − km

m−1∑

k=0

(ks)
µ−n−1

k fn(0+)

}

=(ks)
µ
k

(
1 − ωk(ks)

−α
k

) γ
k

− km
m−1∑

k=0

(ks)
µ−n−1

k

(
1 − ωk(ks)

−α
k

) γ
k
fn(0+). □

For absolutely continuous function f ∈ AC1[0, b]
[
kP

−γ,Ψ
α,(k−µ),ωf(t)

]
t=0+

= 0.

Then in view of (4.5) and (4.6) (m = 1) we have

LΨ

(
k
CD

γ,Ψ

α,µ,ωf(t)
)
(s) = L

(
kD

γ,Ψ
α,µ,ωf(t)

)
(s) − k(ks)

µ−k
k

(
1 − ωk(ks)

−α
k

) γ
k
f(0+).

Taking inverse Ψ-Laplace transform, we get

k
CD

γ,Ψ

α,µ,ωf(t) = kD
γ,Ψ
α,µ,ωf(t) − (Ψ(t))

−µ
k E

−γ
k,α,k−µ(ω(Ψ(t))

α
k )f(0+),

for f ∈ AC1[0, b]. This is the relation between Ψ-k–Prabhakar fractional derivative
and its regularized version.

Lemma 4.14. The Ψ-Laplace transform of Ψ-k-Hilfer-Prabhakar fractional derivative

(3.11) is

LΨ

(
kD

γ,µ,ν,Ψ
α,ω,0+ f(t)

)
(s) =(ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s)(4.7)

− km
m−1∑

n=0

(ks)
m(1−ν)+νµ−n−1

k [1 − ωk(ks)
−α
k ]

γν
k

×
(
kP

−γ(1−ν),Ψ
α,(1−ν)(mk−µ)−n,ωf(0+)

)
.

Proof. Taking Ψ-Laplace transform of Ψ-k-Hilfer-Prabhakar fractional derivative in
(3.11) and using (3.7), (3.8), (3.9), (4.4) we have

LΨ

(
kD

γ,µ,ν,Ψ
α,ω,0+ f(t)

)
(s) =LΨ

[(

kε
−γν
α,ν(mk−µ),ω ∗Ψ

(
1

Ψ′(t)
·

d

dt

)m

×
(
kP

−γ(1−ν),Ψ
α,(1−ν)(mk−µ),ω,0+f

))
(t)

]
(s)

=(ks)m(ks)
−ν(mk−µ)

k

(
1 − ωk(ks)

−α
k

) γν
k



sm

(
(ks)−(1−ν)(m−µ)

)

×



(

(1 − ωk(ks)
−α
k )

γ(1−ν)
k F (s)

)
(t)

)
(s)
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− km
m−1∑

n=0

(ks)
−ν(mk−µ)

k

(
1 − ωk(ks)

−α
k

) γν
k

×
[
kP

−γ(1−ν),Ψ
α,(1−ν),(mk−µ)−n,ωf(0+)

]



=(ks)
µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s)

− km
m−1∑

n=0

(ks)
m(1−ν)+νµ−n−1

k

(
1 − ωk(ks)

−α
k

) γν
k

×
(
kP

−γ(1−ν),ψ
α,(1−ν)(mk−µ)−n,ωf(0+)

)
. □

Lemma 4.15. The Ψ-Laplace transforms of the regularized version of Ψ-k-Hilfer-

Prabhakar fractional derivative equation (3.12) of order µ is

LΨ

(
k
C
D
γ,µ,ν,Ψ

α,ω,0+ f(t)
)
(s) =(ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s)(4.8)

− km
m−1∑

n=0

(ks)
µ−n−1

k

(
1 − ωk(ks)

−α
k

) γ
k
fn(0+).

Proof. Taking Ψ-Laplace transforms of regularized version of Ψ-k-Hilfer-Prabhakar
fractional derivative in (3.12) and using (3.8), (3.9), (4.4) we have

LΨ

(
k
C
D
γ,µ,ν,Ψ

α,ω,0+ f(t)
)
(s) =kmLΨ

((

kε
−γν
α,ν(mk−µ),ω ∗Ψ

(

kP
−γ(1−ν),Ψ
α,(1−ν)(mk−µ),ω,0+

×

(
1

Ψ′(t)
·

d

dt

)m
f

))
(t)

)
(s)

=(ks)
µ
k

(
1 − ωk(ks)

−α
k

) γ
k
F (s)

− km
m−1∑

n=0

(ks)
µ−k−1

k

(
1 − ωk(ks)

−α
k

) γ
k
fn(0+). □

Again for absolutely continuous function f ∈ AC1[0, b]

k
C
D
γ,µ,ν,Ψ

α,ω,0+ f(t) = kD
γ,µ,ν,Ψ
α,ω,0+ f(t) − (Ψ(t))

−µ
k E

−γ
k,α,(mk−µ)(ω(Ψ(t))

α
k )f(0+).

This is the relation between Ψ-k-Hilfer-Prabhakar fractional derivative and its regu-
larized version.

Let F (s) be the Ψ-Sumudu transform of f(t).

Lemma 4.16. The Ψ-Sumudu transform of Ψ-k-Prabhakar integral equation (3.7) is

SΨ

(
kP

γ,Ψ
α,µ,ωf(t)

)
(u) = u−1

(
u

k

)µ
k

(
1 − ωk

(
u

k

)α
k

)−γ
k

F (u),

provided ♣ωk(u
k
)

α
k ♣ < 1.
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Lemma 4.17. The Ψ-Sumudu transform of Ψ-k-Prabhakar fractional derivative equa-

tion (3.9) is

SΨ

(
kD

γ,Ψ
α,µ,ωf(t)

)
(u) =

(
u

k

)−µ
k

(
1 − ωk

(
u

k

)α
k

) γ
k

F (u)

− km
m−1∑

n=0

(
u

k

)−m+n
k

[
kP

γ,Ψ
α,(mk−µ)−n,ωf(0+)

]
.

For the case [µ
k
] + 1 = m = 1

SΨ

(
kD

γ,Ψ
α,µ,ωf(t)

)
(u) =

(
u

k

)−µ
k


1 − ωk

(
k

u

)α
k




γ
k

F (u) −
k

u

[
kP

−γ,Ψ
α,(k−µ),ωf(t)

]
t=0+

,

with ♣ωk(u
k
)

α
k ♣ < 1.

Lemma 4.18. The Ψ-Sumudu transform of regularized version of Ψ-k-Prabhakar

fractional derivative equation (3.10) is

SΨ

(
k
CD

γ,Ψ

α,µ,ωf(t)
)
(u) =

(
u

k

)−µ
k

(
1 − ωk

(
k

u

)α
k
) γ

k

F (u)

− km
m−1∑

n=0

(k

u

)−(µ−nk)
k

(
1 − ωk

(
k

u

)α
k
) γ

k

f (n)(0),

with ♣ωk(u
k
)

α
k ♣ < 1.

Lemma 4.19. The Ψ-Sumudu transform of Ψ-k-Hilfer-Prabhakar fractional derivative

equation (3.11) is

SΨ

(
kD

γ,µ,ν,Ψ
α,ω,0+ f(t)

)
(u) =

(
u

k

)−µ
k

(
1 − ωk

(
u

k

)α
k

) γ
k

F (u)(4.9)

− km
m−1∑

n=0

(
u

k

)m(ν−1)−νµ+n

k

(
1 − ωk

(
u

k

)α
k

) γν
k

×
[
P

−γ(1−ν),Ψ
α,ν(1−ν)(mk−µ)−n,ωf(0+)

]
.

Lemma 4.20. The Ψ-Sumudu transforms of the regularized version of Ψ-k-Hilfer-

Prabhakar fractional derivative equation (3.12) of order µ is

SΨ

(

k
C
D
γ,µ,ν,Ψ

α,ω,0+ f(t)

)
(u) =

(
u

k

)−µ
k


1 − ωk

(
u

k

)α
k




γ
k

F (u)

− km
m−1∑

n=0

(
u

k

)−µ+nk
k


1 − ωk

(
u

k

)α
k




γ
k

fn(0+).
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5. Application

In this section we find the solutions of Cauchy problems involving Ψ-k-Hilfer-
Prabhakar derivative and its regularised version.

Theorem 5.1. The solution of Cauchy problem

kD
γ,µ,ν,Ψ
α,ω,0+ y(x) = λkP

δ,Ψ
α,µ,ω,0+y(x) + f(x),(5.1)

[
kP

−γ(1−ν),Ψ
α,(1−ν)(k−µ),ω,0+y(x)

]
t=0+

= C, C ≥ 0,(5.2)

where x ∈ (0, ∞), f(x) ∈ L1[0, ∞), µ ∈ (0, 1), ν ∈ [0, 1], ω, λ ∈ C, α > 0, γ, δ ≥ 0 is

given by

y(x) =C
∞∑

n=0

λn(Ψ(x))
ν(k−µ)+µ(1+2n)

k
−1E

n(δ+γ)−γ(ν−1)
k,α,ν(k−µ)+µ(1+2n)(ω(Ψ(x))

α
k(5.3)

+
∞∑

n=0

λnkP
γ+n(δ+γ),Ψ
k,α,µ(1+2n),ω,0+f(x),

if the series on the right hand side of equation (5.3) are convergent.

Proof. Let Y (u) and F (u) denote the Ψ-Laplace transform of y(x) and f(x), respec-
tively. Now taking Ψ-Laplace transform of (5.1) and using (3.7), (3.8), (4.4), (4.7),
(5.2) we have

(ku)
µ
k

(
1 − ωk(ku)

−α
k

) γ
k

Y (u) − k(ku)
−ν(k−µ)

k

(
1 − ωk(ku)

−α
k

) γν
k

C

=λ(ku)
−µ
k

(
1 − ωk(ku)

−α
k

)−δ
k

Y (u) + F (u). □

Thus, we have

Y (u) =




Ck(ku)
−ν(k−µ)

k

(
1 − ωk(ku)

−α
k

) γν
k + F (u)

(ku)
µ
k

(
1 − ωk(ku)

−α
k

) γ
k − λ(ku)

−µ
k

(
1 − ωk(ku)

−α
k

)−δ
k




=




Ck(ku)
−ν(k−µ)

k

(
1 − ωk(ku)

−α
k

) γν
k + F (u)

(ku)
µ
k

(
1 − ωk(ku)

−α
k

) γ
k




×
1


1 −

λ(ku)
−µ
k

(
1−ωk(ku)

−α
k

)−δ
k

(ku)
µ
k

(
1−ωk(ku)

−α
k

) γ
k




.
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Hence, for

∣∣∣∣∣∣∣

λ(ku)
−µ
k

(
1−ωk(ku)

−α
k

)−δ
k

(ku)
µ
k

(
1−ωk(ku)

−α
k

) γ
k

∣∣∣∣∣∣∣
< 1, we get

Y (u) =Ck
∞∑

n=0

λn(ku)
−ν(k−µ)−µ(1+2n)

k

(
1 − ωk(ku)

−α
k

) γ(ν−1)−n(δ+γ)
k

+ F (u)
∞∑

n=0

λn(ku)
−µ(1+2n)

k

(
1 − ωk(ku)

−α
k

)−γ−n(δ+γ)
k

.

Now using inverse Laplace transform, we get the required result.

Theorem 5.2. The solution of Cauchy problem

C
kD

γ,µ,ν,Ψ

α,ω,0+ u(x, t) = T
∂2

∂x2
u(x, t), t > 0, x ∈ R,(5.4)

u(x, 0+) = g(x),(5.5)

lim
x→±∞

u(x, t) = 0.(5.6)

with µ ∈ (0, 1), ω ∈ R, T, α > 0, γ ≥ 0 is given by

(5.7) u(x, t) =
1

2k2π

∫ ∞

−∞
dp eipxĝ(p)

∞∑

n=0

(−T )np2n(Ψ(t))
nµ
k E

nγ
k,α,nµ+k(ω(Ψ(t))

α
k ),

if the series on the right hand side of (5.7) is convergent.

Proof. Let u(x, q) and û(p, t) denote the Ψ-Laplace transform and Fourier transform
of u(x, t), respectively. Taking Fourier transform of equation (5.4) and using (5.6) we
get

(5.8) C
kD

γ,µ,ν,Ψ

α,ω,0+ û(p, t) = −Tp2û(p, t).

Now taking Ψ-Laplace transform of (5.8) and using (4.8), (5.5) we get

(ks)
µ
k

(
1 − ωk(ks)

−α
k

) γ
k

(
û(p, s) −

g(x)

s

)
= −Tp2û(p, s),

(
(ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k + K p2

)
sû(p, s) = (ks)

µ
k

(
1 − ωk(ks)

−α
k

) γ
k
ĝ(p).

Thus, we have

û(p, s) =
ĝ(p)

s


1 +

T p2

(ks)
µ
k

(
1 − ωk(ks)

−α
k

) γ
k




−1

.

Hence, for

∣∣∣∣∣∣∣
K p2

(ks)
µ
k

(
1−ωk(ks)

−α
k

) γ
k

∣∣∣∣∣∣∣
< 1, we get

û(p, s) =
ĝ(p)

s

∞∑

n=0

(−T )np2n(kq)
−nµ

k

(
1 − ωk(ks)

−α
k

)−nγ
k
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=
ĝ(p)

k

∞∑

n=0

(−T )np2n(ks)
−nµ−k

k

(
1 − ωk(ks)

−α
k

)−nγ
k

.(5.9)

Taking inverse Laplace transform of (5.9) we get

û(x, s) =
ĝ(p)

k2

∞∑

n=0

(−T )np2n(Ψ(t))
nµ
k E

nγ
k,α,nµ+k(ω(Ψ(t))

α
k ).

Using inverse Fourier transform, we get required result. □

The two above results can also be obtained using the Sumudu transform instead of
Laplace transform and these are the generalizations of results discussed in [12].

Theorem 5.3 ([20]). The solution of the differential equation

−hMΘ(x) = ρV cp kD
γ,µ,ν,Ψ
α,ω,0+ Θ(x) ,(5.10)

Θ(0) = β, for β ≥ 0,(5.11)

where ρ-density, V -volume, cp-specific heat of material, h-convection heat transfer

coefficient, M-surface area of the body and Θ ∈ L1[0, ∞), 0 < x < ∞, k, α > 0,

γ, ω ∈ R, µ ∈ (0, 1), ν ∈ [0, 1] is given by

(5.12) Θ(x) = β
∞∑

n=0

(
−hM

ρV cp

)n
(Ψ(x))

ν(k−µ)+µ(n+1)
k

−1E
−γ(ν−n−1)
k,α,ν(k−µ)+µ(n+1)(ω(Ψ(x))

α
k ),

if the series on the right hand side of (5.12) is convergent.

Proof. Let Θ̂(u) denote the Ψ-Sumudu transform of Θ(x). Now taking Ψ-Sumudu
transform of (5.10) and using (4.9), (5.11) we have

−hMΘ̂(u) =ρV cp

(
u

k

)−µ
k
(

1 − ωk

(
u

k

)α
k
) γ

k

Θ̂(u)

− ρV cpβ

(
u

k

) ν(k−µ)
k

−1(
1 − ωk

(
u

k

)α
k
) γν

k

×

[
hM + ρV cp

(
u

k

)−µ
k
(

1 − ωk

(
u

k

)α
k
) γ

k
]
Θ̂(u),

=ρV cpβ

(
u

k

) ν(k−µ)
k

−1(
1 − ωk

(
u

k

)α
k
) γν

k

,

Θ̂(u) =

(
u
k

) ν(k−µ)
k

−1(
1 − ωk

(
u
k

)α
k
) γν

k

ρV cpβ

[
hM + ρV cp

(
u
k

)−µ
k
(

1 − ωk

(
u
k

)α
k
) γ

k
]
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=

(
u
k

) ν(k−µ)
k

−1(
1 − ωk

(
u
k

)α
k
) γν

k

ρV cpβ

ρV cp

(
u
k

)−µ
k
(

1 − ωk

(
u
k

)α
k
) γ

k

×



1 +

hM

ρV cp

(
u
k

)−µ
k
(

1 − ωk

(
u
k

)α
k
) γ

k




−1

=β
(u

k

) ν(k−µ)+µ

k
−1
(

1 − ωk
(u

k

)α
k

) γ(ν−1)
k

×
∞∑

n=0

(
−hM

ρV cp

)n(
u

k

)nµ
k
(

1 − ωk

(
u

k

)α
k
)−nγ

k

,

for ∣∣∣∣∣∣
ρV cp

(
u

k

)−µ
k
(

1 − ωk

(
u

k

)α
k
) γ

k

∣∣∣∣∣∣
< 1,

(5.13) Θ̂(u) = β
∞∑

n=0

(
−hM

ρV cp

)n(
u

k

) ν(k−µ)+µ(n+1)
k

−1(
1 − ωk

(
u

k

)α
k
) γ(ν−n−1)

k

.

Taking inverse Sumudu transform of (5.13), we get required solution of (5.12). □

6. Conclusion.

In the present paper, we investigate new fractional derivatives in the sense of Ψ-
fractional calculus to find their generalized transforms called Ψ-Laplace and Ψ-Sumudu
transforms. These derivatives are more generalization of fractional derivatives and
effectively applicable for various applications like cauchy problems, heat transfer
problem. In order to explain the obtained results, some examples were illustrated.
It is noted that since generalized derivatives are global and contain a wide class of
fractional derivatives.
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HARMONIC BLOCH FUNCTION SPACES AND THEIR

COMPOSITION OPERATORS

SOMAYYE ESMAEILI1, YOUSEF ESTAREMI2∗, AND ALI EBADIAN3

Abstract. In this paper we characterize some basic properties of composition op-
erators on the spaces of harmonic Bloch functions. First we provide some equivalent
conditions for boundedness and compactness of composition operators. In the sequel
we investigate closed range composition operators. These results extends the similar
results that were proven for composition operators on the Bloch spaces.

1. Introduction and Preliminaries

Let D be the open unit disk in the complex plane. For a continuously differentiable
complex-valued function f(z) = u(z) + iv(z), z = x+ iy, we use the common notation
for its formal derivatives:

fz =
1

2
(fx − ify),

fz̄ =
1

2
(fx + ify).

A twice continuously differentiable complex-valued function f = u+ iv on D is called
a harmonic function if and only if the real-valued function u and v satisfy Laplace’s
equations ∆u = ∆v = 0.

A direct calculation shows that the Laplacian of f is

∆f = 4fzz̄.

Thus for functions f with continuous second partial derivatives, it is clear that f
is harmonic if and only if ∆f = 0. We consider complex-valued harmonic function
f defined in a simply connected domain D ⊂ C. The function f has a canonical

Key words and phrases. Composition operator, Bloch spaces, harmonic function.
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decomposition f = h+ḡ, where h and g are analytic in D [6]. A planar complex-valued
harmonic function f in D is called a harmonic Bloch function if and only if

βf = sup
z,w∈D,z ̸=w

♣f(z) − f(w)♣

ϱ(z, w)
< ∞.

Here βf is the Lipschitz number of f and

ϱ(z, w) = arctan h
∣

∣

∣

∣

z − w

1 − z̄w

∣

∣

∣

∣

,

denotes the hyperbolic distance between z and w in D and also ρ(z, w) is the pseudo-
hyperbolic distance on D. In [3] Colonna proved that

βf = sup
z∈D

(1 − ♣z♣2)[♣fz(z)♣ + ♣fz̄(z)♣].

Moreover, the set of all harmonic Bloch mappings, denoted by the symbol HB(1) or
HB, forms a complex Banach space with the norm ∥ · ∥ given by

∥f∥HB(1) = ♣f(0)♣ + sup
z∈D

(1 − ♣z♣2)[♣fz(z)♣ + ♣fz̄(z)♣].

Definition 1.1. For α ∈ (0,∞), the harmonic α-Bloch space HB(α) consists of
complex-valued harmonic function f defined on D such that

♣♣♣f ♣♣♣HB(α) = sup
z∈D

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] < ∞,

and the harmonic little α-Bloch space HB0(α) consists of all function in HB(α) such
that

lim
♣z♣→1

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] = 0.

Obviously, when α = 1, we have ♣♣♣f ♣♣♣HB(α) = βf . Each HB(α) is a Banach space
with the norm given by

∥f∥HB(α) = ♣f(0)♣ + sup
z∈D

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣]

and HB0(α) is a closed subspace of HB(α). Now we define composition operators.

Definition 1.2. Let D be the open unit disk in the complex plane. Let φ be an
analytic self-map of D, i. e., an analytic function φ in D such that φ(D) ⊂ D. The
composition operator Cϕ induced by such φ is the linear map on the spaces of all
harmonic functions on the unit disk defined by

Cϕf = f ◦ φ.

The composition operators on function spaces were studied by many authors. Some
known results about composition operators can be found in [5] and [10]. In this paper
we study composition operators on harmonic Bloch-type spaces HB(α). In section
2, by using of Theorem 2.1 in [8], we give a necessary and sufficient condition for
boundedness of Cϕ on HB(α) for α ∈ (0,∞), which extends Theorem 3.1 in [8], by
Lou. The compactness of Cϕ on analytic Bloch-type spaces were characterized in [8,9].
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In this paper, we deal the compactness of composition operators between the Banach
spaces of harmonic functions HB(α) and HB0(α).

Moreover, we investigate closed range composition operators. Closed range compo-
sition operators on the Bloch-type spaces have been studied in [2,4,7,11]). For α > 0,
and φ being an analytic self-map of D, let

τϕ,α(z) =
(1 − ♣z♣2)α♣φ′(z)♣

(1 − ♣φ(z)♣2)α
.

We write τϕ if α = 1. We say that a subset G ⊂ D is called sampling set for HB(α)
if exists S > 0 such that for all f ∈ HB(α)

sup
z∈G

(1 − ♣z♣2)α[♣fz(z)♣] + [♣fz̄(z)♣] ≥ S♣♣♣f ♣♣♣HB(α).

To state the results obtained, we need the following definition. Let ρ(z, w) = ♣φz(w)♣
denote the pseudohyperbolic distance (between z and w) on D, where φz is a disk
automorphism of D that is

φz(w) =
z − w

1 − z̄w
.

We say that subset G ⊂ D is an r-net for D for some r ∈ (0, 1) if for each z ∈ D
exists w ∈ G such that ρ(z, w) < r. For c > 0, let

Ωc,α = ¶z ∈ D : τϕ,α(z) ≥ c♢

and let Gc,α = φ(Ωc,α). If α = 1, then we write Ωc and Gc. Now we recall Montel’s
theorem for harmonic functions.

Theorem 1.1 ([1]). If ¶un♢∞
n=1 is a sequence of harmonic functions in the region

Ω with supn,x∈K ♣un(x)♣ < ∞ for every compact set K ⊂ Ω, then there exists a

subsequence, ¶unj
♢∞

j=1 converging uniformly on every compact set K ⊂ Ω.

Also we recall a very useful theorem that we will use it a lot in this paper.

Theorem 1.2 ([8]). Let 0 < α < ∞. Then there exist f, g ∈ HB(α) such that

♣f ′(z)♣ + ♣g′(z)♣ ≥
1

(1 − ♣z♣)α
,

for all z ∈ D.

2. Main Results

In this section we study bounded and compact composition operators on HB(α).
And then we investigate closed range composition operators on HB(α). First we
provide some equivalent conditions for boundedness of composition operator Cϕ on
HB(α).

Theorem 2.1. If 0 < α < ∞, φ ∈ H(D) and φ(D) ⊆ D, then the following

statements are equivalent.

a) Cϕ : HB(α) → HB(α) is bounded.
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b)

sup
z∈D

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣ < ∞.

Proof. For the implication a → b, by Theorem 2.1 of [8] we have that for 0 < α < ∞
there exist h, g ∈ B(α) satisfying the inequality

♣h′(z)♣ + ♣g′(z)♣ ≥
1

(1 − ♣z♣)α
.

If we set f = h+ ḡ ∈ HB(α), then f ◦ φ(z) = h ◦ φ(z) + g ◦ φ(z) and so by the same
method of Theorem 3.1 of [8] we get the proof.

For the implication b → a we can do the same as Theorem 3.1 of [8]. □

In the next theorem we consider the composition operator from HB0(α) into HB(α)
and we find some conditions under which Cϕ is bounded.

Theorem 2.2. Let 0 < α < ∞, φ ∈ H(D) and φ(D) ⊆ D. Then the followings are

equivalent.

a) Cϕ : HB0(α) → HB(α) is bounded.

b)

sup
z∈D

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣ < ∞.

Proof. The proof is similar to the proof of Theorem 3.3 of [8]. Hence we omit the
proof. □

Now we consider the composition operator Cϕ : HB(α) → HB0(α) and we give an
equivalent condition to boundedness of Cϕ.

Theorem 2.3. If 0 < α < ∞, φ ∈ H(D) and φ(D) ⊆ D, then the following are

equivalent.

a) Cϕ : HB(α) → HB0(α) is bounded.

b)

lim
♣z♣→1

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣ = 0.

Proof. By a similar method of the proof of Theorem 3.4 of [8] we get the proof. □

Finally we provide some conditions for boundedness of the composition operator
Cϕ as an operator on HB0(α).

Theorem 2.4. If 0 < α < ∞, φ ∈ H(D) and φ(D) ⊆ D, then the followings are

equivalent.

a) Cϕ : HB0(α) → HB0(α) is bounded.

b) φ ∈ B0(α) and

sup
z∈D

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣ < ∞.
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Proof. By some simple calculations one can get the proof. □

A sequence ¶zn♢ in D is said to be R-separated if ρ(zn, zm) = ♣ zm−zn

1− ¯zmzn
♣ > R whenever

m ̸= n. Thus an R-separated sequence consists of points which are uniformly far
apart in the pseudohyperbolic metric on D, or equivalently, the hyperbolic balls
D(zn, r) = ¶w : ρ(w, zn) < r♢ are pairwise disjoint for some r > 0. Evidently, any
sequence ¶zn♢ in D which satisfies ♣zn♣ → 1 possesses an R-separated subsequence for
any R > 0.

Another property of separated sequence is contained in the next proposition.

Proposition 2.1 ([9]). There is an absolute constant R > 0 such that if ¶zn♢ is

R-separated, then for every bounded sequence ¶λn♢ there is an f ∈ B such that

(1 − ♣zn♣2)f ′(zn) = λn for all n.

Since every sequence ¶zn♢ with ♣zn♣ → 1 contains an R-separated subsequence
¶znk

♢, it follows that there is an f ∈ B such that (1 − ♣znk
♣2)f ′(znk

) = 1 for all k.
Now we begin investigating compactness of the composition operator Cϕ in different

cases. First we provide some equivalent conditions for compactness of Cϕ as an
operator on HB(α).

Theorem 2.5. Let 0 < α < ∞, φ ∈ H(D) and φ(D) ⊆ D. Then we have the

followings conditions are equivalent.

a) Cϕ : HB(α) → HB(α) is compact.

b)

lim
♣ϕ(z)♣→1



1 − ♣z♣2

1 − ♣φ(z)♣2

α

♣φ′(z)♣ = 0

and

sup
z∈D



1 − ♣z♣2

1 − ♣φ(z)♣2

α

♣φ′(z)♣ < ∞.

Proof. By making use of the proof of Theorem 4.2 of [8] and the Proposition 1 of [9]
we get the proof. □

Here we prove that the compactness of Cϕ : HB0(α) → HB0(α) and Cϕ : HB(α) →
HB0(α) are equivalent and we find an equivalent condition for compacness of Cϕ in
these cases.

Theorem 2.6. Let 0 < α < ∞, φ ∈ H(D) and φ(D) ⊆ D. Then the following

statements are equivalent.

a) The operator Cϕ : HB0(α) → HB0(α) is compact.

b) The operator Cϕ : HB(α) → HB0(α) is compact.

c)

lim
♣z♣→1

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣ = 0.
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Proof. First we prove the implication a → c. If Cϕ : HB0(α) → HB0(α) is compact,

then the set K = Cϕ(SHB0(α)) ⊂ HB0(α) is compact, in which SHB0(α) = ¶f ∈
HB0(α) : ∥f∥HB0(α) ≤ 1♢. By the Theorem 2.5, we get that

sup
∥f∥HB(α)≤1

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] = 1,

for all z ∈ D. Moreover we have

0 = lim
♣z♣→1

sup
∥f∥HB(α)≤1

(1 − ♣z♣2)α[♣(f ◦ φ)z(z)♣ + ♣(f ◦ φ)z̄(z)♣]

= lim
♣z♣→1

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣ sup

∥f∥HB(α)≤1
(1 − ♣φ(z)♣2)α[♣h′(φ(z)♣) + ♣g′(φ(z))♣].

So, we get the desired result.
Now we prove the implication c → b. Let ¶fn♢n∈N ⊂ HB(α) and ∥fn∥HB(α) ≤ 1,

for all n. First we obtain that ¶Cϕfn♢ has a subsequence that converges in HB0(α).
By Montel’s Theorem we have a subsequence ¶fnk

♢ ⊂ ¶fn♢, that converges uniformly
on subsets of D to a harmonic function f . Hence we have

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] = lim
k→∞

(1 − ♣z♣2)α[♣(fnk
)z(z)♣ + ♣(fnk

)z̄(z)♣]

≤ lim
k→∞

∥fnk
∥HB(α)

≤ 1.

This means that f ∈ HB(α) with ∥f∥HB(α) ≤ 1. Also we have

(1 − ♣z♣2)α[♣(f ◦ φ)z(z)♣ + ♣(f ◦ φ)z̄(z)♣] =
(1 − ♣z♣2)α

(1 − ♣φ(z)♣)α
♣φ′(z)♣

≤
(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣∥f∥HB(α).

By these observations we conclude that Cϕf ∈ HB0(α). Also we need to show that

lim
k→∞

∥Cϕfnk
− Cϕf∥HB(α) = 0.

Since lim♣z♣→1
(1−♣z♣2)α

(1−♣ϕ(z)♣2)α ♣φ′(z)♣ = 0, then for any ε > 0, there exists r ∈ (0, 1) such

that for z with r < ♣z♣ < 1 we have

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣ <

ε

4
.

And so for all z with r < ♣z♣ < 1 we have

(1 − ♣z♣2)α♣((fnk
− f) ◦ φ)′(z)♣ =(1 − ♣z♣2)α[♣(fnk

)zφ(z)♣ + ♣(fnk
)z̄φ(z)♣]

− (1 − ♣z♣2)α[♣fzφ(z)♣ + ♣fz̄φ(z)♣]

≤
ε

4
(∥fnk

∥HB(α) + ∥f∥HB(α)) ≤
ε

2
.
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For z with ♣z♣ ≤ r, the set ¶φ(z) : ♣z♣ ≤ r♢ is a compact subset of D. Since

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] = lim
k→∞

(1 − ♣z♣2)α[♣(fnk
)z(z)♣ + ♣(fnk

)z̄(z)♣]

and

(1 − ♣z♣2)α♣((fnk
− f) ◦ φ)′(z)♣ ≤(1 − ♣z♣2)α¶[♣(fnk

)zφ(z)♣ + ♣(fnk
)z̄φ(z)♣]

− [♣fzφ(z)♣ + ♣fz̄φ(z)♣] sup
z∈D

(1 − ♣z♣2)α

(1 − ♣φ(z)♣2)α
♣φ′(z)♣.

Hence, we have (1−♣z♣2)α♣((fnk
−f)◦φ)′(z)♣ → 0 uniformly on ¶z : ♣z♣ ≤ r♢. Therefore,

(1 − ♣z♣2)α♣((fnk
− f) ◦ φ)′(z)♣ < ε

2
for k sufficiently large and ¶z : ♣z♣ ≤ r♢. This

completes the proof.
The implication b) → a) is clear. □

Let (X, d) be a metric space and let ε > 0. We say that A ⊂ X is an ε-net for
(X, d), if for all x ∈ X there exists an a in A such that d(a, x) < ε. We characterize
the compact subsets of HB0(α) in the next lemma.

Lemma 2.1. A closed subset of HB0(α) is compact if and only if it is bounded and

satisfies

lim
♣z♣→1

sup
f∈k

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] = 0.

Proof. Suppose that K ⊂ HB0(α) is compact and ε > 0. Then we can choose an
ε
2
-net f1, f2, . . . , fn ∈ K. Hence, there exists δ, 0 < δ < 1, such that for all z with

♣z♣ > δ we have (1 − ♣z♣2)α[♣(fi)z(z)♣ + ♣(fi)z̄(z)♣] < ε
2

for all 1 ≤ i ≤ n. If f ∈ K, then
there exists some fi such that ∥f − fi∥HB(α) <

ε
2

and so for all z with ♣z♣ > δ we have

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] ≤ ∥f − fi∥HB(α) + (1 − ♣z♣2)α[♣(fi)z(z)♣ + ♣(fi)z̄(z)♣] < ε.

Therefore, we get that

lim
♣z♣→1

sup
f∈k

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] = 0.

Conversely, let K be a closed and bounded subset of HB0(α) such that

lim
♣z♣→1

sup
f∈k

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣] = 0.

Since K is bounded, then it is relatively compact with respect to the topology of
the uniform convergence on compact subsets of the unit disk. If (fn) is a sequence in
K, then by Montel’s Theorem we have a subsequence ¶fnk

♢ ⊂ ¶fn♢ which converges
uniformly on compact subsets of D to a harmonic function f . Also ¶f ′

nk
♢ converges

uniformly to f ′ on compact subsets of D. For every ε > 0 we can find δ > 0 such that
for all z with ♣z♣ > δ we have

(1 − ♣z♣2)α[♣(fnk
)z(z)♣ + ♣(fnk

)z̄(z)♣] <
ε

2
,
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for any integer k > 0. Therefore, (1−♣z♣2)α[♣fz(z)♣+ ♣fz̄(z)♣] < ε
2
, for all z with ♣z♣ > δ.

So,

sup
♣z♣>δ

(1 − ♣z♣2)α[♣(fnk
− f)z(z)♣ + ♣(fnk

− f)z̄(z)♣] ≤ sup
♣z♣>δ

(1 − ♣z♣2)α[♣(fnk
)z(z)♣

+ ♣(fnk
)z̄(z)♣]

+ sup
♣z♣>δ

(1 − ♣z♣2)α[♣fz(z)♣ + ♣fz̄(z)♣]

<ε.

Moreover, since (fnk
) converges uniformly on compact subsets of D to f and (f ′

nk
)

converges uniformly to f ′ on ¶z : ♣z♣ ≤ δ♢, we get that

sup
♣z♣≤δ

(1 − ♣z♣2)α[♣(fnk
− f)z(z)♣ + ♣fnk

− f)z̄(z)♣] ≤ ε.

Consequently for k large enough, we have limk→∞ ∥fnk
−f∥HB(α) ≤ ε. This completes

the proof. □

In the next theorem we prove that the norm convergence in HB(α) implies the
uniform convergence.

Theorem 2.7. The norm convergence in HB(α) implies the uniform convergence,

that is if ¶fn♢ ⊂ HB(α) such that ∥fn − f∥HB(α) → 0, then ¶fn♢ converges uniformly

to f .

Proof. For 0 ̸= z ∈ D, we have

♣fn(z) − f(z)♣ =

∣

∣

∣

∣

∣

∫ 1

0

d(fn − f)

dt
(zt)dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

z
∫ 1

0

d(fn − f)

dς(t)
(zt)dt+ z̄

∫ 1

0

d(fn − f)

dς̄(t)
(zt)dt

∣

∣

∣

∣

∣

≤ ♣z♣
∫ 1

0
[♣(fn − f)ς(t)(zt)♣ + ♣(fn − f) ¯ς(t)(zt)♣]dt,

in which ς(t) = zt. This gives us

♣fn(z) − f(z)♣ ≤
∫ 1

0

[♣(fn − f)ς(t)(zt)♣ + ♣(fn − f) ¯ς(t)(zt)♣]

(1 − ♣ς(t)♣2)α
(1 − ♣ς(t)♣2)αdt

≤ (∥fn − f∥HB(α))
∫ 1

0

1

(1 − ♣z♣t)α
dt → 0,

when n → ∞. So we get the proof. □

In the next theorem we provide some equivalent conditions for closedness of range
of the composition operator on HB(α).

Theorem 2.8. Let φ : D → D, α > 0 and Cϕ : HB(α) → HB(α) be a bounded

operator. Then the range of Cϕ : HB(α) → HB(α) is closed if and only if there exists

c > 0 such that Gc,α is sampling for HB(α).
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Proof. Since Cϕ : HB(α) → HB(α) is bounded, then exists K > 0 such that
supz∈D τϕ,α(z) ≤ K. Since every non-constant φ is an open map, then the com-
position operator Cϕ is always one to one. By a basic operator theory result, a
one-to-one operator has closed range if and only if it is bounded below. Hence, if Cϕ

has closed range, then Cϕ is bounded below, that is exists ε > 0 such that for all
f ∈ HB(α)

∥Cϕf∥HB(α) = sup
z∈D

(1 − ♣z♣2)α[♣(foφ)z(z)♣ + ♣(foφ)z̄(z)♣]

= sup
z∈D

τϕ,α(z)♣(1 − ♣φ(z)♣2)α[♣h′(φ(z)♣) + ♣g′(φ(z))♣]

≥ ε∥f∥HB(α).

Now we show that the set Gc,α is sampling for HB(α) with sampling constant S = ε
K

.
Since Ωc,α = ¶z ∈ D : τϕ,α(z) ≥ c♢, so for any z /∈ Ωc,α and c = ε

2
, we have

sup
z /∈Ωc,α

τϕ,α(z)♣(1 − ♣φ(z)♣2)α[♣h′(φ(z)♣) + ♣g′(φ(z))♣] ≤
ε

2
∥f∥HB(α).

Therefore, we have

ε∥f∥HB(α) ≤ sup
z∈D

τϕ,α(z)♣(1 − ♣φ(z)♣2)α[♣h′(φ(z)♣) + ♣g′(φ(z))♣]

= sup
z∈Ωc,α

τϕ,α(z)(1 − ♣φ(z)♣2)α[♣h′(φ(z)♣) + ♣g′(φ(z))♣]

≤ K sup
w∈Gc,α

(1 − ♣w♣2)α[♣h′(w♣) + ♣g′(w)♣].

Hence supw∈Gc,α
(1 − ♣w♣2)α[♣h′(w♣) + ♣g′(w)♣] ≥ ε

K
∥f∥HB(α). This means that Gc,α is

a sampling set for HB(α) with sampling constant S = ε
K

.
Conversely, suppose that Gc,α is a sampling set for HB(α), with sampling constant

S > 0. So for all f ∈ HB(α) and ε = cS we get the followings relations:

S∥f∥HB(α) ≤ sup
z∈Ωc,α

(1 − ♣φ(z)♣2)α[♣(f)z(φ(z))♣ + ♣(f)z̄(φ(z))♣]

= sup
z∈Ωc,α

(1 − ♣φ(z)♣2)α[♣h′(φ(z)♣) + ♣g′(φ(z))♣]

≤
1

c
sup
z∈D

(1 − ♣z♣2)α[♣(h ◦ φ)z(z)♣ + ♣(g ◦ φ)z̄(z)♣]

≤
1

c
∥f ◦ φ∥HB(α).

Therefore,

ε∥f∥HB(α) ≤ ∥f ◦ φ∥HB(α) = ∥Cϕf∥HB(α).

Hence, Cϕ is bounded below and so Cϕ has closed range. □

Now we give some other necessary and sufficient conditions for closedness of range
of Cϕ : HB(α) → HB(α).
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Theorem 2.9. Let φ be a self-map of D, α > 0, and Cϕ : HB(α) → HB(α) be a

bounded operator. Then we have the following hold.

a) If the operator Cϕ : HB(α) → HB(α) has closed range, then there exist c, r > 0
with r < 1, such that Gc,α is an r-net for D.

b) If there exist c, r > 0 with r < 1, such that Gc,α contains an open annulus

centered at the origin and with outer radius 1, then Cϕ has closed range.

Proof. a) For a ∈ D, let φa(z) be a function such that φa(0) = 0 and φ′
a(z) = (ψ′

a(z))α,
where ψa is the disc automorphism of D defined by ψa(z) = a−z

1−āz
. Using the equalities

1 − ρ(z, w)2 = 1 − ♣ψw(z)♣2 = (1 − ♣z♣2)♣ψ′
w(z)♣,

we get

∥φa + φ̄a∥HB(α) = sup
z∈D

(1 − ♣z♣2)α2♣φ′
a(z)♣ = 2 sup

z∈D
(1 − ♣ψa(z)♣2)α = 2.

If we put f = φa + φ̄a, then we have

∥Cϕf∥HB(α) = ∥f ◦ φ∥HB(α)

= sup
z∈D

(1 − ♣z♣2)α[♣(f ◦ φ)z(z)♣ + ♣(f ◦ φ)z̄(z)♣]

= sup
z∈D

τϕ,α(z)2(1 − ♣ψa(φ(z))♣2)α.

Moreover, by assuming that Cϕ is bounded and has closed range, then there exist K,
ε > 0 such that supz∈D τϕ,α(z) = K and

∥f ◦ φ∥HB(α) = sup
z∈D

τϕ,α(z)2(1 − ♣ψa(φ(z))♣2)α ≥ ε∥φa + φ̄a∥HB(α).

This implies that

ε ≤ sup
z∈D

τϕ,α(z)(1 − ♣ψa(φ(z))♣2)α ≤ sup
z∈D

τϕ,α(z) = K.

Since 1 − ♣ψa(φ(z))♣2 ≤ 1, then there exists za ∈ D such that

τϕ,α(za) ≥
ε

2

and

(1 − ♣ψa(φ(za))♣2)α ≥
ε

2K
.

Thus, for c = ε
2

and r =
√

1 − ( ε
2K

)
1
α , we conclude that for all a ∈ D, there exists

za ∈ Ωc,α such that ρ(a, φ(za)) < r and so Gc,α is an r-net for D.
b) Let Gc,α contains the annulus A = ¶z : r0 < ♣z♣ < 1♢ and Cϕ : HB(α) → HB(α)

be bounded. Suppose that Cϕ doesn’t have closed range, then there exists a sequence
¶fn♢ with ∥fn∥HB(α) = 1 and ∥Cϕfn∥HB(α) → 0. For each ε > 0, let Nε > 0 such that
for all n > Nε we have

∥Cϕfn∥HB(α) < ε < cε.
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Since

sup
z∈D

(1 − ♣z♣2)α[♣(fn)z(z)♣ + ♣(fn)z̄(z)♣] = sup
z∈D

(1 − ♣z♣2)α[♣h′
n(z)♣ + ♣g′

n(z)♣] = 1,

then there exists a sequence ¶an♢ in D such that for all n

(1 − ♣an♣2)α[♣h′
n(an)♣ + ♣g′

n(an)♣] ≥
1

2
.

Moreover, we have

sup
w∈Gc,α

(1 − ♣w♣2)α[♣(fn)z(w)♣ + ♣(fn)z̄(w)♣]

= sup
z∈Ωc,α

τ−1
ϕ,α(z)τϕ,α(z)(1 − ♣φ(z)♣2)α[♣(fn)z(φ(z))♣ + ♣(fn)z̄(φ(z))♣]

≤
1

c
sup
z∈D

(1 − ♣z♣2)α♣φ′(z)♣[♣(fn)z(φ(z))♣ + ♣(fn)z̄(φ(z))♣]

<
cε

c
= ε.

If we take ε < 1
2
, then we get that each an with n > Nε belongs to (Gc,α)c. Thus

♣an♣ ≤ r0 < 1 and an → a with ♣a♣ ≤ r0. On the other hand, by Montel’s Theorem,
there exists a subsequence ¶fnk

♢ such that converges uniformly on compact subsets of
D to some function f ∈ HB(α). Hence ¶f ′

nk
♢ converges to f ′ uniformly on compact

subsets of D, and since

sup
w∈Gc,α

(1 − ♣w♣2)α[♣(fn)z(w)♣ + ♣(fn)z̄(w)♣] → 0,

when n → ∞ and Gc,α contains a compact subset of D, we conclude that f ′ = 0. This
contradicts the fact that

(1 − ♣a♣2)α[♣h′(a)♣ + ♣g′(a)♣] ≥
1

2
.

Therefore, Cϕ must be bounded below and consequently it has closed range. □
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ON THE INITIAL VALUE PROBLEM FOR FUZZY NONLINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS

ALI EL MFADEL1, SAID MELLIANI1, AND M’HAMED ELOMARI1

Abstract. In this paper, we study the existence result of solutions for fuzzy nonlin-
ear fractional differential equations involving Caputo differentiability of an arbitrary
order 0 < q < 1. As application, an example is included to show the applicability
of our result.

1. Introduction

Fuzzy fractional differential equations were proposed to handle uncertainty due to
incomplete information that appears in many mathematical or computer models of
some deterministic real-world phenomena. In recent years, fractional differential equa-
tions have attracted a considerable interest both in mathematics and in applications
as material theory, transport processes, fluid flow phenomena, earthquakes, solute
transport, chemistry, wave propagation, signal theory, biology, electromagnetic theory,
thermodynamics, mechanics, geology, astrophysics, economics and control theory (see
[1–3]). For basic works related to the fuzzy fractional differential equations we refer
the reader to [4, 16,17].

Motivated by the above works, in this paper,we study the existence result of solution
for the following fuzzy fractional initial value problem:

(1.1)

{
cDqx(t) = f(t, x(t)), t ∈ J = [t0, t0 + δ],
x(t0) = x0.

Where cDq is the Caputo derivative of x(t) at order q ∈ [0, 1] and δ > 0.

Key words and phrases. Fuzzy numbers, fuzzy fractional integral, fuzzy fractional caputo deriva-
tive.
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To be more precise, we will show that problem (1.1) admits a solution on each
locally compact subset of the space of a E1 which is the space of all fuzzy numbers.

The paper is organized as follows. In Section 2, we give some basic properties
of fuzzy sets, operations of fuzzy numbers and some detailed definitions of fuzzy
fractional integral and fuzzy fractional derivative which will be used in the rest of
this paper. In Section 3, we introduce the existence result of solution for the fuzzy
fractional initial value problem by using Peano theorem. Illustrative example will be
discussed in Section 4, followed by conclusion and futur works in Section 5.

2. Preliminaries

Definition 2.1 ([18]). A fuzzy number is mapping u : Rn → [0, 1] such that

(a) u is upper semi-continuous;
(b) u is normal, that is, there exists x0 ∈ R

n such that u(x0) = 1;
(c) u is fuzzy convex, that is, u(λx + (1 − λ)y) ≥ min¶u(x), u(y)♢ for all x, y ∈ R

n

and λ ∈ [0, 1];
(d) ¶x ∈ Rn, u(x) > 0♢ is compact.

The α − cut of a fuzzy number u is defined as follows:

[u]α = ¶x ∈ R
n ♣ u(x) ≥ α♢.

Moreover, we also can present the α − cut of fuzzy number u by [u]α = [ul(α), ur(α)].
We denote by En the collection of all fuzzy numbers.

Example 2.1. Let u be a fuzzy number defined by the following function:

µu(x) =





x − 1, x ∈ [1, 2],
−x + 3, x ∈ [2, 3],
0, elswhere.

Then we have [u]1 = ¶2♢.

Definition 2.2 ([9]). Let u ∈ E1 and α ∈ [0, 1] we define the diameter of α − level
set of the fuzzy set u as follows

d([u]α) = lr − ll.

We denote by C(J, En) space of all fuzzy-valued functions which are continuous on
J ,and Pc(R

n) the collection of all the compact subset of Rn.

Definition 2.3 ([9]). The generalized Hukuhara difference of two fuzzy numbers
u, v ∈ En is defined as follows:

u ⊖gH v = w ⇔ i) u = v + w or ii) v = u + (−1)w.

Proposition 2.1. If u ∈ E1 and v ∈ E1, then the following properties hold.

1) If u ⊖gH v exists then it is unique.

2) u ⊖gH u = 0E1.

3) (u + v) ⊖gH v = u.
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4) u ⊖gH v = 0E1 ⇔ u = v.

Definition 2.4 ([18]). According to the Zadeh’s extension principle, the addition on
E1 is defined by:

(u ⊕ v)(z) = sup
z=x+y

min¶u(x), v(y)♢.

And scalar multiplication of a fuzzy number is given by:

(k ⊙ u)(x) =

{
u(x/k), k > 0,
0̃, k = 0.

Remark 2.1 ([13]). Let u, v ∈ E1 and α ∈ [0, 1], then we have

[u + v]α =[u]α + [v]α,

[u − v]α =[uα
1 − vα

2 , uα
2 − vα

1 ],

[ku]α =k[u]α =

{
[λuα

1 , λuα
2 ] , if λ ≥ 0,

[λuα
2 , λuα

1 ] , if λ < 0,
,

[uv]α =[min uα
1 vα

1 , uα
1 vα

2 , uα
2 vα

1 , uα
2 vα

2 , max uα
1 vα

1 , uα
1 vα

2 , uα
2 vα

1 , uα
2 vα

2 ].

Definition 2.5 ([13]). Let u, v ∈ En with α ∈ [0, 1], then the Hausdorf distance
between u and vis given by:

D(u, v) = sup
α∈[0,1]

d([u]α, [v]α),

where d is the Hausdorff metric defined in Pc(R
n).

Proposition 2.2 ([10]). D is a metric on En and has the following properties:

(a) (En; D) is a complete metric space;

(b) D(u + w, v + w) = D(u, v) for all u, v, w ∈ En;

(c) D(ku, kv) = ♣k♣D(u, v) for all u, v ∈ En and k ∈ R;

(d) D(u + w, v + z) ≤ D(u, v) + D(w, z) for all u, v, w, z ∈ En.

Definition 2.6 ([7]). Let f : [a, b] → En and t0 ∈ [a, b]. We say that f is Hukuhara
differentiable at t0 if there exists f ′(t0) ∈ En such that

f ′(t0) = lim
h→0+

f(t0 + h) ⊖gH f(t0)

h
= lim

h→0−

f(t0) ⊖gH f(t0 − h)

h
.

Remark 2.2. Let f : [a, b] → En be a fuzzy function such that [f(x)]α =[
f(x; α), f(x; α)

]
for each α ∈ [0, 1] then

[f ′(x)]
α

=
[
f ′(x; α), f ′(x; α)

]
.

Definition 2.7. F : J → En is strongly measurable if for all α ∈ [0, 1], the set-valued
mapping Fα : J → Pc(R

n) defined by Fα(t) = [F (t)]α is Lebesgue measurable.
A function F : J → En is called integrably bounded, if there exists an integrable

function h such that, ♣x♣ < h(t) for all x ∈ F0(t).
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Definition 2.8. Let F : J → En. The integral of F on J denoted by
∫

I
F (t)dt, is

given by
∫

J
F (t)dt

α

=
∫

J
Fα(t)dt=

∫

J
f(t)dt ♣ f : J → R

n is a measurable selection for Fα

}
,

for all α ∈ [0, 1].

Proposition 2.3. If u ∈ E1, then the following properties hold.

(a) [u]β ⊂ [u]α if 0 ≤ α ≤ β.
(b) If αn ⊂ [0, 1] is a nondecreasing sequence which converges to α, then

[u]α =
⋂

n≥1

[u]αn .

Conversely, if Aα = ¶[uα
1 , uα

2 ]; α ∈ [0, 1]♢ is a family of closed real intervals

verifying (a) and (b), then Aα defined a fuzzy number u ∈ E1 such that [u]α =
Aα.

2.1. Fractional integral and fractional derivative of fuzzy function. Let q > 0,
the fractional integral of order q of a real function g : [t0, t0 + δ] → R is given by

Iqg(t) =
1

Γ(q)

∫ t

t0

(t − s)q−1g(s)ds.

Let f(t) ∈ L (J, E1) such that f(t) = [fα
1 (t), fα

2 (t)]. Suppose that fα
1 , fα

2 ∈ L (J,R)
for all α ∈ [0, 1] and let

(2.1) Aα =


1

Γ(q)

∫ t

t0

(t − s)q−1fα
1 (s)ds,

1

Γ(q)

∫ t

t0

(t − s)q−1fα
2 (s)ds

]
,

where Γ(·) is the Euler gamma function.
We have the following lemma.

Lemma 2.1 ([3]). The family ¶Aα ♣ α ∈ [0, 1]♢ given by (2.1), defined a fuzzy number

u ∈ E1 such that [u]α = Aα.

Definition 2.9 ([16]). Let f(t) ∈ L (J, E1). The fuzzy fractional integral of order
q ∈ [0, 1] of f denoted by

Iqf(t) =
1

Γ(q)

∫ t

t0

(t − s)q−1f(s)ds

is defined by

[Iqf(t)]α = [Iαfl(t; α), Iqfr(t; α)] .

Proposition 2.4 ([16]). Let f, g ∈ L(J, E1) and b ∈ E1, then we have:

(a) Iq(bf)(t) = bIqf(t);
(b) Iq(f + g)(t) = Iqf(t) + Iqg(t);
(c) Iq1Iq2f(t) = Iq1+q2f(t), where (q1, q2) ∈ [0, 1]2.
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Example 2.2. Let x : J → E1 be a constant fuzzy function such that x(t) = u ∈ E1.
If [u]α = [u1

α, u2
α], then

[Iqx(t)]α =


1

Γ(q)

∫ t

t0

(t − s)q−1u1
α(s)ds,

1

Γ(q)

∫ t

t0

(t − s)q−1u2
α(s)ds

]
,

[Iqx(t)]α =
tq

Γ(α + 1)
[u1

α, u2
α],

[Iqx(t)]α =
tq

Γ(α + 1)
[u]α.

Definition 2.10 ([16]). Let f ∈ C(J, E1) ∩ L(J, E1).
The function f is called fuzzy Caputo fractional differentiable of order 0 < q < 1

at t if there exists an element cDqf(t) ∈ E1 such that

cDqf(t) =
1

Γ(q)

∫ t

t0

(t − s)q−1f ′(s)ds.

Remark 2.3 ([16]). Since [f(t)]α = [fl(t; α), fr(t; α)] for each α ∈ [0, 1], then

[cDqf(t)]α = [cDqfl(t; α),c Dqfr(t; α)] ,

where
cDqfl(t; α) :=

1

Γ(α)

∫ t

t0

(t − s)α−1f ′
l (s, α)ds,

cDqfr(t; α) :=
1

Γ(α)

∫ t

t0

(t − s)α−1f ′
r(s, α)ds.

Example 2.3. Let x : [t0; , t0 + δ] → E1 be a constant fuzzy function such that
x(t) = u ∈ E1. If [u]α = [u1

α, u2
α], then

[cDqx(t)]α =


1

Γ(q)

∫ t

t0

(t − s)q−1(u1
α)′ds,

1

Γ(q)

∫ t

t0

(t − s)q−1(u2
α)′ds

]
,

[cDqx(t)]α =¶0♢,
cDqx(t) =0E1 .

Theorem 2.1 ([5, 15]). There exists a real Banach space X such that En can be

embedded isometrically into a convex cone C with vertex 0 in X. moreover we have:

(a) addition in X induces addition in En;

(b) multiplication by real number in X induces the corresponding operation in En;

(c) C − C is dense in X;

(d) C is closed.

Remark 2.4. The structure of the normed space X can be described as follows.
Define in En × En the following equivalence relation:

(u, v)R(u′, v′) ⇔ u + v′ = v + u′.
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We denote by ⟨u, v⟩ the equivalence class of (u, v) and the space X will be the set of
equivalence classes. We define a vector space structure in X by:

⟨u, v⟩ + ⟨u, v⟩ ⇔ u + v′ = v + u′,

λ⟨u, v⟩ = ⟨λu, λv⟩, if λ ≥ 0,

λ⟨u, v⟩ = ⟨(−λ)v, (−λ)u⟩, if λ < 0.

The isometry j : En → X is defined by

j(u) = ⟨u, 0⟩.

The norm in X is defined by ∥⟨u, v⟩∥X = D(u, v).

Theorem 2.2 ([10]). Let X be a Banach space and j an embedding as in Theorem 2.1,

G : J → En and assume that j ◦ G is Bochner integrable over J . Then we have

1) IqG(t) ∈ En;

2) j (IqG(t)) = Iqj(G(t)).

3. The Fuzzy Fractional Initial Value Problem

Let C̃ be a closed subset of (En, D), which is also closed under the addition and
multiplication by a nonnegative real number and f : J × C̃ → C̃ be a fuzzy continuous
function.

In this section we show that the initial value problem (1) has a solution if and only
if C̃ is locally compact.

Definition 3.1 ([9]). A fuzzy function x : J → En is called d-increasing (d-decreasing)
on J if for every α ∈ [0, 1] the real function t 7→ d([x(t)]α) is nondecreasing (nonin-
creasing), respectively.

Remark 3.1. If x : J → En is d-increasing or d-decreasing on J , then we say that x(t)
is d-monotone on J .

Lemma 3.1. A d-monotone fuzzy function x(t) is a solution of initial value problem

(1.1) if and only if

1) x is continuous;

2) x satisfies the integral equation x(t) ⊖gH x0 = 1
Γ(q)

∫ t
t0

(t − s)q−1f(t, x(t))ds;

3) The function t 7→ Iqf(t, x(t))is d-increasing on J .

Proof. See the proof of Theorem 3 in [9]. □

We denote by C(J, C̃) the space of all continuous mappings from J to C̃ and let j
be an embedding of C̃ into a Banach space X allowed by Theorem 2.2.

Theorem 3.1. The fuzzy fractional initial value problem (1.1) has a solution if and

only if C̃ is locally compact.
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Proof. By Theorem 2.1 and Theorem 2.2 we can see that x(t) is a solution of the
problem (1.1) if and only if j(x(t)) is a continuous solution of the embedded equation

j(x(t)) ⊖gH j(x0) =
1

Γ(q)

∫ t

t0

(t − s)q−1j(f(s, j−1j(x(s))).(3.1)

Since x(t) ∈ C(J, C̃) then j(f(s, x(s)) is Bochner integrable.
It is known that the (3.1) has a solution if and only if X is a finite dimensional

space. Since a normed space is finite dimensional if and only if it is locally compact
(see[12]) and we have X = cl¶j(C̃) − j(C̃)♢ then the proof is completed. □

4. Illustrative Example

Example 4.1. Let m be a positive real number, then the following set,

E1
m = ¶u ∈ E1 ♣ d(supp(u)) ≤ m♢.

is a locally compact subset of E1.
Indeed, for each n = 1, 2, 3, . . . let K̃n = Kn∩E1

m, where Kn = ¶u ∈ E1 ♣ supp(u) ⊂
[−n, n]♢. Then since E1

m is closed in E1, K̃n is compact for each n. Let u ∈ E1
m, then

u belongs to the interior of K̃n for some n. Therefore, every element in E1
m has a

compact neighborhood, it follows that E1
m is a locally compact.

5. Conclusion and Future Works

In this manuscript we established the existence results for fuzzy fractional differential
equations by using Peano theorem. Our future work is to study the stability results
for fuzzy fractional differential equations by using Mittag-Leffler stability notion.
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A COUPLED SYSTEM OF NONLINEAR LANGEVIN
FRACTIONAL q-DIFFERENCE EQUATIONS ASSOCIATED WITH
TWO DIFFERENT FRACTIONAL ORDERS IN BANACH SPACE

ABDELLATIF BOUTIARA1

Abstract. In this research article, we study the coupled system of nonlinear
Langevin fractional q-difference equations associated with two different fractional
orders in Banach Space. The existence, uniqueness, and stability in the sense of
Ulam are established for the proposed system. Our approach is based on the tech-
nique of measure of noncompactness combined with Mönch Ąxed point theorem, the
implementation Banach contraction principle Ąxed point theorem, and the employ-
ment of UrsŠs stability approach. Two examples illustrating the effectiveness of the
theoretical results are presented.

1. Introduction

In understanding and developing a large class of systems, it is apparent that re-
searchers and scientists have resorted to nature. Natural phenomena can be well
understood both quantitatively and qualitatively. Mathematics plays a fundamental
role in this respect because it is the science of patterns and relationships. Attempting
to understand the quantitative and qualitative behavior of nature, mathematicians
find out that evolution revolves from integer to fraction. Number theory, starting
from integer and reaching to fractional as a result of division operation and eventu-
ally converging to real numbers, is well used to account for Quantitative behavior.
Calculus which describes how things change offers a background for simulating struc-
tures undergoing change, and a means to infer the predictions of such structures.
All these indicated that integer order calculus is a subcategory of fractional calculus

Key words and phrases. Coupled fractional differential system, fractional q-derivative, fractional
Langevin equation, Kuratowski measures of noncompactness, Ąxed point theorems, Banach space.
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which is defined as the generalization of classical calculus to orders of integration
and differentiation not necessarily integer. New and many derivatives and fractional
integrals theories have arisen since the end of the 17 century to the present day. The
theory of derivation and fractional integration has long been regarded as a branch of
mathematics without any real or practical explanation; it was considered as an ab-
stract containing only little useful mathematical manipulations. During the past three
decades, considerable interest was carried to fractional calculus by the application of
these concepts in various fields of physics, engineering, biology, and mechanics, etc.
in a much better form as compared to ordinary differential operators, which are local.
To get a couple of developments about the theory of fractional differential equations,
one can allude to the monographs of Hilfer [33], Kilbas et al. [36], Miller and Ross
[39], Oldham [40], Pudlubny [41], Tarasov [45], Abbas et al. [1] and the references
therein.

Fractional q-difference equations started toward the start of the nineteenth century
[4, 30] and got big interested consideration lately and have attracted a large number
of scientists and researchers [6, 14, 31]. Some fascinating insights concerning initial
and boundary value problem of q-difference and Fractional q-difference equations can
be found in [2, 7–11,18,24,31] and the references cited therein.

The Langevin equation (first formulated by Langevin in 1908 to give an elaborate
description of Brownian motion) is found to be an effective tool to describe the
evolution of physical phenomena in fluctuating environments [37]. Although the
existing literature on solutions of fractional Langevin equations is quite wide (see,
for example, [12, 13, 21, 46]). But, to the best of the author’s knowledge, there is no
literature to research the existence of weak solutions for fractional Langevin equations
involving two fractional orders in Banach Spaces, so the research of this paper is new.

At the present day, there are numerous results on the existence and uniqueness
of solutions for fractional differential equations. For greater details, the readers are
cited the previous research [22,23,29, 36] and the references therein. However, due to
the fact that in lots of conditions, which include nonlinear analysis and optimization,
locating the exact solution of differential equations is almost tough or impossible,
we don’t forget approximate solutions. It is essential to observe that only stable
approximate solutions are proper. various approaches of stability analysis are adopted
for this reason. The HU-type stability concept has been taken into consideration
in the severa literature. The said stability analysis is an clean and easy manner on
this regard. This type idea of stability become formulated for the primary time by
means of Ulam [47], and then the next year it become elaborated with the aid of
Hyers [34, 48]. Impressive considerations have been provided to the investigation of
the Ulam-Hyers (UH) stability of a wide range of FDEs, see [3, 16,28,43].
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In this paper deals with the existence, uniqueness and Urs’s stability of solutions
for the following Langevin fractional q-difference system:

(1.1)































Dβi

q



Dαi

q + λi

)

ϖ(ς) = fi(ς, ϖ1(ς), ϖ2(ς)), ς ∈ J = [0, T ],

ϖi(0) = 0,

ϖi(T ) + λiI
αi

q ϖi(T ) = 0,

Dαi

q ϖi(ξi) + λiϖi(ξi) = 0, ξi ∈ ] 0, T ] ,

where Dε
q is the fractional q-derivative of the Reimann-Liouville type of order ε ∈

¶αi, βi♢ such that αi ∈ (0, 1], βi ∈ (1, 2] and Iαi

q is the fractional q-integral of the

Reimann-Liouville type, fi : J×E
2 → E are continuous functions, λi are real constants.

In this paper, we present existence results for the problem (1.1) using a method
involving a measure of noncompactness and a fixed point theorem of Mönch type.
That technique turns out to be a very useful tool in existence for several types of
integral equations, details are found in Akhmerov et al. [15], Alvàrez [19], Banas̀ et
al. [20], Benchohra et al. [22, 23], Boutiara et al. [25–27], Mönch [38], Szufla [44] and
the references therein.

Here is a brief outline of the paper. The Section 2 provides the definitions and
preliminary results that we will need to prove our main results and present an auxiliary
lemma that provides solution representation for the solutions of system (1.1). In
Section 3, we establish existence and uniqueness for stability in the sense of Ulam for
system (1.1). In Section 4, we give some examples to illustrate the obtained results.

2. Preliminaries and Lemmas

We start this section by introducing some necessary definitions and basic results
required for further developments.

In what follows, we recall some elementary definitions and properties related to
fractional q-calculus. For a ∈ R, we put

[a]q =
1 − qa

1 − q
.

The q-analogue of the power (a − b)n is expressed by

(a − b)(0) = 1, (a − b)(n) =
n−1
∏

k=0



a − bqk
)

, a, b ∈ R, n ∈ N.

In general,

(a − b)(α) = aα
∞
∏

k=0



a − bqk

a − bqk+α



, a, b, α ∈ R.

Definition 2.1 ([35]). The q-gamma function is given by

Γq(α) =
(1 − q)(α−1)

(1 − q)α−1
, α ∈ R \ ¶0, −1, −2, . . .♢.



558 A. BOUTIARA

The q-gamma function satisfies the classical recurrence relationship

Γq(1 + α) = [α]qΓq(α).

Definition 2.2 ([35]). For any α, β > 0, the q-beta function is defined by

Bq(α, β) =
∫ 1

0
f (α−1)(1 − qf)(β−1)dqf, q ∈ (0, 1),

where the expression of q-beta function in terms of the q-gamma function is

Bq(α, β) =
Γq(α)Γq(β)

Γq(α + β)
.

Definition 2.3 ([35]). Let f : J → R be a suitable function. We define the q-
derivative of order n ∈ N of the function by D0

qf(ς) = f(ς),

Dqf(ς) := D1
qf(ς) =

f(ς) − f(qς)

(1 − q)ς
, ς ̸= 0, Dqf(0) = lim

ς→0
Dqf(ς),

and

Dn
q f(ς) = DqD

n−1
q f(ς), ς ∈ I, n ∈ ¶1, 2, . . .♢.

Set Iς := ¶ςqn : n ∈ N♢ ∪ ¶0♢.

Definition 2.4 ([35]). For a given function f : Iς → R, the expression defined by

Iqf(ς) =
∫ ς

0
f(s) dqs =

∞
∑

n=0

ς(1 − q)qnf(tqn),

is called q-integral, provided that the series converges.
We note that DqIqf(ς) = f(ς), while if f is continuous at 0, then

IqDqf(ς) = f(ς) − f(0).

Definition 2.5 ([6]). The integral of a function f : J → R defined by

I0
qf(ς) = f(ς),

and

Iα
q f(ς) =

∫ ς

0

(ς − qs)(α−1)

Γq(α)
f(s) dqs, ς ∈ J,

is called Riemann-Liouville-fractional q-integral of order α ∈ R+.

Lemma 2.1 ([42]). Let α ∈ R+ and β ∈ (−1, ∞). One has

Iα
q ςβ =

Γq(β + 1)

Γq(α + β + 1)
ςα+β, β ∈ (−1, ∞), α ≥ 0, ς > 0.

In particular, if f ≡ 1, then

Iα
q 1(ς) =

1

Γq(1 + α)
ς(α), for all ς > 0.
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Definition 2.6 ([14]). The Riemann-Liouville fractional q-derivative of order α ∈ R+

of a function f : J → R is defined by D0
qf(ς) = f(ς) and

Dα
q f(ς) = D[α]

q I[α]−α
q f(ς) =

1

Γq(n − α)

∫ ς

0

f(s)

(ς − qs)α−n+1
dqs,

where [α] is the integer part of α.

Lemma 2.2 ([32]). Let α > 0 and n ∈ N where [α] denotes the integer part of α.

Then, the following fundamental identity holds

Iα
q D

n
q f(ς) = Dn

q I
α
q f(ς) −

α−1
∑

k=0

ςα−n+k

Γq(α + k − n + 1)
(Dk

qh)(0).

Lemma 2.3 ([17]). Let ϖ be a function defined on J and suppose that α, β are two

real nonegative numbers. Then the following hold:

Iα
q I

β
q f(ς) =Iα+β

q f(ς) = Iβ
q I

α
q f(ς),

Dα
q I

α
q f(ς) =f(ς).

Now let us recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.

Definition 2.7 ([15,20]). The mapping κ : MU → [0, ∞) for Kuratowski measure of
non-compactness is defined as:

κ(B) = inf
{

ε > 0 : B can be covered by finitely many sets with diameter ≤ ε
}

.

Proposition 2.1. The Kuratowski measure of noncompactness satisfies some proper-

ties [15, 20]:

(a) A ⊂ B ⇒ κ(A) ≤ κ(B);
(b) κ(A) = 0 if and only if A is relatively compact;

(c) κ(A) = κ(A) = κ(conv(A)), where A and conv(A) represent the closure and

the convex hull of A, respectively;

(d) κ(A + B) ≤ κ(A) + κ(B);
(e) κ(λA) = ♣λ♣κ(A), λ ∈ R.

Definition 2.8. A map f : J × E → E is said to be Caratheodory if
(i) ς 7→ f(ς, ϖ) is measurable for each ϖ ∈ E;
(ii) ϖ 7→ F (ς, ϖ) is continuous for almost all ς ∈ J .

Proposition 2.2. For a given set V of functions ω : J → E, let us denote by

V (ς) = ¶ω(ς) : ω ∈ V ♢, ς ∈ J,

and

V (J) = ¶ω(ς) : ω ∈ V, ς ∈ J♢.

Let us now recall Mönch’s fixed point theorem and an important lemma.
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Theorem 2.1 ([5,38,44]). Let D be a bounded, closed and convex subset of a Banach

space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the

implication

(2.1) V = convN(V ) or V = N(V ) ∪ ¶0♢ ⇒ κ(V ) = 0,

holds for every subset V of D, then N has a fixed point.

Lemma 2.4 ([44]). Let D be a bounded, closed and convex subset of the Banach space

U, G a continuous function on J × J and f a function from J × E −→ E which

satisfies the Caratheodory conditions, and suppose there exists p ∈ L1(J,R+) such

that, for each ς ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

κ(f(Jς,h × B)) ≤ p(ς)κ(B),

where Jς,h = [ς − h, ς] ∩ J.
If V is an equicontinuous subset of D, then

κ
(
∫

J
G(s, ς)f(s, ϖ(s))ds : ϖ ∈ V

})

≤
∫

J
∥G(ς, s)∥p(s)κ(V (s))ds.

3. Main Results

Before starting and proving our main result we introduce the following auxiliary
lemma.

Lemma 3.1. Let σi ∈ C, αi ∈ (0, 1], βi ∈ (1, 2], i = 1, 2. Then the boundary value

problem

(3.1)































Dβi

q



Dαi

q + λi

)

ϖi(ς) = σi(ς), ς ∈ (0, T ),

ϖi(0) = 0,

ϖi(T ) + λiI
αi

q ϖi(T ) = 0,

Dαi

q ϖi(ξi) + λiϖi(ξi) = 0, ξi ∈ ] 0, T ] ,

has a unique solution defined by

(3.2) ϖi(ς) + λiI
αi

q ϖi(ς) = Iαi+βi

q σi(ς) + µi(ς)Iβi

q σi(ξi) + νi(ς)Iαi+βi

q σi(T ), i = 1, 2,

where

(3.3) µ(ς) =
Γq(β − 1)

Γq(β + α − 1)



(β − 1)♣ω4♣ςα+β−1

(β + α − 1)♣∆♣ − ♣ω3♣ςα+β−2

♣∆♣

]

and

(3.4) ν(ς) =
Γq(β − 1)

Γq(β + α − 1)



♣ω1♣ςα+β−2

♣∆♣ − (β − 1)♣ω2♣ςα+β−1

(β + α − 1)♣∆♣

]

,

with

∆ =ω2ω3 − ω1ω4 ̸= 0,(3.5)
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ω1 =
Γ(β)

Γ(β + α)
T β+α−1, ω3 = ξβ−1,

ω2 =
Γ(β − 1)

Γ(β + α − 1)
T β+α−2, ω4 = ξβ−2.

Proof. Applying the integrator operator Iβ to (3.1) and using the Lemma 2.1 we get

(3.6) (Dα + λ) ϖ(ς) = c1ς
β−1 + c2ς

β−2 + Iβσ(ς), ς ∈ (0, T ].

We apply again the operator Iα and use the results of Lemmas 2.1 to get the general
solution representation of problem (3.1)
(3.7)

ϖ(ς) =Iα+βσ(ς) − λIαϖ(ς) + c0ς
α−1 + c1

Γ(β)

Γ(β + α)
ςβ+α−1 + c2

Γ(β − 1)

Γ(β + α − 1)
ςβ+α−2,

where c0, c1, c2 ∈ R. By using the boundary conditions in problem (3.1) and the above
equation, we observe that c0 = 0 and

(3.8) c1
Γ(β)

Γ(β + α)
T β+α−1 + c2

Γ(β − 1)

Γ(β + α − 1)
T β+α−2 + Iα+βσ(T ) = 0.

Moreover, we obtain

(3.9) c1ξ
β−1 + c2ξ

β−2 + Iβσ(ξ) = 0.

Also, by using (3.5), (3.8) and (3.9) can be written as

c1ω1 + c2ω2 =0,

c1ω3 + c2ω4 =0.

Solving the last two in c1 and c2, we end up with

c1 =
ω4

∆
Iα+βσ(T ) − ω4

∆
Iβσ(ξ),

c2 =
ω1

∆
Iβσ(ξ) − ω3

∆
Iα+βσ(T ).

Substituting c1 and c2 in (3.7), we get the desired solution representation (3.2). Besides
and by the help of the results in Lemmas 2.1 one can easily figure out that (3.2) solves
problem (3.1). This finishes the proof. □

We will need the following properties for the functions µ and ν defined in next
lemma.

Lemma 3.2. The functions µ and ν are continuous functions on J and satisfy the

following properties:

(1) µmax,i = max0≤ς≤T ♣µi(ς)♣;
(2) νmax,i = max0<ς<T ♣ω(ς)♣;
(3) µmax,i = max0≤ς≤T ♣µ′

i(ς)♣;
(4) νmax,i = max0<ς<T ♣ν ′

i(ς)♣.
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3.1. Existance result. In the following subsections, we establish the existence of
solutions for the (1.1) by applying Mönch fixed point theorems.

Consider the space of real and continuous functions U = C(J,E) space with the
norm

∥ϖ∥∞ = sup¶∥ϖ(ς)∥ : ς ∈ J♢.

Then the product space C := U×V defined by C = ¶(ϖ, ω) : ϖ ∈ U, ω ∈ V♢ is Banach
space under the norm

∥(ϖ, ω)∥C = ∥ϖ∥∞ + ∥ω∥∞,

and MU represents the class of all bounded mappings in U.
Let L1(J,E) be the Banach space of measurable functions ϖ : J → E which are

Bochner integrable, equipped with the norm

∥ϖ∥L1 =
∫

J
♣ϖ(ς)♣ dς.

In what follows, we are concerned with the existence of solutions of (1.1).

Definition 3.1. By a solution of the coupled system (1.1) we mean a coupled
measurable functions (ϖ1, ϖ2) ∈ C such that ϖi(0) = 0, ϖi(T ) + λiI

αi

q ϖi(T ) =

0 and Dαi

q ϖi(ξi) + λiϖi(ξi) = 0, i = 1, 2, and the equations Dβi

q



Dαi

q + λi

)

ϖi(ς) =

fi(ς, ϖ1(ς), ϖ2(ς)) are satisfied on J .

In what follows, we present the solution representation associated with System
(1.1).

Lemma 3.3. Let σi ∈ U, i = 1, 2, be two given functions. Then, the following system

of fractional differential equations

(3.10)































Dβi

q



Dαi

q + λi

)

ϖi(ς) = σi(ς), ς ∈ (0, T ),

ϖi(1) = 0,

ϖi(T ) + λiI
αi

q ϖi(T ) = 0,

Dαi

q ϖi(ξi) + λiϖi(ξi) = 0, ξi ∈ ] 0, T ] ,

is equivalent to the integral equation

(3.11)
ϖi(ς) + λiI

αi

q ϖi(ς) = Iαi+βi

q σi(ς) + µi(ς)Iβi

q σi(ξi) + νi(ς)Iαi+βi

q σi(T ), i = 1, 2.

Lemma 3.4. Assume that fi : J ×E
2 → E is continuous. A function ϖ(ς) solves the

system (1.1) if and only if it is a fixed-point of the operator G : C → C defined by

(3.12)
Giϖi(ς) =Iαi+βi

q σi(ς) − λiI
αi

q ϖi(ς) + µi(ς)Iβi

q σi(ξi) + νi(ς)Iαi+βi

q σi(T ), i = 1, 2.
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3.1.1. Existance result via Mönch fixed point theorem. We further will use the following
hypotheses.

(A1) For any i = 1, 2, fi : J × E
2 → E satisfies the Caratheodory conditions.

(A2) There exists pi, qi ∈ L1(J,R+) ∩ C(J,R+), such that

∥f(ς, ϖ1, ϖ2)∥ ≤ pi(ς)∥ϖ1∥ + qi(ς)∥ϖ2∥, for ς ∈ J and each ϖi ∈ E, i = 1, 2.

(A3) For any ς ∈ J and each bounded measurable sets Bi ⊂ E, i=1,2, we have

lim
h→0+

κ(f(Jς,h × B1, B2), 0) ≤ p1(ς)κ(B1) + q1(ς)κ(B2)

and
lim

h→0+
κ(0, f(Jς,h × B1, B2)) ≤ p2(ς)κ(B1) + q2(ς)κ(B2),

where κ is the Kuratowski measure of compactness and Jς,h = [ς − h, ς] ∩ J .
Set

p∗
i = sup

ς∈J
pi(ς), q∗

i = sup
ς∈J

qi(ς), i = 1, 2.

Theorem 3.1. Assume that conditions (A1)-(A3) hold. If

(3.13) Λ < 1,

with

Λ :=
2
∑

i=1

(Mi(p
∗
i + q∗

i ) + Ni) ,

where

Mi =

{

(1 + νmax,i) T αi+βi

Γq(αi + βi + 1)
+

(µmax,i) ξβi

i

Γq(αi + βi + 1)

}

, Ni =
♣λi♣ T αi

Γq(αi + 1)
, i = 1, 2,

then (1.1) has at least one solution on J .

Proof. We consider the operators Gi : C → C defined by

Gϖ = G(ϖ1, ϖ2) = (G1ϖ1,G2ϖ2),

where the operators Gi, i = 1, 2 are given by the formula (3.12). Clearly, the fixed
points of the operators Gi are solutions of the system (1.1). Let we take

Dr = ¶ϖi ∈ C, i = 1, 2 : ∥(ϖ1, ϖ2)∥ ≤ r♢.

Clearly, the subset Dr is closed, bounded and convex. We shall show that G satisfies
the assumptions of Mönch’s fixed point theorem. The proof will be given in three
steps.

Step 1. First we show that G is sequentially continuous.
Let ¶ϖ1,n, ϖ2,n♢n be a sequence such that (ϖ1,n, ϖ2,n) → (ϖ1, ϖ2) in C. Then for

any ς ∈ J

∥ (Gϖi,n − Gϖi) (ς)∥ ≤Iαi+βi

q ∥fi,n(s, ϖ1,n(s), ϖ2,n(s)) − fi(s, ϖ1(s), ϖ2(s))∥(ς)

− λiI
αi

q ∥ϖi,n − ϖi∥ (ς)

+ µi(ς)Iβi

q ∥fi,n(s, ϖ1,n(s), ϖ2,n(s)) − fi(s, ϖ1(s), ϖ2(s))∥(ξi)
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+ νi(ς)Iαi+βi

q ∥fi,n(s, ϖ1,n(s), ϖ2,n(s)) − fi(s, ϖ1(s), ϖ2(s))∥(T )

≤
{

Iαi+βi

q (1)(ς) + µi(ς)Iβi

q (1)(ξi) + νi(ς)Iαi+βi

q (1)(T )
}

× ∥fi,n(s, ϖ1,n(s), ϖ2,n(s)) − fi(s, ϖ1(s), ϖ2(s))∥
+ λiI

αi

q (1)(ς) ∥ϖi,n − ϖi∥ , i = 1, 2.

Since, for any i = 1, 2, the function fi satisfies assumptions (A1), then we have
fi(ς, ϖ1,n(ς), ϖ2,n(ς)) converges uniformly to fi(ς, ϖ1(ς), ϖ2(ς)). Hence, the Lebesgue
dominated convergence theorem implies that (G(ϖ1,n, ϖ2,n))(ς) converges uniformly
to (G(ϖ1, ϖ2,))(ς). Thus, (G(ϖ1,n, ϖ2,n)) → (G(ϖ1, ϖ2,)). Hence, G : Dr → Dr is
sequentially continuous.

Step 2. Second we show that G maps Dr into itself.
Take ϖi ∈ Dr, i = 1, 2, by (A2), we have, for each ς ∈ J and assume that

(G(ϖi))(ς) ̸= 0, i = 1, 2,

♣Giui(ς)♣ ≤
∣

∣

∣Iαi+βi

q fi (s, ϖ1(s), ϖ2(s)) (ς)
∣

∣

∣+
∣

∣

∣λiI
αi

q ϖi(s)(ς)
∣

∣

∣

+
∣

∣

∣µi(ς)Iβi

q fi (s, ϖ1(s), ϖ2(s)) (ξi)
∣

∣

∣+
∣

∣

∣νi(ς)Iαi+βi

q fi (s, ϖ1(s), ϖ2(s)) (T )
∣

∣

∣

≤(p∗
i + q∗

i )rIαi+βi

q (1)(ς) + r ♣λi♣ Iαi

q (1)(ς)

+ (p∗
i + q∗

i )rµmax,iI
βi

q (1)(ξi) + (p∗
i + q∗

i )rνmax,iI
αi+βi

q (1)(T )

≤(p∗
i + q∗

i )r
{

Iαi+βi

q (1)(ς) + µmax,iI
βi

q (1)(ξi) + νmax,iI
αi+βi

q (1)(T )
}

+ rIαi

q (1)(ς) ♣λi♣

≤(p∗
i + q∗

i )r

{

(1 + νmax,i) T αi+βi

Γq(αi + βi + 1)
+

(µmax,i) ξβi

i

Γq(αi + βi + 1)

}

+
r ♣λi♣ T αi

Γq(αi + 1)

= r(Mi(p
∗
i + q∗

i ) + Ni), i = 1, 2.

Hence we get

∥(G(ϖ1, ϖ2))∥C ≤
2
∑

i=1

r (Mi(p
∗
i + q∗

i ) + Ni) ≤ r.

Step 3. We show that G(Dr) is equicontinuous.
By Step 2, it is obvious that G(Dr) ⊂ C(J,E) is bounded. For the equicontinuity

of G(Dr), let ς1, ς2 ∈ J , ς1 < ς2 and ϖ ∈ Dr, so Gϖ(ς2) − Gϖ(ς1) ̸= 0. Then

∥Gϖi(ς2) − Gϖi(ς1)∥ ≤Iαi+βi

q ♣f(s, ϖ1(s), ϖ2(s))(ς2) − f(s, ϖ1(s), ϖ2(s))(ς1)♣
+ ♣λi♣ Iαi

q ♣ϖi(s)(ς2) − ϖi(s)(ς1)♣
+ ♣µi(ς2) − µi(ς1)♣ Iβi

q fi (s, ϖ1(s), ϖ2(s)) (ξi)

+ ♣νi(ς2) − νi(ς1)♣ Iαi+βi

q fi (s, ϖ1(s), ϖ2(s)) (T ),

≤(p∗
i + q∗

i )r
∣

∣

∣Iαi+βi

q (1)(ς2) − Iαi+βi

q (1)(ς1)
∣

∣

∣

+ r ♣λi♣
∣

∣

∣Iαi

q (1)(ς2) − Iαi

q (1)(ς1)
∣

∣

∣
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+ (p∗
i + q∗

i )r ♣µi(ς2) − µi(ς1)♣
∣

∣

∣Iβi

q (1)(ς2) − Iβi

q (1)(ς1)
∣

∣

∣ (ξi)

+ (p∗
i + q∗

i )r ♣νi(ς2) − νi(ς1)♣
∣

∣

∣Iαi+βi

q (1)(ς2) − Iαi+βi

q (1)(ς1)
∣

∣

∣ (T )

≤ (p∗
i + q∗

i )r

Γq(αi + βi + 1)

{

(ςαi+βi

2 − ςαi+βi

1 ) + 2(ς2 − ς1)
αi+βi

}

+
r ♣λi♣

Γq(αi + 1)
¶(ςαi

2 − ςαi

1 ) + 2(ς2 − ς1)
αi♢ +

(p∗
i + q∗

i )rξβi

i

Γq (βi + 1)

× ♣µi(ς2) − µi(ς1)♣ +
(p∗

i + q∗
i )RT αi+βi

Γ (αi + βi + 1)
♣νi(ς2) − νi(ς1)♣ .

As ς1 → ς2, the right hand side of the above inequality tends to zero. This means that
G(Dr) ⊂ Dr.

Finally we show that the implication (2.1) holds. Let V ⊂ Dr such that V =
conv(G(V ) ∪ ¶(0, 0)♢). Since V is bounded and equicontinuous, and therefore the
function ω 7→ ω(ς) = κ(V (ς)) is continuous on J . By hypothesis (A2), and the
properties of the measure κ, for any ς ∈ J , we get

ω(ς) ≤κ(G(V )(ς) ∪ ¶(0, 0)♢)) ≤ κ((GV )(ς))

≤κ (¶((G1ω1) (ς), (G2ω2) (ς) : (ω1, ω2) ∈ V ♢)

≤Iα1+β1

q κ (¶((f1 (s, ω1(s), ω2(s)) (ς)) ; 0) : (ω1, ω2) ∈ V ♢)

+ ♣λ1♣ Iα1

q κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+ ♣µ1♣ (ς)Iβ1

q κ (¶((f1 (s, ω1(s), ω2(s)) (ς)) ; 0) : (ω1, ω2) ∈ V ♢)

+ ♣ν1♣ (ς)Iα1+β1

q κ (¶((f1 (s, ω1(s), ω2(s)) (ς)) ; 0) : (ω1, ω2) ∈ V ♢)

+ Iα2+β2

q κ (¶(0, f2 (s, ω1(s), ω2(s))) : (ω1, ω2) ∈ V ♢)

+ ♣λ2♣ Iα2

q κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)

+ ♣µ2♣ (ς)Iβ2

q κ (¶(0, f2 (s, ω1(s), ω2(s))) : (ω1, ω2) ∈ V ♢)

+ ♣ν2♣ (ς)Iα2+β2

q κ (¶(0, f2 (s, ω1(s), ω2(s))) : (ω1, ω2) ∈ V ♢)

≤Iα1+β1

q [p1(s)κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+q1(s)κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)]

+ ♣λ1♣ Iα1

q κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+ ♣µ1♣ (ς)Iβ1

q [p1(s)κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+q1(s)κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)]

+ ♣ν1♣ (ς)Iα1+β1

q [p1(s)κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+q1(s)κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)]

+ Iα2+β2

q [p2(s)κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+q2(s)κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)]
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+ ♣λ2♣ Iα2

q κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)

+ ♣µ2♣ (ς)Iβ2

q [p2(s)κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+q2(s)κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)]

+ ♣ν2♣ (ς)

× Iα2+β2

q [p2(s)κ (¶(ω1(s), 0) : (ω1, 0) ∈ V ♢)

+q2(s)κ (¶(0, ω2(s)) : (0, ω2) ∈ V ♢)] .

Thus,

µ (V (ς)) ≤Iα1+β1

q (p1(s) + q1(s)) × κ (V (s))

+ ♣λ1♣ Iα1

q ((1)(s)) × κ (V (s))

+ ♣µ1♣ (ς)Iβ1

q (p1(s) + q1(s)) × κ (V (s))

+ ♣ν1♣ (ς)Iα1+β1

q (p1(s) + q1(s)) × κ (V (s))

+ Iα2+β2

q (p2(s) + q2(s)) × κ (V (s))

+ ♣λ2♣ Iα2

q ((1)(s)) × κ (V (s))

+ ♣µ2♣ (ς)Iβ2

q (p2(s) + q2(s)) × κ (V (s))

+ ♣ν2♣ (ς)Iα2+β2

q (p2(s) + q2(s)) × κ (V (s)) .

Hence,

µ (V (ς)) ≤
n=2
∑

i=1

{

(p∗
i + q∗

i )T αi+βi

Γq(αi + βi + 1)
(1 + νmax,i) +

(p∗
i + q∗

i )T αi+1

Γq(αi + 1)
♣µmax,i♣

}

+

{

♣λi♣ ξβi

i

Γq(βi + 1)

}

sup
ς∈I

κ (V (ς)) .

This means that

sup
ς∈I

κ (V (ς)) ≤ Λ sup
ς∈I

κ (V (ς)) .

By (3.13) it follows that supς∈J κ((V (ς)) = 0, that is κ(V (ς)) = 0 for each ς ∈ J ,
and then V (ς) is relatively compact in E. In view of the Ascoli-Arzela theorem, V is
relatively compact in Dr. Applying now Theorem 2.4, we conclude that G has a fixed
point, which is a solution of (1.1). □

3.2. Uniqueness Result. Let X = ¶ϖ : ϖ ∈ C ′(J)♢ be the Banach space of func-
tions whose first derivatives are continuous on J, endowed with the ∥ϖ∥X = ∥ϖ∥ +
∥ϖ′∥ = maxς∈J ♣ϖ(ς)♣ + maxς∈J ♣ϖ′(ς)♣ . Obviously, the product space (X × X, ∥ · ∥X)
is also a Banach space with the norm ∥(ϖ1, ϖ2)∥X×X = ∥ϖ1∥X +∥ϖ2∥X . A closed ball
with radius R centered on the zero function in X × X is defined by BR(0, 0) = BR =
{

(ϖ1, ϖ2) ∈ X × X : ∥(ϖ1, ϖ2)∥X×X ≤ R
}

Define the operator G : X × X → X × X
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by

G (ϖ1, ϖ2) (ς) =



G1 (ϖ1, ϖ2) (ς)

G2 (ϖ1, ϖ2) (ς)



, ς ∈ J,

where

Giϖi(ς) = Iαi+βi

q σi(ς) − λiI
αi

q ϖi(ς) + µi(ς)Iβi

q σi(ξi) + νi(ς)Iαi+βi

q σi(T ).

Clearly, (ϖ1, ϖ2) is a fixed point of G if and only if (ϖ1, ϖ2) is a solution of system
(1.1). Furthermore, we have

G
′

iϖi(ς) = Iαi+βi−1
q σi(ς) − λiI

αi−1
q ϖi(ς) + µ′

i(ς)Iβi

q σi(ξi) + ν ′
i(ς)Iαi+βi

q σi(T ).

Throughout the remaining part of the paper, we make use of the following assumptions
and notations:

(H1) f1, f2 : [0, T ] × R
2 → R are continuous;

(H2) there exist constants Li and Ki such that

♣fi (ς, ϖ1, ϖ2) − fi (ς, ω1, ω2)♣ ≤ Li ♣ϖ1 − ω1♣ + Ki ♣ϖ2 − ω2♣ ,

for all (ς, ϖ1, ϖ2) , (ς, ω1, ω2) ∈ [0, T ] × R
2;

(H3) Ai = max0≤ς≤T ♣fi(ς, 0, 0)♣.
Further, we use the following notations:

Θi =



T αi+βi (1 + νmax,i)

Γq(αi + βi + 1)
+

ξβi

i µmax,i

Γq(βi + 1)

]

,

Ωi =
♣λi♣ T αi

i

Γq(αi + 1)
,

Θi =





T αi+βi−1

Γq(αi + βi)
+

νmax,iT
αi+βi

Γq(αi + βi + 1)
+

µmax,iξ
βi

i

Γq(βi + 1)



 ,

Ωi =
♣λi♣ T αi−1

i

Γq(αi)
,

L =
2
∑

i=1

[

(Li + Ki)


Θi + Θi

)

+


Ωi + Ωi

)]

,

A =
2
∑

i=1

Ai



Θi + Θi

)

.

To this end, we also use this assumption:
(H4) (L + A) ≤ 1.

3.2.1. Uniqueness via Banach fixed point theorem.

Theorem 3.2. Assume (H1)-(H4) holds. Then, (1.1) has a unique solution (ϖ1, ϖ2) ∈
BR.
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Proof. Clearly, G : BR → X × X. First, we show that G is a contraction mapping. To
see this, let (ϖ1, ϖ2) , (ω1, ω2) ∈ BR ς ∈ J, and consider

♣Giui(ς) − Givi(ς)♣
≤Iαi+βi

q ♣fi(ς, ϖ1(ς), ϖ2(ς)) − fi(ς, ω1(ς), ω2(ς))♣ (ς) + ♣λi♣ Iαi

q ♣ϖi − ωi♣ (ς)

+ µmax,iI
βi

q ♣fi(ς, ϖ1(ς), ϖ2(ς)) − fi(ς, ω1(ς), ω2(ς))♣ (ξi)

+ νmax,iI
αi+βi

q ♣fi(ς, ϖ1(ς), ϖ2(ς)) − fi(ς, ω1(ς), ω2(ς))♣ (T )

≤
[

LiI
αi+βi

q ∥ϖ1 − ω1∥ (ς) + KiI
αi+βi

q ∥ϖ2 − ω2∥ (ς)
]

+ ♣λi♣ Iαi

q ♣ϖi − ωi♣ (ς)

+ µmax,i

[

LiI
βi

q ∥ϖ1 − ω1∥ (ξi) + KiI
βi

q ∥ϖ2 − ω2∥ (ξi)
]

+ νmax,i

[

LiI
βi

q ∥ϖ1 − ω1∥ (T ) + KiI
βi

q ∥ϖ2 − ω2∥ (T )
]

≤


Li ∥ϖ1 − ω1∥
Γq(αi + βi + 1)

T αi+βi +
Ki ∥ϖ2 − ω2∥

Γq(αi + βi + 1)
T αi+βi

]

+ ♣λi♣
∥ϖ1 − ω1∥
Γq(αi + 1)

T αi

i

+ µmax,i



Li ∥ϖ1 − ω1∥
Γq(βi + 1)

ξβi

i +
Ki ∥ϖ2 − ω2∥

Γq(βi + 1)
ξβi

i

]

+ νmax,i



Li ∥ϖ1 − ω1∥
Γq(αi + βi + 1)

T αi+βi +
Ki ∥ϖ2 − ω2∥

Γq(αi + βi + 1)
T αi+βi

]

= (Li + Ki)



T αi+βi (1 + νmax,i)

Γq(αi + βi + 1)
+

ξβi

i µmax,i

Γq(βi + 1)

]

[♣ϖ1 − ω1♣ + ♣ϖ2 − ω2♣]

+
♣λi♣ T αi

i

Γq(αi + 1)
∥ϖ1 − ω1∥

= [(Li + Ki) Θi + Ωi] ♣ϖ1 − ω1♣ + Θi ♣ϖ2 − ω2♣ ,

implying that

(3.14) ∥Giui(ς) − Givi(ς)∥ ≤ [(Li + Ki) Θi + Ωi] ∥ϖ1 − ω1∥X + Θi ∥ϖ2 − ω2∥X .

Likewise, and by using the precedent technique, we have

(3.15)
∥

∥

∥G
′

iui(ς) − G
′

ivi(ς)
∥

∥

∥ ≤
[

(Li + Ki) Θi + Ωi

]

∥ϖ1 − ω1∥X + Θi ∥ϖ2 − ω2∥X .

Then, from (3.14) and (3.15), we have

(3.16)
∥Giui(ς) − Givi(ς)∥ ≤

[

(Li + Ki)


Θi + Θi

)

+


Ωi + Ωi

)]

∥ϖ1 − ω1∥X

+


Θi + Θi

)

∥ϖ2 − ω2∥X .

Consequently,

∥G (ϖ1, ϖ2) − G (ω1, ω2)∥X×X ≤ L ∥(ϖ1, ϖ2) − (ω1, ω2)∥X×X .

Because L < 1, G is a contraction mapping with contraction constant L.
Next, we show that

(3.17) G (∂BR) ⊆ BR.
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To see this, let (ϖ1, ϖ2) ∈ ∂BR, ς ∈ J, and consider

♣Giui(ς)♣ ≤Iαi+βi

q ♣fi(ς, ϖ1(ς), ϖ2(ς))♣ (ς) + ♣λi♣ Iαi

q ♣ϖi♣ (ς)

+ µmax,iI
βi

q ♣fi(ς, ϖ1(ς), ϖ2(ς))♣ (ξi) + νmax,iI
αi+βi

q ♣fi(ς, ϖ1(ς), ϖ2(ς))♣ (T )

≤
[

Iαi+βi

q ♣fi (s, ϖ1(s), ϖ2(s)) − fi(s, 0, 0)♣ (ς) + Iαi+βi

q ♣fi(s, 0, 0)♣ (ς)
]

+ ♣λi♣
[

Iαi

q ♣ϖi♣ (ς)
]

+ µmax,i

[

Iβi

q ♣fi (s, ϖ1(s), ϖ2(s)) − fi(s, 0, 0)♣ (ξi) + Iβi

q ♣fi(s, 0, 0)♣ (ξi)
]

+ νmax,i

[

Iαi+βi

q ♣fi (s, ϖ1(s), ϖ2(s)) − fi(s, 0, 0)♣ (T )

+Iαi+βi

q ♣fi(s, 0, 0)♣ (T )
]

≤


LiI
αi+βi

q ♣ϖ1♣ (ς) + KiI
αi+βi

q ♣ϖ2♣ (ς) +
T αi+βiAi

Γq(αi + βi + 1)

]

+



♣λi♣ T αiR

Γq(αi + 1)

]

+ µmax,i



LiI
βi

q ♣ϖ1♣ (ξi) + KiI
βi

q ♣ϖ2♣ (ξi) +
ξβi

i Ai

Γq(βi + 1)

]

+ νmax,i



LiI
αi+βi

q ♣ϖ1♣ (ς) + KiI
αi+βi

q ♣ϖ2♣ (ς) +
T αi+βiAi

Γq(αi + βi + 1)

]

≤


T αi+βiLiR

Γq(αi + βi + 1)
+

T αi+βiKiR

Γq(αi + βi + 1)
+

T αi+βiAi

Γq(αi + βi + 1)

]

+ ♣λi♣


T αiR

Γq(αi + 1)

]

+ µmax,i



ξβi

i LiR

Γq(βi + 1)
+

ξβi

i KiR

Γq(βi + 1)
+

T αi+βiAi

Γq(βi + 1)

]

+ νmax,i



T αi+βiLiR

Γq(αi + βi + 1)
+

T αi+βiKiR

Γq(αi + βi + 1)
+

T αi+βiAi

Γq(αi + βi + 1)

]

= [R (Li + Ki + Ai)]



[νmax,i + 1] T αi+βi

Γq(αi + βi + 1)
+

µmax,iξ
βi

i

Γq(βi + 1)

]

+



R ♣λi♣ T αi

Γq(αi + 1)

]

= [(Li + Ki + Ai) Θi + Ωi] R,

implying that

(3.18) ∥Giui(ς)∥ ≤ [(Li + Ki + Ai) Θi + Ωi] R.

Likewise, and by using the precedent technique, we have

(3.19) ∥G′
iϖi(ς)∥ ≤

[

(Li + Ki + Ai) Θi + Ωi

]

R.

Then, from (3.18) and (3.19), we have

(3.20) ∥Giϖi(ς)∥ ≤
[

(Li + Ki + Ai)


Θi + Θi

)

+


Ωi + Ωi

)]

R.

Consequently,

∥G (ϖ1, ϖ2) − G (ω1, ω2)∥X×X ≤ (L + A) R ≤ R,



570 A. BOUTIARA

implying that (3.17) holds. Therefore, by the Banach fixed-point theorem, G has a
unique fixed-point (ϖ1, ϖ2) ∈ BR. The proof is complete. □

3.3. Stability of the solutions of (1.1). We use Urs’s [48] approach to establish
the Ulam-Hyers stability of the solutions of (1.1).

Theorem 3.3 ([48]). Let X be a Banach space and T1, T2 : X × X → X be two

operators. Then, the operational equations system
{

ϖ1 = T1 (ϖ1, ϖ2) ,

ϖ2 = T2 (ϖ1, ϖ2) ,

is said to be Ulam-Hyers stable if there exist C1, C2, C3, C4 > 0 such that for each

ϵ1, ε2 > 0 and each solution-pair (ϖ∗
1, ϖ∗

2) ∈ X × X of the in-equations:
{∥ϖ1 − T1 (ϖ1, ϖ2)∥X ≤ ϵ1,

∥ϖ2 − T2 (ϖ1, ϖ2)∥X ≤ ε2,

there exists a solution (ω∗
1, ω∗

2) ∈ X × X of (1.1) such that
{∥ϖ∗

1 − ω∗
1∥X ≤ C1ε1 + C2ϵ2,

∥ϖ∗
2 − ω∗

2∥X ≤ C3ε1 + C4ϵ2.

Theorem 3.4 ([48]). Let X be a Banach space, T1, T2 : X × X → X be two operators

such that
{∥T1 (ϖ1, ϖ2) − T1 (ω1, ω2)∥X ≤ k1 ∥ϖ1 − ω1∥x + k2 ∥ϖ2 − ω2∥X ,

∥T2 (ϖ1, ϖ2) − T2 (ω1, ω2)∥X ≤ k3 ∥ϖ1 − ω1∥x + k4 ∥ϖ2 − ω2∥X ,

for all (ϖ1, ϖ2) , (ω1, ω2) ∈ X × X. Suppose

H =



k1 k2

k3 k4



,

converges to zer0. Then, the operational equations (1.1) is Ulam-Hyers stable.

Set

C1 =
[

(L1 + K1)


Θ1 + Θ1

)

+


Ω1 + Ω1

)]

,

C2 = (L1 + K1)


Θ1 + Θ1

)

,

C3 =
[

(L2 + K2)


Θ2 + Θ2

)

+


Ω2 + Ω2

)]

,

C4 = (L2 + K2)


Θ2 + Θ2

)

.

Theorem 3.5. Assume (H1)-(H4) hold. Further, assume the spectral radius of H is

less than one. Then, the solution of (1.1) is Ulam-Hyers stable.

Proof. In view of Theorem 3.2 we have
{ ∥A1 (ϖ1, ϖ2) − A1 (ω1, ω2)∥X ≤ C1 ∥ϖ1 − ω1∥X + C2 ∥ϖ2 − ω2∥X ,

∥A2 (ϖ1, ϖ2) − A2 (ω1, ω2)∥X ≤ C3 ∥ϖ2 − ω1∥X + C4 ∥ϖ2 − ω2∥X ,
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which implies that

(3.21) ∥A (ϖ1, ϖ2) − A (ω1, ω2)∥X×X ≤ A

 ∥ϖ1 − ω1∥X

∥ϖ2 − ω2∥X



.

Because the spectral radius of H is less than one, the solution of (1.1) is Ulam-Hyers
stable. □

4. Example

This section is devoted to the illustration of the results derived in the last section.

Example 4.1. In this section, we present some examples to illustrate our results.
Let E = l1 = ¶ϖ = (ϖ1, ϖ2, . . . , ϖn, . . . ) :

∑∞
n=1 ♣ϖn♣ < ∞♢ with the norm

∥ϖ∥E =
∞
∑

n=1

♣ϖn♣.

Consider the following nonlinear Langevin 1
4
-fractional equation:

(4.1)






























































D
1/4
1/4

(

D
4/3
1/4 − 1

10

)

ϖ(ς) =

√
3♣ϖ♣ cos2(2πς)

3(27 − ς)
+

√
2π♣y♣

(7π − ς)2



♣y♣
♣y♣ + 3

+ 1



, ς ∈ J,

D
1/2
1/4

(

D
5/3
1/4 − 2

5

)

y(ς) =

√
2π♣ϖ♣

4(4π − ς)2



♣ϖ♣
♣ϖ♣ + 3

+ 1



+
♣y♣ sin2(2πς)

(10 − ς)2
, ς ∈ J,

ϖ(0) = 0, ϖ(1) +
1

10
I1/4

q ϖ(1) = 0, D1/4
q ϖ(1/2) +

1

10
ϖ(1/2) = 0,

y(0) = 0, ϖ1(1) +
2

5
I1/2

q y(1) = 0, D1/2
q y(3/4) +

2

5
y(3/4) = 0.

Here J = [0, 1], α1 = 1/4, α2 = 1/2, β1 = 4/3, β2 = 5/3, ξ1 = 3/4, ξ2 = 1/2,
λ1 = 1/10, λ2 = 2/5, with

f(ς, ϖ) = (((sin ς + 1)e−ς)/24)(ϖ2/(1 + ♣ϖ♣)).
Clearly, the function f is continuous. For each ϖ ∈ E and ς ∈ [0, 1], we have

♣f (ς, ϖ1, ϖ2)♣ ≤
√

3

81
♣ϖ1♣ +

√
2

49π
♣ϖ2♣

and

♣g (ς, ϖ1, ϖ2)♣ ≤
√

2

64π
♣ϖ1♣ +

1

100
♣ϖ2♣ .

Hence, the hypothesis (H2) is satisfied with p∗
1 =

√
3

81
, q∗

1 =
√

2
49π

, p∗
2 =

√
2

64π
and q∗

2 = 1
100

.
We shall show that condition (3.13) holds with J = [0, 1]. Indeed,

Λ1 = 0.1687 Λ2 = 0.1985, Λ ≃ 0.3672 < 1.

Simple computations show that all conditions of Theorem 3.1 are satisfied. It follows
that the coupled (4.1) has at least one solution defined on J .
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Example 4.2. Consider the following coupled system:


























































D1/4
(

D4/3 +
1

237

)

ϖ1(ς) =
1

100
+

ς

10eς

♣ϖ1♣
10 + ♣ϖ1♣

+
ς ♣ϖ2♣

(9 + eς)2 (♣ϖ2♣ + 1)
, ς ∈ [0, 1],

D1/2
(

D5/3 +
1

100

)

ϖ2(ς) =
ς

100eς
+

sin ♣ϖ1♣ ς + sin ♣ϖ2♣
eς + 99

, ς ∈ [0, 1],

ϖ1(0) = 0, ϖ1(1) +
1

10
I1/4

q ϖ1(1) = 0, D1/4
q ϖ1(1/2) +

1

10
ϖ1(1/2) = 0,

ϖ2(0) = 0, ϖ2(1) +
2

5
I1/2

q ϖ2(1) = 0, D1/2
q ϖ2(3/4) +

2

5
ϖ1(3/4) = 0.

Using the given data, we find that

♣η1 (ς, ϖ1, ϖ2) − f1 (ς, ω1, ω2)♣ ≤ 1

100
♣ϖ1 − ϖ2♣ +

1

100
♣ω1 − ω2♣ ,

♣f2 (ς, ϖ1, ϖ2) − f2 (ς, ω1, ω2)♣ ≤ 1

100
♣ϖ1 − ϖ2♣ +

1

100
♣ω1 − ω2♣ ,

♣η1(ς, 0, 0)♣ ≤ 1

10
, ♣η1 (ς, ϖ1, ϖ2)♣ ≤ 1

10
+

ς

5eς
+

ς

(1 + eς)2
,

♣η2(ς, 0, 0)♣ ≤ ς

10eς
, ♣η2 (ς, ϖ1, ϖ2)♣ ≤ ς

10eς
+

ς + 1

eς + 10
,

for any ς ∈ [0, 1]. Then ηi, i = 1, 2 satisfying (H1)-(H4), with Li = 1
100

, Ki = 1
100

,

i = 1, 2, Ai = 1
100

, i = 1, 2, We find that

Θ1 = 1.3850, Θ2 = 1.1300, Ω1 = 0.0207, Ω2 = 0.0354,

Θ1 = 6.0050, Θ2 = 2.3900, Ω1 = 0.2048, Ω2 = 0.1992.

Hence, L ≃ 0.6783, and A ≃ 0.1091. Therefore, L + A < 1, and then all conditions
of Theorem (3.2) are satisfied, which implies the existence of a unique solution for
system ( 3.21 ) in [0, 1]. On the other hand, we find that

C1 = 0.3733, C2 = 0.3050, C3 = 0.1478, C4 = 0.0704.

The spectral radius of the matrix

H =



0.3733 0.3050

0.1478 0.0704



is 0.48. Hence, by Theorem 3.5, the solution of (3.21) is Ulam-Hyers stable.
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ANALYTIC STUDIES OF A CLASS OF LANGEVIN

DIFFERENTIAL EQUATIONS DOMINATED BY A CLASS OF

JULIA FRACTAL FUNCTIONS

RABHA W. IBRAHIM1 AND DUMITRU BALEANU2,3,4

Abstract. In this investigation, we study a class of analytic functions of type
Carathéodory style in the open unit disk connected with some fractal domains. This
class of analytic functions is formulated based on a kind of Langevin differential
equations (LDEs). We aim to study the analytic solvability of LDEs in the advan-
tage of geometric function theory consuming the geometric properties of the Julia
fractal (JF) and other fractal connected with the logarithmic function. The analytic
solutions of the LDEs are obtainable by employing the subordination theory.

1. Introduction

Recently, analysis on fractals has been established by numerous investigators study-
ing various problems in engineering (fractal antennas), physics (material processing),
chemistry (chimical processing), biology (DNA) and computer science (image pro-
cessing) [1–8]. Harmonic analysis is employed to describe derivatives and integrals
on fractal sets. Probability theory is utilized to formulate Laplacians on fractals [9].
Fractional spaces are plotted to continuous real space in order to explain differential
equations on fractals [10–15]. Fractional calculus is smeared in fractal spaces to clar-
ify anomalous diffusion [16–20]. Extended fractional Langevin equations to complex
domain are indicated by special types of fractal [21]. The fractal Langevin equation
is studied presenting the dynamics of Brownian elements in the long time boundary
[22]. Other studies such as an approximate fractal Langevin differential equation are

Key words and phrases. Subordination and superordination, analytic function, univalent function,
open unit disk, fractal, fractional calculus, fractional operator.
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consumed and an approximate solution is indicated [23–27]. In the present study, we
aim to investigate the analytic solution of Langevin differential equation by using a
Julia fractal functions and other fractal [28–30].

1.1. Differential equation formula. The second order LDE of a complex variable
z is structured by [31]

(1.1) f ′′(z) + λf ′(z) = Λ(f(z)),

where λ > 0 indicates the damping connection parameter and Λ is the noise term. To
investigate the geometric properties of (1.1), we consume the analytic function f(z)
in ∪ achieving the expansion f(z) = z +

∑

∞

n=2 anzn. This class of analytic functions is
known as the normalized class denoting by ∧. Extend (1.1) with complex coefficient,
then we have equivalent equation

(1.2) F (z) := λ(z)

(

z2f ′′(z)

f(z)

)

+

(

zf ′(z)

f(z)

)

, z ∈ ∪,

where λ(z) is analytic function in the open unit disk ∪. Evidently F (0) = 1, for all
λ(z) ∈ ∪ (see the following example).

Example 1.1. • Assume the function f(z) = z
1−z

, λ(z) = z. Then we get the series

F (z) = 1 + z + 3z2 + 5z3 + 7z4 + 9z5 + O(z6).
• Let λ(z) = 1 and f(z) = z

1−z
. This implies the series F (z) = 1 + 3z + 5z2 + 7z3 +

9z4 + 11z5 + O(z6).

We demand the following preliminaries.

Definition 1.1. • Two analytic functions f and g in ∪ are called subordinate denoting
by f ≺ g, if for a function h is selected such that ♣h(z)♣ ≤ ♣z♣ indicating the equation
f = g(h) [32].

• The Ma-Minda construction inequalities signified by S∗(p) and K(p) of starlike

and convex functions are structured by
(

zf ′(z)
f(z)



≺ p(z) and
(

1 + z f ′′(z)
f ′(z)



≺ p(z),

respectively, where p achieves the existing in the class P where Re (p(z)) > 0, p(0) =
1, ♣p′(0)♣ > 1.

By utilizing the definition of LDEs, we formulate a new class of analytic functions
as follows.

Definition 1.2. A function of the power series

f(z) = z +
∞
∑

n=2

anzn, z ∈ ∪,

is in the class Mλ(p) if and only if
(1.3)

F (z) = λ(z)

(

z2f ′′(z)

f(z)

)

+

(

zf ′(z)

f(z)

)

≺ p(z), z ∈ ∪, p(0) = 1, p′(0) > 1, λ(z) ∈ ∪.
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We study the analytic solvability of (1.3) by using different types of the parametric
Julia fractal formulas taking the construction (see Figure 1)

Jκ(z) =1 + z − κ z3, z ∈ ∪,

Υκ(z) =
1 + z2

1 − κ z2
= 1 + (κ + 1)z2 + (κ2 + κ)z4 + O(z6), z ∈ ∪,

and

Lκ(z) = z2 +
1

1 − κz2

= 1 + (κ + 1)z2 + κ2z4 + O(z6), z ∈ ∪, ♣z♣ < 1/
√

(♣κ♣).

Figure 1. The plot of Jκ, κ = 1, 1/2, 1/3, 1/4, Υκ, κ = 1, 2, 3, 4 and
Lκ, κ = 3, 5, 10, 100, respectively

The technique is to find the optimal value of κ which satisfies the inequality subor-
dination

1 + κ

(

z p′(z)

[p(z)]k

)

≺ (1 + z)κ, z ∈ ∪,

to satisfy one of the following inequalities

p(z) ≺ Jκ, p(z) ≺ Υκ, p(z) ≺ Lκ.

As an application, we consider the LDEs to investigate the solvability by using the
Julia fractal functions

F (z) ≺ Jκ, F (z) ≺ Υκ, F (z) ≺ Lκ.

Special cases are investigated for some well known classes of analytic functions.

2. Computational Results

This section deals with consequences regarding p(z) and F (z).
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Theorem 2.1. Let the function p ∈ P admitting the inequalities

1 + κ

(

z p′(z)

( p(z) )k

)

≺ Σκ(z), z ∈ ∪,

where k = 0, 1, 2 and Σκ(z) = (1 + z)κ, z ∈ ∪. Then

(A) p(z) ≺ Jκ(z), z ∈ ∪, for κ ≥ max κk = 1.3247;

(B) p(z) ≺ Υκ(z), z ∈ ∪, for κ ≥ max κk = 1
2
;

(C) p(z) ≺ Lκ(z), z ∈ ∪, for κ ≥ max κk = 0.550667.

Proof. Firstly, we aim to prove the inequality p(z) ≺ Jκ(z), therefore we have the
following cases.

Case I. k = 0 ⇒ 1 + κ (z p′(z)) ≺ (1 + z)κ. Let Tκ : ∪ → C admitting the structure

Tκ(z) =
(κ2 + κ + 1) − (z + 1)κ+1

2F1(1, κ + 1, κ + 2, z)

κ2 + κ
, z ∈ ∪,

where 2F1 indicates the hypergeometric function for all z ∈ ∪ with the power series

2F1(α, β; γ; z) =
∞
∑

n=0

(α)n(β)n

(γ)n

· zn

n!
.

Clearly, Tκ(z) is analytic in ∪ satisfying Tκ(0) = 1 and it is an approximate solution
by a hypergeometric function of the differential equation

(2.1) 1 + κ (z T ′

κ(z)) = (z + 1)κ, z ∈ ∪.

Let

W(z) := −κ

3
(z T ′

κ(z)) =
((z + 1)κ((z − 1)2F1(1, κ + 1, κ + 2, z) + z + 1))

z − 1
.

Then by [32, Lemma 4.5e], where

(2.2) 2F1(α, β; γ; z) = (1 − z)α, β ≤ γ,

we have for κ > 0

W(z) = −κ

3
(z T ′

κ(z))

= −1

3
· ((z + 1)κ((z − 1)2F1(1, κ + 1, κ + 2, z) + z + 1))

z − 1

= −1

3
· ((z + 1)κ((z − 1)(1 − z) + z + 1))

z − 1

=

(

z(1 + z)κ

1 − z

)



1 − z

3



= z +


κ +
2

3



z2 +
1

6
(3κ2 + k + 4)z3 +

1

6
(κ3 − κ2 + 4κ + 4)z4

+
1

72
(3κ4 − 10κ3 + 33κ2 + 22κ + 48)z5 + O(z6).
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By the assumption of the theorem, we have

Re

(

zW′(z)

W(z)

)

=Re


1 +


κ +
2

3



z +


8

9
− κ



z2 +


κ +
26

27



z3

+


80

81
− κ



z4 +


κ +
242

243



z5 + O(z6)


>0

provided 0 < κ ≤ 4.27772. That is, W(z) is starlike function. Thus, by using
G(z) := W(z) + 1/(−3), one can obtain

Re

(

z W′(z)

W(z)

)

= Re

(

z G′(z)

W(z)

)

> 0.

Thus, Miller-Mocanu Lemma (see [32, page 132]) admits

1 + κ (z p′(z)) ≺ 1 + κ (zT ′

κ(z)) ⇒ p(z) ≺ Tκ(z).

Our aim is to prove that p(z) ≺ Jκ(z), which indicates if Tκ(z) ≺ Jκ(z). To complete
this conclusion, we have to prove that Tκ(z) ≺ (1 + z)κ. By using (2.2), we have

κ2 + κ + 1

κ2 + κ
= Tκ(−1) = Tκ(1) =

(κ2 + κ + 1)

κ2 + κ
.

Since

0 = Σκ(−1) ≤ Σκ(1) = 2κ, κ > 0,

thus, we obtain

Tκ(−1) = Tκ(1) =
(κ2 + κ + 1)

κ2 + κ
≤ 2κ,

whenever κ > 0.78124. As a conclusion, we have Tκ(z) ≺ Jκ(z) when

κ = Jκ(−1) ≤ Tκ(−1) = Tκ(1) =
(κ2 + κ + 1)

κ2 + κ
≤ Jκ(1) = 2 − κ,

which is provided

0.7812 < κ <
1

3

(

27

2
− 3

√
69

2

)1/3

+



1

2
(9 +

√
69)

1/3

32/3
≈ 1.3247.

This implies the relation

Tκ(z) ≺ Jκ(z) ⇒ p(z) ≺ Jκ(z), z ∈ ∪.

Case II. k = 1 ⇒ 1+κ
(

z p′(z)
p(z)



≺ (1+z)κ. Define a function Eκ : ∪ → C formulating

the structure

Eκ(z) = exp

(

1 − (z + 1)κ+1
2F1(1, κ + 1, κ + 2, z)

κ2 + κ

)

.
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Obviously, Eκ(z) is analytic in ∪ satisfying Eκ(0) = 1 and it is an approximated
solution by a hypergeometric function satisfying the differential equation

1 + κ

(

z E ′

κ(z)

Eκ(z)

)

= (1 + z)κ, z ∈ ∪.

By considering W(z) = κ
(

z E′

κ
(z)

Eκ(z)



= (1+z)κ −1, which is starlike function with κ ≠ 0

and T(z) = W(z) + 1, we attain

Re

(

z W′(z)

W(z)

)

= Re

(

z T′(z)

W(z)

)

> 0, z ∈ ∪.

Thus, Miller-Mocanu Lemma, yields

1 + κ

(

z p′(z)

p(z)

)

≺ 1 + κ

(

zE ′

κ(z)

Eκ(z)

)

⇒ p(z) ≺ Eκ(z).

Consequently, one can recognize the next equality

exp


1

κ2 + κ



= Eκ(−1) = Eκ(1) = exp


1

κ2 + κ



.

Moreover, this implies Eκ(z) ≺ (1 + z)κ such that for κ ̸= 0 the inequality

0 = Σκ(−1) ≤ Eκ(−1) = Eκ(1) ≤ Σκ(1) = 2κ, κ > 0.876764,

holds. Thus, we get Eκ(z) ≺ Jκ(z) when

κ = Jκ(−1) ≤ Eκ(−1) ≤ Eκ(1) = exp


1

κ2 + κ



≤ Jκ(+1) = 2 − κ.

This leads to the following subordination for κ ≈ 1

Eκ(z) ≺ Jκ(z) ⇒ p(z) ≺ Jκ(z), z ∈ ∪.

Case III: k = 2 ⇒ 1 + κ
(

z p′(z)
p2(z)



≺ (1 + z)κ. Consume that Hκ : ∪ → C satisfies the

formula

Hκ(z) =
κ(κ + 1)

κ2 + κ + (z + 1)κ+1
2F1(1, κ + 1, κ + 2, z)

.

Clearly, Hκ(z) is analytic in ∪ admitting Hκ(0) = 1 and it is the approximated
outcome in terms of the hypegoemetric function

1 + κ

(

z H ′

κ(z)

H2
κ(z)

)

= (1 + z)κ, z ∈ ∪.

Similarly, we use the starlike function W(z) = Σκ(z) − 1 and Y(z) = W(z) + 1, we
get

Re

(

z W′(z)

W(z)

)

= Re

(

z Y′(z)

U(z)

)

> 0, z ∈ ∪.

Hence, the Miller-Mocanu Lemma yields

1 + κ

(

z p′(z)

p2(z)

)

≺ 1 + κ

(

zH ′

κ(z)

H2
κ(z)

)

⇒ p(z) ≺ Hκ(z).
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Accordingly, for κ ≥ 1, we obtain

1 = Hκ(−1) = Hκ(1) = 1.

Moreover, for κ = 1, we have

κ = Jκ(−1) ≤ Hκ(−1) ≤ Hκ(1) ≤ Jκ(+1) = 2 − κ.

Thus, one can realize that

Hκ(z) ≺ Jκ(z) ⇒ p(z) ≺ Jκ(z), z ∈ ∪.

For the second and third part, we proceed in the same manner of above construction
of the functions Tκ(z), Eκ(z) and Hκ(z). We conclude that for the second part,

2

1 − κ
= Υκ(−1) ≤ Tκ(−1) = Tκ(1) =

(κ2 + κ + 1)

κ2 + κ
≤ Υκ(1) =

2

1 − κ
,

whenever

κ =
1

3

(

(−2 − 2(
2

(47 + 3
√

249))1/3
+


1

2
(47 + 3

√
249)

1/3
)

≈ 0.3532099 . . .

2

1 − κ
=Υκ(−1) ≤ Eκ(−1) ≤ Eκ(1) = exp



1

κ2 + κ



≤ Υκ(+1) =
2

1 − κ
,

whenever κ ≈ 0.490561 and
2

1 − κ
= Υκ(−1) ≤ Hκ(−1) ≤ Hκ(1) ≤ Υκ(+1) =

2

1 − κ
, κ ≈ 1

2
.

Then we get p(z) ≺ Υκ(z), κ > 0.5, z ∈ ∪. For the last part, we obtain

2 − κ

1 − κ
= Lκ(−1) ≤ Tκ(−1) = Tκ(1) =

(κ2 + κ + 1)

κ2 + κ
≤ Lκ(1) =

2 − κ

1 − κ
,

whenever, κ =
√

(2) − 1 ≈ 0.414213 . . . ,

2 − κ

1 − κ
= Lκ(−1) ≤ Eκ(−1) ≤ Eκ(1) = exp



1

κ2 + κ



≤ Lκ(+1) =
2 − κ

1 − κ
,

whenever κ ≈ 0.550667 and
2 − κ

1 + κ
< Lκ(−1) ≤ Hκ(−1) ≤ Hκ(1) ≤ Lκ(+1) =

2 − κ

1 − κ
, κ ≈ 1

2
.

Then, we conclude that p(z) ≺ Lκ(z), κ > 0.550667, z ∈ ∪ □

As an application of Theorem 2.1, we let p(z) = zf ′(z)
f(z)

, f∧. Thus, one can recognize

the following consequence.

Corollary 2.1. Let f∧. If one of the inequalities is indicted

(a) 1 + κ


z2f ′′(z)
f(z)

+ zf ′(z)
f(z)

−
(

zf ′(z)
f(z)

2


≺ (1 + z)κ;

(b) 1 + κ
(

1 + zf ′′(z)
f ′(z)

− zf ′(z)
f(z)



≺ (1 + z)κ;

(c) 1 + κ


zf ′′(z)
f ′(z)

(

zf ′(z)
f(z)



−1
+
(

zf ′(z)
f(z)



−1 − 1


≺ (1 + z)κ;
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then f ∈ S∗(Jκ), κ > 1.3247, f ∈ S∗(Υκ), κ > 1
2

and f ∈ S∗(Lκ), κ > 0.550667.

Corollary 2.2. Let p(z) = 1+Az
1+Bz

, −1 ≤ B < A ≤ 1. If one of the inequalities is

indicted

(a)

1 +
κz(A − B)

(Bz + 1)2
≺ (1 + z)κ,

A + 1

B + 1
< 0.676, κ =

(−A + 2B + 1)

(B + 1)
> 1.3247;

(b)

1 +
κz(A − B)

((Az + 1)(Bz + 1))
≺ (1 + z)κ,

where

A + 1 ̸= 0, κ =
(A − 2B − 1)

(A + 1)
>

1

2
, B + 1 ̸= 0, A > 4B + 3;

(c)

1 +
κz(A − B)

(Az + 1)2
≺ (1 + z)κ,

where

A ̸= B, κ =
(A − 2B − 1)

(A − B)
, B + 1 ̸= 0,

A

(A − B)
− (2B)

(A − B)
− 1

(A − B)
> 0.55;

then
1 + Az

1 + Bz
≺ Jκ(z), κ > 1.324,

1 + Az

1 + Bz
≺ Υκ(z), κ > 1/2,

and
1 + Az

1 + Bz
≺ Lκ(z), κ > 0.55066.

Corollary 2.3. Let p(z) = 1 + sin(z). If one of the inequalities is indicted

(a) 1 + κz cos(z) ≺ (1 + z)κ, κ > 1.324;

(b) 1 + κz cos(z)
sin(z)+1

≺ (1 + z)κ, κ > 0.5;

(c) 1 + (κz cos(z))
(sin(z)+1)2 ≺ (1 + z)κ, κ > 0.55066;

then p(z) ≺ Jκ(z), κ > 1.324, p(z) ≺ Υκ(z), κ > 0.5, p(z) ≺ Lκ(z), κ > 0.55066.

Corollary 2.4. Let p(z) = ez. If one of the inequalities is indicted

(a) 1 + κzez ≺ (1 + z)κ, κ > 1.324;
(b) 1 + κz ≺ (1 + z)κ, κ > 0.5;
(c) 1 + κz e−z ≺ (1 + z)κ, κ > 0.55066;

then p(z) ≺ Jκ(z), κ > 1.324, p(z) ≺ Υκ(z), κ > 0.5, p(z) ≺ Lκ(z), κ > 0.55066.

Next result admits some properties of LDE.
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Theorem 2.2. Consider two functions Σκ(z) = (1 + z)κ, κ ∈ R, and

F (z) = λ(z)

(

z2f ′′(z)

f(z)

)

+

(

zf ′(z)

f(z)

)

.

If one of the inequalities

1 + κ

(

z F ′(z)

[F (z)]k

)

≺ (1 + z)κ

is occurred, where k = 0, 1, 2, then

• F (z) ≺ Jκ(z), κ > 1.324;
• F (z) ≺ Υκ(z), κ > 0.5;
• F (z) ≺ Jκ(z), κ > 0.55066.

Furthermore, if Re (F (z)) > 0 and λ(z) satisfies

Re (λ(z)) > 0, [ℑ(1 − λ(z))]2 ≤ 3[Re (λ(z))]2,

then f is starlike in ∪.

Proof. Since for all λ(z), z ∈ ∪, we have F (0) = 1, then by using the same technique
in Theorem 2.1, we have the first part regarding the subordinated inequalities. For
the second part, we assume that

p(z) =
zf ′(z)

f(z)
, f ∈ ∧, z ∈ ∪.

Then a computation implies that

F (z) = λ(z)zp′(z) + λ(z)p2 + [1 − λ(z)]p(z).

Then by the assumptions and in view of [32, Example 2.4], we have Re (p(z)) > 0
which implies that f(z) is starlike. □

3. Examples

In this section, we deal with special cases of the LDEs depending on the formula
of λ(z).

Case I. Let λ(z) = 1. The construction of LDE becomes

(3.1)

(

z2f ′′(z)

f(z)

)

+

(

zf ′(z)

f(z)

)

= F (z), z ∈ ∪, f ∈ ∧.

Then by using Jκ(z) = 1 + z − κz3, Figure 2 shows the solution for different values of

κ > 1.324, Figure 3 indicates the solution by using Υκ(z) = 1+z2

1−κz2 for κ > 0.5. It can
be seen that the solution satisfies when

• κ = 0.6, we have

f(z) =c2G
(2,0)
(2,2)

(

1 − 0.6i, 1 + 0.6i
−0.5, 0.5

∣

∣

∣

∣

∣

0.6z2

)

+ 0.774 c1 z
(

2F1(0.5 − 0.6i, 0.5 + 0.6i; 2; 0.6z2)


,
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Figure 2. The plot of (3.1) by using Jκ(z) for λ(z) = 1, κ = 1.5, 2, 4, respectively

where f(0) = 0 provided c2 = 0;
• κ = 2, we obtain

f(z) =c2G
(2,0)
(2,2)







1 − i

2
√

2
, 1 +

i

2
√

2
−0.5, 0.5

∣

∣

∣

∣

∣

∣

∣

2z2







+ i
√

(2)c1z


2F1(1/4(2 − i
√

(2)), 1/4(2 + i
√

(2)); 2; 2z2)


;

• κ = 4, we get

f(z) = c2G
(2,0)
(2,2)





1 − i

4
, 1 +

i

4
−0.5, 0.5

∣

∣

∣

∣

∣

∣

4z2



+ 2ic1z


2F1



1

2
− i

4
,
1

2
− i

4
; 2; 2z2



.

Figure 3. The plot of (3.1) using Υκ(z) for λ(z) = 1, κ = 0.6, 2, 4, respectively

Figure 4 imposes the behavior of (3.1) by using Lκ(z).
Case II. Let λ(z) = z. The construction of LDE becomes

(3.2) z

(

z2f ′′(z)

f(z)

)

+

(

zf ′(z)

f(z)

)

= F (z), z ∈ ∪, f ∈ ∧.

A computation implies the following constructions of F (z).
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Figure 4. The plot of (3.1) using Lκ(z) for λ(z) = 1, κ = 0.6, 2, 4, respectively

• For

J1.5 ⇒F (z) = −1.5(z − 1.12271)(z2 + 1.12271z + 0.593803),

J2(z) ⇒F (z) = 1 + z

and J4(z) ⇒ F (z) = 1 + z;
• for

Υ0.6 ⇒F (z) =
1.66667z2 + 1.66667

1.66667 − z2
,

Υ2(z) ⇒F (z) =
z2

1 − 2z2
+

1

1 − 2z2

and

Υ4(z) ⇒ F (z) =
z2

1 − 4z2
+

1

1 − 4z2
;

• for

L0.6 ⇒F (z) =
(z − 1.53946)(z + 1.53946)(z2 + 0.703257)

(z − 1.29099)(z + 1.29099)
,

L2 ⇒F (z) =
(z − 1)(z + 1)(2z2 + 1)

2z2 − 1

and

L4 ⇒ F (z) =
4z4 − z2 − 1

(2z − 1)(2z + 1)
.

Figures 5–7 show the behavior of (3.2) for Jκ(z), Υκ(z) and Lκ(z), respectively.
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Figure 5. The plot of (3.2) by using Jκ(z) for λ(z) = 1, κ = 1.5, 2, 4, respectively

Figure 6. The plot of (3.2) using Υκ(z) for λ(z) = 1, κ = 0.6, 2, 4, respectively

Figure 7. The plot of (3.2) using Lκ(z) for λ(z) = 1, κ = 0.6, 2, 4, respectively
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WELL-POSEDNESS AND ASYMPTOTIC STABILITY OF A

NON-LINEAR POROUS SYSTEM WITH A DELAY TERM

HOCINE MAKHELOUFI1, NADIA MEZOUAR2, AND MOUNIR BAHLIL1

Abstract. Our interest in this work is to treat a one-dimensional Porous system
with a non-linear damping and a delay in the non-linear internal feedback. We prove
the global existence and uniqueness of its solution in suitable function spaces by
means of the Faedo-Galerkin procedure combined with the energy method under
a suitable relation between the weight of the delayed feedback and the weight of
the non-delayed feedback. Also, we give an explicit and general decay rate estimate
by applying the well-known multiplier method integrated with some properties of
convex functions and for two opposites cases with respect to the speeds of wave
propagation.

1. Introduction

In the present paper, we study the well-posedness and asymptotic behavior of
solutions of the following Porous system
(1.1)



ρ1utt − κuxx − bϕx = 0, in ]0, 1[×]0, ∞[,

ρ2ϕtt − δϕxx + bux + ξϕ + µ1g1(ϕt) + µ2g2(ϕt(x, t − τ(t))) = 0, in ]0, 1[×]0, ∞[,

u(0, t) = u(1, t) = ϕ(0, t) = ϕ(1, t) = 0 in ]0, ∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in ]0, 1[,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), in ]0, 1[,

ϕt(x, t − τ(0)) = f0(x, t − τ(0)), in ]0, 1[×]0, τ [,

Key words and phrases. Non-linear Porous system, global existence, delay term, general decay,
Faedo-Glaerkin method, multiplier method.
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where x denotes the space variable, t is the time variable, τ(·) > 0 is a time varying
delay, µ1 is a positive constant and µ2 is a real number. The functions u = u(x, t)
and ϕ = ϕ(x, t) represent, respectively, the displacement of the solid elastic material
and the volume fraction and the initial data (u0, u1, ϕ0, ϕ1, f0) belongs to a suitable
Sobolev space. The original Porous system is governed by the following evolution
equations

ρ1utt =Tx,

ρ2ϕtt =Hx + G,

where T , H and G denote, respectively, the stress, the equilibrated stress and the
equilibrated body force. The constitutive equations are as follows

T = κux + bϕ, H = δϕx, G = −bux − ξϕ,

where ρ1, ρ2, κ, b, δ and ξ are positive constants satisfying in the one-dimensional
case, the following inequality

κξ > b2.

If we consider κ = b = ξ, we find the well-known Timoshenko system which is
introduced by S.Timoshenko [17] and it has been widely considered in the literature.
For the better comprehension of our motivation, we appeal to keep in mind that the
system

(1.2)

{
ρ1utt − κ(uxx − ϕx) = 0, in ]0, L[×]0, ∞[,

ρ2ϕtt − δϕxx + k(ux + ϕ) = 0, in ]0, L[×]0, ∞[,

is conservative. Namely, by taking any suitable boundary conditions into consideration,
the energy of (1.2) given by

E(t) =
1

2

∫ L

0


ρ1u

2
t + ρ2ϕ

2
t + κ(ux + ϕ)2 + δϕ2

x


dx,

satisfies the energy’s conservation property, that is, for all t > 0, E(t) = E(0).
In this vein, various damping such as viscoelastic damping, frictional damping and
thermal dissipation are employed to stabilize the vibrations. It has been shown that
the stability depends on the position and nature of the controls and some relations
between the constants ρ1, ρ2, κ and δ. Let us recall some known results on the
stability of the Timoshenko system with frictional dampings. Soufyane and Wehbe
[16] used the unique damping a(x)ϕt in the shear angle displacement and showed
that the solution is uniformly stable. This one has been obtained in the case of the
equal-speeds, i.e.,

(1.3)
ρ1

κ
=

ρ2

δ
.

Raposo et al. [15] examined (1.2) by setting two linear frictional dampings ut and ϕt

where they realized an exponential decay result without imposing any condition on the
coefficients. In [1], Alabau Boussouira extended [16] to a problem with a non-linear
damping acting in the second equation. Under the condition (1.3), she established a
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general and semi-explicit formula for the decay rate of the solutions. This result was
later improved by Mustafa and Messaoudi [11] where they obtained a general and
explicit decay estimate. In the other hand, for the Porous system, Quintanilla [13]
proved that the damping aϕt is not strong enough to obtain the exponential stability
result. However, Apalara [3] got the exponential decay of the solutions for the same
problem provided (1.3) holds true. Furthermore, in the nonequal-speeds case, he
[3] established a general decay result when he employed a weak non-linear damping
µ(t)g(ϕt).

In the recent years, the Timoshenko system with time delay has been discussed by
several researchers. In particular, we consider the following model with a delay term
(1.4){

ρ1utt − κ(uxx − ϕx) + a1f1(ut) + a2f2(ut(x, t − τ(t))) = 0, in ]0, L[×]0, ∞[,

ρ2ϕtt − δϕxx + κ(ux + ϕ) + µ1g1(ϕt) + µ2g2(ϕt(x, t − τ(t))) = 0, in ]0, L[×]0, ∞[.

Here, fi and gi are real functions, ai and µi are positive numbers for i = 1, 2. If
ai = 0, gi(x) = x and µ2 < µ1, then the exponential stability has been proved by
Kiran et al. [6] in the case of equal-speeds. In the case of a constant delay, Apalara [2]
considered (1.4) when µi = 0, fi(x) = x and a2 < a1 and established an exponential
stability result provided ρ1

κ
= ρ2

δ
. In the opposite case, only a polynomial decay is

obtained. As far as we know, the first work investigated the Timoshenko beam with
a nonlinear delay term is the one of Benaissa and Bahlil [5]. The problem treated is
(1.4) with ai = 0. They considered only the equal-speeds case where they obtained
an explicit decay estimate under a suitable relation between µ1 and µ2 and some
additional assumptions. For the Porous system with delay term, the subject of this
article, we cite the works [10, 14] and [7]. The authors of [7] examined a non-linear
Porous system of the form

{
ρ1utt − κuxx − bϕx = 0, in ]0, 1[×]0, ∞[,

ρ2ϕtt − δϕxx + bux + ξϕ + µ1ϕt + µ2ϕt(x, t − τ) + α(t)g(ϕt) = 0, in ]0, 1[×]0, ∞[,

and established, under the assumption ♣µ2♣ < µ1, a general decay of solution when
ρ1

κ
= ρ2

δ
.

As a consequence of the works cited above, if only one equation of a Timoshenko
system is damped then the uniform stability may be achieved for weak solutions if and
only if ρ1

κ
= ρ2

δ
. However, in the situation when ρ1

κ
̸= ρ2

δ
, a weaker decay rate result

is achieved for strong solutions. According to this results, three questions naturally
arise.

1. Is it possible to consider the Porous system with a non-linear damping term
and a time varying delay in the internal feedback acting only in the second equation
and get the same result as in the Timoshenko system?

2. In the equal-speeds case, is it possible to get the stability result with same
hypotheses on µ1, µ2, g1 and g2 as in the Timoshenko system?
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3. As we have mentioned above, the nonequal-speeds case is not considered for
the non-linear Timoshenko system with delay (see [5]). So, is it possible to obtain the
stability result under the same conditions imposed for the equal-speeds case?

The main aim of this manuscript is to give positive answers to theses three questions
by investigating (1.1).

The rest of our paper is as follows. In the next section, we provide some assumptions
and materials needed in our work. In Section 3, we state and prove the existence and
the uniqueness results. The last section is devoted to the study of the asymptotic
behavior of the solutions. We use c throughout this paper to denote a generic fixed
positive constant, which may be different in different estimates.

2. Preliminaries

In this section, we present some assumptions, materials and notations that will be
used later. Firstly, following the same arguments of Nicaise and Pignotti [12], we
introduce the new variable

z(x, ρ, t) = ϕt(x, t − ρτ(t)), x ∈ [0, 1], ρ ∈ [0, 1], t > 0.

It is clear that

τ(t)zt(x, ρ, t) + (1 − ρτ ′(t))zρ(x, ρ, t) = 0, in ([0, 1])2 × [0, ∞].

Hence, our problem (1.1) becomes
(2.1) 




ρ1utt − κuxx − bϕx = 0, in ]0, 1[×]0, ∞[,

ρ2ϕtt − δϕxx + bux + ξϕ + µ1g1(ϕt) + µ2g2(z(x, 1)) = 0, in ]0, 1[×]0, ∞[,

τ(t)zt(x, ρ, t) + (1 − ρτ ′(t))zρ(x, ρ, t) = 0, in (]0, 1[)2×]0, ∞[,

u(0, t) = u(1, t) = ϕ(0, t) = ϕ(1, t) = 0, in ]0, ∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in ]0, 1[,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), in ]0, 1[,

z(x, ρ, 0) = f0(x, −ρτ(0)), in (]0, 1[)2.

In order to deal with the new variable z, we define the Hilbert space

L2
z(0, 1) = L2


0, 1; L2(0, 1)


=


z :]0, 1[→ L2(0, 1),
∫ 1

0

∫ 1

0
z2(x, ρ)dρdx < ∞

}
,

which endowed with the inner product

(z, z̃) =
∫ 1

0

∫ 1

0
z(x, ρ, t)z̃(x, ρ, t)dρdx.

We consider now the following assumptions.
(A1) g1 : R → R is a strictly increasing function of class C1 and g2 : R → R is

an increasing function of class C1 such that it exist ϵ < 1, c1, c2 and a convex and
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non-decreasing function H : R+ → R+ satisfying
(2.2)



H(0) = 0 and H is linear on [0, ϵ] or H ′(0) = 0 and H ′′ > 0 on ]0, ϵ] such that

c1♣s1♣ ≤ ♣g1(s1)♣ + ♣g2(s2)♣ ≤ c2


♣s1♣ + ♣s2♣


, if ♣s1♣ + ♣s2♣ ≥ ϵ,

s2
1 + g2

1(s1) + g2
2(s2) ≤ H−1


s1g1(s1) + s2g2(s2)


, if ♣s1♣ + ♣s2♣ ≤ ϵ.

Also, for any s ∈ R, we assume that it exist some positive constants c̃2, α1 and α2

satisfying

(2.3) ♣g′
2(s)♣ ≤ c̃2

and

(2.4) α1sg2(s) ≤ G(s) ≤ α2sg1(s),

where G is a primitive of g2.
(A2) τ is a function in W 2,∞([0, T ]), T > 0, such that

{
0 < τ0 ≤ τ(t) ≤ τ1, for all t > 0,

τ ′(t) ≤ θ < 1, for all t > 0,

where τ0 and τ1 are a positive numbers.
(A3) With respect to the weights of feedbacks µi, i = 1, 2, we assume that

♣µ2♣ <
α1(1 − θ)

α2(1 − α1θ)
µ1.

We define the energy associated with the solution of (2.1) as
(2.5)

E(t) =
1

2

∫ 1

0


ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ + 2τ(t)γ

∫ 1

0
G(z(x, ρ))dρ


dx,

where γ is a positive number such that

(1 − α1)♣µ2♣

α1(1 − θ)
< γ <

µ1 − α2♣µ2♣

α2

.

Remark 2.1. The energy functional E(t) defined in (2.5) is positive. In fact, we can
easily show that

κu2
x + 2buxϕ + ξϕ2 =

1

2


ux +

b

κ
ϕ

2

+ ξ


ϕ +

b

ξ
ux

2

+ 2κ1u
2
x + 2ξ1ϕ

2

,

where 2κ1 = κ − b2

ξ
and 2ξ1 = ξ − b2

κ
are positives from κξ > b2. Thus,

κu2
x + 2buxϕ + ξϕ2 >

1

2


κ


ux +

b

κ
ϕ

2

+ ξ


ϕ +

b

ξ
ux

2
]

> 0,

which implies the positivity of E(t) and

(2.6) E(t) >
1

2

∫ 1

0


ρ1u

2
t + ρ2ϕ

2
t + κ1u

2
x + ξ1ϕ

2 + 2γτ(t)
∫ 1

0
G(z(x, ρ))dρ


dx.
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Remark 2.2. • The strict non-decreasing property of g1 implies the existence of a
positive constant c̃1 satisfying

(2.7) c̃1 < g′
1(s).

• Assumption (2.2) implies that s1g1(s1) + s2g2(s2) > 0 for all s1, s2 ∈ R.
• By the mean value theorem for integrals and the monotonicity of g2, we deduce

that

G(s) =
∫ s

0
g2(σ)dσ ≤ sg2(s),

then α1 < α2 ≤ 1.

Remark 2.3. Let Ψ∗ be the conjugate function of the differential convex function Ψ,
i.e.,

Ψ∗(s) = sup(st − Ψ(t)),

then Ψ∗ is the Legendre transform of Ψ, which is given by (see Arnold [4])

Ψ∗(s) = s(Ψ′)−1(s) − Ψ[(Ψ′)−1(s)], if s ∈ [0, Ψ′(r)],

satisfies the generalized Young inequality

(2.8) AB ≤ Ψ∗(A) + Ψ(B), if A ∈ [0, Ψ′(r)], B ∈ [0, r].

A starting point will be to give a derivative’s upper bounded of the functional E1

defined as

(2.9) E1(t) = E(t) + ε

∫ 1

0

∫ 1

0
z2(x, ρ)dρdx, for ε ≥ 0.

Lemma 2.1. For any ε ≥ 0, the functional E1 satisfies along the solution of (2.1)
the following estimate

(2.10)

E ′
1(t) ≤ −β1

∫ 1

0
ϕtg1(ϕt)dx − β2

∫ 1

0
z(x, 1)g2(z(x, 1))dx + ε

∫ 1

0
ϕ2

t dx − ε

∫ 1

0
z2(x, 1)dx,

where β1 = µ1 − γα2 − α2♣µ2♣ and β2 = γ(1 − θ)α1 − (1 − α1)♣µ2♣.

Proof. Multiplying (2.1)1 and (2.1)2 by ut and ϕt, respectively, and using integration
by parts over [0, 1], we obtain

1

2

d

dt

∫ 1

0


ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ


dx(2.11)

+ µ1

∫ 1

0
ϕtg1(ϕt)dx + µ2

∫ 1

0
ϕtg2(z(x, 1))dx = 0.

Multiplying (2.1)3 by γg2(z(x, ρ)) and integrating the product over ([0, 1])2, we get

γτ(t)
∫ 1

0

∫ 1

0
zt(x, ρ)g2(z(x, ρ))dρdx + γ(1 − ρτ ′(t))

∫ 1

0

∫ 1

0
zρ(x, ρ)g2(z(x, ρ))dρdx = 0.

This means that

γ
d

dt

∫ 1

0

∫ 1

0
τ(t)G(z(x, ρ))dρdx + γ

∫ 1

0

∫ 1

0

∂

∂ρ


(1 − ρτ ′(t))G(z(x, ρ))


dρdx = 0.
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Consequently, using the fact that zt(x, 0, t) = ϕt, we get

(2.12) γ
d

dt

∫ 1

0

∫ 1

0
τ(t)G(z(x, ρ)dρdx = −γ

∫ 1

0


(1 − τ ′(t))G(z(x, 1)) − G(ϕt)


dx.

Also, we have

(2.13) ε
d

dt

∫ 1

0

∫ 1

0
z2(x, ρ)dρdx = −ε

∫ 1

0


z2(x, 1) − ϕ2

t


dx.

The last equality has been obtained by applying the same previous arguments and
after multiplying (2.1)3 by 2εz(x, ρ). Combining the estimates (2.11)–(2.13) and using
(2.4), we get

E ′
1(t) ≤ − (µ1 − γα2)

∫ 1

0
ϕtg1(ϕt)dx − γ(1 − θ)α1

∫ 1

0
z(x, 1)g2(z(x, 1))dx(2.14)

− ε

∫ 1

0
z2(x, 1)dx + ε

∫ 1

0
ϕ2

t dx − µ2

∫ 1

0
ϕtg2(z(x, 1))dx.

From Remark 2.3, we have

G∗(s) = sg−1
2 (s) − G(g−1

2 (s)), for all s ≥ 0.

Hence,

G∗(g2(z(x, 1))) = z(x, 1)g2(z(x, 1) − G(z(x, 1)).

Taking (2.8) with A = g2(z(x, 1)) and B = ϕt, and using (2.4) again, we obtain

(2.15) µ2ϕtg2(z(x, 1)) ≤ α2♣µ2♣ϕtg1(ϕt) + (1 − α1)♣µ2♣z(x, 1)g2(z(x, 1)).

By inserting (2.15) into (2.14), we arrive at the desired inequality. This finishes the
proof. □

3. The Well-posedness of the Probem

In the current section, we prove the existence and the uniqueness results to system
(2.1). Firstly, we prove the existence of a unique strong solution, next, using a
density argument, we extend the obtained result for weak solutions. For this, let

U = U(t) =

u, ut, ϕ, ϕt, z)T and U0 = U(0) = (u0, u1, ϕ0, ϕ1, f0(·, − · τ(0))

T
. We

then consider the following spaces

H = H1
0 (0, 1) × L2(0, 1) × H1

0 (0, 1) × L2(0, 1) × L2
z(0, 1)

and

H0 =

H2 ∩ H1

0 (0, 1)


× H1
0 (0, 1) ×


H2 ∩ H1

0 (0, 1)


× H1
0 (0, 1) × L2


0, 1; H1(0, 1)


.

Our first main result is given by the following theorem.

Theorem 3.1. Assuming that the assumptions (A1)-(A3) hold and that κξ > b2. Then

for any U ∈ H satisfying the compatibility condition

f0(·, 0) = ϕ1,
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problem (2.1) admits only one global weak solution

U ∈ C

[0, +∞);H


.

Moreover, if U0 ∈ H0, the solution of (2.1) is strong solution, and satisfies

U ∈ C

[0, +∞);H0


∩ C1([0, +∞);H


.

Proof. The proof will be established by implementing the Faedo-Galerkin method.
For, let U ∈ H0, T > 0 be fixed and for m = 1, 2, . . . , let ¶Φm♢m∈N be a Hilbertian
basis of H1

0 (0, 1) and F m the vector space generated by Φ1, Φ2, . . . , Φm. Defining, for
1 ≤ i ≤ m, the sequence Ψi(x, ρ) as

Ψi(x, 0) = Φi(x).

Then, we may extend Ψi(x, 0) by Ψi(x, ρ) over L2
z(0, 1) and denote Zm the space

generated by Ψ1, Ψ2, . . . , Ψm. We will construct an approximate solution (um, ϕm, zm),
i = 1, 2, . . . , in the form

(um(x, t), ϕm(x, t)) =


m∑

i=1

cim(t),
m∑

i=1

dim(t)


Φi(x),

zm(x, ρ) =
m∑

i=1

eim(t)Ψi(x, ρ),

where cim, dim and eim, i = 1, 2, . . . , m, are determined by the following finite dimen-
sional problem

(3.1)






κum

x + bϕm, Φi
x


+

ρ1u

m
tt , Φi


= 0,


δϕm

x , Φi
x


+

ρ2ϕ

m
tt + bum

x + ξϕm + µ1g1(ϕ
m
t ) + µ2g2(z

m(·, 1)), Φi


= 0,

τ(t)zm

t (·, ρ) + (1 − ρτ ′(t))zm
ρ (·, ρ), Ψi(·, ρ)


= 0,

with

um(·, 0) =um
0 =

m∑

i=1

(u0, Φi)Φi → u0, in H2 ∩ H1
0 (0, 1),(3.2)

um
t (·, 0) =um

1 =
m∑

i=1

(u1, Φi)Φi → u1, in H1
0 (0, 1),

ϕm(0) =ϕm
0 =

m∑

i=1

(ϕ0, Φi)Φi → ϕ0, in H2 ∩ H1
0 (0, 1),

ϕm
t (·, 0) =ϕm

1 =
m∑

i=1

(ϕ1, Φi)Φi → ϕ1, in H1
0 (0, 1),

zm(·, ·, ·, 0) =zm
0 =

m∑

i=1

(f0, Ψi)Ψi → f0, in L2

0, 1; H1(0, 1)


,

as m → +∞.
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The standard methods of ODEs give the existence of a unique solution of (3.1)
on the inertval [0, Tm], 0 < Tm < T . In the next step, we will prove that Tm is
independent of m. In other words, the approximate solution becomes global and
defined for all t > 0.

1.The first priori estimate. As for Lemma 2.1, the functional

Em
1 (t) =

1

2

∫ 1

0


ρ1♣u

m
t ♣2 + ρ2♣ϕ

m
t ♣2 + κ♣um

x ♣2 + δ♣ϕm
x ♣2 + ξ♣ϕm♣2 + 2bum

x ϕm

+ 2γτ(t)
∫ 1

0
G(zm(x, ρ))dρ + 2ε

∫ 1

0
♣zm(x, ρ)♣2dρ


dx

satisfies, for any ε ≥ 0,

(Em
1 (t))′ + β1

∫ 1

0
ϕm

t g1(ϕ
m
t )dx + β2

∫ 1

0
zm(x, 1)g2(z

m(x, 1))dx

+ ε

∫ 1

0
♣zm(x, 1)♣2dx ≤ ε

∫ 1

0
♣ϕm

t ♣2dx.

Choosing ε > 0, then integrating over [0, t] and taking the convergences (3.2) into
account, we get

Em
1 (t) + β1

∫ t

0

∫ 1

0
ϕm

t g1(ϕ
m
t )dxdt

+ β2

∫ t

0

∫ 1

0
zm(x, 1)g2(z

m(x, 1))dxdt + ε

∫ t

0

∫ 1

0
♣zm(x, 1)♣2dxdt

≤c + ε

∫ t

0

∫ 1

0
♣ϕm

t ♣2dxdt.

The Gronwall’s Lemma yields the following first priori estimate

Em
1 (t) +

∫ t

0

∫ 1

0
ϕm

t g1(ϕ
m
t )dxdt +

∫ t

0

∫ 1

0
zm(x, 1)g2(z

m(x, 1))dxdt(3.3)

+
∫ t

0

∫ 1

0
♣zm(x, 1)♣2dxdt ≤ c.

This estimate gives us the global existence of (um, ϕm, zm) in [0, +∞) and

zm is uniformly bounded in L∞
loc


0, ∞; L2

z(0, 1)

,

um, ϕm are uniformly bounded in L∞
loc


0, ∞; H1

0 (0, 1)

,

um
t , ϕm

t are uniformly bounded in L∞
loc


0, ∞, L2(0, 1)


,

ϕm
t g1(ϕ

m
t ) is uniformly bounded in L1


(0, T ) × (0, 1)


,

zm(x, 1)g2(z
m(x, 1)) is uniformly bounded in L1


(0, T ) × (0, 1)


.

2. The second priori estimate. Firstly, we are going to estimate um
tt (0) and

ϕm
tt (0) in the L2-norm. Also, we need to estimate zm

t (x, ρ, 0) in the L2
z-norm. For that,
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we replace Φi in (3.1)1 by um
tt , Φi in (3.1)2 by ϕm

tt and using Young’s inequality to get
∫ 1

0


♣um

tt (0)♣2 + ♣ϕm
tt (0)♣2


dx ≤c

∫ 1

0


♣um

xx(0)♣2 + ♣um
x (0)♣2 + ♣ϕm

xx(0)♣2 + ♣ϕm
x (0)♣2(3.4)

+ ♣ϕm(0)♣2 + g2
1(ϕm

t (0)) + g2
2(zm(x, 1, 0))


dx.

Replacing Ψi in (2.1)3 by zm
t (x, ρ, t) and using Cauchy-Schwarz and Young’s inequali-

ties, we get

(3.5)
∫ 1

0

∫ 1

0
♣zm

t (x, ρ, 0)♣2dρdx ≤ c

∫ 1

0

∫ 1

0
♣zm

ρ (x, ρ, 0)♣2dρdx.

The sum of (3.4)–(3.5) with (3.2) yields

(3.6)
∫ 1

0


♣um

tt (0)♣2 + ♣ϕm
tt (0)♣2 +

∫ 1

0
♣zm

t (x, ρ, 0)♣2dρ


dx ≤ c.

Now, we derivate (3.1)1 and (3.1)2 with respect to t. Then, we set Φi = 2um
tt and

Φi = 2ϕm
tt , respectively, in the first and the second resulting equations and using the

non-decreasing property of g1, we find

d

dt

∫ 1

0


ρ1♣u

m
tt ♣2 + ρ2♣ϕ

m
tt ♣2 + κ♣um

xt♣
2 + δ♣ϕm

xt♣
2 + ξ♣ϕm

t ♣2 + 2bum
xtϕ

m
t


dx

≤ − µ2

∫ 1

0
zm

t (x, 1)g′
2(z

m(x, 1))ϕm
tt dx.

The boundedness of g′
2 and the Young’s inequality imply that

d

dt

∫ 1

0


ρ1♣u

m
tt ♣2 + ρ2♣ϕ

m
tt ♣2 + κ♣um

xt♣
2 + δ♣ϕm

xt♣
2 + ξ♣ϕm

t ♣2 + 2bum
xtϕ

m
t


dx(3.7)

≤ϵ1

∫ 1

0
♣zm

t (x, 1)♣2dx + c

∫ 1

0
♣ϕm

tt ♣2dx.

In the other hand, taking the derivative of (3.1)3 with respect to t and then setting
Ψi = 2zm

t (x, ρ, t) in the resulting equation, it follows that

d

dt

∫ 1

0

∫ 1

0

τ(t)

(1 − ρτ ′(t))
♣zm

t (x, ρ, t)♣2dρdx +
∫ 1

0

∫ 1

0


τ(t)

(1 − ρτ ′(t))

′

♣zm
t (x, ρ, t)♣2dρdx

+
∫ 1

0

∫ 1

0

d

dρ
♣zm

t (x, ρ, t)♣2dρdx = 0.

As zm
t (x, 0, t) = ϕm

tt (x, t), it comes

d

dt

∫ 1

0

∫ 1

0

τ(t)

(1 − ρτ ′(t))
♣zm

t (x, ρ, t)♣2dρdx +
∫ 1

0

∫ 1

0


τ(t)

(1 − ρτ ′(t))

′

♣zm
t (x, ρ, t)♣2dρdx

(3.8)

+
∫ 1

0
♣zm

t (x, 1, t)♣2dρdx =
∫ 1

0
♣ϕm

tt ♣2dx.
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Let Im be defined by

Im(t) =
∫ 1

0


ρ1♣u

m
tt ♣2 + ρ2♣ϕ

m
tt ♣2 + κ♣um

xt♣
2 + δ♣ϕm

xt♣
2

+ ξ♣ϕm
t ♣2 + 2bum

xtϕ
m
t +

τ(t)

(1 − ρτ ′(t))

∫ 1

0
♣zm

t (x, ρ)♣2dρ


dx,

hence from the estimates (3.7)–(3.8), we find

(Im(t))′ + (1 − ϵ1)
∫ 1

0
♣zm

t (x, 1))♣2dx ≤ c

∫ 1

0
♣ϕm

tt ♣2dx.

Choosing ϵ1 < 1, then integrating over [0, t], we get

Im(t) +
∫ t

0

∫ 1

0
♣zm

t (x, 1)♣2dxdt ≤ cIm(0) + c

∫ t

0

∫ 1

0
♣ϕm

tt ♣2dxdt.

Employing Gronwall’s lemma with (3.2) and (3.6), we obtain the second estimate
below

(3.9) Im(t) +
∫ t

0

∫ 1

0
♣zm

t (x, 1))♣2dxdt ≤ c.

We, therefore, deduce that

zm
t is uniformly bounded in L2


0, T ; L2

z(0, 1)

,

um
t , ϕm

t are uniformly bounded in L∞
loc


0, ∞; H1

0 (0, 1)


,

um
tt , ϕm

tt are uniformly bounded in L∞
loc


0, ∞; L2(0, 1)


,

Hence it follows from the estimates (3.3) and (3.9) that it exist subsequences
¶un♢∞

n=1 ⊂ ¶um♢∞
m=1, ¶ϕn♢∞

n=1 ⊂ ¶ϕm♢∞
m=1 and ¶zn♢∞

n=1 ⊂ ¶zm♢∞
m=1 verify for all

T ≥ 0 the following convergences

(3.10)





g1(ϕ
n
t ) → f and g2(z

n) → h weakly-star in L2

0, T ; L2


,

un → u and ϕn → ϕ weakly-star in L2

0, T ; H1

0


,

un
t → ut and ϕn

t → ϕt weakly-star in L∞

0, T ; H1

0


,

un
tt → utt and ϕn

tt → ϕtt weakly-star in L∞

0, T ; L2


,

zn → z and zn
t → zt weakly-star in L∞


0, T ; L2

z


,

We will show that (u, ϕ, z) is a strong solution of system (2.1). Firstly, we prove
that f = g1(ϕt) and h = g2(z(x, 1)) which will be given in the following lemma.

Lemma 3.1. For each T > 0, g1(ϕn
t ) → g1(ϕt) weakly-star in L2


(0, 1) × (0, T )


and

g2(z
n(x, 1)) → g2(z(x, 1)) weakly-star in L2


(0, 1) × (0, T )


.

Proof. From (3.9), we have ϕn
t is bounded in L∞(0, T ; H1

0 ) and ϕn
tt is bounded in

L∞(0, T ; L2). Then, the injection by continuity in Lp gives us the boundedness of
ϕn

t in L2(0, T ; H1
0 ) and ϕn

tt in L2(0, T ; L2). Hence, ϕn
t is bounded in H1(Q), where
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Q = (0, 1) × (0, T ). It is known that the embedding H1(Q) →֒ L2(Q) is compact.
This permit us to extract a subsequence ϕn, still represented by the same notation,
such that

ϕn
t → ϕt strongly in L2


0, T ; L2(0, 1)


,

which gives

ϕn
t → ϕt, a.e. on Q.

Then, by the continuity of g1,

(3.11) g1(ϕ
n
t ) → g1(ϕt), a.e. on Q.

Similarly,

(3.12) g2(z
n(x, 1)) → g2(z(x, 1)), a.e. on Q.

On the other hand, with R
m(x, t) defined as

R
m(x, t) = ϕm

t g1(ϕ
m
t ) + zm(x, 1)g2(z

m(x, 1)),

we assert by using Jensen’s inequality and the concavity of H−1 that
∫ 1

0
H−1


R

m(x, t)

dx ≤cH−1

∫ 1

0
R

m(x, t)dx


(3.13)

≤cH∗(1) + c

∫ 1

0
R

m(x, t)dx.

For rm = ♣ϕm
t ♣ + ♣zm(x, 1)♣, we write

∫ 1

0


g2

1(ϕm
t ) + g2

2(zm(x, 1))

dx ≤

∫

rm≤ϵ


g2

1(ϕm
t ) + g2

2(zm(x, 1))

dx

+
∫

rm≥ϵ


g2

1(ϕm
t ) + g2

2(zm(x, 1))

dx.

Then, by using (2.2) and (3.13), we get
∫ 1

0


g2

1(ϕm
t ) + g2

2(zm(x, 1))

dx ≤ cH∗(1) + c

∫ 1

0
R

m(x, t)dx.

Thus, by (3.3), it results
∫ t

0

∫ 1

0


g2

1(ϕm
t ) + g2

2(zm(x, 1))

dxdt ≤ c,

which implies that g1(ϕ
n
t ), g2(z

n(x, 1)) ∈ L2(Q). Combining these with (3.11)–(3.12)
and using Lemma 1.3 in [9] page 12, we derive to

g1(ϕ
n
t ) → g1(ϕt) weakly-star in L2((0, 1) × (0, T )),

g2(z
n(x, 1)) → g2(z(x, 1)) weakly-star in L2((0, 1) × (0, T )).

This shows that f = g1(ϕt) and h = g2(z(x, 1)). □
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Passage to the limit. To prove that (u, ϕ, z) is a strong solution of problem (2.1)

we discuss as in [9]. For this, we consider functions v, ω ∈ C

0, T ; H1

0 (0, 1)


and

y ∈ C

0, T ; L2

z(0, 1)


having the forms

(v(x, t), ω(x, t)) =
 N∑

i=1

c̃in(t),
N∑

i=1

d̃in(t)


Φi(x),(3.14)

y(x, ρ, t) =
N∑

i=1

ẽin(t)Ψi(x, ρ),(3.15)

where N ≥ n is a fixed integer.
Then we multiply (3.1)1, (3.1)2 and (3.1)3 by c̃in(t), d̃in and c̃in, respectively, and

summing the resultants over i from 1 to N , we find that
(3.16)




∫ T

0

∫ 1

0


κun

x + bϕn

vx + ρ1u

n
ttv


dxdt = 0,

∫ T

0

∫ 1

0


δϕn

xωx +


ρ2ϕ
n
tt + bun

x + ξϕn
x + µ1g1(ϕ

n
t ) + µ2g2(z

n(x, 1))


ω


dxdt = 0,

∫ T

0

∫ 1

0

∫ 1

0


τ(t)zn

t (x, ρ) + (1 − ρτ ′(t))zn
ρ (x, ρ)


y(x, ρ)dρdxdt = 0.

After passing to the limit in (3.16) as n → +∞ and using (3.10), we arrive at
(3.17)




∫ T

0

∫ 1

0


κux + bϕ


vx + ρ1uttv


dxdt = 0,

∫ T

0

∫ 1

0


δϕxωx +


ρ2ϕtt + bux + ξϕ + µ1g1(ϕt) + µ2g2(z(x, 1))


ω


dxdt = 0,

∫ T

0

∫ 1

0

∫ 1

0


τ(t)zt(x, ρ) + (1 − ρτ ′(t))zρ(x, ρ)


y(x, ρ)dρdxdt = 0.

The above equations hold for all (v, ω, y) ∈

L2

0, T ; H1

0

2
× L2


0, T ; L2

z


since the

functions of the forms (3.14) and (3.15) are dense, respectively, in L2

0, T ; H1

0


and

L2

0, T ; L2

z


. Next, we must verify that the limit functions u, ϕ, z satisfy the initial

conditions, i.e.,

(3.18) u(·, 0) = u0, ut(·, 0) = u1, ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1, z(·, 0) = f0.

For, we let v, ω ∈ C2

0, T ; H1

0


and y ∈ C1(0, T, L2

z) with

u(x, T ) = ut(x, T ) = ϕ(x, T ) = ϕt(x, T ) = y(x, ρ, T ) = 0.
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Then we integrate with respect to t in (3.17), we get
(3.19)




∫ T

0

∫ 1

0


ρ1uvtt −


κux + bϕ


vx


dxdt + ρ1

∫ 1

0


u(0)vt(0) − ut(0)v(0)


dx = 0,

∫ T

0

∫ 1

0


ρ2ϕωtt + δϕxωx +


bux + ξϕx + µ1g1(ϕt) + µ2g2(z(x, 1))


ω


dxdt

+ρ2

∫ 1

0


ϕ(0)ωt(0) − ϕt(0)ω(0)


dx = 0,

∫ T

0

∫ 1

0

∫ 1

0


− z(x, ρ, t)yt(x, ρ, t) +

1 − ρτ ′(t)

τ(t)
zρ(x, ρ, t)y(x, ρ, t)


dρdxdt

−
∫ 1

0

∫ 1

0
z(x, ρ, 0)y(x, ρ, 0)dρdx = 0.

Similarly from (3.16), we have





∫ T

0

∫ 1

0


ρ1u

nvtt +

κun

x + bϕn

vx


dxdt + ρ1

∫ 1

0


un(0)vt(0) − un

t (0)v(0)

dx = 0,

∫ T

0

∫ 1

0


ρ2ϕ

nωtt + δϕn
xωx +


bun

x + ξϕn
x + µ1g1(ϕ

n
t ) + µ2g2(z

n(x, 1))

ω


dxdt

+ρ2

∫ 1

0


ϕn(0)ωt(0) − ϕn

t (0)ω(0)

dx = 0,

∫ T

0

∫ 1

0

∫ 1

0


zn(x, ρ, t)yt(x, ρ, t) +

1 − ρτ ′(t)

τ(t)
zn

ρ (x, ρ, t)y(x, ρ, t)

dρdxdt

−
∫ 1

0

∫ 1

0
zn(x, ρ, 0)y(x, ρ, 0)dρdx = 0.

Recalling (3.10) and (3.2), we obtain

(3.20)





∫ T

0

∫ 1

0


ρ1uvtt +


κux + bϕ


vx


dxdt + ρ1

∫ 1

0


u0vt(0) − u1v(0)


dx = 0,

∫ T

0

∫ 1

0


ρ2ϕωtt + δϕxωx +


bux + ξϕx + µ1g1(ϕt) + µ2g2(z(x, 1))


ω


dxdt

+ρ2

∫ 1

0


ϕ0ωt(0) − ϕ1ω(0)


dx = 0,

∫ T

0

∫ 1

0

∫ 1

0


− z(x, ρ, t)yt(x, ρ, t) +

1 − ρτ ′(t)

τ(t)
zρ(x, ρ, t)y(x, ρ, t)


dρdxdt

−
∫ 1

0

∫ 1

0
f0y(x, ρ, 0)dρdx = 0.

As v(x, 0), vt(x, 0), ω(x, 0), ωt(x, 0), y(x, ρ, 0) are arbitrary, comparing identities (3.19)
and (3.20), we deduce (3.18). Consequently, (2.1) admits at least one global strong
solution (u, ϕ, z).
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For the uniqueness, we assume that (ũ, ϕ̃, z̃) and (˜̃u,
˜̃
ϕ, ˜̃z) are two solutions of system

(2.1). Then (u, ϕ, z) = (ũ, ϕ̃, z̃) − (˜̃u,
˜̃
ϕ, ˜̃z) verifies the following system

(3.21)



ρ1utt − κuxx − bϕx = 0,

ρ2ϕtt − δϕxx + bux + ξϕ + µ1


g1(ϕ̃t) − g1(

˜̃
ϕt)


+ µ2


g2(z̃(x, 1)) − g2(˜̃z(x, 1))


= 0,

τ(t)zt(x, ρ, t) + (1 − ρτ ′(t))zρ(x, ρ, t) = 0,

u(0, t) = u(1, t) = ϕ(0, t) = ϕ(0, t) = 0,

u(x, 0) = ut(x, 0) = ϕ(x, 0) = ϕt(x, 0) = z(x, ρ, 0) = 0.

To get the uniqueness of solution of (2.1), we must verify that (u, ϕ, z) = (0, 0, 0) is
the solution of (3.21). For that, a multiplication of (3.21)1 by 2ut and (3.21)2 by 2ϕt,
yields

d

dt

∫ 1

0


ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ


dx + 2µ1

∫ 1

0
ϕt


g1(ϕ̃t) − g1(

˜̃
ϕt)

dx

(3.22)

+ 2µ2

∫ 1

0
ϕt


g2(z̃(x, 1)) − g2(˜̃z(x, 1))


dx = 0.

Then, we multiply (3.21)3 by 2z, we get

(3.23)
d

dt

∫ 1

0

∫ 1

0
τ(t)z2(x, ρ)dρdx +

∫ 1

0
(1 − τ ′(t))z2(x, 1)dx −

∫ 1

0
ϕ2

t dx = 0.

By setting

Λ(t) =
∫ 1

0


ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ + τ(t)

∫ 1

0
z2(x, ρ)dρ


dx

and summing the estimates (3.22)–(3.23), we obtain

Λ′(t) =2µ1

∫ 1

0
ωt


g1(ϕ̃t) − g1(

˜̃
ϕt)

dx +

∫ 1

0
ϕ2

t dx −
∫ 1

0
(1 − τ ′(t))z2(x, 1)dx(3.24)

− 2µ2

∫ 1

0
ϕt


g2(z̃(x, 1)) − g2(˜̃z(x, 1))


dx.

As g1 is an increasing function, we can easily see that

s0 − s


g1(s0) − g1(s)


> 0, for all s0, s ∈ R.

Thus, (3.24) becomes

Λ′(t) ≤
∫ 1

0
ϕ2

t dx − (1 − θ)
∫ 1

0
z2(x, 1)dx − 2µ2

∫ 1

0
ϕt


g2(z̃(x, 1)) − g2(˜̃z(x, 1))


dx.

Using Young’s inequality, we get

Λ′(t) ≤ c

∫ 1

0
ϕ2

t dx −
∫ 1

0
z2(x, 1)dx + ϵ2

∫ 1

0


g2(z̃(x, 1)) − g2(˜̃z(x, 1))

2
dx.
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Since g2 is C1 then g2 is Lipschitzien function, this leads us to

Λ′(t) ≤ c

∫ 1

0
ϕ2

t dx − (1 − cϵ2)
∫ 1

0
z2(x, 1)dx.

Hence, for a suitable ϵ2, we have

Λ′(t) ≤ c

∫ 1

0
ϕ2

t dx.

As Λ(t) is positive (for the same raison given in Remark 2.1) and Λ(0) = 0, Gronwall’s
Lemma forces that Λ(t) = 0 (0 ≤ t ≤ T ), which means that u = ϕ = z = 0.

Consequently, (2.1) has only one global strong solution.
If U0 ∈ H, then it results from the density of H0 in H that the system (2.1) has a

unique global weak solution. □

4. Asymptotic Behavior

This section will be concerned with the study of the solution’s asymptotic behavior
of system (2.1). In fact, using the Lyapunov method, we will prove that, under equal
wave speeds and non-equal wave speeds cases, the solution of (2.1) converges to zero
as t tends to infinity.

We start with this important notation. By setting ε = 0 in (2.9) and under the
assumption (A1), we have

(4.1) E ′(t) ≤ −β1

∫ 1

0
ϕtg1(ϕt)dx − β2

∫ 1

0
z(x, 1)g2(z(x, 1))dx ≤ 0, for all t ≥ 0.

Then (2.1) is dissipative with respect to E.

4.1. Technical lemmas. In this subsection, we state and prove various lemmas given
for (u, ϕ, z) a solution of (2.1). It would help us to estimate the derivative of the
Lyapunov functional.

Lemma 4.1. The functional

F1(t) = −ρ1

∫ 1

0
utudx

satisfies

(4.2) F ′
1(t) ≤ −ρ1

∫ 1

0
u2

t dx +
3κ

2

∫ 1

0
u2

xdx + c

∫ 1

0
ϕ2

xdx.

Proof. A simple differentiation with respect to t, using (2.1)1, yields

F ′
1(t) = −ρ1

∫ 1

0
u2

t dx + κ

∫ 1

0
u2

xdx + b

∫ 1

0
uxϕdx.

The Young’s and Poincaré’s inequalities lead to (4.2). □
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Lemma 4.2. The functional defined by

F2(t) = ρ2

∫ 1

0
ϕtuxdx +

δρ1

κ

∫ 1

0
utϕxdx

satisfies for any η > 0

F ′
2(t) ≤ −

b

2

∫ 1

0
u2

xdx + η

u2

x(1, t) + u2
x(0, t)


+

δ2

4η


ϕ2

x(1, t) + ϕ2
x(0, t)


(4.3)

+ c

∫ 1

0
ϕ2

xdx + c

∫ 1

0
g2

1(ϕt)dx + c

∫ 1

0
g2

2(z(x, 1))dx +


δρ1

κ
− ρ2

∫ 1

0
ϕxtutdx.

Proof. Direct computations, using (2.1)1–(2.1)2, lead to

F ′
2(t) =

∫ 1

0
ux


δϕxx − bux − ξϕ − µ1g1(ϕt) − µ2g2(z(x, 1))


dx

+
δ

κ

∫ 1

0
ϕx


κuxx + bϕx


dx +


δρ1

κ
− ρ2

∫ 1

0
ϕxtutdx.

An integration by parts gives

F ′
2(t) =


δuxϕx

x=1

x=0
− b

∫ 1

0
u2

xdx +
bδ

κ

∫ 1

0
ϕ2

xdx − ξ

∫ 1

0
uxϕdx − µ1

∫ 1

0
g1(ϕt)uxdx

− µ2

∫ 1

0
g2(z(x, 1))uxdx +


δρ1

κ
− ρ2

∫ 1

0
ϕxtutdx.

Using Young’s and Poincaré’s inequalities, (4.3) is established. □

Lemma 4.3. Let χ be a solution of
{

χxx = −ϕx,

χ(0) = χ(1) = 0.

Then the functional

F3(t) =
∫ 1

0


ρ2ϕtϕ +

bρ1

κ
utχ


dx

satisfies the following estimate

F ′
3(t) ≤ − δ

∫ 1

0
ϕ2

xdx −
1

2


ξ −

b2

κ

∫ 1

0
ϕ2dx + η0

∫ 1

0
u2

t dx + c

∫ 1

0
ϕ2

t dx(4.4)

+ c

∫ 1

0
g2

1(ϕt)dx + c

∫ 1

0
g2

2(z(x, 1))dx, for all η0 > 0.

Proof. Differentiating F3 and using (2.1)1–(2.1)2, we get

F ′
3(t) = − ξ

∫ 1

0
ϕ2dx +

b2

κ

∫ 1

0
χ2

xdx − δ

∫ 1

0
ϕ2

xdx + ρ2

∫ 1

0
ϕ2

t dx +
bρ1

κ

∫ 1

0
utχtdx(4.5)

− µ1

∫ 1

0
ϕg1(ϕt)dx − µ2

∫ 1

0
ϕg2(z(x, 1))dx.
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By exploiting Young’s inequality, we have

bρ1

κ

∫ 1

0
utχtdx ≤η0

∫ 1

0
u2

t dx + c

∫ 1

0
χ2

t dx,(4.6)

µ1

∫ 1

0
ϕg1(ϕt)dx ≤

1

4


ξ −

b2

κ

∫ 1

0
ϕ2dx + c

∫ 1

0
g2

1(ϕt)dx,(4.7)

µ2

∫ 1

0
ϕg2(z(x, 1))dx ≤

1

4


ξ −

b2

κ

∫ 1

0
ϕ2dx + c

∫ 1

0
g2

2(z(x, 1))dx.(4.8)

Inserting (4.6)–(4.8) into (4.5) and using the fact that
∫ 1

0
χ2

xdx ≤
∫ 1

0
ϕ2dx,

∫ 1

0
χ2

t dx ≤
∫ 1

0
χ2

txdx ≤
∫ 1

0
ϕ2

t dx,

we obtain (4.4). □

Next, in order to eliminate the boundary terms, appearing in (4.3), we introduce
the following function

(4.9) m(x) = −4x + 2, x ∈ [0, 1].

Then, we have the following result.

Lemma 4.4. For any η > 0, the functional F4 defined by

F4(t) =
η

κ

∫ 1

0
ρ1m(x)utuxdx +

δ

4η

∫ 1

0
ρ2m(x)ϕtϕxdx

satisfies

F ′
4(t) ≤ − η


u2

x(1, t) + u2
x(0, t)


−

δ2

4η


ϕ2

x(1, t) + ϕ2
x(0, t)



+ cηρ1

∫ 1

0
u2

t dx + c

∫ 1

0
ϕ2

t dx +


1

4
+

η

4


b + 2η

 ∫ 1

0
u2

xdx(4.10)

+ c

∫ 1

0
ϕ2

xdx + c

∫ 1

0
g2

1(ϕt)dx + c

∫ 1

0
g2

2(z(x, 1))dx.

Proof. By using (2.1)1, (2.1)2 and (4.9), it holds that

F ′
4(t) =

η

κ


− κ


u2

x(1, t) + u2
x(0, t)


+ 2ρ1

∫ 1

0
u2

t dx + b

∫ 1

0
m(x)uxϕxdx

+ 2κ

∫ 1

0
u2

xdx

]
+

δ

4η


− δ


ϕ2

x(1, t) + ϕ2
x(0, t)


+ 2ρ2

∫ 1

0
ϕ2

t dx

+ 2δ

∫ 1

0
ϕ2

xdx − b

∫ 1

0
m(x)ϕxuxdx − µ1

∫ 1

0
m(x)ϕxg1(ϕt)dx

− µ2

∫ 1

0
m(x)ϕxg2(z(x, 1))dx − 2ξ

∫ 1

0
ϕ2dx

]
.
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The estimate (4.10) follows by exploiting Young’s and Poincaré’s inequalities. □

Lemma 4.5. The functional

F5(t) = τ(t)
∫ 1

0

∫ 1

0
e−τ(t)ρG(z(x, ρ, t))dρdx

satisfies

F ′
5(t) ≤ − τ(t)e−τ1

∫ 1

0

∫ 1

0
G(z(x, ρ, t))dρdx − α1(1 − θ)e−τ1

∫ 1

0
z(x, 1)g2(z(x, 1))dx

(4.11)

+ c

∫ 1

0
ϕ2

t dx + c

∫ 1

0
g2

1(ϕt)dx.

Proof. Taking the derivative of F5 and using (2.1)3, we have

F ′
5(t) =τ ′(t)

∫ 1

0

∫ 1

0
e−τ(t)ρG(z(x, ρ, t))dρdx

+
∫ 1

0

∫ 1

0
(1 − ρτ ′(t))e−τ(t)ρzρ(x, ρ, t)g2(z(x, ρ, t))dρdx.

Then

F ′
5(t) = −

∫ 1

0

∫ 1

0

d

dρ


(1 − ρτ ′(t))e−τ(t)ρG(z(x, ρ, t))


dρdx

−
∫ 1

0

∫ 1

0
τ(t)e−τ(t)ρG(z(x, ρ, t))dρdx

= −
∫ 1

0


(1 − τ ′(t))e−τ(t)G(z(x, 1, t)) − G(z(x, 0, t))


dx

− τ(t)
∫ 1

0

∫ 1

0
e−τ(t)ρG(z(x, ρ, t))dρdx.

Using (2.4) with the fact that z(x, 0, t) = ϕt, e−τ(t) ≤ e−τ1ρ ≤ 1 for all ρ ∈ [0, 1] and
τ ∈ [τ0, τ1] , we obtain

F ′
5(t) ≤ − τ(t)

∫ 1

0

∫ 1

0
e−τ1G(z(x, ρ, t))dρdx. − e−τ1(1 − θ)α1

∫ 1

0
z(x, 1)g2(z(x, 1))dx

+ α2

∫ 1

0
ϕtg1(ϕt)dx.

The estimate (4.11) follows by exploiting Young’s inequality. □

Lemma 4.6. For a suitable choice of N and Ni, i = 1, 2, . . . , 5, the functional defined

by

(4.12) L(t) = NE(t) +
5∑

i=1

NiFi(t).
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satisfies, for a fixed positive constant m0, the estimate

L
′(t) ≤ − m0E(t) +


δρ1

κ
− ρ2

∫ 1

0
ϕxtutdx + c

∫ 1

0
ϕ2

t dx(4.13)

+ c

∫ 1

0
g2

1(ϕt)dx + c

∫ 1

0
g2

2(z(x, 1))dx.

Proof. From (4.1), (4.2), (4.3), (4.4), (4.10) and (4.11), it follows that for any t ≥ 0

L
′(t) ≤ − (N4 − N2)


η

u2

x(1, t) + u2
x(0, t)


+

δ2

4η


ϕ2

x(1, t) + ϕ2
x(0, t)



−

ρ1N1 − η0N3 − ηcρ1N4

 ∫ 1

0
u2

t dx +

N3 + N4 + N5


c

∫ 1

0
ϕ2

t dx

−


b

2
N2 −

3κ

2
N1 −


1

4
+

η

4


b + 2η


N4

 ∫ 1

0
u2

xdx

−
1

2


ξ −

b2

κ


N3

∫ 1

0
ϕ2dx −


δN3 −


N1 + N2 + N4


c

 ∫ 1

0
ϕ2

xdx

− τe−τ N5

∫ 1

0

∫ 1

0
G(z(x, ρ))dρdx +


N2 + N3 + N4 + N5


c

∫ 1

0
g2

1(ϕt)dx

+

N2 + N3 + N4


c

∫ 1

0
g2

2(z(x, 1))dx + N2


δρ1

κ
− ρ2

∫ 1

0
ϕxtutdx.

Furthermore, we take

N1 = 3ηc, N2 = N4 = N5 = 1, η0 =
ηcρ1

N3

,

to get

L
′(t) ≤ − ηcρ1

∫ 1

0
u2

t dx + c

∫ 1

0
ϕ2

t dx −
1

4


b − η


18κc + b + 8

 ∫ 1

0
u2

xdx

(4.14)

−


δN3 − c

 ∫ 1

0
ϕ2

xdx −
1

2


ξ −

b2

κ


N3

∫ 1

0
ϕ2dx + c

∫ 1

0
g2

2(z(x, 1))dx

− τe−τ
∫ 1

0

∫ 1

0
G(z(x, ρ))dρdx + c

∫ 1

0
g2

1(ϕt)dx +


δρ1

κ
− ρ2

∫ 1

0
ϕxtutdx.

Now, we select η < b
18κc+b+8

and then we choose N3 large enough such that

δN3 − c > 0.

Hence, the estimate (4.14) with the fact that κξ > b2 and (2.6) gives us (4.13). □

4.2. General decay rates for equal of wave speeds. In this subsection, we show
that the solution have a general decay rate in the case of equal speeds of wave
propagation.
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Theorem 4.1. Let U ∈ H. Assuming that (A1), (A2) and (A3) are fulfilled, κξ > b2

and that
ρ1

κ
=

ρ2

δ
.

Then, there exist positive constants a, a1 and a2 such that the solution of (2.1) satisfies

(4.15) E(t) ≤ aH−1
1


a1t + a2


, for all t > 0,

where

H1(t) =
∫ 1

t

1

H2(s)
ds and H2(t) = tH ′(ϵ0t).

Proof. Since ρ1

κ
= ρ2

δ
, then we can easily show for N sufficiently large, that the

functional L given by (4.12) is equivalent to E, i.e.,

L(t) ∼ E(t).

We consider, as is [8], the following two partitions of [0, 1]

D1 =
{
x ∈ [0, 1] : ♣ϕt♣ + ♣z(x, 1)♣ ≤ ϵ

}
, D2 =

{
x ∈ [0, 1] : ♣ϕt♣ + ♣z(x, 1)♣ > ϵ

}

and we define R(x, t) by

R(x, t) = ϕtg1(ϕt) + z(x, 1, t)g2(z(x, 1, t)).

Then by recalling (2.2) and (4.1), we obtain

(4.16) L
′(t) ≤ −m0E(t) − cE ′(t) +

∫

D1

H−1

R(x, t)


dx.

Now, we discuss two cases.
1. H is linear on [0, ϵ]. In this case, we obtain, for some positive constant c′,

L
′(t) ≤ −m0E(t) − cE ′(t) − c′E ′(t).

Hence, L0 = L + (c + c′)E ∼ E satisfies

L0(t) ≤ −L0(0)e−ct,

which leads to

E(t) ≤ −cE(0)e−ct.

2. H is non linear on [0, ϵ]. By using Jensen’s inequality and the concavity of H−1,
we find that ∫

D1

H−1

R(x, t)


dx ≤ cH−1

∫

D1

R(x, t)dx


.

Thus, (4.16) rewrites as

(4.17) L
′(t) ≤ −m0E(t) − cE ′(t) + cH−1

∫

D1

R(x, t)dx


.

For ϵ0 < ϵ and m1 > 0, the functional given by

L1(t) = H ′


ϵ0

E(t)

E(0)


L(t) + m1E(t)
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satisfies, for some fixed positive constants ζ0 and ζ1,

(4.18) ζ0L1(t) ≤ E(t) ≤ ζ1L1(t)

and

L
′
1(t) = ϵ0

E ′(t)

E(0)
H ′′


ϵ0

E(t)

E(0)


L(t) + H ′


ϵ0

E(t)

E(0)


L

′(t) + m1E
′(t).

Next, by recaling the fact that E ′ ≤ 0, H ′ > 0 and H ′′ > 0 on [0, ϵ] and using (4.17),
we get
(4.19)

L
′
1(t) ≤ −m0E(t)H ′


ϵ0

E(t)

E(0)


+ cH ′


ϵ0

E(t)

E(0)


H−1

∫

D1

R(x, t)dx


+ m1E

′(t).

Let H∗ be the convex conjugate of H, then by testing (2.8) with

A = H ′


ϵ0

E(t)

E(0)


and B = H−1

∫

D1

R(x, t)dx


,

we get

H ′


ϵ0

E(t)

E(0)


H−1

∫

D1

R(x, t)dx


≤ H∗


H ′


ϵ0

E(t)

E(0)


+
∫

D1

R(x, t)dx.

Using (4.1) with the fact H∗ ≤ s(H ′)−1(s), we have that

(4.20) H ′


ϵ0

E(t)

E(0)


H−1

∫

D1

R(x, t)dx


≤ ϵ0

E(t)

E(0)
H ′


ϵ0

E(t)

E(0)


− cE ′(t).

The substitution of (4.20) into (4.19) provides

L
′
1(t) ≤ −


m0E(0) − cϵ0

E(t)

E(0)
H ′


ϵ0

E(t)

E(0)


+ (m1 − c)E ′(t).

Fixing ϵ0 sufficiently small, so that m0E(0) − cϵ0 > 0, then for m1 > c, we can find a
positive constant a0 such that

(4.21) L
′
1(t) ≤ −a0

E(t)

E(0)
H ′


ϵ0

E(t)

E(0)


= −a0H2


ϵ0

E(t)

E(0)


,

where H2(t) = tH ′(ϵ0t) is a positive non-decreasing function on [0, 1]. Next, by setting
L2 = ζ0L1

E(0)
, we can easily show, by (4.18), that L2 ∼ E. And, from (4.21), we discover

that

(4.22) L
′
2(t) ≤ −a1H2(L(t)).

From the definition of H1, we have

H ′
1(t) = −

1

H2(t)
,

whereupon the inequality (4.22) becomes

L
′
2(t) ≤ a1

1

H ′
1(L2(t))

,
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which implies
[
H1(L2(t))

]′
≤ a1.

An integration over [0, t] yields that

H1(L2(t)) ≤ a1t + H1(L2(0)).

Then, using the non-decreasing property of H−1, we infer that

L2(t) ≤ H−1

a1t + a2


.

The use of L2 ∼ E leads us to (4.15). Hence, the proof is completed. □

4.3. General decay rates for non-equal of wave speeds. In this subsection, we

investigate the situation when
ρ1

κ
≠

ρ2

δ
, which is more realistic in the view of physics.

Theorem 4.2. Let U0 ∈ H0. Assume that (A1) and (A2) hold, κξ > b2 and that

ρ1

κ
̸=

ρ2

δ
.

Then, for

(4.23) ♣µ2♣ < min

{
α1

α2

,
2c̃1

c̃2(2 − θ)

}
(1 − θ)µ1,

there exist some positive numbers w and w1 such that for any t > 0

(4.24) E(t) ≤ wH−1
2


w1

t


.

Proof. Differentiating (2.1) with respect to x, we obtain

(4.25)





ρ1uxtt − κuxxx − bϕxx = 0,

ρ2ϕxtt − δϕxxx + buxx + ξϕx + µ1ϕxtg
′
1(ϕt) + µ2zx(x, 1)g′

2(z(x, 1)) = 0,

τ(t)zxt(x, ρ, t) + (1 − ρτ ′(t))zxρ(x, ρ, t) = 0,

ux(0, t) = ux(1, t) = ϕx(0, t) = ϕx(1, t) = 0,

ux(x, 0) = u0
x(x), ut(x, 0) = u1

x(x),

ϕx(x, 0) = ϕ1
x(x), ϕxt(x, 0) = ϕ1

x(x),

zx(x, ρ, 0) = f 0
x(x, −ρτ(0)).

Then, for a fixed positive constant γ̃ satisfying

(4.26)
c̃2♣µ2♣

(1 − θ)
< γ̃ <


2c̃1µ1 − c̃2♣µ2♣


,
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where c̃1 and c̃2 are introduced in (2.7) and (2.3), we define the modified energy
functional to system (4.25) as

E(t) =
1

2

∫ 1

0


ρ1u

2
xt + ρ2ϕ

2
xt + κu2

xx + δϕ2
xx + ξϕ2

x

+ 2buxxϕx + 2γ̃τ(t)
∫ 1

0
z2

xt(x, ρ, t)dρ


dx.

Our point of departure will be to show that the modified energy functional E is
non-increasing. So, we have the following result.

Lemma 4.7. Under the assumptions in Theorem 4.2, the modified energy functional

E is non-increasing and satisfies for any t ≥ 0

(4.27) E
′(t) ≤ −c

∫ 1

0
ϕ2

xtdx − c

∫ 1

0
z2

x(x, 1)dx.

Proof. Multiplying (4.25)1 and (4.25)2 by uxt and ϕxt, respectively, and integrating
by parts over [0, 1], we obtain

1

2
·

d

dt

∫ 1

0


ρ1u

2
xt + ρ2ϕ

2
xt + κu2

xx + δϕ2
xx + ξϕ2

x + 2buxxϕx


dx(4.28)

+µ1

∫ 1

0
ϕ2

xtg
′
1(ϕt)dx + µ2

∫ 1

0
ϕxtzx(x, 1)g′

2(z(x, 1))dx = 0.

Similarly, we multiply (4.25)3 by γ̃zx(x, ρ, t), we get

(4.29)
γ̃

2

d

dt

∫ 1

0

∫ 1

0
τ(t)z2

xt(x, ρ, t)dρdx = −
γ̃

2
(1 − τ ′(t))

∫ 1

0
z2

x(x, 1)dx +
γ̃

2

∫ 1

0
ϕ2

xtdx.

Combining the estimates (4.28)–(4.29) and using the fact that c̃1 < g′
1(s) and (A2),

we yield that

E
′(t) ≤ −


c̃1µ1 −

γ̃

2

 ∫ 1

0
ϕ2

xtdx −
γ̃

2
(1 − τ ′(t))

∫ 1

0
z2

x(x, 1)dx

− µ2

∫ 1

0
ϕxtzx(x, 1)g′

2(z(x, 1))dx.

By using Young’s inequality with the fact that ♣g′
2(s)♣ < c̃2, we arrive at

E
′(t) ≤ −


c̃1µ1 −

γ̃

2
−

c̃2♣µ2♣

2

∫ 1

0
ϕ2

xtdx −


γ̃

2
(1 − θ) −

c̃2♣µ2♣

2

∫ 1

0
z2

x(x, 1)dx.

Estimate (4.27) follows by using (4.23) and (4.26). □

Now, going back to the proof of Theorem 4.2. Defining, as in (4.12), a Lyapunov
functional L by

L(t) = ME(t) + L(t).



NON-LINEAR POROUS SYSTEM WITH A DELAY TERM 615

It should be mentioned that L is not equivalent to E. Then, using (4.13) and (4.27),
we get

L′(t) ≤ − m0E(t) − cM

∫ 1

0
ϕ2

xtdx +


δρ1

κ
− ρ2

∫ 1

0
ϕxtutdx

+ c

∫ 1

0
ϕ2

t dx + c

∫ 1

0
g2

1(ϕt)dx + c

∫ 1

0
g2

2(z(x, 1))dx.

Utilizing Young’s inequality and the definition of E(t), we get

L′(t) ≤ − (m0 − η1)E(t) − (cM − cη1
)
∫ 1

0
ϕ2

xtdx + c

∫ 1

0
ϕ2

t dx

+ c

∫ 1

0
g2

1(ϕt)dx + c

∫ 1

0
g2

2(z(x, 1))dx.

Fixing η1 < m0 and then taking M sufficiently large, so that cM − cη1
≤ 0, we obtain

for d0 > 0

L′(t) ≤ −d0E(t) + c

∫ 1

0
ϕ2

t dx + c

∫ 1

0
g2

1(ϕt)dx + c

∫ 1

0
g2

2(z(x, 1))dx.

Consequently by exploiting (2.2) and (4.1), it holds that

(4.30) L′(t) ≤ −d0E(t) − cE ′(t) +
∫

D1

H−1

R(x, t)


dx.

As in the proof of Theorem 4.1, we distinguish the following two cases.
1. H is linear on [0, ϵ]. From (4.30) and by using (4.1), we have, for some positive

constant c′,

L′(t) ≤ −d0E(t) − (c + c′)E ′(t).

Then, the functional L0 = L + (c + c′)E, satisfies

L′
0(t) ≤ −d0E(t).

Integrating over [0, t] and using the non-increasing property of E, we yield that

tE(t) ≤
∫ t

0
E(s)ds ≤

1

d0

L0(0).

Hence, for d > 0 we have

E(t) ≤
d

t
, for all t > 0.

2. H is non-linear on [0, ϵ]. By repeating the same arguments as in the second
part of the proof of Theorem 4.1, we find that the functional

L1(t) = H ′


ϵ0

E(t)

E(0)


L(t) + d1E(t)

satisfies, for a fixed positive constant w0, the following property

L′
1(t) ≤ −w0H2


ϵ0

E(t)

E(0)


.
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An integration over [0, t] gives

(4.31)
∫ t

0
H2


ϵ0

E(s)

E(0)


ds ≤

1

w0

L1(0).

It follows from the fact that E ′ ≤ 0 and H ′
2 > 0 that the map

t 7→ H2


ϵ0

E(t)

E(0)



is non-increasing. Thus, from (4.31), we obtain

tH2


ϵ0

E(t)

E(0)


≤
∫ t

0
H2


ϵ0

E(s)

E(0)


ds ≤

1

w0

L1(0).

Consequently, for w, w1 > 0 we have

E(t) ≤ wH−1
2


w1

t


, for all t > 0,

which finishes the proof. □
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ON SIMULTANEOUS APPROXIMATION AND COMBINATIONS

OF LUPAS TYPE OPERATORS

T. A. K. SINHA1, K. K. SINGH2, AND AVINASH K. SHARMA3

Abstract. The purpose of the present paper is to study a sequence of linear and
positive operators which was introduced by A. Lupas. First, we obtain estimate of
moments of the operators and then prove a basic convergence theorem for simulta-
neous approximation. Further, we find error in approximation in terms of modulus
of continuity of function. Finally, we establish a Voronovskaja asymptotic formula
for linear combination of the above operators.

1. Introduction

At the International Dortmund Meeting held in Written (Germany, March, 1995),
A. Lupas [11] introduced the following Linear positive operators for f : [0, ∞) → R as

Ln(f, x) =(1 − a)nx
∞
∑

ν=0

(nx)ν

ν!
aνf

(

ν

n

)

, x ≥ 0,(1.1)

(1 − a)−α =
∞
∑

ν=0

(α)ν

ν!
aν ,(1.2)

where
♣a♣ < 1, (α)0 = 1, (α)ν = α(α + 1) · · · (α + ν − 1), ν ≥ 1.

If we impose that Ln(t, x) = x, we find that a = 1/2. Therefore, operator (1.1)
becomes

Ln(f, x) = 2−nx
∞
∑

ν=0

(nx)ν

2νν!
f
(

ν

n

)

, x ≥ 0.

Key words and phrases. Lupas operators, simultaneous approximation, modulus of continuity,
Voronovskaja asymptotic formula, linear combinations,
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It was seen that these opeartors are positive and linear and preseve linear functions.
Bernstein polynomials [10] exhibit the property of simultaneous approximation. Simul-
taneous approximation for Baskakov operators, modified by Durrmeyer, was studied
by Heilmann and Müller [8]. Another modification of Baskakov operators for simulta-
neous approximation was investigated by Sinha et al. [18]. Yet another modification
of Baskakov operators viz., integral modification of Baskakov operators shows simulta-
neous approximation property in Thamer et al. [20]. This was studied for Durrmeyer
modification of Bernstein polynomials by Gonska and Zhou [4]. In the summation-
integral type operators Gupta et al. [7] explored the simultanoeus approximation.
So far research work was done for linear positive operators ([3],[6],[9],[12]-[15], [19]).
Singh and Agrawal [17] proved simultaneous approximation by a linear combination of
Bernstein-Durrmeyer type polynomials. Gupta [5] studied the differences of operators
of Lupas type. So, the Lupas operators play very important role to approximate
functions for f ∈ C[0, ∞).

It turns out that the order of approximation by these operators is at best O(n−1),
however smooth the function may be. Therefore, in order to improve the order of
approximation by the operators (1.1), we apply the technique of linear combination
introduced by Butzer [2] and Rathore [16].

The approximation process for linear combination is defined as follows.
Let d0, d1, . . . , dk be (k + 1) arbitrary but fixed distinct positive integers. Then, the

linear combination Ln(f, k, x) of Ldjn(f, x), j = 0, 1, 2, . . . , k, is given by

Ln(f, k, x) =
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ld0n(f, x) d−1
0 d−2

0 · · · d−k
0

Ld1n(f, x) d−1
1 d−2

1 · · · d−k
1

...
...

...
. . .

...
Ldkn(f, x) d−1

k d−2
k · · · d−k

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where ∆ is the Vandermonde determinant defined as

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 d−1
0 d−2

0 · · · d−k
0

1 d−1
1 d−2

1 · · · d−k
1

...
...

...
. . .

...
1 d−1

k d−2
k · · · d−k

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

On simplification, we have

(1.3) Ln(f, k, x) =
k
∑

j=0

C(j, k)Ldjn(f, x),

where

C(j, k) =
k
∏

i=0,i̸=j

dj

dj − di

, k ̸= 0 and C(0, 0) = 1.
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2. Moment Estimates

Lemma 2.1 ([5]). The following relations hold:

Ln(1, x) = 1, Ln(t − x, x) =
2a − 1

1 − a
x, Ln((t − x)2, x) =

n2x2(2a − 1)2 + nax

n2(1 − a)2
.

Now, we define mth order moment

µm(x) = Ln((t − x)m, x) = (1 − a)nx

{

∞
∑

ν=0

(nx)ν

ν!
aν
(

ν

n
− x

)m
}

.

Lemma 2.2. µm(x) is a polynomial in x of degree [m/2]. Moreover

µm(x) = O
(

1

n[ m+1

2
]

)

, n → ∞.

Proof. By definition of moments of mth order, we have

µm(x) =(1 − a)nx
∞
∑

ν=0

(−1)maν (nx)ν

ν!

{

m
∑

r=0



m

r



(−1)rxm−r
(

ν

n

)r
}

=(−1)m(1 − a)nx
∞
∑

ν=0

(nx)ν

ν!
aν

{

m
∑

r=0



m

r



(

−
1

n

)r

xm−r(2.1)

× (ν(r) + p2ν
(r−1) + p4ν

(r−2) + · · · )

}

,

where ν(r) = ν(ν − 1)(ν − 2) · · · (ν − r + 1), p2 is a polynomial in r of second degree,
p4 is a polynomial in r of fourth degree and so on.

It follows from (1.2) upon s times differentiation in a that

(2.2)
∞
∑

ν=0

(nx)ν

ν!
ν(ν − 1) · · · (ν − s + 1)aν−s = (nx)s(1 − a)−nx−s.

Making an use of (2.2) in (2.1)

µm(x) =(−1)m
m
∑

r=0



m

r



(

−
1

n

)r

xm−r

{

ar

(1 − a)r
(nx)r + p2

ar−1

(1 − a)r−1
(nx)r−1

+ p4
ar−2

(1 − a)r−2
(nx)r−2 + · · ·

}

.

Again,

(nx)r

nrxr
= 1 +

q2

nx
+

q4

(nx)2
+

q6

(nx)3
+ · · · ,

where qj as before is a polynomial in r of degree j.
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Therefore, taking a = 1/2 and using fact that
∑m

r=0



m
r

)

(−1)rrs = 0, s < m, we

find that

µm(x) = (−1)mxm

{

C

(nx)[ m+1

2
]

+ · · · higher order terms

}

.

Therefore, µm(x) is a polynomial in x of degree [m/2]. This completes the proof of
lemma. □

3. Simultaneous Approximation

Theorem 3.1. Let f ′ ∈ CB[0, ∞). Then, sequence
{

d
dx

(Ln(f, x))
}∞

n=1
converges to

f ′(x) pointwise on [0, ∞). Moreover, if S is a compact subset of [0, ∞) then sequence
{

d
dx

(Ln(f, x))
}∞

n=1
converges to f ′(x) uniformly on S.

Proof. We expand

f(w) = f(x) + (w − x)f ′(x) +

w
∫

x

(f ′(t) − f ′(x))dt.

Operating Ln(·, y) on both sides of above equation and in view of Lemma 2.1, we
obtain

Ln(f, y) = f(x) +
(

ay

1 − a
− x

)

f ′(x) + (1 − a)ny

{

∞
∑

ν=0

(ny)ν

ν!
aνRν

}

,

where Rν =
ν/n
∫

x
(f ′(t) − f ′(x))dt. Thus,

d

dx
Ln(f, x) =

a

1 − a
f ′(x) + n(1 − a)nx(3.1)

×

{

ln(1 − a)
∞
∑

ν=0

(nx)ν

ν!
aνRν +

∞
∑

ν=1

d(nx)ν

d(nx)

aν

ν!
Rν

}

.

We put nx = α and differentiate (1.2) w.r.t. α. Further, we equate coefficient of aν on
both sides, we get

(3.2)
1

ν!
·

d(α)ν

dα
=

αν−1

(ν − 1)!
+

1

2
·

αν−2

(ν − 2)!
+

1

3
·

αν−3

(ν − 3)!
+ · · · +

1

ν
·

α0

0!
.
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Using (3.2) in (3.1), we get

d

dx
Ln(f, x) −

a

1 − a
f ′(x)

=n(1 − a)α



a(R1 − R0) + a2

{

(α)1

1!
(R2 − R1) +

(α)0

2
(R2 − R0)

}

+ a3

{

(α)2

2!
(R3 − R2) +

1

2
·

(α)1

1!
(R3 − R1) +

1

3
(α)0(R3 − R0)

}

+ · · ·

+ aν

{

(α)ν−1

(ν − 1)!
(Rν − Rν−1) +

(α)ν−2

(ν − 2)!
·

1

2
(Rν − Rν−2)

+
(α)ν−3

(ν − 3)!
·

1

3
(Rν − Rν−3) + · · · +

(α)1

1!
·

1

ν − 1
(Rν − R1)

+
1

ν
·

(α)0

1
(Rν − R0)

}

+ · · ·





=n(1 − a)α



a

{

(α)0(R1 − R0) +
a(α)1

1!
(R2 − R1) +

a2(α)2

2!
(R3 − R2)

+
a3(α)3

3!
(R4 − R3) + · · ·

}

+ a2

{

(α)0

2
(R2 − R0) +

a(α)1

1!
·

1

2
(R3 − R1)

+
a2(α)2

2!
·

1

2
(R4 − R2) +

a3(α)3

3!
·

1

2
(R5 − R3) + · · ·

}

+ a3

{

(α)0
1

3
(R3 − R0) +

a(α)1

1!
·

1

3
(R4 − R1) +

a2(α)2

2!
·

1

3
(R5 − R2) + · · ·

}

+ · · ·





=n(1 − a)α [Σ1 + Σ2 + Σ3 + · · · ] , say.(3.3)

The continuity of f ′(·) at point x implies that for a given ϵ > 0 there exists a δ = δ(x),
(depending on x) such that ♣f ′(t) − f ′(x)♣ < ϵ if ♣t − x♣ < δ. We break Rp − Rq in two
parts depending upon ♣t − x♣ < δ and ♣t − x♣ ≥ δ. In the second part, there may be
two terms, where ♣f ′(t) − f ′(x)♣ ≤ 2∥f ′∥CB [0,∞).

1
δ2 (t − x)2.

Using Lemma 2.1, we get

♣Σ1♣ ≤ a
ϵ

n



∞
∑

k=0

ak

k!
(α)k



+
2 · 2∥f ′∥CB [0,∞)

δ2
·

a

n







∞
∑

k=0

ak

k!
(α)k



k

n
− x

2






= a
ϵ

n
(1 − a)−α +

4∥f ′∥CB [0,∞)

δ2
·

a

n
·

{

nx2(2a − 1)2 + ax

n(1 − a)2

}

(1 − a)−α.(3.4)
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Now,

♣Σ2♣ ≤ a2 ϵ

n

{

∞
∑

k=0

ak

k!
(α)k

}

+
4∥f ′∥CB [0,∞)

δ2
·

a2

n







∞
∑

k=0

ak

k!
(α)k



k

n
− x

2






= a2 ϵ

n
(1 − a)−α +

4∥f ′∥CB [0,∞)

δ2
·

a2

n

{

nx2(2a − 1)2 + ax

n(1 − a)2

}

(1 − a)−α.(3.5)

The similar estimates for Σ3, Σ4, . . . are combined in (3.3) and we take a = 1
2

due
to Agratini [1]. Finally,

∣

∣

∣

∣

∣

d

dx
Ln(f, x) − f ′(x)

∣

∣

∣

∣

∣

≤ Cn
(

ϵ

n
+

1

n2

)

.

This completes the proof of the first part.
Proof of second part of Theorem 3.1. Let S be a compact subset of [0, ∞). The

pointwise continuity of function f ′(·) at points of S, imply, by virtue of compactness
of S, that f ′(·) is now uniformly continuous on S. Thus, δ is now independent of
x. Moreover S, being compact, is a bounded subset of [0, ∞). Thus x ∈ S implies
♣x♣ < C1, a constant. This implies by (3.4) and (3.5) that convergence is uniform. □

Theorem 3.2. Let f ′ ∈ CB[0, ∞). Then for δ > 0 and [a, b] ⊂ (a1, b1) we have

sup
x∈[a,b]

♣L
′

n(f, x) − f ′(x)♣ ≤ ω(f ′, δ, [a1, b1]) +
C

n
∥f ′∥CB [0,∞).

Proof. We proceed in similar way as in the proof of Theorem 3.1. In the steps following
(3.3) if ♣t − x♣ < δ, then ♣f ′(t) − f ′(x)♣ ≤ ω(f ′, δ, [a1, b1]). When ♣t − x♣ ≥ δ, using

boundedness of f ′ the total contribution is of order ∥f ′∥CB [0,∞)O


1
n

)

as n → ∞, by

Lemma 2.1. Hence, the proof follows. □

4. Linear Combinations

Theorem 4.1. Let f (2k+2) ∈ CB[0, ∞). Then there holds for each x ∈ [0, ∞), point-

wise:

d

dx
Ln(f, k, x) − f ′(x) =

1

nk+1







2k+2
∑

j=k+2

qj(x)f (j)(x)







+ o
(

1

nk+1

)

, n → ∞.(4.1)

Moreover, if S is a compact subset of [0, ∞), then convergence (4.1) is uniform on S.
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Proof. Using Taylor’s series expansion, we write

f(w) =f(x) + (w − x)f ′(x) +
(w − x)2

2!
f (2)(x) + · · ·

+
(w − x)2k+2

(2k + 2)!
f (2k+2)(x)

+

w
∫

x

t1
∫

x

t2
∫

x

· · ·

t2k+1
∫

x

(f (2k+2)(u) − f (2k+2)(x))dt2k+1 dt2k · · · dt1du.

Operating Ln(·, y) on both sides of above equation and in view of Lemma 2.1, we
obtain

Ln(f, y) =f(x) +
(

ay

1 − a
− x

)

f ′(x) +
f (2)(x)

2!
p2(1/n, y)

+
f (3)(x)

3!
p3(1/n, y) + · · · +

f (2k+2)(x)

(2k + 2)
p2k+2(1/n, y)

+ (1 − a)ny



∞
∑

ν=0

(ny)ν

ν!
aνRν



,

where

Rν =

ν/n
∫

x

t1
∫

x

t2
∫

x

· · ·

t2k+1
∫

x

(f (2k+2)(u) − f (2k+2)(x))dt2k+1dt2k · · · dt1du

and pj



1
n
, y
)

is a polynomial in y of degree j and in 1
n

of degree (j − 1).

This implies that

d

dx
Ln(f, x) =

a

1 − a
f ′(x) +

f (2)(x)

2!
p′

2(1/n, x)(4.2)

+
f (3)(x)

3!
p′

3(1/n, x) + · · · +
f (2k+2)(x)

(2k + 2)
p′

2k+2(1/n, x)

+ n(1 − a)nx

{

log(1 − a)
∞
∑

ν=0

(nx)ν

ν!
aνRν +

∞
∑

ν=1

d(nx)ν

d(nx)
·

aν

ν!
Rν

}

.

Let ϕ(n, x) = n(1−a)nx

{

log(1−a)
∑∞

ν=0
(nx)ν

ν!
aνRν+

∑∞
ν=1

d(nx)ν

d(nx)
aν

ν!
Rν

}

. Now, taking

linear combinations on (4.2) and using their properties (1.3), we have

d

dx
Ln(f, k, x) −

(

a

1 − a

)

f ′(x) =







2k+2
∑

j=k+2

qj(x)f (j)(x)







1

nk+1
+

k
∑

j=0

C(j, k)ϕ(djn, x).

We analyze last term as in (3.1) and obtain the required result.
The proof of the second part of theorem follows from the proof of the second part

of Theorem 3.1. □
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APPROXIMATION BY A COMPOSITION OF

APOSTOL-GENOCCHI AND PǍLTǍNEA-DURRMEYER

OPERATORS

NAV SHAKTI MISHRA1 AND NAOKANT DEO1

Abstract. The present paper deals with the Durrmeyer construction of operators
based on a class of orthogonal polynomials called Apostol-Genocchi polynomials.
For the proposed operators, we Ąrst establish a global approximation result followed
by its convergence estimate in terms of usual, r-th and weighted modulus of con-
tinuity. We further study the asymptotic type results such as the Voronovskaya
theorem and quantitative Voronovskaya theorem. Moreover, we estimate the rate of
pointwise convergence of the proposed operators for functions of bounded variation
deĄned on the interval (0, ∞). Finally, the results are validated through graphical
representations and an absolute error table.

1. Introduction

Recently, Prakash et al. [20] proposed the following positive linear sequence of
operators:

Gα,λ
n (f ; x) =

∞∑

k=0

s
α,λ
n,k (x)f

(
k

n


, x ∈ [0, ∞),(1.1)

where s
α,λ
n,k (x) = e−nx

(
1+λe

2

α gα
k

(nx;λ)

k!
and gα

k (x; λ) is the generalized Apostol-Genocchi

polynomials of order α, which belong to the class of orthogonal polynomials. These
polynomials were deĄned for a complex variable z, ♣z♣ < π in [16]. However, in
this study we limit ourselves to a real variable t ∈ [0, ∞). The generalized Apostol

Key words and phrases. Apostol-Genocchi polynomials, Pǎltǎnea basis, generating functions,
special functions, functions of bounded variation.
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Genocchi polynomial of order α, i.e., gα
k (x; λ) can be estimated with the help of

following generating function:


2t

1 + λet

α

ext =
∞∑

k=0

gα
k (x; λ)

tk

k!
.(1.2)

The more explicit form of gα
k (x; λ) was proposed by Luo and Srivastava in [17].

They presented some elementary properties of these polynomials and derived explicit
series representation of gα

k (x; λ) in terms of hypergeometric function deĄned by Gauss.
The series is given as follows:

gα
k (x; λ) =2αα!

(
k

α


k−α∑

n=0

(
k − α

n

(
α + n − 1

n


λn

(1 + λ)α+n

×
n∑

j=0

(−1)j

(
n

j


jn(x + j)k−n−α

2F1

(
α + n − k, n; n + 1;

j

x + j


,

where ¶k, α♢ ∈ N ∪ ¶0♢, λ ∈ R \ ¶−1♢, x ∈ R and 2F1 (a, b; c; t) denotes the Gaussian
hypergeometric function deĄned by

2F1 (a, b; c; t) = 2F1 (b, a; c; t) =
∞∑

k=0

(a)k(b)k

(c)k

· tk

k!
.

In particular, for α = 1 and λ = 1, these operators reduce to classical Genocchi
polynomials which are obtained by the following generating function:

2text

et + 1
=

∞∑

k=0

gk (x)
tk

k!
, ♣t♣ < 2π, x ∈ R,

where gk (x) = gk (x; 1). It can be clearly seen that gk(x) are the kth-degree polyno-
mials, few terms of which are given as follows:

g1 (x) = 1, g2 (x) = 2x − 1, g3 (x) = 3x (x − 1) ,

g4 (x) = 4x3 − 6x2 + 1, g5 (x) = 5x4 − 10x3 + 5x, . . .

For the case x = 0, one can obtain the so-called Genocchi numbers gk using the
relation:

gk (x) =
k∑

i=0

(
k

i


gix

k−i.

Genocchi numbers can be deĄned in many ways depending on the Ąeld where they are
intended to be applied. They Ąnd a wide range of application in numerical analysis,
combinatorics, number theory, graph theory etc. Luo [15,16] deĄned Apostol-Genocchi
polynomials of higher order and also introduced q-Apostol-Genocchi polynomials. He
studied the relationship of these polynomials with Zeta function. In the last two
decades, a surprising number of papers appeared studying Genocchi numbers, their
combinatorial relations, Genocchi polynomials and their generalisations along with
their various expansions and integral representations. To the readers, we suggest
following articles [4, 18,21] and references therein.
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In the recent past, much work has been dedicated towards the Durrmeyer type mod-
iĄcation of linear positive operators. For instance, Dhamija and Deo [8] introduced
the Durrmeyer form of Jain operators based on inverse Pólya-Eggenberger distribu-
tion. They studied its moments with the aid of Vandermonde convolution formula
and analysed other approximation properties. Heilmann and Raşa [12] studied a
link between Baskakov-Durrmeyer type operators and their corresponding classical
Kantorovich variants. Acu and Radu [3] introduced and studied a class of operators
which link α-Bernstein operators and genuine α-Bernstein Durrmeyer operators. To
see more work relevant to this area, one may refer [2, 5, 7, 10,11,13].

Inspired by above stated researches, we now consider a Durrmeyer type modiĄcation
of Apostol-Genocchi operators based on Pǎltǎnea basis on positive real line. For
f ∈ C[0, ∞) and ρ > 0, the operators are deĄned as follows:

M
α,λ
n (f ; x) =

∞∑

k=0

s
α,λ
n,k (x)

∞∫

0

l
ρ
n,k (t)f (t) dt, x ∈ [0, ∞),(1.3)

where l
ρ
n,k (t) = nρe−nρt (nρt)kρ−1

Γ(kρ)
and s

α,λ
n,k (x) is deĄned in (1.1).

The outline of the study is as follows. We consider a Durrmeyer type construction
of Apostol-Genocchi operators based on the basis function due to Pǎltǎnea [19] with
real parameters α, λ and ρ. We establish approximation estimates such as a global
approximation theorem and rate of approximation in terms of usual, r-th and weighted
modulus of continuity. We further study asymptotic formulae such as Voronovskaya
theorem and quantitative Voronovskaya theorem. The last theorem is an application
of the proposed operators for the functions whose derivatives are of bounded variation.
Moreover, the approximation and the absolute error therein has been shown graphically
by varying the values of various parameters using Mathematica software.

2. Preliminaries

Before proceeding to our main results, we state some general lemmas which are
useful throughout this paper. In addition, we have used Mathematica software wher-
ever necessary for complex and tedious calculations such as for moments and central
moments etc.

Lemma 2.1. For es (t) = ts, s ∈ N ∪ ¶0♢ and ρ > 0, we have

∞∫

0

l
ρ
n,k (t)ts =

(kρ + s − 1)!

(nρ)s (kρ − 1)!
=

(kρ)s

(nρ)s ,

where the symbol (β)n = β (β + 1) (β + 2) · · · (β + n − 1) , (β)0 = 1 denotes the rising

factorial.

Lemma 2.2. For operators (1.3), the moments are obtained as follows:

M
α,λ
n (e0; x) = 1,
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M
α,λ
n (e1; x) = x +

α

n (1 + λe)
,

M
α,λ
n (e2; x) = x2 +

x

n


1 + 2α + λe

(1 + λe)
+

1

ρ

]
+

1

n2


α2 − 2αλe − αe2λ2

(1 + λe)2 +
α

ρ (1 + λe)

]
,

M
α,λ
n (e3; x)

=x3 +
x2

n


3(α + λe + 1)

(1 + λe)
+

3

ρ

]

+
x

n2


3α2 − 3αλ2e2 − 3αλe + 3α + λ2e2 + 2λe + 1

(1 + λe)2 +
3(2α + λe + 1)

ρ(1 + λe)
+

2

ρ2

]

+
1

n3


α3 − 3α2λ2e2 − 6α2λe − αλ3e3 − 4αλ2e2 − 5αλe

(1 + λe)3 +
2α

ρ2(1 + λe)

+
3 (α2 − αλ2e2 − 2αλe)

ρ(1 + λe)2

]
,

M
α,λ
n (e4; x)

=x4 +
x3

n


2α + 3λe + 3

(1 + λe)
+

6

ρ

]

+
x2

n2


25 + 12α + 6α2 + 50eλ + 25e2λ2 − 6αe2λ2

(1 + λe)2 +
18 (1 + α + eλ)

(1 + λe)ρ
+

11

ρ2

]

+
x

n3


7 + 20α + 63α2 + 2α3 − 6α2e2λ2 − 9α2λe

(1 + λe)3

+
−5αe3λ3 + 4αe2λ2 + 24αλe + 7e3λ3 + 21λe

(1 + λe)3

+
6 (3α2 − 3αe2λ2 − 3αλe + 3α + e2λ2 + 2λe + 1)

(1 + λe)2
ρ

+
11(1 + 2α + λe)

(1 + λe)ρ2
+

6

ρ3

]

× 1

n4


α4− 6e2α3λ− 12eα3λ− 16e4αλ4+ 8e3αλ3− 82e3αλ2 − 118e2αλ2 − 66α+ λe

(1 + λe)4

+
6 (α3 − 3e2α2λ2 − 6eα2λ − e3αλ3 − 4e2αλ2 − 5eαλ)

(1 + λe)3
ρ

+
11 (α2 − αe2λ2 − 2αλe)

(1 + λe)2
ρ2

+
6α

(1 + λe)ρ3

]
.

Proof. In the proposed operators (1.3), for s = 0, 1, 2 respectively we have 1.
2. For s = 1, again using Lemma 2.1 we have

(2.1) M
α,λ
n (e1; x) =

e−nx

n

(
1 + λe

2

α ∞∑

k=0

gα
k (nx; λ)

k!
k.
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Differentiating both sides of (1.2) with respect to t and taking limits t → 1 and
x → nx, we have

∞∑

k=0

gα
k (nx; λ)

k!
k = 2αenx


1

1 + λe

1+α

(α + nx (1 + λe)) .

Making use of this value in equation (2.1), we obtain the Ąrst moment.
3. Similarly for s = 2, we have

(2.2) M
α,λ
n (e2; x) =

e−nx

n2

(
1 + λe

2

α ∞∑

k=0

gα
k (nx; λ)

k!
k2.

On differentiating both sides of (1.2) with respect to t and taking limits t → 1 and
x → nx, we have

∞∑

k=0

gα
k (nx; λ)

k!
k (k − 1) =2αenx


1

1 + λe

1+α

¶2nsα (1 + λe)

+n2x2(1 + λe)2 − (λe (3 + λe) − α + 1)
}

.

Combining this with the Ąrst order moment and equation (2.2) we obtain the third
moment.

We can obtain the higher order moments in a similar way. □

Lemma 2.3. Let us define δs
n(x) = M

α,λ
n (Φs; x), where Φs(t) = (e1 − x)s and s = 1, 2.

Then, from Lemma 2.2 we have

δ(1)
n (x) =

α

n (1 + λe)
,

δ(2)
n (x) =

x

n


1 +

1

ρ

]
+

1

n2


α2 − 2αλe − αe2λ2

(1 + λe)2 +
α

ρ (1 + λe)

]
.

Furthermore,

lim
n→∞

nMα,λ
n (Φ1; x) =

α

(1 + λe)
,

lim
n→∞ nMα,λ

n (Φ2; x) =

(
1 +

1

ρ


x,

lim
n→∞ n2

M
α,λ
n (Φ4; x) =

3 (1 + (6 + 8α) ρ − (3 + 8α) ρ2 + λe (1 + 6ρ − 3ρ2)) x2

(1 + λe) ρ2

and

lim
n→∞ n3

M
α,λ
n (Φ6; x) =

(1 + ρ) (2 + ρ + 3αρ + λe (2 + ρ)) x5

(1 + λe)3
ρ4

.

Remark 2.1. Since fourth and sixth central moments are too lengthy and unnecessarily
space consuming, we are omitting their values here. Instead we choose to write their
limiting values, which is useful in the proofs of our main theorems.
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3. Main Theorems

Theorem 3.1. For any f ∈ CB[0, ∞), where CB[0, ∞) is the class of all continuous

and bounded functions, we have

M
α,λ
n (f (t) ; x) = f (x)

uniformly on any compact subset of [0, ∞).

Proof. Taking into account Lemma 2.2, we can easily see that M
α,λ
n (er; x) → xr for

each r = 0, 1, 2 and hence using the well known KorovkinŠs theorem due to [14],
operators M

α,λ
n converge uniformly on each compact subset of [0, ∞). □

3.1. Global approximation. Let us denote Bf [0, ∞) the space of all functions f

on positive real axis that satisfy the condition ♣f(x)♣ ≤ Hf (1 + x2) where Hf is a
constant depending only on f but independent of x.

Let Cf [0, ∞) be the subspace of Bf [0, ∞) containing all continuous f on [0, ∞).
The norm in Cf [0, ∞) is deĄned by

♣♣f ♣♣2 = sup
x∈[0,∞)

♣f(x)♣
1 + x2

.

Also, let C l
f [0, ∞) :=

{
f ∈ Cf [0, ∞) : limx→∞

♣f(x)♣
1+x2 is Ąnite

}
.

Theorem 3.2. For each f ∈ C l
f [0, ∞), we have

lim
n→∞

∥∥∥Mα,λ
n (f ; x) − f

∥∥∥
2

= 0.

Proof. The proof of this theorem can be given by application of Korovkin theorem [9]
on the interval [0, ∞). Therefore, it would suffice if we prove that

(3.1) lim
n→∞

∥∥∥Mα,λ
n (el; x) − el

∥∥∥
2

= 0, l = 0, 1, 2.

For l = 0, condition (3.1) holds as operators M
α,λ
n preserve constant functions. Next,

we can write
∥∥∥Mα,λ

n (e1; x) − x
∥∥∥

2
≤ sup

x∈[0,∞)

α

n(1 + λe)(1 + x2)
→ 0,

for adequately large n. Therefore, the condition (3.1) is satisĄed for l = 1.
Finally, we write
∥∥∥Mα,λ

n (e2; x) − x2
∥∥∥

2
≤ sup

x∈[0,∞)

1

(1 + x2)

{
x

n

(
1 +

1

ρ


+

1

n2

(
α2 + 2αλe − αe2λ2

(1 + λe)2

+
α

ρ (1 + λe)

}
,

which suggests

lim
n→∞

∥∥∥Mα,λ
n (e2; x) − e2

∥∥∥
2

= 0.

Hence, the theorem follows. □
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Let CB[0, ∞) be the class of all continuous and bounded real valued functions. We
deĄne the r-th order modulus of continuity by ωr (f, δ) and deĄne it as

ωr (f, δ) = sup
x∈[0,∞)

sup
0≤h≤δ

♣∆r
hf (x)♣ ,

where ∆ denotes the forward difference. In particular, the usual modulus of continuity
is deĄned for r = 1 and is denoted by ω (f, δ). Moreover, we deĄne the norm as
∥f∥ = sup

x∈[0,∞)
♣f (x)♣.

Also, the PeetreŠs K-functional for the function g ∈ C2
B[0, ∞) is deĄned as:

K2(f ; δ) = inf
g∈C2

B
[0,∞)

{
∥f − g∥ + δ ∥g′′∥ : g ∈ C2

B[0, ∞)
}

,

where
C2

B[0, ∞) = ¶g ∈ CB[0, ∞) : g′, g′′ ∈ CB[0, ∞)♢.

The next theorem establishes the degree of approximation of the operators Mα,λ
n in

terms of the usual and second order modulus of continuity for the functions in the
space CB[0, ∞).

Theorem 3.3. For ℏ ∈ C2
B [0, ∞), define the auxiliary operators Q̃

α,λ
n as

Q̃
α,λ
n (ℏ; x) = M

α,λ
n (ℏ; x) − ℏ

(
x +

α

n (1 + λe)


+ ℏ(x).(3.2)

Then there exists a constant C > 0 such that

♣Mα,λ
n (ℏ, x) − ℏ(x)♣ ≤ Cω2(ℏ,

√
δ) + ω(ℏ, δ(1)

n (x)),

where

δ = δ(2)
n (x) +

(
α

n(1 + λe)

2

.

Proof. Using Lemma 2.2, one can easily observe that Q̃
α,λ
n ((t − x); x) = 0.

Let f ∈ C2
B[0, ∞), then by TaylorŠs expansion we have

f(t) = f(x) + (t − x)f ′(x) +

t∫

x

(t − u)f ′′(u)du.

Moreover, we can write

∣∣∣Q̃α,λ
n (f ; x) − f(x)

∣∣∣ =

∣∣∣∣∣∣
Q̃

α,λ
n




t∫

x

(t − u)f ′′(u)du, x




∣∣∣∣∣∣

≤
∣∣∣∣∣∣
M

α,λ
n




t∫

x

(t − u)f ′′(u)du, x




∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

(x+ α
n(1+λe))∫

x

((
x +

α

n (1 + λe)


− u


f ′′(u)du

∣∣∣∣∣∣∣∣
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≤

Mα,λ

n

(
(t − x)2; x


+

(
α

n (1 + λe)

2

 ∥f ′′∥ .(3.3)

Since we know that ∣∣∣Mα,λ
n (ℏ; x)

∣∣∣ ≤ ∥ℏ∥ ,

therefore
∣∣∣Q̃α,λ

n (ℏ; x)
∣∣∣ ≤

∣∣∣Mα,λ
n (ℏ; x)

∣∣∣+
∣∣∣∣∣ℏ
(

x +
α

n (1 + λe)

∣∣∣∣∣+ ♣ℏ(x)♣ ≤ 3 ∥ℏ∥ .(3.4)

Finally, combining equations (3.2), (3.3) and (3.4), we get
∣∣∣Mα,λ

n (ℏ; x) − ℏ(x)
∣∣∣ ≤

∣∣∣Q̃α,λ
n (ℏ − f); x) − (ℏ − f)(x)

∣∣∣+
∣∣∣Q̃α,λ

n (f ; x) − f(x)
∣∣∣

+

∣∣∣∣∣ℏ(x) − ℏ

(
x +

α

n(1 + λe)

∣∣∣∣∣

≤4 ∥ℏ − f∥ +


Mα,λ

n

(
(t − x)2; x


+

(
α

n (1 + λe)

2

 ∥f ′′∥

+

∣∣∣∣∣ℏ(x) − ℏ

(
x +

α

n(1 + λe)

∣∣∣∣∣

≤C



∥ℏ − f∥ +


δ(2)

n (x) +

(
α

n (1 + λe)

2

 ∥f ′′∥





+ ω

(
ℏ,

α

n (1 + λe)


.

Taking inĄmum over all f ∈ C2
B[0, ∞) and using the result K2 (f, δ) ≤ ω2

(
f,

√
δ


due

to [6], we get the desired outcome. □

Theorem 3.4. Let ℏ ∈ CB(0, ∞), then for any r > 0, x ∈ [0, r] and adequately large

n, we have

∣∣∣Mα,λ
n (ℏ; x) − ℏ (x)

∣∣∣ ⩽ 4Hℏ

(
1 + x2

 D

n
+ 2ωr+1


ℏ,

√
D

n


 ,

where D is a positive constant.

Proof. If x ∈ [0, r] and t > r + 1, then t − x > 1. Therefore, we have the following
inequality:

♣ℏ (t) − ℏ (x)♣ ⩽ 4Hℏ

(
1 + x2


(t − x)2

.

Again for x ∈ [0, r] and t ∈ [0, r + 1] and using the well known inequality ω (f, βδ) ⩽
(β + 1) ω (f, δ) , β ∈ (0, ∞), one can obtain

♣ℏ (t) − ℏ (x)♣ ⩽
(

1 +
♣t − x♣

δ


ωr+1 (ℏ, δ) .
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From (3.5) and (3.5), we can write

♣ℏ (t) − ℏ (x)♣ ⩽ 4Hℏ

(
1 + x2


(t − x)2 +

(
1 +

♣t − x♣
δ


ωr+1 (ℏ, δ) .

Applying operator M
α,λ
n in the above relation and making use of Cauchy-Schwarz

inequality, we get
∣∣∣Mα,λ

n (ℏ; x) − ℏ (x)
∣∣∣ ⩽4Hℏ

(
1 + x2


M

α,λ
n

(
(t − x)2; x



+


1 +
1

δ
M

α,λ
n (♣t − x♣ ; x)


ωr+1 (ℏ, δ)

⩽4Hℏ

(
1 + x2


M

α,λ
n

(
(t − x)2; x



+ 2ωr+1

(
ℏ,

√
M

α,λ
n

(
(t − x)2; x


.

Since M
α,λ
n

(
(t − x)2; x


⩽ D

n
, where D is a positive constant, it follows that for

adequately large n, we have

∣∣∣Mα,λ
n (ℏ; x) − ℏ (x)

∣∣∣ ⩽ 4Hℏ

(
1 + x2

 D

n
+ 2ωr+1


ℏ,

√
D

n


 ,

which is the required result. □

3.2. Quantitative Voronovskaya theorem and Voronovoskaya theorem. Let
CB [0, ∞) be the subspace of Bf [0, ∞) containing all continuous and bounded func-

tions f for which lim
x→∞ ♣f (x)♣ (1 + x2)

−1
is Ąnite.

The weighted modulus of continuity Ω (f, δ) due to [1] for each f ∈ CB [0, ∞) is
deĄned as

Ω (f, δ) = sup
x∈[0,∞),♣h♣<δ

♣f (x + h) − f (x)♣
(1 + h2 + x2 + h2x2)

.

In the next theorem, we discuss the quantitative Voronovskaya theorem for the pro-
posed operators (1.3) and derive a Voronovoskaya asymptotic result as a resulting
corollary, making use of the following properties of weighted modulus of continuity.
For every f ∈ C l

f [0, ∞),

(a) Ω (f, δ) → 0 for δ → 0;

(b) ♣f (t) − f (x)♣ ≤
(
1 + (t − x)2


(1 + x2) Ω (f, ♣t − x♣) .

Theorem 3.5. Let ℏ′′ ∈ C l
2 [0, ∞) and x ∈ [0, ∞). Then we have

∣∣∣∣∣M
α,λ
n (ℏ; x) − ℏ(x) − α

n (1 + λe)
ℏ

′ (x)

−1

2

(
x

n

(
1 +

1

ρ


+

1

n2

(
α2 + 2αλe − αe2λ2

(1 + λe)2 +
α

ρ (1 + λe)


ℏ

′′ (x)

∣∣∣∣∣
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≤8 (1 + x2)

n
Ω

(
ℏ

′′,
1√
n


.

Proof. By TaylorŠs expansion, we may write

M
α,λ
n (ℏ; x) − ℏ(x) = M

α,λ
n ((ℏ(t) − ℏ(x)) ; x)

= M
α,λ
n

(
(t − x) ℏ′ (x) +

(t − x)2

2
ℏ

′′ (x) + λ̄ (t, x) (t − x)2; x


,

where λ̄ (t, x) = (ℏ′′ (ς) − ℏ
′′ (x))/2 is a continuous function which tends to zero at 0

and ς lies between x and t. Using Lemma 2.3, we get
∣∣∣∣∣M

α,λ
n (ℏ; x) − ℏ(x) − α

n (1 + λe)
ℏ

′ (x)

−1

2

(
x

n

(
1 +

1

ρ


+

1

n2

(
α2 + 2αλe − αe2λ2

(1 + λe)2 +
α

ρ (1 + λe)


ℏ

′′ (x)

∣∣∣∣∣

≤M
α,λ
n

(
♣λ̄ (t, x)♣ (t − x)2; x


.

With simple manipulations in property (b) of weighted modulus of continuity and
using ♣ς − x♣ ≤ ♣t − x♣, we can write

♣λ̄ (t, x)♣ ≤ 8
(
1 + x2

(
1 +

(t − x)4

δ4


Ω (ℏ′′, δ) ,

which implies that

♣λ̄ (t, x)♣ (t − x)2 ≤ 8
(
1 + x2

(
(t − x)2 +

(t − x)6

δ4


Ω (ℏ′′, δ) .

Therefore, in view of Lemma 2.3, we can write

M
α,λ
n

(
♣λ̄ (t, x)♣ (t − x)2; x


≤ 8

(
1 + x2


Ω (ℏ′′, δ)

{
δ(2)

n (x) +
1

δ4
δ(6)

n (x)
}

,

as n → ∞. Choosing δ = 1√
n
, we get the desired outcome. □

Corollary 3.1. Let f be a bounded and integrable function on the interval [0, ∞) such

that the second derivative of f exists at a fixed point x ∈ [0, ∞). Then

lim
n→∞

n(Mα,λ
n (f ; x) − f(x)) =

α

(1 + λe)
f ′(x) + x

(
1 +

1

ρ


f ′′(x).

3.3. Functions of derivatives of bounded variation. Next we estimate the rate of
convergence of the operators (1.3) for functions with derivatives of bounded variation
deĄned on [0, ∞).

Let f ∈ DBVτ [0, ∞) be the class of functions whose derivatives are of bounded
variation on any Ąnite subinterval of [0, ∞) and satisfy the growth condition ♣f(t)♣ ≤
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Ktτ , τ > 0 for all t > 0 and constant K > 0. For such functions, let us represent our
proposed operators (1.3) in the following form

(3.5) M
α,λ
n (f ; x) =

∞∫

0

q
α,λ
n,ρ (x; t)f(t)dt,

where q
α,λ
n,ρ (x; t) =

∞∑
k=0

s
α,λ
n,k(x)lρ

n,k(t).

Lemma 3.1. For x ∈ [0, ∞) and adequately large n, we have

(i) if 0 ≤ y < x, then

ϑn (x, y) =
∫ y

0
q

α,ρ
n (x; t) dt ≤ Kδ2

n (x)

n(x − y)2 ;

(ii) if x < z ≤ ∞, then

1 − ϑn (x, z) =
∫ ∞

z
q

α,ρ
n (x; t) dt ≤ Kδ2

n (x)

n(z − x)2 .

Proof. (i) Taking into account Lemma 2.2 and proposed operators (1.3), we have

ϑn (x, z) =
∫ y

0
q

α,ρ
n (x; t) dt

≤
∫ y

0
q

α,ρ
n (x; t)

(
x − t

x − y

2

dt =
1

(x − y)2

∫ y

0
(t − x)2

q
α,ρ
n (x; t) dt

≤ 1

(x − y)2M
α,λ
n

(
(t − x)2; x


≤ Kδ2

n (x)

n(x − y)2 .

Proof of (ii) is similar to (i). □

Theorem 3.6. Consider a function f of bounded variation on every sub-interval of

[0, ∞) that satisfies the growth condition ♣f (t)♣ ≤ Ktτ for some absolute constant K

and τ > 0. If there exists an integer γ, (2γ ≥ τ) such that f (t) ≤ O (tγ) for every

t > 0, then for γ > 0, x ∈ [0, ∞) and sufficiently large n, we have

∣∣∣Mα,λ
n (f ; x) − f(x)

∣∣∣ ≤1

2
(f ′ (x+) + f ′ (x−)) δ1

n (x)

+

√
Kδ2

n (x)

4n
♣f ′ (x+) − f ′ (x−)♣ +

x√
n

x+ x
√

n

∨
x− x

√

n

(f ′
x)

+
Kδ2

n (x)

nx

[
√

n]∑

k=1

x+ x
√

k∨
x− x

k

(f ′
x) +

Kδ2
n (x)

nx2
♣f (2x) − f (x) − xf ′ (x)♣

+ ℘(γ, τ, x) +
Kδ2

n (x)

nx2
♣f (x)♣ +

√
Kδ2

n (x)

n
f ′ (x+) ,
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where
a∨
b

(f) denotes the total variation of f on any finite subinterval [a, b] of [0, ∞)

and ℘(γ, τ, x) := 2γÇ

(
∞∫
0

(t − x)2τ
q

α,λ
n,ρ (x; t) dt

 γ

2τ

.

Proof. For x ∈ [0, ∞), we can write for our proposed operators (3.5) that

M
α,λ
n (f ; x) − f(x) =

∞∫

0

q
α,λ
n,ρ (x; t) (f (t) − f (x)) dt

=

∞∫

0

q
α,λ
n,ρ (x; t)




t∫

x

f ′ (x) du


 dt.(3.6)

Also for any f ∈ DBVγ[0, ∞), equality (3.7) holds true, i.e.,

f ′ (u) =
1

2
(f ′ (x+) + f ′ (x−)) + f ′

x (u) +
1

2
(f ′ (x+) − f ′ (x−)) sgn (u − x)

+ δx (u)


f ′ (u) − 1

2
(f ′ (x+) + f ′ (x−))


,(3.7)

where

δx(u) =

{
1, u = x,

0, u ̸= x.

It can be easily veriĄed that:
∞∫

0




t∫

x


f ′ (u) − 1

2
(f ′ (x+) + f ′ (x−))


δx(u)du


qα,λ

n,ρ (x; t) dt = 0.

Now in view of our proposed operators (3.5), we may write

∞∫

0




t∫

x


1

2
(f ′ (x+) + f ′ (x−))


du


qα,λ

n,ρ (x; t) dt

=
1

2
(f ′ (x+) + f ′ (x−))Mα,λ

n ((t − x); x) .

Moreover
∞∫

0




t∫

x


1

2
(f ′ (x+) − f ′ (x−)) sgn(u − x)


du


qα,λ

n,ρ (x; t) dt

≤1

2
♣f ′ (x+) − f ′ (x−)♣

∞∫

0

♣t − x♣ qα,λ
n,ρ (x; t) dt

≤1

2
♣f ′ (x+) − f ′ (x−)♣

(
M

α,λ
n

(
(t − x)2; x

1/2
.(3.8)

Making use of equations (3.7)Ű(3.8) and Lemma 2.2 in equation (3.6), we get

M
α,λ
n (f ; x) − f (x) ≤1

2
(f ′ (x+) + f ′ (x−))Mα,λ

n ((t − x) ; x)
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+
1

2
♣f ′ (x+) − f ′ (x−)♣

(
M

α,λ
n

(
(t − x)2; x

1/2

+

∞∫

0




t∫

x

f ′
x (x) du


 q

α,λ
n,ρ (x; t) dt

≤1

2
(f ′ (x+) + f ′ (x−))Mα,λ

n ((t − x) ; x)

+

√
Kδ2

n (x)

4n
♣f ′ (x+) − f ′ (x−)♣

+

∞∫

0




t∫

x

f ′
x (x) du


 q

α,λ
n,ρ (x; t) dt.

Taking absolute values on both sides and rewriting equation we have:
∣∣∣Mα,λ

n (f ; x) − f (x)
∣∣∣ ≤1

2
(f ′ (x+) + f ′ (x−))Mα,λ

n ((t − x) ; x)

+

√
Kδ2

n (x)

4n
♣f ′ (x+) − f ′ (x−)♣ + Pn1 (x) + Pn2 (x) ,(3.9)

where

Pn1 (x) =

∣∣∣∣∣∣

x∫

0




t∫

x

f ′
x (x) du


 q

α,λ
n,ρ (x; t) dt

∣∣∣∣∣∣

and

Pn2 (x) =

∣∣∣∣∣∣

∞∫

x




t∫

x

f ′
x (x) du


 q

α,λ
n,ρ (x; t) dt

∣∣∣∣∣∣
.

Integrating by parts after applying Lemma 3.1, and taking y = x − x√
n
, we obtain

Pn1 (x) ≤
x− x

√

n∫

0

ϑn(x; t) ♣f ′
x (t)♣ dt +

x∫

x− x
√

n

ϑn(x; t) ♣f ′
x (t)♣ dt.

Since f ′
x(x) = 0 and ϑn(x; t) ≤ 1, it implies

x∫

x− x
√

n

ϑn(x; t) ♣f ′
x (t)♣ dt =

x∫

x− x
√

n

ϑn(x; t) ♣f ′
x (t) − f ′

x (x)♣ dt

≤
x∫

x− x
√

n

x∨
t

(f ′
x) dt ≤ x√

n

x∨
x− x

√

n

(f ′
x) .

Again using Lemma 3.1 and substituting y = x − x
u

we obtain

x− x
√

n∫

0

ϑn(x; t) ♣f ′
x (t)♣ dt ≤ Kδ2

n (x)

n

x− x
√

n∫

0

♣f ′
x (t)♣

(x − t)2 dt ≤ Kδ2
n (x)

nx

√
n∫

1

x∨
x− x

u

(f ′
x) du
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≤ Kδ2
n (x)

nx

[
√

n]∑

k=1

x∨
x− x

k

(f ′
x).

Thus, we can write Pn1 (x) as

Pn1 (x) ≤ x√
n

x∨
x− x

√

n

(f ′
x) +

Kδ2
n (x)

nx

[
√

n]∑

k=1

x∨
x− x

k

(f ′
x).(3.10)

Next, to estimate Pn2 (x), we have

Pn2 (x) ≤
∣∣∣∣∣∣

2x∫

x




t∫

x

f ′
x (u) du


 q

α,λ
n,ρ (x; t) dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∞∫

2x




t∫

x

f ′
x (u) du


 q

α,λ
n,ρ (x; t) dt

∣∣∣∣∣∣

≤ An (x) + Bn (x) ,

where

An (x) =

∣∣∣∣∣∣

2x∫

x




t∫

x

f ′
x (u) du


 q

α,λ
n,ρ (x; t) dt

∣∣∣∣∣∣

and

Bn (x) =

∣∣∣∣∣∣

∞∫

2x




t∫

x

f ′
x (u) du


 q

α,λ
n,ρ (x; t) dt

∣∣∣∣∣∣
.

Since 1 − ϑn(x, t) ≤ 1, by putting t = x + x
u

successively, we have

An (x) =

∣∣∣∣∣∣

2x∫

x

f ′
x (u) (1 − ϑn(x, 2x)) du −

2x∫

x

f ′
x (t) (1 − ϑn(x, t) dt

∣∣∣∣∣∣

≤Kδ2
n (x)

nx2
♣f (2x) − f (x) − xf ′ (x)♣ +

x+ x
√

n∫

x

♣f ′
x (t)♣ ♣1 − ϑn (x, t)♣dt

+

2x∫

x+ x
√

n

♣f ′
x (t)♣ ♣1 − ϑn (x, t)♣dt

≤Kδ2
n (x)

nx2
♣f (2x) − f (x) − xf ′ (x)♣ +

Kδ2
n (x)

n

2x∫

x+ x
√

n

V t
x (f ′

x)

(t − x)2 dt+

x+ x
√

n∫

x

t∨
x
(f ′

x)dt

≤Kδ2
n (x)

nx2
♣f (2x) − f (x) − xf ′ (x)♣ +

Kδ2
n (x)

n

[
√

n]∑

k=1

x+ x
√

k∨
x

(f ′
x) +

x√
n

x+ x
√

n

∨
x

(f ′
x) .

Further we estimate the value of Bn (x) as follows:

Bn (x) =

∣∣∣∣∣∣

∞∫

2x




t∫

x

f ′
x(u)du


 q

α,λ
n,ρ (x; t)dt

∣∣∣∣∣∣
(3.11)
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≤Ç

∞∫

2x

tγ
q

α,λ
n,ρ (x; t) dt + ♣f(x)♣

∞∫

2x

q
α,λ
n,ρ (x; t) dt +

√
Kδ2

n (x)

n
f ′(x+).(3.12)

It is obvious that t ≤ 2(t − x) and x ≤ t − x, when t ≥ 2x. Now applying HölderŠs
inequality in the Ąrst term of equation (3.11), we get

Bn (x) =2γÇ




∞∫

0

(t − x)2τ
q

α,λ
n,ρ (x; t) dt




γ

2τ

+
Kδ2

n (x)

nx2
♣f (x)♣ +

√
Kδ2

n (x)

n
f ′ (x+)

=℘(γ, τ, x) +
Kδ2

n (x)

nx2
♣f (x)♣ +

√
Kδ2

n (x)

n
f ′ (x+) .(3.13)

Finally, combining equations (3.10)Ű(3.13) and putting values of Pn1 (x) and Pn2 (x)
in (3.9), we get the required result and the theorem is proved. □

Example 3.1. Let f(x) = x4 − 3x3 + 2x2 + 1. We choose parameters α = λ = 2 and
ρ = 3. For n = 10, 50, 100, 200, we have the following representations.

(a) Figure 1 shows the rate of approximation of the operators M
α,λ
n towards the

function f . Clearly the proposed operators (1.3) converge to the function f

for sufficiently large n.
(b) In Figure 2, the associated absolute error Θn = ♣Mα,λ

n (f ; x) − f(x)♣ is rep-
resented graphically for arbitrary values of x in interval [0, ∞). It can be
observed that error is monotonically decreasing for increasing n.

(c) An error estimation table is provided in Table 1 which depicts that for higher
value of n, the error approaches to zero.

Therefore, it can be concluded that proposed operators (1.3) provide good approxi-
mation for n adequately large.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(x) n=10 n=50 n=100 n=200

Figure 1. Convergence of M
α,λ
n (f ; x) for the polynomial function

f(x) = x4 − 3x3 + 2x2 + 1 with parameters α = λ = 2, ρ = 3.
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0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Θ10 Θ50 Θ100 Θ200

Figure 2. Absolute error Θn = M
α,λ
n (f ; x) − f(x)♣ of the proposed

operators for f(x) = x4 − 3x3 + 2x2 + 1 with parameters α = λ = 2, ρ = 3.

Table 1. Table for Absolute error Θn = ♣Mα,λ
n (f ; x) − f(x)♣ of the

proposed operators M
α,λ
n .

x Θ10 Θ50 Θ100 Θ200

0.4 0.0100759 0.00856603 0.0045899 0.00236582
0.8 0.166213 0.0652568 0.0345534 0.0177532
1.2 0.232451 0.120425 0.0647845 0.0335316
1.6 0.0454756 0.123219 0.0698567 0.0369876
2.0 0.921829 0.022785 0.0243437 0.0154083
2.4 2.65087 0.231729 0.0971809 0.0439198
2.8 5.48687 0.691177 0.320143 0.15371
3.2 9.68409 1.40641 0.66997 0.326674
3.6 15.4968 2.42828 1.17209 0.575527
4.0 23.1792 3.80765 1.85192 0.912982

Example 3.2. Figure 3 illustrates the effect of increase in values of parameter ρ on
the rate of convergence of proposed operators M

α,λ
n for the function f(x) = 4x(x −

1.1)(x − 1.9) while keeping the value of α, λ and n Ąxed. Here we chose n = 10 and
α = λ = 2 to show the impact of the parameter ρ clearly. One can easily deduce from
the Ągure that as we increase the value of ρ the rate of convergence gets relatively
faster.
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0.0 0.5 1.0 1.5 2.0 2.5

-1

0

1

2

3

4

5

f(x) =2 =5 =25

Figure 3. Effect of increase in parametric value of ρ for given n = 10,
α = λ = 2 on the convergence rate of proposed operators.
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