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ITERATIVE ALGORITHM OF SPLIT MONOTONE VARIATIONAL
INCLUSION PROBLEM FOR NEW MAPPINGS

MOHAMMAD FARID!, SYED SHAKAIB IRFAN?, AND IQBAL AHMAD?

ABSTRACT. In this paper, we developed a new type iterative scheme to approximate
a common solution of split monotone variational inclusion, variational inequality
and fixed point problems for an infinite family of nonexpansive mappings in the
framework of Hilbert spaces. Further, we proved that the sequence generated by
the proposed iterative method converges strongly to a common solution of split
monotone variational inclusion, variational inequality and fixed point problems.
Furthermore, we give some consequences of the main result. Finally, we discuss a
numerical example to demonstrate the applicability of the iterative algorithm. The
result presented in this paper unifies and extends some known results in this area.

1. INTRODUCTION

Throughout the paper, let C; and C5 be nonempty subsets of real Hilbert spaces
H, and H,, respectively.
A mapping S; : C7 — (] is said to be nonexpansive if

HSliCl — SleH S H.Z'l — CEQH, for all X1, € Cl-

Let Fix(S;) denotes the fixed points of S that is Fix(S;) = {z; € C; : Siz1 = x1}.
The classical scalar nonlinear variational inequality problem (in brief, VIP) is: Find
r1 € (4 such that

(1.1) (Bxy,x9 —x1) >0, forall 25 € (Y,

Key words and phrases. Iterative method, strong convergence, fixed point problem, split monotone
variational inclusion problem, nonexpansive mapping, variational inequality problem.
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494 M. FARID, S. S. IRFAN, AND I. AHMAD

where B : () — H; is a nonlinear mapping. It was introduced by Hartman and
Stampacchia [10].
A mapping T : Hy — H; is said to be

(i) monotone, if
(Txy — Txg,x1 —x9) >0, forall x1, 29 € Hy;
(ii) y-inverse strongly monotone (in brief, ism), if
(Txy — Twg, 11 — 33) > 7||Tay — Tas||?, for all 1,25 € Hy and 7 > 0;
(iii) firmly nonexpansive, if
(Tzy — Ty, 11 — 33) > ||Txy — Tas®, for all 21,29 € Hy;
(iv) L-Lipschitz continuous, if
|Txy — Tas|| < L||zy — x2||, for all xy,29 € H; and L > 0.

A set valued mapping M, : H; — 291 is called monotone if for every z1, x5 € Hy,
u; € Miz; and uy € Mz, such that

<ZE1 — To, U1 — UQ) 2 O

And it is maximal if G(M;), graph of M, defined as G(M;) = {(x1,u1) : uy € My}
does not contain properly in the graph of other. Note that, M; is maximal if and
only if for (z1,u1) € Hy X Hy, (X1 — x9,u1 —ug) > 0, for all (z2,us) € G(M;) implies
uy € Mizy.

An operator J)"* : Hy — H is defined as

Jé\flxl = (I +p M) 2y, forallz, € Hy,

known as resolvent operator, where p; > 0 and [ stands for identity mapping on H;.
In this paper, we consider the split monotone variational inclusion problem (in brief,
SpMVIP). Find Z € H; such that

and
(1.3) g = DI € H, solves 0 € go(7) + Ma(3),

where g1 : Hi — Hy, 9o : Hy — Hy be inverse strongly monotone mappings, D :
H, — H, be a bounded linear mapping and M; : H, — 271, M, : Hy — 22 be
multi-valued maximal monotone mappings, which is introduced by Moudafi [17]. Let
A={z € H : 7% € Sol(MVIP(1.2)) and Dz € Sol(MVIP(1.3))} denote the solution
of SpMVIP (1.2)—(1.3).

The split feasibility, split zero and the split fixed point problems include as a special
cases. It studied broadly by various authors and solved real life problems essentially
in modelling of inverse problems, sensor networks in computerised tomography and
radiation therapy; for details [3,5,7].
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If g3 =0 and g, = 0 then we find a split null point problem (in brief, SpNPP):Find
T € H;i such that

(1.4) 0 € M (z)
and
(1.5) g = DI € H; solves 0 € Ms(g).

The iterative algorithm for SpMVIP (1.2)-(1.3) was introduced and studied by
Moudafi [17]:

rg € Hy, xp41 = Pz, +nD*(Q —I)Dx,), forp>0,

where P := J)Y'(I — pg1), Q := J)*(I — pg>), D* be the adjoint operator of D and
0<n< %, ¢ be the spectral radius of D*D.
The convergence analysis was studied by Byrne et al. [4] of some iterative algorithm

for SpNPP (1.4)—(1.5). Moreover, Kazmi et al. [15] established an iterative method to
find a common solution of SpNPP (1.4)—(1.5) and fixed point problem. For instance,
see [1,12-14,20-22].
Recently, Qin et al. [19] proposed an algorithm for infinite family of nonexpansive
mappings as:
20 € C1, Tns1 = fnb9(Tn) + Np2p + (1 = m0) I — ptn D)Wy,

where g be a contraction mapping on H;, D be a strongly positive bounded linear
operator, W,, generated by S;, 5, ... as:

Vn,n—H = Ia

Vi = S Vinir + (1= M),
Vn,nfl = )\nflSanVn,n + (1 - )\nfl)[>

Vi = AmSon Vi + (1 — An)I,
Vn,mfl = )\mflsmflvn,m + (1 - )\m71>17

Vng = )\QSQVng, + (1 — )\3)[,
(16) Wn = Vn,l = Alslvng + (]. — )\1)],

where Sy, Ss,..., W, are nonexpansive mappings, {\,} C (0,1}, for n > 1. For
further work see [8,11].

Inspirited by Moudafi [17], Byrne et al. [4], Kazmi et al. [14,15], Qin et al. [19] and
by continuing work, we propose and analyze a new type iterative algorithm to find a
common solution of split monotone variational inclusion, variational inequality and
fixed point problems for an infinite family of nonexpansive mappings in the framework
of Hilbert spaces. Further, we endowed that the sequence generated by the algorithm
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converges strongly to common solution. Furthermore, we listed some consequences of
our established theorem. Finally, we provide a numerical example to demonstrate the
applicability of algorithm. We emphasize that the result accounted in manuscript is
unifies and extends of various results in this field of study.

2. PRELIMINARIES

This section is devoted to recall few definitions, entailing mathematical tools and
helpful results that are required in the sequel.
To each x; € H;, there exists a unique nearest point Pg,x; to z; in €} such that

|1 — Poyxq|| < ||x1 — x2]], for all 25 € (Y,

where Pp, is a metric projection of Hy onto C;. Also, Pp, is nonexpansive and holds

(x1 — 29, Po, w1 — Po,xa) > ||Poywy — Po,ws||?,  for all oy, 29 € Hy.
Moreover, Pg,x; is characterized by the fact that Po,zq € Cy and

(1 — Poyx1, 9 — Poyxq) <0, for all 25 € (Y.
This implies that
lz1 — 22)|* > ||21 — Py m1]|* + ||v2 — Poya1|)?,  for all @y € Hy, for all x5 € O,

and

ez + (1 = pas® = plled® + (1= @) flz2]|* — p(1 = )21 — 2%,

for all x1, 29 € Hy and p € [0, 1].
Also, on H; holds following inequalities.

(a) Opial’s condition [18], that is for any {z,} with z,, = x; and
lim inf [n — 21| < liminf [lz, — x5,
holds, for all zo € Hy with xy # 1.
(b)
(2.1) |21 + 22| < ||z ||* + 2(20, 21 + 22), for all 21,25 € Hj.

Definition 2.1. ([2]) A mapping T} : H; — H; is called averaged if and only if
Ty = (1= NI+ \Sy,
where A € (0,1), I be the identity mapping on H; and Sy : H; — H; be nonexpansive
mapping.
Lemma 2.1. ([17])

(i) If To = (1 — A\)T1 + ASy, where Ty : Hy — H; be averaged, Sy : Hy — Hy be
nonexpansive and 0 < X\ < 1, then T, is averaged.
(i) If Ty is ~y-ism, then BT} is 5-ism, for 5> 0.
(ili) Ty is averaged if and only if I —T is vy-ism for some y > 5 .
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Lemma 2.2. ([17]) Let p > 0, f be a y-ism and M be a mazximal monotone mapping.
If p € (0,27), then J)'(I — pf) is averaged.

Lemma 2.3. ([17]) Let p1, pa > 0 and My, My be mazimal monotone mapping. Then
i solves (1.2)-(1.3) & &= J)"(I — p1f1)& and BE = J)*(I — pof2) BE.

Lemma 2.4. ([24]) Let {u,} and {v,} be bounded sequences in E, a Banach space
and let 0 < p, < 1 with 0 < hm mf iy < hm sup pn < 1. Consider v, 1 = (1 — py)v,+

Hnln, 1 >0, and 11m_>sup(||vn+1 — vy — ||un+1 —uyl|) <0. Then
nlggo [vn = unll = 0.

Lemma 2.5. ([16]) Assume that B is a strongly positive self-adjoint bounded linear
operator on Hy with coefficient 7 > 0 and 0 < p < ||B||~". Then ||I — pB|| <1 — p7.

Lemma 2.6. ([25]) Let {a,} be a sequence of nonnegative real numbers with
ant1 < (L= Np)a, + oy, 1 >0,
where A, € (0,1) and {a,,} in R with
(i) A=

(ii) limsup §= < 0 or Z || < +o00.

n—oo

Then lim a, = 0.
n—oo

Lemma 2.7. ([9]) Let Sy : C1 — H; be a nonexpansive mapping. If Sy has a
fized point, then (I — Sy), where I be the identity mapping, be demiclosed that is if
x, — 1 € Hy and ©,, — Six, — 9, then (I — S1)z1 = .

Lemma 2.8. ([23]) Let Cy # () be closed convex subset of a strictly convez Banach
space E. Let S1,Ss, ... be nonexpansive mappings of Cy to Cy such that ﬂ Fix(S;) # 0
and let A1, N, ... be real numbers satisfying 0 < \; < 1 for all 1 > 1. Then hm V”x
exists for all ¥ € Cy and 5 € N.

Remark 2.1. By Lemma 2.8, define a mapping W : ¢} — () such that Wz =
lim W,z = hm Vi12 for all £ € C4, which is called the W-mapping generated by

i—00

S1, 59, ... and )\1, Ao, ... In the whole paper, we consider 0 < \; < 1 for all 7 > 1.

Lemma 2.9. ([23]) Let Cy # () be closed convex subset of a strictly conves Banach
space E. Let Sy, 5, ... be nonexpansive mappings of Cy to C such that ﬂ Fix(S;) #
0 and let \i, Xg, ... be real numbers satisfying 0 < X\; < 1 for all i > 1. Then
mﬂwy;ﬁmﬂ&y
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Lemma 2.10. ([6]) Let Cy # 0 be closed conves subset of Hy. Let S1,5,... be
nonexpansive mappings of Cy to Cy such that ﬂ Fix(S;) # 0 and let A\, Aa, ... be real

numbers satisfying 0 < \; < 1 for all i > 1. [fK be any bounded bounded subset of
Ch, then lim sup;cp [|W;2 — Wz|| = 0.
1—00

3. MAIN RESULT

We study the following convergence result for a new type iterative method to find
a common solution of SpMVIP (1.2)—(1.3), VIP (1.1) and fixed point problem.

Theorem 3.1. Let Hy and Hy denote the Hilbert spaces and C; C Hy be nonempty
closed conver subset of Hi. Let B : Hi — Hi be a y-inverse strongly monotone
mapping, D : Hy — Hs be a bounded linear operator with its adjoint operator D,
M, : H — 28 M, : Hy — 272 pe multi-valued mazimal monotone operators
and g, : Hy — Hy, g5 : Hy — Hy be oy, as-inverse strongly monotone mappings,
respectively. Let f : C; — Cy be a contraction mapping with constant T € (0,1), A be
a strongly positive bounded linear self adjoint operator on Cy with constant 6 > 0 such
that 0 < 0 < g <0+ % and {S;}2, : C1 — Cy be an infinite family of nonexpansive
mappings such that T := A N Sol(VIP(1.1)) N (N2, Fix(S;)) # 0. Let {x,} be the
sequence generated as:

x| € Cl,

zn = R(I +&D*(S — 1)D)xy,

Uy, = Po,(2n, — 0,Bzy),

Up, = Optip + (1 — 0,) Wy,

Tog1 = a0 f(2n) + Mpn + (L= 0)] — pnA)vn, n>1,
where R = J(gl M) —prgr), S = Jﬁ(,g2’M2)([—p292), W, defined in (1.6), {tin}, {nn},

{6} C (0, 1) and£ € (0,1), € be the spectral radius of D*D. Let the control sequences
satisfying conditions:

(i) limun:O iojun:oo;

(11) 0< p1 < 20[1, 0 < pg < 20[2,
(iii) 0 < hm mf N, < limsupn, < 1;
)0
)

n—00

< hm mf o, <limsupo, < 2v;

n—oo

(iv
(v) lim (5 = 0.

Then, the sequence {x,,} converges strongly to some & € T, where & = Pr(0f+([—A))Z
which solves:

n—oo

(A—0f)z,v—2) >0, forallvel.
Proof. For sake of simplicity, we divide the proof into several steps.
Step 1. We prove that {z,} is bounded.

Let # € I' then £ € A and thus Rz = Z, S(D%) = Dz and PZ = &, where
P =1+4nD*(S—1)D. By Lemma 2.2 and firmly nonexpansive, R and S are averaged.
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Also, P is averaged since it is “-ism for some v > £. From Lemma 2.1 (iii), I — S is
v-ism. Thus, we obtain

<D*(I — S)D.ﬁl}l — D*([ — S)ng,xl — 33'2> :<(I — S)D.I'l — (I — S)DI’Q, Dilfl — Dl’2>
>v||(I — S)Dzy — (I — S)Das?
E%HD*(I — 8)Day — D*(I — S)Das |

This implies that nD*(I — S)D is go-ism. Since 0 < £ < % therefore its complement

(I —&(D*(I — S)D) is averaged and hence R(I + {D*(S — I)D) = Z(say). Thus,

I +¢D*(S—1)D, R, S and Z are nonexpansive mappings.
Next, we calculate

[E ||J511’M1(I = p1g1)(@n +ED*(S — I)Dxy,) — ngl’Ml(I — pg)z|?

< ||z + ED*(S — I) Dz, — |
(3.1) = ||lzn — Z|* + €| D*(S — I) Dz, ||* + 2¢{z,, — %, D*(S — I)Dxy,).
Now,

& D*(S — I)Dz,|* = (S — I)Dx,,, DD*(S — I)Dx,,)

< e*((S — I)Dx,,, (S — I)Day,)
(3.2) = e€*||(S — I) Dz,
Consider Y1, := 2¢(x,, — &, D*(S — I)Dx,,) and we estimate
1, =2z, —2,D"(S —I)Dx,)
=2¢(D(x, — )+ (S — I)Dx,, — (S — I)Dx,,, (S — I)Dz,,)
— 2¢[(S(D(wn) — Dz, (S — 1) D) — [|(S — [) D]

1
<2 [(S ~ DDl = I(S ~ 1D

(3.3) = —¢|l(S — I) Dz *.

From (3.1), (3.2), (3.3), we obtain

(3.4) 20 = Z[* < [Jan — Z[* + (€ = IS — I) Dan||*.
Since 0 < £ < %, therefore

(3.5) lzn = 2| < lon — 2.

Using ~v-ism and 0 < o, < 27, we have
lun = 2| = [|Pey (20 — 00 Bza) — Poy (20 — 0, B7) |
< |lzn — 0nBzn — (20 — 0, BZ)|?
= [|(z0 — %) — 0u(Bz, — BI)|”

= ||z, — :I:H2 —20,(Bz, — B, z, — I) + JiHan — Ba?||2
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< ||z = 7|12 = 2031| B2 — Bl + 02| B2, — Ba?
= llza = Z|* + on(on — 27)|| Bz — BE||*
(3.6) < llza — 2%,
this implies
(3.7) [un — Z[| < |20 — 2.
By using (3.5) and (3.6), we calculate
lvn = Z|| < Onflun — 2| 4+ (1 = 6,) [Wru, — Z|
= Onllun — Z[| + (1 = 0n)[Jun — 7]

< lun =2
= [z — 2|
(3.8) = ||z, — &

By using (3.7) and (3.8), we calculate
201 — T = | f(2n) + n + (1 = 190) ] — pnA)vy, — 7|
=[lpn(0f (2n) — AZ) + 1 (20 — )
+ (=m0 = pn A) (vn — T)|
Spnl|0f (2n) = AZ|| + nullwn — ]
+ (1 = )] = ) [Jo, — 2|
Spn|0f (zn) — 0 (2) + 01 (2) — AZ|
+ Malln — Z{ + (1 = 70) T — p) e, — 2|
< 0| f (@) = F@)| + pa |0 (7) — AZ]
+ Malln = Z{ + (1 = 10) ] — )z — 2|
Spnb7 |20 — Tl + pn|0F () — AZ]
+ (1= pab) |z — 2|
<A = (0 = 07))l|zn — 2] + pall0.f (7) — AZ]|

jWWﬂ@—AM}’nEL

< — —
_maX{Hxn 5 or

Using induction, we get
. of(z) — Az
o Ler@ - sl
0 —0r
Thus, {z,} is bounded. Also, {z,}, {u.}, {v.}, {f(x,)} and {W(x,)} are bounded

due to (3.4), (3.7) and (3.8).
Step 2. We show that lim [|zn11 — x| =0, lm [lz, — Wyhu,[| =0, lim v, —

|mm1—stmeﬁm1—

zn|| = 0 and lim |vn, — unl| = 0.
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Since R(I + {D*(S — I)D) is nonexpansive therefore

[zni1 = znll = |RU +ED™(S = 1) D)nis — R+ ED™(S — 1) D)y |
(3.9) < [ enar — 2.

Using (3.9), we estimate

|tns1 — unll = [[Po(I — 0ny1B)zny1 — Po(I — 0,B)2,]|
< (= on41B)znir — (I — 00 B) 2|
= (I = ont1B)zns1 — (I — 0p1B) 20 + (00 — Ony1) Avy |
< llzn41 = zll + lon — opa| | Bzl
< [ #ns1 = @]l 4 |on — onia|[| Bzn]|
(3.10) < |[Znt1 — wull + Nifon, — onsal,

where Ny = sup,,, || Bz,||.
Forie 1,2,...,n, S; and V, ;, are nonexpansive therefore from (1.6), we obtain

Woi1tn, — Wou, || = [|A1S1 Vg2, — A1S1 Vi, 2w, ||
< )‘1||Vn+1,2un - Vn,ZuTLH
< A1 X252Vt st — X252V, suy, ||
< MAe|| Vg sun — Vi sun|

S )\1)\2 e )\n||Vn+1,n+1un - Vn,n+1unH

(3.11) <N [T,

i=1

where Ny > 0 with ||V, 11 041t — Vi1t || < Ng for all n > 1.
Using (3.10) and (3.11), we estimate

[Vns1 = Onll [0ni1tingr + (1 = 0ng1) Woiatlngr — 0ty — (1 — 0) W, ||
<1ttt + (1 = 0nr1) Whiatnir — Sty — (1 — 0,) Wy,
+ (1= 0n)Wongu, — (1 — 8,) W, u,|
<1 = 60) Wit — Woaa|| + [[Wopitn g1 — W pyu, |
+ i1 [[Whgattnn — g || + 60 [[Wirtn — un|

<(1 = 6u)No JT A + s — | + 0n N3 + 6,N,

i=1

(3.12) <(1 = 6,)No [T N + |lzngr — 2|l + Ni|ow — on] + 6ns1Ng + 6, Ny,

=1
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where N3 = sup,,>; [|[Wyq1tns1 — tnyi]| and Ny = sup,,5; [|Whp1u, — uy||. Setting

ZTpt1 = (1 — 1) Sp + My, then we have s, = % and
_Mn+19f(ffn+1) + (1 = 1) — pns1A)0ng1
Spnt+1 — Sn =
1— Th+1
_ pn f(xn) + (1= nu)I — pnA)vy,
1- Tin
. Hn+1 9 Hn
=———(0f(xp41) — Avpy1) + ——(Av, — 0f(x)) + Vg1 — Vp.
1—- Mn+1 1— n
Hence,
Hn+1
[Sn+1 = Sull 174—("9]%%&1)”+HAUn+1H)
Ln
A p— ([Ava[l + 16 (za)l]) + llont1 — vnl
< Hnt1 N5 + Hn NG + ||Un+1 - Un”v

Tl = 1-
where Ny = sup,,», ([|0f (zn11) ]| + [[Avna[]) and No = sup,,o, ([|Ava || + 10 (zn)])-
Using (3.12) in above inequality

51 = sall <3720

N+ (1 NQHA

N5 +
_n+15 1

+ ||xn+1 - xn” + I\Il|0-n - Un+1| + 6n+1N3 + 5nN47

and thus

s = sall = oy = | <TE—Ns +

— T+t — M

Ne

+ Niloy — 0pp1] + (1 = 6,)No [T Ni + 0,41N5 + 6, Ny
i=1
Using the given conditions in above inequality, we have
lim sup(f[sp+1 = $nll = llens1 = 2all) <0

By Lemma 2.4, we get
nlglgo [$n — @al| = 0.

As xp1 = (1 —ny)8p + NpTy, therefore

|Zns1 — znll = [[(1 = m0) (80 — 20) ],
which yields
(3.13) lim |Tnst1 — zn|| = 0.
Now,
H'rn - Wn“n” :Hxn — Tp+1 + LTn+1 — WnunH

SN#nr = zall + a0 f (20) + N
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+ (1= 1) = pn A)vn — Wi,
=llznir = nll + [[pn(0.f (20) — Av )|
+ (1 =) = paA) (v — Wrtin) + m (20 — Wiuy)
(3.14) SN#ntr = zall + pall0F (20) = Avall + 1ol = Woun[|.
Hence,
(1 = mn)llzn = Wotin || < [[2n41 — 2l + pn[|0f (20) — Avn]|.
Using the given conditions and (3.13) in (3.14), we get
(3.15) dim [z, = Wyun[| = 0.
By (3.5) and (3.7), we compute
201 = Z)* =l b f (20) + 1nn + (1 =01 = pn A)vy, — 2|2
<IH(L = 00) (v — &) + (20 — T)|”
+ 2(unb f (20) — pnAvy, Tpi1 — T)
<(1 =) lvn = Z|* + nall20 — 2|
= (1 = 1) |20 — va|*
+ 20un]0.f (2n) — Avn||[l2n 1 — 7]
(3.16) <tallzn = Z[* + (1= 1) on = ZI|* + 20Ny,
where N7 = max{sup,>, [|0f(zn) — Avy||,sup,>; |2ns1 — Z[|}. From (3.4) and (3.8),
we get
21 = ZI* <nullzn — 20 + (1 = o) |20 — 27
+ (1= n)€(e§ = DII(S = 1) Dan|* + 20, N7
<llzn = 2)* + (1 = na)é(e§ = DII(S = I) Dwa|* + 241 N7,
which yields
(1= m)é(1 = €)lI(S = D) Danl* < 2 = T = |2ns1 — T/ + 20aNr.
Since €(1 —€£) > 0, lim p, = 0 and {z,}, {u,} are bounded, and using (3.13), we
have

(3.17) lim [[(S = I) Dz, = 0.

Next, prove that lim |zn — x| = 0.

By using firmly nonexpansive of J,gflle)

20 — 2| =||J9" M) (2, + £D*(S — I)Day) — J@M |2
<(zpn —Z,z, +ED*(S — I)Dx, — T)

, we compute

1
—5{ 20 = 1+ a4+ €D°(S = DDy = 31 = |z — 3
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[0+ £D*(S = I) D, — 7] \\2}

_1
2
1

:2{Hzn = &+ Nl = E = [0 = 2all® + ED*(S = ) D

—28(zp — x,, D*(S — I)Dxnﬂ }

{ e = 31+ iz = 311> = 120 = 2 = €D°(S = DD}

Hence, we obtain
on = 7% < 0 — 71 = [120 — 2all® + 261 D(z0 — 2)|(S = D) Dl
Using (3.7), (3.8) and (3.16) in above inequality, we obtain
0+t = 2 <nallzn — 2 + (L= 00) |2 — 2|
— (L= na)ll20 — 2al®
+2(1 = m)E [ Dz — 2 [I[[(S = 1) D[] + 211N
(1= 1)l = @all* <l2w = 2* = 2041 — 27
+2(1 = )€l Dz — 2) [|(S = 1) Dz || + 2pn N7
<(llzn = 2l + [lensr — 21z — T
+2(1 = )€l Dz — 2) [1(S = 1) Dazn | + 2pnN7.
By (3.13), (3.17) and the given conditions, we have

(3.18) lim [z, — 2, = 0.
Next, prove that lim |z — un|| = 0.

We estimate
ns1 = Z1* =1 = 1) (V0 = 2) + (20 — T)
+ (0 (20) — Avy)|?
<1 = ma)llvn = ZI* + mall2s — 2|
+ 2pn Ky Tpy1 — T)
<L = na)llva = 2| + nullzn — 2)1* + 207
<(1 = na)llun = Z)* + mallzn = 21 + 207 .
In the above inequality we set x,, = 0f(x,) — Av,, and let w > 0 be a suitable constant
with w > sup, {||&nll, ||zn — Z||}. Thus,
71 = 312 <(1 = m){ 1Py (zn = 0B20) = Pe, (5 = o BO)I |
+ |z — 2% + 2%,

<= m){ o = 21 + ulon = 20)1 B2, — B3}
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+ 1llzn = 2|* + 201
<(=n){llen = 2| + oalon — 20))| Bz — B}
+ 0l — 2]° + 20
(3.19) <(1 = np)on(on — 2w)|| Bz, — BE|)? + ||z, — Z|* + 202,
which implies
(1 = 1a)on(2w = 04)[| Bz — BE||* <[lwn — ZI* = llwnr1 — T)* + 207ps
<= 3l + s — FDll — ] + 2
By (3.13) and the given conditions, we get
(3.20) lim [|Bz, — BZ| = 0.
From (2.1), we compute
|un — 2|1> =||Pe, (20 — 00 B2n) — Pe, (i — 0, B3) ||?
<(u, — %, (z2n, — 0nBz,) — (T — 0,BT))
< {llun = 212 + 2o = uB20)
~ (@ = 0B = l[(un — z0) + 0Bz — B3

<5 {ln = 312 + 120 = 31 = e — 20) + 0Bz = B}
<l = Z[* = Jun — 20* = 02| B2, — Bi||*
+ 20, (u, — 2, Bu, — BT)
<z — &l = tn — 2al® + 200 [lun — zull]| Bzn — BE|
<lln = &2 = [|tn — 2nl[* + 20u]|tn — 20| Bzn — BE].
By (3.19), we obtained
|Znsr = 1% <(1 =) ltn = F[2 + mallon — 7|2 + 202
< = ) {ll#n — 1% = fJun — 2a]?
+ 200 [tn — 2l Bz — BE||} + nullwn — & + 207,
which implies
(1= m)ln = 2all? <[l — [ = [[@ns1 — T2
4+ 2(1 — ) opl|tn — 2ul|| Bzn — BE|| + 2w s,
<(lzn — &l + [Znss = Z) 20 — 2o

+2(1 — ) op||tn — 2a||[|Bzn — BE|| + 20y,
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Using (3.13), (3.20) and the given conditions, we get

(3.21) lim |un, — || = 0.
From (3.18) and (3.21), we have
(3.22) 1im lun — || = 0.

By (3.15) and (3.22), we get
(3.23) Jim Wyt — uy|| = 0.
Further, using (3.22) and (3.23)

[0 = 2 ]1* < (|00t + (1 = 6,) Wty — 2|
< 571”“71 - xn” + (1 - 5n)||Wnun - xn“

(3.24) —0 as n— oo.
Therefore, by (3.22) and (3.24), we get
(3.25) 1im |tn, — vn|| = 0.

Step 3. We claim that 2 € I'.

Since {x,} is bounded therefore consider Z € H; be any weak cluster point of {z,}.
Hence, there exists a subsequence {z,,} of {z,} with z,,, = #. By Lemma 2.7 and
(3.23), we have Z € N2, Fix(S;).

And z,; = R[zn, +1nD*(S — I)Dx,,] can write as

(Tn; — 2n;) + D*(S — I) Dy,
P1

Taking j — oo in (3.26) and by (3.17), (3.18) and the concept of the graph of a
maximal monotone mapping and ail—Lipschitz continuity of g1, we get 0 € Mz +
17 that is & € Sol(MVIP(1.2)). Furthermore, since {z,} and {z,} have the same
asymptotical behaviour, Dx,, — DZ. As S is nonexpansive, by (3.17) and Lemma
2.7, we get (I — S)Dx = 0. Hence, by Lemma 2.3, 0 € ¢5(DZ) + M>yDZ that is
Dz € Sol(MVIP(1.3)). Thus, z € A.

Next, we prove Z € Sol(VIP(1.1)). Since lim ||z, —u,|| = 0 and lim ||z, —z,[ =0,

(3.26)

€ Mlznj.

there exist subsequences {z,,} and {u,,} of {z,} and {u,}, respectively such that
Zn, — T and u,, — T.
Define the mapping M as

_J D(p1) + Ney(p), if pr € Oy,
M@”_{& if p, & Cy,

where N, (p1) := {p2 € Hy : (pr —y,p2) > 0 for all y € C} is the normal cone to
Ch at p; € Hy. Thus, M is a maximal monotone and hence 0 € Mp; mapping if
and only if p; € Sol(VIP(1.1)). Let (p1,p2) € graph(M). Then, we have p, € Mp; =
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Bp:1 + Ne¢, (p1) and hence p, — Bpy € N, (p1). So, we have (p; — y, pos — Bpy) > 0, for
all y € C7. On the other hand, from u, = Pg, (2, — 0,Bz,) and z; € C}, we have
<(Zn - UnBZn) = Up, Up — p1> Z 0.
This implies that
Up — Zn
<p1 — Up, — + an> > 0.

Since (p1 —y,ps — Bp1) > 0 for all y € Cy and u,, € C}, using monotonicity of B, we
have
(P1 — Un;, P2) >(P1 — Un;, Bp1)

Un,

. — Zn,
>(p1 — Un,, Bp1) — <p1 — Up,, ——— + Buni>

=(p1 — Un,, Bp1 — Bu,,) + (p1 — un,, Bu,, — Bzy,,)

Up; — Zn,
—(P1— unia
O'ni
Up, — Zn,;
>(p1 — Up,, Buy,, — Bzy,) — <p1 — Up,, 7’0 > :
n;

Since B is continuous therefore on taking limit i — oo, we have (p; —Z, p2) > 0. Since
M is maximal monotone, we have & € M~(0) and hence Z € Sol(VIP(1.1)). Thus,
zel.
Step 4. Finally, we prove that lim sup ((0f — A)z,x, — z) < 0, where z =
n—oo
Pr(I —A+0f)z and x,, — Z.
By (3.24), we obtain
lim sup ((6f — A)z,z, — z) = lim sup ((0f — A)z,v, — 2)
n—oo n—oo
< lim sup((0f — A)z, vy, — 2)
1—+00
=((0f —A)z,7 —2)
(3.27) 0.
Using (3.5) and (3.7), we calculate

s — 22 =(an 0F (22) — AT) + 1 — )
+ (L= )1 — pnA) (0n = T), Tnpy — T)
=pn(0f(xn) — AZ, 21 — T) + (@0 — T, Tnp1 — T)
+ (L= )] = pnA)(0n — T), Znpa — T)
<tin (O0Cf (x) = [(Z), 241 — ) +(0f(T) — AT, 21 — 7))
+llzn = @ — 2 + (1= 1) — puAllllvn — 2201 — 2|
<Ot — s — ]+ 81 (F) — AT, 7ps — )

IN
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+ |z = |z = El 4+ (1= 10 = ) [[vn — &l 20s1 — 7|

=[1 = pn(0 = Ol = Ellllwnss — TN + pal0F () = AT, 201 — T),

~ 1 _:un(é_eT) ~ ~
fown — 2l <20 (a2 4 o - 21P)
+ pn(0f(2) — AZ, xpyq — T)
1— (0 — 07 2 1 i . - -
OO B2 4 L — P+ 05() — AT, 21— ),

which yields that
Zni1 =2 < [1 = (0 = O7)] |z — Z[* + 20 ((0f (&) — AT, 2011 — T)
(3.28) =[1 = (0 — 07|y — Z[|* 4 20 (0f (2) — AZ, 2011 — ).

Thus, by (3.27), (3.28), Lemma 2.6 and using dim i, = 0, we get z;, — &, where
T=P{I+0f—-A). O

Now, we listed following consequences from Theorem 3.1.

Corollary 3.1. Let H, and Hy denote the Hilbert spaces and C; C Hy be nonempty
closed conver subset of Hy. Let B : Hi — Hi be a y-inverse strongly monotone
mapping, D : Hy — Hs be a bounded linear operator with its adjoint operator D*,
M, : H — 20 M, : Hy — 272 pe multi-valued mazimal monotone operators
and g, : Hy — Hy, g5 : Hy — Hy be oy, as-inverse strongly monotone mappings,
respectively. Let f : C; — Cy be a contraction mapping with constant T € (0,1), A
be a strongly positive bounded linear self adjoint operator on Cy with constant 6>0
such that 0 < 6 < g <0+ % and S : Cy — C} be a nonexpansive mapping such that
[':=ANSol(VIP(1.1)) NFix(S)) # 0. Let {x,} be the sequence generated as:

T € Cla

zn = R(I +&D*(S — 1)D)xy,

Uy, = Po, (2, — 0, Bzy),

Up = Optiy + (1 — 0,,) Sy,

Toy1 = a0 f(2n) + Mpn + (1= n0) ] — ppA)vn, n>1,
where R = Jp(fl’Ml)(I —pma), S= Jp(§2’M2)(I — 0292), {pnt, {mn}, {0n} C (0,1) and
I (O,%), € be the spectral radius of D*D. Let the control sequences satisfying
conditions:

(i) lim g, =0, Zun—oo

(ii) 0 < p1 < 2041, O < po < 2a;
(iii) 0 < hm 1nf N, < limsupn, < 1;

n—0o0

)
)

(iv) 0 < hm mf o, < limsupo, < 2v;
)

n—oo
(v lim 5 —O.
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Then, the sequence {x,} converges strongly to some & € I', where & = Pr(0f+([—A))Z
which solves:

(A—=0f)z,v—2) >0, forallvel.

If we consider p; = ps, g1 = go = B =0 and 1, = 0 in Theorem 3.1 then we have
following corollary.

Corollary 3.2. Let H, and Hy denote the Hilbert spaces. Let D : Hy — Hy be a
bounded linear operator with its adjoint operator D*, My : Hy — 271, My : Hy — 212
be multi-valued mazimal monotone operators, respectively. Let f . Hy — H; be a
contraction mapping with constant T € (0,1), A be a strongly positive bounded linear
self adjoint operator on Hy with constant @ > 0 such that 0 < 6 < g < 0+ %
and {S;}2, : Hi — Hj be an infinite family of nonexpansive mappings such that
[':=AN(NZ,Fix(S;)) # 0. Let {x,} be the sequence generated as:

Ty € Hl,

Zny = Jé”l(f + SD*(J;M2 —I)D)x,,

Up, = On2n + (1 — 0p) Wy 2y,

Tpr1 = 0 f () + (I — ppA)v,, n>1,

where W,, defined in (1.6), {1}, {6,} C (0,1) and £ € (0, 1), € be the spectral radius

of D*D. Let the control sequences satisfying conditions:
(i) lim p, =0, ioj [y, = 00
n—00 n—o
(ii) dim 4, = 0.
Then, the sequence {x,} converges strongly to some & € I', where & = Pr(0f+(1—A))Z
which solves:

(A-0f)z,v—2) >0, forallvel.

4. NUMERICAL EXAMPLE

Example 4.1. Let H; = Hy = R, the set of all real numbers, with the inner product
defined by (u,v) = uv for all u,v € R, and induced usual norm | - |. Let C; = [0, 00);
let the mappings ¢; : R — R and go : R — R be defined by g;(u) = %u for all u € Hy
and gy(v) = v+3 for all v € Hy. Let My, My : R — 2% be defined by M;(u) = {u— 1}
for all u € R and Ms(v) = {4v} for all v € R. Let the mapping D : R — R be defined
by D(u) = —2u for all u € R. Let the mappings {5;}32, : C1 — Cy be defined by
Siu = Y2t for each i € N, let the mapping B : H; — R be defined by Bu = 5u — 2

1+5¢

for all v € H;. Let the mapping f : C1 — C} be defined by f(u) = % for all u € C}

and Au = % with 6 = . Setting {1} = {gh}, {m} = {geh {ou} = 4 {0} = 4
and {\,} = {ﬁ} for all n > 1. Let W,, be the W-mapping generated by Sy, So, . ..
and A1, Ao, ..., which is defined by (1.6). Then, there are sequences {z,}, {z.}, {u.}
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and {v,} as: Given xy,

t, = SDmn = Jp(§27M2)(I - ;02g2)D'Tn

Tn = Ty + ED*(t, — Dxy,)

2z, = JorMy,

un, = Po,(2n, — 0, Bzy),

U = Opzn + (1 — 6,) Wy 2y,

Tn41 = ,ungf(xn) + TnZn + ((1 - nn)] - HJTLA)UM

Then, {x,} converges to & = {2} € I.

Proof. Obviously, D is a bounded linear operator on R with adjoint D* and ||D|| =
|D*|| = 2, and hence £ € (0,3). Therefore, we choose { = 0.1. Further, g; and g,
are 3 and 1-ism, therefore p; C (0,3) and p; C (0,2), thus choose p; = 5 > 0 and

pg = 1 > (. For each i, S; is nonexpansive with Fix(.S;) = {%} Further, B is 5-ism and

Sol(VIP(1.1)) = {2}. Furthermore, Sol(MVIP(1.2)) = {%} and Sol(MVIP(1.3)) =
{2}, and thus A = {2 € C': 2 € Sol(MVIP(1.2)) : D(2) € Sol(MVIP(1.3))} = {2}.
Therefore, I := A N Sol(VIP(1. 1)) (N2, Fix(S;)) # 0. Thus,

y ~ —6z, +9 . _ 3lz, — 61, . 3+ 1
n - 14 ) n - 40 ) n - 4 I
0, if x <0,
Uy, = Poy(2n — 0, Bz,) =< 1, if x>1,
%*2 otherwise;
Step 1:
1= 1;
1 (W, + 2i) 1
W, = (1=
302 1450 +< 3n2)“
1=1+1;

if (i < N) go to Step 1;
1 1

Up = —Up + (1 - > Wnuna
n n

1 Ty 1 1 1 v,
Ty = + 5 Tn + (1—) Up — ———

100n 5 2n 2% 2n? 10n 2°
which show that {,} converges to & = 2 as n — +oo and Jim |W,x — Wz|| =0 for
each r € (. O
5. FIGURES

Finally, by the software Matlab 7.8.0, we obtain following figures which show that
{xn} converges to & = 2 as n — 400, and 1im |W,,z — Wz| = 0 for each z € C}.
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Fig.1: Convergence of {x n} when X, =2
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F1Gure 1. Convergence of {x,} when z; = 2.

Fig.2: Convergence of ||[W nx-Wx||
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FIGURE 2. Convergence of ||W,z — Wzx||.
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PRABHAKAR AND HILFER-PRABHAKAR FRACTIONAL
DERIVATIVES IN THE SETTING OF U-FRACTIONAL CALCULUS
AND ITS APPLICATIONS

SACHIN K. MAGAR!, PRAVINKUMAR V. DOLE!, AND KIRTIWANT P. GHADLE?

ABSTRACT. The aim of this paper is to study to fractional calculus for class of ¥
function. The present study is designed to study generalized fractional derivatives
and find their generalized transforms called W-Laplace transform and ¥-Sumudu
transform. Moreover, find the analytical solutions of some applications in physics
the form of generalized fractional derivatives by transform technique.

1. INTRODUCTION

In recent years, many researchers investigated generalization of integration and
differentiation operators in the field of fractional calculus. In literature several different
definitions of fractional integrals and derivatives are available, like Riemann-Liouville
integral and derivative Caputo fractional derivative etc. (see [3,18,19]). In [13] defined
new fractional derivative called Hilfer fractional derivative which is generalization of
Riemann and Caputo fractional derivative. The first investigated generalized Mittage-
Leffler function by Prabhakar [17]. The so-called Prabhakar integral is defined in a
similar way Riemann-Lioville integral [12,14,17]. Roberto Garra et al. [12] introduced
fractional derivative by definition of Hilfer derivative replacing Riemann-Liouville
integral operator by Prabhakar integral operator called Hilfer-Prabhakar derivative
also defined Prabhakar and Hilfer-Prabhakar derivatives regularized version. Dorrego
defined generalization of Prabhakar integral and derivative called k-Prabhakar integral

Key words and phrases. W-Fractional calculus, fractional calculus, k-Prabhakar derivative, k-
Hilfer-Prabhakar derivative, k-Mittag-Leffler function, generalized integral transforms.
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and k-Prabhakar derivative [7]. In [5,6] Dorrego and Cerutti defined the kernel of k-
Mittage-Leffler function and generalized derivative called k-fractional Hilfer derivative.
Recently Dole et al. [15,16] defined generalized fractional derivative like k-Hilfer-
Prabhakar derivative as well as defined regularized version of k-Prabhakar derivative.
Moreover, find Laplace and Sumudu transform to regularized version of k-Prabhakar
derivative also k-Hilfer-Prabhakar derivative and its regularized version. In [11] Sausa
and Oliviera introduced new fractional derivative in the setting of W-fractional operator
called W-Hilfer fractional derivative defined as

- 1 d\" e
Dlu'zyvlp — ]V(m /"‘)’\Il <\Ijl(t) . Clt) [(1 )( lu):‘l’f(t>

The new generalized integral transform called W-Laplace transform published on an
arXiv, by Fahad et al. and obtain for W-Hilfer fractional derivative as follows

m—1
La{ D" (1)} = " Lo { (1)} = Y smm0tm et (U= k (g))
k=0
In this paper, we define new integral transform called W-Sumudu transform. Define
some generalized definitions of fractional derivatives in the setting of W-fractional
calculus like W-Prabhakar, W-Hilfer-Prabhakar, W-k-RL-fractional, W-k-Hilfer, W-k-
Prabhakar, W-k-Hilfer-Prabhakar fractional integrals and derivatives as well as define
all these new fractional derivatives regularized versions. These results are used to
obtain the relation between W-Prabhakar fractional derivative and its regularized
version and also the relation between W-Hilfer-Prabhakar fractional derivative and its
regularized version involving Mittag-Leffler function. Moreover, we obtain W-Laplace
transform [9] and W-Sumudu transform to find solutions of fractional differential
equations.

2. PRELIMINARIES

Definition 2.1 ([17]). Let n € N, a, 1,7 € C, Re () > 0, Re () > 0. The Mittag-
Leffler function is defined as

= (2"
E (=S \n =

where (7), =v(y+1)(y+2)---(y+ (n — 1)) is the Pochhammer symbol.

Definition 2.2 ([5]). Let n € N, a, u,v € C, Re (a) > 0, Re (1) > 0. The k-Mittag-
Lefller function is defined as

EY 2) = (7)%16 _ﬁ’
k’“’“( ) nzz:of‘k(om%—p) n!

where (V) r =v(y+k)(y+2k)--- (v + (n — 1)k) is the Pochhammer symbol.

Definition 2.3 ([8,10]). Let x be a real number such that ;> 0, —oo < a < b < o0,
m = pu+1, f be an integrable function defined on [a, b] and ¥ € C'([a, b]) be increasing
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function such that W'(¢) # 0 for all t € [a,b]. Then, the W-RL-fractional integral and
W-RL fractional derivative of a function f of order p are defined as

(2.1) 15 f(#) :F(1M) /OOO(‘P(t) — W(s))" MW (s) f(s)ds,
(2.2) DiY :( qj,l(t) : 515) I ().

It is to be noted that for W(t) — ¢, I}V f(t) — I¥f(t) which is the standard
Riemann- Liouville integral. Moreover for W(¢) — In(¢) the integral defined in equation
(2.1) towards Hadamard fractional integral.

Inspired by Caputo’s concept [2] of fractional derivative, Almeidea [1] presents the
following Caputo version of equation (2.2) and studies some important properties of
fractional calculus.

Definition 2.4 ([1]). Let x be a real number such that g > 0, —oco < a < b < o0,
m=pu+1, f,¥ € C™([a,b]) be the functions such that ¥ is increasing and W' (¢) # 0
for all t € [a,b]. Then, the U-C-fractional derivative of a function f of order pu is

defined as
1 da\"
“pyt =Y ] f).
0 0 \I//(t) dt f( )

Definition 2.5 ([11]). Let u be a real number such that p > 0, —co < a < b < o0,
and f, ¥ € C™([a,b]) be the functions such that W is increasing and ¥'(t) # 0 for all

t € [a,b]. Then, the U-Hilfer fractional derivative of a function f of order p and type
0 <v <1isgiven by
1 d\"
D,u,l/,\I/ — IV(m—lL,\I/) . ](l—y)(m—,u),\ll t .
0 0 \I[l (t) dt 0 f( )

Definition 2.6 (]9]). Let f : [0,00) — R be a real valued function and ¥ be a
non-negative increasing function such that W(0) = 0. Then the W-Laplace transform
of f is denoted by Lg{f} and is defined by

T(u) = Lo{f(t)} = / T O (1) f(1)dt,  for all u,
0
3. MAIN RESULT
We consider functions in the set A is defined by
A={f(t)]| exists M, r,7|f(t)] < Mell/Ti if te(—17) x [0,00)}.

Definition 3.1. Let f : [0,00) — R be a real valued function and ¥ be a non-negative
increasing function such that ¥(0) = 0. Then the W-ST of f is denoted by Sy¢{f}
and is defined by
1 o0 t ’
T(u):=Se{f(t)} = —/ e (t)f(t)dt, for all u.
0

u
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3.1. New definitions of V-fractional derivatives.

Definition 3.2. Let u be a real number such that 4 > 0, —co < a < b < o0 and
f, ¥ € C™([a,b]) be the functions such that ¥ is increasing and ¥'(t) # 0 for all
t € [a,b]. Then, the U-Prabhakar fractional integral and derivative of a function f of
order p and type 0 < v <1 is given by

(Pt ) @) = [ (960) = w0~ B2, fotw(o) ~ w00

(3.1) = (€4 *u (),

where xg denotes the convolution operation, a, pu,w,y € C, Re () > 0, Re () > 0
and

’

() f(t)dt

32 () = [ VOV EL O, 1

For 7 =0, (FY,.f)(x) = (1" f)(x) and for y = i = 0, (PLo.f) () = f(x).

1 d\"
R _ 7,0
(33) Dt = (o §y) Pkt )
Definition 3.3. Let 1 be a real number such that © > 0, —co < a < b < o0,
m=p+1, f,¥ € C™([a,b]) be the functions such that W is increasing and W'(¢) # 0
for all ¢ € [a,b]. Then, the regularized version of W-Prabhakar fractional derivative of
a function f of order y is defined as

_ 1 d\"
(3.0 D0 = Pt ) 10
Definition 3.4. Let p be a real number such that p > 0, —co < a < b < o0,

m=p+1, f,¥ € C™([a,b]) be the functions such that ¥ is increasing and W'(¢) # 0
for all ¢ € [a,b] and type 0 < v < 1 and (f * 5;?1(£;)V()m_u)7w> U(t) € AC'[0,b]. Then,
the W-Hilfer-Prabhakar fractional derivative of a function f of order p defined as

NTRIAV} A 1 d " —v(1-v),¥
(35) ®lf:;,0+ f(t) - (Pa,Z(mp),w,O‘*' <\I,/ ’ % (Pa,Zl—V)(m—u,w,0+f) <t>

Definition 3.5. Let p be a real number such that y > 0, —co < a < b < o0,
m=pu+1, f,¥ € C™([a,b]) be the functions such that W is increasing and W' (¢) # 0
for all ¢ € [a,b]. Then, the regularized version of W-Hilfer-Prabhakar fractional
derivative of a function f of order y is defined as
(1 1 d\"
C NTR/A o —yu, U (1-v),¥

(36) QZ,};’OJr f(t) — (Pog,Z(m—,u),u.),()+Poz,?l—zz)(m—,u,cu,OJr <\If/ ) dt) f) (t)
Definition 3.6. Let u be a real number and let k¥ € R™, such that u > 0, —co < a <
b < oo, m = [£]+1, f be an integrable function defined on [a,b] and ¥ € C'([a, b]) be



PRABHAKAR AND HILFER-PRABHAKAR FRACTIONAL DERIVATIVES 519

increasing function such that W'(¢) # 0 for all ¢ € [a,b]. Then, the U-k-RL fractional
integral and W-k-RL fractional derivative of a function f of order y are defined as

10 =g [ (V0 = W) () (s

1 d\"
DY — el I A Haa e T

Definition 3.7. Let u be a real number and let & € R™ such that g >0, —co < a <
b<oo,m=[f]+1, f,¥ € C"([a,b]) be the functions such that ¥ is increasing and
U'(t) # 0 for all t € [a,b]. Then, the W-k-Caputo fractional derivative of a function f
of order p is defined as

1 d\"
C Y m pm—u,¥ . )

Definition 3.8. Let i be a real number and let k£ € Rt such that > 0, —0o < a <
b<oo,m=[g]+1, f,¥ € C™([a,b]) be the functions such that ¥ is increasing and
U'(t) # 0 for all ¢ € [a,b]. Then, the W-k-Hilfer fractional derivative of a function f
of order i and type 0 < v <1 is given by

_ 1 d\" a-nm
Du,u,\ll _ Iu(m w, ) d [(1 v)(m—p),¥ .

Definition 3.9. Let u be a real number and let £ € R™ such that g >0, —co < a <
b<oo,m=[g]+1, f,¥ € C™"([a,b]) be the functions such that ¥ is increasing and
U'(t) # 0 for all ¢t € [a,b]. Then, the U-k-Prabhakar fractional integral and derivative
of a function f of order i and type 0 < v <1 is given by

(s ) = [ et - w5 70

(3.7) = (k&0 o *w ) (@),

where xg denotes the convolution operation, a, pu,w,y € C, Re(a) > 0, Re (i) > 0
and

(38) k57

[

B _q o
\1}(t> = %E,Z’a#(w(\lf(t))z, t> 07
0, t <0,

for v =0, (kP2 f) (@) = (It f) (2) and for v = jp =0, (P2 f) (@) = f(),

1 d\", .
(39) Dt = (g ) KTt )

Definition 3.10. Let i be a real number and let & € Rt such that k,u > 0,
—00 < a<b< oo, m=[k]+1 f,¥ c C"(a,b]) be the functions such that
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U is increasing and W'(¢) # 0 for all t € [a,b]. Then, the regularized version of
W-k-Prabhakar fractional derivative of a function f of order yu is defined as
1 d\"

3.10 DY ) =k P ol ) f()

( ) k p,,u,,wf( ) k p,mk—u,w(m/(t) dt) f( )

Definition 3.11. Let p be a real number and let k¥ € R* such that k, u > 0, —oo <
a<b<oo,m=I[]+1, f,¥ € C™([a,b]) be the functions such that ¥ is increasing
and W'(t) # 0 for all ¢ € [a,b] and type 0 < v < 1 and (f*z, L% JU(t) €

p,(l—y)(mk—,u,),w
AC'[0,b]. Then, the U-k-Hilfer-Prabhakar fractional derivative of a function f of

order u is defined as
1 d\", -
NTR7A} _ m A (1-v),¥
(311) kﬂl,ﬁ},{)* f(t) =k (kPoz,’uy(mk—u),cu,O7L <\Ill(t) ’ dt) (kPa,ZI—V)(mk—u),w,0+f)> (t)

Definition 3.12. Let p be a real number and let k& € R* such that k,u > 0,
—00 <a<b<oo,m=[k]4+1 f¥ e C"(a,b]) be the functions such that
U is increasing and W'(t) # 0 for all ¢+ € [a,b]. Then, the regularized version of
U-k-Hilfer-Prabhakar fractional derivative of a function f of order p is defined as

(e e A VA Y _m —yv, U —v(1-v),¥ 1 d "
(312> k ‘Da,w,O"" f(t) =k (kpa,z/(mku),w,[)""kpa,(lV)(mk,u),w,O“' <\I/l(t) ) dt) f) (t)

4. U-LAPLACE TRANSFORM AND V-SUMUDU TRANSFORM OF V-FRACTIONAL
DERIVATIVES
Let F'(s) be the W-Laplace transform of f(¢).

Lemma 4.1. The V-Laplace transform of V-Prabhakar fractional integral equation
(3.1) is

(4.1) Lo (PY,of) (@) =s7"(1—w(s) ™) F(s).
Lemma 4.2. The V-Laplace transform of V-Prabhakar fractional derivative equation
(3.3) is
m—1
—a\? b1 [ >,
Lo (DIYLF) (s) =" (1—w(s)™) F(s) = Y sm [Py FO0)].
k=0

For the case [p] +1=m=1
(4.2) Lo (DY, F1) (s) = 5" (1= w(s)™)

with |w(s)~| < 1.

F(s) — [Po:(wvffu),wf<t>}t:0+ ’

Proof. Taking W-Laplace transforms of W-Prabhakar fractional derivative in (3.3) and
using (3.1), (3.2), (4.1) we get

co (D2t 0) 0 =£((r ) Pt s @)
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:smzw((e;ﬁf 0o 7))
SE (G i)kpg,?,;f’_m,wf(t)]
:3%<@(t))<m BT (00)) )P0

m-1 1 d\"
m—k— -, ¥
B Z s K\I/' . dt) Pavzmu),wf(oJr)]

k=0

t=0"+

m—1

:s“(l —w(s)” ) gmhl (Pa s ) kwf(O*)).
k=0

For the case [u] + 1 =m = 1, we have
Lo (DUt ®) (5) = o (1=w(s)™) " Fls) = [Pl ol 0] - O

Lemma 4.3. The V-Laplace transform of regularized version of V-Prabhakar frac-
tional derivative equation (3.4) is

(4.3)
Lo (D (0)(s) =s" (1 = w(s) ™) F( Zsﬂ“( —w(s) ™) 1O0"),

with |w(s)™*| < 1.

Proof. Taking U-Laplace transform of regularized version of W-Prabhakar fractional
derivative in (3.4) and using (3.1), (3.2), (4.1) we get

Lo (CDL5 () (s), = Lo ((s;}m_m,w *y (é yr f) (t)) (s)
= s_(m_“)(l — w(s)o‘)v{s’”F(s) - mz—: sm_k_lfk(0+)}

:3“(1—w( ) mz:s“ = 1(1 w(s)o‘)vfk(OJr). O

0

=

For absolutely continuous function f € AC[0, ],
— 7\I] _

P o] =0

t=0+

Then in view of equation (4.2) and equation (4.3) (m = 1) we have
Lo (DY, F(1)(s) = £(DLY L FB)(s) — ()" (1= w(s)™)

Taking inverse W-Laplace transform, we get

CDY o f(t) = DLNLF®) = (U(0) ™ Ea (w0 (£)*) (07),

o

£(07).
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for f € AC'[0,0]. This is the relation between W-Prabhakar fractional derivative and
its regularized version.

Lemma 4.4. The V-Laplace transform of V-Hilfer-Prabhakar fractional derivative
equation (3.5) is

Lo (DL (1)) (s) =s"(1 — w(s) ™) F( mz m= ikl gy (s) =0
" (P;a‘iuﬁmw,w vi0n)

Proof. Taking W-Laplace transform of W-Hilfer-Prabhakar fractional derivative in (3.5)
and using (3.1), (3.2), (4.1) we have

Lo (DI5E F(1)) () :LWKg;gm . (éi) (P Wf))( )]( )
=) (1)) L ()0 9

m—1
_ l;) sm(s)—”(m—u) (1 — w(s)—a)V [Po:?l(ili)(;f_u)_k,wf((J*)]
:s“’<1 — w(s)_"‘)vF(s)

m—1
= 3 SO L )P (P (01)-0
k=0

Lemma 4.5. The V-Laplace transforms of the reqularized version of V-Hilfer-
Prabhakar fractional derivative equation (3.6) of order p is

Lo (CDULGEF()) () =3 (1= w(s) ™) FY( Zw“(w@ﬂWW»

Proof. Taking U-Laplace transforms of regularized version of W-Hilfer-Prabhakar frac-
tional derivative in (3.6) and using (3.1), (3.2), (4.1) we have

NTR7A\ —yv v 1 d "
L‘I’ (CDZ,Z,O+ (t)) (S) :L‘I’ ((‘gal(mu),w *w (P Zl(l l/)()k\lju) w,0F <\If dt) f)) (t)> (S)

= s"(1—w(s)™) F(s) - mz s (1—w(s)™) A7), O

k=0

Again for absolutely continuous function f € AC'|0, b

v, , — — a
CD o F(8) = DU () — (W(6)HEL T, (w(P ()" F(0F).
This is the relation between W-Hilfer-Prabhakar fractional derivative and its regular-

ized version.
Let F(u) be the ¥-Sumudu transform of f(t).



PRABHAKAR AND HILFER-PRABHAKAR FRACTIONAL DERIVATIVES 523

Lemma 4.6. The V-Sumudu transform of V-Prabhakar integral equation (3.1) is
Sy (PIYF(0)(w) = u™ (w) (1 —w(u)®) " F(u),
provided |w(u)®| < 1.

Lemma 4.7. The V-Sumudu transform of V-Prabhakar fractional derivative equation

(3.3) is
Su (DL F1) (W) = u(1 —w(w)*) F(u) - mz_jo uTR P kW (01)].

For the case [p] +1=m=1

Sa (DY F() () = (1 — w(w)®) Flu) — = [P" L f(0)]

with |w(u)®| < 1.

t=0+"’

Lemma 4.8. The V-Sumudu transform of reqularized version of V-Prabhakar frac-
tional derivative equation (3.4) is

S (Dl (D) (w) = (1 = w(u)) Flu) - mZ um (1 e (i) ) F700)
with |w(u)®| < 1.

Lemma 4.9. The V-Sumudu transform of V-Hilfer-Prabhakar fractional derivative
equation (3.5) is

Su (DY F(1) () =u (1 — w(u)*) F(u) - mz Tk (] — g (u))

—’Y(l—l/),\lf +
X {Pa,y(l—y)(m—u)—k,wf(o )}
Lemma 4.10. The V-Sumudu transforms of the regularized version of V-Hilfer-
Prabhakar fractional derivative equation (3.6) of order p is

Sw(“DLLGH (1)) (w) = w (1 — w(w)*) " F(u) - mz w1 = w(u)®) ' FH(07).

14

4.1. U-Laplace and V-Sumudu transform of U-k-fractional derivatives.

Lemma 4.11. The V-Laplace transform of V-k-Prabhakar fractional integral equation
(3.7) is

—a

(4.4) Co(bPIEF) (@) = (ks) P (1= whiks) )T F(s).

a, W

Lemma 4.12. The V-Laplace transform of V-k-Prabhakar fractional derivative equa-
tion (3.9) is

Cu (kDL I (1) (s) =(ks)E (1 - wh(ks) T

Eal s

F(s)
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m—1
=K 3 S WP e (0)]
For the case [£]+1=m =1

(4.5) Lo (kDLY,F1)(s) = (ks)E (1 — wh(ks)T)
with |wk(ks)F | < 1.

Bl

F(s) = k[P i f (0]

t=0+’

Proof. Taking W-Laplace transforms of W-k-Prabhakar fractional derivative in (3.9)
and using (3.7), (3.8), (4.4) we get

e (D31 0) ) =2 (i ;i) A i )9
=k 5" L ( (ko fo oy * ) () (5)

(mk—p)

() (B0 B, ((PO)F) )70

e e (G Y g
V) ) e

=(ks)¥ (1 — wh(ks) k) F(s)

t=0*1

m—1
_kmzsm " l(kPa mk—p)—n f(0+>) O
n=0
For the case [¢] +1 =m = 1, we have

Co(kDZEL D) (5) = (k) (1= wh(hs) ) F F(s) = k[Pt o ()] -

Lemma 4.13. The V-Laplace transform of reqularized version of V-k-Prabhakar
fractional derivative equation (3.10) is

(46) Lo (CDLYF®)(5) =(ks)E (1 = wh(ks) ) F(s)
- kmm;)(ks) = (1 wh(ks) ™ ) Fm ),

with |wk(ks) % | < 1.

Proof. Taking W-Laplace transform of regularized version of WU-k-Prabhakar fractional
derivative in (3.10) and using (3.7), (3.8), (3.9), (4.4) we get

£l DL 0)6) = (s lnc s (i 5f) 0
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= (ks (ks) = (1 = k() )
<P -1 S w0 o)
=(ks)% (1 — wh(ks) T )
—km?_::(ks) = (1—wk;(k;s) ) F70). O

For absolutely continuous function f € AC'[0, ]

Pt O] g, =0

t=0+
Then in view of (4.5) and (4.6) (m = 1) we have
Lo (DL f(0)(s) = £(kDLY F(1) () — k(ks) T (1 — wh(ks) T")
Taking inverse W-Laplace transform, we get
kDU F(8) = kDTN F () = (W) ¥ By (w(W(6)F) F(07),

for f € AC'(0,b]. This is the relation between W-k-Prabhakar fractional derivative
and its regularized version.

=2

F(07).

Lemma 4.14. The V-Laplace transform of V-k-Hilfer- Prabhakar fractional derivative
(3.11) is

(A7) Lo (kDI (D) () =(ks)E (1 - wh(ks) ) F(s)
— %1(1@3)7*"“ L — wh(ks) T E

(k‘P (1( V)()an;c w— nwf(0+)>'

Proof. Taking W-Laplace transform of W-k-Hilfer-Prabhakar fractional derivative in
(3.11) and using (3.7), (3.8), (3.9), (4.4) we have

(D 10)0) = (s Zonce s (i 51)
(P w0 f) ) 0]
. (1- wk(ks)%)% {Sm((ks)(1V)(mu)>

Y [((1 —wk<k3>k">“i”F<s>)<t>)<s>}

— (k)™ (ks)
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m—1

S (k)

n=0

1-v),¥
X [P ko (0]

—v(mk—u)

(1 — wk(ks) ka)%

—(ks) (1 — wh(ks) T) " F(s)
— k™ nil(k?S)m(l B (1 — wk(ks) ka>

av
k

Y(1-v)p +
X (kB0 i - (0). -

Lemma 4.15. The V-Laplace transforms of the reqularized version of V-k-Hilfer-
Prabhakar fractional derivative equation (3.12) of order p is

(48)  Lo( DL (1)) (s) =(ks)¥ (1 - wk(ksﬁ"‘)%w

K S (k)

n=0

(1 — wk(ks)™® ) f(01).

Proof. Taking W-Laplace transforms of regularized version of W-k-Hilfer-Prabhakar
fractional derivative in (3.12) and using (3.8), (3.9), (4.4) we have

v, ¥ v
( C’Q'H:;O+ f( ))( ) =k Lq;(( ’Y(mk ,u,)w*‘l’ ( P, 2/1(11/)()mk w),w,0F

(o &) )

—(ks) (1 — wh(ks) )" F(s)

— kS (k) (1 — wh(ks)® ) F0). O

n=0

Again for absolutely continuous function f € AC*[0, 0]

NTR/A\ Vs o
9 Daanr f(£) = kDLEGY F(8) = (W(8) T Bl gy (W () F) F(07).
This is the relation between W-k-Hilfer-Prabhakar fractional derivative and its regu-

larized version.
Let F(s) be the ¥-Sumudu transform of f(t).

Lemma 4.16. The V-Sumudu transform of V-k-Prabhakar integral equation (3.7) is

So(B2 s ) = (%) (1 ok (}j)) " P,

provided |wk(%)%| < 1.
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Lemma 4.17. The V-Sumudu transform of V-k-Prabhakar fractional derivative equa-
tion (3.9) is

su 1051 0)0 = (1) (1= ()7 F

—m+n

m—1
P> <Z) [’“Pg:(\fnk—u)—nvwf(w)]

n=0

For the case [f] +1=m =1

sestro) = (1) (1o (5)) po- Epriar]

with |wk(%) %] < 1.

Lemma 4.18. The V-Sumudu transform of reqularized version of V-k-Prabhakar
fractional derivative equation (3.10) is

su(oiro)w = (§) " (1-ek (%)) F
ey (Ey= (1 - wk<k> k) "1 0),

n=0 u u
with |wk(%) %] < 1.
Lemma 4.19. The V-Sumudu transform of V-k-Hilfer- Prabhakar fractional derivative
equation (3.11) is

19 su(uDyr ) = (1) 7 (1 (1) ) Fw

m=1 . my—1)—vptn uh & 2
R ()
nz:% k < Y\ k
—y(1—v),¥
x {Pa,Z((lfu))(mkf,u)fn,wf(0+)} :

Lemma 4.20. The V-Sumudu transforms of the reqularized version of V-k-Hilfer-
Prabhakar fractional derivative equation (3.12) of order p is

©

s (k%l:‘;’;’f f(t)) w=(4)" (1 k(1) ) rw

(1)) e

e ()T (e ()

£ S]
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5. APPLICATION

In this section we find the solutions of Cauchy problems involving W-k-Hilfer-
Prabhakar derivative and its regularised version.

Theorem 5.1. The solution of Cauchy problem

(5.1) @'Yu bt ! y( ) = /\kpiﬁi,wmy(:c) T @),
(5:2) P i o y(@)] _ =C, C >0,

where z € (0,00), f(z) € L'[0,00), € (0,1), v € [0,1], w,A € C, a >0, ,0 > 0 is
given by

Ele)

S, v(b—p)+u(1420) | (s ve1
(5:3)  y@) =C AW T B s (@(¥ (1)
+ Z A PZZ u(:_-:Q)n ),w O*f( )
if the series on the right hand side of equation (5.3) are convergent.

Proof. Let Y (u) and F'(u) denote the W-Laplace transform of y(x) and f(x), respec-
tively. Now taking W-Laplace transform of (5.1) and using (3.7), (3.8), (4.4), (4.7),
(5.2) we have

?rLz
=R

(k) (1= wh(ku) )Y (u) = k(ku) =5 (1 — wk(ku) F) " O

=\(ku) T (1—wk(ku)Ta) Y (u) + F(u). O

Thus, we have

Ck(ku
Y(u) = ( ) ( —5

(k) (1= wh(hu) T )" = Akw) % (1 = wh(ku) 7) ©

1— wh(ku)) * + F(u)

=R

Chi(ku) ™% (1 — wh(ku) 7 )

(ku) (1 — wh(ku) %)

1
X =5

Aku) (1—wk(ku)_Ta) i ] ‘

(ku) % (1_wk(ku)%’)

+ F(u)

>

=2
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=5

Aku) T (1_wk(ku)%-°‘) "
Hence, for —| < 1, we get

(ku) & (pm(m)fTa) k

k> A" (k) = (1 wk(h) T

y(v—1)—n(é+v)
3

(14+2n) oy —x=nlty)
Z N (ku) =7 (1 — wh(ku) )
Now using inverse Laplace transform, we get the required result.

Theorem 5.2. The solution of Cauchy problem
2

(5.4) CDZZ}%E}U( t) = T@u(x t), t>0,z€R,
(5.5) u(w,0) = g(x),
(5.6) xgrirlmu(x, t)=0.

with € (0,1), w e R, T, > 0, v > 0 is given by

57) uwt) = g [ de () S (T W) E e (F )

if the series on the right hand side of (5.7) is convergent.

Proof. Let u(x,q) and u(p,t) denote the W-Laplace transform and Fourier transform
of u(x,t), respectively. Taking Fourier transform of equation (5.4) and using (5.6) we
get

(5.8) DL Lo alp.t) = ~Tpa(p.1).

Now taking W-Laplace transform of (5.8) and using (4.8), (5.5) we get

(ks)*® (1 — whk(ks) ™ )1 <ﬁ(p, s) — g(:)) = —Tp*u(p, s),

=2

g(p)-

((k‘s)g (1 - wk(ks)%)% + Kp2> st(p,s) = (ks)* (1 — wk(ks)%a>

Thus, we have
-1
9(p) Tp?

u(p,s) === |1+
5 (ks)k (1 - wk’(k‘s)_Ta>

X
k

2
Hence, for Kp

< 1, we get
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—ny

i )" p*" (ks) e (1 —wk(ks)%&) "

Q)

(5.9)

Taking inverse Laplace transform of (5.9) we get

~ g(p) - n, 2n I &
az,8) = =5 Z:O(—T) P W) B e (0(U (1) F).
Using inverse Fourier transform, we get required result. 0

The two above results can also be obtained using the Sumudu transform instead of
Laplace transform and these are the generalizations of results discussed in [12].

Theorem 5.3 ([20]). The solution of the differential equation

(5.10) ~hMO(z) = pVe, DLLGYO(x)
(5.11) 0(0) =8, for B >0,

where p-density, V-volume, c,-specific heat of material, h-convection heat transfer
coefficient, M-surface area of the body and © € L'[0,00), 0 < x < oo, k,a > 0,
v,wE€R, pe(0,1), velo,1] is given by

hM v(b=m)tu(nt) ven
512) o) =53 (2 (wiw) R et (W)
PV Cp

>

),

if the series on the right hand side of (5.12) is convergent.

Proof. Let ©(u) denote the ¥-Sumudu transform of ©(z). Now taking U-Sumudu
transform of (5.10) and using (4.9), (5.11) we have

—hMO(u) =pVe, (Z) B (1 — wk (:) k) Zé(u)

u(k};u)_l a v
u
-vos)
u
-
vik—p) 4
U I
:pVCpﬁ (k‘)

sy
O(u) = <Z> = 0\ 7
CRICONCIIONE




V(k*l")il «@ v
k k

PRABHAKAR AND HILFER-PRABHAKAR FRACTIONAL DERIVATIVES 531
(1 - wk(}i) ) pVep

O )
o) o))

hM

7 a2

o))

—K)tn a .
() 1))

[ —ny

) () (-6))

|

-1

X |1+

|
|

BN

for » i
u\ u\ T\ *
pVe, <k:> (1 — wk <k> ) <1,
o WM n V(k*u);ru(nﬂ)fl a y(v—n—1)
~ — u u
5.13 O(u) = — 1 —wk| —
ow oSG () (el
Taking inverse Sumudu transform of (5.13), we get required solution of (5.12). O

6. CONCLUSION.

In the present paper, we investigate new fractional derivatives in the sense of W-
fractional calculus to find their generalized transforms called WU-Laplace and W-Sumudu
transforms. These derivatives are more generalization of fractional derivatives and
effectively applicable for various applications like cauchy problems, heat transfer
problem. In order to explain the obtained results, some examples were illustrated.
It is noted that since generalized derivatives are global and contain a wide class of
fractional derivatives.
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HARMONIC BLOCH FUNCTION SPACES AND THEIR
COMPOSITION OPERATORS

SOMAYYE ESMAEILI', YOUSEF ESTAREMI?*, AND ALI EBADIAN3

ABSTRACT. In this paper we characterize some basic properties of composition op-
erators on the spaces of harmonic Bloch functions. First we provide some equivalent
conditions for boundedness and compactness of composition operators. In the sequel
we investigate closed range composition operators. These results extends the similar
results that were proven for composition operators on the Bloch spaces.

1. INTRODUCTION AND PRELIMINARIES

Let D be the open unit disk in the complex plane. For a continuously differentiable
complex-valued function f(z) = u(z) +iv(z), z = x + iy, we use the common notation
for its formal derivatives:

fo= (- ify)

1 ,
f = SUa ity

A twice continuously differentiable complex-valued function f = u+iv on D is called
a harmonic function if and only if the real-valued function v and v satisfy Laplace’s
equations Au = Av = 0.

A direct calculation shows that the Laplacian of f is

Thus for functions f with continuous second partial derivatives, it is clear that f

is harmonic if and only if Af = 0. We consider complex-valued harmonic function
f defined in a simply connected domain D C C. The function f has a canonical
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decomposition f = h+g, where h and g are analytic in D [6]. A planar complex-valued
harmonic function f in D is called a harmonic Bloch function if and only if

by MO
z,wED,z£w Q(Z7 U))
Here B¢ is the Lipschitz number of f and

Z—Ww

o(z,w) = arctan h

— )
— ZW

denotes the hyperbolic distance between z and w in D and also p(z, w) is the pseudo-
hyperbolic distance on D. In [3] Colonna proved that

8y = sup(L = ZP)I£.(2)] + | =)

Moreover, the set of all harmonic Bloch mappings, denoted by the symbol HB(1) or
HB, forms a complex Banach space with the norm || - || given by

1l 0y = 1£(0)] + flelg(l — [P+ 1 f22)1].

Definition 1.1. For o € (0,00), the harmonic a-Bloch space HB(«) consists of
complex-valued harmonic function f defined on D such that

B = ilelg(l — 2L )+ 1 f2(2)] < o0,

and the harmonic little a-Bloch space H By(«) consists of all function in H B(«) such
that

lim (1 — [2*)*[| ()] + | fz(2)]] = 0.
|z]—1
Obviously, when a = 1, we have ||| f|||#p@) = 8. Each HB(«) is a Banach space
with the norm given by

I8 = [£(0)] + Slelg(l — |2P)2 I f-()] + | £(2)]
and H By(«) is a closed subspace of HB(«). Now we define composition operators.

Definition 1.2. Let D be the open unit disk in the complex plane. Let ¢ be an
analytic self-map of D, i. e., an analytic function ¢ in D such that ¢(D) C D. The
composition operator C, induced by such ¢ is the linear map on the spaces of all
harmonic functions on the unit disk defined by

Cof =fop.

The composition operators on function spaces were studied by many authors. Some
known results about composition operators can be found in [5] and [10]. In this paper
we study composition operators on harmonic Bloch-type spaces HB(«). In section
2, by using of Theorem 2.1 in [8], we give a necessary and sufficient condition for
boundedness of C, on HB(«a) for a € (0, 00), which extends Theorem 3.1 in [8], by
Lou. The compactness of C, on analytic Bloch-type spaces were characterized in [8,9].
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In this paper, we deal the compactness of composition operators between the Banach
spaces of harmonic functions H B(«) and H By(«).

Moreover, we investigate closed range composition operators. Closed range compo-
sition operators on the Bloch-type spaces have been studied in [2,4,7,11]). For a > 0,
and ¢ being an analytic self-map of D, let

SR EOL EC)
. (1= le(2)?)"
We write 7, if @« = 1. We say that a subset G C D is called sampling set for HB(«)
if exists S > 0 such that for all f € HB(«)

sup(l — =) + (2] = S a5-
To state the results obtained, we need the following definition. Let p(z,w) = |¢,(w)]

denote the pseudohyperbolic distance (between z and w) on D, where ¢, is a disk
automorphism of D that is

Z—w

pe(w) = 1—zw’

We say that subset G C D is an r-net for D for some r € (0, 1) if for each z € D
exists w € G such that p(z,w) < r. For ¢ > 0, let

Qea ={2€ D :7,4(2) >}
and let G.o = (o). If @ =1, then we write 2. and G.. Now we recall Montel’s

theorem for harmonic functions.

Theorem 1.1 ([1]). If {u,}5%, is a sequence of harmonic functions in the region
Q with sup,, ,ex |un(7)| < oo for every compact set K C €, then there exists a
subsequence, {uy, };";1 converging uniformly on every compact set K C Q.

Also we recall a very useful theorem that we will use it a lot in this paper.

Theorem 1.2 ([8]). Let 0 < o < 0o. Then there exist f,g € HB(«) such that

I+ 2 7
(1 =]z
for all z € D.

2. MAIN RESULTS

In this section we study bounded and compact composition operators on H B(«).
And then we investigate closed range composition operators on HB(«). First we
provide some equivalent conditions for boundedness of composition operator C, on

HB(«).

Theorem 2.1. If 0 < a < o0, ¢ € H(D) and p(D) C D, then the following
statements are equivalent.
a) C, : HB(a) = HB(«) is bounded.
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IR

zen (1= lo(2)]?)"
Proof. For the implication a — b, by Theorem 2.1 of [8] we have that for 0 < o < 00
there exist h, g € B(«) satisfying the inequality

|#'(2)] < o0.

1
() +19'(2) =2 7
(1= [z)e
If weset f=h+ge€ HB(a), then fop(z) =how(z)+ gop(z) and so by the same
method of Theorem 3.1 of [8] we get the proof.
For the implication b — a we can do the same as Theorem 3.1 of [8]. U

In the next theorem we consider the composition operator from H By(«) into H B(«)
and we find some conditions under which C, is bounded.

Theorem 2.2. Let 0 < a < 00, p € H(D) and (D) C D. Then the followings are
equivalent.
a) Cy,: HBy(a) = HB(«) is bounded.
b)
(1 — 2
SUp 5
zen (1 = [p(2)[2)”

Proof. The proof is similar to the proof of Theorem 3.3 of [8]. Hence we omit the
proof. O

¢ ()] < oo.

Now we consider the composition operator C,, : HB(a) — HBy(«) and we give an
equivalent condition to boundedness of C,,.

Theorem 2.3. If 0 < a < o0, p € H(D) and ¢(D) C D, then the following are
equivalent.

a) C, : HB(a) = HBy(«) is bounded.

b)

e
@ fpmpe ¥ =0

Proof. By a similar method of the proof of Theorem 3.4 of [8] we get the proof. [

Finally we provide some conditions for boundedness of the composition operator
C, as an operator on HBy(w).

Theorem 2.4. If 0 < a < 00, ¢ € H(D) and ¢(D) C D, then the followings are
equivalent.
a) C, : HBy(or) = HBy(«v) is bounded.
b) ¢ € By(a) and
e
p

-eb WW(Z)I < o0.
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Proof. By some simple calculations one can get the proof. O

A sequence {2, } in D is said to be R-separated if p(zp, 2m) = [{=2-| > R whenever
m # n. Thus an R-separated sequence consists of points which are uniformly far
apart in the pseudohyperbolic metric on D, or equivalently, the hyperbolic balls
D(zy,r) = {w : p(w,z,) < r} are pairwise disjoint for some r > 0. Evidently, any
sequence {z,} in D which satisfies |z,| — 1 possesses an R-separated subsequence for
any R > 0.

Another property of separated sequence is contained in the next proposition.

Proposition 2.1 ([9]). There is an absolute constant R > 0 such that if {z,} is

R-separated, then for every bounded sequence {\,} there is an f € B such that
(1= |zl?) '(z0) = Au for all m.

Since every sequence {z,} with |z,|] — 1 contains an R-separated subsequence
{2, }, it follows that there is an f € B such that (1 — |2,,[?)f"(2,) = 1 for all k.

Now we begin investigating compactness of the composition operator C, in different
cases. First we provide some equivalent conditions for compactness of C, as an
operator on HB(a).

Theorem 2.5. Let 0 < a < 00, ¢ € H(D) and p(D) C D. Then we have the
followings conditions are equivalent.
a) Cy,: HB(a) = HB(«) is compact.

b)
_ 1— |22 \*°
lim (——m—— ()] =0
(=) =1 (1— |go(z)|2> ()
and
1 — ‘Z|2 >Oc /
sup ( ———— 2)| < oc.
2 () 1400
Proof. By making use of the proof of Theorem 4.2 of [8] and the Proposition 1 of [9]
we get the proof. O

Here we prove that the compactness of C, : HBy(o) = HBy(a) and C, : HB(a) —
HBy(«) are equivalent and we find an equivalent condition for compacness of C,, in
these cases.

Theorem 2.6. Let 0 < a < 00, ¢ € H(D) and (D) C D. Then the following
statements are equivalent.
a) The operator C, : HBy(«) = HBy(a) is compact.
b) The operator C, : HB(a) — HBy(c) is compact.
c)
(1— |z

B WIS@ (2)| = 0.
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Proof. First we prove the implication a — ¢. If C,, : HBy(a) = HBy(«) is compact,
then the set K = C,(Supy)) C HBo(a) is compact, in which Sppya) = {f €
HBy(o) : | fllaBo(ay < 1}. By the Theorem 2.5, we get that

sup (1= [2[)*[I£2(2)] + | £(2)] = 1,

Il EB)<1

for all z € D. Moreover we have
0=lim sup (1 —[e])*[|(f o 9):(2)] +[(f 0 9)z(2)]]
|2|—1 1 £l B(a) <1
= tim PG (- eI ) + 19 (o)1
l2[—1 (1 - |S0(Z)| ) £l B(a)<1
So, we get the desired result.

Now we prove the implication ¢ — b. Let {f,}nen € HB(ov) and || fullB@) < 1,
for all n. First we obtain that {C,f,} has a subsequence that converges in H By(a).
By Montel’s Theorem we have a subsequence {f,,, } C {f.}, that converges uniformly
on subsets of D to a harmonic function f. Hence we have

(1= 12 £ + £l = Jim (1= [2)*[|(fa)=(2)] + [(far)(2)]]

< lim [ fo [l

k—00

<1

This means that f € HB(a) with || f||gp@) < 1. Also we have

A==

SEE) A
Bt i S

S (1 _ |QO(Z)|2)Q‘90( )|HfHHB(O‘)

(1= [=)[(f 0 @)=(2)] + [(f 0 9)z(2)]] =

By these observations we conclude that C,f € HBy(«). Also we need to show that
1 ([, = Cof i) = .

Since lim|;|_, %w’(zﬂ = 0, then for any ¢ > 0, there exists r € (0,1) such

that for z with r < |z| < 1 we have
(L —l2*)" |
(1 —1e(2))?)*

And so for all z with r < |z| < 1 we have

(L= 2)((fun = ) o) (2)] =(1 = |21 [| (fa)=0(2)] + |(fn)z0(2)]]
— (L= [zP)* [ f20(2)] + [ fr0(2)]]

3

19
Sz(“fnk”HB(a) + 1 fllzB@) < 7

9

/
< —.
()l <=



HARMONIC BLOCH FUNCTION SPACES 541

For z with |z] <, the set {p(z) : |2| < r} is a compact subset of D. Since

(1= )L + [N = Jim (1= [21)* (| (fa)=(2)] + [(Far)2(2)]]

and
(=122 ((far = ) o 9) (2)] (1= |2) {1 (far) ()| + [(far)z0(2)]
ol o o) s LD
[[f20(2)] + [ fz(2)]] SUP \90(2)!2)““0( -

Hence, we have (1—|2]?)¥|((fn, — f)o®) (2)] — 0 uniformly on {z : |z| < r}. Therefore,
(1 = 12)%((far, — f) 0 @) (2)] < § for k sufficiently large and {z : |z| < r}. This
completes the proof.

The implication b) — a) is clear. O

Let (X,d) be a metric space and let ¢ > 0. We say that A C X is an e-net for
(X,d), if for all x € X there exists an a in A such that d(a,z) < . We characterize
the compact subsets of HBy(«) in the next lemma.

Lemma 2.1. A closed subset of HBy(«) is compact if and only if it is bounded and
satisfies

lim sup(1 — [2*)*[| f.(2)] + | fz(2)[] = 0.

lz2=1 fek
Proof. Suppose that K C HBy(a) is compact and € > 0. Then we can choose an
s-net fi, fo, ..., fn € K. Hence, there exists 9, 0 < § < 1, such that for all z with
2| > & we have (1 — [2]*)*[|(fi):(2)] + |(fi)z(2)[] < § forall 1 <i < n.If f € K, then
there exists some f; such that ||f — fi||zp@) < §5 and so for all z with |z| > § we have

= P UL+ 10 S I = fillmpe + @ = [2P)US):()] + [(f)=(2)]] < e.
Therefore, we get that

lim sup(1 — 22)°[|£.()| + | f:()[] = 0.

|z|=1 fek

Conversely, let K be a closed and bounded subset of H By(a) such that
lim, sup(1 — [2*)(If=(2)] + [ f=(2)[] = 0.

|z|=1 fe
Since K is bounded, then it is relatively compact with respect to the topology of
the uniform convergence on compact subsets of the unit disk. If (f,) is a sequence in
K, then by Montel’s Theorem we have a subsequence {f,, } C {f,} which converges
uniformly on compact subsets of D to a harmonic function f. Also {f, } converges
uniformly to f’ on compact subsets of D. For every € > 0 we can find 6 > 0 such that
for all z with |z| > § we have

(L= [z (fa)= (] + | (far)=(2)]] <

)

DO ™
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for any integer k > 0. Therefore, (1—|z[?)*[|f.(2)|+|f2(2)] < 5, for all z with |z| > 4.
So,
sup (1= [2[*)*[|(far, = F=(2)] + (far = Pz(2)]] < sup (L = [2[)*[|(fur)=(2)]

|z|>0 |z|>6

+ [(fnr)2(2)]
+ sup (1 — [2[*)*[| f2(2)] + |f2(2)]]

|z|>6
<E.

Moreover, since (f,,) converges uniformly on compact subsets of D to f and (f}, )
converges uniformly to f on {z:|z| < §}, we get that

sup (1 — [2[*)*[|(fa, = F=(2)| + | fun = Nz(2)] < e

2|<
Consequently for k large enough, we have limy_,o || fn, — fll#B(a) < €. This completes
the proof. 0

In the next theorem we prove that the norm convergence in H B(«) implies the
uniform convergence.

Theorem 2.7. The norm convergence in HB(a)) implies the uniform convergence,
that is if { f} C HB(«) such that || f, — fllaB@) — 0, then {f,} converges uniformly
to f.

Proof. For 0 # z € D, we have

)= 1) = | [ W(zt)dt‘
‘ /ld fn_ t)dt + 2z /01 W(zt)dt‘
< Jal [ 10 = oGO + 10— £y (01t

in which ¢(t) = zt. This glves us

n - t + n - < t o
) — £02) </ (f (1) 12_)||g(|)(|f) P (2 )H(l Pt
1 1
< (= Fllme) [} = e = 0
when n — oco. So we get the proof. 0

In the next theorem we provide some equivalent conditions for closedness of range
of the composition operator on H B(a).

Theorem 2.8. Let ¢ : D — D, o > 0 and C, : HB(a) - HB(«) be a bounded
operator. Then the range of C, : HB(o) = HB(«) is closed if and only if there exists
¢ > 0 such that G, is sampling for HB(c).
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Proof. Since C, : HB(o) — HB(«) is bounded, then exists K > 0 such that
SUP,cp Tpa(2) < K. Since every non-constant ¢ is an open map, then the com-
position operator C, is always one to one. By a basic operator theory result, a
one-to-one operator has closed range if and only if it is bounded below. Hence, if C,
has closed range, then C, is bounded below, that is exists ¢ > 0 such that for all
f € HB(«)

ICofllamey = sup(1 = |21 (Fo)s (2)] + | Fo)s()]

= Sup 70 (2)|(1 - [ ()) (IR (e(2)]) + 19 (0(2)]]

> el B
Now we show that the set G is sampling for H B(c) with sampling constant S = .
Since Qo = {2 € D : 7,4(2) > c}, so for any z ¢ Q. and ¢ = §, we have

SUp Tea(2)|(1 - () )[R (e(2)]) +1g'(0(2))]] < gl!f\IHBm)-

Therefore, we have

el fllzrp) < sup 7e.a(2)I(1 - () ) 1P (e (2)]) + 19 (e ()]

= sup 7pa(2)(1 = [0(2)[")*[IF (2(2)]) + g (0(2))]]

2€Q¢,a
<K sup (1= ) wl) + 19/ )]
wele,a
Hence sup,,cq, (1 — [w[*)*[[I'(w]) + |¢'(w)[] > &l fllzB(- This means that G, is
a sampling set for H B(a) with sampling constant S = .
Conversely, suppose that G, is a sampling set for H B(«), with sampling constant
S > 0. So for all f € HB(«) and & = ¢S we get the followings relations:

SIflmB@ < sup (1= |o(2))[1(F=(p()] + [(£z(e(2))]

_ p (1= ()1 (e(2)]) + g (9(2))]
< igggu — 122)l(ho @).(2)] + (g 0 @)=(2)]]

1
< EHf ° 0|lEB(a)-

Therefore,
elfllzB < IIf o vllaBe = ICfllaB(a)-

Hence, C, is bounded below and so C, has closed range. 0

Now we give some other necessary and sufficient conditions for closedness of range
of C, : HB(a) = HB(a).
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Theorem 2.9. Let ¢ be a self-map of D, o > 0, and C, : HB(a) — HB(«) be a
bounded operator. Then we have the following hold.

a) If the operator C, : HB(a) — HB(«a) has closed range, then there exist ¢,r > 0
with r < 1, such that G., is an r-net for D.

b) If there exist c¢,r > 0 with r < 1, such that G., contains an open annulus
centered at the origin and with outer radius 1, then Cy, has closed range.

Proof. a) For a € D, let ¢,(z) be a function such that ¢,(0) = 0 and ¢/, (z) = (¢ (2))%,
where 1), is the disc automorphism of D defined by 1,(2) = . Using the equalities

L—p(z,w)* =1 [¢u(2)]* = (1= [2[*) W, (2)],

we get
la + Gallzrpa) = sup(L — |2[*)72|¢; ()] = 2sup(1 — |1ha(2)]*)" = 2.
z€D zeD
If we put f = ¢, + @4, then we have

1Cef B0y = IS © Pl
= sup(1 — [2*)*[|(f o 9):(2)| + [(f 0 9)z(2)]]

zeD

= sup T, (2)2(1 — |Ya(0(2))]?)*.

zeD

Moreover, by assuming that C,, is bounded and has closed range, then there exist K,
e > 0 such that sup,cp 7,.0(2) = K and

1 o ellup@ = sup Toa(2)2(1 = [a((2))1*)* = ellva + Pall B(a)-
This implies that

e < Sggw,a(Z)(l — [Ya(0(2)) )™ < sup Toa(2) = K.

Since 1 — [1,(p(2))]? < 1, then there exists z, € D such that
£
a\~a 2 a
Tp.a(Za) 5

and

e €
(1= o)) > o
Thus, for ¢ = 5 and r = /1 — (ﬁ)i, we conclude that for all a € D, there exists
24 € Qe such that p(a, p(z,)) < r and so G, is an r-net for D.

b) Let G, contains the annulus A = {2 : 7y < |2| < 1} and C, : HB(a) - HB(«)
be bounded. Suppose that C, doesn’t have closed range, then there exists a sequence
{fa} with || full#B@ = 1 and ||Cy frllHB@) — 0. For each € > 0, let N. > 0 such that
for all n > N. we have

||C<an||HB(a) <e < ce.
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Since
igg(l — 2P (f)= ()] + [(f)2(2)]] = Elelg(l — 2R ()] + g, ()] = 1,

then there exists a sequence {a,} in D such that for all n

(1~ Jaul?)* 1 (@) + 1 (@)l > 3.
Moreover, we have
wSeléIC)a(l = [w?)*[|(fa)=(w)] + |(fn)z(w)]]
= swp Toa(2)Tpa(2) (1 = 10(2)) [ (f): (@ ()] + [ (fa)z(0(2))]]
Sii‘éB“ = 12" I (fa)= (0 ()] + [ (f)z((2))]]
ce
<— =c.

If we take € < %, then we get that each a, with n > N, belongs to (G.,)°. Thus
la,| < 7y <1 and a, — a with |a| < 9. On the other hand, by Montel’s Theorem,
there exists a subsequence { f,,, } such that converges uniformly on compact subsets of
D to some function f € HB(«a). Hence {f, } converges to f’ uniformly on compact
subsets of D, and since

sup (1 —[w[*)*[|(fa)=(w)] + |(fa)z(w)]] = 0,

’wEGc,a

when n — oo and G, contains a compact subset of D, we conclude that f’ = 0. This
contradicts the fact that

N 1
(L= laP)* (W (@) + g (@]l = 5.
Therefore, C,, must be bounded below and consequently it has closed range. 0
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ON THE INITIAL VALUE PROBLEM FOR FUZZY NONLINEAR
FRACTIONAL DIFFERENTIAL EQUATIONS

ALI EL MFADEL!, SAID MELLIANI}, AND M'THAMED ELOMARI*

ABSTRACT. In this paper, we study the existence result of solutions for fuzzy nonlin-
ear fractional differential equations involving Caputo differentiability of an arbitrary
order 0 < ¢ < 1. As application, an example is included to show the applicability
of our result.

1. INTRODUCTION

Fuzzy fractional differential equations were proposed to handle uncertainty due to
incomplete information that appears in many mathematical or computer models of
some deterministic real-world phenomena. In recent years, fractional differential equa-
tions have attracted a considerable interest both in mathematics and in applications
as material theory, transport processes, fluid flow phenomena, earthquakes, solute
transport, chemistry, wave propagation, signal theory, biology, electromagnetic theory,
thermodynamics, mechanics, geology, astrophysics, economics and control theory (see
[1-3]). For basic works related to the fuzzy fractional differential equations we refer
the reader to [4,16,17].

Motivated by the above works, in this paper,we study the existence result of solution
for the following fuzzy fractional initial value problem:

{ °Dig(t) = f(t,x(t)), t € J=[ty,to+ 0],
x(ty) = .

Where ¢D9 is the Caputo derivative of x(t) at order ¢ € [0,1] and 6 > 0.

(1.1)

Key words and phrases. Fuzzy numbers, fuzzy fractional integral, fuzzy fractional caputo deriva-
tive.
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To be more precise, we will show that problem (1.1) admits a solution on each
locally compact subset of the space of a E' which is the space of all fuzzy numbers.

The paper is organized as follows. In Section 2, we give some basic properties
of fuzzy sets, operations of fuzzy numbers and some detailed definitions of fuzzy
fractional integral and fuzzy fractional derivative which will be used in the rest of
this paper. In Section 3, we introduce the existence result of solution for the fuzzy
fractional initial value problem by using Peano theorem. Illustrative example will be
discussed in Section 4, followed by conclusion and futur works in Section 5.

2. PRELIMINARIES

Definition 2.1 ([18]). A fuzzy number is mapping u : R™ — [0, 1] such that

(a) w is upper semi-continuous;

(b) w is normal, that is, there exists zy € R™ such that u(zg) = 1;

(c) w is fuzzy convex, that is, u(Az + (1 — \)y) > min{u(z),u(y)} for all z,y € R
and A € [0, 1];

(d) {z € R”, u(x) > 0} is compact.

The a — cut of a fuzzy number u is defined as follows:
[u]* ={z € R" | u(x) > a}.
Moreover, we also can present the a — cut of fuzzy number u by [u]* = [u;(«), u,(a)].
We denote by E™ the collection of all fuzzy numbers.
FExample 2.1. Let u be a fuzzy number defined by the following function:
x—1, x € [1,2],
po(x) =< —x+3, xz€l23],
0, elswhere.
Then we have [u]' = {2}.

Definition 2.2 ([9]). Let u € E' and « € [0, 1] we define the diameter of o — level
set of the fuzzy set u as follows

d([u]a) = lr - ll-

We denote by C(J, E™) space of all fuzzy-valued functions which are continuous on
J,and P.(R™) the collection of all the compact subset of R".

Definition 2.3 ([9]). The generalized Hukuhara difference of two fuzzy numbers
u,v € E™ is defined as follows:

uOgpv=wei)u=v+w or ii)v=u+(—1)w.
Proposition 2.1. If u € E' and v € E*, then the following properties hold.

1) If wu ©Ogpy v exists then it is unique.
2) UOgg U= 0pg1.
3) (u+v) Ogn v =u.
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4) U@gHUIOEl S UuU=0.

Definition 2.4 ([18]). According to the Zadeh’s extension principle, the addition on
E' is defined by:

(u@w)(z) = sup minfu(z),v(y)}.

And scalar multiplication of a fuzzy number is given by:

koww = {50 170

Remark 2.1 ([13]). Let u,v € E' and a € [0,1], then we have
[u+ 0] =[u]" + 0]
[u =] =[uf —vg,uy — 7],
- (B3] 1228
[uv]® =[min ufvf, uvs, ug o, uy vy, max ufvy, uf vy, us v, usvs].
Definition 2.5 ([13]). Let u,v € E™ with o € [0, 1], then the Hausdorf distance

between u and vis given by:
D(u,v) = sup d([u]*,[v]?),

a€(0,1]

where d is the Hausdorff metric defined in P.(R™).

Proposition 2.2 ([10]). D is a metric on E™ and has the following properties:
(a) (E™; D) is a complete metric space;
(b) D(u+ w,v+ w) = D(u,v) for all u,v,w € E";
(¢) D(ku,kv) = |k|D(u,v) for all u,v € E™ and k € R;
(d) D(u+w,v+ z) < D(u,v) + D(w, z) for all u,v,w,z € E".

Definition 2.6 ([7]). Let f : [a,b] — E" and ty € [a,b]. We say that f is Hukuhara
differentiable at tq if there exists f'(¢y) € E™ such that
_ flto+h) Ogn f(to) _ . flto) Ogn f(to —h)
) — g _ g
flto) = h i TR

Remark 2.2. Let f : [a,b] — E™ be a fuzzy function such that [f(z)]" =
[i(x, a), f(x; a)} for each o € [0, 1] then

(@) = [f(@;0), Fla;0)].
Definition 2.7. F': J — E™ is strongly measurable if for all « € [0, 1], the set-valued
mapping Fy, : J — P.(R™) defined by F,(t) = [F(t)]* is Lebesgue measurable.
A function F': J — E" is called integrably bounded, if there exists an integrable
function h such that, |z| < h(t) for all x € Fy(t).
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Definition 2.8. Let F': J — E". The integral of ' on J denoted by /F(t)dt, is
I
given by

[/ F(t)dt} :/Fa(t)dt: {/ f@)dt | f:J — R"is a measurable selection for Fa} :
J J J

for all o € [0, 1].

Proposition 2.3. If u € E', then the following properties hold.
(a) [ Ccu*if0<a<p.
(b) If a, C [0, 1] is a nondecreasing sequence which converges to o, then
[w)® = [ [u]*.
n>1

Conversely, if A* = {[u$,us];a € [0,1]} is a family of closed real intervals
verifying (a) and (b), then A% defined a fuzzy number u € E' such that [u]® =
Ae,

2.1. Fractional integral and fractional derivative of fuzzy function. Let ¢ > 0,
the fractional integral of order ¢ of a real function g : [tg, o + 6] — R is given by

Ig(t) = F(lq) [t = sy glsis.

Let f(t) € L(J,E") such that f(t) = [f®(t), f(t)]. Suppose that f¢, f& € L(J,R)
for all o € [0, 1] and let

a_| L[ —§)IL (s sL t — §)I7 L2 (5)ds
2= [ s s [ e

where T'(+) is the Euler gamma function.
We have the following lemma.

Lemma 2.1 ([3]). The family {A“ | a € [0,1]} given by (2.1), defined a fuzzy number
u € E' such that [u]* = A®.
Definition 2.9 ([16]). Let f(t) € L(J,E'). The fuzzy fractional integral of order
q € [0,1] of f denoted by
1) = s [ () ()
F(Q) to
is defined by
[f@)]" = [t @), 1 fi(t; )]
Proposition 2.4 ([16]). Let f,g € L(J, E') and b € E', then we have:
(a) I7(bf)(t) = bI7f(t);
(b) 19(f + g)(t) = 19f(t) + Ig(t);
(c) In[®f(t) = [TV f(t), where (q1,q) € [0, 1]
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Ezample 2.2. Let  : J — E' be a constant fuzzy function such that z(t) = u € E'.

If [u]® = [u}, u?], then
1 t 11 1 t -1, 2
[T92(£)]* = [F(q) /to(t §)4 Ll (s)ds, F@/to(t—s)q w2 (s)ds|
(0] =gl
(0] =yl

Definition 2.10 ([16]). Let f € C(J, E') N L(J, E').
The function f is called fuzzy Caputo fractional differentiable of order 0 < ¢ < 1

at t if there exists an element DYf(t) € E' such that
1 gt
“DIf(t :—/ t— )7t f(s)ds.
F0 = [ =9

Remark 2.3 ([16]). Since [f(t)]* = [fi(t; ), f,(t; )] for each « € [0, 1], then
DU f()]" = ["Dfilt; ), D f(t; )]
where

“Dfi(t; ) = F(la) [t =5y fi(s. s,

to

DI, (ta) = F(loo [ sy s, s,

to
Example 2.3. Let z : [to;,to + 0] — E' be a constant fuzzy function such that
z(t) =u € E' If [u]* = [ul,u?], then
1 gt t

‘Dix(t / t—s)7 (ul) ds, / t—s)1 (2 ’ds],

D10 = s [0 =9y s [0 s

[“D(1)]* ={0},

“D%(t) =0p.

Theorem 2.1 ([5,15]). There exists a real Banach space X such that E™ can be
embedded isometrically into a convex cone C with vertex 0 in X. moreover we have:

(a) addition in X induces addition in E™;

(b) multiplication by real number in X induces the corresponding operation in E™;
(c) C —C is dense in X;

(d) C is closed.

Remark 2.4. The structure of the normed space X can be described as follows.
Define in E™ x E™ the following equivalence relation:

(u,v)R(u' V") & u+v =v+u.



552 A. EL MFADEL, S. MELLIANI, AND M. ELOMARI

We denote by (u,v) the equivalence class of (u,v) and the space X will be the set of
equivalence classes. We define a vector space structure in X by:

(u,v) + (u,v) S u+v =v+u,

Mu,v) = (Au, Aoy, if A >0,

Mu,v) = ((=A)v, (=AN)u), if A <0.

The isometry j : E™ — X is defined by

j(u) = (u,0).
The norm in X is defined by |[{(u,v)||x = D(u,v).

Theorem 2.2 ([10]). Let X be a Banach space and j an embedding as in Theorem 2.1,
G :J — E™ and assume that j o G is Bochner integrable over J. Then we have

1) I'G(t) € E™;

2) j (I"G(t)) = 175(G(1)).

3. THE Fuzzy FRACTIONAL INITIAL VALUE PROBLEM

Let C be a closed subset of (E", D), which is also closed under the addition and
multiplication by a nonnegative real number and f : J x C' — C be a fuzzy continuous
function.

In this section we show that the initial value problem (1) has a solution if and only
if C' is locally compact.

Definition 3.1 ([9]). A fuzzy function x : J — E" is called d-increasing (d-decreasing)
on J if for every a € [0, 1] the real function ¢ — d([z(¢)]*) is nondecreasing (nonin-
creasing), respectively.

Remark 3.1. If x : J — E"™ is d-increasing or d-decreasing on J, then we say that z(t)
is d-monotone on J.

Lemma 3.1. A d-monotone fuzzy function z(t) is a solution of initial value problem
(1.1) if and only if

1) x is continuous;

2) x satisfies the integral equation x(t) Syp o = ﬁ Jo (= s)i7 f(t, z(t))ds;

3) The function t — 19f(t,z(t))is d-increasing on J.

Proof. See the proof of Theorem 3 in [9]. O

We denote by C' (J,f?) the space of all continuous mappings from .J to C and let j
be an embedding of C' into a Banach space X allowed by Theorem 2.2.

Theorem 3.1. The fuzzy fractional initial value problem (1.1) has a solution if and
only if C s locally compact.
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Proof. By Theorem 2.1 and Theorem 2.2 we can see that z(t) is a solution of the
problem (1.1) if and only if j(x(t)) is a continuous solution of the embedded equation

t
BY i) Son i) = g [ (=)
q) Jto
Since z(t) € C(J,C) then j(f(s,z(s)) is Bochner integrable.
It is known that the (3.1) has a solution if and only if X is a finite dimensional
space. Since a normed space is finite dimensional if and only if it is locally compact
(see[12]) and we have X = cl{j(C) — j(C)} then the proof is completed. O

4. ILLUSTRATIVE EXAMPLE

FExample 4.1. Let m be a positive real number, then the following set,
EL = {ue E' | d(supp(u)) < m}.

is a locally compact subset of E*.

Indeed, for eachn =1,2,3,... let K,, = K,NE} where K,, = {u € E' | supp(u) C
[—n,n]}. Then since E! is closed in E', K,, is compact for each n. Let u € E! | then
u belongs to the interior of K,, for some n. Therefore, every element in E! has a
compact neighborhood, it follows that E! is a locally compact.

5. CONCLUSION AND FUTURE WORKS

In this manuscript we established the existence results for fuzzy fractional differential
equations by using Peano theorem. Our future work is to study the stability results
for fuzzy fractional differential equations by using Mittag-Leffler stability notion.
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A COUPLED SYSTEM OF NONLINEAR LANGEVIN
FRACTIONAL ¢-DIFFERENCE EQUATIONS ASSOCIATED WITH
TWO DIFFERENT FRACTIONAL ORDERS IN BANACH SPACE

ABDELLATIF BOUTIARA'!

ABSTRACT. In this research article, we study the coupled system of nonlinear
Langevin fractional g-difference equations associated with two different fractional
orders in Banach Space. The existence, uniqueness, and stability in the sense of
Ulam are established for the proposed system. Our approach is based on the tech-
nique of measure of noncompactness combined with Moénch fixed point theorem, the
implementation Banach contraction principle fixed point theorem, and the employ-
ment of Urs’s stability approach. Two examples illustrating the effectiveness of the
theoretical results are presented.

1. INTRODUCTION

In understanding and developing a large class of systems, it is apparent that re-
searchers and scientists have resorted to nature. Natural phenomena can be well
understood both quantitatively and qualitatively. Mathematics plays a fundamental
role in this respect because it is the science of patterns and relationships. Attempting
to understand the quantitative and qualitative behavior of nature, mathematicians
find out that evolution revolves from integer to fraction. Number theory, starting
from integer and reaching to fractional as a result of division operation and eventu-
ally converging to real numbers, is well used to account for Quantitative behavior.
Calculus which describes how things change offers a background for simulating struc-
tures undergoing change, and a means to infer the predictions of such structures.
All these indicated that integer order calculus is a subcategory of fractional calculus

Key words and phrases. Coupled fractional differential system, fractional g-derivative, fractional
Langevin equation, Kuratowski measures of noncompactness, fixed point theorems, Banach space.
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which is defined as the generalization of classical calculus to orders of integration
and differentiation not necessarily integer. New and many derivatives and fractional
integrals theories have arisen since the end of the 17 century to the present day. The
theory of derivation and fractional integration has long been regarded as a branch of
mathematics without any real or practical explanation; it was considered as an ab-
stract containing only little useful mathematical manipulations. During the past three
decades, considerable interest was carried to fractional calculus by the application of
these concepts in various fields of physics, engineering, biology, and mechanics, etc.
in a much better form as compared to ordinary differential operators, which are local.
To get a couple of developments about the theory of fractional differential equations,
one can allude to the monographs of Hilfer [33], Kilbas et al. [36], Miller and Ross
[39], Oldham [40], Pudlubny [41], Tarasov [45], Abbas et al. [1] and the references
therein.

Fractional ¢-difference equations started toward the start of the nineteenth century
[4,30] and got big interested consideration lately and have attracted a large number
of scientists and researchers [6,14,31]. Some fascinating insights concerning initial
and boundary value problem of g-difference and Fractional g-difference equations can
be found in [2,7-11,18,24,31] and the references cited therein.

The Langevin equation (first formulated by Langevin in 1908 to give an elaborate
description of Brownian motion) is found to be an effective tool to describe the
evolution of physical phenomena in fluctuating environments [37]. Although the
existing literature on solutions of fractional Langevin equations is quite wide (see,
for example, [12,13,21,46]). But, to the best of the author’s knowledge, there is no
literature to research the existence of weak solutions for fractional Langevin equations
involving two fractional orders in Banach Spaces, so the research of this paper is new.

At the present day, there are numerous results on the existence and uniqueness
of solutions for fractional differential equations. For greater details, the readers are
cited the previous research [22,23,29,36] and the references therein. However, due to
the fact that in lots of conditions, which include nonlinear analysis and optimization,
locating the exact solution of differential equations is almost tough or impossible,
we don’t forget approximate solutions. It is essential to observe that only stable
approximate solutions are proper. various approaches of stability analysis are adopted
for this reason. The HU-type stability concept has been taken into consideration
in the severa literature. The said stability analysis is an clean and easy manner on
this regard. This type idea of stability become formulated for the primary time by
means of Ulam [47], and then the next year it become elaborated with the aid of
Hyers [34,48]. Impressive considerations have been provided to the investigation of
the Ulam-Hyers (UH) stability of a wide range of FDEs, see [3,16,28,43].
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In this paper deals with the existence, uniqueness and Urs’s stability of solutions
for the following Langevin fractional ¢-difference system:

D (Dg + i) w(s) = fils, @1(s), @a(s)), s €J=10,T],
D;"wl(&) + )\lwz(fz) =0, &€ ]OvT] )

where Dy is the fractional g-derivative of the Reimann-Liouville type of order ¢ €
{ai, Bi} such that «; € (0,1], B; € (1,2] and I3 is the fractional g-integral of the
Reimann-Liouville type, f; : JxE? — E are continuous functions, \; are real constants.

In this paper, we present existence results for the problem (1.1) using a method
involving a measure of noncompactness and a fixed point theorem of Moénch type.
That technique turns out to be a very useful tool in existence for several types of
integral equations, details are found in Akhmerov et al. [15], Alvarez [19], Banas et
al. [20], Benchohra et al. [22,23], Boutiara et al. [25-27], Monch [38], Szufla [44] and
the references therein.

Here is a brief outline of the paper. The Section 2 provides the definitions and
preliminary results that we will need to prove our main results and present an auxiliary
lemma that provides solution representation for the solutions of system (1.1). In
Section 3, we establish existence and uniqueness for stability in the sense of Ulam for
system (1.1). In Section 4, we give some examples to illustrate the obtained results.

(1.1)

2. PRELIMINARIES AND LEMMAS

We start this section by introducing some necessary definitions and basic results
required for further developments.

In what follows, we recall some elementary definitions and properties related to
fractional g-calculus. For a € R, we put

[a]q = 1—q

The g-analogue of the power (a — b)" is expressed by

n—1
(a—0)Y =1, (a—b)" = 11 (a — bqk), a,be R,neN.
k=0

In general,
_p@ g a — bg
(a—b) H(a—bq’“‘*‘“) a,b,a € R.
Definition 2.1 ([35]). The g-gamma function is given by

_ q)(e-1)
(@) = (19

g CERMO-L-2)
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The g-gamma function satisfies the classical recurrence relationship
Iy(1+ a) = [a] Ly ().
Definition 2.2 ([35]). For any «, 8 > 0, the ¢-beta function is defined by

1
By, B) = [ 7001 =0 Vd,f, q € (0,1),

0

where the expression of g-beta function in terms of the ¢-gamma function is
Ly(@)T(B)
B,(a, f) = -2 chaday
II( ) Fq(Oé 4 B)

Definition 2.3 ([35]). Let f : J — R be a suitable function. We define the ¢-
derivative of order n € N of the function by DY f (<) = f(<),

f(s) — fgs)

qu(Q) = 'D;f(§) = (1 o q)§

) S % 07 ®qf(0) = 115% ‘DQf<<)7

and
Drf(s) =DDi ' f(s), ce€Tmned{l,2,.. .}
Set J. := {¢q" : n € N} U {0}.
Definition 2.4 ([35]). For a given function f : J. — R, the expression defined by

o0

9,£) = [ £(8)dys = 3 <(1 = )a"F(tq")

n=0
is called g-integral, provided that the series converges.
We note that D,J,f(s) = f(s), while if f is continuous at 0, then

14Dy f () = f() = £(0).
Definition 2.5 ([6]). The integral of a function f : J — R defined by
T0f(<) = f(s),

and

s (c— (a—1)
O e e (CLR

is called Riemann-Liouville-fractional g-integral of order o € R,..
Lemma 2.1 ([42]). Let « € R, and 5 € (—1,00). One has

FQ(B + 1) ga+,8
Fy(a+B8+1) ’

In particular, if f =1, then

a B _
Jgs" = pe(—1,00),a>0¢>0.

1
7101(¢) = ——<¢@ Il .
a1(s) Fq(l—i—a)g ,  forall¢>0
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Definition 2.6 ([14]). The Riemann-Liouville fractional g-derivative of order o € R
of a function f: J — R is defined by D f(<) = f(<) and

Dy f(s) = DT f(s) = ! /; ( /ts)

Ty(n—a) Jo (s —gs)mtt 07
where [a] is the integer part of a.

Lemma 2.2 ([32]). Let « > 0 and n € N where [a] denotes the integer part of «.
Then, the following fundamental identity holds

a—1 a—n—+k

o n . naqo _ g
1y Dg f(<) = DgIg f(<) kz:% Fja+k—n+1)

(DER)(0).

Lemma 2.3 ([17]). Let w be a function defined on J and suppose that «,  are two
real nonegative numbers. Then the following hold:

9090 f (<) =350 £ (<) = 3595 £ (<),
DTg f(<) =f(<)-

Now let us recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.

Definition 2.7 ([15,20]). The mapping x : 9y — [0, 00) for Kuratowski measure of
non-compactness is defined as:

k(B) = inf {5 > (0 : B can be covered by finitely many sets with diameter < 5}.

Proposition 2.1. The Kuratowski measure of noncompactness satisfies some proper-
ties [15,20]:

(a) A C B = k(A) <k(B);

(b) k(A) =0 if and only if A is relatively compact;

(c) k(A) = K(A) = K(conv(A)), where A and conv(A) represent the closure and

the convex hull of A, respectively;
(d) KA+ B) <K(A)+ K(B);
(e) k(AA) = |A|k(A), X € R.

Definition 2.8. A map f:J x F — F is said to be Caratheodory if
(i) ¢ — f(s,w) is measurable for each w € E;
(ii) @ +— F(s,w) is continuous for almost all ¢ € J.

Proposition 2.2. For a given set V' of functions w : J — E, let us denote by
V(i) ={wi):weV}, ¢elJ,

and

V(J)={w(s) :weVse J}

Let us now recall Monch’s fixed point theorem and an important lemma.
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Theorem 2.1 ([5,38,44]). Let D be a bounded, closed and convex subset of a Banach
space such that 0 € D, and let N be a continuous mapping of D into itself. If the
implication

(2.1) V =conoN(V) or V=NV)u{0}=r(V)=0,
holds for every subset V' of D, then N has a fixed point.

Lemma 2.4 ([44]). Let D be a bounded, closed and convex subset of the Banach space
U, G a continuous function on J x J and f a function from J x E — E which
satisfies the Caratheodory conditions, and suppose there exists p € L'(J,R") such
that, for each ¢ € J and each bounded set B C E, we have

lim &(f(Jon x B)) < p(<)s(B),
h—0+
where J.p = [¢ — h,s] N J.
If V is an equicontinuous subset of D, then

K ({[]G(s,g)f(s,w(s))ds cw E V}) < /J |G (s, s)||p(s)c(V(s))ds.

3. MAIN RESULTS

Before starting and proving our main result we introduce the following auxiliary
lemma.

Lemma 3.1. Let 0; € C, o; € (0,1], 5; € (1,2], i = 1,2. Then the boundary value
problem

DY (D + A wil<) = oil<), < € (0,7),

wl(T) + )\ngzwl(T) = 0,

@;1231(&) + /\zwz(&) = 0, & S ]O,T] s

has a unique solution defined by

(32) wl(g) + )\ng”wl(g) = jgi+ﬁi0'i(§) + /LZ<§>:]§ZO'Z(&) -+ Vi(C)jgiJr’BiO'i(T), 1= 1, 2,

where

(3.1)

Iy(B-1) (86— 1)|w4|g0‘+r3*1 |w3|§a+ﬁ—2
(3.3) M(g): Fq(B‘I’Oé—l) [ (6+&—1)|A| - |A| 1
and
_ DB Jleals™ (8= Dlwlem
(3.4) V(C)_Fq(ﬁJra—l)[ Al (Bra-1DA| ]
with

(3.5) A =wowz — wiwy # 0,
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_ F(ﬁ) B+a— _ B
w1 _F(ﬁ—i—a)T * 17 Cdg—f 17

Wy = P(/B B 1) T,B+oz72

I'f+a—1) ’

Proof. Applying the integrator operator J% to (3.1) and using the Lemma 2.1 we get
(3.6) (DY + N w(s) = 1?7 + P2+ 7%0(¢), <€ (0,T).

We apply again the operator J* and use the results of Lemmas 2.1 to get the general
solution representation of problem (3.1)

(3.7)

@ (<) IJaJng(g) — A% () + cos® + Cl{%gﬁ+al + C2I‘<g(f_;i)1)gﬁ+a2’

where ¢, ¢1, c2 € R. By using the boundary conditions in problem (3.1) and the above
equation, we observe that ¢y = 0 and

Wy = 5572.

F(6> B+a—1 F(B_ ]') B+a—2 a+p _
(38) Clir(ﬁ—i—og)TJr +62—F(ﬁ—|—o¢—1)T+ —|—J+O'(T>—O
Moreover, we obtain
(3.9) &P 4 P2 4 IPe(6) = 0.

Also, by using (3.5), (3.8) and (3.9) can be written as
c1w1 + cown =0,
clwsz + cowy =0.

Solving the last two in ¢; and ¢, we end up with

W W
1 =1 9o(T) = 3P0 (6),

@:%wd@—%wwdﬂ.

Substituting ¢; and ¢, in (3.7), we get the desired solution representation (3.2). Besides
and by the help of the results in Lemmas 2.1 one can easily figure out that (3.2) solves
problem (3.1). This finishes the proof. O

We will need the following properties for the functions p and v defined in next
lemma.

Lemma 3.2. The functions p and v are continuous functions on J and satisfy the
following properties:
(1) Hmax,i = MaXo<e<r [1i(S)];
2) Vmax,i = MaXg<e<T |w(§)|;
3) Fimax,; = MaXo<e<r [15(S)];
4) Pmax,i = MaXg<c<T |Vz/(g)|

T~ N N
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3.1. Existance result. In the following subsections, we establish the existence of
solutions for the (1.1) by applying Moénch fixed point theorems.

Consider the space of real and continuous functions U = C(J,E) space with the
norm

|]loe = sup{[l@(s)[| : ¢ € J}.

Then the product space € := U xV defined by € = {(w,w) : w € U,w € V} is Banach
space under the norm

(@, w)lle = @ loo + llwlloo:

and 2y represents the class of all bounded mappings in U.
Let L'(J,E) be the Banach space of measurable functions @ : J — E which are
Bochner integrable, equipped with the norm

|| 21 Z/J|w(§)|d§.

In what follows, we are concerned with the existence of solutions of (1.1).

Definition 3.1. By a solution of the coupled system (1.1) we mean a coupled
measurable functions (@, w,) € € such that w@;(0) = 0,@(T) + \JIgiw(T) =

0 and Dgiw; (&) + A\iwi(&) = 0, @ = 1,2, and the equations ﬂqﬁi (@g‘i + )\i) wi(s) =
fi(s,@1(s), @2(s)) are satisfied on J.

In what follows, we present the solution representation associated with System
(1.1).

Lemma 3.3. Let 0; € U, 1 = 1,2, be two given functions. Then, the following system
of fractional differential equations

DY (Dg + X)) @ils) = aals), < € (0,7),
w;(1) =0,

@i(T) + A\Jywi(T) = 0,

Dyiwi(&) + Niwi(&) =0, &€ 10,17,

(3.10)

is equivalent to the integral equation
(3.11)
wi(S) + NIy wi(<) = Jg”*ﬁiai(g) + /Li(g)Jgiai(&) + Vi(g)Jf]”*Biai(T), i=1,2.

Lemma 3.4. Assume that f; : J x E* — E is continuous. A function w(s) solves the
system (1.1) if and only if it is a fized-point of the operator G : C — C defined by
(3.12)

91w1(§) :Jgi+ﬂi0i(§) — )\ngzwz(§> + MZ(§)jq’810}(f@) + Vi(C)Jgi—i_Biai(T), 1= 1, 2.
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3.1.1. FExistance result via Mdnch fixed point theorem. We further will use the following
hypotheses.

(A1) For any i = 1,2, f; : J x E? — E satisfies the Caratheodory conditions.

(A2) There exists p;, q; € L'(J,RT) N C(J,R*"), such that

)
| f (s, 1, @2)|| < pi()||et|| + ¢i(s)||emz||, for ¢ € J and each w; € E,i =1,2.
(A3) For any ¢ € J and each bounded measurable sets B; C E, i=1,2, we have
hlgéﬂ K(f(Jon X Bi, Ba),0) < pi(s)k(B1) + q1(s)k(Bz)
and
&0, f(Jen x Bi, B2)) < p2()r(B1) + g2(s)r(Bz),

where « is the Kuratowskl measure of compactness and J.;, = [¢ — h,¢] N J.
Set

p; =suppi(s), q =supql(s), i=1,2.
ceJ ceJ

Theorem 3.1. Assume that conditions (A1)-(A3) hold. If
(3.13) A <1,
with

Mw

M;(p; +q;) + Ni),
z:l
where

M. = (1 + Vmax,i) Tai+6i (H’max,i) fzﬁl N, o |)‘1| e
! Fq(ai + 51 + 1) I’q(ozi + Bz + 1) ’ Fq((l/i + 1)7

then (1.1) has at least one solution on J.

i=1,2,

Proof. We consider the operators G; : € — € defined by
Gw = 9(wl,w2) = (91?317 92732),
where the operators G;, i = 1,2 are given by the formula (3.12). Clearly, the fixed
points of the operators G; are solutions of the system (1.1). Let we take
D, ={w; €C,i=1,2:|(wy,wm)| <7}

Clearly, the subset D, is closed, bounded and convex. We shall show that G satisfies
the assumptions of Monch’s fixed point theorem. The proof will be given in three
steps.

Step 1. First we show that G is sequentially continuous.

Let {@y n, @2n}n be a sequence such that (wy,, wa,) — (wr, ws) in €. Then for
any ¢ € J

1 (S — Gwi) (I <Tg % fim(s, @rn(s), @an(s)) = fils, mi(s), @a(s))(5)
= NJg @i — @il (<)

+ ()35 | fin (5, @1 (5), W2 (5)) = fils, 1(s), wa(s)) (&)




564 A. BOUTIARA

(ST fin(5, @ n(5), w2,0(5)) = fils, @1 (5), wa(s)(T)
< (I3 () + m(©IF W) + ()T (1)(T))

)
X || fin (s, @1n(8), @2n(s)) — fils, @i(s), @2(s))|l
AT (D)) |@in — il , i=1,2.

Since, for any ¢ = 1,2, the function f; satisfies assumptions (Al), then we have
fi(s, @1n(s), wan(s)) converges uniformly to f;(s, @i (s), wa(s)). Hence, the Lebesgue
dominated convergence theorem implies that (G(wy,, @2,))(s) converges uniformly
to (G(wy,ws9,))(s). Thus, (§(win, @w2n)) = (G(w1,w2,)). Hence, §: D, — D, is
sequentially continuous.

Step 2. Second we show that § maps D, into itself.

Take w; € D,, i = 1,2, by (A2), we have, for each ¢ € J and assume that

(§(wi))() £0,i=1,2,
1Geus ()] < [I555 £ (5, @1 (), @a(s)) (5)] + [AiIg i) (o)

a(S)I fi (5, w1 (s), @2(5)) (&)] + |a()T2 P fi (5,1 (s), wa(s)) (D)
<(p] + g)rIgFE)(S) + 7 N 95T () (6)

+ (9] + 077 95 (1) (&) + (0] + 0 ma 195774 (1)(T)

<P} + g5 LI (1)) + faad2 (1) () + Vinar 95 ()(T) )

+ 795 (1)(s) [\

<<p* + q*)r (]- + Vmax,i) TaiJrBi + (,umax,i) f,ﬁl T |>‘Z| TCVi
S T+ B+ 1) Tyt Bt 1)) Tylai+ 1)
=7r(M;(p; +q;)+N;), i=1.2

Hence we get
2

1(G(w1, @2))[le < D (M;(pf +¢) + N;) <

i=1
Step 3. We show that §(D,) is equicontinuous.
By Step 2, it is obvious that §(D,) C C'(J,E) is bounded. For the equicontinuity
of §(D,), let 61,0 € J, 61 < g and w € D, so Gw(sz) — Gw(sy) # 0. Then
1Swi(s2) — Sei(sa) || ST | f (s, 1(5), @a(s))(s2) — f(s,m1(s), @2(5))(s1)]
+ il 35 [wi(s)(s2) — wi(s) ()]
) = (50| By (5,0, a(9)) (60

+ i) — vil)| I3 i (5, @1 (), wa(s)) (T),
<(p; + @) 955 (1) () = I3 (1) (1)
+ 7Nl |95 (D) () = 354 (1)(s0)




A COUPLED SYSTEM OF NONLINEAR LANGEVIN FRACTIONAL ¢-DIFFERENCE EQUATIOMS

+ (0 + g pa(s2) = mals)] |92 (1) (2) = 92 (D (1) (&)
@+%Hmw—wwW%me—ﬁ%m@mﬂ
* ) Bi
+ Fq(&’ﬁ' S ) + 2 ) }+m

(p; + ;) RT*i+5i
I'(a; + 5 +1)

X |pi(s2) — pas)| + vi(s2) — vils1)] -

As ¢; — ¢, the right hand side of the above inequality tends to zero. This means that
S(D,) C D,.

Finally we show that the implication (2.1) holds. Let V' C D, such that V =
conu(G(V) U {(0,0)}). Since V is bounded and equicontinuous, and therefore the
function w — w(s) = k(V(s)) is continuous on J. By hypothesis (A2), and the
properties of the measure k, for any ¢ € J, we get

w(s) <K(S(V)(€) UL(0,0)}) < r((SV)(<))
<k ({((S11) (<), (Gan) (6) : (wnn) € V)
<TI0 P ({((f (s, w1(5), wa(5)) ()) 1 0) ¢ (wryen) € V)
98k ({(@i(5),0) £ (w1, 0) € V})
1l (92 ({1 (5,01(5), wa(s)) () :0) ¢ (wn,n) € V)
] ()T ({((fr (5 w1(5), wa(5)) () :0) : (wi,wa) € V)
3 ({(0, fi (5, 01(5), wa(s)) ¢ (wrn) € V)
T el 382k ({(0,wa(5)) = (0,w2) € V})
T Ll ()95 ({(0, £ (5, wa(5),wa(9))) : (w1, 2) € V)
T[] ()38 P2 (£(0, £ (5, w(s),wa())) : (w1, 2) € V)
<TI0 [py () ({(wi(s),0) : (w1,0) € V)
T (s)r ({0, wa(s)) = (0,2) € V)]
M98k ({(wi(5),0) £ (w1,0) € V})
€92 () ({(6(5).0) : (1,0) € V]
() ({(0,wa(s)) w»evm
T Ji] ()2 [py 1
() (£(0,was )
T 3222 [pa(s) ({
() ({(0,wals

) :

\_//\\_//_\\_/

) :
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+ [ A2] T2k ({(0,wa(s)) : (0,ws) € V'})
+ 2] ()35 [p2(s)k ({(wn(5),0) = (w1,0) € V3)
+a2(s)r ({(0,w2(s)) : (0,w2) € V'})]
+ sl (6
x 3522 [py(s)k ({(w1(5),0) = (wn,0) € V})
+q2() ({(0,w2(s)) : (0,w2) € V})].
Thus,
p(V(s)) I (p1(s) + aa(s)) x £ (V(s))
+ (M]3 ((1)(s)) x & (V(s))
+ ] (I (p1(s) + ar(s)) x £ (V(s))
+ ] ()35 (pa(s) + au(s)) x 5 (V(s))
9324 (py(s) + ga(s)) x k (V(s))
+ X2 352 ((1)(s)) x & (V(s))
+ o] ()35 (pa(s) + a2(s)) x K (V(s))
+ ] (9)I52% (pa(s) + q2(s)) x & (V(5)) .-

S

Hence,

= ToitBi * )i+l
Z pz +QZ) (1 + Vmaxi) + (pz +Qz> ‘,U/maxi‘
— (az + 6@ ) ’ Fq<ai + 1) ’

) { % }) sup  (V(6).

sup  (V(s)) < Asup (V(s)).

cel sed
By (3.13) it follows that sup.c;x((V(s)) = 0, that is x(V(s)) = 0 for each ¢ € J,
and then V(<) is relatively compact in E. In view of the Ascoli-Arzela theorem, V' is
relatively compact in D,.. Applying now Theorem 2.4, we conclude that G has a fixed
point, which is a solution of (1.1). O

This means that

3.2. Uniqueness Result. Let X = {w : w € C'(J)} be the Banach space of func-
tions whose first derivatives are continuous on J;, endowed with the ||| x = ||| +
||| = maxces |w(s)| + maxces |@'(s)|. Obviously, the product space (X x X, |- |lx)
is also a Banach space with the norm ||(ww1, @2)|| y« x = |@1 | x +ll@2|| x - A closed ball
with radius R centered on the zero function in X x X is defined by Bg(0,0) = B =

{(wl,wg) €X XX : (w1, m2) |l xux < R} Define the operator §: X x X — X x X
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by
(S (w1, @2) (<)
5 (@) (6) = (92 (w1, w2) (g)) SRR
where
Giwi(s) = Ig % ai(s) — NIy (<) + ()T 04(&) + vi(s)Tg o (T).

Clearly, (w,ws) is a fixed point of G if and only if (y, ws) is a solution of system
(1.1). Furthermore, we have

Gyi(<) = 100 gy (<) — NI (<) + ()T 0i(&) + V(<) oy (T).

Throughout the remaining part of the paper, we make use of the following assumptions
and notations:

(H1) f1, f2: [0,T] x R* = R are continuous;

(H2) there exist constants L; and K; such that

|fi (¢, 1, @2) — fi (6 w1, wo)| < Ly |ooy — wi| + K | — wsf,

for all (¢, 1, @2), (s, w1, ws) € [0,T] x R
(H3) A; = maxo<e<r [ fi(<,0,0)].
Further, we use the following notations:

o _ [T‘M‘i‘ﬂi (14 Vmax.i) ffi,umax,i ]
Tl Tt Bl TG+
Nl
C Tl 1)
TeitpBi—1

+ vmax,iTaiJrBi ﬁmax,i@gi
Lylai +6i) Tyl +Bi+1)  Ty(Bi+1)
N Tt
g Tt
Fq(ai)

Y

L :i [(Ll + K;) (@i +@i> + (Qz +ﬁz)] )

A ZXQ:Ai <®i +@i> :
i=1

To this end, we also use this assumption:
(H4) (L+ A) < 1.

3.2.1. Uniqueness via Banach fixed point theorem.

Theorem 3.2. Assume (H1)-(H4) holds. Then, (1.1) has a unique solution (wy, ws) €
Bp.
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Proof. Clearly, §: B — X x X. First, we show that G is a contraction mapping. To
see this, let (w, wy), (w1, ws) € Br ¢ € J, and consider

!91%‘@) - 9ivi<§)’
<Tg P fi(s, (), @2(s)) = fils, wils),wals))] (s) + [Nif T

+ fmaxi 0 | fi(s, @1(), @2(<)) = fils, wi(<), wa(s))] (&)

+ Vi, Ty il S, w1 (6), wa2(<)) = fils, wils), wals))] (T)
< [Lﬂ?“% oy —wil (s) + Kﬂ?ﬂrﬁ" ||zoa — wa| (§)} + [Nl I5
@1 —wi (&) + KI5 |2 — wal| (&)]

@1 —wi|| (T) + KI5 |y — wa (T)]

w; — wil (5)

@i — wil (<)

+ Hmax,i [szgl

+ Vimasi | LiJf:

L‘le_wlu i+ K'HWQ_WQ” 13, le—le )
< 7 Ta1+6z + 1 Taz'i‘ﬂ@ + )\Z Ql
Li le — CL)lH Bi Kz HWQ — ng 5]
+ Hmax,i &1 + fi’
[ Fq(ﬂi + 1) Fq(ﬁi + 1)
Lillmi —will e | Killwe —wall a,is
+ Vmax,i T%Jrﬁl + TalJrB’

TaitBi (1 +Vmaxi) g'ﬁi,uma .
= LZ+KZ ’ 7 X, W + iy
( )[ Fy(a; + 6 +1) T,(6;+1) (|71 1] + |2 2]
M )
it
Ty(a; +1) "

=[(Li + Ki) ©; + Q] |1 — wi| + O; [z — wo
implying that
(3.14)  ISiui(s) = Sivi(o)|l < [(Li + K3) O + 4] |lon — wil[x + O [Jewa — wally -
Likewise, and by using the precedent technique, we have
(3.15) ’ Siuis) — 9;%(0” < [(Li + K) 8+ Q] o1 — willx + O [l — wally -
Then, from (3.14) and (3.15), we have
1Gsi(<) = Sovil6)| < [(Li + K) (€3 + 65) + (2 + ) | [l — wnll

+ (@z —l—@i) || — wa| 5 -

(3.16)

Consequently,

|G (w1, @2) = G (w1, w2) |l x < L [(w1, @2) — (w1, o)l x s x -

Because L < 1, G is a contraction mapping with contraction constant L.
Next, we show that

(3.17) 5(0Bgr) C Bg.
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To see this, let (wy,wsy) € 0Bg, < € J, and consider

1Gsui ()] <Tg 7 | fils, @1(s), @a(6))] () + (X I [ (<)
+ tmax Iy 1 fi(s, @1(5), @2()] (&) + VinaxiTg % | fis, @1(S), wa(6))| (T)
< |95 fi (5, (s), @a(s)) — fi(5,0,0)] (6) + 357 | £i(5,0,0)] ()]
+ Il |95 e (<)]
+ tamai | T3 |fi (5, @1(5), @2(5)) = fils,0,0)] (&) + 97
+ Vinasei | 937 | fi (5, 1(5), @2(s)) = fi(s,0,0)[ (T)
355 £i(5,0,0) | (7)]

< [Lﬂ;’”*ﬁi 1] () + KI5 [ () +

Tt A, Ni| TR

Lya; + B + 1)] [Fq(ai + 1)]
A,

Ly(8i + 1)]

Tt A, ]

+ Umax,i [Lﬂfi @] (&) + KD || (&) +

+ Vmax.i [Lijgi+6i || () + Kijgﬁ-ﬁi

=2l (o) F Ly(a; + B+ 1)

- [ To+Bi [, R . T+ KGR . TetBi A, ]
| T +8:+1) Tyla;+8:+1) Tyla;+ 8 +1)
TR LR KR Toitbi 4,
’iWmewﬂ M“an~4>1u@+w+mwﬁwﬂ

. [ TR N TP KR N Tot+Bi A, ]
(i +Bi4+1)  Tylai+5i+1) Tyl + 5+ 1)
Vinax + 1 T i &7 R|A;| T

(R s+ )[Rt et [
=[(L; + K; + A;) ©; + Q] R,

implying that

(3.18) |Gsw; ()| < [(Li + K; + A;) ©; + Q] R.

Likewise, and by using the precedent technique, we have

(3.19) 1)l < [(Li + K; + A;) 8 + ] R.

Then, from (3.18) and (3.19), we have

(3.20) ISii(o)| < [(Li+ Ki+ Ai) (65 + ;) + (2 + Q)| B.

Consequently,

|G (w1, @2) — G (w1, w2)llxx S (L+A)R <SR,
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implying that (3.17) holds. Therefore, by the Banach fixed-point theorem, G has a
unique fixed-point (wq, ws) € Bg. The proof is complete. O

3.3. Stability of the solutions of (1.1). We use Urs’s [48] approach to establish
the Ulam-Hyers stability of the solutions of (1.1).

Theorem 3.3 ([48]). Let X be a Banach space and T1,T5 : X x X — X be two
operators. Then, the operational equations system

{wl =T (wla wz) )
wy =15 (Wh ?ﬂz) )

s said to be Ulam-Hyers stable if there exist Cy,Cs, C5,Cy > 0 such that for each
€1,62 > 0 and each solution-pair (w},ws) € X x X of the in-equations:

[ = T1 (w1, @) || x < e,
{HWQ — Ty (w1, @[ x < &2,
there ezists a solution (wi,ws) € X x X of (1.1) such that
|7 —willx < Cier + Caey,
{HWS —wyllx < Cser + Chen.

Theorem 3.4 ([48]). Let X be a Banach space, T, Ty : X x X — X be two operators
such that

111 (@1, @2) — Th (wi, w2l x < kallwn —will, + k2 [[@e — wally
{||T2 (1, @a) — T (w1, wo) |l < ks llon — will, + ks |z — wa
for all (wy,@s), (w1, ws) € X x X. Suppose
ki ko
()
converges to zer(. Then, the operational equations (1.1) is Ulam-Hyers stable.

Set

[(L1 + K1) (014 61) + (0 + )],
(L1 + Ky) (@1 +@1) )
[ (L + K3) (@2 +@2> + (Q2 +ﬁ2)} )
Ci= (L + K>) (62 + 83) .

Theorem 3.5. Assume (H1)-(H4) hold. Further, assume the spectral radius of H is
less than one. Then, the solution of (1.1) is Ulam-Hyers stable.

Proof. In view of Theorem 3.2 we have
{ [ A1 (1, @9) — Ax (wi,wa)|lx < Crllmr —willx + Ca |z — wax,

|42 (@1, @2) = Az (w1, o)l x < Csllome —willx + Caflwa — w2 x,
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which implies that

w1 — W
(3.21) \\A(wl,wﬁ—Awl,wz)HMSA(” : 1"X)-

[fep —w2Hx

Because the spectral radius of H is less than one, the solution of (1.1) is Ulam-Hyers
stable. O

4. EXAMPLE
This section is devoted to the illustration of the results derived in the last section.

FExample 4.1. In this section, we present some examples to illustrate our results.
Let E=1'={w = (w1, @2, , @n,---) : 2oy |mwa| < oo} with the norm

[e's)
lwwlle = > [@al.
n=1

Consider the following nonlinear Langevin i—fractional equation:
(4.1)

1 V3Jm|cos®(2m5)  V27lyl ||
D/ (@4/3 - ) - 1 J
i\ 1) P = e T \ples ) <€
2 V2r|w| || |y| sin?(27¢)
Difi (D33~ 2 ) wo) = ) 4 M) J
1/4 1/4 5 y<g> 4(47T—§)2 |w‘+3+ + (1O—§)2 y S €,
1
@w(0) =0, w(1)+ 1—05;/4 w(1) =0, @3/4w(1/2)+ﬁw(1/2)=o
2
y(0) =0, @(1)+ 533/2 y(1) =0, Dy%y(3/4) + Zy(3/4) = 0.

Here J = [0,1], o = ]_/4, Oy = ]_/2, 61 = 4/3, 52 = 5/3, 51 = 3/4, 52 = 1/2,
AL = 1/10, Ay = 2/5, with

fs, @) = (((sing + 1)e™)/24)(=* /(1 + |=])).

Clearly, the function f is continuous. For each w € E and ¢ € [0, 1], we have

VB VB
< —
‘f(g w17w2)| — 81 ’wl‘ + 49 |w2’
and
9G] < Yo [l + 1 [l
g\s, w1, W2)| > G4n w1 100 W2
Hence, the hypothesis (H2) is satisfied with pj = 8*{, g = 49@, Py = on V2 and ¢} = o5+

We shall show that condition (3.13) holds with J = [0, 1]. Indeed,
Ay =0.1687 Ay =0.1985, A ~0.3672 < 1.

Simple computations show that all conditions of Theorem 3.1 are satisfied. It follows
that the coupled (4.1) has at least one solution defined on J.
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Fxample 4.2. Consider the following coupled system:

1 1 < |0 | S ||
DL/ (@4/3 ) — c0,1
237) ") = 0 T e 0+ 1] T O et (m ) €0

| : i
D2 (95/3 + )wg(g) =4 S 1] < + sin || s €[0,1],

100 100es es+99 ’
1 1
@i(0) =0, w@i(l)+ TOJéMwl(l) =0, 93/4131(1/2) + Ewl(lﬂ) =0
2 2
wy(0) =0, wy(1)+ 5:1}/%2(1) =0, DVwy(3/4)+ =@1(3/4) = 0.
Using the given data, we find that
1 1
Im1 (S, @1, @2) — f1 (S, wi,ws)| < ﬁ| | — wa| + —— 100 w1 — wol
1 1
| f2 (¢, w1, @2) — fa (S wi,wa)| £ — 100 |1 — | + 100 w1 — wol
1 I < <
,0,0 — < — >
(50,0 € = (s @1 @) <€ ot
— 10es Y ~ 10es  es +10°
for any ¢ € [0,1]. Then n;, i = 1,2 satisfying (H1)-(H4), with L; = 155, Ki = 155,
i=1,2, A :i i = 1,2, We find that

100
©; =1.3850, O, =1.1300, €y =0.0207, 5 =0.0354,
0, =6.0050, O, =2.3900, O =0.2048, = 0.1992.
Hence, L ~ 0.6783, and A ~ 0.1091. Therefore, L + A < 1, and then all conditions

of Theorem (3.2) are satisfied, which implies the existence of a unique solution for
system ( 3.21 ) in [0, 1]. On the other hand, we find that

Cy, =0.3733, C5=0.3050, C3=0.1478, (4= 0.0704.
The spectral radius of the matrix

0.3733 0.3050
0.1478 0.0704

is 0.48. Hence, by Theorem 3.5, the solution of (3.21) is Ulam-Hyers stable.
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ANALYTIC STUDIES OF A CLASS OF LANGEVIN
DIFFERENTIAL EQUATIONS DOMINATED BY A CLASS OF
JULIA FRACTAL FUNCTIONS

RABHA W. IBRAHIM! AND DUMITRU BALEANU?%34

ABSTRACT. In this investigation, we study a class of analytic functions of type
Carathéodory style in the open unit disk connected with some fractal domains. This
class of analytic functions is formulated based on a kind of Langevin differential
equations (LDEs). We aim to study the analytic solvability of LDEs in the advan-
tage of geometric function theory consuming the geometric properties of the Julia
fractal (JF) and other fractal connected with the logarithmic function. The analytic
solutions of the LDEs are obtainable by employing the subordination theory.

1. INTRODUCTION

Recently, analysis on fractals has been established by numerous investigators study-
ing various problems in engineering (fractal antennas), physics (material processing),
chemistry (chimical processing), biology (DNA) and computer science (image pro-
cessing) [1-8]. Harmonic analysis is employed to describe derivatives and integrals
on fractal sets. Probability theory is utilized to formulate Laplacians on fractals [9].
Fractional spaces are plotted to continuous real space in order to explain differential
equations on fractals [10-15]. Fractional calculus is smeared in fractal spaces to clar-
ify anomalous diffusion [16-20]. Extended fractional Langevin equations to complex
domain are indicated by special types of fractal [21]. The fractal Langevin equation
is studied presenting the dynamics of Brownian elements in the long time boundary
[22]. Other studies such as an approximate fractal Langevin differential equation are

Key words and phrases. Subordination and superordination, analytic function, univalent function,
open unit disk, fractal, fractional calculus, fractional operator.
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consumed and an approximate solution is indicated [23-27]. In the present study, we
aim to investigate the analytic solution of Langevin differential equation by using a
Julia fractal functions and other fractal [28-30].

1.1. Differential equation formula. The second order LDE of a complex variable
z is structured by [31]

(1.1) f"(2) + Af'(2) = A(f(2)),

where A > 0 indicates the damping connection parameter and A is the noise term. To
investigate the geometric properties of (1.1), we consume the analytic function f(z)
in U achieving the expansion f(2) = z+377, a,2". This class of analytic functions is
known as the normalized class denoting by A. Extend (1.1) with complex coefficient,
then we have equivalent equation

(1.2) F(2) = A\(2) (if{;&”) + (ifé?) . zel,

where A(z) is analytic function in the open unit disk U. Evidently F(0) = 1, for all
A(z) € U (see the following example).

Ezample 1.1. o Assume the function f(z) = %,

F(z) =1+ 2+322 4523+ 72 + 925 + O(2%).
e Let A(2) =1 and f(z) = {%. This implies the series F(z) = 143z + 52> 4+ 72° +
924 +112° + O(29).

A(z) = z. Then we get the series

We demand the following preliminaries.

Definition 1.1. e Two analytic functions f and g in U are called subordinate denoting
by f < g, if for a function h is selected such that |h(z)| < |z| indicating the equation
f=g(h) [32].

e The Ma-Minda construction inequalities signified by S*(p) and K (p) of starlike

and convex functions are structured by (i{gi?) < p(z) and (1 + Zﬂé?) < p(z),

respectively, where p achieves the existing in the class P where Re (p(z)) > 0, p(0) =
L p'(0)] > 1.

By utilizing the definition of LDESs, we formulate a new class of analytic functions
as follows.

Definition 1.2. A function of the power series
o0
f(z)=2+> a,2", zeU,
n=2

is in the class M, (p) if and only if

(;2) e (zzjf(’;()z)> N (z}f(’z)

) <p(z), zeU, p0)=1,p(0)>1,\z) eU.



ANALYTIC STUDIES OF A CLASS OF LANGEVIN 579

We study the analytic solvability of (1.3) by using different types of the parametric
Julia fractal formulas taking the construction (see Figure 1)

Jo(2)=1+2—-K2* z€U,

1 2
T,(2) :1+22 =1+ (k+1)22+ (K* +x)2* +0(2%), zeuy,
— Kz
and
L.(2) =2 + !
s 1 — K22

=1+ (k+D2+ 205, zey ]z <1/y/(k).

P %@é@ fim L%

FIGURE 1. The plot of J,, k = 1,1/2,1/3,1/4, T,k = 1,2,3,4 and
L.,k =3,5,10,100, respectively

The technique is to find the optimal value of x which satisfies the inequality subor-

dination
zp/(2) _
1+/i<[p(z)]k>-<(1—|—z) , e,

to satisty one of the following inequalities
p(z) < Jey p(2) < Tw, p(2) < Ly

As an application, we consider the LDEs to investigate the solvability by using the
Julia fractal functions

F(z) < J., F(2)<7T., F(z)=< L.

Special cases are investigated for some well known classes of analytic functions.

2. COMPUTATIONAL RESULTS

This section deals with consequences regarding p(z) and F(z).
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Theorem 2.1. Let the function p € P admitting the inequalities

1+k <(22<9;<;))k> < Xu(2), zeu,

where k =0,1,2 and X (2) = (1 + 2)*, z € U. Then

(A) p(2) < Ju(2), 2 €U, for k > max rj, = 1.3247;
(B) p(z) < Yu(2), z €U, for k > max ky = i;

(C) p(z) < Lu(2), z € U, for k > max k = 0.550667.

Proof. Firstly, we aim to prove the inequality p(z) < J.(z), therefore we have the
following cases.
Case . k=0=1+k(zp'(2)) < (14 2)". Let T, : U — C admitting the structure

(F*+r+1D) =+ D) R(Le+1,5+2,2)
K2+ K
where o F7 indicates the hypergeometric function for all z € U with the power series

= (@)n(B)n 2"
o, Biy;2) = ) 5
nzzo (Vo 7!
Clearly, T,;(z) is analytic in U satisfying 7,,(0) = 1 and it is an approximate solution

by a hypergeometric function of the differential equation

T.(z) =

, zeU,

(2.1) 1+ k(zT.L2)) = (z4+ 1), zeU.
Let
W(z) = _g (:T7(2)) = (z+1)"((z — 1>2F1(i7f;— Lk+2,2)+ 2+ 1))
Then by [32, Lemma 4.5¢], where
(2.2) 2Fi(, Bis2) = (1—2)%, B <,
we have for k > 0
W(z) = -5 (2 T0(=))
_ 1 (z+1D)"(z=1)2F1(L,k+ 1, k+2,2)+ 2+ 1))
3 z—1
_ 1 (4+D"((z—1D(1—2)+2+1))
3 z—1

(8

2 1 1
:z—|—(/i+3>22+6(3/<a2+k+4)z3—|—6(/13—/£2+4/£+4)z4

1
(3k% — 105> + 33K% + 22K + 48)2° + O(2°).

T
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By the assumption of the theorem, we have

o (20) 14 (042) 4 (3 0) 2+ (1 2)

80 4 242\ 5 6)
+(81 /<;>z —|—</<;—|—243>z + O0(z°)
>0

provided 0 < k < 4.27772. That is, 20(z) is starlike function. Thus, by using
&(z) :=W(z) + 1/(—3), one can obtain

2 W (z)\ . 2®'(2)
e () = () >

Thus, Miller-Mocanu Lemma (see [32, page 132]) admits

1+ k(2P (2) <14+ 6(2T.(2)) = p(z) < Tu(2).
Our aim is to prove that p(z) < J,(2), which indicates if T, (2) < Jx(z). To complete
this conclusion, we have to prove that Ty (z) < (1 + z)*. By using (2.2), we have
(K2 +rK+1)
K2+Kk

/<2+/~f+1_

K2 4+ K Tn(—l) = TH(D =

Since

thus, we obtain

whenever k > 0.78124. As a conclusion, we have T, (z) < J.(z) when

(k2 + K+ 1)

k= Jo(=1) <Tu(=1) =T,(1) = K2+ r

< J.(1) =2 -k,

which is provided

~ 1.3247.

/o7 3vEa\ (;(9+\/@))1/3
59) -

0.7812 <5 < ¢ e

This implies the relation
Ti(z) = Ju(2) = p(z) < Ju(2), ze€U.

Casell. k=1= 14k (%) < (1+2)". Define a function E, : U — C formulating

the structure

1— 1) L F (1 1 2
En(z):exp< 2+ )™ oA et e ’Z)>.

K2+ K
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Obviously, F,(z) is analytic in U satisfying E,(0) = 1 and it is an approximated
solution by a hypergeometric function satisfying the differential equation
2z El(2)
1 = = (1 " u.
+K<E,Q(z)> (1+2), ze€
By considering 20(z) = k (%"((ZZ))) = (14 2)" —1, which is starlike function with x # 0
and T(z) = W(z) + 1, we attain

o (20) e (290) 2o, e

Thus, Miller-Mocanu Lemma, yields

14k (ifg?) <14k (fé’?) = p(2) < Eu(2).

Consequently, one can recognize the next equality

P (IiQ :— Ii) = B(=1) = E(l) = exp (IiQ :— Ii) ‘
Moreover, this implies E,(z) < (1 4 z)" such that for x # 0 the inequality
0=3.(-1) < Eo(~1) = B.(1) < S.(1) = 2%, & > 0.876764,
holds. Thus, we get E.(z) < J.(2) when

k=Ji(—1) < E.(-1) < E.(1) =exp ( ) < Ju(+1) =2 — k.

K2+ K
This leads to the following subordination for k & 1
Ei(2) = Ju(2) = p(z) < Ju(2), z€U.

Case [l k=2=1+k (ig((j))) < (1+z)". Consume that H, : U — C satisfies the

formula
k(k+1)

R2+r+ (z+ 1) B (Lk+1,k+2,2)
Clearly, H,(z) is analytic in U admitting H.(0) = 1 and it is the approximated
outcome in terms of the hypegoemetric function

HL(2)) _ .
1+K<H’%(z)> = (14+2)" zeuU.

Similarly, we use the starlike function 20(z) = ¥,.(2) — 1 and 9(z) = 2(z) + 1, we

get
Re (Zw(z)> — Re <zan'(z)> >0, z€U.
)

H.(2) =

W(z)
Hence, the Miller-Mocanu Lemma yields

14 & (Zp,(z)> <14k (ZH;(Z)
p*(2)
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Accordingly, for k > 1, we obtain
1=H.(-1)=H.(1)=1.
Moreover, for k = 1, we have
k=J.(-1) < H,(-1) < H(1) < Jo(+1) =2 — k.
Thus, one can realize that
H.(2) < Ju(z) = p(z) = Ju(2), ze€U.

For the second and third part, we proceed in the same manner of above construction
of the functions T,(z), E,(z) and H,(z). We conclude that for the second part,

11—k K2+ K 1 -k’
whenever
1
— (22 ( 47 + 3/249 ) ~ 0.3532009 ...
"3 <( ((47+3\/24 A 9) )
2 2
L Y (1) < E.(~1) < E.(1) = <To(41) = ,
ST S B S B mewp () STu() =
whenever k ~ 0.490561 and
2 2 1
Then we get p(z) < Tu(2), K > 0.5, z € U. For the last part, we obtain
2—K (K*+rK+1) 2—K
L (1) < To(=1) =Ty (1) =T8T p gy = 228
T x (—1) < T.(-1) (1) o D =1—
whenever, K = /(2) — 1~ 0.414213. . .,
2—kK 1 2—kK
— L (1)< BE(-1)<EBE. 1) =exp(—— ) < Lo(+1) = :
= L) € Bl-) < B mexp (o) S La(+1) = T
whenever £ ~ 0.550667 and
2—K 2—kK 1
HW<H.(-1)<H.(1) <L 1) = ~—.
1+ w(—1) < Hy(—1) < Hy(1) < Ly(+1) 1_7"1 5
Then, we conclude that p(z) < L.(z), x> 0.550667, z € U O
As an application of Theorem 2.1, we let p(z) = ZJ]: , fA. Thus, one can recognize

the following consequence.
Corollary 2.1. Let f/\ ]f one of the inequalities is indicted
2 z z
(a)l—l—/-@( G (z) — (e )) (1+2)%;
(b) 145 (14 25 — ) < (14 2)°

(c) 1+k ( Jfl/;()) ( J{(S)) I (Zf(g)) 1) 4o
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then f € S*(J,), k > 1.3247, f € S*(Y,.), k > 3 and f € S*(L,), £ > 0.550667.

Corollary 2.2. Let p(z) = }igz,—l < B < A < 1. If one of the inequalities is

indicted
(a)
kz(A— B) A+1 (—A+2B+1)
—_— 1 r . = 1.3247:
+(Bz+1)2<( 2)", B+1<O676’ K GESY > 1.3247;
(b) B
kz(A —
1+ < (14 2)~,
(Az + 1)(Bz + 1)) (1+432)
where
(A-2B-1) 1
A+1 = ‘> B+1 A>4B :
+1#£0, K A+ 1) >2, +1#£0, A> + 3;
(c) B
kz(A —
1+ ———= 1 K
+(Az+1)2 < (1+2)",
where
(A—2B—1) A (2B)
A#£Br=-—"""") Byt1 - - 55;
| R el o7y Sl oy Rl =
then _
+ Az
g, <), s> 1324,
1+ Az
T 1/2
il ORI T
and

1+ Az
L . .
1+ Bs =< K(Z), Kk > 0.55066

Corollary 2.3. Let p(z) = 1+ sin(z). If one of the inequalities is indicted

(a) 1+ kzcos(z) < (1+2)", k > 1.324;

(b) 142258 < (14 2)%, k> 0.5;

(0) 1+ S5k < (1+2)%, K > 0.55066;
then p(z) < Ju(z), k > 1.324, p(z) < Tw(2), £ > 0.5, p(2) < Lx(2), £ > 0.55066.
Corollary 2.4. Let p(z) = e*. If one of the inequalities is indicted

(a) 1+ kze* < (1+2)", k> 1.324;

(b) 1+ kz < (14 2)", k> 0.5;

(c) 1+ krze* < (1+2)%, k> 0.55066;

then p(z) < Ju(2), k > 1.324, p(z) < T.(2), K > 0.5, p(2) < L.(2), k > 0.55066.

Next result admits some properties of LDE.
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Theorem 2.2. Consider two functions ¥.(z) = (1 + 2)", k € R, and
(

Fe =20 (2299 4 (19

If one of the inequalities

1+ x (FFF(;)Z],Z) < (142

is occurred, where k =0,1,2, then
o F(z) < Ju(2), k > 1.324;
o [(2) <T.(2),r > 0.5
o F(2) < Ju(2), k > 0.55066.
Furthermore, if Re (F(z)) > 0 and \(z) satisfies

Re(A(2)) >0, [S(1=A(2)]* < 3[Re(A(2)))%,
then f is starlike in U.
Proof. Since for all A\(z),z € U, we have F'(0) = 1, then by using the same technique

in Theorem 2.1, we have the first part regarding the subordinated inequalities. For
the second part, we assume that

_2f'(z)
p(z) = ) feEN zeU.
Then a computation implies that
F(z) = M2)2p'(2) + A2)p” + [1 = A(2)]p(2)-

Then by the assumptions and in view of [32, Example 2.4], we have Re (p(z)) > 0
which implies that f(z) is starlike. O

3. EXAMPLES

In this section, we deal with special cases of the LDEs depending on the formula

of A(2).
Case I. Let \(z) = 1. The construction of LDE becomes
Z2f"(2)> <Zf’(2)> _
(3.1) ( ) + ) =F(z), zeU, feA.

Then by using J.(z) = 1+ 2z — k23, Figure 2 shows the solution for different values of
Kk > 1.324, Figure 3 indicates the solution by using T, (z) = fj:; for k > 0.5. It can
be seen that the solution satisfies when
20)(1—0.6¢,14 0.62
f(2) :ch§272§< 05,05 0.622>

+0.774 ¢y 2 (2F1(0.5 — 0.6, 0.5 + 0.61; 2; 0.6z2)) ,

e x = 0.6, we have
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: \/é\/\f\ﬁxrxrvmv

; \/\I\waw :

O;
] 10
Mg O WW

F1GURE 2. The plot of (3.1) by using J,.(z) for A\(z) = 1, k = 1.5, 2,4, respectively

where f(0) = 0 provided ¢y = 0;

e 1 = 2, we obtain

1) =eaGEY (1 BN 2z2)
20.5,0.5
+in/(2)erz <2F1(1/4(2 —iJ@),1/42+ i) 2 222));

o k=4, we get

) 1
£(2) = &G 2,0) (1 —=,1+-

—_—

2,2) 4 4
—0.5,0.5

FIGURE 3. The plot of (3.1) using Y, (z) for A(z) =1, k = 0.6, 2, 4, respectively

Figure 4 imposes the behavior of (3.1) by using L,(z).
Case II. Let A(z) = z. The construction of LDE becomes

(3.2) p (ZQJZC(';()Z)> + (i{é?) —F(2), zeU, feA

A computation implies the following constructions of F'(z).
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A

FIGURE 4. The plot of (3.1) using L.(z) for A(z) =1, k = 0.6, 2, 4, respectively

e For

Jis =F(2) = —1.5(2 — 1.12271)(2* 4 1.12271z + 0.593803),
Jo(2) =F(z) =1+=2

and Jy(z) = F(z) =1+ z;

o for
1.6666722 + 1.66667
Yo =F(z) =
06 = F(2) 1.66667 — 22
To(2) = F(2) = o, 1
2\# T 02 T 20
and
Ti(z) = F(z) = o1
4% 2_1—422 1 — 422’
e for
—1.53946 1.53946) (22 + 0.703257
Log = F() = (2 )(z + )(22 + )7
(z — 1.29099)(z + 1.29099)
(z—=1)(z+1)(222+1)
Lo :>F(Z) = 9.2 _ 1
and

424 — 22— 1
(22 —1)(2z + 1)'

Ly= F(z) =

Figures 5-7 show the behavior of (3.2) for J.(z), T.(2) and L.(z), respectively.
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FIGURE 5. The plot of (3.2) by using J.(z) for A(z) = 1, k = 1.5,2,4, respectively

%
|

FIGURE 7. The plot of (3.2) using L.(z) for A(z) =1, k = 0.6, 2, 4, respectively
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WELL-POSEDNESS AND ASYMPTOTIC STABILITY OF A
NON-LINEAR POROUS SYSTEM WITH A DELAY TERM

HOCINE MAKHELOUFT!, NADIA MEZOUAR?, AND MOUNIR BAHLIL!

ABSTRACT. Our interest in this work is to treat a one-dimensional Porous system
with a non-linear damping and a delay in the non-linear internal feedback. We prove
the global existence and uniqueness of its solution in suitable function spaces by
means of the Faedo-Galerkin procedure combined with the energy method under
a suitable relation between the weight of the delayed feedback and the weight of
the non-delayed feedback. Also, we give an explicit and general decay rate estimate
by applying the well-known multiplier method integrated with some properties of
convex functions and for two opposites cases with respect to the speeds of wave

propagation.

1. INTRODUCTION

In the present paper, we study the well-posedness and asymptotic behavior of
solutions of the following Porous system

(1.1)
Py — Klge — bp, =0, in ]0,1[x]0, oo,

P21 — OGga 4 bty + & + p191 (D) + praga(d(x,t — 7(t))) = 0, in ]0,1[x]0, o0,
u(0,t) = u(l,t) = ¢(0,t) = ¢(1,¢t) =0 in |0, 00|,

u(z,0) = up(x), wz,0)=wu(x), in]0,1],

6(r,0) = 6ole),  Gu(x,0) = da(z), 1n]0,1],

oe(z,t —7(0)) = fo(z,t — 7(0)), in ]0,1[x]0, 7],

Key words and phrases. Non-linear Porous system, global existence, delay term, general decay,
Faedo-Glaerkin method, multiplier method.
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where z denotes the space variable, ¢ is the time variable, 7(-) > 0 is a time varying
delay, p is a positive constant and ps is a real number. The functions u = wu(z,t)
and ¢ = ¢(x,t) represent, respectively, the displacement of the solid elastic material
and the volume fraction and the initial data (ug, u1, ¢o, ¢1, fo) belongs to a suitable
Sobolev space. The original Porous system is governed by the following evolution
equations

P1Uyt =T,
P20 =H, + G,

where T, H and G denote, respectively, the stress, the equilibrated stress and the
equilibrated body force. The constitutive equations are as follows

T=kru,+bp, H=6¢p,, G=—bu,— &0,

where p1, pa, Kk, b, d and £ are positive constants satisfying in the one-dimensional
case, the following inequality

KE > b2
If we consider k = b = &£, we find the well-known Timoshenko system which is
introduced by S.Timoshenko [17] and it has been widely considered in the literature.
For the better comprehension of our motivation, we appeal to keep in mind that the
system

1.2
( ) pggbtt —5¢rx+k(ugg+¢) = 0, in ]O,L[X]0,00[,

is conservative. Namely, by taking any suitable boundary conditions into consideration,
the energy of (1.2) given by

1 L
B(t) =5 [ |orut + 20 + w(u, + 0)? + 002 da,

satisfies the energy’s conservation property, that is, for all ¢ > 0, E(t) = E(0).
In this vein, various damping such as viscoelastic damping, frictional damping and
thermal dissipation are employed to stabilize the vibrations. It has been shown that
the stability depends on the position and nature of the controls and some relations
between the constants py, ps, k and d. Let us recall some known results on the
stability of the Timoshenko system with frictional dampings. Soufyane and Wehbe
[16] used the unique damping a(z)¢; in the shear angle displacement and showed
that the solution is uniformly stable. This one has been obtained in the case of the
equal-speeds, i.e.,

P1 P2
(1.3) =5
Raposo et al. [15] examined (1.2) by setting two linear frictional dampings u; and ¢;
where they realized an exponential decay result without imposing any condition on the
coefficients. In [1], Alabau Boussouira extended [16] to a problem with a non-linear
damping acting in the second equation. Under the condition (1.3), she established a

{plutt - ’i(uxm - ¢:L") = 07 in ]07 L[X]Oa 00[7
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general and semi-explicit formula for the decay rate of the solutions. This result was
later improved by Mustafa and Messaoudi [11] where they obtained a general and
explicit decay estimate. In the other hand, for the Porous system, Quintanilla [13]
proved that the damping a¢, is not strong enough to obtain the exponential stability
result. However, Apalara [3] got the exponential decay of the solutions for the same
problem provided (1.3) holds true. Furthermore, in the nonequal-speeds case, he
[3] established a general decay result when he employed a weak non-linear damping
11(t)g(¢r)-

In the recent years, the Timoshenko system with time delay has been discussed by
several researchers. In particular, we consider the following model with a delay term
(1.4)

{plutt — K(Uge — &2) + a1 f1(ug) + agfo(u(x, t — 7(¢))) =0, in]0, L[x]0, ool,

P2Put — 0Gue + k(U + @) + p191(d¢) + pr2ga(@e(x,t — 7(t))) =0, in |0, L[x]0, ool.

Here, f; and g; are real functions, a; and p; are positive numbers for ¢ = 1,2. If
a; = 0, gi(x) = x and ps < py, then the exponential stability has been proved by
Kiran et al. [6] in the case of equal-speeds. In the case of a constant delay, Apalara [2]
considered (1.4) when p; = 0, fi(z) = x and ay < a; and established an exponential
stability result provided 2 = £2. In the opposite case, only a polynomial decay is
obtained. As far as we know, the first work investigated the Timoshenko beam with
a nonlinear delay term is the one of Benaissa and Bahlil [5]. The problem treated is
(1.4) with a; = 0. They considered only the equal-speeds case where they obtained
an explicit decay estimate under a suitable relation between p; and po and some
additional assumptions. For the Porous system with delay term, the subject of this
article, we cite the works [10,14] and [7]. The authors of [7] examined a non-linear
Porous system of the form

Py — Klgy — bp, = 0, in ]0,1[x]0, oo,
{02%5 — 0z + buy +§Q + 1y + pagu(z,t — 7) + a(t)g(¢r) = 0, in 0, 1[x]0, oo,

and established, under the assumption |us| < pi, a general decay of solution when
P p2

K )
As a consequence of the works cited above, if only one equation of a Timoshenko

system is damped then the uniform stability may be achieved for weak solutions if and
only if 28 = £. However, in the situation when £- # 2 a weaker decay rate result
is achieved for strong solutions. According to this results, three questions naturally
arise.

1. Is it possible to consider the Porous system with a non-linear damping term
and a time varying delay in the internal feedback acting only in the second equation
and get the same result as in the Timoshenko system?

2. In the equal-speeds case, is it possible to get the stability result with same
hypotheses on pu1, o, g1 and go as in the Timoshenko system?
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3. As we have mentioned above, the nonequal-speeds case is not considered for
the non-linear Timoshenko system with delay (see [5]). So, is it possible to obtain the
stability result under the same conditions imposed for the equal-speeds case?

The main aim of this manuscript is to give positive answers to theses three questions
by investigating (1.1).

The rest of our paper is as follows. In the next section, we provide some assumptions
and materials needed in our work. In Section 3, we state and prove the existence and
the uniqueness results. The last section is devoted to the study of the asymptotic
behavior of the solutions. We use ¢ throughout this paper to denote a generic fixed
positive constant, which may be different in different estimates.

2. PRELIMINARIES

In this section, we present some assumptions, materials and notations that will be
used later. Firstly, following the same arguments of Nicaise and Pignotti [12], we
introduce the new variable

2(z, p,t) = ¢p(x,t — pr(t)), x€]0,1],p€[0,1],¢ > 0.
It is clear that
T(t)ze(w, p,t) + (1 — p7' (1)) 2,(z, p, t) = 0, in ([0,1])* x [0, oc].

Hence, our problem (1.1) becomes
(2.1)
Py — Kz, —bp, =0, in |0, 1[x]0, oo,

P2 = 0Grz + bz + E& + p191(d1) + p2g2(2(2,1)) = 0, in ]0,1[x]0, oo,
T(t)ze(w, p,t) + (1= p7' (1) 2p(, p,t) = 0, in (]0,1[)*x]0, o0l

uw(0,t) = u(1,t) = ¢(0,t) = ¢(1,¢t) =0, in |0, 00,

w(z,0) = up(x), u(x,0) =wuy(z), in]0,1],

¢(z,0) = do(x), ¢e(x,0) = ¢1(z), in]0,1],

2(x,p,0) = fo(z,—p7(0)), in (J0,1[)>.

In order to deal with the new variable z, we define the Hilbert space

12(0,1) = 12(0, 1, 1*(0,1)) = {z 10, 1[— L2(0, 1), /01 /01 22(x, p)dpdz < oo} ,

which endowed with the inner product

(2,2) = /01 /01 z(x, p, t)Z(x, p, t)dpdx.

We consider now the following assumptions.
(A1) g1 : R — R is a strictly increasing function of class C* and ¢, : R — R is
an increasing function of class C! such that it exist € < 1, ¢1, ¢; and a convex and
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non-decreasing function H : R, — R, satisfying
(2.2)
H(0) =0 and H is linear on [0,¢] or H'(0) =0 and H” > 0 on ]0, €] such that

ailsi| < lgu(s1) + lga(s2)| < eo(lsa] + [sa]), if [sa] + 2] > e,
S+ g1(s1) + 93(52) < H ' (s1ga(s1) + s292(52) ), if 1] + [sa] < e

Also, for any s € R, we assume that it exist some positive constants ¢y, a; and as
satisfying

23) ()| <2
and
(2.4) a1592(s) < G(s) < azsg1(s),

where G is a primitive of gs.
(Ag) 7 is a function in W2°°([0,T]), T > 0, such that

0<7<7(t)<m, forallt>D0,
T'(t) <6 <1, forallt>D0,

where 79 and 7, are a positive numbers.
(A3) With respect to the weights of feedbacks p;, i = 1,2, we assume that

@1(1 — 9)
as(1 — alé)'ul'

We define the energy associated with the solution of (2.1) as
(2.5)

1 /1 1
B) =5 [ ok + padt + w4+ 662 + €6 + 2+ 27(0)y [ Galw, p))dp] dor
where v is a positive number such that

(1 — ou)|pe] p1 — Qo) o]
—_— < < —F-.
041(1 —6> 7 (6]

2| <

Remark 2.1. The energy functional E(t) defined in (2.5) is positive. In fact, we can
easily show that

w2+ 2buyd + £ = ;[(u + 2(;5)2 + §<¢> + 2u>2 + 210 + 2&&} ,

where 2k; = k — £ and 26 =¢ Y are positives from € > b2. Thus,

3 Tk
/<o<u$+ Z¢)Q+§(¢+ 2u>2

1
Ku2 4 2buy ¢ + E¢* > 3 > 0,

which implies the positivity of E(t) and

(2.6)  E(t) > ; /01 [pluf + P20} + Kauy 4+ E1¢7 + 297 (1) /01

G(z(x,p))dp] dx.
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Remark 2.2. e The strict non-decreasing property of g; implies the existence of a
positive constant ¢; satisfying

(2.7) c1 < gi(s).

e Assumption (2.2) implies that s19;(s1) + s2g2(s2) > 0 for all s, s € R.

e By the mean value theorem for integrals and the monotonicity of g», we deduce
that

G(s) = [ galo)do < sga(s).

then a; < ag < 1.

Remark 2.3. Let U* be the conjugate function of the differential convex function W,
ie.
- W (s) = sup(st — U(1)),
then W* is the Legendre transform of W, which is given by (see Arnold [4])
W (s) = s(W) 1 (s) — W) K, i s € [0,
satisfies the generalized Young inequality
(2.8) AB <VU*(A)+¥(B), if Ael0,9'(r)],Bel0,r]

A starting point will be to give a derivative’s upper bounded of the functional F;
defined as

(2.9) Ey( —|—5/ / (x,p)dpdx, for e > 0.

Lemma 2.1. For any ¢ > 0, the functional E, satisfies along the solution of (2.1)
the following estimate
(2.10)

Ei(t) < —p /O1 O1g1(or)dx — Po /01 2(x,1)g2(2(x, 1))dzx + 8/01 prdr — 5/01 2*(x,1)dz,
where By = py — yag — aglpg| and Ba = (1 — O)ay — (1 — aq)|psl.

Proof. Multiplying (2.1); and (2.1)5 by w; and ¢, respectively, and using integration
by parts over [0, 1], we obtain

1d

2dt Jo
1 1

+ /0 G191 (dr)dw + ,ug/o b1go(z(z,1))dx = 0.

Multiplying (2.1)3 by vg2(2(z, p)) and integrating the product over ([0,1])?, we get

t) /01 /01 z(w, p)ga(2(z, p))dpdz + (1 — p7'(1)) /01 /01 2p(, p)g2(2(x, p))dpdz = 0.
This means that

th/ / 2z, p) Wﬂdf“*V/ / ap< (1 —pr'(t ))G(Z(fmp)))dpd:c = 0.

1
(2.11) [pluf + pag? + KuZ + 662 + £ + 2bu$¢] dx



NON-LINEAR POROUS SYSTEM WITH A DELAY TERM 597

Consequently, using the fact that z(x,0,t) = ¢4, we get

012) 7% [ [ 06t = — [ [0 @5)66 ) - Gon)d
Also, we have
(2.13) dt/ / (x, p)dpdr = —5/ 22(x,1) — ¢? |dx

The last equality has been obtained by applying the same previous arguments and
after multiplying (2.1)3 by 2ez(z, p). Combining the estimates (2.11)—(2.13) and using
(2.4), we get

(2.14)  Ej(t) < = (11 — 7o) /01 Geg1(¢)dr — (1 = O)ay /01 (2, 1)ga(z(x, 1))dx
—€ /01 22(x, 1)dx + 5/01 prdr — o /01 Orga(z(x, 1))dx.

From Remark 2.3, we have

G*(s) = sg5 " (s) — G(gy'(s)), for all s > 0.

Hence,
G*(92(2(2,1))) = 2(2,1)ga(2(2, 1) — G(z(x, 1))
Taking (2.8) with A = go(2(z,1)) and B = ¢;, and using (2.4) again, we obtain

(2.15) potrg2(2(x, 1)) < aolpa|gegi (@) + (1 — aa)|palz(x, 1)g2(2(2, 1)).
By inserting (2.15) into (2.14), we arrive at the desired inequality. This finishes the
proof. 0

3. THE WELL-POSEDNESS OF THE PROBEM

In the current section, we prove the existence and the uniqueness results to system
(2.1). Firstly, we prove the existence of a unique strong solution, next, using a
density argument, we extend the obtained result for weak solutions. For this, let

T
U= U<t) = (uvutaqba ¢t72>T and UO = U(O) = (u0au17¢07¢1af0('7 - T(O)>) . We
then consider the following spaces

H = Hi(0,1) x L*(0,1) x Hj(0,1) x L*(0,1) x L(0,1)
and
Ho = (H* N H(0,1)) x H)(0,1) x (H* N H(0,1)) x H(0,1) x L*(0,1; H'(0,1)).
Our first main result is given by the following theorem.

Theorem 3.1. Assuming that the assumptions (A;)-(Asz) hold and that € > b*. Then
for any U € I satisfying the compatibility condition

fo(+,0) = ¢1,
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problem (2.1) admits only one global weak solution
Ue G([o, +oo);9{).
Moreover, if Uy € Hy, the solution of (2.1) is strong solution, and satisfies
U € C([0,+00); Ha) N C([0, +00); H).

Proof. The proof will be established by implementing the Faedo-Galerkin method.
For, let U € Hy, T > 0 be fixed and for m = 1,2,..., let {®™},,en be a Hilbertian
basis of H}(0,1) and F™ the vector space generated by ®!, ®2 ... &™. Defining, for
1 < i < m, the sequence ¥i(x,p) as

Ui(z,0) = d'(x).

Then, we may extend ¥(z,0) by ¥ (z,p) over L?(0,1) and denote Z™ the space
generated by W' W2 ... U™ We will construct an approximate solution (u™, ¢™, 2™),
1=1,2,..., in the form

(u™(x,1), 9" (2,1)) (icm Zd""( )) o'(x),

=1 =1

= MtV (z, p),

=1

where ¢™, d™ and e™, i = 1,2,...,m, are determined by the following finite dimen-
sional problem

(/ﬁu? + bo™, <I>;> + (plu?;, (IJi) =0,
(31) 1§ (067.95) + (a0 + bl + €67 + mgr(0F) + agel=" (-, 1), #7) =0,
(72" ¢ p) + (1= p7 (1) 2, ), ¥, p)) = 0,

with
(3.2) u™(+,0) =ug' = i(uo, PYD' — ug, in H*N Hy(0,1),
=1
u (-, 0) =ul* = i(ul, PP — uy, in Hy(0,1),
=1
om(0) =g = ﬁ;(%, )& 5 gy, in H? N HY0,1),
o (,0) =g = é(m@i)@i S 6r, i HL0,1),

2 (e, 0) =20 = 0 (fo, WU = fo, in L2(0,1; HY(0, 1)),

i=1
as m — —+00.
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The standard methods of ODEs give the existence of a unique solution of (3.1)
on the inertval [0,7},], 0 < T,, < T. In the next step, we will prove that T, is

independent of m. In other words, the approximate solution becomes global and
defined for all ¢ > 0.
1.The first priori estimate. As for Lemma 2.1, the functional

BL(0) =y [ o' + ool 2 4 wlul 2+ 01677 + €62 + 20y

+ 297 () /01 G(z™(x,p))dp + 25/0 |2 (, p)|*dp|dzx

satisfies, for any € > 0,

1 1
(B0 + 61 [ 69107 de+ 5o [ 2" (@, )ga(=" (@, 1))da
+ 5/1 |27 (2, 1) 2 < 5/1 ¢ Pz
0 ’ = Jo 't ’

Choosing £ > 0, then integrating over [0, ] and taking the convergences (3.2) into
account, we get

t 1
B0+ 6 [ [ 6 gn(or)dedt
t 1
+B2/ / (x,1)g2(z (z,l))dmdt+5/ / 2™ (2, 1) Pdxdt
0 Jo
§c+€// o0 [2ddt.
0 Jo

The Gronwall’s Lemma yields the following first priori estimate
(3.3) EM(t +/ / o (o) d:pdt—l—/ / (x,1)go(2"(x,1))dxdt
+/ / |2 (x, 1) Pdzdt < c.
0 Jo

This estimate gives us the global existence of (u™, ¢™, 2™) in [0, +00) and
2™ is uniformly bounded in Ly, (0 o0; L2(0,1) )
u™, @™  are uniformly bounded in Ly, (0 oo; Hy (0, 1))
u", ¢y"  are uniformly bounded in Ly, (0 oo, L*(0, 1))
¢"g1(¢")  is uniformly bounded in L' ((O,T) x (0, 1)),
2™(x,1)ge(2™(x,1)) is uniformly bounded in Ll((O, T) x (0, 1))

2. The second priori estimate. Firstly, we are going to estimate u};(0) and
#7(0) in the L:norm. Also, we need to estimate z/"(z, p,0) in the LZnorm. For that,
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we replace @ in (3.1); by uf?, ® in (3.1); by ¢ and using Young’s inequality to get
1 1
G4 [ |l O)F +1¢7O)F|de <c [ [ OF + W2 O)F + 650 + 670

+ 16" (0)]” + g7 (6" (0)) + g3(2™ (2, 1,0)) | da.

Replacing ¥' in (2.1)3 by 2"(z, p, ) and using Cauchy-Schwarz and Young’s inequali-
ties, we get

1 1 1 1

(3.5) | [ 1o 0)dpde < c [ [ 1z, p,0)Pdpda
0 0 0 0

The sum of (3.4)—(3.5) with (3.2) yields
1 1

(36) ) F 16 @F + [ [ .. 0)dp|da <

Now, we derivate (3.1); and (3.1), with respect to t. Then, we set ®" = 2u}} and
Q' = 297, respectively, in the first and the second resulting equations and using the
non-decreasing property of g;, we find

d 1 m . . . - o
%/0 [P1|Utt |2 + pa| iy |2 + fi\umt|2 + 5|g253m§|2 + &| b} |2 + 2bu, @} }dm

1
g2 [ 2@ (" 1) 0l da

The boundedness of g5 and the Young’s inequality imply that

B1) [ ol palo s+ Sl + oy + oy a

§61/0 \z;”(x,l)]de%—c/O |60 [2dx.

In the other hand, taking the derivative of (3.1)3 with respect to ¢ and then setting
Ul = 22"(x, p, t) in the resulting equation, it follows that

2/01/01 (ljﬁi;)/(m|z?(x,p,t)|2dpdx+/ol/ol <(1_T£t7)/(t))>/|zf‘(x,p,t)|2dpdx

1 1 d m 9
+/0 /0 d7p|zt (z,p,t)|"dpdz = 0.

As z;”(x 0,t) = ¢ (x,t), it comes

dt/ / A oy @) dpde+ [ [ ( >/\ztm(a:,p,t)\2dpda:

+f rz;”(x,l,t)\ dpde = [ oy d
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Let I™ be defined by
1
1) = [ [l + poldfp? + slucsf? + ol

T(t) ! m 2
(1—,07’(t))/0 24" (@, p)| dﬂ}d%

hence from the estimates (3.7)—(3.8), we find
1 1
(Im®) + (1 —a) [ @ )P <e [ lopPde.

Choosing €; < 1, then integrating over [0, t], we get

t 1 t 1
]m(t)+// |ztm(x,1)|2dxdt§c]m(0)+c// |60 [2dxd.
0 JO 0 Jo

Employing Gronwall’s lemma with (3.2) and (3.6), we obtain the second estimate
below

t 1
(3.9) (1) +/ / 12 (2, 1)) | dwdt < c.
0 Jo
We, therefore, deduce that
2" is uniformly bounded in  L? (0, T; L*(0, 1)),

+ &|o] )P + 2bulio) +

uy', ¢y"  are uniformly bounded in Ly, (0, o0; Hy (0, 1)) :
uyy, ¢y are uniformly bounded in  LpY. (0, o0; L*(0, 1))7

Hence it follows from the estimates (3.3) and (3.9) that it exist subsequences
{u}ol C {uminoy, {0" 5 C {o™no and {2152, € {2}, verify for all
T > 0 the following convergences

g(¢") — f and  g¢o(2") — h weakly-star in  L? (O,T; L2>,
u" —u and ¢" — ¢ weakly-star in  L? (0, T H&),
(3.10) up —u; and @) — ¢ weakly-star in L™ (O, T, Hé),

uy — uy  and @y — ¢y weakly-star in L™ (0, T, L2>,

2" =z and 2z — 2z  weakly-star in L™ (O, T, Lg),

We will show that (u, ¢, z) is a strong solution of system (2.1). Firstly, we prove
that f = ¢g1(¢:) and h = go(2(x, 1)) which will be given in the following lemma.
Lemma 3.1. For each T >0, g1(¢}) — g1(¢p:) weakly-star in L2((O, 1) x (0, T)) and
g2(2"(x, 1)) = g2(2(x, 1)) weakly-star in LZ((O, 1) x (0,T)>.

Proof. From (3.9), we have ¢! is bounded in L*°(0,7T; H}) and ¢} is bounded in

L>(0,T; L?*). Then, the injection by continuity in L? gives us the boundedness of
oY in L*(0,T; H)) and ¢ in L*(0,T;L?). Hence, ¢7 is bounded in H'(Q), where
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Q = (0,1) x (0,7). Tt is known that the embedding H'(Q) — L*(Q) is compact.
This permit us to extract a subsequence ¢", still represented by the same notation,
such that

op = ¢ strongly in  L*(0,T;L2(0,1)),
which gives
oF — ¢, a.e.on Q.

Then, by the continuity of g,

(3.11) 91(97) = 91(¢n), a.e. on Q.
Similarly,
(3.12) g2(2"(x,1)) = g2(2(x, 1)), a.e. on Q.

On the other hand, with R™(x,t) defined as
:Rm<x> t) = ¢;ngl<¢;n) + Zm(xa 1)92(2171(1,, 1))7

we assert by using Jensen’s inequality and the concavity of H~! that
(3.13) /01 H’l(me(:U,t))dx <cH™! (/01 me(:C,t)dx>
<cH*(1) + c/o1 R™(x,t)dx.
For r™ = |¢}"| + |2 (x, 1), we write
[ fstem + gemean]as < [ [giem + g
+ [ e + @)

dz

dz.

Then, by using (2.2) and (3.13), we get

/01 [gf(czﬁ?‘) + g5 (2™ (x, 1))}@; < cH*(1) + c/ol Rz, 1) d.

Thus, by (3.3), it results

/Ot /O1 [9?(@5?) + g5 (2" (, 1))}d:pdt <ec,

which implies that g;(¢}), g2(2"(z,1)) € L*(Q). Combining these with (3.11)-(3.12)
and using Lemma 1.3 in [9] page 12, we derive to

g1(67) — g1(¢e) weakly-star in L*((0,1) x (0,7)),

g2(2"(2,1)) = go(2(2,1)) weakly-star in  L*((0,1) x (0,7)).
This shows that f = g1(¢¢) and h = go(2(z,1)). O
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Passage to the limit. To prove that (u, ¢, z) is a strong solution of problem (2.1)
we discuss as in [9]. For this, we consider functions v,w € C(O,T; H} (0, 1)) and

Yy e C’(O,T; L3(0, 1)) having the forms

(3.14) (v(z, 1), w :(22" Z;W D@%@,
(3.15) y(z, p,t) => ™)V (z, p),

=1

where N > n is a fixed integer. B

Then we multiply (3.1)1, (3.1)2 and (3.1)3 by ¢™(t), d™ and ¢, respectively, and
summing the resultants over ¢ from 1 to N, we find that
(3.16)

A
/T/TM%@+Qmﬁ+m£+wﬁ+mmwm+m@@%mnﬂwpmﬁ_a
/ / / [ )z (2, p) +(1—PT'(t))ZZ($7p)]y(x,p)dpdxdt:0.

dxdt = 0,

(mug + bgb”)vx + prugv

After passing to the limit in (3.16) as n — 400 and using (3.10), we arrive at
(3.17)
T
bl
T
L[ 3w+ (o0t bua + €6+ pagi(@0) + ragaa(o, 1) )
/ / / [ Yzi(z, p) + (1 — pT’(t))zp(x,p)]y(a:,p)dpdxdt = 0.

(/ﬁuI + b(b) Vg + prugv |dadt = 0,

drdt = 0,

2
The above equations hold for all (v, w,y) € (L2 (O, T; H&)) x L? (0, T; Lg) since the
functions of the forms (3.14) and (3.15) are dense, respectively, in L? (O,T ; H&) and

L? (0, T; LE) Next, we must verify that the limit functions u, ¢, z satisfy the initial
conditions, i.e.,

(318) u<70) = Uo, ut('ao) = U1, ¢(70) = ¢07 ¢t(7o) = ¢17 Z('7O) = fO'
For, we let v,w € C’?(O,T; Hg) and y € C*(0,T, L?) with

u(x, T) =u(z, T) = ¢p(x,T) = ¢y(x,T) = y(x,p,T) = 0.
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Then we integrate with respect to ¢ in (3.17), we get

(3.19)

/OT /0 1 {muvtt — (Ktta + bo)va
/OT /01 {,OQ(bwtt T 0ua + (Bta + €60+ 1191 (B0) + pag(2(x, 1))
+or [ [60000) ~ 6000 (0)] ¢
/oT /o1 /01 [ — (e O )+ 2 (o, t)]dpdxdt

7(t)
_ /01 /01 2(z, p,0)y(z, p, 0)dpdz = 0.

dodt + py | 1 [u(O)vt(O) — u,(0)0(0)

dx =0,

dxzdt

x =0,

Similarly from (3.16), we have

[ o+ (s b0y e+ 1 [ a0 0)u0) = s 0)0(0)] e =
/OT /01 {pzcb”wn + 0wy + (buﬁ + &0 + 11 91(d)) + pega (2" (z, 1)))4 dxdt
+p2 / 1 [¢"(0)wt(0) - gbf(@)w(O)]dx =0,
/ / / { T pa yt z,p, ) + ﬂzn(‘xv P t)iy(!ﬂ,p, t)} dpdl’dt
()

_/ / (x, p,0)y(z, p,0)dpdx = 0.
Recalling (3.10) and (3.2), we obtain

T 41
Iy

T 41
A /0 |:p2¢wtt + §¢mwx + (buw + 5% + ,u1g1(<bt) + /j,2g2<z(g;7 1)))&)
320) St [ [0a(0) ~ ()] dr =0,
/OT /01 /01 {_ 2(x, p, )ye(z, p, t) + sz(x,p, ty(z, p, t)]dpdxdt

1 41

_/o /0 foy(x, p,0)dpdz = 0.

dx =0,

1
dudt + py | [uovt(O) — uy0(0)
0

prLuvy + (/-iugc + bd)) Vg

dxdt

Asv(z,0), vi(z,0), w(z,0), w(x,0), y(z, p,0) are arbitrary, comparing identities (3.19)
and (3.20), we deduce (3.18). Consequently, (2.1) admits at least one global strong
solution (u, ¢, 2).
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For the uniqueness, we assume thatN(ﬂ, o, z) and (ﬁ, o, %) are two solutions of system

(2.1). Then (u, ¢, z) = (u, o, z) — (u, o, %) verifies the following system

3.21
( plzbtt — RUge — b¢:p = O,
patis — 60 + b + €6+ 11 (91(B1) — 91(8)) + g2 (92(Z(. 1) — gu(F(a. 1)) =0,
T(t)Zt<ZL‘, P, t) + (1 - pT’@))Zp(xa P, t) = Oa
u(0,t) = u(1,t) = ¢(0,t) = ¢(0,¢) = 0,
’LL(Q?,O) = Ut(ﬂf,O) = ¢($7O) = ¢t($a0) = Z<x>p> 0) = 0

To get the uniqueness of solution of (2.1), we must verify that (u, ¢, z) = (0,0,0) is
the solution of (3.21). For that, a multiplication of (3.21); by 2u; and (3.21)y by 2¢,
yields

(3.22)
jt /0 1 [muf + P2t + kg + 00, + €67 + 2bux¢] dz + 2 /0 4 (9:(80) — 91(61)) da
+mu/¢4m<@1»—m@uﬂnwx=a

Then, we multiply (3.21)3 by 2z, we get

(3.23) pr / / (x, p)dpdz + / (1—7'(t)2*(z,1)dx — /01 prdx = 0.

By setting

1

A(t) = /01 {Pluf + pod? + KuZ + 6¢2 + E¢* + 2bu,¢ + T(1) /0 22 (x, p)dp} dx

and summing the estimates (3.22)—(3.23), we obtain

1 _ ~ 1 1
(324) N =2 [ (@) = 9a(0))dw+ [ ofde — [ (1—7'(1)2 (@, Vda
—mm/¢4m<w1»—@éwﬂnwm
As gy is an increasing function, we can easily see that
(so - 3) (gl(so) - gl(s)) >0, forall sg,s €R.
Thus, (3.24) becomes

N () g/ol ¢§dx—<1—e)/01 zQ(x,l)dx—2u2/ o1(02(2(2, 1)) — g2(3(, 1)) da

Using Young’s inequality, we get

'(t) §c/01 gbfd:v—/ol z2(x,1)dx+62/0 (92(3(2,1)) — go(G (. 1)) “da.
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Since gy is C! then g, is Lipschitzien function, this leads us to

N(t) < c/ol prdr — (1 — cey) /01 22(z,1)dx.

Hence, for a suitable €5, we have

N(t) < c/o1 prda.

As A(t) is positive (for the same raison given in Remark 2.1) and A(0) = 0, Gronwall’s
Lemma forces that A(t) =0 (0 < ¢t < T), which means that u = ¢ = z = 0.
Consequently, (2.1) has only one global strong solution.
If Uy € H, then it results from the density of Hy in H that the system (2.1) has a
unique global weak solution. 0

4. ASYMPTOTIC BEHAVIOR

This section will be concerned with the study of the solution’s asymptotic behavior
of system (2.1). In fact, using the Lyapunov method, we will prove that, under equal
wave speeds and non-equal wave speeds cases, the solution of (2.1) converges to zero
as t tends to infinity.

We start with this important notation. By setting ¢ = 0 in (2.9) and under the
assumption (A;), we have

1 1
41) E@)< —61/0 begn (¢0)da — 52/0 2(,1)ga(2(z,1))dz < 0, for all t > 0.

Then (2.1) is dissipative with respect to E.

4.1. Technical lemmas. In this subsection, we state and prove various lemmas given
for (u,¢,z) a solution of (2.1). It would help us to estimate the derivative of the
Lyapunov functional.

Lemma 4.1. The functional

1
Fi(t) = —pl/ uudx
0

satisfies

1 3k 1 1
(4.2) Fl(t) < —p1/ uldx + g/ uldr + c/ Pdx.
0 0 0

Proof. A simple differentiation with respect to t, using (2.1);, yields

1 1 1
Fi(t) = —p1/ uldx + KJ/ uidr + b/ Uz pd.
0 0 0

The Young’s and Poincaré’s inequalities lead to (4.2). O
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Lemma 4.2. The functional defined by

d
F _p2/ ¢tuscdx+ pl/ utgba:dx

satisfies for any n > 0
(4.3)

2

F4<t>s—;/;uzdx+n< 2(1,1) +u2(0,1)) + jn(cﬁi(l;t)Jr(bi(U,t))

1 1 1 5p1
vo ddrte [ gonde+e [ g 1)de+ ( —m) [ i
Proof. Direct computations, using (2.1);—(2.1)9, lead to

Ft) = [ e [0 = btz = €0 — 1101 (61) — pagala(r 1))] da
2 [ g [t + b6+ (5 - p2> [ bt

An integration by parts gives
z=1 1 bS 1 1 1
Byt =|uacn| = b [udot 2 [ G2do— ¢ [ uidde— g [ gr(@unda
=0 0 0
1 01
112 [ 9ol s + ( - p2> [ Guanadz.

Using Young’s and Poincaré’s inequalities, (4.3) is established. O
Lemma 4.3. Let x be a solution of
{Xm: = — 0,
x(0) =x(1) =0.

Then the functional
! bp1
Fy(t) = /0 P20 + o WX dx

satisfies the following estimate
(44)  Fl(t) < - 5/ ¢2dm—<§—>/gb2dx+no/udm+c/ 2dz
+ c/ gi(¢y)dw + c/ g5(2(x,1))dz,  for all ny > 0.
0 0
Proof. Differentiating F3 and using (2.1)1—(2.1)2, we get
(4.5) F5(t :—5/ P*dr + — / Xxdx—é/ (o d:l:+,02/ qbtda:+—/o upxedx
- /Ll/o ¢g1(¢r)dr — M2/0 ¢g2(2(z,1))dx.
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By exploiting Young’s inequality, we have

(4.6) b? /01 upxedz <ng /1 urde + c/1 Xidx,
1
(47) [ omtonas <i (€= 2) [t [ o

1
(48) o [ og(s(e, D)dr <5 (s - ) [ s+ [ et )i
0 4 k) Jo 0
Inserting (4.6)—(4.8) into (4.5) and using the fact that
1 1
| e < [ o,
0 0
1 1 1
/ Xidx g/ Xfxdxg/ prdz,
0 0 0

we obtain (4.4). O

Next, in order to eliminate the boundary terms, appearing in (4.3), we introduce
the following function

(4.9) m(z) = —4x +2, z€]|0,1].
Then, we have the following result.

Lemma 4.4. For any n > 0, the functional Fy defined by

1 6 1
Fy(t) = g/o prm(x) g d + 47]/0 P2 (7)1 dx

satisfies

Fi(t) < - n(u (1,t)+ui(0,t>)—i}(¢i(1,t)+¢i(0,t))

1 1 1 1
(4.10) + cnps / uldr + c/ prdx + (( + n)b + 2n> / uZdzx
0 0 4 4 0
1 1 1
o dldrtc [ giondr+c [ gi:(e,1)da
Proof. By using (2.1)1, (2.1)2 and (4.9), it holds that

Fl(t) :Z[—m(ui(l,t)—i-ui(o,t)) —|—2p1/ dx+b/ 2)ughpda
+2/€/1 uidm] +£7[—5<¢i(1,t)+¢§(0,t)) +2p2/0 S
+25 [ e —b [ mla)owuade —n [ m(@)6.(6)dz
— i [ m()aa(a(, 1)) — 26 [ &zx]
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The estimate (4.10) follows by exploiting Young’s and Poincaré’s inequalities. O

Lemma 4.5. The functional

/ / z(x, p,t))dpdx

satisfies

(4.11)
Fi(t) < / / z(z, p,t))dpdr — (1 —)e™™ /01 2(z,1)g2(2(x, 1))dx
—i—c/o gzﬁtdx—i-c/o g3 (¢y)dx

Proof. Taking the derivative of Fj and using (2.1)3, we have

FL(t) =7 / / 2(x, p,t))dpda
+ /0 /0 (1= pr'(£))e" %2 (x, p, t)ga(2(x, p, 1)) dpd.
Then
- [ [ [1—m D)e Gz, p, )| dpda
. / / e 0°G (2(x, p,1))dpds
:—/ {1—T't e_T(t)G(z(x,l,t))—G(z(x,O,t))}dm
(¢ / / "OrG(2(x, p,t))dpd.

Using (2.4) with the fact that z(z,0,t) = ¢, e™® < e7™? < 1 for all p € [0, 1] and
T € [10, 1] , We obtain

Fi(t) < —7(t / / G (2(x, p,t))dpdr. — e (1 — 0)ay /01 2(z,1)g2(2(z,1))dx
+042/O Ge91(dr)da

The estimate (4.11) follows by exploiting Young’s inequality. O

Lemma 4.6. For a suitable choice of N and N;, 1 =1,2,...,5, the functional defined
by

5
(4.12) L(t) = NE(t)+ > N;Fi(t).

=1
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satisfies, for a fized positive constant my, the estimate
4]
(4.13) L'(t) < —moE(t) + <P1 - 2) / Grrurdr + c/ prdx
1
+c/0 g%(qbt)da:—l—c/() ga(z(z,1))dz.

Proof. From (4.1), (4.2), (4.3), (4.4), (4.10) and (4.11), it follows that for any ¢t > 0
(52
£(0) <~ (Vo= No) [n(u2(1,) +02(0.0)) + 3 (¢2(1.1) + 6200.1))|
{pN nN—ncpN}/vfd:U—i—N—i—N —|—N}c/1¢2dx
1V1 — 1odV3 14Vq i 3 4 5| ), %

= [gem = (G g an)] [ ot

_(5_>N3/ qsdx—[aNg (N1 + Na+ Ny) ]/ ¢rda

— TN5/ / (z, p))dpdx + |:N2 + N3 + Ny + N5:| / g2 (¢y)dx

1 5
+ [N2 N+ N4}c/0 @2 (2(x,1))dz + Ny <p1 - p2> / urtind.

Furthermore, we take

nepa

Ny =3nc, Ny=Ny=N;=1, ny= ;
Nj

to get
(4.14)

1 1 1 1
L'(t) S—ncpl/ ufda:+c/ ¢?dx—(b—n<18/-€c—l—b+8))/ uidr
0

((5N3—c>/ &2 x—(g—)NS/ ¢dw+c/ P (22, 1))dx
/ / 2(x, p) dpdx+c/ gl(¢t)d$+<6— 2)/ Ourtiedx.

Now, we select n < and then we choose N3 large enough such that

b
18kc+b+8
(5N3 —c> 0.

Hence, the estimate (4.14) with the fact that k€ > b? and (2.6) gives us (4.13). O
4.2. General decay rates for equal of wave speeds. In this subsection, we show

that the solution have a general decay rate in the case of equal speeds of wave
propagation.



NON-LINEAR POROUS SYSTEM WITH A DELAY TERM 611

Theorem 4.1. Let U € H. Assuming that (A;), (Az) and (A3) are fulfilled, k& > b
and that

pPL_ P2
k0
Then, there exist positive constants a, a; and as such that the solution of (2.1) satisfies
(4.15) E(t) < aHfl(alt + ag), forallt >0,
where -
Hi) = [ ds and Hy(t) = tH'(eot).
1(t) ¢ Hy(s) 2(1) (€ot)
Proof. Since 28 = £, then we can easily show for N sufficiently large, that the
functional £ given by (4.12) is equivalent to E, i.e.,

L(t) ~ E(t).
We consider, as is [8], the following two partitions of [0, 1]
Dy = {x €0,1] : |4 + |2(z,1)] < e}, Dy = {x € [0,1] : |o¢] + |2(z, 1)] > e}
and we define R(z,t) by
R(x,t) = drg1(Pr) + 2(x, 1, ) go(2(z, 1,1)).
Then by recalling (2.2) and (4.1), we obtain

(4.16) L'(t) < —moB(t) — cE'(t) + | H'(R(x,1t))da

D1
Now, we discuss two cases.
1. H is linear on [0, ¢|. In this case, we obtain, for some positive constant ¢,

L'(t) < —moE(t) — cE'(t) — JE'(1).
Hence, Lo = £ + (¢ + ¢)E ~ E satisfies
Lo(t) < —=Lo(0)e ™,
which leads to
E(t) < —cE(0)e .

2. H is non linear on [0, ¢]. By using Jensen’s inequality and the concavity of H!,

we find that
e ] ).
/931 H (fR(x,t))d:L‘ <cH /Dl R(z,t)dz
Thus, (4.16) rewrites as
(4.17) £'(t) < —moBE(t) — cE'(t) + cH ™ ( / fR(:c,t)dx) .
Dy

For ¢y < € and m; > 0, the functional given by

Lo(t) = H' <60 g(((t)))> £(t) + myE(t)
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satisfies, for some fixed positive constants {, and (3,

(4.18) GoLi(t) < E(t) < GLa(t)
and
£ (t) = eog ((g; H <60§<(é))> Lt) + H (eo g(%))) £/(8) + mi B (1),

Next, by recaling the fact that £’ <0, H > 0 and H” > 0 on [0, ¢] and using (4.17),
we get
(4.19)

L1(t) < —moE(t)H' (605((8))> + cH' (6055(2%) H' (/@1 fR(x,t)dm) +mi E'(t).

Let H* be the convex conjugate of H, then by testing (2.8) with

A:H'<60§ES;> and B:H_1</leR(x,t)dm>,

we get

o E@)N A E)
H <60E(0)> H (/Dl fR(a:,t)dx) <H (H (EOE(O)>> +/Dl R(z,t)dx.
Using (4.1) with the fact H* < s(H')~!(s), we have that

(420)  H' (60 g((?)) m(f 1 R(z, )dr) < e g((é)) H <€0 58) _CcE().
The substitution of (4.20) into (4.19) provides

E(t) E(t)

H' —c)E'(t).
w0 (w5 + o -9F 0
Fixing €y sufficiently small, so that moE(0) — cey > 0, then for m; > ¢, we can find a
positive constant ag such that

E(t) E(t) E(t)

4.21 Lh(t) < — H' = —agH
2 0= s (o0y) = -t (o5
where Hy(t) = tH'(€ot) is a positive non-decreasing function on [0, 1]. Next, by setting
Lo = %L e can easily show, by (4.18), that Ly ~ E. And, from (4.21), we discover

~ E(0)
that

(4.22) L5(t) < —ayrHa(L(1)).

From the definition of H;, we have

L) < —(ng(O) — ceo)

1
Hi(t) = ——
1) Hy(t)
whereupon the inequality (4.22) becomes
1

Gl < e my
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which implies
[Hi(La(1)] < an.
An integration over [0, ] yields that
Hi(Ls(t)) < ajt + Hi(L2(0)).
Then, using the non-decreasing property of H~!, we infer that
Lo(t) < H™ (art + az).

The use of Ly ~ F leads us to (4.15). Hence, the proof is completed. ([l

4.3. General decay rates for non—equal of wave speeds. In this subsection, we
investigate the situation when 2 ;é which is more realistic in the view of physics.

Theorem 4.2. Let Uy € Hy. Assume that (A1) and (As) hold, K€ > b* and that

PL_, P2
K 5
Then, for
(4.23) ol <min {21 2Ly _y)
' Ha (6] 02(2 0) H1

there exist some positive numbers w and wy such that for any t > 0
(4.24) BE(t) < wH;y (“;1)

Proof. Differentiating (2.1) with respect to x, we obtain

P1Uztr — Kllgpe — DPpe = 0,

P2021t — OPuzg + Dlgy + Edy + 11 G2egy (D) + proze(,1)g5(2(x, 1)) = 0,
T(t)zu(@, p,t) + (1 — p7'(t)) 20p (2, p, ) = 0,

(4.25) uy(0,1) = uy(1,t) = ¢2(0,1) = ¢(1,1) = 0,

ug(w,0) = up(z), w(w,0) = uy(z),

¢(2,0) = ¢,(2),  dui(,0) = ¢, (2),

(2, p,0) = f(z, —p7(0)).

Then, for a fixed positive constant 7 satisfying

e e
(4.26) (12%) <7 < (2m - &lpal),
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where ¢ and ¢ are introduced in (2.7) and (2.3), we define the modified energy
functional to system (4.25) as

1 1
5 | [+ padi i, + 662, + €02

1
+ 20ty ¢y + 2797 (1) / 2.2, p, t)dp} dx.
0

Our point of departure will be to show that the modified energy functional € is
non-increasing. So, we have the following result.

Lemma 4.7. Under the assumptions in Theorem 4.2, the modified energy functional
€ 1is non-increasing and satisfies for any t > 0

(4.27) &'(t) < —c/o1 P2, dx — c/ol 22(z,1)dx.

Proof. Multiplying (4.25); and (4.25)y by u,; and ¢., respectively, and integrating
by parts over [0, 1], we obtain

1 d !

1 1
+M1/0 03,91 (¢0)dx +u2/0 Gpizz(2,1)gh(2(x,1))dx = 0.

Similarly, we multiply (4.25)3 by Jz.(x, p,t), we get

(4.29) th/ / V22, (z, p, t )dpdx——Z(l—T’(t))/ 2(z,1) da:+7/ ¢, dx.

0

Combining the estimates (4.28)-(4.29) and using the fact that ¢; < ¢}(s) and (Ajy),
we yield that

1

&) <= (e = 1) [ e = 20— 0) [ 2 )da

0
— /LQ/O Gutze(, 1) gh(2(x, 1)) dz.

By using Young’s inequality with the fact that |g5(s)| < 2, we arrive at

_ ¥ Colpe| /1 9 v Ca| /1 2
/ < . - . a . . .
E't) < (cl,ul 5 o > ; pdx 2(1 0) 5 )/ zi(x, 1)dx

Estimate (4.27) follows by using (4.23) and (4.26). O

Now, going back to the proof of Theorem 4.2. Defining, as in (4.12), a Lyapunov
functional L by

L(t) = ME(t) + L(t).
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It should be mentioned that L is not equivalent to E. Then, using (4.13) and (4.27),
we get

L'(t) < —moE(t) —CM/ P2 dx + (5_p2>/ Ourupdr

ve [ ghdere [ o +e [ dlee )
Utilizing Young’s inequality and the definition of E(t), we get

1 1
L'(t) < = (mo =) () = (M = cy,) [ e+ [ otda

e [ gt te [ gete 1)

Fixing 71 < mg and then taking M sufficiently large, so that cM —¢,, < 0, we obtain
for dy > 0

L(t) < —doB(t) +c/ <btdx—|—c/ g1(¢t)d$+c/ G (=(x, 1))dz.
Consequently by exploiting (2.2) and (4.1), it holds that

(4.30) L) < —doE(t) — cE'(t) + / ))da.

As in the proof of Theorem 4.1, we distinguish the followmg two cases.
1. H is linear on [0,¢]. From (4.30) and by using (4.1), we have, for some positive
constant ¢/,

L'(t) < —doE(t) — (c+ ) E'(1).
Then, the functional Ly = L + (¢ + ) E, satisfies
Ly(t) < —doE(t).

Integrating over [0, ¢] and using the non-increasing property of E, we yield that

< / dS < —Lo(O)
Hence, for d > 0 we have
d
E(t) < o for all t > 0.

2. H is non-linear on [0,¢]. By repeating the same arguments as in the second
part of the proof of Theorem 4.1, we find that the functional

Ly(t) = H' (eg g(((?)) L(t)+ d1 E(t)

satisfies, for a fixed positive constant wy, the following property
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An integration over [0, t] gives

t E(s) 1
431 /H 26 s < Ly (0).
( ) 0 2<60E(0)> S_wo 1()
It follows from the fact that £ < 0 and H) > 0 that the map
E(t)
t H.
o <€°E<0>>

is non-increasing. Thus, from (4.31), we obtain

E(t) t E(s) 1
tH, (o ) < / Hy (02 ds < —L,(0).
: (60];(0)) T <€°E<0> T
Consequently, for w,w; > 0 we have
E(t) < wHy! (u:) , forallt>0,

which finishes the proof. U
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ON SIMULTANEOUS APPROXIMATION AND COMBINATIONS
OF LUPAS TYPE OPERATORS

T. A. K. SINHA!, K. K. SINGH?, AND AVINASH K. SHARMA?

ABSTRACT. The purpose of the present paper is to study a sequence of linear and
positive operators which was introduced by A. Lupas. First, we obtain estimate of
moments of the operators and then prove a basic convergence theorem for simulta-
neous approximation. Further, we find error in approximation in terms of modulus
of continuity of function. Finally, we establish a Voronovskaja asymptotic formula
for linear combination of the above operators.

1. INTRODUCTION

At the International Dortmund Meeting held in Written (Germany, March, 1995),
A. Lupas [11] introduced the following Linear positive operators for f : [0,00) — R as

(L) L) = —apr 3 By (2) 220
(12) (1-ae =3 Wy,

|
—_ U

where
la| <1, (a)o=1, (a)y=a(a+1)---(a+v—-1), v>1.
If we impose that L, (t,z) = z, we find that a = 1/2. Therefore, operator (1.1)
becomes

L =2 S 00 (%) azo

Key words and phrases. Lupas operators, simultaneous approximation, modulus of continuity,
Voronovskaja asymptotic formula, linear combinations,
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It was seen that these opeartors are positive and linear and preseve linear functions.
Bernstein polynomials [10] exhibit the property of simultaneous approximation. Simul-
taneous approximation for Baskakov operators, modified by Durrmeyer, was studied
by Heilmann and Miller [8]. Another modification of Baskakov operators for simulta-
neous approximation was investigated by Sinha et al. [18]. Yet another modification
of Baskakov operators viz., integral modification of Baskakov operators shows simulta-
neous approximation property in Thamer et al. [20]. This was studied for Durrmeyer
modification of Bernstein polynomials by Gonska and Zhou [4]. In the summation-
integral type operators Gupta et al. [7] explored the simultanoeus approximation.
So far research work was done for linear positive operators ([3],[6],[9],[12]-[15], [19]).
Singh and Agrawal [17] proved simultaneous approximation by a linear combination of
Bernstein-Durrmeyer type polynomials. Gupta [5] studied the differences of operators
of Lupas type. So, the Lupas operators play very important role to approximate
functions for f € C[0, 00).

It turns out that the order of approximation by these operators is at best O(n™1),
however smooth the function may be. Therefore, in order to improve the order of
approximation by the operators (1.1), we apply the technique of linear combination
introduced by Butzer [2] and Rathore [16].

The approximation process for linear combination is defined as follows.

Let dy,dy, ..., dx be (k+ 1) arbitrary but fixed distinct positive integers. Then, the
linear combination L,(f,k,z) of Lgn(f,2),5 =0,1,2,...,k, is given by

Laga(f,2) dg* dg® -+ dg"

1| Lgn(f,z) d7t d72 - d7*
L(fohoa) = | o) AT A

Ldkn<f7$) dlzl dlzz dlzk

where A is the Vandermonde determinant defined as

1 dyt dy? e dp”
Ao bl
1 dpt dp? - a;*
On simplification, we have
k
(1.3) n(f, kyx) :JZ—;) k)La;n(f, ),

where

k # 0 and C(0,0) = 1.
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2. MOMENT ESTIMATES
Lemma 2.1 ([5]). The following relations hold:

2a — 1
Lo(La)=1, Lot —x,2)= f , Lo((t — 2)%,2) =
—a

n?z%(2a — 1)% + nax
n?(l — a)?

Now, we define mth order moment

() = Ln((t = 2)™,2) = (1 — @)™ {i (n2)y v <” _ x)m} .

!
= V! n

Lemma 2.2. p,,(x) is a polynomial in x of degree [m/2]. Moreover

1

nl™s

Proof. By definition of moments of mth order, we have

() =(1 - a)"xg—l)’"a” e { ] @(‘WH <n)}

(2.1) =(=D)"(1—a)" 3

X (I/(T) +p2l/(,r71) +p41/(,r72) + PPN )}’

where v = v(v — 1)(v — 2)--- (v — r + 1), py is a polynomial in r of second degree,
p4 is a polynomial in r of fourth degree and so on.

It follows from (1.2) upon s times differentiation in a that
>, (nx),

(2.2) >

v=0

Making an use of (2.2) in (2.1)

V! V(y - 1) T (V - s+ 1)@”78 = (ng;')S(l _ a)*nazfs'

() =(=1)™ g% (T) <_1>” mm—r{ i iTa)r (nx), + pg(litl)r_l(nx)r_l

ar72

PR
Again,

ne),
(o) gy & @y 6
nrx’ nx  (nx) (nx)3

where ¢; as before is a polynomial in 7 of degree j.
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Therefore, taking a = 1/2 and using fact that >, (T)(—l)”‘s =0, s <m, we
find that

o () = (=1)"2™ {(nx)[ﬂl + - - - higher order terms} :

Therefore, p,,(x) is a polynomial in x of degree [m/2]. This completes the proof of
lemma. U

3. SIMULTANEOUS APPROXIMATION

(e 9]

Theorem 3.1. Let f' € Cg[0,00). Then, sequence {%(Ln(f, a:))} converges to

n=1
f'(x) pointwise on [0,00). Moreover, if S is a compact subset of [0, 00) then sequence

{d%(Ln(f, m))}zo:l converges to f'(x) uniformly on S.

Proof. We expand
fw) = f() + (w—2)f'(@) + [(£(0) = (@)t

Operating L,(-,y) on both sides of above equation and in view of Lemma 2.1, we
obtain

Lt = f0)+ (12, ~ o) @+ 0= apr {3 aem, ),
where R, = V{/n(f’(t) — f'(x))dt. Thus,
d a s
B L) = ) a1 - a)
X {ln(l —a) ZO (nj)ya”Ry + Zl Cil(gzxx))y la/' R,,}

We put nx = « and differentiate (1.2) w.r.t. . Further, we equate coefficient of a” on
both sides, we get

1 1 1 a,s 1
3.2 —. — - - Ry
(32) vl do (1/—1)!+2 (1/—2)!+3 (v —3)! +1/ 0!
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Using (3.2) in (3.1), we get

L)~ 1 @)
—n(1 - a)*|a(Ry — Ro) + a {ﬁ‘!)l(Rz R+ %(R2 . Ro)}
o {(O‘!)?(Rg ~Ra) g (Ol‘fl(Rg “ R+ S(a)o(Rs — Ro)} +

3! T
a*(a); 1 a’(a)s
+ .5(34—R2)+ 3 (35_33)+...}
+ a3{(a)0:1))(33 — Ry) + a(la!)l . ;(R4 —Ry)+ a (2?6)2 i :1))(35 —Ry) +-- }
+ -
(3.3) =n(l—a)*[E; + g+ g+ -], say.

The continuity of f/(-) at point x implies that for a given € > 0 there exists a § = §(z),
(depending on z) such that |f'(t) — f'(x)| < e if |t — x| < §. We break R, — R, in two
parts depending upon |t — z| < § and |t — x| > §. In the second part, there may be
two terms, where |f'(t) — f'(z)| < 2||f'lcpo,00)-52 (t — 7)2

Using Lemma 2.1, we get

0k . / o~k 2
5] < al (Z Z;!(O‘)k> N 2 QHf(JLC’B[O,oo) z{z %(Q)k (i _x> }

" \k=0 k=0
. {nxQ(Za —1)2 + ax} (- a)e

n(l—a)?
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Now,

oo k / 2 ook 2
2 € a WNf'llesoe a a k
ol < o {5 ) + R S5 e (e

k=0 k=0

2 € o M esos) @ [nz*(2a—1)* + ax .
. =a°—(1— Y BVBIe0) 1 .
(3:5) ¢ n< )+ 02 n n(l —a)? (1-a)

The similar estimates for 3,3y, ... are combined in (3.3) and we take a = § due
to Agratini [1]. Finally,

d , € 1
La(f) = f@)| < Cn S+ ).

This completes the proof of the first part.

Proof of second part of Theorem 3.1. Let S be a compact subset of [0, 00). The
pointwise continuity of function f’(-) at points of S, imply, by virtue of compactness
of S, that f'(-) is now uniformly continuous on S. Thus, ¢ is now independent of
x. Moreover S, being compact, is a bounded subset of [0,00). Thus z € S implies
|z| < C4, a constant. This implies by (3.4) and (3.5) that convergence is uniform. [

Theorem 3.2. Let f' € Cg[0,00). Then for § >0 and |a,b] C (a1,b1) we have

sup |L4(f,) = £/(@)] < ('8, lon, i) + 1 euioonr

z€la,b]

Proof. We proceed in similar way as in the proof of Theorem 3.1. In the steps following
(3.3) if |t — x| < 4, then |f'(t) — f'(x)| < w(f',d,|a1,b1]). When [t — x| > 6, using
boundedness of f’ the total contribution is of order || f'||c0,00)O (%) as n — 0o, by
Lemma 2.1. Hence, the proof follows.

4. LINEAR COMBINATIONS

Theorem 4.1. Let f*+2) € Cp[0,00). Then there holds for each x € [0,00), point-
wise:

(41) L L(fka) - () = nl{ > qj(x)f(j’(x)} vo(), nooo

j=k+2

Moreover, if S is a compact subset of [0,00), then convergence (4.1) is uniform on S.
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Proof. Using Taylor’s series expansion, we write

(w — )

o f(2) (Q;) 4+

flw) =f(x) + (w = 2) f'(x) +
(w o x)2k+2
(2k + 2)!

w t1 to tok+1

+/// / (f(2k+2)(u)_f(2k+2)<x))dt2k+1 dtoy, - - - dtydu.

+ f(2k+2) ([E)

Operating L,(-,y) on both sides of above equation and in view of Lemma 2.1, we
obtain

(2)
Lalfn) =1@) + (72 —2) 7@ + S a1,y
(3) (2k+2)
+ / 3!(96)]93(1/”79) +oet ]Mpzkw(l/”,y)
+(1—a)™ (i <ny'>”a”Ry> :
v=0 v
where
v/n ty to tok+1

B, = / // N / (f(2k+2) (u) — f(2k+2) (x))dtogs1dtsy, - - - dtrdu
and p; (%, y) is a polynomial in y of degree j and in % of degree (j — 1).
This implies that

d (2
12 L (fa) =)+ L)

fO(z)
31

n(1— a)m{ log(1 — a) Vi;o (nj) a’R, :1 Cil(gfx))y . CIZRZ,}.

pa(1/n, x)

f(2k:+2) (z)

+ ps(1/n,x) + - + Wﬂzku(l/na )

v=1 d(nz) v!

Let ¢(n, ) :n(l—a)m’{log(l a) > nj)“ a’ R4y, dnnvat g } Now, taking

linear combinations on (4.2) and using their properties (1.3), we have

L k) - (1) (o) = { S ga) <x>} DOl ROldy, ).

j=k+2 J=0

We analyze last term as in (3.1) and obtain the required result.

The proof of the second part of theorem follows from the proof of the second part
of Theorem 3.1. O
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APPROXIMATION BY A COMPOSITION OF
APOSTOL-GENOCCHI AND PALTANEA-DURRMEYER
OPERATORS

NAV SHAKTI MISHRA! AND NAOKANT DEO!

ABSTRACT. The present paper deals with the Durrmeyer construction of operators
based on a class of orthogonal polynomials called Apostol-Genocchi polynomials.
For the proposed operators, we first establish a global approximation result followed
by its convergence estimate in terms of usual, r-th and weighted modulus of con-
tinuity. We further study the asymptotic type results such as the Voronovskaya
theorem and quantitative Voronovskaya theorem. Moreover, we estimate the rate of
pointwise convergence of the proposed operators for functions of bounded variation
defined on the interval (0, 00). Finally, the results are validated through graphical
representations and an absolute error table.

1. INTRODUCTION

Recently, Prakash et al. [20] proposed the following positive linear sequence of
operators:

(1) G (i) = 3k ) (’“)  we(0,0),

n

where 532‘ (x) =e™ HTM)%’(: (ZT;A) and gy (x; A) is the generalized Apostol-Genocchi

polynomials of order «, which belong to the class of orthogonal polynomials. These
polynomials were defined for a complex variable z, |z| < 7 in [16]. However, in
this study we limit ourselves to a real variable ¢ € [0,00). The generalized Apostol

Key words and phrases. Apostol-Genocchi polynomials, Paltdnea basis, generating functions,
special functions, functions of bounded variation.
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Genocchi polynomial of order «, i.e., g¢ (z;\) can be estimated with the help of
following generating function:

tk

2 axt_oooc . z
(1.2) (14—Aa) ‘ "Z;gkC“A)m‘

The more explicit form of g (z;\) was proposed by Luo and Srivastava in [17].
They presented some elementary properties of these polynomials and derived explicit
series representation of g (z; A) in terms of hypergeometric function defined by Gauss.
The series is given as follows:

oy e [FY L (ko) [a+tn—1 A"
S of o [ G e

n=0
X Z (_1)j (TL)Jn(fE +j)k_n_aﬂpl (04 +n—knin+1; ]> ’
= j T+
where {k,a} € NU{0}, A € R\ {—1}, x € R and yF (a, b; ¢; t) denotes the Gaussian
hypergeometric function defined by

oFy1 (a,byc;t) = oFy (byasc;t) = ) (@), (0)y. -
= (o) k!

In particular, for « = 1 and A = 1, these operators reduce to classical Genocchi

polynomials which are obtained by the following generating function:

Qtext 00 tk
- . |t|<2m 7 R,

where gi (z) = gi (7;1). It can be clearly seen that gi(r) are the k''-degree polyno-
mials, few terms of which are given as follows:
gl(:c>:17 92(.1'):2%—1, g3($):33§'(3§'—1),
g1 (z) = 42° — 62> +1, g5 (x) = 5z* — 102° + 5z, . ..
For the case = 0, one can obtain the so-called Genocchi numbers gy using the
relation:
) =3 (F)
i=0
Genocchi numbers can be defined in many ways depending on the field where they are
intended to be applied. They find a wide range of application in numerical analysis,
combinatorics, number theory, graph theory etc. Luo [15,16] defined Apostol-Genocchi
polynomials of higher order and also introduced g-Apostol-Genocchi polynomials. He
studied the relationship of these polynomials with Zeta function. In the last two
decades, a surprising number of papers appeared studying Genocchi numbers, their
combinatorial relations, Genocchi polynomials and their generalisations along with
their various expansions and integral representations. To the readers, we suggest
following articles [4,18,21] and references therein.
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In the recent past, much work has been dedicated towards the Durrmeyer type mod-
ification of linear positive operators. For instance, Dhamija and Deo [8] introduced
the Durrmeyer form of Jain operators based on inverse Pélya-Eggenberger distribu-
tion. They studied its moments with the aid of Vandermonde convolution formula
and analysed other approximation properties. Heilmann and Raga [12] studied a
link between Baskakov-Durrmeyer type operators and their corresponding classical
Kantorovich variants. Acu and Radu [3] introduced and studied a class of operators
which link a-Bernstein operators and genuine a-Bernstein Durrmeyer operators. To
see more work relevant to this area, one may refer [2,5,7,10,11,13].

Inspired by above stated researches, we now consider a Durrmeyer type modification
of Apostol-Genocchi operators based on Paltanea basis on positive real line. For
f € C[0,00) and p > 0, the operators are defined as follows:

(13 MG (fi) = 3 sk @) [ 1 (0 @), € [0,00),

where I}, (t) = npe” """ ("l’it&::;l and 822 (x) is defined in (1.1).

The outline of the study is as follows. We consider a Durrmeyer type construction
of Apostol-Genocchi operators based on the basis function due to Péltanea [19] with
real parameters o, A and p. We establish approximation estimates such as a global
approximation theorem and rate of approximation in terms of usual, r-th and weighted
modulus of continuity. We further study asymptotic formulae such as Voronovskaya
theorem and quantitative Voronovskaya theorem. The last theorem is an application
of the proposed operators for the functions whose derivatives are of bounded variation.
Moreover, the approximation and the absolute error therein has been shown graphically

by varying the values of various parameters using Mathematica software.

2. PRELIMINARIES

Before proceeding to our main results, we state some general lemmas which are
useful throughout this paper. In addition, we have used Mathematica software wher-
ever necessary for complex and tedious calculations such as for moments and central
moients etc.

Lemma 2.1. Fore,(t) =t*, s € NU{0} and p > 0, we have

[0 (e (kpts=1U  (kp),
[ O = = 11~ Tl

where the symbol (B), = B(B+1)(B+2)---(B+n—1), (8), =1 denotes the rising
factorial.

Lemma 2.2. For operators (1.3), the moments are obtained as follows:

Mﬁ’)‘ (eo; ) =1,
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a
Mo (ey;x) =+ n 1+ )

N r[l4+2a+de 1 1 [a? — 2a)e — ae?\? a
M2 (e;2) = 2° + - l(l-l-)\@ P] 2 l (1+Ae)? + P )\e)] )
M (33 2)

5 2?2 [3(a+Xe+1) 3
T l 1+ 2e) +p]
a l3a2 —3ar?e? —3ade+3a+ A%’ +2X e+ 1 3(2a+ de+1) 2]
n? (14 Xe)? p(1+ Ae) p?
N 1 [a?’ — 3a?Me? — 6a?de — aXPe® — dar?e? — bade N 2a
n3 (1+ Xe)? P2 (14 Xe)
3(a? — a)?e? 2&)\6)]
+ 5 ;
p(1+ Xe)
M (ea; )
, T [2a+3Xe+3 6
= A )
z? [25 4 12a + 602 + 50e) + 25e? A — 6ae?N? 18(1+a+e)) 11
n? l (1+ Ae)? 1+ Xe)p pzl
x [7+420a + 6302 + 202 — 6a%e2\? — 9a?Xe
n3 l (1+Xe)’®
—bae3 X + 4ae?\? + 24ade + Te3A3 + 21 )e
(14 Xe)®
6 (3a? — 3ae*N? — 3ade +3a+ e2XN2 +2X e+ 1)  11(1+2a+Xe) 6
1+ 2e)% T+r0? p3]
1 [at—6e*a®A— 12ea3 X — 16etar + 8e2a X3 — 82e¢3a)\? — 118e%aN? — 66a+ e
nt [ (1+Xe)?
6 (a® — 3e2a?\? — 6ea’\ — e2a)® — 4e?al? — bea))
(14 Xe)’p
N 11 (a? — ae*)\? — 2a)e) N 6o ]
(14 Xe)?p? (14 Xe)p? |

Proof. In the proposed operators (1.3), for s = 0, 1, 2 respectively we have 1.
2. For s =1, again using Lemma 2.1 we have

N e (14 X\ " & g (nz; A
(2.1) Mo ey x) = ( ) Zk(k')k

n 2 =0
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Differentiating both sides of (1.2) with respect to ¢ and taking limits ¢ — 1 and
r — nx, we have

= g (nw; A) o ne < )“‘“
E=2 14+ Xe)).
kz::o X e e (o +nx (1+ Ae))

Making use of this value in equation (2.1), we obtain the first moment.
3. Similarly for s = 2, we have

oA (g gy = E (LN TSGR (0 )
(2.2) M (ezia) = — ( > ) > AR

On differentiating both sides of (1.2) with respect to t and taking limits ¢ — 1 and
r — nx, we have

= i (na; A) o m( 1 )H“
Lo k(k—1)=2 2 1+ A
3:0 X ( ) e e {2nsa (1 + Xe)

+n22%(1+ Xe)> — (Me (3+ Xe) —a + 1)} .

Combining this with the first order moment and equation (2.2) we obtain the third
moment.
We can obtain the higher order moments in a similar way. U

Lemma 2.3. Let us define 63 (x) = M2 (P,; x), where ®4(t) = (e; —z)° and s = 1,2.
Then, from Lemma 2.2 we have

SO (1) = o

w (7) n(1+ Xe)’
1 1 [a? — 2ale — ae?)\? a

§P(zx) =2 14+ ~| + — + .

w () n pl  n? (1+ Xe)® p (14 Xe)
Furthermore,
: a,\ . _ o
M5 = ey

n—oo

1
lim nMON Py 2) = (1 + ) x,
p

1 - > 4 Ae (1 +6p — 3p%)) a2
lim n2MEA (5 0) —2 L (O F80)p = B+ 80) " + de (1460 = 3%)) @

and

1 2 3 e (2 >
lim HBM%)\((I)(S;JZ,): ( +p>( +p+ Oép:— 6( —f—p))l’ .
n—00 (1 + )\6) p4
Remark 2.1. Since fourth and sixth central moments are too lengthy and unnecessarily

space consuming, we are omitting their values here. Instead we choose to write their
limiting values, which is useful in the proofs of our main theorems.
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3. MAIN THEOREMS

Theorem 3.1. For any f € Cg[0,00), where Cg|0,00) is the class of all continuous
and bounded functions, we have

M2 (f (1) 52) = [ («)
uniformly on any compact subset of [0, 00).

Proof. Taking into account Lemma 2.2, we can easily see that M2 (e,; z) — 2" for
each r = 0,1,2 and hence using the well known Korovkin’s theorem due to [14],
operators M converge uniformly on each compact subset of [0, 00). O

3.1. Global approximation. Let us denote By [0, 00) the space of all functions f
on positive real axis that satisfy the condition |f(z)| < H; (1 + 2?) where H; is a
constant depending only on f but independent of x.

Let Cf[0,00) be the subspace of By [0,00) containing all continuous f on [0, 00).
The norm in C¢[0, 00) is defined by

U@ﬂ
= su
1 f1]2 me[ogo) T
Also, let C}[O, 00) 1= {f € Cf[0,00) : lim, o |1fJ£ is ﬁnlte}

Theorem 3.2. For each f € C}[0,00), we have
lim ‘Mz’\(f,x) — fH2 = 0.

n—00

Proof. The proof of this theorem can be given by application of Korovkin theorem [9]
on the interval [0, 0c0). Therefore, it would suffice if we prove that

(3.1) 1mqpmkg,)—@H_o 1=0,1,2.

For | = 0, condition (3.1) holds as operators M®* preserve constant functions. Next,
we can write

sup — 0,

«
zef0,00) N1 4 Ae)(1 + 2?)

for adequately large n. Therefore, the condition (3.1) is satisfied for [ = 1.
Finally, we write

1 x 1 1 [a? 4+ 2ade — ae?\?
MOW\ ; 22 < — |1+ -+ —=
s~ 2], < suw (1”2){”( R et
L *
p(l+Xe)) )’

lim HM 62, ) - 62H2 =0.

n—oo
Hence, the theorem follows. O

HM%”\(el;x) — tz <

which suggests
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Let Cg[0,00) be the class of all continuous and bounded real valued functions. We
define the r-th order modulus of continuity by w, (f,d) and define it as

wy (f,6) = sup sup |Apf(2)],
x€[0,00) 0<h<S

where A denotes the forward difference. In particular, the usual modulus of continuity
is defined for r = 1 and is denoted by w (f,d). Moreover, we define the norm as

I/ =" sup [f ()]

x€[0,00)

Also, the Peetre’s K-functional for the function g € C%[0, 00) is defined as:

. _ : 1 . 2
Ka(f;0) = gegﬁgm){uf —gll+ 319" : g € C3[0,00)},

where
C%[0,00) = {g € Op[0,) : ¢, ¢" € Cp[0,00)}.
The next theorem establishes the degree of approximation of the operators M®* in
terms of the usual and second order modulus of continuity for the functions in the
space Cg|0, 00).

Theorem 3.3. For h € C%[0,00), define the auziliary operators @f{”\ as
3.2 Qo (hyz) = MOy x) — b2+ ———— | + h(z).
32) A 050) =052 < (14 ) )

Then there exists a constant C' > 0 such that
M@ (B, z) — A(z)] < Cus (R, V3) + w(h, 00 (z)),

§ =0 () + (M)Q

Proof. Using Lemma 2.2, one can easily observe that Q% ((t — z);z) = 0.
Let f € C%]0,00), then by Taylor’s expansion we have

where

Fl6) = (@) + (t—2)f +/

Moreover, we can write

Qe (fi ) — f(a)| = |5 ( [ = wan, ) ‘

VAN
=
>
8
e
~
=
—
X
<
8
N————
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(3.3) < (M ((t—2)%2) + (71(1‘)‘“)) ) 1F"1l-

Since we know that
M (b )| < 1]
therefore

30 @] < e o+ (o + )|+ o <.

a
n(1+ Ae)
Finally, combining equations (3.2), (3.3) and (3.4), we get

MG (B 2) = B(a)| <|Q0 (= f)i2) = (b= ()] + |23 (fi2) = f(2)]

h(z) —h<x+n(1i)@>‘
<4||h— fl|+ (MgA ((t=2)%2) + (M)Q) 1l

+’h(m)—h<x+n(l+)\e)>‘

co{n= 1+ (1 () o)

+w<h’n(1+)\e)>'

Taking infimum over all f € C3[0,00) and using the result Ky (f,0) < wy ( 1, \/5) due
to [6], we get the desired outcome. O

+

Theorem 3.4. Let h € Cp(0,00), then for any r > 0, x € [0,7] and adequately large
n, we have

MG (s ) — B ()| < 4H) (1+27) f + 2w (h, \/E) ,

where D is a positive constant.

Proof. If x € [0,r] and t > r + 1, then t — x > 1. Therefore, we have the following
inequality:

B (t) = h(2)| < 4Hp (14 2%) (t — )",
Again for z € [0,7] and ¢ € [0, + 1] and using the well known inequality w (f, 0) <
(B4+ 1D w(f,0),5 € (0,00), one can obtain

I (t) — I (2)] < <1+ "’”f') wrir (1, 6).
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From (3.5) and (3.5), we can write

\h(t) — h(x)| < 4H, (1+:1:2) (t—x)” + <1+ ’t_éx|>wr+1 (h,9).

Applying operator M2 in the above relation and making use of Cauchy-Schwarz
inequality, we get

MG (i) — B ()| <Ay (14 2%) Mt (= 2)%; )
1
)
<4Hj; (1 + mQ) MeA ((t — )% ZL‘)

+ 2w, <h, \/M%’A ((t— )% :1:)) .

Since MaA ((t — I)Q;SE) < %, where D is a positive constant, it follows that for
adequately large n, we have

MG (B 2) = h(2)| < 4H; (14 27) g + 2w (h, \/E) :

which is the required result. O

(14 M0 (= o)) i (,0)

3.2. Quantitative Voronovskaya theorem and Voronovoskaya theorem. Let
Cp [0, 00) be the subspace of By [0, 00) containing all continuous and bounded func-
tions f for which lim |f ()] (14 22)"" is finite.

The weighted modulus of continuity €2 (f,d) due to [1] for each f € Cpl0,00) is

defined as
|f(x+h)—f(2)
Q(f,0) = .
(£,9) xe[o,il)ljhkg (1 4+ h? + 22 4 h22?)

In the next theorem, we discuss the quantitative Voronovskaya theorem for the pro-
posed operators (1.3) and derive a Voronovoskaya asymptotic result as a resulting
corollary, making use of the following properties of weighted modulus of continuity.
For every f € C}[0,00),

(a) Q(f,0) = 0 for § — 0;
() 1f () = f @) < (14 (t—2)*) (L +22) Q(f, [t — 2]).

Theorem 3.5. Let i’ € CL[0,00) and x € [0,00). Then we have
a

(14 )\e)h/ (=)

1z 1+1 +i 042+204)\e—ae2)\2+ a W (2)
2 \n p) n? (14 Xe)? p (14 Ae)

|M%A<h; 2) - h(z)
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8(L+a*) (s L
=" Q<hﬁ>

Proof. By Taylor’s expansion, we may write
MG (s x) — R(x) = M ((A(t) — Ti(x)) s 2)
(t—x)°

o ((t i @+ T @) e X () (- ) x) ,

where X (t,z) = (B” (¢) — " (x))/2 is a continuous function which tends to zero at 0
and ¢ lies between x and ¢t. Using Lemma 2.3, we get

«

Cn(l+ )\e)h/ (z)

1z <1+1 +i a? + 2ake — ae?\? N a W (2)
2\n p n? (14 Xe)? p (14 Xe)

MG (X (1 0)] (£ = ) 2)

) — 1)

With simple manipulations in property (b) of weighted modulus of continuity and
using |¢ — x| < |t — x|, we can write

Xt ) <8(1+a?) (1 G ;f) ) Q(1',0)),

which implies that

Mt (1 -2 <8 (1+2?) (@ g U ;496)6) Q).

Therefore, in view of Lemma 2.3, we can write

1
M (A ()|t — 2)%2) < 8 (1+22) Q0 6) {5,<f> () + 50 (:1:)} ,
as n — 0o. Choosing 6 = ﬁ, we get the desired outcome. OJ

Corollary 3.1. Let f be a bounded and integrable function on the interval [0, 00) such
that the second derivative of f exists at a fized point x € [0,00). Then

f(x)+z (1 + ;) 1 (x).

lim n(M(fra) = fa) = (1 f)\e)

3.3. Functions of derivatives of bounded variation. Next we estimate the rate of
convergence of the operators (1.3) for functions with derivatives of bounded variation
defined on [0, c0).

Let f € DBV,[0,00) be the class of functions whose derivatives are of bounded
variation on any finite subinterval of [0, 00) and satisfy the growth condition |f(t)| <
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Kt7, 7> 0 for all t > 0 and constant K > 0. For such functions, let us represent our
proposed operators (1.3) in the following form

(3.5) M (i) = [di (@) (@,
0

where g (i) = 3 sy} @) ().

Lemma 3.1. For x € [0,00) and adequately large n, we have

(i) if 0 <y <z, then
K§?
n (T,7) / qapxtdt<7"(x)2;
n(x —y)
(ii) if z < z < o0, then
%0 Ké?
1—19n(x,z):/ qg’p(a:;t)dtg#(%.
z n(z — x)

Proof. (i) Taking into account Lemma 2.2 and proposed operators (1.3), we have

2
N x—t Y 240
< an’”(w;t)<x_y> 2y - @0 d
1 N K52 T
= 2 M5 <(t — )% ) ( )2
(z —y) n(z —y)
Proof of (ii) is similar to (i). O

Theorem 3.6. Consider a function f of bounded variation on every sub-interval of
[0,00) that satisfies the growth condition |f (t)| < Kt7 for some absolute constant K
and T > 0. If there exists an integer vy, (2y > 1) such that f(t) < O (t7) for every
t >0, then fory >0, z € [0,00) and sufficiently large n, we have

M () — F(@)| <5 (F (o) + (@) 3 (@)

B8 oy = p o+ 2V (1)

[\/ﬁ] z+-Z=

# B SV () + S ) = f (1) = af )
o)+ Dy JERE )
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where %(f) denotes the total variation of f on any finite subinterval |a,b] of [0, 00)

y

. e
and p(y,7,7) = mc(f (t — 2)77q2 (1) dt) .
0

Proof. For x € [0,00), we can write for our proposed operators (3.5) that

MG (fia) = flw) = [ai (st) (F () = f ()t

(3.6) = 7q3:;‘ (x;t) (/ I (x) du) dt.

Also for any f € DBV,][0,00), equality (3.7) holds true, i.e.,

(W) =g (F () £ )+ ()45 () = 7 (=) sem (u = 2)

B s (M@= @)+ ),

where
1, u=u=,

0 (1) :{ 0, u#x.

It can be easily verified that:

7 (/ (f () - ; (f () + f <w—>>) @(u)du) 4o (w5 t) dt = 0.

0 x

Now in view of our proposed operators (3.5), we may write

7(/ (; (f (z+)+ [ (x—))) du) qg:;} (2:t) dt

xT

= o

= (' (o) + f (=) M (= )i

[\

Moreover

S Gt -1 @) sentu— ) du) 2 (1) di
1
2
1

) = @) [ 1t = 2l ai (i) b
0

1/2

/ / )\ 2.
(3.8) <5 1 () = f (=) (M2 (2 = 0)% )
Making use of equations (3.7)—(3.8) and Lemma 2.2 in equation (3.6), we get

M (f2) = f () <5 (F (04) +  (2=-) M3 (¢ = 2)50)
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1/2

31 ) = @) 06 (6= )% )

+f ( [ 1@ du) s () dt
(f (o) + £ (=) M (¢ = 2):2)
K(52 ( )

<

N | —

_|_

|/ (z+) = " (z—)]

+ 7 ( / () du) qed (s t) dt.

Taking absolute values on both sides and rewriting equation we have:

N () — £ )] <5 () 4 £ (=) MG (¢ = ) 1)

(3.9) \/ |f =)| + P, (z) + P, (2),
- ( [ 2@ du) 0z (xit) de
@=|/ ( e du) a2 (a:t) .

Integrating by parts after applying Lemma 3.1, and taking y = = — ﬁ, we obtain

and

r—

P (@) < [ dal@t) 1. \dt+/ W23 0) |f ()] dt.

0 a2

Since f’,(x) =0 and 9, (x;t) < 1, it implies

Sk

T x

[ ol lde= [ oa(st)lf, @) = 1, @) dt
z—% x—%
< [ Yunds 2 v
=

Again using Lemma 3.1 and substituting y = z — 7 we obtain

Z __x_
= Um = Um Vn
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_ K& 7] G i
&V
Thus, we can write P, (x) as
V7]
3.10 Py (2) < == V. (fl)+—" v, (")
(3.10) O AL D)

Next, to estimate P,, (z), we have

0=/ ( [ 1w du) i (s ) dt| +
<

n(z) + By (z),

where

Ap () =

7 (/t [ (u) dU) qo (w5 t) dt
- L]O (j f's (u) dU) o (xt) dt] .

Since 1 — 19, (1: t) <1, by putting t = o + £ successively, we have

and

(z,2x)) du—/f — Uz, t) dt

4=
_KR (@) vr

nx?

xT

+ / £ 0111 = 0 (a8t

F @) = f@—af @I+ [ 1 @1 @Dl

2 (0 20 OV H%t
SKi’;g)\f(zx)—f(:v)—xf’(x)HKéZ()+A A [ isa
K(52< ) ) K62 (CII) [\/”Ta:Jr% . r Ttm .

F(20)— f () - af (@) + AR RTS

Further we estimate the value of B, (z) as follows:

(311) B, (x) :L/ (/f’x(u)du> g (s ) dt
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(3.12) <Q/t7qnpxtdt—|—|f |/qa’\xtdt+\/ f

It is obvious that ¢ < 2(t — z) and © < ¢ — z, when t > 2z. Now applying Holder’s
inequality in the first term of equation (3.11), we get

B, (z) =2"C (/ (t — x)quﬁg (x;t) dt) ) + Kfj \/ f

0

K (52
(3.13)  =p(y,7z)+ f
Flnally, combining equatlons (3 10)-(3.13) and putting values of P,, () and P,, (z)
n (3.9), we get the required result and the theorem is proved. 0

Example 3.1. Let f(x) = x* — 32% + 222 + 1. We choose parameters a = A\ = 2 and
p = 3. For n =10, 50, 100, 200, we have the following representations.

(a) Figure 1 shows the rate of approximation of the operators M®* towards the
function f. Clearly the proposed operators (1.3) converge to the function f
for sufficiently large n.

(b) In Figure 2, the associated absolute error ©,, = |[M2A(f;x) — f(z)| is rep-
resented graphically for arbitrary values of x in interval [0,00). It can be
observed that error is monotonically decreasing for increasing n.

(c) An error estimation table is provided in Table 1 which depicts that for higher
value of n, the error approaches to zero.

Therefore, it can be concluded that proposed operators (1.3) provide good approxi-
mation for n adequately large.

T ————— ————— ————— 3
12+ B

08l ]

06l ]

02} ]

00k ]
N S S A RS RO
0.0 0.5 1.0 1.5 20

— f(x) n=10 —— n=50 —— n=100 —— n=200

FIGURE 1. Convergence of M2*(f;z) for the polynomial function
f(z) = 2* — 32% + 22 + 1 with parameters « = A =2, p = 3.
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0.8

0.6

0.4

0.2

00f

FIGURE 2. Absolute error ©,, = M2*(f;x) — f(x)| of the proposed
operators for f(z) = 2* — 323 + 222 + 1 with parameters a = A\ =2, p = 3.

TABLE 1. Table for Absolute error ©, = |M3*(f;x) — f(z)| of the

N. S.

MISHRA AND N.

DEO

________
_____

== -

proposed operators M,

X O10 Os0 O100 O200
0.4 | 0.0100759 | 0.00856603 | 0.0045899 | 0.00236582
0.8 | 0.166213 | 0.0652568 | 0.0345534 | 0.0177532
1.2 0.232451 0.120425 | 0.0647845 | 0.0335316
1.6 | 0.0454756 | 0.123219 | 0.0698567 | 0.0369876
2.0| 0.921829 0.022785 | 0.0243437 | 0.0154083
2.4 | 2.65087 0.231729 |0.0971809 | 0.0439198
2.8 | 5.48687 0.691177 | 0.320143 0.15371
3.2 9.68409 1.40641 0.66997 0.326674
3.6 | 15.4968 2.42828 1.17209 0.575527
4.0 23.1792 3.80765 1.85192 0.912982

Example 3.2. Figure 3 illustrates the effect of increase in values of parameter p on
the rate of convergence of proposed operators M®* for the function f(z) = 4x(x —
1.1)(z — 1.9) while keeping the value of a, A and n fixed. Here we chose n = 10 and
a = A = 2 to show the impact of the parameter p clearly. One can easily deduce from
the figure that as we increase the value of p the rate of convergence gets relatively

faster.
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—_— f(x) =—— p=2 p=5 p=25

F1cURE 3. Effect of increase in parametric value of p for given n = 10,
a = A\ = 2 on the convergence rate of proposed operators.

Acknowledgements. The authors are grateful to the referee for several valuable
comments and suggestions leading to an overall improvement of this paper.

[1]
[2]

3]

[9]

REFERENCES

T. Acar, A. Aral and 1. Rasa, The new forms of Voronovskayas theorem in weighted spaces,
Positivity 20(1) (2016), 25-40. https://doi.org/10.1007/s11117-015-0338-4

A. M. Acu, T. Acar and V. A. Radu, Approzimation by modified Uf operators, Rev. R. Acad.
Cienc. Exactas Fis. Nat. (Esp.). Serie A. Matematicas 113(3) (2019), 2715-2729. https://doi.
org/10.1007/s13398-019-00655-y

A. M. Acu and V. A. Radu, Approximation by certain operators linking the a-Bernstein and
the Genuine a-Bernstein-Durrmeyer operators, in: N.Deo et al. (Eds.), Mathematical Analysis I:
Approzimation Theory, Springer, Proceedings in Mathematics & Statistics 306, 2020, 77-88.

I. N. Cangul, H. Ozden and Y. Simsek, A mnew approach to q-Genocchi numbers and their
interpolation functions, Nonlinear Analysis: Theory, Methods & Applications 71(12) (2009),
€793-e799. https://doi.org/10.1016/j.na.2008.11.040

N. Deo and S. Kumar, Durrmeyer variant of Apostol-Genocchi-Baskakov operators, Quaest. Math.
44(4) (2020), 1-18. https://doi.org/10.2989/16073606.2020.1834000

R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

M. Dhamija, Durrmeyer modification of Lupas type Baskakov operators based on IPED, in: N.
Deo et al. (Eds.), Mathematical Analysis I: Approzimation Theory, Springer, Proceedings in
Mathematics & Statistics 306, 2020, 111-120.

M. Dhamija and N. Deo, Jain-Durrmeyer operators associated with the inverse Pélya—Eggenberger
distribution, Appl. Math. Comput. 286 (2016), 15-22. https://doi.org/10.1016/j.amc.2016.
03.015

A. D. Gadjiev, Theorems of the type of PP Korovkins theorems, Mat. Zametki. 20(5) (1976),
781-786.

[10] T. Garg, A. M. Acu and P. N. Agrawal, Further results concerning some general Durrmeyer

type operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113(3) (2019),
2373-2390. https://doi.org/10.1007/s13398-019-00628-1


https://doi.org/10.1007/s11117-015-0338-4
https://doi.org/10.1007/s13398-019-00655-y
https://doi.org/10.1007/s13398-019-00655-y
https://doi.org/10.1016/j.na.2008.11.040
https://doi.org/10.2989/16073606.2020.1834000
https://doi.org/10.1016/j.amc.2016.03.015
https://doi.org/10.1016/j.amc.2016.03.015
https://doi.org/10.1007/s13398-019-00628-1

646 N. S. MISHRA AND N. DEO

[11] V. Gupta, A note on the general family of operators preserving linear functions, Rev. R. Acad.
Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113(4) (2019), 3717-3725. https://doi.org/
10.1007/s13398-019-00727-z

[12] M. Heilmann and I. Raga, A nice representation for a link between Baskakov and Szdsz-Mirakjan-
Durrmeyer operators and their Kantorovich variants, Results Math. 74(1) (2019), 1-12. https:
//doi.org/10.1007/s00025-018-0932-4

[13] A. Kajla, N. Ispir, P. N. Agrawal and M. Goyal, q-Bernstein-Schurer-Durrmeyer type operators
for functions of one and two wvariables, Appl. Math. Comput. 275 (2016), 372-385. https:
//doi.org/10.1016/j.amc.2015.11.048

[14] P. P. Korovkin, Linear Operators and Approzimation Theory, Hindustan Publication Co., Delhi
1960.

[15] Q. M. Luo, g-Eztensions for the Apostol-Genocchi polynomials, General Mathematics 17(2)
(2009), 113-125.

[16] Q. M. Luo, Extensions of the Genocchi polynomials and their Fourier expansions and integral
representations, Osaka J. Math. 48 (2011), 291-3009.

[17] Q. M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials
and the Stirling numbers of the second kind, Appl. Math. Comput. 217(12) (2011), 5702-5728.
https://doi.org/10.1016/j.amc.2010.12.048

[18] M. A. Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math.
Appl. 62(6) (2011), 2452-2462. https://doi.org/10.1016/j.camwa.2011.07.031

[19] R. Paltanea, Modified Szdsz-Mirakjan operators of integral form, Carpathian J. Math. 24(3)
(2008), 378-385.

[20] C. Prakash, D. K. Verma and N. Deo, Approzimation by a new sequence of operators involving
Apostol-Genocchi polynomials, Math. Slovaca (to appear).

[21] H. M. Srivastava, B. Kurt and V. Kurt, Identities and relations involving the modified degenerate
hermite-based Apostol-Bernoulli and Apostol-Euler polynomials, Rev. R. Acad. Cienc. Exactas
Fis. Nat. (Esp.). Serie A. Matemédticas 113(2) (2019), 1299-1313. https://doi.org/10.1007/
s13398-018-0549-1

'DELHI TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF APPLIED MATHEMATICS

BAwWANA RoAD, DELHI-110042, INDIA

Email address: navshaktimishra_phd2k18@dtu.ac.in, navshakti20@gmail.com
Email address: naokantdeo@dce.ac.in

ORCID iD: https://orcid.org/0000-0001-7079-4211


https://doi.org/10.1007/s13398-019-00727-z
https://doi.org/10.1007/s13398-019-00727-z
https://doi.org/10.1007/s00025-018-0932-4
https://doi.org/10.1007/s00025-018-0932-4
https://doi.org/10.1016/j.amc.2015.11.048
https://doi.org/10.1016/j.amc.2015.11.048
https://doi.org/10.1016/j.amc.2010.12.048
https://doi.org/10.1016/j.camwa.2011.07.031
https://doi.org/10.1007/s13398-018-0549-1
https://doi.org/10.1007/s13398-018-0549-1
https://orcid.org/0000-0001-7079-4211

KRAGUJEVAC JOURNAL
OF MATHEMATICS

About this Journal

The Kragujevac Journal of Mathematics (KJM) is an international journal devoted
to research concerning all aspects of mathematics. The journal’s policy is to motivate
authors to publish original research that represents a significant contribution and is
of broad interest to the fields of pure and applied mathematics. All published papers
are reviewed and final versions are freely available online upon receipt. Volumes are
compiled and published and hard copies are available for purchase. From 2018 the
journal appears in one volume and four issues per annum: in March, June, September
and December. From 2021 the journal appears in one volume and six issues per
annum: in February, April, June, August, October and December.

During the period 1980-1999 (volumes 1-21) the journal appeared under the name
Zbornik radova Prirodno—matematickog fakulteta Kragujevac (Collection of Scientific
Papers from the Faculty of Science, Kragujevac), after which two separate journals—
the Kragujevac Journal of Mathematics and the Kragujevac Journal of Science—were
formed.

Instructions for Authors

The journal’s acceptance criteria are originality, significance, and clarity of presen-
tation. The submitted contributions must be written in English and be typeset in
TEX or BTEX using the journal’s defined style (please refer to the Information for
Authors section of the journal’s website http://kjm.pnf.kg.ac.rs). Papers should
be submitted using the online system located on the journal’s website by creating
an account and following the submission instructions (the same account allows the
paper’s progress to be monitored). For additional information please contact the
Editorial Board via e-mail (krag_j_math@kg.ac.rs).


http://kjm.pmf.kg.ac.rs
mailto:krag_j_math@kg.ac.rs

	1. Introduction
	2. Preliminaries
	3. Main Result
	4. Numerical Example
	5. Figures
	References
	1. Introduction
	2. Preliminaries
	3. Main Result
	3.1. New definitions of -fractional derivatives

	4. -Laplace Transform and -Sumudu Transform of -Fractional Derivatives
	4.1.  -Laplace and -Sumudu transform of -k-fractional derivatives

	5. Application
	6. Conclusion.
	References
	1. Introduction and Preliminaries
	2. Main Results
	References
	1. Introduction
	2. Preliminaries
	2.1. Fractional integral and fractional derivative of fuzzy function

	3. The Fuzzy Fractional Initial Value Problem
	4. Illustrative Example
	5. Conclusion and Future Works
	Acknowledgements.

	References
	1. Introduction
	2. Preliminaries and Lemmas
	3. Main Results
	3.1. Existance result
	3.2. Uniqueness Result
	3.3. Stability of the solutions of (1.1)

	4. Example
	References
	1. Introduction
	1.1. Differential equation formula

	2. Computational Results
	3.  Examples
	Acknowledgements.

	References
	1. Introduction
	2. Preliminaries
	3. The Well-posedness of the Probem
	4. Asymptotic Behavior
	4.1. Technical lemmas
	4.2. General decay rates for equal of wave speeds
	4.3. General decay rates for non-equal of wave speeds

	References
	1. Introduction
	2. Moment Estimates
	3. Simultaneous Approximation
	4. Linear Combinations
	Acknowledgements.

	References
	1. Introduction
	2. Preliminaries
	3. Main Theorems
	3.1. Global approximation
	3.2. Quantitative Voronovskaya theorem and Voronovoskaya theorem
	3.3. Functions of derivatives of bounded variation
	Acknowledgements.

	References

