WELL-POSEDNESS AND ASYMPTOTIC STABILITY OF A NON-LINEAR POROUS SYSTEM WITH A DELAY TERM

NADIA MEZOUAR ${ }^{1}$ AND MOUNIR BAHLIL ${ }^{2}$

Abstract

Our interest in this work is to treat a one-dimensional Porous system with a non-linear damping and a delay in the non-linear internal feedback. We prove the global existence and uniqueness of its solution in suitable function spaces by means of the Faedo-Galerkin procedure combined with the energy method under a suitable relation between the weight of the delayed feedback and the weight of the non-delayed feedback. Also, we give an explicit and general decay rate estimate by applying the well-known multiplier method integrated with some properties of convex functions and for two opposites cases with respect to the speeds of wave propagation.

1. Introduction

In the present paper, we study the well-posedness and asymptotic behavior of solutions of the following Porous system

$$
\left\{\begin{array}{l}
\left.\rho_{1} u_{t t}-\kappa u_{x x}-b \phi_{x}=0, \quad \text { in }\right] 0,1[\times] 0, \infty[, \tag{1.1}\\
\left.\rho_{2} \phi_{t t}-\delta \phi_{x x}+b u_{x}+\xi \phi+\mu_{1} g_{1}\left(\phi_{t}\right)+\mu_{2} g_{2}\left(\phi_{t}(x, t-\tau(t))\right)=0, \quad \text { in }\right] 0,1[\times] 0, \infty[, \\
u(0, t)=u(1, t)=\phi(0, t)=\phi(1, t)=0 \quad \text { in }] 0, \infty[, \\
\left.u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in }\right] 0,1[, \\
\left.\phi(x, 0)=\phi_{0}(x), \quad \phi_{t}(x, 0)=\phi_{1}(x), \quad \text { in }\right] 0,1[, \\
\left.\phi_{t}(x, t-\tau(0))=f_{0}(x, t-\tau(0)), \quad \text { in }\right] 0,1[\times] 0, \tau[,
\end{array}\right.
$$

[^0]where x denotes the space variable, t is the time variable, $\tau(\cdot)>0$ is a time varying delay, μ_{1} is a positive constant and μ_{2} is a real number. The functions $u=u(x, t)$ and $\phi=\phi(x, t)$ represent, respectively, the displacement of the solid elastic material and the volume fraction and the initial data ($u_{0}, u_{1}, \phi_{0}, \phi_{1}, f_{0}$) belongs to a suitable Sobolev space. The original Porous system is governed by the following evolution equations
\[

$$
\begin{aligned}
& \rho_{1} u_{t t}=T_{x}, \\
& \rho_{2} \phi_{t t}=H_{x}+G,
\end{aligned}
$$
\]

where T, H and G denote, respectively, the stress, the equilibrated stress and the equilibrated body force. The constitutive equations are as follows

$$
T=\kappa u_{x}+b \phi, \quad H=\delta \phi_{x}, \quad G=-b u_{x}-\xi \phi
$$

where $\rho_{1}, \rho_{2}, \kappa, b, \delta$ and ξ are positive constants satisfying in the one-dimensional case, the following inequality

$$
\kappa \xi>b^{2} .
$$

If we consider $\kappa=b=\xi$, we find the well-known Timoshenko system which is introduced by S.Timoshenko [17] and it has been widely considered in the literature. For the better comprehension of our motivation, we appeal to keep in mind that the system

$$
\left\{\begin{array}{l}
\left.\rho_{1} u_{t t}-\kappa\left(u_{x x}-\phi_{x}\right)=0, \quad \text { in }\right] 0, L[\times] 0, \infty[\tag{1.2}\\
\left.\rho_{2} \phi_{t t}-\delta \phi_{x x}+k\left(u_{x}+\phi\right)=0, \quad \text { in }\right] 0, L[\times] 0, \infty[,
\end{array}\right.
$$

is conservative. Namely, by taking any suitable boundary conditions into consideration, the energy of (1.2) given by

$$
E(t)=\frac{1}{2} \int_{0}^{L}\left[\rho_{1} u_{t}^{2}+\rho_{2} \phi_{t}^{2}+\kappa\left(u_{x}+\phi\right)^{2}+\delta \phi_{x}^{2}\right] d x
$$

satisfies the energy's conservation property, that is, for all $t>0, E(t)=E(0)$. In this vein, various damping such as viscoelastic damping, frictional damping and thermal dissipation are employed to stabilize the vibrations. It has been shown that the stability depends on the position and nature of the controls and some relations between the constants $\rho_{1}, \rho_{2}, \kappa$ and δ. Let us recall some known results on the stability of the Timoshenko system with frictional dampings. Soufyane and Wehbe [16] used the unique damping $a(x) \phi_{t}$ in the shear angle displacement and showed that the solution is uniformly stable. This one has been obtained in the case of the equal-speeds, i.e.,

$$
\begin{equation*}
\frac{\rho_{1}}{\kappa}=\frac{\rho_{2}}{\delta} . \tag{1.3}
\end{equation*}
$$

Raposo et al. [15] examined (1.2) by setting two linear frictional dampings u_{t} and ϕ_{t} where they realized an exponential decay result without imposing any condition on the coefficients. In [1], Alabau Boussouira extended [16] to a problem with a non-linear damping acting in the second equation. Under the condition (1.3), she established a
general and semi-explicit formula for the decay rate of the solutions. This result was later improved by Mustafa and Messaoudi [11] where they obtained a general and explicit decay estimate. In the other hand, for the Porous system, Quintanilla [13] proved that the damping $a \phi_{t}$ is not strong enough to obtain the exponential stability result. However, Apalara [3] got the exponential decay of the solutions for the same problem provided (1.3) holds true. Furthermore, in the nonequal-speeds case, he [3] established a general decay result when he employed a weak non-linear damping $\mu(t) g\left(\phi_{t}\right)$.

In the recent years, the Timoshenko system with time delay has been discussed by several researchers. In particular, we consider the following model with a delay term

$$
\left\{\begin{array}{l}
\left.\rho_{1} u_{t t}-\kappa\left(u_{x x}-\phi_{x}\right)+a_{1} f_{1}\left(u_{t}\right)+a_{2} f_{2}\left(u_{t}(x, t-\tau(t))\right)=0, \quad \text { in }\right] 0, L[\times] 0, \infty[, \tag{1.4}\\
\left.\rho_{2} \phi_{t t}-\delta \phi_{x x}+\kappa\left(u_{x}+\phi\right)+\mu_{1} g_{1}\left(\phi_{t}\right)+\mu_{2} g_{2}\left(\phi_{t}(x, t-\tau(t))\right)=0, \quad \text { in }\right] 0, L[\times] 0, \infty[.
\end{array}\right.
$$

Here, f_{i} and g_{i} are real functions, a_{i} and μ_{i} are positive numbers for $i=1,2$. If $a_{i}=0, g_{i}(x)=x$ and $\mu_{2}<\mu_{1}$, then the exponential stability has been proved by Kiran et al. [6] in the case of equal-speeds. In the case of a constant delay, Apalara [2] considered (1.4) when $\mu_{i}=0, f_{i}(x)=x$ and $a_{2}<a_{1}$ and established an exponential stability result provided $\frac{\rho_{1}}{\kappa}=\frac{\rho_{2}}{\delta}$. In the opposite case, only a polynomial decay is obtained. As far as we know, the first work investigated the Timoshenko beam with a nonlinear delay term is the one of Benaissa and Bahlil [5]. The problem treated is (1.4) with $a_{i}=0$. They considered only the equal-speeds case where they obtained an explicit decay estimate under a suitable relation between μ_{1} and μ_{2} and some additional assumptions. For the Porous system with delay term, the subject of this article, we cite the works $[10,14]$ and $[7]$. The authors of $[7]$ examined a non-linear Porous system of the form

$$
\left\{\begin{array}{l}
\left.\rho_{1} u_{t t}-\kappa u_{x x}-b \phi_{x}=0, \quad \text { in }\right] 0,1[\times] 0, \infty[, \\
\left.\rho_{2} \phi_{t t}-\delta \phi_{x x}+b u_{x}+\xi \phi+\mu_{1} \phi_{t}+\mu_{2} \phi_{t}(x, t-\tau)+\alpha(t) g\left(\phi_{t}\right)=0, \quad \text { in }\right] 0,1[\times] 0, \infty[,
\end{array}\right.
$$

and established, under the assumption $\left|\mu_{2}\right|<\mu_{1}$, a general decay of solution when $\frac{\rho_{1}}{\kappa}=\frac{\rho_{2}}{\delta}$.

As a consequence of the works cited above, if only one equation of a Timoshenko system is damped then the uniform stability may be achieved for weak solutions if and only if $\frac{\rho_{1}}{\kappa}=\frac{\rho_{2}}{\delta}$. However, in the situation when $\frac{\rho_{1}}{\kappa} \neq \frac{\rho_{2}}{\delta}$, a weaker decay rate result is achieved for strong solutions. According to this results, three questions naturally arise.

1. Is it possible to consider the Porous system with a non-linear damping term and a time varying delay in the internal feedback acting only in the second equation and get the same result as in the Timoshenko system?
2. In the equal-speeds case, is it possible to get the stability result with same hypotheses on μ_{1}, μ_{2}, g_{1} and g_{2} as in the Timoshenko system?
3. As we have mentioned above, the nonequal-speeds case is not considered for the non-linear Timoshenko system with delay (see [5]). So, is it possible to obtain the stability result under the same conditions imposed for the equal-speeds case?

The main aim of this manuscript is to give positive answers to theses three questions by investigating (1.1).

The rest of our paper is as follows. In the next section, we provide some assumptions and materials needed in our work. In Section 3, we state and prove the existence and the uniqueness results. The last section is devoted to the study of the asymptotic behavior of the solutions. We use c throughout this paper to denote a generic fixed positive constant, which may be different in different estimates.

2. Preliminaries

In this section, we present some assumptions, materials and notations that will be used later. Firstly, following the same arguments of Nicaise and Pignotti [12], we introduce the new variable

$$
z(x, \rho, t)=\phi_{t}(x, t-\rho \tau(t)), \quad x \in[0,1], \rho \in[0,1], t>0 .
$$

It is clear that

$$
\tau(t) z_{t}(x, \rho, t)+\left(1-\rho \tau^{\prime}(t)\right) z_{\rho}(x, \rho, t)=0, \quad \text { in }([0,1])^{2} \times[0, \infty] .
$$

Hence, our problem (1.1) becomes

$$
\left\{\begin{array}{l}
\left.\rho_{1} u_{t t}-\kappa u_{x x}-b \phi_{x}=0, \quad \text { in }\right] 0,1[\times] 0, \infty[, \tag{2.1}\\
\left.\rho_{2} \phi_{t t}-\delta \phi_{x x}+b u_{x}+\xi \phi+\mu_{1} g_{1}\left(\phi_{t}\right)+\mu_{2} g_{2}(z(x, 1))=0, \quad \text { in }\right] 0,1[\times] 0, \infty[, \\
\left.\tau(t) z_{t}(x, \rho, t)+\left(1-\rho \tau^{\prime}(t)\right) z_{\rho}(x, \rho, t)=0, \quad \text { in }(] 0,1[)^{2} \times\right] 0, \infty[, \\
u(0, t)=u(1, t)=\phi(0, t)=\phi(1, t)=0, \quad \text { in }] 0, \infty[, \\
\left.u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in }\right] 0,1[, \\
\left.\phi(x, 0)=\phi_{0}(x), \quad \phi_{t}(x, 0)=\phi_{1}(x), \quad \text { in }\right] 0,1[, \\
z(x, \rho, 0)=f_{0}(x,-\rho \tau(0)), \quad \text { in }(] 0,1[)^{2} .
\end{array}\right.
$$

In order to deal with the new variable z, we define the Hilbert space

$$
L_{z}^{2}(0,1)=L^{2}\left(0,1 ; L^{2}(0,1)\right)=\{z:] 0,1\left[\rightarrow L^{2}(0,1), \int_{0}^{1} \int_{0}^{1} z^{2}(x, \rho) d \rho d x<\infty\right\}
$$

which endowed with the inner product

$$
(z, \widetilde{z})=\int_{0}^{1} \int_{0}^{1} z(x, \rho, t) \widetilde{z}(x, \rho, t) d \rho d x
$$

We consider now the following assumptions.
$\left(\mathrm{A}_{1}\right) g_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing function of class C^{1} and $g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function of class C^{1} such that it exist $\epsilon<1, c_{1}, c_{2}$ and a convex and
non-decreasing function $H: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying

$$
\left\{\begin{array}{l}
\left.\left.H(0)=0 \text { and } H \text { is linear on }[0, \epsilon] \text { or } H^{\prime}(0)=0 \text { and } H^{\prime \prime}>0 \text { on }\right] 0, \epsilon\right] \text { such that } \tag{2.2}\\
c_{1}\left|s_{1}\right| \leq\left|g_{1}\left(s_{1}\right)\right|+\left|g_{2}\left(s_{2}\right)\right| \leq c_{2}\left(\left|s_{1}\right|+\left|s_{2}\right|\right), \quad \text { if }\left|s_{1}\right|+\left|s_{2}\right| \geq \epsilon \\
s_{1}^{2}+g_{1}^{2}\left(s_{1}\right)+g_{2}^{2}\left(s_{2}\right) \leq H^{-1}\left(s_{1} g_{1}\left(s_{1}\right)+s_{2} g_{2}\left(s_{2}\right)\right), \quad \text { if }\left|s_{1}\right|+\left|s_{2}\right| \leq \epsilon
\end{array}\right.
$$

Also, for any $s \in \mathbb{R}$, we assume that it exist some positive constants $\widetilde{c}_{2}, \alpha_{1}$ and α_{2} satisfying

$$
\begin{equation*}
\left|g_{2}^{\prime}(s)\right| \leq \widetilde{c}_{2} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{1} s g_{2}(s) \leq G(s) \leq \alpha_{2} s g_{1}(s), \tag{2.4}
\end{equation*}
$$

where G is a primitive of g_{2}.
$\left(\mathrm{A}_{2}\right) \tau$ is a function in $W^{2, \infty}([0, T]), T>0$, such that

$$
\left\{\begin{array}{l}
0<\tau_{0} \leq \tau(t) \leq \tau_{1}, \quad \text { for all } t>0 \\
\tau^{\prime}(t) \leq \theta<1, \quad \text { for all } t>0
\end{array}\right.
$$

where τ_{0} and τ_{1} are a positive numbers.
$\left(\mathrm{A}_{3}\right)$ With respect to the weights of feedbacks $\mu_{i}, i=1,2$, we assume that

$$
\left|\mu_{2}\right|<\frac{\alpha_{1}(1-\theta)}{\alpha_{2}\left(1-\alpha_{1} \theta\right)} \mu_{1} .
$$

We define the energy associated with the solution of (2.1) as

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{1}\left[\rho_{1} u_{t}^{2}+\rho_{2} \phi_{t}^{2}+\kappa u_{x}^{2}+\delta \phi_{x}^{2}+\xi \phi^{2}+2 b u_{x} \phi+2 \tau(t) \gamma \int_{0}^{1} G(z(x, \rho)) d \rho\right] d x \tag{2.5}
\end{equation*}
$$

where γ is a positive number such that

$$
\frac{\left(1-\alpha_{1}\right)\left|\mu_{2}\right|}{\alpha_{1}(1-\theta)}<\gamma<\frac{\mu_{1}-\alpha_{2}\left|\mu_{2}\right|}{\alpha_{2}} .
$$

Remark 2.1. The energy functional $E(t)$ defined in (2.5) is positive. In fact, we can easily show that

$$
\kappa u_{x}^{2}+2 b u_{x} \phi+\xi \phi^{2}=\frac{1}{2}\left[\left(u_{x}+\frac{b}{\kappa} \phi\right)^{2}+\xi\left(\phi+\frac{b}{\xi} u_{x}\right)^{2}+2 \kappa_{1} u_{x}^{2}+2 \xi_{1} \phi^{2}\right],
$$

where $2 \kappa_{1}=\kappa-\frac{b^{2}}{\xi}$ and $2 \xi_{1}=\xi-\frac{b^{2}}{\kappa}$ are positives from $\kappa \xi>b^{2}$. Thus,

$$
\kappa u_{x}^{2}+2 b u_{x} \phi+\xi \phi^{2}>\frac{1}{2}\left[\kappa\left(u_{x}+\frac{b}{\kappa} \phi\right)^{2}+\xi\left(\phi+\frac{b}{\xi} u_{x}\right)^{2}\right]>0
$$

which implies the positivity of $E(t)$ and

$$
\begin{equation*}
E(t)>\frac{1}{2} \int_{0}^{1}\left[\rho_{1} u_{t}^{2}+\rho_{2} \phi_{t}^{2}+\kappa_{1} u_{x}^{2}+\xi_{1} \phi^{2}+2 \gamma \tau(t) \int_{0}^{1} G(z(x, \rho)) d \rho\right] d x \tag{2.6}
\end{equation*}
$$

Remark 2.2. - The strict non-decreasing property of g_{1} implies the existence of a positive constant \widetilde{c}_{1} satisfying

$$
\begin{equation*}
\widetilde{c}_{1}<g_{1}^{\prime}(s) . \tag{2.7}
\end{equation*}
$$

- Assumption (2.2) implies that $s_{1} g_{1}\left(s_{1}\right)+s_{2} g_{2}\left(s_{2}\right)>0$ for all $s_{1}, s_{2} \in \mathbb{R}$.
- By the mean value theorem for integrals and the monotonicity of g_{2}, we deduce that

$$
G(s)=\int_{0}^{s} g_{2}(\sigma) d \sigma \leq s g_{2}(s),
$$

then $\alpha_{1}<\alpha_{2} \leq 1$.
Remark 2.3. Let Ψ^{*} be the conjugate function of the differential convex function Ψ, i.e.,

$$
\Psi^{*}(s)=\sup (s t-\Psi(t)),
$$

then Ψ^{*} is the Legendre transform of Ψ, which is given by (see Arnold [4])

$$
\Psi^{*}(s)=s\left(\Psi^{\prime}\right)^{-1}(s)-\Psi\left[\left(\Psi^{\prime}\right)^{-1}(s)\right], \quad \text { if } s \in\left[0, \Psi^{\prime}(r)\right],
$$

satisfies the generalized Young inequality

$$
\begin{equation*}
A B \leq \Psi^{*}(A)+\Psi(B), \quad \text { if } A \in\left[0, \Psi^{\prime}(r)\right], B \in[0, r] \tag{2.8}
\end{equation*}
$$

A starting point will be to give a derivative's upper bounded of the functional E_{1} defined as

$$
\begin{equation*}
E_{1}(t)=E(t)+\varepsilon \int_{0}^{1} \int_{0}^{1} z^{2}(x, \rho) d \rho d x, \quad \text { for } \varepsilon \geq 0 \tag{2.9}
\end{equation*}
$$

Lemma 2.1. For any $\varepsilon \geq 0$, the functional E_{1} satisfies along the solution of (2.1) the following estimate
$E_{1}^{\prime}(t) \leq-\beta_{1} \int_{0}^{1} \phi_{t} g_{1}\left(\phi_{t}\right) d x-\beta_{2} \int_{0}^{1} z(x, 1) g_{2}(z(x, 1)) d x+\varepsilon \int_{0}^{1} \phi_{t}^{2} d x-\varepsilon \int_{0}^{1} z^{2}(x, 1) d x$, where $\beta_{1}=\mu_{1}-\gamma \alpha_{2}-\alpha_{2}\left|\mu_{2}\right|$ and $\beta_{2}=\gamma(1-\theta) \alpha_{1}-\left(1-\alpha_{1}\right)\left|\mu_{2}\right|$.

Proof. Multiplying $(2.1)_{1}$ and $(2.1)_{2}$ by u_{t} and ϕ_{t}, respectively, and using integration by parts over $[0,1]$, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{0}^{1}\left[\rho_{1} u_{t}^{2}+\rho_{2} \phi_{t}^{2}+\kappa u_{x}^{2}+\delta \phi_{x}^{2}+\xi \phi^{2}+2 b u_{x} \phi\right] d x \tag{2.11}\\
& +\mu_{1} \int_{0}^{1} \phi_{t} g_{1}\left(\phi_{t}\right) d x+\mu_{2} \int_{0}^{1} \phi_{t} g_{2}(z(x, 1)) d x=0
\end{align*}
$$

Multiplying $(2.1)_{3}$ by $\gamma g_{2}(z(x, \rho))$ and integrating the product over $([0,1])^{2}$, we get

$$
\gamma \tau(t) \int_{0}^{1} \int_{0}^{1} z_{t}(x, \rho) g_{2}(z(x, \rho)) d \rho d x+\gamma\left(1-\rho \tau^{\prime}(t)\right) \int_{0}^{1} \int_{0}^{1} z_{\rho}(x, \rho) g_{2}(z(x, \rho)) d \rho d x=0
$$

This means that

$$
\gamma \frac{d}{d t} \int_{0}^{1} \int_{0}^{1} \tau(t) G(z(x, \rho)) d \rho d x+\gamma \int_{0}^{1} \int_{0}^{1} \frac{\partial}{\partial \rho}\left(\left(1-\rho \tau^{\prime}(t)\right) G(z(x, \rho))\right) d \rho d x=0 .
$$

Consequently, using the fact that $z_{t}(x, 0, t)=\phi_{t}$, we get

$$
\begin{equation*}
\gamma \frac{d}{d t} \int_{0}^{1} \int_{0}^{1} \tau(t) G\left(z(x, \rho) d \rho d x=-\gamma \int_{0}^{1}\left[\left(1-\tau^{\prime}(t)\right) G(z(x, 1))-G\left(\phi_{t}\right)\right] d x\right. \tag{2.12}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\varepsilon \frac{d}{d t} \int_{0}^{1} \int_{0}^{1} z^{2}(x, \rho) d \rho d x=-\varepsilon \int_{0}^{1}\left[z^{2}(x, 1)-\phi_{t}^{2}\right] d x \tag{2.13}
\end{equation*}
$$

The last equality has been obtained by applying the same previous arguments and after multiplying $(2.1)_{3}$ by $2 \varepsilon z(x, \rho)$. Combining the estimates (2.11)-(2.13) and using (2.4), we get

$$
\begin{align*}
E_{1}^{\prime}(t) \leq & -\left(\mu_{1}-\gamma \alpha_{2}\right) \int_{0}^{1} \phi_{t} g_{1}\left(\phi_{t}\right) d x-\gamma(1-\theta) \alpha_{1} \int_{0}^{1} z(x, 1) g_{2}(z(x, 1)) d x \tag{2.14}\\
& -\varepsilon \int_{0}^{1} z^{2}(x, 1) d x+\varepsilon \int_{0}^{1} \phi_{t}^{2} d x-\mu_{2} \int_{0}^{1} \phi_{t} g_{2}(z(x, 1)) d x
\end{align*}
$$

From Remark 2.3, we have

$$
G^{*}(s)=s g_{2}^{-1}(s)-G\left(g_{2}^{-1}(s)\right), \quad \text { for all } s \geq 0
$$

Hence,

$$
G^{*}\left(g_{2}(z(x, 1))\right)=z(x, 1) g_{2}(z(x, 1)-G(z(x, 1)) .
$$

Taking (2.8) with $A=g_{2}(z(x, 1))$ and $B=\phi_{t}$, and using (2.4) again, we obtain

$$
\begin{equation*}
\mu_{2} \phi_{t} g_{2}(z(x, 1)) \leq \alpha_{2}\left|\mu_{2}\right| \phi_{t} g_{1}\left(\phi_{t}\right)+\left(1-\alpha_{1}\right)\left|\mu_{2}\right| z(x, 1) g_{2}(z(x, 1)) . \tag{2.15}
\end{equation*}
$$

By inserting (2.15) into (2.14), we arrive at the desired inequality. This finishes the proof.

3. The Well-posedness of the Probem

In the current section, we prove the existence and the uniqueness results to system (2.1). Firstly, we prove the existence of a unique strong solution, next, using a density argument, we extend the obtained result for weak solutions. For this, let $U=U(t)=\left(u, u_{t}, \phi, \phi_{t}, z\right)^{T}$ and $U_{0}=U(0)=\left(u_{0}, u_{1}, \phi_{0}, \phi_{1}, f_{0}(\cdot,-\cdot \tau(0))\right)^{T}$. We then consider the following spaces

$$
\mathcal{H}=H_{0}^{1}(0,1) \times L^{2}(0,1) \times H_{0}^{1}(0,1) \times L^{2}(0,1) \times L_{z}^{2}(0,1)
$$

and

$$
\mathcal{H}_{0}=\left(H^{2} \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1) \times\left(H^{2} \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1) \times L^{2}\left(0,1 ; H^{1}(0,1)\right)
$$

Our first main result is given by the following theorem.
Theorem 3.1. Assuming that the assumptions $\left(A_{1}\right)-\left(A_{3}\right)$ hold and that $\kappa \xi>b^{2}$. Then for any $U \in \mathcal{H}$ satisfying the compatibility condition

$$
f_{0}(\cdot, 0)=\phi_{1},
$$

problem (2.1) admits only one global weak solution

$$
U \in C([0,+\infty) ; \mathcal{H}) .
$$

Moreover, if $U_{0} \in \mathcal{H}_{0}$, the solution of (2.1) is strong solution, and satisfies

$$
U \in C\left([0,+\infty) ; \mathcal{H}_{0}\right) \cap C^{1}([0,+\infty) ; \mathcal{H})
$$

Proof. The proof will be established by implementing the Faedo-Galerkin method. For, let $U \in \mathcal{H}_{0}, T>0$ be fixed and for $m=1,2, \ldots$, let $\left\{\Phi^{m}\right\}_{m \in \mathbb{N}}$ be a Hilbertian basis of $H_{0}^{1}(0,1)$ and F^{m} the vector space generated by $\Phi^{1}, \Phi^{2}, \ldots, \Phi^{m}$. Defining, for $1 \leq i \leq m$, the sequence $\Psi^{i}(x, \rho)$ as

$$
\Psi^{i}(x, 0)=\Phi^{i}(x)
$$

Then, we may extend $\Psi^{i}(x, 0)$ by $\Psi^{i}(x, \rho)$ over $L_{z}^{2}(0,1)$ and denote Z^{m} the space generated by $\Psi^{1}, \Psi^{2}, \ldots, \Psi^{m}$. We will construct an approximate solution $\left(u^{m}, \phi^{m}, z^{m}\right)$, $i=1,2, \ldots$, in the form

$$
\begin{aligned}
\left(u^{m}(x, t), \phi^{m}(x, t)\right) & =\left(\sum_{i=1}^{m} c^{i m}(t), \sum_{i=1}^{m} d^{i m}(t)\right) \Phi^{i}(x) \\
z^{m}(x, \rho) & =\sum_{i=1}^{m} e^{i m}(t) \Psi^{i}(x, \rho)
\end{aligned}
$$

where $c^{i m}, d^{i m}$ and $e^{i m}, i=1,2, \ldots, m$, are determined by the following finite dimensional problem

$$
\left\{\begin{array}{l}
\left(\kappa u_{x}^{m}+b \phi^{m}, \Phi_{x}^{i}\right)+\left(\rho_{1} u_{t t}^{m}, \Phi^{i}\right)=0 \tag{3.1}\\
\left(\delta \phi_{x}^{m}, \Phi_{x}^{i}\right)+\left(\rho_{2} \phi_{t t}^{m}+b u_{x}^{m}+\xi \phi^{m}+\mu_{1} g_{1}\left(\phi_{t}^{m}\right)+\mu_{2} g_{2}\left(z^{m}(\cdot, 1)\right), \Phi^{i}\right)=0 \\
\left(\tau(t) z_{t}^{m}(\cdot, \rho)+\left(1-\rho \tau^{\prime}(t)\right) z_{\rho}^{m}(\cdot, \rho), \Psi^{i}(\cdot, \rho)\right)=0
\end{array}\right.
$$

with

$$
\begin{align*}
& u^{m}(\cdot, 0)=u_{0}^{m}=\sum_{i=1}^{m}\left(u_{0}, \Phi^{i}\right) \Phi^{i} \rightarrow u_{0}, \tag{3.2}\\
& u_{t}^{m}(\cdot, 0)=u_{1}^{m}=\sum_{i=1}^{m}\left(u_{1}, \Phi^{i}\right) \Phi^{i} \rightarrow H_{0}^{1}(0,1), \text { in } H_{0}^{1}(0,1), \\
& \phi^{m}(0)=\phi_{0}^{m}=\sum_{i=1}^{m}\left(\phi_{0}, \Phi^{i}\right) \Phi^{i} \rightarrow \phi_{0}, \text { in } H^{2} \cap H_{0}^{1}(0,1), \\
& \phi_{t}^{m}(\cdot, 0)=\phi_{1}^{m}=\sum_{i=1}^{m}\left(\phi_{1}, \Phi^{i}\right) \Phi^{i} \rightarrow \phi_{1}, \\
& \text { in } H_{0}^{1}(0,1), \\
& z^{m}(\cdot, \cdot, \cdot, 0)=z_{0}^{m}=\sum_{i=1}^{m}\left(f_{0}, \Psi^{i}\right) \Psi^{i} \rightarrow f_{0}, \text { in } L^{2}\left(0,1 ; H^{1}(0,1)\right),
\end{align*}
$$

as $m \rightarrow+\infty$.

The standard methods of ODEs give the existence of a unique solution of (3.1) on the inertval $\left[0, T_{m}\right], 0<T_{m}<T$. In the next step, we will prove that T_{m} is independent of m. In other words, the approximate solution becomes global and defined for all $t>0$.
1.The first priori estimate. As for Lemma 2.1, the functional

$$
\begin{aligned}
E_{1}^{m}(t)= & \frac{1}{2} \int_{0}^{1}\left[\rho_{1}\left|u_{t}^{m}\right|^{2}+\rho_{2}\left|\phi_{t}^{m}\right|^{2}+\kappa\left|u_{x}^{m}\right|^{2}+\delta\left|\phi_{x}^{m}\right|^{2}+\xi\left|\phi^{m}\right|^{2}+2 b u_{x}^{m} \phi^{m}\right. \\
& \left.+2 \gamma \tau(t) \int_{0}^{1} G\left(z^{m}(x, \rho)\right) d \rho+2 \varepsilon \int_{0}^{1}\left|z^{m}(x, \rho)\right|^{2} d \rho\right] d x
\end{aligned}
$$

satisfies, for any $\varepsilon \geq 0$,

$$
\begin{aligned}
& \left(E_{1}^{m}(t)\right)^{\prime}+\beta_{1} \int_{0}^{1} \phi_{t}^{m} g_{1}\left(\phi_{t}^{m}\right) d x+\beta_{2} \int_{0}^{1} z^{m}(x, 1) g_{2}\left(z^{m}(x, 1)\right) d x \\
& +\varepsilon \int_{0}^{1}\left|z^{m}(x, 1)\right|^{2} d x \leq \varepsilon \int_{0}^{1}\left|\phi_{t}^{m}\right|^{2} d x
\end{aligned}
$$

Choosing $\varepsilon>0$, then integrating over $[0, t]$ and taking the convergences (3.2) into account, we get

$$
\begin{aligned}
& E_{1}^{m}(t)+\beta_{1} \int_{0}^{t} \int_{0}^{1} \phi_{t}^{m} g_{1}\left(\phi_{t}^{m}\right) d x d t \\
& +\beta_{2} \int_{0}^{t} \int_{0}^{1} z^{m}(x, 1) g_{2}\left(z^{m}(x, 1)\right) d x d t+\varepsilon \int_{0}^{t} \int_{0}^{1}\left|z^{m}(x, 1)\right|^{2} d x d t \\
\leq & c+\varepsilon \int_{0}^{t} \int_{0}^{1}\left|\phi_{t}^{m}\right|^{2} d x d t .
\end{aligned}
$$

The Gronwall's Lemma yields the following first priori estimate

$$
\begin{align*}
& E_{1}^{m}(t)+\int_{0}^{t} \int_{0}^{1} \phi_{t}^{m} g_{1}\left(\phi_{t}^{m}\right) d x d t+\int_{0}^{t} \int_{0}^{1} z^{m}(x, 1) g_{2}\left(z^{m}(x, 1)\right) d x d t \tag{3.3}\\
& +\int_{0}^{t} \int_{0}^{1}\left|z^{m}(x, 1)\right|^{2} d x d t \leq c .
\end{align*}
$$

This estimate gives us the global existence of $\left(u^{m}, \phi^{m}, z^{m}\right)$ in $[0,+\infty)$ and

$$
\begin{aligned}
& z^{m} \quad \text { is uniformly bounded in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L_{z}^{2}(0,1)\right), \\
& u^{m}, \phi^{m} \quad \text { are uniformly bounded in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H_{0}^{1}(0,1)\right), \\
& u_{t}^{m}, \phi_{t}^{m} \quad \text { are uniformly bounded in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty, L^{2}(0,1)\right), \\
& \phi_{t}^{m} g_{1}\left(\phi_{t}^{m}\right) \quad \text { is uniformly bounded in } L^{1}((0, T) \times(0,1)), \\
& z^{m}(x, 1) g_{2}\left(z^{m}(x, 1)\right) \quad \text { is uniformly bounded in } \quad L^{1}((0, T) \times(0,1)) .
\end{aligned}
$$

2. The second priori estimate. Firstly, we are going to estimate $u_{t t}^{m}(0)$ and $\phi_{t t}^{m}(0)$ in the L^{2}-norm. Also, we need to estimate $z_{t}^{m}(x, \rho, 0)$ in the L_{z}^{2}-norm. For that,
we replace Φ^{i} in $(3.1)_{1}$ by $u_{t t}^{m}, \Phi^{i}$ in (3.1) $)_{2}$ by $\phi_{t t}^{m}$ and using Young's inequality to get

$$
\begin{align*}
\int_{0}^{1}\left[\left|u_{t t}^{m}(0)\right|^{2}+\left|\phi_{t t}^{m}(0)\right|^{2}\right] d x \leq & c \int_{0}^{1}\left[\left|u_{x x}^{m}(0)\right|^{2}+\left|u_{x}^{m}(0)\right|^{2}+\left|\phi_{x x}^{m}(0)\right|^{2}+\left|\phi_{x}^{m}(0)\right|^{2}\right. \tag{3.4}\\
& \left.+\left|\phi^{m}(0)\right|^{2}+g_{1}^{2}\left(\phi_{t}^{m}(0)\right)+g_{2}^{2}\left(z^{m}(x, 1,0)\right)\right] d x
\end{align*}
$$

Replacing Ψ^{i} in $(2.1)_{3}$ by $z_{t}^{m}(x, \rho, t)$ and using Cauchy-Schwarz and Young's inequalities, we get

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1}\left|z_{t}^{m}(x, \rho, 0)\right|^{2} d \rho d x \leq c \int_{0}^{1} \int_{0}^{1}\left|z_{\rho}^{m}(x, \rho, 0)\right|^{2} d \rho d x \tag{3.5}
\end{equation*}
$$

The sum of (3.4)-(3.5) with (3.2) yields

$$
\begin{equation*}
\int_{0}^{1}\left[\left|u_{t t}^{m}(0)\right|^{2}+\left|\phi_{t t}^{m}(0)\right|^{2}+\int_{0}^{1}\left|z_{t}^{m}(x, \rho, 0)\right|^{2} d \rho\right] d x \leq c \tag{3.6}
\end{equation*}
$$

Now, we derivate $(3.1)_{1}$ and $(3.1)_{2}$ with respect to t. Then, we set $\Phi^{i}=2 u_{t t}^{m}$ and $\Phi^{i}=2 \phi_{t t}^{m}$, respectively, in the first and the second resulting equations and using the non-decreasing property of g_{1}, we find

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{1}\left[\rho_{1}\left|u_{t t}^{m}\right|^{2}+\rho_{2}\left|\phi_{t t}^{m}\right|^{2}+\kappa\left|u_{x t}^{m}\right|^{2}+\delta\left|\phi_{x t}^{m}\right|^{2}+\xi\left|\phi_{t}^{m}\right|^{2}+2 b u_{x t}^{m} \phi_{t}^{m}\right] d x \\
\leq & -\mu_{2} \int_{0}^{1} z_{t}^{m}(x, 1) g_{2}^{\prime}\left(z^{m}(x, 1)\right) \phi_{t t}^{m} d x
\end{aligned}
$$

The boundedness of g_{2}^{\prime} and the Young's inequality imply that

$$
\begin{align*}
& \frac{d}{d t} \int_{0}^{1}\left[\rho_{1}\left|u_{t t}^{m}\right|^{2}+\rho_{2}\left|\phi_{t t}^{m}\right|^{2}+\kappa\left|u_{x t}^{m}\right|^{2}+\delta\left|\phi_{x t}^{m}\right|^{2}+\xi\left|\phi_{t}^{m}\right|^{2}+2 b u_{x t}^{m} \phi_{t}^{m}\right] d x \tag{3.7}\\
\leq & \epsilon_{1} \int_{0}^{1}\left|z_{t}^{m}(x, 1)\right|^{2} d x+c \int_{0}^{1}\left|\phi_{t t}^{m}\right|^{2} d x
\end{align*}
$$

In the other hand, taking the derivative of $(3.1)_{3}$ with respect to t and then setting $\Psi^{i}=2 z_{t}^{m}(x, \rho, t)$ in the resulting equation, it follows that

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{1} \int_{0}^{1} \frac{\tau(t)}{\left(1-\rho \tau^{\prime}(t)\right)}\left|z_{t}^{m}(x, \rho, t)\right|^{2} d \rho d x+\int_{0}^{1} \int_{0}^{1}\left(\frac{\tau(t)}{\left(1-\rho \tau^{\prime}(t)\right)}\right)^{\prime}\left|z_{t}^{m}(x, \rho, t)\right|^{2} d \rho d x \\
& +\int_{0}^{1} \int_{0}^{1} \frac{d}{d \rho}\left|z_{t}^{m}(x, \rho, t)\right|^{2} d \rho d x=0
\end{aligned}
$$

As $z_{t}^{m}(x, 0, t)=\phi_{t t}^{m}(x, t)$, it comes

$$
\begin{align*}
& \frac{d}{d t} \int_{0}^{1} \int_{0}^{1} \frac{\tau(t)}{\left(1-\rho \tau^{\prime}(t)\right)}\left|z_{t}^{m}(x, \rho, t)\right|^{2} d \rho d x+\int_{0}^{1} \int_{0}^{1}\left(\frac{\tau(t)}{\left(1-\rho \tau^{\prime}(t)\right)}\right)^{\prime}\left|z_{t}^{m}(x, \rho, t)\right|^{2} d \rho d x \tag{3.8}\\
& +\int_{0}^{1}\left|z_{t}^{m}(x, 1, t)\right|^{2} d \rho d x=\int_{0}^{1}\left|\phi_{t t}^{m}\right|^{2} d x
\end{align*}
$$

Let I^{m} be defined by

$$
\begin{aligned}
I^{m}(t)= & \int_{0}^{1}\left[\rho_{1}\left|u_{t t}^{m}\right|^{2}+\rho_{2}\left|\phi_{t t}^{m}\right|^{2}+\kappa\left|u_{x t}^{m}\right|^{2}+\delta\left|\phi_{x t}^{m}\right|^{2}\right. \\
& \left.+\xi\left|\phi_{t}^{m}\right|^{2}+2 b u_{x t}^{m} \phi_{t}^{m}+\frac{\tau(t)}{\left(1-\rho \tau^{\prime}(t)\right)} \int_{0}^{1}\left|z_{t}^{m}(x, \rho)\right|^{2} d \rho\right] d x
\end{aligned}
$$

hence from the estimates (3.7)-(3.8), we find

$$
\left.\left(I^{m}(t)\right)^{\prime}+\left(1-\epsilon_{1}\right) \int_{0}^{1} \mid z_{t}^{m}(x, 1)\right)\left.\right|^{2} d x \leq c \int_{0}^{1}\left|\phi_{t t}^{m}\right|^{2} d x
$$

Choosing $\epsilon_{1}<1$, then integrating over $[0, t]$, we get

$$
I^{m}(t)+\int_{0}^{t} \int_{0}^{1}\left|z_{t}^{m}(x, 1)\right|^{2} d x d t \leq c I^{m}(0)+c \int_{0}^{t} \int_{0}^{1}\left|\phi_{t t}^{m}\right|^{2} d x d t
$$

Employing Gronwall's lemma with (3.2) and (3.6), we obtain the second estimate below

$$
\begin{equation*}
\left.I^{m}(t)+\int_{0}^{t} \int_{0}^{1} \mid z_{t}^{m}(x, 1)\right)\left.\right|^{2} d x d t \leq c \tag{3.9}
\end{equation*}
$$

We, therefore, deduce that

$$
\begin{aligned}
& z_{t}^{m} \quad \text { is uniformly bounded in } \quad L^{2}\left(0, T ; L_{z}^{2}(0,1)\right), \\
& u_{t}^{m}, \phi_{t}^{m} \quad \text { are uniformly bounded in } \quad L_{\operatorname{loc}}^{\infty}\left(0, \infty ; H_{0}^{1}(0,1)\right), \\
& u_{t t}^{m}, \phi_{t t}^{m} \quad \text { are uniformly bounded in } \quad L_{\operatorname{loc}}^{\infty}\left(0, \infty ; L^{2}(0,1)\right),
\end{aligned}
$$

Hence it follows from the estimates (3.3) and (3.9) that it exist subsequences $\left\{u^{n}\right\}_{n=1}^{\infty} \subset\left\{u^{m}\right\}_{m=1}^{\infty},\left\{\phi^{n}\right\}_{n=1}^{\infty} \subset\left\{\phi^{m}\right\}_{m=1}^{\infty}$ and $\left\{z^{n}\right\}_{n=1}^{\infty} \subset\left\{z^{m}\right\}_{m=1}^{\infty}$ verify for all $T \geq 0$ the following convergences

$$
\left\{\begin{array}{l}
g_{1}\left(\phi_{t}^{n}\right) \rightarrow f \text { and } g_{2}\left(z^{n}\right) \rightarrow h \quad \text { weakly-star in } \quad L^{2}\left(0, T ; L^{2}\right), \tag{3.10}\\
u^{n} \rightarrow u \text { and } \phi^{n} \rightarrow \phi \quad \text { weakly-star in } L^{2}\left(0, T ; H_{0}^{1}\right), \\
u_{t}^{n} \rightarrow u_{t} \text { and } \phi_{t}^{n} \rightarrow \phi_{t} \quad \text { weakly-star in } \quad L^{\infty}\left(0, T ; H_{0}^{1}\right), \\
u_{t t}^{n} \rightarrow u_{t t} \text { and } \phi_{t t}^{n} \rightarrow \phi_{t t} \quad \text { weakly-star in } \quad L^{\infty}\left(0, T ; L^{2}\right), \\
z^{n} \rightarrow z \text { and } z_{t}^{n} \rightarrow z_{t} \quad \text { weakly-star in } L^{\infty}\left(0, T ; L_{z}^{2}\right),
\end{array}\right.
$$

We will show that (u, ϕ, z) is a strong solution of system (2.1). Firstly, we prove that $f=g_{1}\left(\phi_{t}\right)$ and $h=g_{2}(z(x, 1))$ which will be given in the following lemma.
Lemma 3.1. For each $T>0, g_{1}\left(\phi_{t}^{n}\right) \rightarrow g_{1}\left(\phi_{t}\right)$ weakly-star in $L^{2}((0,1) \times(0, T))$ and $g_{2}\left(z^{n}(x, 1)\right) \rightarrow g_{2}(z(x, 1))$ weakly-star in $L^{2}((0,1) \times(0, T))$.
Proof. From (3.9), we have ϕ_{t}^{n} is bounded in $L^{\infty}\left(0, T ; H_{0}^{1}\right)$ and $\phi_{t t}^{n}$ is bounded in $L^{\infty}\left(0, T ; L^{2}\right)$. Then, the injection by continuity in L^{p} gives us the boundedness of ϕ_{t}^{n} in $L^{2}\left(0, T ; H_{0}^{1}\right)$ and $\phi_{t t}^{n}$ in $L^{2}\left(0, T ; L^{2}\right)$. Hence, ϕ_{t}^{n} is bounded in $H^{1}(Q)$, where
$Q=(0,1) \times(0, T)$. It is known that the embedding $H^{1}(Q) \hookrightarrow L^{2}(Q)$ is compact. This permit us to extract a subsequence ϕ^{n}, still represented by the same notation, such that

$$
\phi_{t}^{n} \rightarrow \phi_{t} \quad \text { strongly in } \quad L^{2}\left(0, T ; L^{2}(0,1)\right),
$$

which gives

$$
\phi_{t}^{n} \rightarrow \phi_{t}, \quad \text { a.e. on } Q .
$$

Then, by the continuity of g_{1},

$$
\begin{equation*}
g_{1}\left(\phi_{t}^{n}\right) \rightarrow g_{1}\left(\phi_{t}\right), \quad \text { a.e. on } Q . \tag{3.11}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
g_{2}\left(z^{n}(x, 1)\right) \rightarrow g_{2}(z(x, 1)), \quad \text { a.e. on } Q . \tag{3.12}
\end{equation*}
$$

On the other hand, with $\mathcal{R}^{m}(x, t)$ defined as

$$
\mathcal{R}^{m}(x, t)=\phi_{t}^{m} g_{1}\left(\phi_{t}^{m}\right)+z^{m}(x, 1) g_{2}\left(z^{m}(x, 1)\right),
$$

we assert by using Jensen's inequality and the concavity of H^{-1} that

$$
\begin{align*}
\int_{0}^{1} H^{-1}\left(\mathcal{R}^{m}(x, t)\right) d x & \leq c H^{-1}\left(\int_{0}^{1} \mathcal{R}^{m}(x, t) d x\right) \tag{3.13}\\
& \leq c H^{*}(1)+c \int_{0}^{1} \mathcal{R}^{m}(x, t) d x
\end{align*}
$$

For $r^{m}=\left|\phi_{t}^{m}\right|+\left|z^{m}(x, 1)\right|$, we write

$$
\begin{aligned}
\int_{0}^{1}\left[g_{1}^{2}\left(\phi_{t}^{m}\right)+g_{2}^{2}\left(z^{m}(x, 1)\right)\right] d x \leq & \int_{r^{m} \leq \epsilon}\left[g_{1}^{2}\left(\phi_{t}^{m}\right)+g_{2}^{2}\left(z^{m}(x, 1)\right)\right] d x \\
& +\int_{r^{m} \geq \epsilon}\left[g_{1}^{2}\left(\phi_{t}^{m}\right)+g_{2}^{2}\left(z^{m}(x, 1)\right)\right] d x .
\end{aligned}
$$

Then, by using (2.2) and (3.13), we get

$$
\int_{0}^{1}\left[g_{1}^{2}\left(\phi_{t}^{m}\right)+g_{2}^{2}\left(z^{m}(x, 1)\right)\right] d x \leq c H^{*}(1)+c \int_{0}^{1} \mathcal{R}^{m}(x, t) d x
$$

Thus, by (3.3), it results

$$
\int_{0}^{t} \int_{0}^{1}\left[g_{1}^{2}\left(\phi_{t}^{m}\right)+g_{2}^{2}\left(z^{m}(x, 1)\right)\right] d x d t \leq c
$$

which implies that $g_{1}\left(\phi_{t}^{n}\right), g_{2}\left(z^{n}(x, 1)\right) \in L^{2}(Q)$. Combining these with (3.11)-(3.12) and using Lemma 1.3 in [9] page 12, we derive to

$$
\begin{aligned}
g_{1}\left(\phi_{t}^{n}\right) & \rightarrow g_{1}\left(\phi_{t}\right) \quad \text { weakly-star in } \quad L^{2}((0,1) \times(0, T)), \\
g_{2}\left(z^{n}(x, 1)\right) & \rightarrow g_{2}(z(x, 1)) \quad \text { weakly-star in } \quad L^{2}((0,1) \times(0, T)) .
\end{aligned}
$$

This shows that $f=g_{1}\left(\phi_{t}\right)$ and $h=g_{2}(z(x, 1))$.

Passage to the limit. To prove that (u, ϕ, z) is a strong solution of problem (2.1) we discuss as in [9]. For this, we consider functions $v, \omega \in C\left(0, T ; H_{0}^{1}(0,1)\right)$ and $y \in C\left(0, T ; L_{z}^{2}(0,1)\right)$ having the forms

$$
\begin{align*}
(v(x, t), \omega(x, t)) & =\left(\sum_{i=1}^{N} \widetilde{c}^{i n}(t), \sum_{i=1}^{N} \widetilde{d}^{i n}(t)\right) \Phi^{i}(x), \tag{3.14}\\
y(x, \rho, t) & =\sum_{i=1}^{N} \widetilde{e}^{i n}(t) \Psi^{i}(x, \rho) \tag{3.15}
\end{align*}
$$

where $N \geq n$ is a fixed integer.
Then we multiply $(3.1)_{1},(3.1)_{2}$ and $(3.1)_{3}$ by $\widetilde{c}^{i n}(t), \widetilde{d}^{i n}$ and $\widetilde{c}^{i n}$, respectively, and summing the resultants over i from 1 to N, we find that

$$
\left\{\begin{array}{l}
\int_{0}^{T} \int_{0}^{1}\left[\left(\kappa u_{x}^{n}+b \phi^{n}\right) v_{x}+\rho_{1} u_{t t}^{n} v\right] d x d t=0 \tag{3.16}\\
\int_{0}^{T} \int_{0}^{1}\left[\delta \phi_{x}^{n} \omega_{x}+\left(\rho_{2} \phi_{t t}^{n}+b u_{x}^{n}+\xi \phi_{x}^{n}+\mu_{1} g_{1}\left(\phi_{t}^{n}\right)+\mu_{2} g_{2}\left(z^{n}(x, 1)\right)\right) \omega\right] d x d t=0 \\
\int_{0}^{T} \int_{0}^{1} \int_{0}^{1}\left[\tau(t) z_{t}^{n}(x, \rho)+\left(1-\rho \tau^{\prime}(t)\right) z_{\rho}^{n}(x, \rho)\right] y(x, \rho) d \rho d x d t=0
\end{array}\right.
$$

After passing to the limit in (3.16) as $n \rightarrow+\infty$ and using (3.10), we arrive at (3.17)

$$
\left\{\begin{array}{l}
\int_{0}^{T} \int_{0}^{1}\left[\left(\kappa u_{x}+b \phi\right) v_{x}+\rho_{1} u_{t t} v\right] d x d t=0 \\
\int_{0}^{T} \int_{0}^{1}\left[\delta \phi_{x} \omega_{x}+\left(\rho_{2} \phi_{t t}+b u_{x}+\xi \phi+\mu_{1} g_{1}\left(\phi_{t}\right)+\mu_{2} g_{2}(z(x, 1))\right) \omega\right] d x d t=0 \\
\int_{0}^{T} \int_{0}^{1} \int_{0}^{1}\left[\tau(t) z_{t}(x, \rho)+\left(1-\rho \tau^{\prime}(t)\right) z_{\rho}(x, \rho)\right] y(x, \rho) d \rho d x d t=0
\end{array}\right.
$$

The above equations hold for all $(v, \omega, y) \in\left(L^{2}\left(0, T ; H_{0}^{1}\right)\right)^{2} \times L^{2}\left(0, T ; L_{z}^{2}\right)$ since the functions of the forms (3.14) and (3.15) are dense, respectively, in $L^{2}\left(0, T ; H_{0}^{1}\right)$ and $L^{2}\left(0, T ; L_{z}^{2}\right)$. Next, we must verify that the limit functions u, ϕ, z satisfy the initial conditions, i.e.,

$$
\begin{equation*}
u(\cdot, 0)=u_{0}, \quad u_{t}(\cdot, 0)=u_{1}, \quad \phi(\cdot, 0)=\phi_{0}, \quad \phi_{t}(\cdot, 0)=\phi_{1}, \quad z(\cdot, 0)=f_{0} \tag{3.18}
\end{equation*}
$$

For, we let $v, \omega \in C^{2}\left(0, T ; H_{0}^{1}\right)$ and $y \in C^{1}\left(0, T, L_{z}^{2}\right)$ with

$$
u(x, T)=u_{t}(x, T)=\phi(x, T)=\phi_{t}(x, T)=y(x, \rho, T)=0 .
$$

Then we integrate with respect to t in (3.17), we get

$$
\left\{\begin{array}{l}
\int_{0}^{T} \int_{0}^{1}\left[\rho_{1} u v_{t t}-\left(\kappa u_{x}+b \phi\right) v_{x}\right] d x d t+\rho_{1} \int_{0}^{1}\left[u(0) v_{t}(0)-u_{t}(0) v(0)\right] d x=0 \tag{3.19}\\
\int_{0}^{T} \int_{0}^{1}\left[\rho_{2} \phi \omega_{t t}+\delta \phi_{x} \omega_{x}+\left(b u_{x}+\xi \phi_{x}+\mu_{1} g_{1}\left(\phi_{t}\right)+\mu_{2} g_{2}(z(x, 1))\right) \omega\right] d x d t \\
+\rho_{2} \int_{0}^{1}\left[\phi(0) \omega_{t}(0)-\phi_{t}(0) \omega(0)\right] d x=0 \\
\int_{0}^{T} \int_{0}^{1} \int_{0}^{1}\left[-z(x, \rho, t) y_{t}(x, \rho, t)+\frac{1-\rho \tau^{\prime}(t)}{\tau(t)} z_{\rho}(x, \rho, t) y(x, \rho, t)\right] d \rho d x d t \\
-\int_{0}^{1} \int_{0}^{1} z(x, \rho, 0) y(x, \rho, 0) d \rho d x=0
\end{array}\right.
$$

Similarly from (3.16), we have

$$
\left\{\begin{array}{l}
\int_{0}^{T} \int_{0}^{1}\left[\rho_{1} u^{n} v_{t t}+\left(\kappa u_{x}^{n}+b \phi^{n}\right) v_{x}\right] d x d t+\rho_{1} \int_{0}^{1}\left[u^{n}(0) v_{t}(0)-u_{t}^{n}(0) v(0)\right] d x=0 \\
\int_{0}^{T} \int_{0}^{1}\left[\rho_{2} \phi^{n} \omega_{t t}+\delta \phi_{x}^{n} \omega_{x}+\left(b u_{x}^{n}+\xi \phi_{x}^{n}+\mu_{1} g_{1}\left(\phi_{t}^{n}\right)+\mu_{2} g_{2}\left(z^{n}(x, 1)\right)\right) \omega\right] d x d t \\
+\rho_{2} \int_{0}^{1}\left[\phi^{n}(0) \omega_{t}(0)-\phi_{t}^{n}(0) \omega(0)\right] d x=0 \\
\int_{0}^{T} \int_{0}^{1} \int_{0}^{1}\left[z^{n}(x, \rho, t) y_{t}(x, \rho, t)+\frac{1-\rho \tau^{\prime}(t)}{\tau(t)} z_{\rho}^{n}(x, \rho, t) y(x, \rho, t)\right] d \rho d x d t \\
-\int_{0}^{1} \int_{0}^{1} z^{n}(x, \rho, 0) y(x, \rho, 0) d \rho d x=0
\end{array}\right.
$$

Recalling (3.10) and (3.2), we obtain

$$
\left\{\begin{array}{l}
\int_{0}^{T} \int_{0}^{1}\left[\rho_{1} u v_{t t}+\left(\kappa u_{x}+b \phi\right) v_{x}\right] d x d t+\rho_{1} \int_{0}^{1}\left[u_{0} v_{t}(0)-u_{1} v(0)\right] d x=0 \tag{3.20}\\
\int_{0}^{T} \int_{0}^{1}\left[\rho_{2} \phi \omega_{t t}+\delta \phi_{x} \omega_{x}+\left(b u_{x}+\xi \phi_{x}+\mu_{1} g_{1}\left(\phi_{t}\right)+\mu_{2} g_{2}(z(x, 1))\right) \omega\right] d x d t \\
+\rho_{2} \int_{0}^{1}\left[\phi_{0} \omega_{t}(0)-\phi_{1} \omega(0)\right] d x=0 \\
\int_{0}^{T} \int_{0}^{1} \int_{0}^{1}\left[-z(x, \rho, t) y_{t}(x, \rho, t)+\frac{1-\rho \tau^{\prime}(t)}{\tau(t)} z_{\rho}(x, \rho, t) y(x, \rho, t)\right] d \rho d x d t \\
-\int_{0}^{1} \int_{0}^{1} f_{0} y(x, \rho, 0) d \rho d x=0
\end{array}\right.
$$

As $v(x, 0), v_{t}(x, 0), \omega(x, 0), \omega_{t}(x, 0), y(x, \rho, 0)$ are arbitrary, comparing identities (3.19) and (3.20), we deduce (3.18). Consequently, (2.1) admits at least one global strong solution (u, ϕ, z).

For the uniqueness, we assume that $(\widetilde{u}, \widetilde{\phi}, \widetilde{z})$ and $(\widetilde{\widetilde{u}}, \widetilde{\widetilde{\phi}}, \widetilde{\widetilde{z}})$ are two solutions of system (2.1). Then $(u, \phi, z)=(\widetilde{u}, \widetilde{\phi}, \widetilde{z})-(\widetilde{\tilde{u}}, \widetilde{\widetilde{\phi}}, \widetilde{\widetilde{z}})$ verifies the following system

$$
\left\{\begin{array}{l}
\rho_{1} u_{t t}-\kappa u_{x x}-b \phi_{x}=0 \tag{3.21}\\
\rho_{2} \phi_{t t}-\delta \phi_{x x}+b u_{x}+\xi \phi+\mu_{1}\left(g_{1}\left(\widetilde{\phi}_{t}\right)-g_{1}\left(\widetilde{\widetilde{\phi}}_{t}\right)\right)+\mu_{2}\left(g_{2}(\widetilde{z}(x, 1))-g_{2}(\widetilde{\widetilde{z}}(x, 1))\right)=0 \\
\tau(t) z_{t}(x, \rho, t)+\left(1-\rho \tau^{\prime}(t)\right) z_{\rho}(x, \rho, t)=0 \\
u(0, t)=u(1, t)=\phi(0, t)=\phi(0, t)=0 \\
u(x, 0)=u_{t}(x, 0)=\phi(x, 0)=\phi_{t}(x, 0)=z(x, \rho, 0)=0
\end{array}\right.
$$

To get the uniqueness of solution of (2.1), we must verify that $(u, \phi, z)=(0,0,0)$ is the solution of (3.21). For that, a multiplication of $(3.21)_{1}$ by $2 u_{t}$ and $(3.21)_{2}$ by $2 \phi_{t}$, yields

$$
\begin{align*}
& \frac{d}{d t} \int_{0}^{1}\left[\rho_{1} u_{t}^{2}+\rho_{2} \phi_{t}^{2}+\kappa u_{x}^{2}+\delta \phi_{x}^{2}+\xi \phi^{2}+2 b u_{x} \phi\right] d x+2 \mu_{1} \int_{0}^{1} \phi_{t}\left(g_{1}\left(\widetilde{\phi}_{t}\right)-g_{1}\left(\widetilde{\widetilde{\phi}}_{t}\right)\right) d x \tag{3.22}\\
& +2 \mu_{2} \int_{0}^{1} \phi_{t}\left(g_{2}(\widetilde{z}(x, 1))-g_{2}(\widetilde{\widetilde{z}}(x, 1))\right) d x=0
\end{align*}
$$

Then, we multiply $(3.21)_{3}$ by $2 z$, we get

$$
\begin{equation*}
\frac{d}{d t} \int_{0}^{1} \int_{0}^{1} \tau(t) z^{2}(x, \rho) d \rho d x+\int_{0}^{1}\left(1-\tau^{\prime}(t)\right) z^{2}(x, 1) d x-\int_{0}^{1} \phi_{t}^{2} d x=0 \tag{3.23}
\end{equation*}
$$

By setting

$$
\Lambda(t)=\int_{0}^{1}\left[\rho_{1} u_{t}^{2}+\rho_{2} \phi_{t}^{2}+\kappa u_{x}^{2}+\delta \phi_{x}^{2}+\xi \phi^{2}+2 b u_{x} \phi+\tau(t) \int_{0}^{1} z^{2}(x, \rho) d \rho\right] d x
$$

and summing the estimates (3.22)-(3.23), we obtain

$$
\begin{align*}
\Lambda^{\prime}(t)= & 2 \mu_{1} \int_{0}^{1} \omega_{t}\left(g_{1}\left(\widetilde{\phi}_{t}\right)-g_{1}\left(\widetilde{\widetilde{\phi}}_{t}\right)\right) d x+\int_{0}^{1} \phi_{t}^{2} d x-\int_{0}^{1}\left(1-\tau^{\prime}(t)\right) z^{2}(x, 1) d x \tag{3.24}\\
& -2 \mu_{2} \int_{0}^{1} \phi_{t}\left(g_{2}(\widetilde{z}(x, 1))-g_{2}(\widetilde{\widetilde{z}}(x, 1))\right) d x
\end{align*}
$$

As g_{1} is an increasing function, we can easily see that

$$
\left(s_{0}-s\right)\left(g_{1}\left(s_{0}\right)-g_{1}(s)\right)>0, \quad \text { for all } s_{0}, s \in \mathbb{R}
$$

Thus, (3.24) becomes

$$
\Lambda^{\prime}(t) \leq \int_{0}^{1} \phi_{t}^{2} d x-(1-\theta) \int_{0}^{1} z^{2}(x, 1) d x-2 \mu_{2} \int_{0}^{1} \phi_{t}\left(g_{2}(\widetilde{z}(x, 1))-g_{2}(\widetilde{\widetilde{z}}(x, 1))\right) d x
$$

Using Young's inequality, we get

$$
\Lambda^{\prime}(t) \leq c \int_{0}^{1} \phi_{t}^{2} d x-\int_{0}^{1} z^{2}(x, 1) d x+\epsilon_{2} \int_{0}^{1}\left(g_{2}(\widetilde{z}(x, 1))-g_{2}(\widetilde{\widetilde{z}}(x, 1))\right)^{2} d x
$$

Since g_{2} is C^{1} then g_{2} is Lipschitzien function, this leads us to

$$
\Lambda^{\prime}(t) \leq c \int_{0}^{1} \phi_{t}^{2} d x-\left(1-c \epsilon_{2}\right) \int_{0}^{1} z^{2}(x, 1) d x
$$

Hence, for a suitable ϵ_{2}, we have

$$
\Lambda^{\prime}(t) \leq c \int_{0}^{1} \phi_{t}^{2} d x
$$

As $\Lambda(t)$ is positive (for the same raison given in Remark 2.1) and $\Lambda(0)=0$, Gronwall's Lemma forces that $\Lambda(t)=0(0 \leq t \leq T)$, which means that $u=\phi=z=0$.

Consequently, (2.1) has only one global strong solution.
If $U_{0} \in \mathcal{H}$, then it results from the density of \mathcal{H}_{0} in \mathcal{H} that the system (2.1) has a unique global weak solution.

4. Asymptotic Behavior

This section will be concerned with the study of the solution's asymptotic behavior of system (2.1). In fact, using the Lyapunov method, we will prove that, under equal wave speeds and non-equal wave speeds cases, the solution of (2.1) converges to zero as t tends to infinity.

We start with this important notation. By setting $\varepsilon=0$ in (2.9) and under the assumption $\left(\mathrm{A}_{1}\right)$, we have

$$
\begin{equation*}
E^{\prime}(t) \leq-\beta_{1} \int_{0}^{1} \phi_{t} g_{1}\left(\phi_{t}\right) d x-\beta_{2} \int_{0}^{1} z(x, 1) g_{2}(z(x, 1)) d x \leq 0, \quad \text { for all } t \geq 0 \tag{4.1}
\end{equation*}
$$

Then (2.1) is dissipative with respect to E.
4.1. Technical lemmas. In this subsection, we state and prove various lemmas given for (u, ϕ, z) a solution of (2.1). It would help us to estimate the derivative of the Lyapunov functional.

Lemma 4.1. The functional

$$
F_{1}(t)=-\rho_{1} \int_{0}^{1} u_{t} u d x
$$

satisfies

$$
\begin{equation*}
F_{1}^{\prime}(t) \leq-\rho_{1} \int_{0}^{1} u_{t}^{2} d x+\frac{3 \kappa}{2} \int_{0}^{1} u_{x}^{2} d x+c \int_{0}^{1} \phi_{x}^{2} d x \tag{4.2}
\end{equation*}
$$

Proof. A simple differentiation with respect to t, using $(2.1)_{1}$, yields

$$
F_{1}^{\prime}(t)=-\rho_{1} \int_{0}^{1} u_{t}^{2} d x+\kappa \int_{0}^{1} u_{x}^{2} d x+b \int_{0}^{1} u_{x} \phi d x
$$

The Young's and Poincaré's inequalities lead to (4.2).

Lemma 4.2. The functional defined by

$$
F_{2}(t)=\rho_{2} \int_{0}^{1} \phi_{t} u_{x} d x+\frac{\delta \rho_{1}}{\kappa} \int_{0}^{1} u_{t} \phi_{x} d x
$$

satisfies for any $\eta>0$

$$
\begin{align*}
F_{2}^{\prime}(t) \leq & -\frac{b}{2} \int_{0}^{1} u_{x}^{2} d x+\eta\left(u_{x}^{2}(1, t)+u_{x}^{2}(0, t)\right)+\frac{\delta^{2}}{4 \eta}\left(\phi_{x}^{2}(1, t)+\phi_{x}^{2}(0, t)\right) \tag{4.3}\\
& +c \int_{0}^{1} \phi_{x}^{2} d x+c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x+\left(\frac{\delta \rho_{1}}{\kappa}-\rho_{2}\right) \int_{0}^{1} \phi_{x t} u_{t} d x .
\end{align*}
$$

Proof. Direct computations, using $(2.1)_{1}-(2.1)_{2}$, lead to

$$
\begin{aligned}
F_{2}^{\prime}(t)= & \int_{0}^{1} u_{x}\left[\delta \phi_{x x}-b u_{x}-\xi \phi-\mu_{1} g_{1}\left(\phi_{t}\right)-\mu_{2} g_{2}(z(x, 1))\right] d x \\
& +\frac{\delta}{\kappa} \int_{0}^{1} \phi_{x}\left[\kappa u_{x x}+b \phi_{x}\right] d x+\left(\frac{\delta \rho_{1}}{\kappa}-\rho_{2}\right) \int_{0}^{1} \phi_{x t} u_{t} d x .
\end{aligned}
$$

An integration by parts gives

$$
\begin{aligned}
F_{2}^{\prime}(t)= & {\left[\delta u_{x} \phi_{x}\right]_{x=0}^{x=1}-b \int_{0}^{1} u_{x}^{2} d x+\frac{b \delta}{\kappa} \int_{0}^{1} \phi_{x}^{2} d x-\xi \int_{0}^{1} u_{x} \phi d x-\mu_{1} \int_{0}^{1} g_{1}\left(\phi_{t}\right) u_{x} d x } \\
& -\mu_{2} \int_{0}^{1} g_{2}(z(x, 1)) u_{x} d x+\left(\frac{\delta \rho_{1}}{\kappa}-\rho_{2}\right) \int_{0}^{1} \phi_{x t} u_{t} d x
\end{aligned}
$$

Using Young's and Poincaré's inequalities, (4.3) is established.
Lemma 4.3. Let χ be a solution of

$$
\left\{\begin{array}{l}
\chi_{x x}=-\phi_{x}, \\
\chi(0)=\chi(1)=0 .
\end{array}\right.
$$

Then the functional

$$
F_{3}(t)=\int_{0}^{1}\left(\rho_{2} \phi_{t} \phi+\frac{b \rho_{1}}{\kappa} u_{t} \chi\right) d x
$$

satisfies the following estimate

$$
\begin{align*}
F_{3}^{\prime}(t) \leq & -\delta \int_{0}^{1} \phi_{x}^{2} d x-\frac{1}{2}\left(\xi-\frac{b^{2}}{\kappa}\right) \int_{0}^{1} \phi^{2} d x+\eta_{0} \int_{0}^{1} u_{t}^{2} d x+c \int_{0}^{1} \phi_{t}^{2} d x \tag{4.4}\\
& +c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x, \quad \text { for all } \eta_{0}>0
\end{align*}
$$

Proof. Differentiating F_{3} and using $(2.1)_{1}-(2.1)_{2}$, we get

$$
\begin{align*}
F_{3}^{\prime}(t)= & -\xi \int_{0}^{1} \phi^{2} d x+\frac{b^{2}}{\kappa} \int_{0}^{1} \chi_{x}^{2} d x-\delta \int_{0}^{1} \phi_{x}^{2} d x+\rho_{2} \int_{0}^{1} \phi_{t}^{2} d x+\frac{b \rho_{1}}{\kappa} \int_{0}^{1} u_{t} \chi_{t} d x \tag{4.5}\\
& -\mu_{1} \int_{0}^{1} \phi g_{1}\left(\phi_{t}\right) d x-\mu_{2} \int_{0}^{1} \phi g_{2}(z(x, 1)) d x .
\end{align*}
$$

By exploiting Young's inequality, we have

$$
\begin{align*}
\frac{b \rho_{1}}{\kappa} \int_{0}^{1} u_{t} \chi_{t} d x & \leq \eta_{0} \int_{0}^{1} u_{t}^{2} d x+c \int_{0}^{1} \chi_{t}^{2} d x \tag{4.6}\\
\mu_{1} \int_{0}^{1} \phi g_{1}\left(\phi_{t}\right) d x & \leq \frac{1}{4}\left(\xi-\frac{b^{2}}{\kappa}\right) \int_{0}^{1} \phi^{2} d x+c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x \tag{4.7}\\
\mu_{2} \int_{0}^{1} \phi g_{2}(z(x, 1)) d x & \leq \frac{1}{4}\left(\xi-\frac{b^{2}}{\kappa}\right) \int_{0}^{1} \phi^{2} d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x . \tag{4.8}
\end{align*}
$$

Inserting (4.6)-(4.8) into (4.5) and using the fact that

$$
\begin{aligned}
\int_{0}^{1} \chi_{x}^{2} d x & \leq \int_{0}^{1} \phi^{2} d x \\
\int_{0}^{1} \chi_{t}^{2} d x & \leq \int_{0}^{1} \chi_{t x}^{2} d x \leq \int_{0}^{1} \phi_{t}^{2} d x
\end{aligned}
$$

we obtain (4.4).
Next, in order to eliminate the boundary terms, appearing in (4.3), we introduce the following function

$$
\begin{equation*}
m(x)=-4 x+2, \quad x \in[0,1] . \tag{4.9}
\end{equation*}
$$

Then, we have the following result.
Lemma 4.4. For any $\eta>0$, the functional F_{4} defined by

$$
F_{4}(t)=\frac{\eta}{\kappa} \int_{0}^{1} \rho_{1} m(x) u_{t} u_{x} d x+\frac{\delta}{4 \eta} \int_{0}^{1} \rho_{2} m(x) \phi_{t} \phi_{x} d x
$$

satisfies

$$
\begin{align*}
F_{4}^{\prime}(t) \leq & -\eta\left(u_{x}^{2}(1, t)+u_{x}^{2}(0, t)\right)-\frac{\delta^{2}}{4 \eta}\left(\phi_{x}^{2}(1, t)+\phi_{x}^{2}(0, t)\right) \\
& +c \eta \rho_{1} \int_{0}^{1} u_{t}^{2} d x+c \int_{0}^{1} \phi_{t}^{2} d x+\left(\left(\frac{1}{4}+\frac{\eta}{4}\right) b+2 \eta\right) \int_{0}^{1} u_{x}^{2} d x \tag{4.10}\\
& +c \int_{0}^{1} \phi_{x}^{2} d x+c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x .
\end{align*}
$$

Proof. By using $(2.1)_{1},(2.1)_{2}$ and (4.9), it holds that

$$
\begin{aligned}
F_{4}^{\prime}(t)= & \frac{\eta}{\kappa}\left[-\kappa\left(u_{x}^{2}(1, t)+u_{x}^{2}(0, t)\right)+2 \rho_{1} \int_{0}^{1} u_{t}^{2} d x+b \int_{0}^{1} m(x) u_{x} \phi_{x} d x\right. \\
& \left.+2 \kappa \int_{0}^{1} u_{x}^{2} d x\right]+\frac{\delta}{4 \eta}\left[-\delta\left(\phi_{x}^{2}(1, t)+\phi_{x}^{2}(0, t)\right)+2 \rho_{2} \int_{0}^{1} \phi_{t}^{2} d x\right. \\
& +2 \delta \int_{0}^{1} \phi_{x}^{2} d x-b \int_{0}^{1} m(x) \phi_{x} u_{x} d x-\mu_{1} \int_{0}^{1} m(x) \phi_{x} g_{1}\left(\phi_{t}\right) d x \\
& \left.-\mu_{2} \int_{0}^{1} m(x) \phi_{x} g_{2}(z(x, 1)) d x-2 \xi \int_{0}^{1} \phi^{2} d x\right] .
\end{aligned}
$$

The estimate (4.10) follows by exploiting Young's and Poincaré's inequalities.
Lemma 4.5. The functional

$$
F_{5}(t)=\tau(t) \int_{0}^{1} \int_{0}^{1} e^{-\tau(t) \rho} G(z(x, \rho, t)) d \rho d x
$$

satisfies

$$
\begin{align*}
F_{5}^{\prime}(t) \leq & -\tau(t) e^{-\tau_{1}} \int_{0}^{1} \int_{0}^{1} G(z(x, \rho, t)) d \rho d x-\alpha_{1}(1-\theta) e^{-\tau_{1}} \int_{0}^{1} z(x, 1) g_{2}(z(x, 1)) d x \tag{4.11}\\
& +c \int_{0}^{1} \phi_{t}^{2} d x+c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x
\end{align*}
$$

Proof. Taking the derivative of F_{5} and using $(2.1)_{3}$, we have

$$
\begin{aligned}
F_{5}^{\prime}(t)= & \tau^{\prime}(t) \int_{0}^{1} \int_{0}^{1} e^{-\tau(t) \rho} G(z(x, \rho, t)) d \rho d x \\
& +\int_{0}^{1} \int_{0}^{1}\left(1-\rho \tau^{\prime}(t)\right) e^{-\tau(t) \rho} z_{\rho}(x, \rho, t) g_{2}(z(x, \rho, t)) d \rho d x
\end{aligned}
$$

Then

$$
\begin{aligned}
F_{5}^{\prime}(t)= & -\int_{0}^{1} \int_{0}^{1} \frac{d}{d \rho}\left[\left(1-\rho \tau^{\prime}(t)\right) e^{-\tau(t) \rho} G(z(x, \rho, t))\right] d \rho d x \\
& -\int_{0}^{1} \int_{0}^{1} \tau(t) e^{-\tau(t) \rho} G(z(x, \rho, t)) d \rho d x \\
= & -\int_{0}^{1}\left[\left(1-\tau^{\prime}(t)\right) e^{-\tau(t)} G(z(x, 1, t))-G(z(x, 0, t))\right] d x \\
& -\tau(t) \int_{0}^{1} \int_{0}^{1} e^{-\tau(t) \rho} G(z(x, \rho, t)) d \rho d x
\end{aligned}
$$

Using (2.4) with the fact that $z(x, 0, t)=\phi_{t}, e^{-\tau(t)} \leq e^{-\tau_{1} \rho} \leq 1$ for all $\rho \in[0,1]$ and $\tau \in\left[\tau_{0}, \tau_{1}\right]$, we obtain

$$
\begin{aligned}
F_{5}^{\prime}(t) \leq & -\tau(t) \int_{0}^{1} \int_{0}^{1} e^{-\tau_{1}} G(z(x, \rho, t)) d \rho d x .-e^{-\tau_{1}}(1-\theta) \alpha_{1} \int_{0}^{1} z(x, 1) g_{2}(z(x, 1)) d x \\
& +\alpha_{2} \int_{0}^{1} \phi_{t} g_{1}\left(\phi_{t}\right) d x
\end{aligned}
$$

The estimate (4.11) follows by exploiting Young's inequality.
Lemma 4.6. For a suitable choice of N and $N_{i}, i=1,2, \ldots, 5$, the functional defined by

$$
\begin{equation*}
\mathcal{L}(t)=N E(t)+\sum_{i=1}^{5} N_{i} F_{i}(t) . \tag{4.12}
\end{equation*}
$$

satisfies, for a fixed positive constant m_{0}, the estimate

$$
\begin{align*}
\mathcal{L}^{\prime}(t) \leq & -m_{0} E(t)+\left(\frac{\delta \rho_{1}}{\kappa}-\rho_{2}\right) \int_{0}^{1} \phi_{x t} u_{t} d x+c \int_{0}^{1} \phi_{t}^{2} d x \tag{4.13}\\
& +c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x .
\end{align*}
$$

Proof. From (4.1), (4.2), (4.3), (4.4), (4.10) and (4.11), it follows that for any $t \geq 0$

$$
\begin{aligned}
\mathcal{L}^{\prime}(t) \leq & -\left(N_{4}-N_{2}\right)\left[\eta\left(u_{x}^{2}(1, t)+u_{x}^{2}(0, t)\right)+\frac{\delta^{2}}{4 \eta}\left(\phi_{x}^{2}(1, t)+\phi_{x}^{2}(0, t)\right)\right] \\
& -\left[\rho_{1} N_{1}-\eta_{0} N_{3}-\eta c \rho_{1} N_{4}\right] \int_{0}^{1} u_{t}^{2} d x+\left[N_{3}+N_{4}+N_{5}\right] c \int_{0}^{1} \phi_{t}^{2} d x \\
& -\left[\frac{b}{2} N_{2}-\frac{3 \kappa}{2} N_{1}-\left(\left(\frac{1}{4}+\frac{\eta}{4}\right) b+2 \eta\right) N_{4}\right] \int_{0}^{1} u_{x}^{2} d x \\
& -\frac{1}{2}\left(\xi-\frac{b^{2}}{\kappa}\right) N_{3} \int_{0}^{1} \phi^{2} d x-\left[\delta N_{3}-\left(N_{1}+N_{2}+N_{4}\right) c\right] \int_{0}^{1} \phi_{x}^{2} d x \\
& -\tau e^{-\tau} N_{5} \int_{0}^{1} \int_{0}^{1} G(z(x, \rho)) d \rho d x+\left[N_{2}+N_{3}+N_{4}+N_{5}\right] c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x \\
& +\left[N_{2}+N_{3}+N_{4}\right] c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x+N_{2}\left(\frac{\delta \rho_{1}}{\kappa}-\rho_{2}\right) \int_{0}^{1} \phi_{x t} u_{t} d x .
\end{aligned}
$$

Furthermore, we take

$$
N_{1}=3 \eta c, \quad N_{2}=N_{4}=N_{5}=1, \quad \eta_{0}=\frac{\eta c \rho_{1}}{N_{3}}
$$

to get

$$
\begin{align*}
\mathcal{L}^{\prime}(t) \leq & -\eta c \rho_{1} \int_{0}^{1} u_{t}^{2} d x+c \int_{0}^{1} \phi_{t}^{2} d x-\frac{1}{4}(b-\eta(18 \kappa c+b+8)) \int_{0}^{1} u_{x}^{2} d x \tag{4.14}\\
& -\left(\delta N_{3}-c\right) \int_{0}^{1} \phi_{x}^{2} d x-\frac{1}{2}\left(\xi-\frac{b^{2}}{\kappa}\right) N_{3} \int_{0}^{1} \phi^{2} d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x \\
& -\tau e^{-\tau} \int_{0}^{1} \int_{0}^{1} G(z(x, \rho)) d \rho d x+c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+\left(\frac{\delta \rho_{1}}{\kappa}-\rho_{2}\right) \int_{0}^{1} \phi_{x t} u_{t} d x .
\end{align*}
$$

Now, we select $\eta<\frac{b}{18 \kappa c+b+8}$ and then we choose N_{3} large enough such that

$$
\delta N_{3}-c>0 .
$$

Hence, the estimate (4.14) with the fact that $\kappa \xi>b^{2}$ and (2.6) gives us (4.13).
4.2. General decay rates for equal of wave speeds. In this subsection, we show that the solution have a general decay rate in the case of equal speeds of wave propagation.

Theorem 4.1. Let $U \in \mathcal{H}$. Assuming that $\left(A_{1}\right),\left(A_{2}\right)$ and $\left(A_{3}\right)$ are fulfilled, $\kappa \xi>b^{2}$ and that

$$
\frac{\rho_{1}}{\kappa}=\frac{\rho_{2}}{\delta} .
$$

Then, there exist positive constants a, a_{1} and a_{2} such that the solution of (2.1) satisfies

$$
\begin{equation*}
E(t) \leq a H_{1}^{-1}\left(a_{1} t+a_{2}\right), \quad \text { for all } t>0 \tag{4.15}
\end{equation*}
$$

where

$$
H_{1}(t)=\int_{t}^{1} \frac{1}{H_{2}(s)} d s \quad \text { and } \quad H_{2}(t)=t H^{\prime}\left(\epsilon_{0} t\right)
$$

Proof. Since $\frac{\rho_{1}}{\kappa}=\frac{\rho_{2}}{\delta}$, then we can easily show for N sufficiently large, that the functional \mathcal{L} given by (4.12) is equivalent to E, i.e.,

$$
\mathcal{L}(t) \sim E(t) .
$$

We consider, as is [8], the following two partitions of $[0,1]$

$$
\mathcal{D}_{1}=\left\{x \in[0,1]:\left|\phi_{t}\right|+|z(x, 1)| \leq \epsilon\right\}, \quad \mathcal{D}_{2}=\left\{x \in[0,1]:\left|\phi_{t}\right|+|z(x, 1)|>\epsilon\right\}
$$

and we define $\mathcal{R}(x, t)$ by

$$
\mathcal{R}(x, t)=\phi_{t} g_{1}\left(\phi_{t}\right)+z(x, 1, t) g_{2}(z(x, 1, t)) .
$$

Then by recalling (2.2) and (4.1), we obtain

$$
\begin{equation*}
\mathcal{L}^{\prime}(t) \leq-m_{0} E(t)-c E^{\prime}(t)+\int_{\mathcal{D}_{1}} H^{-1}(\mathcal{R}(x, t)) d x \tag{4.16}
\end{equation*}
$$

Now, we discuss two cases.

1. H is linear on $[0, \epsilon]$. In this case, we obtain, for some positive constant c^{\prime},

$$
\mathcal{L}^{\prime}(t) \leq-m_{0} E(t)-c E^{\prime}(t)-c^{\prime} E^{\prime}(t) .
$$

Hence, $\mathcal{L}_{0}=\mathcal{L}+\left(c+c^{\prime}\right) E \sim E$ satisfies

$$
\mathcal{L}_{0}(t) \leq-\mathcal{L}_{0}(0) e^{-c t},
$$

which leads to

$$
E(t) \leq-c E(0) e^{-c t}
$$

2. H is non linear on $[0, \epsilon]$. By using Jensen's inequality and the concavity of H^{-1}, we find that

$$
\int_{\mathcal{D}_{1}} H^{-1}(\mathcal{R}(x, t)) d x \leq c H^{-1}\left(\int_{\mathcal{D}_{1}} \mathcal{R}(x, t) d x\right) .
$$

Thus, (4.16) rewrites as

$$
\begin{equation*}
\mathcal{L}^{\prime}(t) \leq-m_{0} E(t)-c E^{\prime}(t)+c H^{-1}\left(\int_{\mathcal{D}_{1}} \mathcal{R}(x, t) d x\right) . \tag{4.17}
\end{equation*}
$$

For $\epsilon_{0}<\epsilon$ and $m_{1}>0$, the functional given by

$$
\mathcal{L}_{1}(t)=H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) \mathcal{L}(t)+m_{1} E(t)
$$

satisfies, for some fixed positive constants ζ_{0} and ζ_{1},

$$
\begin{equation*}
\zeta_{0} \mathcal{L}_{1}(t) \leq E(t) \leq \zeta_{1} \mathcal{L}_{1}(t) \tag{4.18}
\end{equation*}
$$

and

$$
\mathcal{L}_{1}^{\prime}(t)=\epsilon_{0} \frac{E^{\prime}(t)}{E(0)} H^{\prime \prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) \mathcal{L}(t)+H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) \mathcal{L}^{\prime}(t)+m_{1} E^{\prime}(t) .
$$

Next, by recaling the fact that $E^{\prime} \leq 0, H^{\prime}>0$ and $H^{\prime \prime}>0$ on $[0, \epsilon]$ and using (4.17), we get

$$
\begin{equation*}
\mathcal{L}_{1}^{\prime}(t) \leq-m_{0} E(t) H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right)+c H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) H^{-1}\left(\int_{\mathcal{D}_{1}} \mathcal{R}(x, t) d x\right)+m_{1} E^{\prime}(t) . \tag{4.19}
\end{equation*}
$$

Let H^{*} be the convex conjugate of H, then by testing (2.8) with

$$
A=H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) \quad \text { and } \quad B=H^{-1}\left(\int_{\mathcal{D}_{1}} \mathcal{R}(x, t) d x\right)
$$

we get

$$
H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) H^{-1}\left(\int_{\mathcal{D}_{1}} \mathcal{R}(x, t) d x\right) \leq H^{*}\left(H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right)\right)+\int_{\mathcal{D}_{1}} \mathcal{R}(x, t) d x
$$

Using (4.1) with the fact $H^{*} \leq s\left(H^{\prime}\right)^{-1}(s)$, we have that

$$
\begin{equation*}
H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) H^{-1}\left(\int_{\mathcal{D}_{1}} \mathcal{R}(x, t) d x\right) \leq \epsilon_{0} \frac{E(t)}{E(0)} H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right)-c E^{\prime}(t) . \tag{4.20}
\end{equation*}
$$

The substitution of (4.20) into (4.19) provides

$$
\mathcal{L}_{1}^{\prime}(t) \leq-\left(m_{0} E(0)-c \epsilon_{0}\right) \frac{E(t)}{E(0)} H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right)+\left(m_{1}-c\right) E^{\prime}(t) .
$$

Fixing ϵ_{0} sufficiently small, so that $m_{0} E(0)-c \epsilon_{0}>0$, then for $m_{1}>c$, we can find a positive constant a_{0} such that

$$
\begin{equation*}
\mathcal{L}_{1}^{\prime}(t) \leq-a_{0} \frac{E(t)}{E(0)} H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right)=-a_{0} H_{2}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right), \tag{4.21}
\end{equation*}
$$

where $H_{2}(t)=t H^{\prime}\left(\epsilon_{0} t\right)$ is a positive non-decreasing function on $[0,1]$. Next, by setting $\mathcal{L}_{2}=\frac{\zeta_{0} \mathcal{L}_{1}}{E(0)}$, we can easily show, by (4.18), that $\mathcal{L}_{2} \sim E$. And, from (4.21), we discover that

$$
\begin{equation*}
\mathcal{L}_{2}^{\prime}(t) \leq-a_{1} H_{2}(L(t)) \tag{4.22}
\end{equation*}
$$

From the definition of H_{1}, we have

$$
H_{1}^{\prime}(t)=-\frac{1}{H_{2}(t)}
$$

whereupon the inequality (4.22) becomes

$$
\mathcal{L}_{2}^{\prime}(t) \leq a_{1} \frac{1}{H_{1}^{\prime}\left(\mathcal{L}_{2}(t)\right)},
$$

which implies

$$
\left[H_{1}\left(\mathcal{L}_{2}(t)\right)\right]^{\prime} \leq a_{1} .
$$

An integration over $[0, t]$ yields that

$$
H_{1}\left(\mathcal{L}_{2}(t)\right) \leq a_{1} t+H_{1}\left(\mathcal{L}_{2}(0)\right) .
$$

Then, using the non-decreasing property of H^{-1}, we infer that

$$
\mathcal{L}_{2}(t) \leq H^{-1}\left(a_{1} t+a_{2}\right) .
$$

The use of $\mathcal{L}_{2} \sim E$ leads us to (4.15). Hence, the proof is completed.
4.3. General decay rates for non-equal of wave speeds. In this subsection, we investigate the situation when $\frac{\rho_{1}}{\kappa} \neq \frac{\rho_{2}}{\delta}$, which is more realistic in the view of physics.

Theorem 4.2. Let $U_{0} \in \mathcal{H}_{0}$. Assume that $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold, $\kappa \xi>b^{2}$ and that

$$
\frac{\rho_{1}}{\kappa} \neq \frac{\rho_{2}}{\delta} .
$$

Then, for

$$
\begin{equation*}
\left|\mu_{2}\right|<\min \left\{\frac{\alpha_{1}}{\alpha_{2}}, \frac{2 \widetilde{c}_{1}}{\widetilde{c}_{2}(2-\theta)}\right\}(1-\theta) \mu_{1}, \tag{4.23}
\end{equation*}
$$

there exist some positive numbers w and w_{1} such that for any $t>0$

$$
\begin{equation*}
E(t) \leq w H_{2}^{-1}\left(\frac{w_{1}}{t}\right) \tag{4.24}
\end{equation*}
$$

Proof. Differentiating (2.1) with respect to x, we obtain

$$
\left\{\begin{array}{l}
\rho_{1} u_{x t t}-\kappa u_{x x x}-b \phi_{x x}=0, \tag{4.25}\\
\rho_{2} \phi_{x t t}-\delta \phi_{x x x}+b u_{x x}+\xi \phi_{x}+\mu_{1} \phi_{x t} g_{1}^{\prime}\left(\phi_{t}\right)+\mu_{2} z_{x}(x, 1) g_{2}^{\prime}(z(x, 1))=0, \\
\tau(t) z_{x t}(x, \rho, t)+\left(1-\rho \tau^{\prime}(t)\right) z_{x \rho}(x, \rho, t)=0, \\
u_{x}(0, t)=u_{x}(1, t)=\phi_{x}(0, t)=\phi_{x}(1, t)=0, \\
u_{x}(x, 0)=u_{x}^{0}(x), \quad u_{t}(x, 0)=u_{x}^{1}(x), \\
\phi_{x}(x, 0)=\phi_{x}^{1}(x), \quad \phi_{x t}(x, 0)=\phi_{x}^{1}(x), \\
z_{x}(x, \rho, 0)=f_{x}^{0}(x,-\rho \tau(0)) .
\end{array}\right.
$$

Then, for a fixed positive constant $\widetilde{\gamma}$ satisfying

$$
\begin{equation*}
\frac{\widetilde{c}_{2}\left|\mu_{2}\right|}{(1-\theta)}<\widetilde{\gamma}<\left(2 \widetilde{c}_{1} \mu_{1}-\widetilde{c}_{2}\left|\mu_{2}\right|\right), \tag{4.26}
\end{equation*}
$$

where \widetilde{c}_{1} and \widetilde{c}_{2} are introduced in (2.7) and (2.3), we define the modified energy functional to system (4.25) as

$$
\begin{aligned}
\mathcal{E}(t)= & \frac{1}{2} \int_{0}^{1}\left[\rho_{1} u_{x t}^{2}+\rho_{2} \phi_{x t}^{2}+\kappa u_{x x}^{2}+\delta \phi_{x x}^{2}+\xi \phi_{x}^{2}\right. \\
& \left.+2 b u_{x x} \phi_{x}+2 \widetilde{\gamma} \tau(t) \int_{0}^{1} z_{x t}^{2}(x, \rho, t) d \rho\right] d x
\end{aligned}
$$

Our point of departure will be to show that the modified energy functional \mathcal{E} is non-increasing. So, we have the following result.

Lemma 4.7. Under the assumptions in Theorem 4.2, the modified energy functional \mathcal{E} is non-increasing and satisfies for any $t \geq 0$

$$
\begin{equation*}
\mathcal{E}^{\prime}(t) \leq-c \int_{0}^{1} \phi_{x t}^{2} d x-c \int_{0}^{1} z_{x}^{2}(x, 1) d x \tag{4.27}
\end{equation*}
$$

Proof. Multiplying (4.25) ${ }_{1}$ and $(4.25)_{2}$ by $u_{x t}$ and $\phi_{x t}$, respectively, and integrating by parts over $[0,1]$, we obtain

$$
\begin{align*}
& \frac{1}{2} \cdot \frac{d}{d t} \int_{0}^{1}\left[\rho_{1} u_{x t}^{2}+\rho_{2} \phi_{x t}^{2}+\kappa u_{x x}^{2}+\delta \phi_{x x}^{2}+\xi \phi_{x}^{2}+2 b u_{x x} \phi_{x}\right] d x \tag{4.28}\\
& \quad+\mu_{1} \int_{0}^{1} \phi_{x t}^{2} g_{1}^{\prime}\left(\phi_{t}\right) d x+\mu_{2} \int_{0}^{1} \phi_{x t} z_{x}(x, 1) g_{2}^{\prime}(z(x, 1)) d x=0
\end{align*}
$$

Similarly, we multiply $(4.25)_{3}$ by $\widetilde{\gamma} z_{x}(x, \rho, t)$, we get

$$
\begin{equation*}
\frac{\widetilde{\gamma}}{2} \frac{d}{d t} \int_{0}^{1} \int_{0}^{1} \tau(t) z_{x t}^{2}(x, \rho, t) d \rho d x=-\frac{\tilde{\gamma}}{2}\left(1-\tau^{\prime}(t)\right) \int_{0}^{1} z_{x}^{2}(x, 1) d x+\frac{\tilde{\gamma}}{2} \int_{0}^{1} \phi_{x t}^{2} d x \tag{4.29}
\end{equation*}
$$

Combining the estimates (4.28)-(4.29) and using the fact that $\widetilde{c}_{1}<g_{1}^{\prime}(s)$ and $\left(\mathrm{A}_{2}\right)$, we yield that

$$
\begin{aligned}
\mathcal{E}^{\prime}(t) \leq & -\left(\widetilde{c}_{1} \mu_{1}-\frac{\tilde{\gamma}}{2}\right) \int_{0}^{1} \phi_{x t}^{2} d x-\frac{\tilde{\gamma}}{2}\left(1-\tau^{\prime}(t)\right) \int_{0}^{1} z_{x}^{2}(x, 1) d x \\
& -\mu_{2} \int_{0}^{1} \phi_{x t} z_{x}(x, 1) g_{2}^{\prime}(z(x, 1)) d x .
\end{aligned}
$$

By using Young's inequality with the fact that $\left|g_{2}^{\prime}(s)\right|<\widetilde{c}_{2}$, we arrive at

$$
\mathcal{E}^{\prime}(t) \leq-\left(\widetilde{c}_{1} \mu_{1}-\frac{\widetilde{\gamma}}{2}-\frac{\widetilde{c}_{2}\left|\mu_{2}\right|}{2}\right) \int_{0}^{1} \phi_{x t}^{2} d x-\left(\frac{\widetilde{\gamma}}{2}(1-\theta)-\frac{\widetilde{c}_{2}\left|\mu_{2}\right|}{2}\right) \int_{0}^{1} z_{x}^{2}(x, 1) d x .
$$

Estimate (4.27) follows by using (4.23) and (4.26).
Now, going back to the proof of Theorem 4.2. Defining, as in (4.12), a Lyapunov functional L by

$$
L(t)=M \mathcal{E}(t)+\mathcal{L}(t) .
$$

It should be mentioned that L is not equivalent to E. Then, using (4.13) and (4.27), we get

$$
\begin{aligned}
L^{\prime}(t) \leq & -m_{0} E(t)-c M \int_{0}^{1} \phi_{x t}^{2} d x+\left(\frac{\delta \rho_{1}}{\kappa}-\rho_{2}\right) \int_{0}^{1} \phi_{x t} u_{t} d x \\
& +c \int_{0}^{1} \phi_{t}^{2} d x+c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x .
\end{aligned}
$$

Utilizing Young's inequality and the definition of $E(t)$, we get

$$
\begin{aligned}
L^{\prime}(t) \leq & -\left(m_{0}-\eta_{1}\right) E(t)-\left(c M-c_{\eta_{1}}\right) \int_{0}^{1} \phi_{x t}^{2} d x+c \int_{0}^{1} \phi_{t}^{2} d x \\
& +c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x
\end{aligned}
$$

Fixing $\eta_{1}<m_{0}$ and then taking M sufficiently large, so that $c M-c_{\eta_{1}} \leq 0$, we obtain for $d_{0}>0$

$$
L^{\prime}(t) \leq-d_{0} E(t)+c \int_{0}^{1} \phi_{t}^{2} d x+c \int_{0}^{1} g_{1}^{2}\left(\phi_{t}\right) d x+c \int_{0}^{1} g_{2}^{2}(z(x, 1)) d x .
$$

Consequently by exploiting (2.2) and (4.1), it holds that

$$
\begin{equation*}
L^{\prime}(t) \leq-d_{0} E(t)-c E^{\prime}(t)+\int_{\mathcal{D}_{1}} H^{-1}(\mathcal{R}(x, t)) d x \tag{4.30}
\end{equation*}
$$

As in the proof of Theorem 4.1, we distinguish the following two cases.

1. H is linear on $[0, \epsilon]$. From (4.30) and by using (4.1), we have, for some positive constant c^{\prime},

$$
L^{\prime}(t) \leq-d_{0} E(t)-\left(c+c^{\prime}\right) E^{\prime}(t)
$$

Then, the functional $L_{0}=L+\left(c+c^{\prime}\right) E$, satisfies

$$
L_{0}^{\prime}(t) \leq-d_{0} E(t)
$$

Integrating over $[0, t]$ and using the non-increasing property of E, we yield that

$$
t E(t) \leq \int_{0}^{t} E(s) d s \leq \frac{1}{d_{0}} L_{0}(0) .
$$

Hence, for $d>0$ we have

$$
E(t) \leq \frac{d}{t}, \quad \text { for all } t>0
$$

2. H is non-linear on $[0, \epsilon]$. By repeating the same arguments as in the second part of the proof of Theorem 4.1, we find that the functional

$$
L_{1}(t)=H^{\prime}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) L(t)+d_{1} E(t)
$$

satisfies, for a fixed positive constant w_{0}, the following property

$$
L_{1}^{\prime}(t) \leq-w_{0} H_{2}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) .
$$

An integration over $[0, t]$ gives

$$
\begin{equation*}
\int_{0}^{t} H_{2}\left(\epsilon_{0} \frac{E(s)}{E(0)}\right) d s \leq \frac{1}{w_{0}} L_{1}(0) . \tag{4.31}
\end{equation*}
$$

It follows from the fact that $E^{\prime} \leq 0$ and $H_{2}^{\prime}>0$ that the map

$$
t \mapsto H_{2}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right)
$$

is non-increasing. Thus, from (4.31), we obtain

$$
t H_{2}\left(\epsilon_{0} \frac{E(t)}{E(0)}\right) \leq \int_{0}^{t} H_{2}\left(\epsilon_{0} \frac{E(s)}{E(0)}\right) d s \leq \frac{1}{w_{0}} L_{1}(0)
$$

Consequently, for $w, w_{1}>0$ we have

$$
E(t) \leq w H_{2}^{-1}\left(\frac{w_{1}}{t}\right), \quad \text { for all } t>0
$$

which finishes the proof.

References

[1] F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differential Equations Appl. 14 (2007), 643-699. https: //doi.org/10.1007/s00030-007-5033-0
[2] T. A. Apalara, Asymptotic behavior of weakly dissipative Timoshenko system with internal constant delay feedbacks, Appl. Anal. 10 (2015), 187-202. https://doi.org/10.1080/00036811. 2014. 1000314
[3] T. A. Apalara, A general decay for a weakly nonlinearly damped porous system, J. Dyn. Control Syst. 25 (2019), 311-322. https://doi.org/10.1007/s10883-018-9407-x
[4] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989.
[5] A. Benaissa and M. Bahlil, Global existence and energy decay of solutions to a nonlinear Timoshenko beam system with a delay term, Taiwanese J. Math. 18(5) (2014), 1411-1437. https://doi.org/10.11650/tjm.18.2014.3586
[6] M. Kirane, B. Said-Houari, and M. N. Anwar, Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks, Commun. Pure Appl. Anal. 10(2) (2011), 667-686. https://doi.org/10.3934/cpaa.2011.10.667
[7] H. Khochemane, S. Zitouni and L. Bouzettouta, Stability result for a nonlinear damping Porouselastic system with delay term, Nonlinear Stud. 27(2) (2020), 487-503. https://doi.org/10. 46793/KgJMat2003.443S
[8] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson Wiley, Paris, 1994.
[9] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, 1969.
[10] W. J. Liu and M. M. Chen, Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time varying delay term in the internal feedback, Contin. Mech. Thermodyn. 29 (2017), 731-746. https://doi.org/10.1007/s00161-017-0556-z
[11] M. I. Mustafa and S. A. Messaoudi, General energy decay rates for a weakly damped Timoshenko system, J. Dyn. Control Sys. 16(2) (2010), 211-226. https://doi.org/10.1007/ s10883-010-9090-z
[12] S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differential Equations 41 (2011), 1-20.
[13] R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett. 16(4) (2003), 487-491.
[14] C. A. Raposo T. A. Apalara and J. O. Ribeiro, Analyticity to transmission problem with delay in Porous-elasticity, J. Math. Anal. App. 466 (2018), 819-834. https://doi.org/10.1016/J. JMAA.2018.06.017
[15] C. A. Raposo J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett. 18(5) (2005), 535-541. https: //doi.org/10.1016/j.aml.2004.03.017
[16] A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations 29 (2003), 1-14.
[17] S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philisophical Magazin 41(245) (1921), 744-746. https://doi.org/10.1080/ 14786442108636264
${ }^{1}$ Mascara University, Faculty of Economie, Mascara, Algeria
Laboratory of Analysis and control of Partial Differential Equations, Djilali
Liabes University, P.O.Box 89, Sidi Bel Abbes 22000, Algeria
Email address: nadia.mezouar@univ-mascara.dz
${ }^{2}$ Mascara University, Faculty of Exact Sciences, Mascara, Algeria
Laboratory of Analysis and control of Partial Differential Equations, Dullali
Liabes University, P.O.Box 89, Sidi Bel Abbes 22000, Algeria
Email address: mounir.bahlil@univ-mascara.dz

[^0]: Key words and phrases. Non-linear Porous system, global existence, delay term, general decay, Faedo-Glaerkin method, multiplier method.

 2010 Mathematics Subject Classification. Primary: 35A02. Secondary: 35D35, 35B40.
 DOI 10.46793/KgJMat2404.591M
 Received: July 05, 2020.
 Accepted: July 12, 2021.

