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LOCAL K-CONVOLUTED C-GROUPS AND ABSTRACT CAUCHY
PROBLEMS

CHUNG-CHENG KUO!

ABSTRACT. We first present a new form of a local K-convoluted C-group on a
Banach space X, and then deduce some basic properties of a nondegenerate local
K-convoluted C-group on X and some generation theorems of local K-convoluted
C-groups, which can be applied to obtain some equivalence relations between the
generation of a nondegenerate local K-convoluted C-group on X with subgenerator
A and the unique existence of solutions of the abstract Cauchy problem ACP(A, f, x).

1. INTRODUCTION

Let X be a Banach space over the field F = R or C with norm || - ||, and let
L(X) denote the family of all bounded linear operators from X into itself. For each
0 < Ty < 00, we consider the following abstract Cauchy problem:

u'(t) = Au(t) + f(t), fort e (=Tpy, Tp),

ACP(A, 1, 2) {u(O) .

where z € X, A is a closed linear operator in X, and f € L .((—To,Tp), X) (the
family of all locally integrable functions from (—7y,7p) into X). A function w is
called a solution of ACP(A, f,z) if u € C((—Tp,Ty), X) satisfies ACP(A, f,z) (that
is, u(0) = x and for a.e. t € (=710, Ty), u(t) is differentiable and u(t) € D(A), and
' (t)=Au(t)+f(t) for a.e. t € (=T, Tp)). For each C' € L(X) and K € L}, ([0, Tp),TF),
a family S(-)(={S(t)||t| < Tv}) in L(X) is called a local K-convoluted C-group on

Key words and phrases. Local K-convoluted C-group, generator, subgenerator, abstract Cauchy
problem.
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656 C. C. KUO

X if S(+) is strongly continuous, S(-)C' = C'S(-), and satisfies
S(t)S(s)x

t+s t S
= (sgntsgns sgn (t+s)/ —sgns/ —sgnt/ ) K(|t+s—r|)S(r)Czdr,
0 0 0

for all x € X and |[t|,|s], |t + s| < To. In particular, S(-) is called a local (O-times
integrated) C-group on X if K = j_; (the Dirac measure at 0) or equivalently, S(-)
is strongly continuous, S(-)C' = C'S(-), and satisfies

S(t)S(s)x =S(t+s)Cx, forallx € X and |t],|s|, |t + s| < Tp,

(see [2]). Moreover, we say that S(-) is nondegenerate, if z = 0 whenever S(t)x = 0 for
all |t| < Ty. The nondegeneracy of a local K-convoluted C-group S(:) on X implies
that

S(0) =C if K =j_; and S(0) = 0 (the zero operator on X) otherwise,

and the (integral) generator A : D(A) C X — X of S(-) is a closed linear operator in
X defined by

D(A)={z e X|S()x— Ko(|-|)Cx = S(-)y. on (=Tp, Tp) for some y, € X}

and Az = y, for all z € D(A). Here S(t)z = [ S(s)zds. In general, a local K-
convoluted C-group on X is called a K-convoluted C-group on X if Ty = oo; a (local)
K-convoluted C-group on X is called a (local) K-convoluted group on X if C' =1
(the identity operator on X) or a (local) a-times integrated C-group on X if K is
equal to the function j,—; for some a > 0, defined by j,(t) = r(;icju) (see [4,7,21]).
Here I'(+) denotes the Gamma function, a (local) a-times integrated C-group on X
is called a (local) a-times integrated group on X if C' = I; and a (local) C-group
on X is called a cyp-group on X if C' = I (see [1,5]). Some basic properites of a
nondegenerate (local) a-times integrated C-semigroup on X have been established
by many authors (in [2,3,26-28] for a = 0, and in [6, 10, 17-20, 22, 23, 25, 29, 30]
for a« > 0), which can be extended to the case of local K-convoluted C-semigroup
just as results in [7-10,13-16]. Some equivalence relations between the generation of
a nondegenerate (local) K-convoluted C-semigroup on X with subgenerator A and
the unique existence of solutions of the abstract Cauchy problem ACP(A, f,z) are
also discussed in [2,26,27] for the case K = j,—; with @ = 0 and in [11-13, 30, 31]
with @ > 0, and in [8,13,16] for the general case. The purpose of this paper is
to investigate the following basic properties of a nondegenerate local K-convoluted
C-group S(-)(= {S(t)||t|] < To}) on X just as results in [13] concerning local K-
convoluted C-semigroups on X when C' is injective and some additional conditions
are taken into consideration

(1.1) CT'AC = 4,
(1.2) S(t)z € D(A) and AS(t)z
(1.3) S(t)xr € D(A) and AS(t)z

S(t)x — Ko(|t])Cx, for all x € X and |t| < T,
S(t)Az, for all z € D(A) and [t| < To;
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and
(1.4) S(t)S(s) = S(s)S(t), on X, forall |t],]|s| < Ty,

(see Theorems 2.5, 2.6 and 2.7 below), which have been established partially in [8] by
another method, and then deduce some equivalence relations between the generation
of a nondegenerate local K-convoluted C-group on X with subgenerator A and the
unique existence of solutions of ACP(A, f,x), which are similar to some results in
[13] concerning equivalence relations between the generation of a nondegenerate local
K-convoluted C-semigroup on X with subgenerator A and the unique existence of
solutions of ACP(A, f,x). To do these, we will first prove an important lemma which
shows that a strongly continuous family S(-) in L(X) is a local K-convoluted C-
group on X is equivalent to sgn(-)g (+) is a local Ky-convoluted C-group on X (see
Lemma 2.1 below), and then show that a strongly continuous family S(-) in L(X)
which commutes with C' on X is a local K-convoluted C-group on X is equivalent to

S(t)[S(s)— Ko(|s|)C]=[S(t) — Ko(|t])C]S(s) for all |t], |s|, [t+s| < Ty (see Theorem 2.1
below). In order to show that sgn(-)bS(-) is a local a* K-convoluted C-group on X if
S(-) is alocal K-convoluted C-group on X and b(-) = a(|-|) for some a € Lj,.([0, Tp),F).
In particular, sgn(-).Js * S(-) is a local Kg-convoluted C-group on X if S(-) is a local
K-convoluted C-group on X and 3 > —1, which can be applied to show that its only
if part is also true when [ is a nonnegative integer (see Proposition 2.1 below). Here
Kp(t) = K * jg(t) for B> =1, J5(-) = js(| - |), £+ S(t)x = fy f(t — 5)S(s)ads for all
r € X and f € L,.((—Tp,Tp),F). We also show that a strongly continuous family
S(-) in L(X) which commutes with C' on X is a local K-convoluted C-group on X
when it has a subgenerator (see Theorem 2.4 below). Moreover, S(-) is nondegenerate
if C' is injective and the generator of a nondegenerate local K-convoluted C-group
S(-) on X is the unique subgenerator of S(-) which contains all its subgenerators, and
each subgenerator of S(-) is closable and its closure is also a subgenerator of S(-) when
S(-) has a subgenerator (see Theorems 2.5, 2.6 and 2.7 below). This can be applied
to show that CA C AC and S(+) is a nondegenerate local K-convoluted C-group on
X with generator C~'AC when C' is injective, K, a kernel on [0,7}) (that is, f =0
on [0,7Tp) whenever f € C([0,Ty),F) with f§ Ko(t — s)f(s)ds =0 for all 0 <t < Ty)
and S(-) a strongly continuous family in L(X) with closed subgenerator A. In this
case, C71AyC is the generator of S(-) for each subgenerator Ay of S(-) (see Theorem
2.8 below). Some illustrative examples concerning these theorems are also presented
in the final part of this paper.

2. Basic PROPERTIES OF LocAL K-CoONVOLUTED C-GROUPS

In the following we will note some facts concerning local K-convoluted C-groups
which can be expansively appled in this paper.

Remark 2.1. Let S(-)(= {S(t) | |t| < Tv}) be a strongly continuous family in L(X).
Then the following are equivalent.
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(i) S(-) is a local K-convoluted C-group on X.
(ii) (see [8]) S4(+) and S_(+) are local K-convoluted C-semigroups on X, S(t)S(s)z
= S(s)S(t)x on X for all =Ty <t <0< s < Ty,

s 0
S(t)S(s)z = / K(r —t — )S(r)Cadr + / K(t+ s —1)S(r)Cadr,
t+s t
forallz € X and —Ty <t <0<s<Tywitht+s>0, and
t+s S
S(1)S(s)x = / K(t+ s —r)S(r)Cadr + / K(r —t — 8)8(r)Cadr,
t 0

forallz € X and - Ty <t <0<s<Tywitht+s<O0.
(i)
t+s t s
T(#)T(s)x = (/0 —/O —/0 VK (|t + 5 — r|)T(r)Cedr,
for all z € X and [¢], |s], |t + s| < To.
Here T'(-) = sgn(-)S(:) on (=70, Tp), S+(-) = S(-) and S_(-) = S(—-) on [0, Tp).

Next we will deduce an important lemma which can be used to obtain a new
equivalence relation between the generation of a local K-convoluted C-group S(-) on
X and the equality of

S(#)[S(s) = Kolls|)C] = [S(2) — Ko([t)C]S(s),

on X for all [t],|s], |t +s| < To when S(-)(= {S(¢) | |t| < Tp}) is a strongly continuous
family in L(X) commuting with C' on X just as a result in [13] for the case of
local K-convoluted C-semigroup and in [19] for the case of local a-times integrated
C-semigroup.

Lemma 2.1. Let S(-)(= {S(t)||t| < Tv}) be a strongly continuous family in L(X).
Then S(-) is a local K -convoluted C-group on X if and only if sgn(-)S(-) is a local
Ky-convoluted C'-group on X. In this case,

(i) S(-) is nondegenerate if and only if 5() is;

(ii) A is the generator of S(-) if and only if it is the generator of sgn(-)S(-).

Proof. Let z € X be given. We set T'(-) = sgn(-)S(+). Then

(2.1) jt /t+ Kolr —t — 8)S(r)Cadr — /to Ko(t + s — 1)S(r)Cadr

== [ Klr—1-9)3)cair - [ "K(t+ 5 — 18 Cadr + Ko(s)3()C
and
22) - { /t+ Ko(r —t — 8)S(r)Cadr — /t " Kolt+ 5 — r)S(r)cxdr]

= /ts K(r—t —s)S(r)Cadr — /O K(t+s—r)S(r)Cadr + Ko(|t])S(s)Cxz,

+s t
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for =Ty <t <0< s < Ty with t4+s > 0. Using integration by parts to the right-hand
sides of (2.1) and (2.2), we obtain

(23) - /t+ K(r—t— $)S(r)Cxdr — /t Kt + s — 1)S0)Cadr + Ko(s)3(t)Ca
~ [ Ko(r —t —s)S(r)Cxdr — /to Ko(t + s —r)S(r)Cadr — Ky([t])S(s)Cx

t+s
and

(24) - /H K(r—t — $)S(r)Cadr — /tOK(t—l— s —1)S(r)Cadr + Ko(|t])S(s)Cx
= ti Ko(r —t —s)S(r)Caxdr — /to Ko(t + 5 —7)S(r)Cxdr — Ky(s)S(t)Cz,

for =Tp) <t <0< s < T, with t +s > 0. Combining (2.1)—(2.4), we have

(2.5) C‘li /t+ Ko(r —t — 8)S(r)Cadr — /t " Kolt + s — 1) S(r)Cadr

- t; Ko(r—t—s)S(r)der—/to Ko(t + s — 1)S(r)Cxdr — Ko(|t])S(s)C
and
(2.6) js /t+ Ko(r — t — $)8(r)Cadr — /t " Ko(t + 5 — 1)S(r)Cadr

= [ Kol — 1= 5)S()Cadr — | " Kolt + 5 — 1)S(r)Cadr — Ko(s)3(H)C,

t+s
for =Ty <t <0<s<Tywith t +s > 0. Similarly, we can show that

(2.7) ;i {— /tt+s Ko(t + s — r)S(r)Cadr + /OS Ko(r —t— s)g(T)der]

=— /:Jrs Ko(t+ s —r)S(r)Cxdr + /Os Ko(r —t — 8)S(r)Cadr — Ko(|t|)S(s)Cx
and
(2.8) cjs [— /tHS Ko(t + 5 —7)S(r)Cxdr + /0S Ko(r —t — s)g(r)C’xdr}

t+s s ~
=— / Ko(t+s—1)S(r)Caxdr + / Ko(r —t —s)S(r)Cadr — Ko(s)S(t)Cx,
t 0
for —Th) <t <0< s <T,witht+s<0. By (2.6) and (2.8), we have
dd [
ds dt

0
=— K(r—t—s)S(r)C’xdr—i—/ K(t+s—r)S(r)Cxdr,
t+s ¢

for —Th <t <0<s<Tywitht+s>0and
a4d
dtds

(2.9) /ts Ko(r —t — 5)S(r)Cadr — /to Ko(t+s— T)g(T)CZL’dT:|

+s

(2.10) [— /tHs Ko(t + s —r)S(r)Cxdr + /OS Ko(r—t — s)g(r)der}
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t+s s
=— /t K(t+s—r)S(r)Cxdr + /0 K(r—t—s)S(r)Cxdr,

for —Th <t <0< s < Ty with t + s < 0. Suppose that T'(-) is a local Ky-convoluted
C-group on X. Then 7' (-) and T_(-) both are local Ky-convoluted C-semigroups
on X, Ty () = S4(-) and T_(-) = S_(-) on [0,Tp), T(t)T(s) = T(s)T(t) on X for all
—T0<t§0§S<T0,

Tt)T(s)x = /

t+s
forall z € X and —Ty <t <0<s<Tywitht+s>0and

S

0
Ko(r —t—s)T(r)Cxdr + / Ko(t+s—r)T(r)Cxdr,
t

T(0)T(5)e = | " Kot + 5 — )T (r)Cadr + [ Kol =t = () Cadr,

forall z € X and —Tp <t <0 < s < T, with t + s < 0 or equivalently, S, (-) and
S_(-) both are local K-convoluted C-semigroups on X, S(t)S(s) = S(s)S(t) on X for
all =To <t <0< s< T

(2.11) —§(t)§(s)a::/

t+s
forallz € X and —Ty <t <0<s<Tywitht+s>0, and

s

Ko(r —t — 8)S(r)Cadr — /to Ko(t + s — r)S(r)Cxdr,

212) ~3()3(s)r = - | " Kot + s — 1)S(r) Cadr + [ Kot =t = )5 Cr,

forallz € X and —T) <t <0 < s < Ty with £ + s < 0. Combining (2.7)—(2.10), we
have

(213)  S()S(s)a = /

t+s
forallz € X and —Ty <t <0<s<Tywitht+s>0and

s

K(r—t—s)S(r)Cxdr + /to K(t+s—r)S(r)Cxdr,

214)  S@HS(s)r= [ K+ 5 —r)S(r)Cadr + [ K=t = 9)(r)Cadr,

forallz € X and =Ty <t <0< s < Ty with t + s < 0. Consequently, S(-) is a local
K-convoluted C-group on X. Conversely, suppose that S(-) is a local K-convoluted
C-group on X. Then T (-) and T_(-) both are local Ky-convoluted C-semigroups on
X, Tt)T(s) =T(s)T'(t) on X for all —T; <t <0 <s < Ty, and (2.13)-(2.14) both
hold. By (2.9) and (2.10), we have (2.11) and (2.12) both hold. Consequently, 7°(-) is
a local Ky-convoluted C-group on X. 0

Theorem 2.1. Let S(-)(={S(t) ||t| < To}) be a strongly continuous family in L(X)
which commutes with C" on X. Then S(-) is a local K -convoluted C-group on X if
and only if

(2.15) S(1)[S(s) = Ko(Is|)C] = [S(t) — Ko([t)C]S(s),  on X,
for all [t|,|s], |t + s| < To.
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Proof. We set T(-) = sgn(-)S(-). Suppose that S(-) is a local K-convoluted C-group
on X. Then S;(-) and S_(-) both are local K-convoluted C-semigroups on X. To
show that (2.15) holds for all [t],[s], [t + s| < Tp, we observe from [13, Theorem 2.2]
that we need only to show that S(t)[S(s) — Ko(|s|)Clz=[S(t) — Ko(|t])C]S(s)z for all
x € X and |t],|s| < To with ts < 0. Let x € X and =T <t <0 < s < Tj be given
with ¢ +s > 0. By Lemma 2.1, (2.1) and (2.2), we have

d

=S(1)S(s)z — Ko(Js])S()Ca =— T(1)T(s)x — Ko(|s)S(t)Ca

or equivalently, S(t)[S(s) — Ko(|s|)Clz=[S(t
show that 5(£)[S(s) — Ko(|s)Clr=[S(t) — Kol

t<0<s<T,witht+s<0. Since S(t)S(s) = S(s)S(t) on X for all [t|,|s], |t + s| <
Ty, we also have S(t)[S(s) — Ko(|s|)Clz=[S(t) — Ko(|t|)C)S(s)x for all z € X and
—To < s <0 <t < Ty Consequently, (2.15) holds for all [|t],]|s],[t + s| < Tp.
Conversely, suppose that (2.15) holds for all |¢|,|s|, |t + s| < Tp. Then T, (-) and
T_(-) both are local Ky-convoluted C-semigroups on X and S(t)S(s)z — S(t)S(s)x =
Ko(|s])S(t)Cx — Ko(|t])S(s)Cax for all 2 € X and |t],|s], |t + s| < Ty with t +s > 0.
Fixx e X and Ty <t <0<s<Tywitht+ s> 0, we have

) — Ko([t]) C]S(s)z. Similarly, we can
t])C]S(s)x for all z € X and —Tj <
)S

S(t+s—r)S(r)z—S{t+s—r)S(r)z

(2.16)
=Ko(|r))S(t + s —r)Cx — Ko(|t + s — r[)S(r)Cx,

for all £ <r < 0. Using integration by parts to the left-hand side of (2.16) over [t, 0]
and change of variables to the right-hand side of (2.16) over [t,0], we obtain

(2.17)  T(H)T(s)x =— S(t)S(s)x

-/ "Bt + 5 — 1)S()x — St + 5 — 1S (r)aldr
:/tO[KO(]ng(t s —1)Cx — Ko(lt + 5 — r)8(r)Caldr
_/fs Kollt + 5 — r)S(r)Cxdr — /to Kollt + 5 — ) S(r)Cadr
:/t+ Ko(lt + 5 — r|)T(r)Cadr + /to Ko(lt + 5 — r)T(r)Cadr.

Using change of variables to the left-hand side of (2.16) over [t, 0], we also have

(2.18) T(s)T(t)x = — S(s)S(t)z = /to[g(t +5—71)S(r)z — S(t+ s —r)S(r)z]dr.
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Combining (2.17) with (2.18), we have T'(t)T'(s) = T'(s)T'(t) on X for all |t],]|s], [t+s| <
To with ts < 0 and
THT(s)x = /t; Ko(lt+s—r|)T(r)Cxdr + /to Ko(|t+s—r|)T(r)Cxdr,
forall x € X and =Ty <t <0 < s < Ty with t 4+ s > 0. Similarly, we can show that
T(t)T(s)x—/tt "Kol[t+ s — )T Cadr + [ Kollt+ s = r)T(r)Cadr

forall z € X and —Tp) <t < 0 < s < Ty with ¢t + s < 0 when the interval [t, 0]
of the integration of (2.16) is replaced by [t,t + s]. Consequently, T'(-) is a local
Ko-convoluted C-group on X. Combining this with Lemma 2.1, we get that S(-) is a
local K-convoluted C-group on X. U

Proposition 2.1. Let S(-) be a local K-convoluted C-group on X, a € L;,.([0,T),F),
and b(:) = a(] -|). Then sgn(-)b* S(-) is a local a * K -convoluted C-group on X. In
particular, for each > —1, sgn(-)Jg * S(-) is a local Kg-convoluted C-group on X.
Here J3(-) = jg(| - |). Moreover, S(-) is a local K -convoluted C-group on X if it is a
strongly continuous family in L(X) such that sgn®(-)j._1 * S(-) = sgn(-)Jp_1 * S(-) is
a local Ky_1-convoluted C'-group on X for some nonnegative integer k.

Proof. Clearly, sgn(-)b* S(-) is strongly continuous family in L(X) which commutes
with C' on X. To show that sgn(-)b* S(-) is a local a * K-convoluted C-group on X,
we remain only to show that

[(sgn t)b* S(t) — a = K (|t])Cljo * [sgn(-)b* S(-)](s)
—jo * [san(-)b + S()](1)[(sgn 8)b * S(s) — ax K (|s])C),
on X for all [t],]s|, |t + s| < T,. Here ax K = Jo * (a * K). Clearly,

bx Ko(| - |)(t) = (sgnt)jo * (b K)([t]),

on X for all 0 <t < Tj. Next we will show that bx Ko(| - |)(t) = (sgnt)jo *b* K(|t])
on X for all =Ty <t <0. Let =Ty <t <0 be given, then

b K] )(t) = [ ) Kollt = slids = [ bls)Kols — 0)ds

:_/ / (s —r)drds = — // K(s —r)drds
- _ / / K(r — s)dsdr = /t /T a(—r)K(r — s)dsdr

/to /:CL<_7’)K<T — s)dsdr = — /to /50 a(—r)K(r — s)drds
= [ [ ol (r ~ s)ards

and
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:/Ot/o_sa(|r|)K(—T—s)drds

¢ —t

:/ b*K(—s)ds:—/ bx K(s)ds

0 0
=(sgn)jo* (b K)(|t]).

Since bx K ([t]) = a K(|t]) for all [t| < Ty, we have b+ Ko(| - |)(t) = (sgnt)a K (|t])

for all [t| < Ty. Clearly, bx S(t) = jo * (b S)(t) on X for all |[t| < Tp. Since

j(i * [ign(~)b % S()](t) = (sgnt)jo  (b* S)(t) = (sgnt)b* S(t) on X for all |t| < Tp, we

[(sgnt)(b* S)(t) — a x K (|t))C)(sgn s)b + S(s)x
—[(sgnt) (b S)(t) — (sen )b+ Ko(| - )(£)C)(sen )b * 5(s)a
—(sgn)[(b* S)(£) — b * Ko(| - [)(£)C](sgn )b % 5(s)x
—(sgnt) [ b(t — $)[S(r) — Ko(|r)C](sgn )b  §(s)adr

=(sgnt)b x { Otb(t —1r)(S(r) — Ko(|r])C S] (sgn s)xdr

and
sent)os | [ 00 = 1)(S(r) = Ko(1r))3] (5)(sgn )
=Gent)b = | [ bt = )S)(SC) = Koll-)C)] (5)(sgn )
=(sgnt)b+ S()o* [S(-) — Ko(| - |)C](s)(sgn s)x
=(sgnt)bx S(t)[b*S(s) —bx Ko(|-1])(s)C](sgn s)z
=(sgn )b+ S(t)[(sgn )b+ S(s) — (sgn )b * Ko - [)(s)Cla
(sgnt)b* S(t)[(sgns)bx S(s) —ax K(|s|)C|x,
for all z € X and |[t],|s], |t + s| < To. O

Definition 2.1. Let S(-)(= {S(¢) | |t| < Tb}) be a strongly continuous family in L(X).
A linear operator A in X is called a subgenerator of S(-) if

t
S(t)z — Ko(|t))Car = / S(r) Axdr,
0
for all z € D(A) and |t| < T, and
t
(2.19) / S(r)xdr € D(A) and A/ rxzdr = S(t)x — Ko([t])Cx
0

forallz € X and |t| < Ty. A subgenerator A of S(-) is called the maximal subgenerator
of S(-) if it is an extension of each subgenerator of S(-) to D(A).
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Remark 2.2. Let S(-)(= {S(t)||t| < Tp}) be a strongly continuous family in L(X),
and A a linear operator in X. Then A is a subgenerator of S(-) if and only if A is a
subgenerator of S.(-) and —A a subgenerator of S_(-).

Remark 2.3. Let S(-)(= {S(t)||t| < Tp}) be a strongly continuous family in L(X),
and A a (closed) linear operator in X. Then A is the maximal subgenerator of S(-) if
A is the maximal subgenerator of S (-) and —A the maximal subgenerator of S_(-).

Theorem 2.2. Let S(-) be a local K-convoluted C-group on X and Ky not the zero
function on [0,Ty), or a K-convoluted C-group on X. Assume that C' is injective.
Then S(-) is nondegenerate if and only if S, (-) and S_(-) both are nondegenerate if
and only if Sy () or S_(-) is nondegenerate.

Proof. Clearly, S(-) is nondegenerate if either S, (-) or S_(+) is nondegenerate. Con-
versely, suppose that S(-) is nondegenerate and Sy (-)x = 0 on [0, Tp) for some z € X.
By Theorem 2.1, we have S(t)[S(s) — Ko(|s|)Clz = [S(t) — Ko(|t])C]S(s)z = 0 for
all =Ty <t <0 < s < Tp, and so S(t)Ky(|s|)Cz = 0. Hence, S(t)z = 0. Since
—Tp < t < 0 is arbitrary, we have S(-)x = 0 on (—7p, 0], which together with the
nondegeneracy of S(-) implies that x = 0. Consequently, S, (-) is nondegenerate.
Similarly, we can show that S_(-) is nondegenerate when S(-) is nondegenerate. [

Theorem 2.3. Let S(-) be a nondegenerate local K-convoluted C-group on X and
Ky not the zero function on [0,1y), or a K-convoluted C-group on X. Assume that
C' is injective. Then A is the generator of S(-) if and only if A is the generator of
Si(+) and —A the generator of S_(-) if and only if A is the generator of S, (-) or —A
the generator of S_(-).

Proof. Suppose that A is the generator of S, (-) and —A is the generator of S_(-).
We set B to denote the generator of S(-). Then S(-)z — Ky(| - |)Cz = S(-)Az on
(=Ty, Tp) for all € D(A) or equivalently, A C B. Since S(-)z — Ko(|-|)Cz = S(-)Bx
on (—Tp,Tp) for all x € D(B), we have B C A. Consequently, A = B is the generator
of S(+). Suppose that A is the generator of S(-). We set B, and B_ to denote the
generators of S, (-) and S_(+), respectively. To show that B, = A and B_ = —A, we
observe from the preceding argument, we need only to show that By = —B_. Let

x € D(B_) be given, then

S(6)[S(s) — Ko(|s))Cla = [S(t) — Ko([t))C1S(s)a = S(5)[S(t) — Ko(|t))Cla
S(s)[=S(t)B_x] = S(s)[S(t)(~B-)a]
S(1)[S(s)(—B-)al,
for all =Ty <t < 0 < s < Ty. By the nondegeneracy of S_(-), we have [S(s) —
Ko(]s|)C] = S(s)[—B-x] for all 0 < s < T, and so = € D(By) and B,z = —B_x.

Hence, —B_ C B,. By symmetry, we also have B, C —B_. Consequently, B, =
—-B_. O
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Theorem 2.4. Let S(-)(={S(t)||t| < To}) be a strongly continuous family in L(X)
which commutes with C on X. Assume that S(-) has a subgenerator. Then S(-) is a
local K -convoluted C-group on X. Moreover, S(-) is nondegenerate if the injectivity
of C is added and Ky is a nonzero function on [0,Tp).

Combining Remark 2.2 with [13, Lemma 2.8], the next lemma is also obtained.

Lemma 2.2. Let A be a closed subgenerator of a strongly continuous family S(-)(=
{S(t)||t| < To}) in L(X), and Ky a kernel on [0,ty) (or equivalently, K is a kernel
on [0,ty)) for some 0 < ty < Ty. Assume that C' is injective, and u € C((—to, o), X)
satisfies u(-) = Ajo *xu(-) on (—to,tg). Then u =0 on (—to,to).

By slightly modifying the proof of [13, Theorem 2.7], we can apply Lemma 2.2 to
deduce the next theorem concerning nondegenerate K-convoluted C-groups, and so
its proof is omitted.

Theorem 2.5. Let S(-) be a nondegenerate local K -convoluted C-group on X with
generator A. Assume that S(-) has a subgenerator. Then A is the maximal sub-
generator of S(+), and each subgenerator of S(-) is closable and its closure is also a

subgenerator of S(-). Moreover, if C' is injective. Then (1.1)—(1.3) hold, and (1.4)
also holds when Ky is a kernel on [0,T) or Ty = oo.

Lemma 2.3. Let S(-) be a local K-convoluted C-group on X and 0 € supp Ky
(the support of Ky), or a K-convoluted C-group on X and Ky not the zero function
on [0,00). Assume that S(-)x = 0 on [0,ty) or on (—ty,0] for some x € X and
0 <ty <Ty. Then CS(-)xr =0 on (=Ty,Ty). In particular, S(t)x =0 for all |t| < Tj
if the injectivity of C' is added.

Proof. Let S(-)x =0on [0,%) and [t| < Tj be given, then |t|+s < Ty and Ky(s) # 0 for
some 0 < 5 < to, so that S(s)S(t)z=S5(t)S(s)z = 0, S(s)S(t)z=5(t)S(s)z = 0, and
S(s)Ko(|t])Cx = Ko(|t|)CS(s)z = 0. By Theorem 2.3, we have S(s)[S(t) — Ko(|t])C)z
—=[S(s) — Ko(s)C]S(t)x. Hence, Ky(s)S(t)Cx = Ko(s)CS(t)z = 0, which implies that
S(t)Cx = 0. Since |t| < Ty is arbitrary, we have C'S(t)z = S(t)Cz = 0 for all |t| < Tp.
In particular, S(t)x = 0 for all [¢t| < Tp if the injectivity of C' is added. O

Lemma 2.4. Let S(-) be a nondegenerate local K-convoluted C-group on X with
generator A and 0 € supp K. Assume that C' is injective. Then A is a subgenerator

of S(+).
Proof. By Theorems 2.2 and 2.3, A is the generator of S, () and —A is the generator
of S_(-). It follows from [13, Theorem 2.9] that A is a subgenerator of S, (-) and

—A is a subgenerator of S_(+), which together with Remark 2.2 implies that A is a
subgenerator of S(-). O

By slightly modifying the proof of Lemma 2.4, the next lemma concerning nonde-
generate K-convoluted C-groups is also attained.
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Lemma 2.5. Let S(-) be a nondegenerate K -convoluted C-group on X with generator
A. Then C is injective, and A is a subgenerator of S(-).

Combining Theorem 2.5 with Lemma 2.5, the next theorem concerning nondegen-
erate K-convoluted C-groups is also obtained.

Theorem 2.6. Let S(-) be a nondegenerate K -convoluted C-group on X with gener-
ator A. Then A is the maximal subgenerator of S(-), and each subgenerator of S(-) is
closable and its closure is also a subgenerator of S(-). Moreover, (1.1)—(1.4) hold.

Since 0 € suppKj implies that K is a kernel on [0,Tj), we can apply Theorem 2.5
and Lemma 2.4 to obtain the next theorem.

Theorem 2.7. Let S(-) be a nondegenerate local K -convoluted C-group on X with
generator A and 0 € supp Ky. Assume that C' is injective. Then A is the maximal
subgenerator of S(+), and each subgenerator of S(-) is closable and its closure is also
a subgenerator of S(-). Moreover, (1.1)~(1.4) hold.

Theorem 2.8. Let S(-)(={S(t)||t| < To}) be a strongly continuous family in L(X)
which has a subgenerator and Ky a kernel on [0,T5). Assume that C' is injective. Then
S(+) is a nondegenerate local K -convoluted C-group on X, CA C AC and C7'AC is
the generator of S(-) for each closed subgenerator A of S(+). In particular, C~1A,C
is the generator of S(-) for each subgenerator Ay of S(-).

Proof. Suppose that A is a closed subgenerator of S(-). By Remark 2.2, A is a closed
subgenerator of S, (-). By [13], Theorem 2.13, we have CA C AC and C~'AC is the
generator of S, (-). By Theorem 2.3, C~*AC is the generator of S(-). Similarly, we
can show that C~1AyC is the generator of S(-) for each subgenerator Ay of S(+). O

Corollary 2.1. Let S(-) be a nondegenerate local K -convoluted C-group on X which
has a subgenerator and K a kernel on [0,Ty). Assume that C is injective and R(C')
is dense in X. Then A is a closed subgenerator of Sy (-) if and only if —A is a closed
subgenerator of S_(-).

Proof. By Remark 2.2, we need only to show that A is a closed subgenerator of S(-)
when A is a closed subgenerator of S (-). Since [3 S(r)Azdr = [3 S(r)C~*ACzdr =
S(t)x — Ko(|t|)Cx for all z € D(A) and |t| < Ty, we remain only to show that (2.19)
holds for all z € X and |t| < Tp. Suppose that © € X and [t| < T}, are given. By
[13], Theorem 2.13, C~*AC is the generator of S, (). By Theorem 2.3, C~*AC is
the generator of S(-). By Theorems 2.5 and 2.8, C~1AC' is the maximal subgenerator
of S(-), and so C~YAC [ S(r)xdr = S(t)x — Ko(|t|)Cx. Hence, AC [} S(r)xdr =
A f§S(r)Cxdr = S(t)Cx — Ky(|t|)CCxz, which together with the denseness of R(C)
implies that A f; S(r)xdr = S(t)x — Ko(|t|)Cx for all x € X and |t| < Tp.

U

Remark 2.4. Let S(-)(= {S(t)||t| < To}) be a strongly continuous family in L(X).
Then S(-) is a local K-convoluted C-group on X with closed subgenerator A if and

only if sgn(-)S(-) is a local Ky-convoluted C-group on X with closed subgenerator A.
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3. ABSTRACT CAUCHY PROBLEMS

In the following, we always assume that C' € L(X) is injective, K, a kernel on
[0,7), and A a closed linear operator in X such that CA C AC. We first note some
basic properties concerning the solutions of ACP(A, f, x) just as results in [13] for the
case of A is the generator of a nondegenerate local Ky-convoluted C-semigroup on X.

Proposition 3.1. Let A be a subgenerator of a nondegenerate local Ky-convoluted
C-group S(-) on X. Then for each x € D(A), sgn(-)S(-)z is the unique solution of
ACP(A, Ko(|-])Cz,0) in C((—To,To), [D(A)]). Here [D(A)] denotes the Banach space
D(A) equipped with the graph norm |z|4 = ||z|| + ||Az|| for x € D(A).

Proposition 3.2. Let A be a subgenerator of a nondegenerate local K -convoluted C'-
group S(-) on X and C* = {x € X | S(-)x is continuously differentiable on (—Ty, Tp)}.
Then
(i) for each x € C', S(t)x € D(A) for a.e. t € (—Ty, Tp);
(ii) for each x €C', S(-)x is the unique solution of ACP(A,sgn(-)K(|-|)Cx,0);
(iii) for each x € D(A), S(-)x is the unique solution of ACP(A,sgn(-)K(]-])Cx,0)
in C((=To, Tp), [D(A)]).-

Proposition 3.3. Let A be the generator of a nondegenerate local K -convoluted
C-group S(-) on X and x € X. Assume that S(t)x € R(C) for all |t| < Ty and
C7 18z € C((-Ty, Ty), X) is differentiable a.e. on (—=Ty,Ty). Then C71S(t)x €
D(A) for a.e. t € (—=Ty,Ty) and C~1S(-)z is the unique solution of

Proof. Clearly, S(-)z = CC~'S(-)x is differentiable a.e. on (—Ty,Ty). By (1.1)—(1.4),

we have
d o d
C’ac S(t)x —%S(t)x
=AS(t)r + (sgnt)K(|t|))Cx = ACC™'S(t)x + (sgnt)K (|t])C,

for a.e. t € (—Ty,Ty). Hence, for a.e. t € (—Ty,Ty), C~1S(t)x € D(CTAC) = D(A)

and

CZC_ls(t):c =(CTAC)CIS(t)x + (sgnt) K (|t))x = ACT'S(t)x + (sgnt) K (|t|)z,
which implies that C~1S(-)z is a solution of ACP(A,sgn(-)K(|-|)z,0). O

Applying Theorem 2.8, we can investigate an important result concerning the
relation between the generation of a nondegenerate local K-convoluted C-group on
X with subgenerator A and the unique existence of solutions of ACP(A, f,x), which
extends some results in [13] for the case of local K-convoluted C-semigroup

Theorem 3.1. The following statements are equivalent.

(i) A is a subgenerator of a nondegenerate local K -convoluted C-group S(-) on X.
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(ii) For each x € X and g € L, ((=Ty, Ty), X), ACP(A, Ko(| - |)Cx + Ko(] - |) *
Cg(+),0) has a unique solution in C*((—Ty, Tp), X) N C((—Tp, Tp), [D(A)]).
(ili) For each x € X the problem ACP(A, Ko(| - |)Cz,0) has a unique solution in
C'((=To, To), X) N C((=To, To), [D(A))).
(iv) For each x € X the integral equation v(-)=Ajo*v(:) + Ko(| - |)Cx has a unique
solution v(-;x) in C((—To, Tp), X).
In this case, S(-)x + S % g(-) is the unique solution of ACP(A, Ko(|-|)Cx + Ko(|-]) *
Cyg(-),0) and v(;z) = S(-)x.

Proof. We will first prove that (i)=-(ii) holds. Let z € X and g € L;,.([0, Tp), X) be

given. We set u(-) = S(-)x+S*g(-), then u € C*((=Tp, Tp), X)NC((—=Ty, Tp), [D(A))]),
u(0) =0, and

Au(t) =AS(t)x + A/Ot S(t —s)g(s)ds
=S(t)e — Ko(l)Cx + [ [5(t = 5) — Ko(lt - s|)Clg(s)ds

=S(t)x + /Ot S(t —s)g(s)ds — [Ko([t]))Cx + Ko(] - |) * Cg(t)]
=u'(t) = [Ko([t])C + Ko(] - ) x Cg(t)],

for all 0 < t < Tp. Hence, u is a solution of ACP(A, Ko(| - |)Cx + Ko(| - |) *
Cg(-),0) in C((~Ty,Tp), X) N C((=Tp, Tp), [D(A)]). The uniqueness of solutions
for ACP(A, Ko(| - |)Cz + Ko(] - |) * Cg(-),0) follows directly from the uniqueness of
solutions for ACP(A,0,0).

Clearly, (ii)=-(iii) holds, and (iii) and (iv) both are equivalent. We remain only to
show that (iv)=-(i) holds. The assumption of (iv) implies that for each z € X, vy (-) =
v(+; ) on [0, Tp) is a unique solution of the integral equation v(-) = Ajoxv(-)+Ko(|-|)Cx
on [0,7}), which together with [13, Theorem 3.4] implies that A is a subgenerator of
a nondegenerate local K-convoluted C-semigroup on X. Similarly, we can show that
—A is a subgenerator of a nondegenerate local K-convoluted C-semigroup on X. It
follows from Remark 2.2 and Theorem 2.2 that A is a subgenerator of a nondegenerate
local K-convoluted C-group on X. O

Just as in the proof of Theorem 3.1, we can apply Remark 2.2 with [13, Theorem 3.5]
to obtain the next result, and so its proof is omitted.

Theorem 3.2. Assume that R(C) C R(A — A) for some A € F and
ACP(A,sgn(-)K(| - |)x,0)

has a unique solution in C((—=To, Ty), [D(A)]) for each x € D(A) with (A—A)x € R(C).
Then A is a subgenerator of a nondegenerate local K -convoluted C-group on X.

Since C7'AC = A and R((\ — A)7C) = C(D(A)) if p(A) # 0, we can apply
Theorem 3.2 to obtain the next corollary.



LOCAL K-CONVOLUTED C-GROUPS AND ABSTRACT CAUCHY PROBLEMS 669

Corollary 3.1. Assume that the resolvent set of A : D(A) — X is nonempty.
Then A is the generator of a nondegenerate local K-convoluted C-group on X if
and only if for each x € D(A) ACP(A,sgn(-)K(]-|)Cz,0) has a unique solution in
(=T, Tv), [D(A)]).

Just as in the proof of Theorem 3.1, we can apply Remark 2.2 with [13, Theorem
3.7] to obtain the next result, and so its proof is omitted.

Theorem 3.3. Assume that A is densely defined. Then the following are equivalent.

(i) A is a subgenerator of a nondegenerate local K -convoluted C-group S(-) on X.

(ii) For each v € D(A) ACP(A,sgn(-)K(|-])Cx,0) has a unique solution u(-; Cx)
in C((=To, Ty), [D(A)]) which depends continuously on x. That is, if {x,}>
is a Cauchy sequence in (D(A), || -1]), then {u(:; Cx,)}22, converges uniformly
on compact subsets of (—To,Tp).

We end this paper with several illustrative examples.

Ezample 3.1. Let X = Cy(R), and S(t) for t € R be bounded linear operators on X
defined by S(t)f(z) = f(z +t) for all z € R. Then for each K € L}, ([0,T}),F) and
> —1,sgn(-)Kg(|-|)*S(-) = {segn(t)Ks(||) *S(t) | |t| < To} is local a Kg-convoluted
group on X which is also nondegenerate with a closed subgenerator % when K is
not the zero function on [0,7y) (or equivalently, K is not the zero in Lj,.([0,Tp), F)),
but sgn(-)K (| - |) * S(-) may not be a local K-convoluted group on X except for
K € L}, .([0,Tp),F) so that K xS(-) is a strongly continuous family in L(X) for which
4 s a closed subgenerator of sgn(-)K (|- |) * S(-) when Kj is not the zero function on
[0, Ty). Moreover, (1.1)~(1.4) hold and £ is its generator and maximal subgenerator

when Kj is a kernel on [0,7}). In this case = A, for each subgenerator Ay of

sgn(-) K (| - [) * S()-

Ezxample 3.2. Let X = Cy(R)(or L>(R)), and A be the maximal differential operator in

X defined by Au = Zk:o a;DIu on R for all u € D(A), then UC,(R) (or Co(R)) = D(A).
i=

Here ag, a1, ..., a; € C and Diu(z) = v (z) for all z € R. It is shown in [2,19] that
{S(t)||t| < To} defined by

(SON@) = —=sen) [ [ K= shule = sy

for all f € X and |t| < To, is a norm continuous local Ko-convoluted group on X
with closed subgenerator A if the real-valued polynomial p(z) = Zf 0 aj(iz)? satisfies
sup, g p(z) < oo, and K € L},.([0,Tp),F) is not the zero function on [0, Tp). Here
Ebvt denotes the inverse Fourier transform of ¢, with ¢;(x) = [J e?®*ds for all t > 0.
Now if K is a kernel on [0, 7)), then A is its generator and maximal subgenerator.
Applying Theorem 3.1, we get that for each f € X and continuous function g on
(=Tp, Tp) x R with [*,sup,cg |g(s,7)|ds < oo for all 0 < t < Ty, the function u on

) cT




670 C. C. KUO

(—To, T()) x R defined by

ltva) === [ [ Kallt = sDiule =) () duds
\/ﬁ/ /t T/ Ko(|t — 1 — s))os(z — ) g(r, y)dydsdr,

for all |t| < Ty and = € R, is the unique solution of

a“g;’x) =>q <§x> u(t, x) + Ki(|t]) f +/ Ky ([t — s|)g(s, z)ds,

=0

u(0,2) =0, fort € (—Tp,Tp) and a.e. x € R,
in C'((=To, To), X) N C((~Tp, To), [D(A))).
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ON NORMALIZED SIGNLESS LAPLACIAN RESOLVENT ENERGY
S. B. BOZKURT ALTINDAG!, I. MILOVANOVIC?, E. MILOVANOVIC2, AND M. MATEJIC?

ABSTRACT. Let G be a simple connected graph with n vertices. Denote by £ (G) =
D (G)_1/2 Q(G)D (G)_1/2 the normalized signless Laplacian matrix of graph G,
where @ (G) and D (G) are the signless Laplacian and diagonal degree matrices
of G, respectively. The eigenvalues of matrix £1(G), 2 = 7 > 7 > .- >
~ > 0, are normalized signless Laplacian eigenvalues of G. In this paper, we
introduce the normalized signless Laplacian resolvent energy of G as ERNS (G) =
Dy 3_17_ . We also obtain some lower and upper bounds for ERNS (G) as well as
its relatio;lships with other energies and signless Kemeny’s constant.

1. INTRODUCTION

Let G = (V, E), V ={v1,v,...,0,}, be a simple connected graph with n vertices
and m edges, where |V| = n and |E| = m. Denote by d; the degree of the vertex v;
of G,1=1,2,...,n. If v; and v; are two adjacent vertices of GG, then we denote this
by i ~ j.

Let A (G) be the adjacency matrix of G. Eigenvalues of A (G), Ay > Ay > --+ > A\,
are said to be the (ordinary) eigenvalues of G [11]. Then the energy of the graph G
is defined as [15]

E<G>=§Mi|.

Various properties and bounds on E (G) may be found in the monographs [19, 22]
and references cited therein.

Key words and phrases. Normalized signless Laplacian eigenvalues, normalized signless Laplacian
resolvent energy, bounds.
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In line with concept of graph energy, the resolvent energy of G is put forward in
[18] as
n 1
ER(G) = ;n_)\i.
For the basic properties and bounds of FR (G), the reader may refer to [1,13,34,35].
Let D(G) = diag(dy,ds, ..., d,) denote the diagonal degree matrix of G. The
Laplacian and signless Laplacian matrices of G are, respectively, defined as L (G) =
D (G)—A(G)and Q (G) = D(G)+A(G). Denote by pig > pg > -+ > pip—1 > i, =0
and ¢ > g2 > -+ > ¢, > 0 the eigenvalues of L (G) and @ (G), respectively [26].
Recently, Laplacian resolvent and signless Laplacian resolvent energies of G are,
respectively, introduced as [7]

n 1
RL(G) =
(@) ;n—l—l—ul
and
n 1
RO (G) =

Since graph G is connected, the matrix D(G)_l/ % is well defined. Then, the
normalized Laplacian matrix of G is defined by [10]

L£(G)=D(@) L@ D(@G) Y =1,- R(G),

where [, is the n X n unity matrix and R (G) is the Randi¢ matrix [2]. The following
properties for the normalized Laplacian eigenvalues, v; > v, > -+ > 7,1 > 7, =0,
are valid [36]

n—1

(1.1) %7{ =n and > (37)*=n+2R4(G),

=1

where
1

R—I(G) = Z fdj )

i
is a kind of topological index of G called as general Randi¢ index [8,31].
The matrix £+ (G) = D (G)*Q(G) D (G)""* = I, + R(G) is defined to be the
normalized signless Laplacian matrix of G [10]. Some well known identities concerning
the normalized signless Laplacian eigenvalues, 7" > ~v3 > --- > 4" > 0, are [9]

n

(1.2) zn:'yf =n and Y (%)’ =n+2R_(G).

i=1
For i =1,2,...,n, the following relations (see [14,24]) exist
(1.3) ¥ =1—poiy1 and v =1+p;.

)

Here, 1 = p; > py > - -+ > p, are the Randi¢ eigenvalues of G [2,24].
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Motivated by the definitions of graph resolvent energies KR, RL and R() and
considering the fact that v; < 2,1 <4 <n, Sun and Das [33] defined the normalized
Laplacian resolvent energy of G as

1

ERN (G) =
(@) ;3_%

Since the property 7;~ < 2, 1 < i < n, is also satisfied by the normalized signless
Laplacian eigenvalues, we now introduce the normalized signless Laplacian resolvent

energy of G as follows
L 1
ERNS(G) =Y <.
Pl Ble?
Notice that in the case of bipartite graph the normalized Laplacian and normalized
signless Laplacian eigenvalues coincide [3]. From hence, for bipartite graphs, ERN (G)
is equal to ERNS (G).
Before we proceed, let us recall another graph invariant closely related to normalized
Laplacian eigenvalues and so called Kemeny’s constant. It is defined as [6]

n—1 1
K(G) =) —.
i=1 Vi
For more information on K (G), see [21,27].
Since for connected non-bipartite graphs v;7 > 0 for i = 1,2,...,n, [4], very
recently, in an analogous manner with Kemeny’s constant, signless Kemeny’s constant
of connected non-bipartite graphs is considered as [28]

L |
i—1 Vi

In [28], it is also emphasized that K (G) coincides with K (G) in the case of bipartite
graphs.

In this paper, we obtain some lower and upper bounds for ERNS (G) as well as
its relationships with other energies and K (G).

2. LEMMAS

We now recall some known results on graph spectra and analytical inequalities that
will be used in our main results.

Lemma 2.1 ([14]). For any connected graph G, the largest normalized signless Lapla-
cian eigenvalue is v = 2.

Lemma 2.2 ([14]). Let G be a graph of order n > 2 with no isolated vertices. Then

n—2

+ — +:---: =

if and only if G = K,,.
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Lemma 2.3 ([4]). If G is a connected non-bipartite graph of order n, then ~; > 0
fori=1,2,....,n.

Lemma 2.4 ([3]). If G is a bipartite graph, then the eigenvalues of L and L coincide.

Lemma 2.5 ([23]). Let G be a connected graph of order n. Then vy > 1, the equality
holds if and only if G is a complete bipartite graph.

Lemma 2.6 ([12]). Let G be a connected graph with n > 2 vertices. Then vy = v53 =
=7, ifand only if G = K,, or G = K, ,

Lemma 2.7 ([10]). Let G be a bipartite graph with n vertices Then fori=1,2,...,n,
Yi + Vn—iv1 = 2.

Lemma 2.8 ([24]). For any connected graph G, the largest Randié¢ eigenvalue is
pP1 = 1.

Lemma 2.9 ([2]). Let G be a graph with n vertices and Randi¢ matriz R (G). Then
tr (R(G)") = 2R,

and

tr(R(G)?’)—2Zdi1dj< > dlk)

i~ k~i, k~j

Lemma 2.10 ([30]). Let = (x;) and a = (a;) be two sequences of positive real
numbers, 1 = 1,2,...,n. Then for any r > 0

(2.1) 1213:;5 > (fiaz)r

T2 .
az an '’

Equality holds if and only i o=

Lemma 2.11 ([20]). Let a = (a;) and p = (p;) be two sequences of positive real

numbers such that > p;=1and 0 <r <a; < R < 4o00,1=1,2,...,n,r,R € R.
i=1

Then

2
n " op 1 R T

2.2 S 2 < W E =]

FEquality holds if and only if R=a; =as =+ =a, =r.

3. LoweErR AND UPPER BOUNDS ON ERNS (G)

In this section, we establish some lower and upper bounds for ERNS (G).
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Theorem 3.1. Let G be a connected non-bipartite graph with n > 3 vertices. Then,
for any real o, such that v5 > a > Z—j,

1 (n —2)?
+ )
3—a 2n—4+«

If a = Z—j, equality holds if and only if G = K,,.

(3.1) ERNS(G)>1+

Proof. By arithmetic-harmonic mean inequality [29], we have

n

ZaZZ; n—2

=3 =3
where a; > 0, i = 3,4,...,n, are arbitrary real numbers. For a; = 3 — 7", i =
3,4,...,n, the above inequality transforms into
n n
=3 :3 z
that is

z”: L S (n—2)?
3 “3-7 T3-7 P (3-1)
Then, it follows from the above, (1.2) and Lemma 2.1 that
L =2y

3=y 2n—4+4F
Now, consider the function defined as follows

1 (n —2)°
3— 2n —4 —l— T

(3.2) ERNS (G) > 1+

f(x) =

It can be easily seen that f is increasing for x > "=;. Then for any real «, v > o>
n—=2
n—1"

1 (n—2)?
) > —

fe) 2t =545 0o

Based on this inequailty and (3.2), we obtain the lower bound (3.1). Equality in (3.1)

holds if and only if

If a = Z—j, then from the above and Lemma 2.2, one can easily conclude that the
equality in (3.1) holds if and only if G = K. O
Corollary 3.1. Let G be a connected non-bipartite graph with n > 3 vertices. Then

(n—1)*

> _ .
ERNS(G) 2 1+ 5 —

Equality holds if and only if G = K,.



678 S. B. B. ALTINDAG, I. MILOVANOVIC, E. MILOVANOVIC, AND M. MATEJIC

Considering the techniques in Theorem 3.1 with Lemmas 2.1, 2.4 and 2.6, we obtain
the following result for bipartite graphs.

Theorem 3.2. Let G be a connected bipartite graph with n > 3 vertices. Then, for
any real o, such that v5 =5 > a > 1
1 (n — 3)?
3—a 2n—T+a
If oo =1, equality holds if and only if G = K, ,, p+ q = n.

ERNS(G) = ERN (G) > - +

W W~

In [5], it was obtained that

2(R_1(G)—1)
n—2 '

(33) WJI%ZH\/
From Theorem 3.2 and (3.3), we directly have the following.

Corollary 3.2. Let G be a connected bipartite graph with n > 3 wvertices. Then

4 1 (n — 3)?
, _ > - :
(8:4) ERNS(G) = ERN(G) 2 g+ s T 5, ¢4 /@D

n—2 n—2

From Theorem 3.2 and Lemma 2.5, we have the following result. It was proven in
Theorem 3.8 of [33].

Corollary 3.3 ([33]). Let G be a connected bipartite graph with n > 3 vertices. Then

1
(3.5) ERNS(G) = ERN (G) > g Lt
Equality holds if and only if G = K4
Remark 3.1. Note that the lower bound (3.4) is stronger than the lower bound (3.5).

Theorem 3.3. Let G be a connected graph with n > 3 vertices. Then

1 (n—2)2
(3.6) ERNS(G)23<n+2+2(n_1_R1(G))> :

Equality holds if and only if G = K,, or G = K, 4, p+q =n.
Proof. Suppose G is a connected non—bipartite graph with n > 3 vertices. Then, by

Lemmas 2.1 and 2.3, 7" = 2 and 7" > 0, i = 2,3,...,n. For r = 1 the inequality
(2.1) transforms into

n 2
n 1 <_ :m>

57 st A
=2

)
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Setting z; = v;", a; = v, (3—~;"),i=2,3,...,n, in (3.7) and using (1.2) and Lemma
2.1, we have

(z‘zz:z 7j>2 _ (n —2)?

\%

33) s~ ()

= B2 T S 3o 20— 1-Ra(G)
1=2

On the other hand, from the above and Lemma 2.1, we also have

Ly "oyt —343
=2 3= =y

i=2 Vi (3—=") =3 z - O %
—(n—1)+3(ERNS(G) —1)

(3.9) —3ERNS(G) —n — 2.
From (3.8) and (3.9), the inequality (3.6) is obtained.

Equality in (3.8) holds if and only if

I 1
3—nF 3-9F 83—

that is 75 =4 = --- = 7. By Lemma 2.2, when G is non—bipartite graph, equality
in (3.6) holds if and only if G = K.

Now, suppose G is a connected bipartite graph with n > 3 vertices. Then, by
Lemmas 2.1 and 2.4, 9" =2 and 75 > v > -+ > v, > 7" = 0. The inequality

(2.1) can be considered as
2
,1 (Z Z; )

i=2 i E a;
Taking z; = 7", a; = 7" (3 — ), i = — 1,1 i i
gx; =7 ,a =7 B—=2"),1=23,...,n—1, in the above inequality and
considering (1.2), we get
_ 2
N 9 nzl +
(3 10) g (77‘ ) > =2 i _ (n B 2)2
' — (3 -t Tl 2(n—1-R.4(G))"
iz B=) ) v (3 =~7) ( 1(G))

Observe that

1
—(n—2)+3<ERNS(G) —1—3) _
—3ERNS(G) —n — 2.
From the above and inequality (3.10) we arrive at (3.6).
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Equality in (3.10) holds if and only if

r 1 1
3—9  3-175 33—
that is when 5 =~ =~ ,. Since G is a bipartite graph, by Lemmas 2.4 and
2.6, equality in (3. 6) holds 1f andonly ift G = K, ,, p+q=n. O

Corollary 3.4. Let G be a connected bipartite graph with n > 3 vertices. Then

B 1 (n —2)?
ERNS(G) = ERN(G) > 3 <n+2—|— 2= 1—R_1(G)> :

Equality holds if and only if G = K, 4, p+q=n.
Theorem 3.4. Let G be a connected non-bipartite graph with n > 3 vertices. Then

dn—5—(n—1)(v +71)
(3=)B =)
Equality holds if and only if vi" € {73, }, fori =2,3,...,n

(3.11) ERNS(G) <1+

Proof. For every ¢ = 2,3, ...,n, the following inequalities are valid
(3= =3+7%)B =7 —3+7") <0,
B=7)V+B=1)B=%) <(6-2% —7)B—%),
(3—%)B—%)

(3.12) (3—7")+ - <6 -7 — 7, -
33—
After summation of (3.12) over i, i = 2,3,...,n, we obtain
Y B=%)+B =Bt 23 - < (66— %)Y,
i—2 i—2 o i—2
that is

(313)  2n—1+ (8= )B = NERNS(G) = 1) < (6 =3 — ) (n—1),

from which (3.11) is obtained.

Equality in (3.12) holds if and only if ;" € {v5,7;"}, for every i = 2,3,...,n
which implies that equality in (3.11) holds if and only if 7;" € {~5, 7"}, for every
i=2.3,... . 0

Corollary 3.5. Let G be a connected non-bipartite graph with n > 3 vertices. Then

(=16~ )

(3.14) ERNS(G) <1+ TSI ot

Equality holds if and only if G = K,,.
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Proof. After applying the arithmetic-geometric mean inequality, AM-GM, on (3.13)
we obtain

2/(20 = 1)(3 = 75)B = ADERNS(G) = 1) < (6 = 5f =)0 = 1),
from which (3.14) is obtained. O

The proof of the next theorem is fully analogous to that of Theorem 3.4, thus
omitted.

Theorem 3.5. Let G be a connected bipartite graph with n > 3 vertices. Then

ERNS(G) = ERN(G) < g‘+ € —3;;(;3)#_1)'

Equality holds if and only if G = K, 4, p+ q = n.

Theorem 3.6. Let G be a connected non-bipartite graph with n > 3 vertices. Then

(n =26~ 7))
8(n—1-R1 (@) (3-1) B =)

(3.15)  ERNS(G)<=|n+2+

OOM—\

Equality holds if and only if G = K,.
o

1 . 1 1 1
,a-:ﬁ7122,3,...,n,R:7+,r: 1n(2.2),We

Proof. Setting p; = 3= 317 Ea—

have that
2
n + n + +
Ji 1 i + 1 3= 3=
3_~t) <=
@;<n—2> (3—%*);(”—2> (3-a7) 5 4 (\/;Jr 3=t
Considering this with (1.2) and (3.9) and Lemma 2.1, we obtain that
— ot )
2<”_1_R;1(G>) (3ERNS (G) —n—2) < (6= — ) .
(n—2) A\ (B-) B

From the above result, we arrive at the upper bound (3.15). The equality in (3.15)
holds if and only if

e

1 1
3-8 3-vw  3-qf
that is
Y=Y = =T
Thus, in view of Lemma 2.2, we conclude that the equality in (3.15) holds if and only
if G = K,,. O

Using the techniques in Theorem 3.6 with Lemmas 2.1, 2.4, 2.6, 2.7 and 2.11, we
have the following.
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Theorem 3.7. Let G be a connected bipartite graph with n > 3 vertices. Then

1 2(n—2)?
ERNS(G)=FERN(G) <= {|n+2 '
(G) ( )53( * +(n—1—R1(G))(3—’72+)(3_7:—1)>

Equality holds if and only if G = K, 4, p+ q¢ = n.

4. RELATIONS BETWEEN EFRNS(G) AND OTHER ENERGIES

One of the chemically/mathematically most important graph spectrum—based in-
variants in graph theory is the concept of graph energy introduced in [15]. Due to the
evident success of graph energy, a number of graph energies and energy-like graph
invariants have been put forward in the literature. We first recall some of them.

For a graph G, in full analogy with the graph energy [15], Randi¢ (normalized
Laplacian or normalized signless Laplacian) energy is defined as [2,8,17]

1=1

where 1 = p; > py > -+ > p, are the Randié eigenvalues of G [2,24].
In analogous manner with Laplacian energy-like invariant [25], Laplacian incidence
energy is introduced as [32]

LIE (G) —nz__jﬁ

and by analogy with incidence energy [16], the Randi¢ (normalized) incidence energy
is put forward in [9, 14] as

IrE (G> = Xj: \/%

Here, 77 > 73 > -+ 2 7 >, = 0and 2 = 4 > 93 > .- > 4F > 0 are,
respectively, the normalized Laplacian and normalized signless Laplacian eigenvalues
of G [10,14]. Note that LIFE is equal to IrFE, for bipartite graphs [3].

Now, we are ready to give some relationships between ERNS (G) and other energies
emphasized in the above.

Theorem 4.1. Let G be a connected non-bipartite graph with n > 3 vertices. Then

E(G)—1)°
(4.1) ERNS(G)>1+ (RE(G) ) :
-2 (T 4)-1
invj P N\ ki, kg OF

Equality is achieved for G = K,,.
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Proof. For x; = |y — 1‘ and a; = ﬁ, i=2,3,...,n, the inequality (3.7) becomes
n 2
e ()
(4.2) (o =1) (3-7) =~ -
— 1
=2 l; 3_7i+

From (1.3) and Lemmas 2.8 and 2.9, we have

(7 =1) (3=) =22~ )
=2
=23 -1
1=2 =2

=2(2R_; —1) — <2Zdi1dj ( > dlk) —1)

i~J ke~ kg

(4.3) =4R_, —22 dildj ( > dlk) —1.

i~] j

n
=2

ke, kg
Then by (4.2) and (4.3) and Lemma 2.1, we get that

1 1 (RE (G) — 1)
AR, —2 —]-1> .
=23 did; (W,kaj dk) =~ ERNS(G) -1

i~]

From the above, the inequality (4.1) follows. One can easily check that the equality
in (4.1) is achieved for G = K,,. O

Theorem 4.2. Let G be a connected non—bipartite graph with n > 3 wvertices. Then

(IB(G) - \/§>2> |

2n —1

1
(4.4) ERNS(G) > 3 (n +2+
Equality holds if and only if G = K,,.
Proof. Taking x; = /7", a; =3 —~", i =2,3,...,n, in (3.7)

2
Z v >< 112@)
3—7 T X8

i=2
Considering this with (1.2) and (3.9) and Lemma 2.1

2
(IRE (G) - \/§>
2n—1
From the above we obtain (4.4). Equality in (4.4) holds if and only if
ViaC T Vi S Vi 1
3—%  3-

S 3=l

n

3ERNS(G)—n—2>
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that is if and only if

(\/%*—\/vf) (3+ %*ﬁ) =0, i#J,
which implies that equality in (4.4) holds if and only if G = K. O
Theorem 4.3. Let G be a connected bipartite graph with n > 3 vertices. Then

(LIE(G) —v2)"

2
L TP

ERNS(G) = ERN(G) >

Ll —

Equality holds if G = K, 4, p+q =n.

5. RELATIONSHIPS BETWEEN ERNS(G) AND KT (G)
In this section, we present some relationships between FERNS(G) and KT (G).

Theorem 5.1. Let G be a connected non-bipartite graph wit n > 3 vertices. Then
3(n—1)32
2(n—1—R4(Q))"

(5.1) ERNS(G) > 2 — K'(G) +

FEquality holds if and only if G = K,,.
Proof. The arithmetic-harmonic mean inequality can be considered as [29]
"1

(5.2) zn:alza (n — 1)

=2 =2

For a; = v;" (3 —~;"), i = 2,3,...,n, the above inequality transforms into
n n 1
(5.3) WEB=)Y a2 (n - 1%
; ; B =)
From the above, (1.2) and Lemma 2.1,
(n —1)?
5.4 > .
o0 I R T (6]

On the other hand, by Lemma 2.1, we have that

>t (DY

7,271 3 P)/z 1271 123 71)
! (W(G) - ; + ERNS(G) — 1>

3
1/ ., 3
= (K @) -5+ ERNS(G))
Combining this with (5.4) we arrive at (5.1). Equality in (5.3) holds if and only if

Yo (3= ) =79 (3—~7) = =~7(3—~"). Suppose i # j. Then, from the identity
v (3—7i") = (3—17), follows that (v;"—~;)(3—~;"—7;") = 0. Thus, we conclude
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that equality in (5.3) holds if and only if 75 = 73 = -+ = ~,". Having this in mind
and Lemma 2.2, we conclude that equality in (5.1) holds if and only if G = K,,. O

Using the similar idea in Theorem 5.1 with Lemmas 2.1, 2.4 and 2.6, we get the
following.

Theorem 5.2. Let G be a connected bipartite graph with n > 3 vertices. Then

B 11 3(n — 2)?
ERNS(G) = ERN(G) = & — K(G) + O )L

Equality holds if and only if G = K, 4, p+ q=n.

Theorem 5.3. Let G be a connected non—bipartite graph with n > 3 vertices. Then

1 2(n — 1)2
5.5 ERNS(G) > = 2 .
(5:5) ( )—3<”+ +6K+(G)—2n—1>
Equality holds if and only if G = K,.
Proof. For a; = 3};, i=2,3,...,n, the inequality (5.2) transforms into
n + n +

Vi 3= 2
5.6 >(n—1)".
o0 zz:; 3 - i=2 o ( )

On the other hand, by Lemma 2.1, we have that

- =3(K"* —)— —1)=3K"G)—n—=.
S =3 (KNG ) - ) =K@
From the above, (3.9) and (5.6), we obtain (5.5). Equality in (5.6) holds if and only if
o - S, /1
3—v 3193 3—w

N
Suppose i # j. Then equality in (5.6) holds if and only if % = 31#, that is if and
only if v = v = -+ = 4. By Lemma 2.2, equality in (5.5) holds if and only if
G=K,. [

Conisdering the same idea in Theorem 5.3 together with Lemma 2.1, 2.4 and 2.6,
we have the following.

Theorem 5.4. Let G be a connected bipartite graph with n > 3 vertices. Then

2(n — 2)? ) |

ERNS(G) = ERN(G) > GE(G) 251

1

Equality holds if and only if G = K, 4, p+ q¢ = n.
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THE NEW INEQUALITIES FOR tgs-CONVEX FUNCTIONS
HONG HUANG! AND GUO-JIN XU?

ABSTRACT. In this paper, we establish some Hadamard-Hadamard type inequalities
for tgs-convex functions. Our results are the generalizations of some known results.
The new generalized estimate of the midpoints product of two tgs-convex functions
is also considered.

1. INTRODUCTION
Definition 1.1. A function f: I C R — R is said to be convex on [ if the inequality
(1.1) fltz+ (1 —t)y) <tf(x)+ (1 —1)f(y)
holds for all z,y € I and ¢ € [0,1]. We say that f is concave if (—f) is convex.

For convex functions, we have the following inequality which is known in the
literature as Hermite-Hadamard inequality.

Theorem 1.1. Let f : I C R — R be a convex function and a,b € I with a < b.
Then

(1.2) f <“+b> < ! /abf(:c)d:v < f@)+70)

2 “b—a 2
If f is a positive concave function, then the inequality is reversed.

In 1906, Fejér [1] showed the following weighted generalization of inequality (1.2).

Key words and phrases. Convexity, tgs-convexity, Hadamard-Hadamard-Fejér inequality.
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Theorem 1.2. If f : I C R — R is a convez function, then the following inequality
holds:

() [awas 2 [ roan < L0 o

. . .. . . . a+b
where q : [a,b] — R is positive, integrable, and symmetric with respect to “3°.

Some refinements, variations, generalizations and improvements of inequalities (1.2)
and (1.3) can be seen [2,3] and [4].

Definition 1.2 ([5]). Let f : I C R — R be a nonnegative function. f is called a
tgs-convex function on I if the inequality

(1.4) fltz+ (1 =t)y) <t =t)(f(z) + f(y))
holds for all z,y € I and t € [0, 1]. We say that f is tgs-concave if (— f) is tgs-convex.
For tgs-convex functions, the following results hold [5].

Theorem 1.3. Assume that f : I C R — R is a tgs-convex function and a,b € I
with a < b, then we have

(1.5) 2f<agb>§bia/abf(t)dtgw_

Theorem 1.4. Assume that f and g are real valued, nonnegative tgs-convex functions
on [a,b], then we have

o) sr(U5) o ("57) < g [ routoir g (et + Nan)

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).
The recent results on tgs-convex functions can be seen in [5,6] and [7].
In this paper, we give the improvements of (1.5) and (1.6). The weighted general-
ization of inequality (1.5) are also established.
2. MAIN RESULTS

The following result is an improvement of (1.5).

Theorem 2.1. Assume that f : [a,b] — R is a tgs-convez function, then we have

o))
b i a /ab F(t)dt
@10 )

<
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S 1)
Proof. Using (1.5) in [a, “t2] and [“t2, b], we have

a+3b 2 b F(0) + f(%5%)
2f< 1 ) Sb—a/a;bf(t)dtg R —
Form the above inequalities, we have
3a+b 3b 1 b b) + 2f(%rt
f<a2_ >+f<a—z )Sb—a/aﬂt)dtgf(a)—i_f(l);_ f(Z)'

A combination of the above inequality and the following results

f<a42rb> :f<(3a+b)/4—g(a+3b)/4> = <f <3a;b) +f<az3b>>7
f<a+b> fla)+ f(b)

2 - 4 ’
deduces the desired inequality (2.1). O

The following Hadamard-Hadamard-Fejér type inequality for tgs-convex function
holds.

Theorem 2.2. Assume that f : [a,b] — R is a tgs-convez function, then we have

(22)  2f (a;rb>/ 2)dz </ flo
(b —z)(z —a)

<(f(@) + /) /a b @)z,

a+b

where q : [a,b] — R is positive, integrable, and symmetric with respect to

Proof. Since q(z) = q(a + b — ), we have
2f<a+b>/ dx<2/ ( CH—b_gv)q(x)dx,
2/ x)dr + — / (a+b—2x)qla+b—x)dx

- /a ©)q(x)dz.

On the other hand,

/ab F(@)q(x)dz =(b — a) /01 F(tb+ (1= Da)g(th + (1 — t)a)dt
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<(b = a)(f(a) + F(B)) [ #(1 ~ D)a(tb + (1~ D)a)e

=(f(a) + f(b)) /ab (b _(bxz(z); a>q(x)dx. O

Remark 2.1. We get (1.5) by putting ¢(z) =1 in (2.2).

The following inequalities are improvements of (1.6).

Theorem 2.3. Assume that f and g are real valued, nonnegative tgs-convex functions
on |a,b], then we have

s (“57) o (“57) syt [ Htra

610(N((a +0)/2, (a+ b)/2) + N(a,b)

+ N(a,(a+0)/2) + N((a+0)/2,b)]
1 b
< / f(t)dt

“b—a

1
+ @[5]\4(@ b) + 13N (a,b)],

where M(a,b) and N(a,b) are defined in Theorem 1.4.

Proof. For X\ € [0, 1], we have

(23

Yy (( —A)b+ Aa+1b)/2 N (1— )\)a+)\(a+b)/2>

» ((1 _ A)52+2A<a +/2 (1= /\)ai-Z/\(a 4 b)/2>
;f(( — )b+ Ma+5)/2)g((1 = Nb+ Ma +b)/2)
+ ;f((l —ANa+ Aa+b)/2)g((1 = Na+ Aa+b)/2)
+ ;f((l —ANb+ Aa+b0)/2)g((1 = Na+ Xa+b)/2)
F 3P Na+ Ma+)/2)g((1 = )b+ Ala +8)/2)
;f((l )b+ Aa+8)/2)g((1 = Nb+ Aa +b)/2)

F((1 = Na+ Ma+b)/2)g((1 — Na + Ma + )/2)
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+;( = N)2N*[f(a) + f((a +b)/2))(9((a +b)/2) + g(b))
+ (f((a+1b)/2) + f(0)(g((a+b)/2) + g(a))]
;f(( A)b+ Aa+0)/2)g((1 = A)b+ Aa+1b)/2)
1

+-f(1=XNa+Aa+b)/2)g((1 = Na+ Aa+b)/2)

— DN

+ 5(1 — AN [N((a+0b)/2,(a+b)/2))
+ N(a,b) + N(a,(a+b)/2) + N((a+b)/2,b)].

Integrating both sides of the above inequality with respect to A over [0, 1], we have

(23]

5/ f(( Ab+ Aa +6)/2)g((1 = M)b+ A+ b)/2)dA

;_n

+§ Aa+ Xa+0)/2)g((1 = XN)a + AMa + b)/2)dA
+; N((a+b)/2,(a+b)/2) + N(a,b)

+ N(a, +b)/2)) +N((a+b)/2 b)|dA

~ [/ @+ [ f<x>g<x>dx]

+ 610[N((a +1)/2, (a +b)/2) + N(a, b)

+ N(a,(a+0)/2) + N((a + b)/2,b)]

= [ F@e(@)de + SN (0 +)/2, (a4 D)/2) + N(a,)
+ N{a, (a+b)/2)—|—N(( +b)/2,b)].

On the other hand, since

2

(2.3) N((a+b)/2, (a+b)/2) < ;[M(a, b) + N(a,b)]

and

(2.4) N(a, (a+5)/2) + N((a+)/2,5) < 5[M(a,b) + N(a,b)],
we have

sr(“50)a(%57) <t [ 1@t

+ 610(N((a +8)/2, (a +b)/2) + N(a,b)
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+ N(a,(a+0b)/2) + N((a +b)/2,b)]

1 b
gb_a/a f(t)dt

1
—\|5M 13N . U

3. APPLICATIONS TO PROBABILITY DENSITY FUNCTION

Let X be a random variable taking values in the finite interval [a,b], with the
probability density function f : [a,b] — [0, 1] with the cumulative distribution function
F(z) = Pr(X <x) =[] f(t)dt.

Theorem 3.1. With the assumptions of Theorem 2.1, we have the inequality

a+b 3a+b a+ 3b
. <
(3.1) 4F( ! >_F< . )+F( . )
b— E(X)
b—a
<F(a) + F(b) N F((a+10)/2)
- 12 6
<F(a) + F(b)
- 8
Proof. In the proof of Theorem 2.1, letting f = F, and taking into account that
b b
E(r) = / tdF(t) = b — / F(t)dt,
we obtain (3.1). O
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INEQUALITIES FOR HYPERBOLIC TYPE HARMONIC
PREINVEX FUNCTION

SOUBHAGYA KUMAR SAHOO!, BIBHAKAR KODAMASINGH!,
AND MUHAMMAD AMER LATIF?

ABSTRACT. In the present paper, we have introduced a new class of preinvexity
namely hyperbolic type harmonic preinvex functions and to support this new defi-
nition, some of its algebraic properties are elaborated. By using this new class of
preinvexity, we have established a few Hermite-Hadamard type integral inequalities.
Some novel refinements of Hemite-Hadamard type inequalities for hyperbolic type
harmonic preinvex functions are presented as well. Finally, the Riemann-Liouville
fractional version of the Hermite-Hadamard Inequality is established.

1. PRELIMINARIES

Let ¢ : K C R — R be a convex function with p < ¢ and p,q € K. Then the
Hermite-Hadamard inequality is expressed as follows (see [1]):

(L.1) ; <p+q> <t /q¢(x)dx < #) el
2 q—pJp 2

The Hermite-Hadamard inequality which was proved separately by Hermite in 1883
and Hadamard in 1896 is extensively studied in the convex theory. The double
inequality is known as Hermite-Hadamard integral inequality for convex function in
the literature. It deals with a necessary and sufficient condition for a function to be
convex. For some recent results associated with the inequality (1.1) we recommend
interested readers to go through [2-5] and the references therein.

Key words and phrases. Preinvex function, Hyperbolic type convex function, fractional calculus,
Holder integral inequality, Hermite-Hadamard inequality.

2020 Mathematics Subject Classification. Primary: 26A51, 26D10. Secondary: 26D15

DOIT 10.46793/KgJMat2405.697S

Received: November 11, 2020.

Accepted: August 20, 2021.

697



698 S. K. SAHOO, B. KODAMASINGH, AND M. A. LATIF

Recently, the concept of convexity has experienced very interesting developments.
Many researchers generalised the classical concepts of convex sets and functions
in different directions. A significant extension of convex function is invex function,
introduced by Hanson [6]. Consequently, preinvex function is introduced by Ben Israel
et al [7] and Weir et al. [8]. Rita Pini [9], introduced the concept of prequasi-invex as
an extension of invex function.

Definition 1.1 ([10]). A function ¢ : K = [p,p+7n(g,p)] C R\ {0} — R is said to
be harmonic preinvex function if, the inequality

(1.2) @( p(p+n(q,p))

p+ (1 —k)nlg,p)

holds, where 7(-,) : K x K — R is a bifunction.
For n(q,p) = ¢ — p, (1.2) reduces to the inequality for harmonic convex function.
If the inequality is reversed in (1.2), then f is said to be harmonically preconcave
function.

) < (1= W)o(p) + kgla), for all p.g € K, k€ [0,1],

Condition C ([11]). Let K C R be an invex set with respect to bi-function 7(,-).
Then for any p,q € K and k € [0, 1]

1 (p,p+kn(q,p)) = —kn(q,p),

n(q,p+ kn(q,p)) = (1 = k)n(q, p),

for every p,q € K, ky, ks € [0, 1] and using Condition C, we get

n(p + kan(q, p), p + kinlq,p)) = (k2 — k1)n(q, p).

In [11], Mohan and Neogy proved that a differentiable function which is invex on K,
w.r.t 7, is also preinvex under Condition C.

[scan proved the Hermite-Hadamard type inequality for the harmonically convex
function.

Theorem 1.1 ([12, Theorem 2.4]). Let K C (0,00) be an interval and ¢ : K — R be
a harmonically convex function with p < q and p,q € K. Then the Hermite-Hadamard
type inequality

(1.3) g0( 2pq ) < P /pq W(x)dxéw

p+q) " q—p x? 2
holds.

Noor [10], has proved that a function ¢ is harmonic preinvex if and only if ¢ satisfies
the following inequality

<2p(p + n(q,p))> _ p(p+n(g.p) /”’7(‘“’) p(z) o ¢p) + ()
2p +n(q,p) n(g,p)  Jp a? 2
Toplu [13], introduced the concept of Hyperbolic type convexity as follows.
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Definition 1.2. A function ¢ : K C R — R is called hyperbolic type convex function
if for every p,q € K and k € [0, 1], the inequality

sinh k (p) + sinh 1 — sinh k&
sinh 1 PP sinh 1

p(kp+ (1 —Fk)q) < v(q)

holds.

Theorem 1.2 ([13, Theorem 3.1]). Let ¢ : [p,q] — R be a hyperbolic type convex
function. If p < q and ¢ € Llp,q|, then the following Hermite-Hadamard type
inequality holds.

p—i—q) 1 /‘1 coshl —1 e—1
— ) < — dr < — .
SO( 2 “q—pJp pla)dr < sinh 1 op)+ esinhlw(Q)

2. MAIN RESULT

In this section, we introduce new classes of hyperbolic type harmonic preinvex
function. The main purpose of this paper is to introduce the concept of preinvexity
for hyperbolic type harmonic convex functions and establish some results associated
with the right hand side of the inequalities similar to (1.3) for the classes of hyperbolic
type harmonic preinvex functions. For some recent results connected with preinvexity
see [14-20] and the references therein.

Definition 2.1. A function ¢ : K € R — R is called hyperbolic type preinvex
function if and only if for every p,q € K and k € [0, 1]

sinh k (g)+ sinh 1 — sinh k
sinh 1 A sinh 1

o(p+kn(g,p) < ©(p)

holds.

Definition 2.2. A function ¢ : K C R — R is called hyperbolic type harmonic
preinvex function if and only if for every p,q € K and k € [0, 1]

p(p +n(q,p)) < sinh k (@) + sinh 1 — sinh k
p+ (1 —Fk)nlg,p) o\ sinh 1

(2.1) ©(p)

— sinh1
holds.

Definition 2.3. Let h : (0,1) € K — R be a non negative function, then a real
valued function ¢ : K C [0,00] — R is called hyperbolic type h-harmonic preinvex
function if and only if for every p,q € K and k € [0, 1]

(2.2) ” < p(p+n(q,p)) ) <h (sinh k;) o) + (Sinhl — sinh k) o(p)

p+(1—k)n(g,p) sinh 1 sinh 1
holds.

Remark 2.1. If h(k) = k, then (2.2) reduces to (2.1).
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Theorem 2.1. Consider ¢ and v be two real valued hyperbolic type harmonic preinvex
functions, then

(i) @ + 1 is hyperbolic type harmonic preinvex function;

(ii) for c € R, ¢ > 0, the function cp is hyperbolic type harmonic preinvex function.

Proof. (i) Let ¢ and 1 be two hyperbolic type harmonic preinvex functions, then

p(p +n(q,p))
“0”’)<p T hnlg >)

B p(p +n(g,p)) p(p +n(g,p))

_wQﬂﬁl—@MmM)+w<p+( k)n(g, J

_Ziiif (g) + smhsliI;lsllnhkgo(p) N Ekw( )+ smhiﬂ;lsllnhk
smh k sinh 1 — sinh k[ (p) + ¥ (p)]

smh 1 lpla) +v(a)] + sinh 1
(v +¥)(p).

¥(p)

sinh k sinh 1 — sinh &
~ sinh1 (SD + ¢)(Q) + sinh 1

(ii) Let ¢ be hyperbolic type harmonic preinvex functions and ¢ € R, ¢ > 0, then

p(p+n(q,p)) sinh k sinh 1 — sinh k
“w)<P+(1—kﬁﬂ%p£)SC(smh1¢@)+ sinh 1 ¢@”>

_sinhk: (>+sinh1—sinhk ()
N Sinhlqp g sinh 1 “Pp

sinh & sinh 1 — sinh &

- sinh 1 (ep)(g) + sinh 1

(co)(p). O

Theorem 2.2. If p: K — K is a hyperbolic type harmonic convex and ¢ : K — R s
a nondecreasing convex function, then v o ¢ : K — R is a hyperbolic type harmonic
preinvex function.

Proof. For o, 5 € K and k € [0, 1]

p(p+mn(g,p)) \ _ , (sinhk sinh 1 — sinh k
wogp(p—i-( k)n(q,p) =9 sinhl(p(Q)—i_ sinh 1 #(p)
sinh k& sinh 1 — sinh k
<
~ sinh 11/J(90(q)) * sinh 1 v(e(p))
sinh k& sinh 1 — sinh k
< .
~— sinh 1 °oplg) + sinh 1 © go(p) O

Theorem 2.3. Let ¢ : [p,q] — R be an arbitrary family of hyperbolic type harmonic
preinvex functions and let ¢(x) = sup, pa(x). If K = {v € [p,q] : p(v) < oo} is
nonempty, then K is an interval and ¢ is a hyperbolic type harmonic preinver function
on K.
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Proof. For p,q € K and k € [0, 1]

( p(p+n(q,p))
p+ (1 —=Fk)ng,p)

< sup

sinh k

sinh 1
sinh k

sinh 1

<

= SUp P
) a*’<p+a—kmmw>
sinh k

o sinh1

o(q) +

701

p(p +n(q,p))

)

sinh1 — sinh & ( )
sinh 1 AP

sinh 1 — sinh &k
sinh 1
sinh 1 — sinh &
sinh 1

©(q) +

sup pa(q) +

o

sup @a(p)

¢(p) < oo.

Definition 2.4 ([10]). Two functions u and v are said to be of similar ordered if

(u(a) = u(B))(v(a) = v(B)) =0,

for all o, 5 € R.

Theorem 2.4. Let ¢ and i) be two similar ordered hyperbolic type harmonic preinvex
function, then the product of two hyperbolic harmonic preinvexr function is again a
hyperbolic type harmonic preinvex function.

Proof. Let ¢ and ¥ be two hyperbolic type harmonic preinvex function, then

p(p +n(q,p))

( p(p +1(q,p))

p+ (1= k)n(q,

sinh 1 — sinh k&
sinh 1

sinh k
<
~ |sinh1
sinh k

©(q) +

)>w<p+ﬂ—kmwm)

o) |

sinh 1 — sinh &

)

Y(q) +

sinh 1 — sinh k
sinh 1

sinh k&

sinh 1 v(p)

sinh 1

= (SmM) o(qQ)¥(q) + (
sinh &\

sinh 1 — sinh &\

) e(p)v(p)

+ (SinM) ©(q)v(q) + (
sinhk sinh1 — sinh &

sinh1 sinh 1

sinh 1

sinh 1

) e(p)v(p)

[(q)e(p) + ¢(a)¥(p)]
— sinh k

- (Smhk> e(q)(q) — (

sinh 1
sinh 1

sinh 1
— sinh k£

sinh k
= [ ©(q)(q) + e

~ |sinh1
sinhk  sinh1 — sinh &
- [sinh 17 sl
sinh 1 — sinh k&

smh k
 sinh 1 pl)vle) + sinh 1

©(p)Y(p).

) p(p)i(p)

w(p)w(p)]

] (p(P)Y(p) + ©(@)¥(q) — e(P)¥(q) — v(@)¥(p))
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3. HERMITE-HADAMARD TYPE INEQUALITIES FOR HYPERBOLIC TYPE
HARMONIC PREINVEX FUNCTION

Theorem 3.1. Let p : K CR — R be a hyperbolic type harmonic preinvez function
and p,p+n(q,p) € K. If condition C holds and ¢ € L[p,p+n(q,p)], then the following
inequality holds:

<2p(p + n(q,p))> Sp(p +1(q,p)) /”’7(‘““) o)

2p +n(q,p) 1(q;p) ?
coshl —1 e—1
I —
ng PPt nap) + oo (p)
coshl —1 () + e—1 )
simhl C\ VT eginh1 7
Proof. Since ¢ is hyperbolic type harmonic preinvex function putting k = % and
choosing z = p7+(£+7€()qf and y = 7}){1:223 f} g) in
z(z +n(y,)) sinh k sinh 1 — sinh k&
< .
(m + (1 = k)n(y,z) ) — sinh 190(y) i sinh 1 #()

Using Condition C, we get

<2p(p + n(q,p))> _sinh; (p(p ~ n(q7p))>

2p+n(q,p) ) “sinh1” \ p+kn(q,p)
sinh 1 — sinh } < p(p +n(g,p)) )
sinh 1 p+ (1 —=kmnlgp))

Integrating with respect to k over [0, 1], we have

<2p(p + n(q,p))> - (Sinh %) p(p + (g, p)) /“"(q’p) o),

2p +n(q, p) sinh 1 n(q,p) z?

N (sinh 1 —sinh ;) p(p+n(q,p)) /p+n<q »)
sinh 1 n(g,p)  Jp

_plp+n(gp)) /7’”(‘1”’) pla)
n(g,p) v a?
Using the property of Hyperbolic type harmonic preinvex function and let x =

(p+n(g,p))
pi(li—z)(f?fq,p)’ we have
p+n(q,p) 1
p(p+n(q,p))/ w(f)dx:/ @( p(p +1(g,p)) )dk
n(g,p)  Jp x o " \p+(1-Fknlgp)
1 {sinh k sinh 1 — sinh &
< dk
< /0 Linhlw(p + (g, p)) + | ©(p)
coshl—1 e—1
= (smhl) o(p+n(q,p)) + sinh 190(29)
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coshl —1 e—1
< | — ) O
- ( sinh 1 ) wla) + e sinh 1g0(p)
Lemma 3.1. Consider p,q € R, then
min(p, ) < p; 1.

Theorem 3.2. Consider p : K C R — R be a hyperbolic type harmonic preinvex
function and p,q € K. If p € Lp,q], the following inequality holds:
p(p + (g, p)) /”*n(qﬂ’) pla)
n(a.p) a2

< cosh1—1+e—1 () cosh1—1+e—1 (q)
= sinh 1 sinh 1 AP, sinh 1 sinh 1 A

1 coshl—l_{_e—l [()+ ()]
-2 sinh 1 sinh 1 PAP) T PA)]

Proof. Let ¢ be a hyperbolic type harmonic preinvex function. Then

p(p +n(q,p)) sinh k sinh 1 — sinh &
<
(p + (1 —k)n(q,p)) — sinh 1w(q> + sinh 1 #(p)
and
p(p+n(q,p)) sinh k sinh 1 — sinh &
< .
( p+kn(qg,p) )] ~ sinhl wlp) + sinh 1 #(a)
Adding both the above inequalities, we get
(3.1) pp+nle.p) \ (p@+n0p))
' p+ (1 —Fk)nlg,p) p+ kn(q,p)
sinh k sinh 1 — sinh k&
< [o(p) + (@) + [o(p) + ¢(q)]-

“sinh 1 sinh 1
Integrating (3.1) over the interval [0, 1], one has

gy HAHEE) ) g o (T 4 ) o) + st

From Lemma 3.1 and (3.2), we have the desired result. O

Theorem 3.3. Let ¢ and v be two real valued hyperbolic type harmonic preinvex
function, then

p(p +n(q,p)) /”*"(q’p) p(u)(u) Ju

n(q,p) u?
et —4e? — 1 —et 4 8e3 —8e2 — 8¢+ 5
<|{—
- ( 8e2sinh? 1 ) Plavia) + ( SeZsinh? 1 w(p)¥(p)

et —4e® +4e® + 4e — 1
8e2sinh? 1

) [p(p)¥(q) + v(@)v(p)]-
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Proof. Considering ¢ and v be two hyperbolic type harmonic preinvex function, then

( p(p +n(q,p)) ) ( p(p +n(q,p)) )
p+ (1 —Fk)nlg,p) p+ (1 —Fk)nlg,p)

sinh k sinh 1 — sinh k& sinh & sinh 1 — sinh k&
- [Sinh 1 wla) + sinh 1 gp(p)] [sinh 1 vlg) + sinh 1

¥(p)

inh k> inh 1 — sinh &\ °
=<zizh1> o(q)Y(q) + (Sm sinhslm ) ©(p)(p)

sinhk sinh1 — sinh &
Gl anl Y@e®) +e(@vp)].

Integrating both sides of the above inequality with respect to k over [0, 1], one has

p(p+n(q,p)) /”’Y(q’p) o(u)(u) du
n(q,p) P u?
1 1
g%‘i@ / (sinh k)2dk + M / (sinh 1 — sinh k)*dk
sinh“1 Jo sinh“1 Jo
1
L P T pla)v(p) / sinh k(sinh 1 — sinh k)dk
sinh“ 1 0
_2@¥le) (f=de = 1) o) (p)
sinh?1 8e2 sinh? 1
[862 sinh?1 — 16e2cosh 1sinh 1 + e* — 4e?2 — 1 . ]
X + 2sinh 1
8e2
, [e@)e(g) +290(Q)¢(p)] B’coshlsinhl — et +4e* +1 .
sinh” 1 8e2
et —4e? — 1 —e* 4+ 8> —8e2 -8+ 5
—olavta) (o) + et (F
et —4ed +4e? +4e — 1
o) + (o] (S 0
e?sinh” 1

Theorem 3.4. Let ¢ and i be two similarly ordered real valued hyperbolic type
harmonic preinvex function, then

p(p+n(q,p)) praer) p(u)(u)
T e
4963 +2 —1 3 2 1
= (e 462€SiIh261 ) Plavia) + (6 2626 Smhij ) P(p)v(p)-

Proof. The proof can be done by direct calculation using similarly ordered property.
O
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4. REFINEMENTS OF HERMITE-HADAMARD INEQUALITY VIA HYPERBOLIC TYPE
HARMONIC PREINVEXITY

We now present the following lemma, which is a generalization of a result in [12].

Lemma 4.1. Let ¢ : K C R\ {0} — R be a differentiable mapping on K° and
p.p+n(g,p) € K with p+n(q,p) > p. If ¢' € L[p,p +n(q,p)], then the following
identity holds in the preinver setting:
e(p) +o(p+nlg,p) plp+nlg,p) /“’7(‘”’) pla)
2 n(a,p) o 2
~plp+nlq,p))nlq. p) /1 (1-2k) (p(p + n(q,p))> ik
— . ,
2 o (p+#kn(gp)) p+kn(q,p)

Proof. Considering

p+knqp) p+kn(q. p)
after integrating by parts and some suitable rearrangements, the result is obtained. [J

_/ (1 —2k) . <p(p+77(q,p))>dk,7

Theorem 4.1. Let ¢ : K C R — R be a differentiable mapping on K° and ¢’ €

L ([p,p+n(q,p)]), where [p,p+ n(q,p)] CK°. If |¢'| is hyperbolic harmonic preinvex
function on [p,p+ n(q,p)|, then the following inequality holds:

‘ p(p) +elp+n(g,p)  pp+nlgp) /WW) p(x)

2 n(g:p) v a?

_pp+n(a,p)n(g.p) [Iw’(p)\s N |<P'(Q)’SS] |

dw’

- 2 sinh 1 2 sinh 1

where

11— 2k
p+k77qp)

/ |1—2k|smhkdk’

(p + knlq,p))*

S, — 1|1 — 2k|(sinh 1 — 512nh k)dk.
0 (p+ kn(q,p))

Proof. From Lemma 4.1 and using the concept of Hyperbolic harmonic preinvexity of
o', we get

¢(p) +olp +nlg,p))  plp+n(g,p)) /”’“‘”’) pla)

2 (g, p) x?
p(p + (g, p /1 (1 —2k) sinhk sinh1 —sinhk | ,
< dk
o 0 —|—kn q,p))? |sinh1 P )+ sinh 1 ¥'(a)l

PP +1( q, / |1 — 2k|sinh k
- smhl (p+ kn(q,p))?
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|1 — 2k| (sinh 1 — sinh k)
dk
Slnhl/ (p+ kn(q,p))?
p(p+1(g,p)n(g,p) [l¢'(p)] ©'(9)]
< .
- 2 sinh 1 Sz sinh 1 5 -

Theorem 4.2. Let ¢ : K C R — R be a differentiable mapping on K° and ¢ €
L ([p,p+n(q,p)]), where [p,p+ n(q,p)] C K. If |¢'|* is hyperbolic harmonic preinvex
function on [p,p+ n(q,p)] for s > 1, then the following inequality holds:

|Mm+¢@+n@mﬂ_p@+nmmﬁ/“W@¢®ux

2 n(q,p) r?

1
s

<P =P) 9t ) + Ol @)):

2
1—2k
_ / | Lk,
(p+ kn(a.p))
B /1 |1 — 2k|sinh k
o (p+kn(g,p))?
O / |1 — 2k| (sinh 1 — sinh k)
(P + kn(q, p))?
Proof. From Lemma 4.1 and using the Holder’s inequality, we get
ﬂm+¢@+n@mﬁ_p@+n@w»/ﬁmwwwwx
2 n(g,p) v a?
|1 — 2k|

(a=p) ("
szg : (A (p+kn@4ﬁydk>

(Lt b ety )

(p + knlq,p))?

<P </01 v +|1k77<2qﬂo>>2d’“>

1
1 U2k [sinhk . sinhl—simhk oo ]\
dk
X(/0 @+kM%MV[mm1W%M|+ son1 @)

bg\qg —p -1 s s1%
<UD j=t (1 ) + Ol @)1 0
Theorem 4.3. Let ¢ : K C R — R be a differentiable mapping on K° and ¢’ €
L ([p,p+n(q,p)]), where [p,p+ n(q,p)] CK°. If |¢'|” is hyperbolic harmonic preinvex
function on [p,p+ n(q,p)] for s > 1, then the following inequality

wm+w@+n@w»_p@+nWWD/”W@¢@M4
2 n(a,p) o a2

where

dk,

dk.
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Spq(q—p)( 1 )rl ' (p) I/ sinhk
2 r+1 smhl (p+ kn(q,p))?*

/ S 1 1
1o /0 (p + kn(q, p))* i

holds.

Proof. From Lemma 4.1 and using the Holder’s Integral inequality, we get

|90(p) + (p+n(q,p)) p(p + n(q p)) /W(‘“’) plx)
2 ) P x?

S29(p+727(qp (/ 11— okl

1
<(/
(0 (p+k77qp )2

s :
dk;)

1

)
S0<zo+l~mqp>
[

<p(p+n 4,p)) ) X / [ | 0" + et )l dl E
- 7“ +1 0 (p+ kn(q,p))*
p(p+77 4,p)) ( )i ¥/ (p)[° q)I° / sinbk
r+1 smhl (p+ kn(q,p))?*
1
+ / dk. 0
' (@) TR OIE

5. HERMITE-HADAMARD TYPE INEQUALITY VIA FRACTIONAL INTEGRAL

In this section, we have extended the above theorem 3.1 in the frame of Riemann-
Liouville fractional operator. Recently, it is seen that integral inequalities using
fractional operator has become an astonishing topic of research among mathematicians,
for some recent papers and details (see [21,22]).

Definition 5.1. Let ¢ € £ [p, q]. The Riemann-Liouville operator J;" ¢ and J} ¢ of
order m > 0 are defined as

and
1

Tie(®) = Fms /: (k— )" o(k)dk, ©<q.

Theorem 5.1. Let ¢ : K C R — R be a function such that ¢ € L [p,p+ n(q,p)],
where p, p+n(q,p) € K with p < p4+n(q,p). If p is a hyperbolic type harmonic preinvex
function on [p,p+ n(q,p)|, then the following inequality for fractional integral holds

(5.1) SRl {¢< 2p(p + n(g,p)) )_ (p(er??(q,p)))mr( v (wog)C)}

sinh p+ (p+n(g.p)) n(q,p)
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() o) peen )}

<o)+ ola) — 2 (LI g1y (o (1),

n(q, p)

where g (z) = 1.

Proof. Since ¢ is hyperbolic type harmonic preinvex function putting k£ = % and
choosing
plptnep) g, - Pe+ua.p)
. + (1= F)nlg,p) p+ kn(q,p)
in
xy < sinhk () + sinhl — sinhk (z)
kx+(1—-k)y) — sinhl ¥ sinhl

we get

(%@+U@M)>
p+ (p+n(gp))
_sinh} (p(p +n(q, p>>> . sinhl — sinh; ( p(p +1(q,p)) ) |
~sinhl p+ kn(q,p) sinh1 p+ (1 —=FE)nlq,p)
Multiplying both sides by k™! and integrating with respect to k over [0, 1], we get
¢<%@+n@@))fywwk
p+(p+nlgp)) Jo

<% Lo (PPN e gy
~sinh1 Jo p+ kn(q, p)

. sinhl —sinh} /I¢< plp +1(4,)) )kmdk
0 p+

sinh1 (1 —=Fk)n(q,p)
(%@+M%MU

p+(p+nla,p)
sinhg (p(p +n(q.p)\" m mo(50 1
Ssinhl ( n(q,p) ) Hm + l)J w9o9) (p)
sinh1 — sinh; <p(p +1(q,p))
sinh1 n(q,p)
sinh1 ( 2p(p + n(q,p)) )
sinh% p+ (p+n(g,p)
plp+n(@p)\" ) og)( 2
S( n(¢,p) ) Homt DTG £ﬂ<p>
+$Mﬂ—mmg<mp+M%M)
sinh2 n(q.p)

) F@w+UJ§lwom<;>

) 4 D701
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(5) Snbl {@( 2p(p + n(q.p)) ) - (p(p+n(q,p))>mr(m+ I)J?_(Wg)(;)}

sinh p+ (p+n(gp)) (g, p)

() e Eeeay) reea(i)}

For the second part of the proof, let ¢ be a hyperbolic type harmonic preinvex function.
Then

©(p)

p+(1—=Fk)n(q,p) S RAC U sinh 1

p(p +n(q,p)) sinh k sinh 1 — sinh k
— sinh 1

and

p(p+nlg,p sinh k sinh 1 — sinh &
(( i >>>< o

p+kn(qg,p) ) ~ sinhl olp) + sinh 1
Adding both the above inequalities,

< p(p +1(q.p)) > N (p(p+ (g, p))
p+ (1 —Fk)nlg,p) p + kn(q, p)

Multiplying both the sides by £™~! and integrating with respect to k over [0, 1], we
get

53 (M) ey L pon (1) - en )]

) o(p) + ¢(q).

(g, p)
<p(p) +¢(q) —2 (W) Lim +1)J1" (¢ og) (;)
Combining (5.2) and (5.3) we get (5.1). O

6. CONCLUSION

In this paper, we have introduced the generalizations of hyperbolic type convex
functions as Hyperbolic type harmonic preinvex function. Applying this new class of
preinvexity, we have presented few Hermite-Hadamard type inequalities (see Theorem
3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4). Moreover, we have also presented
some refinements of Hermite-Hadamard inequality (see Theorem 4.1, Theorem 4.2
and Theorem 4.3). At the end, we have also used fractional integral operator to
generalize Theorem 3.1. The results, presented in this paper have the potential to
establish more general inequalities involving fractional operators on different kinds of
preinvexities.

Acknowledgements. The authors would like to thank the editor and the reviewers
for their thoughtful comments and suggestions regarding the improvement of this
article.
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ON COMMUTATIVITY DEGREE OF CROSSED MODULES
SOMAYEH AMINI', SHAHRAM HEIDARIAN!*) AND FARHAD KHAKSAR HAGHANT!

ABSTRACT. In this paper, we define and study the notion of commutativity degree of
finite crossed modules. We shall state some results concerning commutativity degree
of crossed modules and obtain some upper and lower bounds for commutativity
degree of finite crossed modules. Finally we show that, if two crossed modules are
isoclinic, then they have the same commutativity degree.

1. INTRODUCTION

In 1968, Erdés and Turan [3], introduced the concept of commutativity degree
of groups, when they worked on symmetric groups. Let G be a finite group, the
commutativity degree of G, denoted by d(G) is defined as

{(z,y) € G x G :xy =y}

d(G) = GP :
Note that d(G) > 0 and d(G) = 1 if and only if G is abelian. In 1973, Gustafson
[5] obtained an upper bound for d(G), when G is a non-abelian finite group. Few
years later, Rusin [14] computed the value of d(G), when G’ C Z(G) and G' N Z(G)
is trivial and classified all finite groups G for which d(G) is greater than % In 1995,
all finite groups G, where d(G) > % are classified, up to isoclinism, by Lescot [7].
Furthermore, Lescot [8] has also classified, up to isomorphism, all finite groups whose
commutativity degrees lie in the interval [3,1]. In 2006, Barry et al. [1] have shown
that if G is a finite group with odd order and d(G) > £, then G is supersolvable.
In addition, it had been proved that if d(G) > %, then G is supersolvable. In 2007,
Erfanian et al. [4] studied relative commutativity degree d(H, G), the probability that

Key words and phrases. Crossed module, commutativity degree, isoclinism.
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elements of a given subgroup H of a finite group G commute with elements of G. In
2008, Pournaki and Sobhani [11] studied d,(G), the probability that the commutator
of an arbitrarily chosen pair of elements in a finite group G equals a given element g.
In 2018, Sepehrizadeh and Rismanchian [16] introduced and studied the concept of
characteristic degree of a subgroup in a finite group and determined the upper and
lower bounds for this probability.

A crossed module (T, G, ¢) is a group homomorphism ¢ : T — G together with an
action of G on T satisfying certain conditions. This notion is an algebraic model for
homotopy 3-types was already introduced by Whitehead [17] in 1948. In [10], [13]
and [15] the concepts of isoclinism and n-isoclinism have been generalized for crossed
modules (see also [6]). In 2019, Yavari and Salemkar [18] presented a generalized
crossed module and investigated the category of generalized crossed modules. Also,
in [2] and [12] the notions of stem cover and universal central extension have been
extended for lie crossed modules.

In this paper, we generalize the concept of commutativity degree for the finite
crossed modules and show that two isoclinic crossed modules have the same commu-
tativity degree.

2. DEFINITIONS AND PRELIMINARIES ON CROSSED MODULES

In this section, we state some basic definitions, notions and elementary results.

A crossed module (T, G, 6) is a pair of groups T and G together with an action of
G on T and a homomorphism ¢ : T"— G called the boundary map, satisfying the
following axioms:

i) 0(9%) = go(t)g ' forall g € G, t € T;

i) ‘s = tst~! for all t,s € T.

We will denote such a crossed module by T % G. A crossed module (T,G,0) is
said to be finite, if the groups 7" and G are both finite. A crossed module (S, H,d’) is
a subcrossed module of (7, G, ¢), when

i) S is a subgroup of 7" and H is a subgroup of G

i1) 0’ = 0|g, the restriction of ¢ to S;

iii) the action of H on S is induced by the action of G on T

In this case, we write (S, H, ') < (T, G, 0). A subcrossed module (S, H, §) of (T, G, 6)
is a normal subcrossed module, if

i) H is a normal subgroup of G;

ii)9se Sforall g € G, s € S;

iii) "ttt e Sforallhe H, t € T.

This is denoted by (S, H,9) < (T, G, 9).

Let (S,H,d) be a normal subcrossed module of (T,G,J). Consider the triple
(%, %, §), where § : % — % is induced by 6. There is the action of % on % given by
91 (tS) = (9¢)S. Tt is called the quotient crossed module of (T, G,d) by (S, H,§) and

denoted by gggg .
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Let (T,G,6) be a crossed module. The center of (T, G, J) is the crossed module
Z(T,G,8) : T — Sta(T) N Z(G), where T¢ = {t € T : 9t = tforallg € G}
and Stg(T) = {9 € G : 9% = tforallt € T}. A crossed module (T,G,0) is
abelian, if (T,G,0) = Z(T,G, ). In addition, the commutator subcrossed module
(T,G,0),(T,G,0d)] of (T,G,9)is (T, G,9),(T,G,9)] : Da(T) — |G, G], where Dg(T)
is the subgroup generated by {9tt™* : ¢t € T, g € G} and [G, G] is the commutator
subgroup of G. A crossed module (T, G, ) is faithful, if the action of G on T is
faithful, that is Stg(T) = 1.

If (S,H,d) and (R, K,0") are two crossed modules, then consider the triple (S x
R, H x K,0" x ¢"), where S x R and H x K are direct products of groups and
8 x0": Sx R — HxK is defined by (8" x ") (s,r) = (6'(s),8”(r)) for all (s,r) € Sx R.
There is a componentwise action of H x K on S x R, induced by the actions of two
crossed modules. The crossed module (S x R, H x K,d" x §") is called the direct
product of (S, H,0") and (R, K,d"”) and denoted by (S, H,d") x (R, K,d").

Let (T,G,0) and (T7,G',0") be crossed modules. A crossed module morphism
(a, ) = (T,G,9) — (T",G", ") is a pair of homomorphism « : T' = T", ¢ : G — G’
such that

i) &' (a(t)) = ¢(6(t)) for all t € T

ii) a(9t) = *Wa(t) forall t € T, g € G.

If (o, 9) : (S, H,d8') — (T,G,9) is a crossed module morphism such that « and ¢
are both group isomorphisms, then (a, ¢) is called an isomorphism.

Lemma 2.1 ([9]). The (T, G,0) is abelian if and only if G is abelian and the action
of the crossed module is trivial.

Remark 2.1. Let (T, G,0) be a crossed module. We denote (I.G0) pyy T 3, G, where

: Z(T,G )
T=7=Land G = m, for shortness.

Lemma 2.2 ([10]). Let (T,G,d) be a crossed module. Define the maps ¢; : T x G —
Dg(T), where (tT€, g(Ste(T) N Z(G))) + 97" and o : G x G — [G,G], where
(9(Stc(T)N Z(G)), g (Sta(T) N Z(G))) — [g,d] for allt €T, g,g € G. Then the
maps ¢1 and cy are well-defined.

Definition 2.1 ([15]). The crossed modules (71, G1,01) and (Ty, Go, d2) are isoclinic,
if there exist isomorphisms

(M1,m0) : (Tl,él,é_l) - (TQ,GQ,(5_2)
and
(e1,€0) : (D, (Th) = [G1,G1]) = (Dg,(Ta) — [G2, Gal)

such that the diagrams
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Tl X él L> DG’l(Tl)

Jm X0 Jﬁl

TQ X ég L) DGl (Tl)

and
Gl X Gl [G1, Gl]
J%Xno JEO
G2 X GQ [GQ, GQ]

are commutative, where (cy, ¢y) and (¢, cD) are commutator maps of crossed modules
(Ty,G1,01) and (T3, Gg, d2), that introduced in Lemma 2.2. The pair ((n1,70), (€1, €0))
will be called an isoclinism from (77, Gy, 1) to (T, G, 02) and this situation will be
denoted by ((11,7m0), (€1,¢€0)) : (T1, G1,01) ~ (T, Ga, 62).

3. COMMUTATIVITY DEGREE OF CROSSED MODULES

In the section, we generalize the notion of commutativity degree for crossed modules
and state the main results of this paper.

Definition 3.1. Let (7', G, d) be a finite crossed module. The commutativity degree
d(T,G,9) of (T, G,0) is defined by

{(z,y) € G x G :ay=vyx,z,y € Sta(T)}|
G2 '

Let (T, G, d) be a finite crossed module, then we set cs(G) = {(z,y) € GX G : xy =
yr and z,y € Stg(T)}. Now, the commutativity degree (T, G, 9) is d(T, G, 0) = ||23X(;“
If d(T,G,06) is abelian and the action of G on T is trivial, then |cs(G)| = |G x G|
and d(T,G,0) = 1 and vice-versa. Therefore, (T,G,¢) is abelian if and only if

d(T,G,d) = 1. In addition, if the action of G on T is faithful, then d(7T',G,¢) =

d(T, G, 8) =

IGI2

Proposition 3.1. Let (S, H,0") and (R, K,0") be two crossed modules and (T, G, 0)
=(S,H,0") x (R, K,§"). Then d(T,G,0) =d(S,H,?d) x d(R, K,d").

Proof. By the deﬁnition of commutativity degree, we have
|G|2 ‘{((hb kl) (h27 k?)) € G2 : (hh kl)<h27 k2> = (h2> k2)<h1) kl)
and (hl, ]{?1), (hQ, kQ) S Stg(T)H

d(T,G,6) =

:@‘{((h17k1)7 (he, k2)) € G? . (hihg, k1ka) = (hahy, kaky)

and (hy, k1), (ha, ko) € Sta(T)}

1
<|H|2|{(h1,h2) < H hlhg hghl and h17h2 € StH(S)H)
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1
<|K|2|{(k’1,]€2) € K s k1ky = koky and ]{31,]{32 < StK( )}|>
—d(S, H,8) x d(R, K, 5"). 0

Theorem 3.1. Let (T, G, ) be a crossed module. Then d(T,G,0) < |(—| where

K(QG) is the number of conjugacy classes of G.

Proof. Let r be the number of conjugacy classes of G and Cy, (s, Cs, ..., C, be the
conjugacy classes of G. For i € {1,2,3,...,r}, let x; € C;. If y € C;, then y = a7 for
some g € G. Thus, Cg(y) = Cg(2?) = Cg(x;)? and |Cs(y)| = |Ca(x;)|. Now

GI*d(T, G, 6) =|{(z,y) € G x G : xy = yo and z,y € Sta(T)}|

—es(Q)] < X 1Ca(0)] = 32 3 [Cala)

zelG i=1z2eC;

3G Cola)]Calen)] = Gl — |GIK(G).

i=1

Therefore, d(T, G, 0) < (T| O
Corollary 3.1. If (T, G,0) is a crossed module and the action of G on T is trivial,
then d(T, G, ) = ‘—R

Corollary 3.2. Let (T,G,0) be a crossed module. If the action of G on T is trivial,
then ‘G, < d(T,G,9).

Proof. Since [G G’] count 1rreduc1ble characters of degree one, [G : G'] < K(G).
Then g < £ = d(T, G, 8) so 47 < d(T, G, 6). O

Theorem 3.2. Let (T,G,0) be a crossed module. Then d(T,G,8) < 3(1+ ‘G3/|).

Proof. Let | be the number of non-equivalent irreducible representation of degree
1,mn9,...,n;. Consider the degree equation
K(Q)
Gl=[G:G1+ > ()
i=[G:G)+1
for each n; > 2. Hence, |G| > [G: G'| + 4(K(G) — [G : G
<

K(G) < (|G| + 3[G : G"]). Therefore, d(T, G, 6) < K|T|)

). Solving for K(G) yield
i1+ &) O

Theorem 3.3. Let (T,G,0) be a crossed module. If G is a non-abelian finite group,
then d(T,G,0) < 3.

Proof. Consider the class equation |G| = |Z(G)| + (‘g)(G)‘H |[z4]], where for each 1,
[zl = 2. So |G| = [2(G)|+2(K(G) - 12(G)]) = |2 ( )N Sta (D)) +2(K (G) ~ |Z(G))).
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Since G is not abelian is not cyclic. Then | 5%+ 72G \ > 4, hence

G > >y
Z(GYN Sta(T)| = |2(G)| =
and | Z(G)NSta(T)| < 1. Therefore, K(G) < § (|G| + §) = 2. Then d(T, G, 8) <

K(G) 5
a Sw -

_G_
Z(G)

Theorem 3.4. Let (T, G, 0) be a crossed module. If G be a nonablian p-group, then
d(T,G,0) < ==t

Proof. Let p be the prime number, |G| = p" and |Z(G)| = P™. If |G/Z(G)| =1 or
|G/Z(G)| = p, then G/Z(G) is cyclic and G will be abelian. Thus, m < n —2 and we
have

GI*d(T, G, 6) <|G|K(G)

:ZG|CG(1‘)
Y. 1Cs@)+ Y. |Cq(x)]
T€Z(Q) r€G\Z(G)

<pT " (" - p™)
—pm”‘ +p”’1(\G| —12(G)])
2
—1
Hence, d(T,G,¢) < % O
p
The following corollary obtains from previous theorem.
Corollary 3.3. Let (T,G,9) be a crossed module and the action of G on T is trivial.
If p is a prime number and G is non-abelian with |G| = p3, then d(T,G,§) = 2 J;p !
Proof. Let |G| = p®. By Corollary 3.1 and Theorem 3.4,
p%d(T, G, ) =|G|*d(T, G, )
=|GIK(G)

=2 |Ca(x)

zeG

> Ce@)+ > \CG(-%)\

2€Z(G) zeG\Z(G
=p* + p*(|G| — |2(G)])
=p’(p* +p—1).

Hence, d(T, G, §) = E£2=1, O
v
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Proposition 3.2. Let (T,G,0) be a crossed module and the action of G on T be
trivial. [f|Z | = pk, then d(T,G,6) > %'

Proof. Let |m| = p* and 2 € G such that z ¢ Z(G). Then, since z € Cg(z) and
x & Z(G), we have Cg(x) € G. Also Z(G) C Cg(z). Thus |Z(G)| < |Ca(x)] < |G|
and then p|Z(G)| < |Cq(z)] < p*1|Z(G)|, where |Cq(z)| dividing |G|. So |[z]] =
(G : Cg(z)] and p*~! > |[x]| > p. From the class equation we have |G| = |Z(G)| +
Seeq [l < 1Z(G)|+pHE(G) = |Z(G)]) < |1Z(G)|+p"HK(G) —|Z(G)NSta(T))),
therefore
(Gl + (0" DIZ(G) N Sta(T)| - 12(G)]

pE1 :

k—1 1

Now solving for d(T', G, §) and Corollary 3.1 yield d(T, G, ) > %. O

K(G) >

Ezample 3.1. Let D,, =< a,b: a? = b? = e,bab~' = a” > such that p is prime, q|p — 1
and r has order ¢ mod p. This type of group is called a generalized dihedral group.
Conjugacy classes type are [e], [a%] and [b*] so that no classes are 1, % and ¢ — 1,
respectively and Z(D,,) = {e}. Consider the map i : Dy, — D,,. If the action of D,,

on D,, is conjugacy, then Stp  (Dpq) = Z(Dyg) and d(Dpg, Dyg, i) = Z(Dpg)2 1

. . .. |qu|2 (pQ)Q'
If the action of D,, on D,, is trivial, then
K(D,) 1+P7+a-1 F4p-1
d(Dpg, Dy, 1) = (Dr) = ! =1 +p2 ‘
| Dpq pq pq
If the action of Dy, on D,, is faithful, then d(D,q, Dy, 1) = ‘ qu‘z, = (p;)Q.

Lemma 3.1. Let (T1,G1,61) and (Ty, G, d2) be two crossed modules and ¢ = («, 3) :
(Ty,G1,01) — (To, Ga,82) be an isomorphism. Then ¢ induced isomorphisms
. Gy . Gy
P Ste (T N Z(Gy)  Stay(To) N Z(Gy)’

where

P1(91(Ste, (T1) N Z(Gh))) = B(91)(Ste, (T2) N Z(Ga)),

T b

P2 17 — el where oa(LTYY) = a(t)Ts?, w3 [G1,Gi] — [Ga,Ga], where

903[91, 1] = [92,92] or 3(g1) = B(q1), a1 : D, (Th) — D, (T3), where i (141t7") =
Bl (t))a(t, ™). In addition the following diagrams commute:

él X él L Gz X G2

G, = G

and
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_ _ < _ _
T1XG1 ﬂ} TQXGQ

lq lc&
D¢, (T)) —2— D¢, (Th).

Proof. Let (g1,91) € Gi x Gi. Then cf(o1 x 1)(g1,91) = cler(gr),1(g1)) =

co(B(g1), B(g1)) = [B(g1), B(g1)] = Blar, g1l = wslgr,91] = waco(dn, g1). Now, let
(t1,§1) S T1 X Gl. Then

i (w2 X 1) (t1, g1) =c\(pa(tr), v1(g1))

=) (a(t) 157, B(g1)(Ste, (Ta) N Z(Gy)))

=P a(ty)alty) ™ = pa(" ity ")

=psci(t1, G1)- -
Theorem 3.5. Let (T1,G1,61),(T2, Ga,09) be two isoclinic finite crossed modules.
Then d(Tl, Gl, (51) = d(TQ, GQ, 52)
Proof. Consider the following relation:

|G [2d(T, Gy, 61) _ Gy
[Ste, (T1) N Z(Gh)|* [Ste, (Th) N Z(GY)[?
|{(x y) € G1 X Gy : xy = yx and x,y € Ste, (T1)}]
G4 [?

1 2

Sta,(T1) N Z(G)
X {(x,y) € G x G : xy = yx and x,y € Stg, (Th)}]
1 2
Sta,(Ty) N Z(Gh)
x {(z,y) € G1 x Gy : [z,y] = 1 and z,y € Stg,(T1)}]
1 2
— : ta, (T
StG’l(Tl) Z(Gl) H(xvy) € Gl X Gl X,y € S G1( 1)
and co(x YN Z(Gh)),y(Ste, (Th) N Z(GL))) = 1}

) { '€ <StGI Tz Gl>>2100(0é,6):1}
) { <Stc;1 (Th) mZ Gl)>21@360(a,6) = 1}‘

) { ' <5t01 (Th) ﬂZ G1)>2 L1, 1) (@, B) = 1}|

m
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= {(0475) € <StG1(T1)G;7 Z(G1>> : 06(901(04)>901(5)) = 1}|

Gy 2
) {(W> ) <StG2(T2)ﬂZ(G2)> Hep(7,0) = 1}

By the above reasoning applied to (73, G, d2) in place of (T, Gy, d1), this expres-
2 2
Gt

d(TQ,GQ,(SQ). That is m d(T17G1761) =

Go
Sty (T2)NZ(G2)

sion equals to

2

d(Ty, G, 95). But m and m are isomorphic,

Go
StG2 (T2)NZ(G2)

G G : —
Sia, (Tl)lﬁZ(Gl) StGQ(TQfmZ(GQ) . Now the equahty d(Tl, Gl, (51) = d(TQ, GQ, (52)

follows. O

hence

Corollary 3.4. Let (Ty,Go,d2) be a subcrossed module of crossed module (11, G4, d1)
and (Tl, Gl, (51) = (TQ, GQ, 52)Z(T1, Gl, (51), where T1 = GQTlGl and G1 = GQ(StGl (T1>
N Z(Gl)) Then d(Tl, Gl, (51) = d(TQ, GQ, 52)

Proof. By Proposition 4 of [10], (11, G4,01) and (T3, Go,d2) are isoclinic, therefore
d(Tl,Gl,dl) :d(TQ,GQ,(SQ). |:|

4. CONCLUSION

In this paper, we extended the concept of commutativity degree in group theory
to finite crossed modules and derived some properties of this new concept. All our
previous results show that the notion of commutativity degree, which was introduced
in this paper, can be used to classify finite crossed modules. It is clear that this study
which started here, can be successfully extended to calculating commutativity degree
of some specific crossed modules. This will surely be the subject of further research.

Acknowledgements. The authors thank to the referee for his/her careful reading
and their excellent suggestions.

REFERENCES

[1] F. Barry, D. MacHale and A. Ni Shé, Some supersolvability conditions for finite groups, Math.
Proc. R. Ir. Acad. 106A(2) (2006), 163-177.

[2] B. Edalatzadeh, Universal central extensions of lie crossed modules over a fized lie algebra, Appl.
Categ. Structures 27 (2019), 111-123. https://doi.org/10.1007/s10485-018-9545-2

[3] P. Erdos and P. Turdn, On some problems of a statistical group-theory IV, Acta Math. Hungar.
19 (1968), 413-435.

[4] A. Erfanian, R. Rezaei and P. Lescot, On the relative commutativity degree of a subgroup
of a finite group, Comm. Algebra 35(12) (2007), 4183-4197. https://doi.org/10.1080/
00927870701545044

[5] W. H. Gustafson, What is the probability that two group elements commute? Amer. Math.
Monthly 80 (1973), 1031-1034. https://doi.org/10.2307/2318778


https://doi.org/10.1007/s10485-018-9545-z
https://doi.org/10.1080/00927870701545044
https://doi.org/10.1080/00927870701545044
https://doi.org/10.2307/2318778

722

S. AMINI, S. HEIDARIAN, AND F. KHAKSAR HAGHANI

[6] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.

https://doi.org/10.1515/cr11.1940.182.130

[7] P. Lescot, Central extensions and commutativity degree, Comm. Algebra 29(10) (2001), 4451—

4460. https://doi.org/10.1081/agb-100106768

[8] P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra 177(3)

(1995), 847-869. https://doi.org/10.1006/jabr.1995.1331

[9] K. J. Norrie, Crossed modules and analogues of group theorems, PhD thesis, King’s College,

University of London, 1987.

[10] A. Odabas, E. O. Uslu and E. Ilgaz, Isoclinism of crossed modules, J. Symbolic Comput. 74

(2016), 408-424. https://doi.org/10.1016/j.jsc.2015.08.006

[11] M. R. Pournaki and R. Sobhani, Probability that the commutator of two group elements is equal

to a given element, J. Pure Appl. Algebra 212(4) (2008), 727-734. https://doi.org/10.1016/
j.jpaa.2007.06.013

] H. Ravnbod and A. R. Salemkar, On stem covers and the universal central extensions of
lie crossed modules, Comm. Algebra 47(7) (2019), 2855-2869. https://doi.org/10.1080/
00927872.2018.1541461

] H. Ravanbod, A. R. Salemkar and S. Talebtash, Characterizing n-isoclinic classes of crossed
modules, Glasg. Math. J. 61 (2019), 637-656. https://doi.org/10.1017/S0017089518000411

] D. J. Rusin, What is the probability that two elements of a finite group commute? Pacific J.
Math. 82(1) (1979), 237-247.

] A.R. Salemkar, H. Mohammadzadeh and S. Shahrokhi, Isoclinism of crossed modules, Asian-Eur.
J. Math. 9(3) (2016), Article ID 1650091. https://doi.org/10.1142/S1793557116500911

] Z. Sepehrizadeh and M. R. Rismanchian, On the characteristic degree of finite groups, J. Algebr.
Syst. 6(1) (2018), 71-80. https://dx.doi.org/10.22044/jas.2018.6328.1316

] J. H. C. Whithead, On operators in relative homotopy groups, Ann. of Math. 49 (1948), 610-640.
https://doi.org/10.2307/1969048

] M. Yavari and A. Salemkar, The category of generalized crossed modules, Categ. Gen. Algebr.
Struct. Appl. 10(1) (2019), 157-171. http://dx.doi.org/10.29252/cgasa.10.1.157

IDEPARTMENT OF MATHEMATICS,
SHAHREKORD BRANCH, ISLAMIC AZAD UNIVERSITY,
SHAHREKORD, IRAN

*CORRESPONDING AUTHOR

Email address: aminil360sa@gmail.com

ORCID iD: https://orcid.org/0009-0008-8118-0707
Email address: heidarianshm@gmail.com

ORCID iD: https://orcid.org/0000-0002-4515-0665
Email address: haghani1351@yahoo. com

ORCID iD: https://orcid.org/0000-0002-3510-8957


https://doi.org/10.1515/crll.1940.182.130
https://doi.org/10.1081/agb-100106768
https://doi.org/10.1006/jabr.1995.1331
https://doi.org/10.1016/j.jsc.2015.08.006
https://doi.org/10.1016/j.jpaa.2007.06.013
https://doi.org/10.1016/j.jpaa.2007.06.013
https://doi.org/10.1080/00927872.2018.1541461
https://doi.org/10.1080/00927872.2018.1541461
https://doi.org/10.1017/S0017089518000411
https://doi.org/10.1142/S1793557116500911
https://dx.doi.org/10.22044/jas.2018.6328.1316
https://doi.org/10.2307/1969048
http://dx.doi.org/10.29252/cgasa.10.1.157
https://orcid.org/0009-0008-8118-0707
https://orcid.org/0000-0002-4515-0665
https://orcid.org/0000-0002-3510-8957

KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 48(5) (2024), PAGES 723-745.

LIPSCHITZ STABILITY FOR IMPULSIVE RIEMANN-LIOUVILLE
FRACTIONAL DIFFERENTIAL EQUATIONS

MARTIN BOHNER! AND SNEZHANA HRISTOVA?

ABSTRACT. Initial and impulsive conditions for initial value problems of systems
of nonlinear impulsive Riemann-Liouville fractional differential equations are intro-
duced. The case when the lower limit of the fractional derivative is changed at each
time point of the impulses is studied. In the case studied, the solution has a singu-
larity at the initial time and at any point of the impulses. This leads to the need to
appropriately generalize the classical concept of Lipschitz stability. Two derivative
types of Lyapunov functions are utilized in order to deduce sufficient conditions for
the new stability concept. Three examples are provided for illustration purpose of
the theoretical results.

1. INTRODUCTION

Differential equations with impulses are intensively studied and applied in mod-
eling various phenomena (see, e.g., the monograph of Lakshmikantham et al. [23]).
Recently, fractional differential equations have proved to be valuable tools in the
modeling of many phenomena in various fields of engineering, physics, and economics.
Actually, fractional differential equations are now considered as an alternative model
to integer differential equations (for more details, see the monographs [16,17,26] and
the references therein).

In addition, some modeling is done via impulsive fractional differential equations
when these processes involve hereditary phenomena such as biological and social
macrosystems and are subject to some impulsive perturbations. Note that the lit-
erature knows various types of fractional derivatives. To the best of our knowledge,

Key words and phrases. Impulses, Riemann—Liouville derivative, generalized Lipschitz stability in
time, Lyapunov functions.
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impulsive fractional functional differential equations involving the Caputo fractional
derivative have been studied in completeness. It is worth remarking that Feckan et al.
[18] give a counterexample to show that some formula of solutions in previous papers
is incorrect and reconsider a class of impulsive fractional differential equations and
introduce a correct formula of solutions for an impulsive initial value problem with Ca-
puto fractional derivative. The situation is not the same when the Riemann—Liouville
(RL) fractional derivatives is used. The statement of the impulsive condition and the
lower limit of the RL fractional derivative is presented in different ways by different
authors. For example, in [13,32], the impulsive conditions are related to the right
and left limits of RL fractional integrals with fixed lower limit at the initial time. In
[12,31], the impulsive conditions are connected with the RL fractional integral on the
intervals between two consecutive impulses. In [8], the impulses are RL fractional
derivatives. In [24], the impulsive conditions contain RL fractional derivatives. Note
that the formula for the exact solution of linear impulsive RL fractional differential
equations is given recently in [5] and for scalar impulsive equation with delay in [6].

One of the most important properties of solutions is stability. Many stability
concepts exist, describing various behavior of the solutions, e.g., Lipschitz stability
defined for ODEs [15]. Later, this type of stability has been studied for various types
of differential equations and problems such as, e.g., nonlinear differential systems
(14, 19, 28], impulsive differential equations with delays [9], fractional differential
systems [29], Caputo fractional differential equations with noninstantaneous impulses
[4], a piecewise linear Schrodinger potential [7], a hyperbolic inverse problem [10], the
electrical impedance tomography problem [11], and the radiative transport equation
[25]. See also [2,3,8,14,19,20,27,28] for related references. In the recent paper [21],
a similar problem is considered without impulses.

In view of the above considerations, in this paper, in an appropriate way, we set up
impulsive RL fractional differential equations and study Lipschitz stability properties
of the zero solution. We will give some reasons for the defined impulsive conditions.
Let an increasing sequence of nonnegative points {t;}, cNs to = 0, be given such that
lim;_, t; = co. When impulses are involved in fractional differential equations, there
are mainly two interpretations of fractional derivatives:

e fized lower limit of the fractional derivative — in this case, the lower limit of
the fractional derivative is kept equal to the initial time on the whole interval
of consideration.

e changeable lower limit of the fractional derivative — each time ¢;, i € N, of the
impulse is considered as a lower limit of the fractional derivative.

In this paper, we consider the case of changeable lower limit of the Riemann—Liouville
fractional derivative. The presence of the Riemann-Liouville derivative leads to two
specific types of initial conditions, which are equivalent (see the classical book [17]).

e Integral form of the initial condition

Ojtl_ql’(t”t:o = tl_l}%}’_ Oltl_ql’(t) = 29-
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o Weighted form of the initial condition
. 1—q o Zo
i (#(t) = T(q)

Here, the Riemann-Liouville (RL) fractional integral is defined by

1—q o 1 t Q?(S)
olp Tx(t) = T /a = S)qu, t>a,

and I' denotes the Gamma function. In the literature, when the RL derivative is
applied, there are various types of statements for impulsive conditions. We will follow
the ideas of impulses in ordinary differential equations, i.e., after the impulse, the
differential equation is the same with a new initial condition. This will lead to two
types of initial conditions (following [17]):

e integral form of the impulsive conditions
ti‘[tl_qm(t”t:ti = th_gl ti]tl_qx(t) = ®;(z(t; = 0)), ieN.

e weighted form of the impulsive conditions
' B O, (x(t; —0))
— t)1-e O S S
Jdim (¢ =)' 70a(t)) = O

In this paper, we will use the integral form of both, the initial condition and the
impulsive conditions. Keeping in mind the above description, in this paper, we
will study the initial value problem (IVP) for the following system of nonlinear RL
fractional differential equations with impulses (IRLFDE) of fractional order ¢ € (0, 1):

PDix(t) = f(t,x(t),  fort € (t,tin], i € Ny,

€ N.

(1.1) Jm [(t— ) ()] = g PrieN
Jim [0 (¢)] = TZ)

where xg € R", and the Riemann-Liouville fractional derivative of the function
x € C(la,T],R"™), T > a, with lower limit a € R and order ¢ € (0, 1) is defined by

(1.2) RLDIx(t) = F(ll—q)c?t /at(t —s) z(s)ds, te€ (a,T).

Remark 1.1. For ¢ — 1, the impulsive condition

Jim [( =)' (t)] = W

in (1.1) is reduced to the well-known condition

for impulsive differential equations with ordinary derivative (see [23]).
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In this paper, we study some stability properties of the zero solution of (1.1). Note
that the solutions of the IVP for IRLFDE (1.1) have singularities at each point ¢;,
1 € Ny. It requires a new definition of classical Lipschitz stability, introduced and
studied in [15]. This is called generalized Lipschitz stability in time. It relates to
singularity of the solution, and it is considered only on intervals excluding from the
left both the initial time and the impulsive times. We use Lyapunov functions and two
types of derivatives of these Lyapunov functions for the impulsive fractional equation
under consideration. A number of conditions is presented that ensures generalized
Lipschitz stability in time. Three examples are provided in order to illustrate the
results.

2. PRELIMINARY RESULTS

In this paper, we will use the classical fractional derivatives (see, for example,
[16,17,26]) such as RL fractional derivative (see the Definition 1.2) and Griinwald—
Letnikov derivative defined by

N
GLHq — Jim — 1) —
S Dim(t) = }llli% o TEZ% (—1) <r>m(t rh), te (a,T].
Remark 2.1. If m € C([a, T],R"), then BED{m(t) = SED{m/(t), see [17, Theorem 2.25].
For a,T € R, , with a < T, we will use the sets

Ciogllo 71 R ={u: (0,7 R w € C((a, TR, Jim (¢~ a) “u(t) < oo},

PC;_,4(]0,00),R"™) :{u :(0,00) > R": ueC ( U (tk,tkﬂ],R”),
kENO
u(ty) = u(ty — 0) = E1_i>r(§1+u(tk —¢) < oo, keN,

lim (t — tk)l_qu(t) < oo, k€ No}

t—tp+

Remark 2.2. If w € PC;_,(]0,00),R"™), then u € Cy_y([tx, tg41], R") for any k € Ny.

Now, we will state some known results, which will be applied in the proofs of our
main results.

Proposition 2.1 ([30, Lemma 2.3]). Let m € C1_y4([a,a+T),R), t; € (a,a+T). If
m(t;) =0 and m(t) < 0 for a <t < ty, then FeDim(t)|;=;, > 0.

Remark 2.3. By Remark 2.1, Proposition 2.1 is also true with $LD/m(t)|,—;, in place
Of aRLD,?m(t) ‘t=t1 .

The next result is the basis for the practical definition of the initial condition and
the impulsive conditions of (1.1).



LIPSCHITZ STABILITY FOR IRLFDE 27

Proposition 2.2 ([17]). Let m : [a,T] — R be Lebesgue measurable, T > a > 0, and
€ (0,1).
(a) If limy_,q i [(t — a)*™9m(t)] =: c € R exists a.e., then

1—q T 1 ¢ TTL(S)
Hm e =l g [
=cl(g) = D(g) Jim [(* ~ a)'~*m(1)]

is well defined.
(b) If oI} 7 9m(t)]i=q = ¢ € R exists a.e. and if limy_,q, [(t — a)'~%m(t)] exists, then
c 1

tli?{i[(t —a)' "tm(t)] = ) waftl_qm(t”t:a-

Remark 2.4. According to Proposition 2.2, both, the initial condition and the impulsive
conditions in (1.1), could be replaced by the equalities

oL} "1 (t)]mo = o
and
o d ()=, = Uiz (t; — 0)), €N,
respectively.

We introduce the following assumptions:

(A1) the increasing sequence {t;}, . to = 0, is such that

lim t; = oo and inf (t;01 —t;) =A>0;
1—00 ieN()( +1 )
(Ag) f € C(Ry x R",R") and f(¢,0) = 0 for ¢ > 0;
(Az) ¥; € C(R",R") and ¥;(0) =0 for i € N.
Let p > 0and J C Ry, 0 € J be an interval. As in [21], we define M(J) to consist of
all strictly increasing continuous functions a with a(0) = 0 and such that there exists
qa With gu(a) > 1 for @ > 1 and a *(ar) < rg.(a), X(J) to consist of all strictly
increasing continuous functions a with a(0) = 0 and such that there exists a constant
K, > 0 with a(r) < K,r and

8,={r e R": ||z]l < p}.

Remark 2.5. If a(u) = u, then a € X(Ry) NM(R,). If a(u) = Kyu for Ky > 0, then
a 6 fK(]R+ ) and K, = K;. If a(u) = Kyu? for 0 < K, < 1, then a € M([1,00)) and

\/7>1foru>1

From now on, we assume that the IVP for IRLFDE (1.1) possesses a solution,
denoted by x,, € PC;_,([0, 00),R"™).
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FExample 2.1. Consider the IVP for the scalar linear IRLFDE

BLDgy(t) = ay(t)7 for t € (tivti-‘rl]ai € NOa
: _ +\1—¢q _ y<tz _ 0) .
(2.1) Jim [(0 =) y(0)] = ") for i € N,
: 1—q — Yo
where a,yo € R. The solution of (2.1) is given by
Yot! 1 E, ,(at?), for t € (0,4],
. _+.)9—1 a(t; —t; q
Yoo (t) = yp (Hfz—ol (tit1—ts) tE:j( (tit1—ts) ))
X(t — tk)qflE%q(a(t — tk)q) for t € (tk‘-i-la tk], k € N.

It has singularities at the points tx, k € Ny, which are the initial time and the impulsive
times. In the particular case a = 0.5, t; = k, k € Ny, ¢ = 0.3, the graph of the solution
Yy, is given in Figure 1 for yo = 1 and in Figure 2 for yo = —0.5, respectively.

A
(N

0.5+

0.0 I L L L L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 n
0 1 2 3 4 5 6

FIGURE 1. Graph of the solution of (2.1) for a = 0.5, yo = 1, and ¢ = 0.3.

Example 2.1 illustrates that the stability of the solution for impulsive differential
equations in the case of the RL fractional derivative has to be considered on intervals
that exclude t;, k € Ny, on the right ends.

There are some particular cases with zero initial value and zero impulsive functions
with nonunique solutions without singularities at the initial time and the impulsive
time points.
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-3.0

-3.5F

FIGURE 2. Graph of the solution of (2.1) for a = 0.5, yo = —0.5, and
q = 0.3.

Example 2.2. Consider the IVP for the scalar linear IRLFDE

SDIy(t) = al(t — )%\ Jy(t), for t € (t;,t;11],7 € Ny,
(2.2) lim {(t - ti)l_qy(t)} =0, forieN,

t—t;+

Jim [ty ()] =0,

where a € R, f§ = —0.5¢. Equation (2.2) has the zero solution, but it also has a
nonzero solution. Using

20q+p)=14¢>0> -1
and [22, Example 3.2], we obtain the solution of (2.2)

al'(q+26 +1) i 2(q+B) :
— — f — ]
Yo(t) (F(Qq 5 0 (t—t;) , forte (ti,ti1],i €Ny

It is easy to check that
: _ I(g+26+1)
1 t—t) ")) = (2
im, [(¢ =)' "y0(0)] (F(Zq +26+1)

t—t;+
_ (al(g+28+1) Y
I'2¢+25+1)
The solution gy has no singularities at the points t;, k € Ny, which are the initial
time and the impulsive times. It is different from Example 2.1. In the particular case
a=1,t =k k€ Ny gq=04, 5 =—0.2, the graph of the solution y is given in
Figure 3.

t—t;+

2
lim [(t — #:)'7(t — #;) @]
2

m (t—t;) =0.

i
t=t+

In our further investigations in this paper, we will assume that the IVP for IRLFDE
(1.1) has a unique solution z,, for any initial values zo € R" defined for ¢t > 0. Lipschitz
stability [15] will now be generalized to systems of impulsive RL differential equations.
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20

0.5

ool v e
0 1 2 3 4 5 6

FIGURE 3. Graph of the solution of (2.2) fora =1, t, =k, f = —0.2,
and ¢ = 0.4.

Considering the phenomena described in Example 2.1 and 2.2, we now define a new
stability type as follows.

Definition 2.1. We say that the trivial solution of the IVP for IRLFDE (1.1) is

e generalized Lipschitz stable in time if there are N € No, M > 1, 6 > 0, and
T; € (0, ), i € Ny, such that for any initial value 2o € R™ with ||z¢|| < ¢, we
have

220 ()] < M [zl for allt € (J [ti + T, tival;
i=N

e globally generalized Lipschitz stable in time if there exist N € Ny, M > 1,
and T; € (0,)), ¢ € Ny, such that for any for any initial value zo € R" with
| zo|| < oo, we have

220 (0] < M ||lzol| . forall t € (J [t + Ti, tiva]-
i=N
Now we define the class A of Lyapunov-like functions as follows.

Definition 2.2 ([1]). Let 0 € J C Ry, § = J N {U,.N, (i tit1]}, and A C R". We
will say that the function V' belongs to the class A(J,A) if V € C(J x A, Ry),

V(ti,z) =V(t; —0,2) = €£%1+V(tl- —€,1)
and
V(t;+0,2) = lim V(t; + ¢, z),
e—0+
for i € N, x € A, and it is locally Lipschitz with respect to its second argument.

We will use the following two types of fractional derivatives of Lyapunov functions
among the system of nonlinear impulsive RL fractional differential equations (1.1).
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e RL derivative of V € A(Ry,A) for IRLFDE (1.1) defined by
_bodar
for t € (tx, tr+1], k € No, where x,,(-) € PC1_4(R;, A) solves (1.1).
e Dini derivative of V € A(R;, A) for IRLFDE (1.1) defined by
[t tk]
Vitr)— % (1) (Vi i hf(h, )
. r=1
Df’{ yVitz) = hg?)lip % ;
for t € (tg,trs1], k € No, x € A.

RLDqV(t xa?o( )) = (t - S)_qV(S, ZL‘IO(S))dS,

Remark 2.6. Let x be a solution of (1.1). Then, for any k € Ny, the equality
DV (t2(t))

[t—tk

V(ta() = 3 (=17 (O V(- rh,a(t) — Bf(E (1))

r=1

= lim sup
h—0+ ha

holds for t € (tx, tgi1].
We consider the IVP

ELD,?u(t) = g(t,u(t)) fort € (t;,tiy1], i€ Ny,
(2.3) Jim [t~ t:)' u(t)] = W for i € N,
tli%ﬁr[t “u(t)] = @7

with up € R. We will denote the solution of (2.3) by wu,,. We will assume that the
IVP for the scalar IRLFDE (2.3) has a unique solution u,, for any initial value ug € R
defined for ¢ > 0. We also introduce the following conditions:
(A4) g € C(R; x R,R) decreases in the second variable, and ¢g(¢,0) = 0 for t € R;
(As) Hy € C(R,R) are increasing w.r.t. the second argument and Hy(0) =0, k € N.

In our main results, we will use some comparison results with both Dini and Riemann-
Liouville derivatives.

Lemma 2.1. Suppose:
1. conditions (Ay)—(As) hold;
2. w3 € PCi_y(Ry,R") solves (1.1);
3. Uy, € PCi_((R4,R) solves (2.3);
4.V € A(R.,R") satisfies:
(i) the inequality
W DIV (a5, (1) < g(t, V(E 25, (1)), € (ti tia] i € No

holds;
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(ii) for alli € Ny, the inequalities
Vi(ti, Wiz, (t: = 0))) < Hi(V (ti, 25, (t: = 0)))

hold;
(iii) for alli € N, the inequalities
V(t; +0,%;(x (t; —0)))
_ 1—¢ 7 0
Jim (¢ #1722, (1)) < s
hold.
If limy o4 t170V (L, 2% (1)) < ty: then
(2.4) V(t, (1) < uyy(t), forallt>0.

Proof. For t > 0, put m(t) := V (¢, (t)). We will prove (2.4) by induction w.r.t. the
intervals (ti,ti+1], 1€ No.
First, let ¢ € (0,t1]. Let € > 0 be arbitrary. We will prove

(2.5) mt) < uy(t) +t7 e, t € (0,t].
We have
1—q < U U
A wamm)_F@) g ' °
(2.6) = lim "%, (t) + lim t'79%7 e
t—0+ t—0+
— 1—q q-1
= tl_l}IOILt (uuo (t) +t 5) :

From (2.6), there exists 6 > 0 such that
IV (125, () < 177 (o (8) + 7€), for t € (0,0),

» Vg

that is, (2.5) is satisfied on (0,0). If § > ¢;, then (2.5) is proved. If § < ¢;, then we
assume that (2.5) is not true. Then there exists t* € [0, ;] such that

M) = Uy, (°) + ()17 e, m(t) < uy(t) +t7 e, ¢t (0,t%).
From (Ay), ¥D{t7~! = 0, and Proposition 2.1 with ¢; = t* together with
v(t) = m(t) — g (t) — 7 'e,
we obtain the inequality
SEDIM(t) | mpe > F-DY (uuo () + tq’les) [
(2.7) = 0 Dty ()=t = (1", e ("))
=g (¢, m(t) = (") 'e) > ).

g(t*,m(t
Inequality (2.7) contradicts assumption 4 (i). Therefore, (2.5) holds for any ¢ > 0,
and hence, (2.4) holds for t € (0,¢;]. From assumption 4 (ii), (As), and the inequality

t*,m
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V(ty,z} (t1 —0)) < u(ty —0), we get
V(ti+ 0,25 (t1 +0)) = V(t, + 0, ¥y (27 (t: — 0)))
(2.8) < Hy(V(ty, 25, (1 = 0)))
< Hi(tyy(t1 — 0)) = wy,(t1 +0).
Let t € (t1,t2]. Let € > 0 be arbitrary. We will prove
(2.9) m(t) < uy,(t) + (t — 1) e, tE (ti,ta].
From assumption 4 (iii) and (2.8), we obtain

V(tl, ZL’;O (tl + O)) < Uy (tl + 0))

lHm (t — )"V (¢, 25, (1) <

o ['(q) ST
. Hl(uuo(tl — 0))
(2.10) < I(q) te
= lim (8= 62)77 (g (6) + (1 = 1))

From (2.10), there exists d; > 0 such that
V(t, 2t (1) < wy(t) + (t—11)7 e, on (t,t + ).

) o

If 0; >ty — t1, then (2.9) is proved. If d; < ty — t1, then we assume (2.9) is not true.
Then there exists ¢} € [t; + 0, t2] such that

m(t]) = g () + (£ — 1) e, m(t) < ug(t) + (t — 1) e, ¢ € [ty £)).
Now (Ay), fD{(t — ¢1)7* = 0 and Proposition 2.1, with ¢; = ¢} together with
v(t) = m(t) — uy, (t) — (t — )7 e,
yield
REDIm(t) iy > FDF (g (8) + (8 — 11)77"¢) |imss
(2.11) = 8D g ()= = g(t7, o (17))
=g (61, m(t)) — (1] — t1)7"e) > g(t;, m(t})).

Inequality (2.11) contradicts assumption 4 (i). Therefore, (2.9) holds for any ¢ > 0,
and hence, (2.4) holds for t € (¢, t9].
Following the above procedure, we complete the proof. O

Lemma 2.2. Suppose:
1. assumptions 1, 2, 3, 4 (ii), 4 (iii) from Lemma 2.1 hold;
2. Ve ARy, R) satisfies

D'Z’fl)V(t,x;O(t)) <gt,V(t,x* (1), fort€ (tp,tr1], k € Ny.

» P g

Iflimy o 179V (8, 23, (1) < 15, then (2.4) holds.
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Proof. The proof is similar to the proof of Lemma 2.1, where instead of the RL
fractional derivative of the Lyapunov function, we will use the Dini fractional derivative.
The main difference between this proof and the proof of Lemma 2.1 is connected with
inequalities (2.7) and (2.11) for t* € (0,¢;] and ¢ € (ty, to].

Consider any of the intervals (¢, tx11], k& € Np, and assume that for a fixed k € N,
there exist 0y, € (0, tx11 — tx) and tf € (tg + Ok, try1] such that

m(ty) = wu, (t5) + (t — 1) e, mt) <uu(t) + (=) e, tE€ (th,t}).

Thanks to Remark 2.3 with 7 = ¢}, we obtain

SDIm () 1=er = 7D g (8)i=er + 5 DL — tr)" )=
(2.12) = iy Dty (t) = = 9t o (£7)
= g(tp, m(t;) — (t; — te)""'e) > g(ti, m(ty)).
For any fixed ¢ € (ty, tg+1], we have
(2.13)
[2]
S (=1 (2)mt = rh)
iLDim(t) =lim sup —

h—0+ ha

m(t) — é (1)1 () m(t - rh)
= lim sup e
7mw—[i%—nwwﬂva—rmﬁaw—hﬁuwmw»
= lim sup r=1
h—0+ ha

S (=) (E) [Vt = rh,a (8) = hOf(t (1) — m(t —rh)]
ha

Denote
[ t—tp

F(t, a5, te, h) = i](—w‘“ <q> ot (t—rh).

r=1 r

From (1.1), we get
* . x; (t) - F(tv‘r; s s h)
SEDia (t) =lim sup —=° e 0
h—0+

=1, Diy, () = f(t,25,(t).

Y o
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Hence,
xxo( ) h’qf( ) Io( )) = F(t> zmtk’h) + Q(hq)7
with )|
hli%lJr || ha 0-

Thus, for arbitrary h > 0 and r € N, we have
V(= rh,ag (8) = hUf(E 25, (1) = V(E—rh, a5, (t —1h))

Y o

<L|[F(t, 25, te, h) + QR7) — a3, (t = 7h)|

(2.14) [ " ]

+ LRI

(1) 5, (6 = ) — a3, (£ = rh)

Hence, due to

(I4+u)*=1+ ;i (Z)Uk Le, 1= i(—DHl (Z)

we get

j=1 ] j=1 ]
=
< Z (—1)7*! j) {:p;o(t —jh) —x, (t — rh)}

v, (t— rh)’

)

£ o)

=[5 !
from which, together with (2.13), (2.14), and condition 2 in the statement, we get

[54]
SLDLm(t) <DtV (8, 2%, (1)) + Llimsup HQ(q i Z (=1 <q>

1
( h—0-+ h o r

+ Llimsup hl V_f](_w <q>

h—o+ h% ] r

[t tk

Z )7 (;) oot = jh) — a3, (t = 7h)
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=DV (t, 23, (1))

» Y xo

+ Llimsup ; [tg](—m”l <q>

h—0+ r=1 T

(]

| X () = m = e )
i) 3 (0 )

t—ty,
1

3 (1)

=D )V (t, 25, (1) < g(t, V(t, 25, (1)),

) pode)

xy (T — Th)H

contradicting (2.12) and completing the proof.

3. MAIN RESULTS
We now present the main results of this paper.

Theorem 3.1. Suppose:

1. conditions (A1)—(As) are fulfilled;
2. there exists V € A(R,R") such that:

(i) there exist 7, € (0,\), i € Ny, satisfying

b(||z|) < V(t,z), forall x€R" andt e |J [ti + 7, tit1]
ieNo
where b € M([0, p]), with p > 0;
(ii) for ally € C1_4(]0, 1], R™), with

. 1— o
Jim (t qy(t)) = Yo €y,

we have
PV (g (O)limor = Jim 1V y(0) < alluol).
where a € K([0, pl);
(iii) for alli € Ny, the inequalities
V(ti, Vi(z)) < Hy(V(ti,x))  forallz € R",
hold;
(iv) for any y € Ci_g([tg, tit1], R"), with

Jim (6= 801(0) = i <o
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the inequality
(t = 6V (g emae = i (0= )TV (1 (1)) < V(ty +0, ()

holds;
(v) for any initial value xo € 8, and the corresponding solution ., of (1.1),
the inequality

WDV (b, 240 (1) < g(8, V(E, 240 (1))),  for all t € (ty, tpia], k € No,

holds;
3. the zero solution of the scalar comparison equation (2.3) is generalized Lipschitz
stable in time.

Then the zero solution of the IVP for IRLFDE (1.1) is generalized Lipschitz stable in
time.

Proof. Suppose that the zero solution of (2.3) is generalized Lipschitz stable in time.
Thus, there exist N € Ny, 6 € (0,A), ; € (0,9), 7 € Ny, 63 > 0, and M; > 1 such that
for any uy € R™ with |ug| < 97, the inequality

(31) ‘UUO(t)‘ < M1|’LLO|, for t € U [tz + §i,ti+1],

=N
holds, where wu,, solves (2.3) with the initial value ug. Thanks to a € K([0, p]) and
b € M([0, p]), there are K, > 0 and ¢,(u) > 1 for a > 1 with

(3.2) ar < b(rq.(«)), for all r € [0, pl,
and
(3.3) a(r) < K,r, forallre|0,p].

We may assume K, > 1. Pick My, > 0 satistying

J
My > max{1l,q(M1K,)} >1 and ¢ =min {p, Kl} :
Pick zyp € R" such that ||z¢|| < J, and hence, zy € §,. Consider the solution x,, of
(1.1) for the chosen initial value zy. Thus, using I'(¢) > 1 for ¢ € (0,1), we get

0 <L<5<
I(q)| T(q) =P

that is, limy_o4 t' %24, (t) € 8,, and employing assumption 2 (ii) with

Y =Tag € Cl—g([oa tlLRn)’

. 1—q _
tl—lgg}i- 0 (1) H

we get

(3.4) fﬁV@%ﬂﬂWo+<a<Kﬂ><aW%m-
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Consider the solution wu,s of (2.3) with uf = lim,_,oq t'"9V(t, 24,(t)). The choice of
xo, (3.3), (3.4), and assumption 2 (ii) yield

P e [z
uy = lim £Vt ag() < a (r(g) < a(]|zo|]) < Kq ||zol| < Ku0 < 6.

Hence, u,; satisfies (3.1) for UZ y[ti + G, tiya] ,with ug = ug.
From conditions 2 (v), 2 (iii) with = z,,(t;11 — 0) and 2 (iv), with
Y = Ty € Cl*Q([tkathrl]an) and Yk = x:r:o<ti - 0)7

we have conditions 4 (i), 4 (ii), 4 (iii) of Lemma 2.1, respectively. According to Lemma
2.1, we get

(3.5) V(t, 24, (1)) < uyy(t), fort>0.
Let T; = max{r;,;} for i € Ng. Then, for any k € Ny, the inclusions
[tk + Ty tea] C [tr + 7oy tea]  and [t + T, tega] C [tr + S trepa]

hold. Let £ > N. From 2 (i), 2 (i), (3.1), (3.2), (3.3) with r = |||, « = M1 K, > 1,
and (3.4), (3.5), we obtain for t € [ty + Tk, tg1]
b([[2o (D)) SV (#, 22 (1)) < g (£) < Mg
=MtV (8, @4, (1)) =0+ < Mia(o])
SMy K [xol] < b (qp(M1Ka) [[2o]]) < b(Mz [|0l]),

completing the proof. 0

Theorem 3.2. Let conditions 1. and 2. of Theorem 3.1 be satisfied, where conditions
2 (ii) and 2 (v) are fulfilled for all yo € R™ and x¢ € R", respectively. If the zero
solution of (2.3) is globally generalized Lipschitz stable in time, then the zero solution
of IVP for IRLFDE (1.1) is globally generalized Lipschitz stable in time.

Proof. The proof follows the proof of Theorem 3.1, with an arbitrary initial value
o € R", and so we omit it. O

Theorem 3.3. Let the conditions of Theorem 3.1 be satisfied, where a(s) = Aas?,
Ay >0, p> 1 in condition 2 (ii), and condition2 (i) is replaced by
2%(i) there ezist T; € (0, ), i € Ny, satisfying
pt)|z||” < V(t,z), foralzeR" andte | [t; + 7, tis),
iGNo
holds, where p(t) > Ay, t € U, N, [ti + 7i tiv1] and Ay > 0.

Then, the trivial solution of the IVP for IRLFDE (1.1) is generalized Lipschitz stable
m time.
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Proof. The proof follows the proof of Theorem 3.1, with

[ MiAs . o 01
M,y = A and 0 = min {)\, A2} ,

and so we omit it. O

In the case when the Dini fractional derivative of Lyapunov functions is used instead
of RL fractional derivative of Lyapunov functions, we obtain some sufficient conditions
for the introduced generalized Lipschitz stability in time. Since the proofs are similar
to the already presented proofs, we omit them, and we will only state the results.

Theorem 3.4. Let the conditions of Theorem 3.1 be satisfied, where condition 2 (v)
is replaced by
2(v*) the inequality

Dl(tlfl)v(twr) S g(t,V(t,fE)), fOT (I” T e Rna te (tkatk’-i-l]) k S N07

holds.

Then the trivial solution of the IVP for IRLFDE (1.1) is generalized Lipschitz stable
m time.

Proof. The proof follows the proof of Theorem 3.1, with Lemma 2.2 applied in place
of Lemma 2.1. O

Theorem 3.5. Let conditions 1 and 2 of Theorem 3.1 be satisfied, where condition
2 (v) s replaced by 2 (v*) and condition 2 (ii) is fulfilled for all yo € R". If the
trivial solution of (2.3) is globally generalized Lipschitz stable in time, then the trivial
solution of the IVP for IRLFDE (1.1) is globally generalized Lipschitz stable in time.

Theorem 3.6. Let the conditions of Theorem 3.1 be satisfied, where a(s) = Aas?,
Ay > 0, p > 1 in condition 2 (ii), condition 2 (i) is replaced by condition 2*(i) of
Theorem 3.3, and condition 2 (v) is replaced by condition 2 (v*) of Theorem 3.4. Then
the trivial solution of the IVP for IRLFDE (1.1) is generalized Lipschitz stable in
time.

4. APPLICATIONS

We now illustrate the application of our obtained sufficient conditions and the
practical use of the fractional derivatives of Lyapunov functions.

Fxample 4.1. Let the sequence {ti}z‘eNo’ to = 0, be given such that

L= sup (tys1 —t) > 1 and A= inf (tx41 — &) > 0.
kENo kGNo
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Consider now the IVP for the system of impulsive Riemann-Liouville equations
(4.1)

RD (1) = (o.w—l T >) (1),

_ L T2-9q) 3 (t)
RLDq 5td 1 q — 1 €T it < +
th til?g(t) = (O ot +1 (2 2q) 1 .Z'%(t) g(t), ort (tk, tr 1], ke N(),

Vi (21 (tk — 0), 2a(tr — 0))

. [ B 1—q _
i, [ -] = MO0
: U2 (z1(ty — 0), z2(tx — 0))
. . 1—q _ E\L1\lE y L2 Uk
Jim (¢~ ) za(1)] 0 , fork €N,
. [,1-q _ Zo,21 . 1—q _ Toz2
Jim |t xl(tﬂ () JHm {t xQ(t)} " T(q)’

where x = (0,1, T02) € R?,
U (t, 21, 20) = % and  Ui(t,my,19) = %,
for t € [tg, tgi1], k € No, 21,29 € R. Consider the Lyapunov function
V(t,x) = (t —t,)" " Ya +23), fort € (ty,ter1], k € No, 21,75 € R,

where ¥ = (x1,7,) € R?. The function V € A([0,00), R?) is locally Lipschitz with
constant L. Thus, assumption 2*(i) of Theorem 3.3 holds with

p= 2, ILL(t) = (t - tk)l_qv te (tkatk-i—l)v Tk =tk + ldi 0.1, Al = lqu 0.1.
Let ye Cl*Q([Oatl]aR%a Y= (ylayQ)a be such that

hn%r (tl_qyk(t)) =Yk, k=1,2, yo=(Y0.1,%.2)

t—0

Then, because of

2 2
Jim 0V () = (lim 2 (0) )+ (Jim £ a(0) = ol

—0+ —0+
condition 2 (ii) of Theorem 3.1 holds with

a(s) = Ags?, Ay =1, p=2.

Let y € C1_y([th, tri1], R?) satisfies
— 1 1y _ Yk —
Jm, ((t tk) ) = T(g) <00, Yk = (Yik Y21)-

Then, for t € (tg,tx11], we get the inequality
(t = tk) "IV y(0))lemtyr = Nim (¢ — ) IV (L, y(1))
—tr+

= lim (¢ =)' 7(t = )" () + 12(0)%)

= (im0 00" 0) + ([l ¢~ 0 ()

t—=tp+ t—tp+
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:yik + ?/gk
<(tk = ter) Yt + U3 s) = Vit yi),

and therefore, condition 2 (iv) of Theorem 3.1 is satisfied. Let k € Ny and ¢ € [ty, tx11],
x = (r1,75) € R®. Then, we get the inequalities

V(t, \Ilk(t,l‘*(tk — O))) = (t — tk)l_q <:§21 + i;) = Hk(t, V(tk, x*(tk — 0))),

and therefore, condition 2 (iii) of Theorem 3.1 is satisfied with
u
The RL fractional derivative of the Lyapunov function, i.e.,
1 d rt
- = . —q . 1—q 2 2
T =g @i o)) (3 + ai(s)) d

where x = (z1,x2), being the solution of (4.1), is rather difficult to obtain, so we
cannot apply the results with RL derivative. Instead, we apply the results with Dini
derivative of the function V among (4.1). Let k € Ny, t € (tx, tg+1], z1, 22 € R. Then,
for 1 —2¢ >0, i.e., g € (0,0.5], we get

Dfii)@ — 1) (95% + x%)

o DIV (t,a(t) =

[
T 1 1—q (.2 2 r+1( 94 1—q
= hl?if)lip e {(t — t) (xl + $2) — ,;:1 (—1) . (t —rh —ty)

X [(1‘1 — hqfl(t, l‘))Q + (1‘2 - hqu(t, JJ))Q] }

1
=limsup - (t — 1)~ 2] = (21 = Wi (1,2))" + 23 — (22 = W o(t,))’]
h—0+

Flimsup o (o1~ () + (02— 0 fo(t, )]
h—0+

x [§]<_1>r(9) (t =ty — rh)'

r=0 r

= limsup }jq(t — 1) [(2m1 — hOFL(E 7)) hOf (¢, @) + (225 — WO fo(t, ) R fa(t, 2)]

+ {x% + x%} PDE(t — ty,)'
=2(t — tp) "l fi(t, ) + 2(t — ) e folt, 7)

2 2 F(2 B ) 1—2q
+ {xl + x2} F(2—2qq)(t — )

- - ,I'2-q)
:2(t - tk)l q.rl <—O5tq 1.7/'1 —1 qul - .ZC%J&)
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B 3 L T(2—q) ToX?
2t —t1) "y | —0.5t Ly — 79 !
+ ( k) ) < T F(Z — 2q) i)

+ 23 + 23] FF<<22__2qq>)(t — 1)

<2t — ) iy (—O.5tq1x1 —(t— tk)qul — x§m1>
2t — ) <—O.5tq13:2 ey FF((22_—2qq)) o 19?5;3)
+ 23 + 23] FF((;—_?qq))(t — 1)

['(2—-q) 1-2¢
| (2= 2g) "

< —05V(t,r), forxcR*andt >0,

=—0.5V(t,z) — [:cf + 23

and therefore, assumption 2 (v*) of Theorem 3.4 holds with
g(t,u) = —0.5u, w € R and q € (0,0.5].

Consider the scalar comparison linear RL fractional equation with noninstantaneous
impulses

ELDgu(t) = —0.5u(t), fort € (t;,ti11],7 € Ny,

(4.2) lim[(¢ — t)-ou(n)] = A0

Jim, () for i € N,

(g)’

where 4y € R. Similar to Example 2.1, the solution of (4.2) is given by

tlir(ﬁr [tl_qu(t)} =

ugt?*E, ,(—0.5t7), for t € (0,t4],
y(t) =< o (T2 Byg(—0.5(tisn — t)1)t;)
X(t — tk)qE%q(—O.E)(t — tk)q), for t € (tk—I—la tk], k € N.

In the case ¢ € (0,0.5], the trivial solution of (4.2) is generalized Lipschitz stable in
time (for particular values ¢ = 0.3, tx = k, k € N, and uy = 1, ug = 2, the graphs
of the corresponding solutions u,, are given in Figure 4, and in the partial case of
q=05,t =k, ke Nand uy =1, up = 2, the graphs of the solutions u,, are given
in Figure 5). In the case ¢ € (0.5,1), the zero solution of (4.2) is not generalized
Lipschitz stable in time (for particular values ¢ = 0.8, t, = k, k € N and uy = 1,
ug = 2, the graphs of the solutions w,, are given in Figure 6). Due to Theorem 3.6,
the zero solution of (4.1) is generalized Lipschitz stable in time for ¢ € (0,0.5).
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08 — up=1

osf — =2
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FIGURE 4. Graph of the solutions of (4.2) for ¢ = 0.3, up = 1 and for
Uy = 2.
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FIGURE 5. Graph of the solution of (4.2) for ¢ = 0.5, up = 1 and for

Ug = 2.
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FIGURE 6. Graph of the solution of (4.2) for ¢ = 0.8 with uy = 1 and
Ug = 2.
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ORESME HYBRID NUMBERS AND HYBRATIONALS
ANETTA SZYNAL-LIANA AND IWONA WLOCH

ABSTRACT. In this paper we introduce and study Oresme hybrid numbers and
hybrationals based on the known Oresme sequence. The main aim is to present
these new concepts and to give some properties of Oresme hybrid numbers.

1. INTRODUCTION

Let p,q,n be integers. For n > 0 Horadam (see [2]) defined the numbers W, =
W, (Wo, Wi;p, q) by the recursive equation

(11) Wn+2 :p'Wn+1_Q'Wn7

with fixed real numbers W, W;. For the historical reasons these numbers were later
called Horadam numbers.

For special Wy, W1, p, ¢ the equation (1.1) defines selected numbers of the Fibonacci
type, e.g. Fibonacci numbers F,, = W,,(0,1; 1, —1), Pell numbers P, = W,,(0, 1;2, —1),
Jacobsthal numbers J,, = W, (0, 1;1, —2).

In [3] Horadam extended the equation (1.1) considering values of p, ¢ to be arbitrary
rational numbers. Then taking Wy =0, W; = %, p=1andq= i the equation (1.1)
gives the known Oresme sequence {O,} = {W,(0,%;1,1)}, where O, is the nth
Oresme number. Consequently,

(12) On = Onfl - i0n27

fornZQWithOozo,Olzé.

Key words and phrases. Oresme numbers, hybrid numbers, hybrationals.
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Solving the above recurrence equation we obtain Binet formula for Oresme numbers
of the form
_n
= o

Then Oresme sequence has the form 0,1,2 /3 4 5 6

For Oresme numbers some identities can be found in [3], we recall some of them

(1.3) On

3 1
On+3 :ZOnJrl - zOm

3 1
On+3 _ZOHJFQ - Eona

" 1
30, =4 ( _ 0n+2> .
j=0 2

In some mathematical sources we can find that the Oresme sequence has a biological
applications, see [3].

Oresme numbers were generalized by Cook in [1]. We use this concept for our future
investigations.

Let k£ > 2, n > 0, be integers. Then k-Oresme numbers {Oﬁf)} are defined by

k L
(1.4) O = 0,2y = 501,

for n > 2 with O((]k) =0, ng) = %

Clearly W,,(0,1;1, %) = O and OP = O,.
Although the equation (1.4) works for & > 2 Binet formulas for O%) have to be
given separately for £k = 2 and k£ > 3. It follows from roots of the characteristic

equation of (1.4). If k£ > 3 then Binet formula for k-Oresme numbers has the form

(e ey

(k) —
(1.5) O ok ok

" k? —4

if k2 —4>0.
In [1] identities provided by Horadam in [3] are extended for some of k-Oresme
numbers. We recall some of them for future investigations

2 _
(1.6) Opls ==5—Ouh = 50,
k> —1 1
(L.7) Opls ==5—O0ls = 50,
L 1
(1.8) SO =2 (k - 05522) — k— k20,
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2. ORESME HYBRID NUMBERS

In [4] Ozdemir introduced a new non-commutative number system called hybrid
numbers. The set of hybrid numbers, denoted by K, is defined by

K={z=a+0bi+ce+dh:ab,cdecR},
where
(2.1) i’=-1, =0, h*=1, ih=-hi=c¢+i
Two hybrid numbers

Z1 = a1 + bii+ cie + dih, zs = as + boi + coe + dsh,

are equal if
a; =ag, by =by, c1=co di=ds.

The sum of two hybrid numbers is defined by

Z1+ 22 = a1+ az + (by + b2)i+ (1 + c2)e + (di + da)h.

Addition operation is commutative and associative, zero is the null element. With
respect to the addition operation, the inverse element of z = a + bi + ce + dh is
—z = —a — bi — ce — dh. Hence, (K, +) is Abelian group.

Using (2.1), we get the multiplication table (see Table 1).

TABLE 1.
i [ e [ h ]
i -1 1—h|e+i
€ 1+h 0 —&

hi—(e+1)| ¢ 1

The conjugate of a hybrid number z = a + bi + ce + dh, denoted by 7, is defined as
Z = a — bi — ce — dh. The real number

Clz)=zz=2z2=a*+(b—c)? - —d°
is called the character of the hybrid number z.

Some interesting results for Horadam hybrid numbers, i.e., numbers defined in the
following way

(22) Hn = Wn + Wn+1i + Wn+2€ + Wn+3h,

were obtained in [5]. Tan and Ait-Amrane in On a new generalization of Fibonacci
hybrid numbers (https://arxiv.org/abs/2006.09727) introduced the bi-periodic
Horadam hybrid numbers which generalize the classical Horadam hybrid numbers.
In this paper we define and study Oresme hybrid numbers and k-Oresme hybrid
numbers.
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Let n > 0 be an integer. Oresme hybrid sequence {OH,,} we define by the following
recurrence

(23) OHn = On -+ On+1i —+ On+2€ + On+3h,

where O,, denotes the nth Oresme number.
Using (2.3) we get

1. 2 3
2.4 Hy==i+ e+ °h
(2.4) OH, Sit et gh
1 2 3 4
O == +2i+2c4 —h
Oy =5 +7i+ge+ 6h
2 3. 4 5
=24+ 2+ et 2n
OHy =7+ Sit e+ 22h,
3 4. 5 6
OHy =2 + —i4+ 2e+ 2 h.

8 16 32 64
In [5] it was determined the character of the nth Horadam hybrid number H,.

Theorem 2.1 ([5]). Let n > 0 be an integer. Then
(2.5) C(H,) =WZ2(1 — p*¢*) + W, W, 41(2q + 2p°q — 2pg*)+
+ Wi (1= 2p—p' +20° — %),
By (2.5) we get the following.

Corollary 2.1. Let n > 0 be an integer. Then
25

2
EOn—H

15, 14
(2.6) C(OH,) = 1O + 10nOns1 —

and using (1.3) we obtain

63n% — 22n — 25

C(OH,) =
( ) 64 - 22n
Theorem 2.2 (Binet formula for Oresme hybrid numbers). Let n > 0 be an integer.
Then
n n+1l, n+2 n+3
(2.7) OH, = on T on+1 | T on+z © T on+3 h.
Proof. Using (2.3) and (1.3) we obtain the desired formula. O

Theorem 2.3 (Catalan identity for Oresme hybrid numbers). Let n > 0, r > 0 be
integers such that n > r. Then

—65r2 —4r’4r, —8r?43r —r? 7
R B T TP TR BT
Proof. For integers n > 0, r > 0 and n > r, using Binet formula for Oresme hybrid
numbers, we have

OH,,,-OH,_, — (OH,)*

n+r n+r+1., n+r+2 n+r—+3
on+r n+r+l 1 on+r+2 € on+r+3

OHnJrr =
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and +1 12 3
n—r n—r . n-—r n—r-4+
OHpr = on—r on—r+l 1 on—r+2 € on—r+3
So, after calculations the result follows. O

Note that for r = 1 we obtain Cassini type identity for Oresme hybrid numbers.

Corollary 2.2 (Cassini identity for Oresme hybrid numbers). Let n > 1 be an integer.
Then

65 -3, =5 —2
OH, 1 -OH,_; — (OHn)2 = 64 4n + 4. 4nl+ 16 - 4”(€+ 4 - 4"h

Let £ > 2, n > 0, be integers. Then k-Oresme hybrid sequence {OH,(L’“)} we define
by the following recurrence

(2.8) OH® = 0% + 0M i+ 0W,e + OM.h,

where O denotes the nth k-Oresme number.

Theorem 2.4. Letn >0, k > 2, be integers. Then
(i) OH® + OHY = 20 ;
(ii) €OHM) =20 - OHP — (OHW);
(i) 0K, = EA0HLY, — LOHY:
)
)

OHT(L’j-3 ij;lOHr(Lliz - k%OHT(lk)7
z o =k (0H" — OHY,) .

Jj=

(iv

(v

Proof. (i) By the definition of the conjugate of a hybrid number we obtain
OH® + 0l =0F + 0%)i+ 0%y + O%)sh + 0P — 0%)i — 0%)ye — OF)sh
=200
(ii) By formula (2.3) and Table 1 we have
2
(0H1) = (01)" ~ (01h) "+ (0n+3)
+20M0M i+ 2000, + 2000, n
+ On-i—lon—i-2<18 + 81) + On+10n+3(lh + hl) + O 2On+3 (éh + hg)
2 2
= (09)" = (01)" + (0f5)” + 201,011,
+2 (000N i+ 0POl e+ 0PO)h)
=200 — (0)" = (01h)" + 201,01 + (01s)°
=200 . OH®) — e(OH®).

Hence, we get the result.
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(iii) Using (1.6) we have
OH n+3 O(+5 + O(+41 + On+55 + O(+6h

(iv) Using (1.7) and proceeding analogously as in (iii) we obtain (iv).
(v) We have

Z OH VoY 4 OHP

=08 + Oi + 0% + 0{’h + O + O + 0§ + Ofn
+o o+ 0% 4 0W i+ 0%e + 0%),n

:O(()k) + O(k) cee On k)
+ (0" + Off -+ 0%, + 0 —of)i
+ (08 + o§,’“> 4+ Oy + 0 + 01 — O — 0 e
+ (057 + 0 + -+ 0%y + 0f + 0fY + OFY
—0” — 0" = 0§") h.

Using (1.8) we obtain

S0P =k — K0}, + (k- k20, — 0)i
j=0
k 1 k 1 1
+(k—k20;+>4—0—k)a+(k—k20;j5—o—k—k)h
-1 k-2
:<k+ki+ —e+— h)—k20HfL’22
1 1, k-1 k*—2 "
:k2<k+kl+ P h)—kQOHfLQ2
=k (0H" — OHY;) . O

3. ORESME HYBRATIONALS

Cerda-Morales in Oresme polynomials and their derivatives (https://arxiv.org/
abs/1904.01165v1) extended the sequence of k-Oresme numbers to the sequence
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of rational functions {O,(z)} by replacing k with a real variable z. These rational
functions were named as Oresme polynomials.

Let x be a nonzero real variable. The sequence of Oresme polynomials is recursively
defined as follows:

0, if n =20,
(3.1) On(z) =< 1 ifn=1
On_1(z) — m%On_2(x), if n > 2.

Solving the characteristic equation of Oresme polynomials recurrence relation
9 1
r°—r+—5 =0,
x

we obtain Binet formula

On(x) =

x2—4 2z x
for 22 —4 >0, x # 0, and
i K:::-Mi)”_ (a:—{—@i)n]
Va4 —2? 2 2 ’
for % — 4 < 0. Moreover, 0,,(2) = O,, and O,,(—2) = —O,,.
For n > 0 and nonzero real variable z Oresme hybrationals are defined by
OH,(x) = On(z) + Ony1(2)i + Opga()e + Opgs(z)h,

where O,,(z) is the nth Oresme polynomial and i, £, h are hybrid units.
For x = k we obtain k-Oresme hybrid numbers.

(8 - (=)

On(x) =
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EXISTENCE RESULT FOR FRACTIONAL DIFFERENTIAL
EQUATION ON UNBOUNDED DOMAIN

MOUSTAFA BEDDANI' AND BENAOUDA HEDIA?

ABSTRACT. In this article, we establish certain sufficient conditions to show the
existence of solutions of boundary value problem for fractional differential equations
on the half-line in a Fréchet space. The main result is based on Tykhonoff fixed
point theorem combining with a suitable measure of non-compactness. An example
is given to illustrate our approach.

1. INTRODUCTION

The theoretical study of fractional differential equations has recently acquired great
importance in applied mathematics and the modeling of many phenomena in various
sciences, let us quote for example [11,12,15,17]. The monographs [14, 16, 18, 20]
contain basic concepts and theory in fractional differential equations and fractional
calculus.

Very recently, excellent works have been done to study fractional differential equa-
tions with various conditions which resides in the existence and uniqueness theorem
by utilizing some analytical and numerical methods and certain basic tools from
functional analysis, we refer the reader to [1,4-9].

Several results existence of these problems were obtained on unbounded domains
like [0, +00) involving classical methods, for example, Xinwei Su discussed in the work
[19] the existence of solutions of the following problem

{ Day(t) = f(t,y(t), teJ=(0,+0),1<a<2,
y(O) = Oa DSCJr_ly(OO) = Yoo,

Key words and phrases. Boundary value problem, measure of non-compactness of Kuratowski,
Tykhonoff fixed point theorem, Riemann-Liouville fractional derivative.
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where D§, is the Riemann-Liouville fractional derivative of order «, the state y(-)
takes value in a Banach space E, f : J x E — FE is a continuous function and y., € E.
The main approach is based on Dardo’s fixed point theorem. The contents of this
article are an extension of their work for a class generally.

This article studies the existence of solutions of boundary value problem for frac-
tional differential equations on unbounded interval. We consider the following problem

(1.1) Dg-y(t) =f(t,y(t)), teJ=(0,+00),
(1.2) I5-%y(0%) =y,
(1.3) D y(00) =Yoo,

where Dj; denotes Riemann-Liouville fractional derivative for § € {a,a — 1} with
l<a<?2, ]OQI % denotes the left-sided Riemann-Liouville fractional integral, F is a
real Banach space with the norm || - ||, ¥o,ys € E and f : (0,00) x E — E a function
satisfying some specified conditions (see Section 3).

The present work is organized in the following way. In Section 2, we give some
general results and preliminaries and in Section 3, we show the existence solution for
the problem (1.1)—(1.3) by using the Tykhonoff fixed point theorem combined with
the technique of measure of non-compactness of Kuratowski. Finally an illustrative
example will be presented in the last section.

2. BACKGROUNDS

We introduce in this section some notation and technical results which are used
throughout this paper. Let I C J be a compact interval and denote by C(I, E) the
Banach space of continuous functions y : I — E with the usual norm

1Ylloc = sup{lly()[| | £ € I}.

L'(I, E) denotes the space of E-valued Bochner integrable functions on I with the
norm

£l = /I 1L (8)]|dt.

We consider the following Fréchet space

Ca(]0,00), E) = {y € O(J,E) | lim t*“y(t) exists and is ﬁnite} :

t—0t+

equipped with the family of seminorms

2—a
= su | T > O}.
Iyl = sup {3 llv®I1 72
For y € C,((0,00), E), we define y, by
t2—o¢
1), ift e (0,00),
o) =4 T +tay( ), ift € (0,00)

lim t*~*y(t), ift = 0.

t—0
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It is clear that y, € C(]0,00), E).
We begin with the definition of the measure of non-compactness in the sense of
Kuratowski and its properties. For more details, we refer the reader [2,3,13].

Definition 2.1. The Kuratowski measure of non-compactness v is defined on each
bounded subset €2 of E by

7(Q2) = inf{e > 0| Q admits a finite cover by sets of diameter < e}.

Lemma 2.1 ([3]). Let {D,}3° be a sequence of nonempty, bounded and closed subsets
of E, such that for all positive integer n, D,y C D,,. If lim,_ .. v(D,) = 0, then the
set

n=0
is nonempty and compact.
Lemma 2.2 ([2]). Let E be a Banach space and A, B be two bounded subsets of E.
The following properties hold:

(11) v(A) = 0 if and only if A is relatively compact;
is) Y(A) = y(A), where A denotes the closure of A;

v(a.A) = |a|.y(A) for all a € E;
v({a} UA) =~(A) foralla € E;

v(A) = y(Conv(A)), where Conv(A) denotes the conver hull of A.

Lemma 2.3 ([2]). If Q is a bounded and equicontinuous subset of C(I,E), then
v(2(t)) is continuous on I and

1o(Q) = maxy(Q(t), <{ /Ix(t)dt Lz e Q}) < /IV(Q(t))dt,

tel

(i)

(i)

Eug A C B implies v(A) < ~v(B);
(i)

(

where Q(t) = {z(t) | x € Q} and ¢ is the non-compactness measure on the space

C(I,E).
The following theorem is due to Tykhonoff.

Theorem 2.1 ([10]). Let F' be a locally convex space, K a compact convex subset of
F and N : K — K a continuous map. Then N has at least one fixed point in K.

Let us now give some definitions from the theory of fractional calculus.

Definition 2.2 ([14]). Let I" be the gamma function, o a non-negative real number
and h € C(J, E).
(1) The Riemann-Liouville fractional integral of the function h of order « is defined

by
12 h(t) = ga(t) * h(t) = /0 galt — )h(s)ds, >0,

where * denotes convolution and g,(t) = t*~1 /T'(«a).
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(2) The Riemann-Liouville fractional derivative of the function h of order « is
defined by

DEh(t) = (g -a(t) « h(1),

for all t > 0, where n is the least integer greater than or equal to «.

Remark 2.1. For a > 0, k > —1, we have

I'(k+1) r'k+1) ,_
o th = ——— 7 otk d Do th =~ 7 ko t >0,
" T Tlatk+1) W T —at )
giving in particular Dg, t*™™ = 0, m = 1,...,n, where n is the smallest integer

greater than or equal to a.

Remark 2.2. If h is suitabe function (see for instance [14,16,18]), we have the com-
position relations Dg, I§, h(t) = h(t), a > 0, and D I h(t) = I§;h(t), k > a >
0, t>0.

3. MAIN RESULT

We need to introduce the following four hypotheses to present our main result at
the end of this section.

(Hy) f:Jx E— FE is a Carathéodory function.
(H,) There exists nonnegative functions a,b € C(J,R") such that

If(t,w)|| < alt) +t*b(t)||ul|, foralltec JanducE,
where
/ (1 + t)b(t)dt < T(a), / a(t)dt < co.
0 0

(H3) There exists a locally integrable function ¢ € L'(J,R") such that, for each
nonempty, bounded set, we have Q C C,(J, F)

V(f Q) < )y (EQ(t)), forall t € J,
where
(3.1) /OO(1 + 5%)(s)ds < T().
0
(H,) There exists R > 0 such that
lgsell + (o= Dllgoll + [~ att)es

R S
g F(a)—/o (14 £9)b(t)dt

Definition 3.1. A function y € C, ([0, +00)) is said to be a solution of the problem
(1.1)-(1.3) if y satisfies the equation D y(t) = f(¢,y(t)) and the conditions (1.2)-
(1.3).
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Lemma 3.1. Let 1 < a <2 and let h: J — E be continuous. If y is a solution of
the fractional integral equation

(3.2) y(t) = F(la) lyoo - h(t)dt] oy F(OjJO_Dta—Q + P(la) / (= 5)*h(s)ds.

then it is also a solution of the problem

(3.3) Dgry(t) =h(t), te J=(0,+00),
(3.4) I57y(07) =y,
(3.5) D' y(00) =Yoo

Proof. Suppose that y is a solution of the integral equation (3.2). Applying Ig; “ to
both sides of (3.2) and using Remark 2.1, we obtain

By = (g = [ h0)dE) £+ 0 + Beh(o)
Ast — 0, we get
I(?Iay(0+) = Yo-

Now, by applying ngl to both sides of (3.2) and by using Remark 2.1, Remark 2.2,
we have

Diy(t) = yow — [ h(t)dt + L3h(2)
As t — oo, we get
Dgy(00) = Yoo
Next, by applying Dg. to both sides of (3.2) and by using Remark 2.1, Remark 2.2,

we obtain D§,y(t) = h(t). The results are proved completely. O
Consider the operator N : C,([0,00), E) — C4([0,00), E') defined by
Yoo — Jo S(Ey(E))dt oy Yo -2 1 /t -1
Ny(t) = e —t“ — t—s)” ds.
Let

B = {y € Ca([ov OO)’E) | ||y||T < R}

Remark 3.1. (1) Clearly the operator N is well defined.
(2) There exists a positive real number M such that

| s ) < M, for any y € B.
0

Lemma 3.2. If the conditions (Hy) and (Hs) are valid, then

(1) the operator N is bounded and continuous on the subset B;
(2) the subset (NB)y = {(Ny)a | y € B} is equicontinuous on the compact interval
0,7, T>0;
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(3) for given € > 0, there exists a constant Ny > 0 such that
B°N)(t) 5 *N(y)(t)
1+ 9 1+
Proof. In order to prove (1), let y € Band t € [0,T], T > 0, from (H,), we have

PN sl ol 1
Lrir ST e ey M v lds

[[Yoo |l [0l R e a Lo
T tTaep " r(@/o (1+1 )b(t)dt+r<a)/0 a(t)dt.

Hence, N is bounded on the subset B. Next, we will prove that N is continuous.
We have

Ny(t) =

<e, foranyty,ta > Ny and y(-) € B.

Yoo — Jo St y(t))dt Yo a—2 1 /t a-1

t —t —_— t— ds.
Let (yn)nen be a sequence in B, such that y, — y in B. Let T > 0 and ¢ > 0, from
(Hy) and (Ha), there exists L > T such that

/L Tat)dt < F(ﬁo‘)a, /L T+ tb(8)dt < 2(]\‘?5,

and there exists N € N such that, for all n > ]V7 we have
> '«
/0 1f(s,yn(s)) — f(s,y(s))]|ds < (3)5.

Therefore, for t € [0,T], T > 0 and n > N, we have
tQ—Oc
N(y)(t) — N(y)(t
oo IV W) () = Ny) (@)l

< 160 (s) = s, s)ds +

(o) /too 1f(s,yn(s)) = f(s,y(s))|lds

< a7y 17 mn(a)) = F(s.(s))ds

n F(la) [ NG5 = FCs,uo) s+ [ 17 als) — 7G5 y<s>>||ds]

1 L 2M o o 2 [eS)
<y 1w = s p)lds + o [T+ s + s [ ao)s

['(a) Ji L
<S4ty -—e
-3 3 3
Then,
INy, — Ny|lr =0 as n — oo.

We will prove (2). Let y € B and t1,t5 € [0,T], T > 0 where t; > t5. Then

HON@)(t) B N(y)(t)
1+ 1+
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<||yoo||+M 1 ol 11
= T(a) |14t¢ 1+tg] T(a—1)|1+t3 1413
1 t1 to
| [ =9 s y())ds = [t = 5 (s, y(s)ds
I'(a) 1lJo 0
HZ/oo”‘"M b lvoll 11
= T(a 1+w T+ T(a—1) [T+t 1415
1 t
+P@UAIK@—SV1—%h—SW1Wﬂ&y@mus
1 t2 t a—1 d
Fgay o) I Gyl
<yl +*JV1 b ol 11
= T(a 1+w 1+65| " T(a—1) [T+t 1415
-
* r(oo/ (t2 = 8)*™" = (01 = )" als)ds
b [t =) = =) (L sl + s [t = 5 (o)
— S - — S S s)as I — S alts)as
F Oé) 0 2 ! F(Oz) t1 2
r t2 t a—1 1 « b d
+r<a>/t1<2—8> (1+ 5%)b(s)ds
Hyoo||+M _ ol I
T(a 1+ﬂ 1+45| " T(a—1) 1+t 1418
a’ +b* 1 1 a* 4+ b'r [t .
ty — 8)*L = (4 — 8)*1d / ty — 5)*1d
+ ['(a) /0 (( 2= 5) (tr = 5) S) + T(a) Ju (ta — s) S
2b* t t1
+ I’(og (/02(752 —5)*1s%ds —/0 (t; — s)o‘_lsad8>
||yoo||+M lo 30l 11
= T(a 1+H 1+65| T(a—1) |1+t 1415
a* +b* a* + b*r
(St — (ty— 1)) + (b — )"
+F(1—|—a)(2 7= (t 1>)+F(1+a)(2 1)
2B, + 1)

(tga - t%a) )

['(«)

where a* = maxycp,r a(t) and b* = max,cr b(t). As ty — t; the right-hand side of
the above inequality tends to zero. Then (N B), is equicontinuous on [0, 7.
Next, we verify assertion (3). Let € > 0, we have

N () 5 “N(y)(t2)

1+t 1+ 19
Hyoo\l—F«AJ b 1ol 11
= I(a 1+w 1+tg| Tla—1) |1+t 1+t
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_|_

L e o s oty = 9
T(a) /0 1419 f(s,y(s))ds—/o 1+ f(s,y(s))ds| .

It is sufficient to prove that

[ gt [ s yyas] <

14+t¢ 14 t§
Remark 3.1 yields that, there exists Ny > 0 such that
(3.6) J s y)lde < =, forally € B
No 3
tz_“(tho)“_l

On the other hand, since lim;_, e
for all t1,t, > Ny and s € [0, V|, we have

5ty — )" Tt —s)! _ €
1+1tg 1+t 3M
Now taking t1,ts > Ny, from (3.6), (3.7), we can arrive at

/0“ Ao S)ailf(S, y(s))ds — /Ot2 Y S)ailf(sa y(s))ds

= 0, there exists N; > N, such that,

(3.7)

1160 1115
< [ B ATy

[ I s + [ B s o s
<gap b IFGs(eDlds +2 [ (s, ye)lds <. 2

Theorem 3.1. Suppose that the conditions (Hy), (Hs), (Hs) and (Hy) are valid.
Then the problem (1.1)—(1.3) has at least one solution.

Proof. We shall prove that NV satisfies the conditions of Tykhonoff fixed point theorem
2.1. From Lemma 3.2, the operator N is continuous on B. We can derive that
N : B — B. Indeed, for any y € B and t € [0,T], T > 0, and by condition (H;) and
(Hy), we get

R R Rl M LI
(1 (0%
< ey Ul (=l + [ attyde + & [~ epieyar)
< R.

Let 7, be the measure of non-compacteness of Kuratowski defined on the family of
bounded subsets of the space C,(J, E)). We have

o(NB) = sup{ sup 7< e N(B)(t)) }

>0 { tejo,r] \ 1+t
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For demostrations, see [19, Lemma 3.4].
We define the sequence of sets {D,,}>°, by

DO == B,
Dy = Conv((N(Dy,))), n=0,1,...,
Deo = M2y Dh.

We have D, .1 C D,, for each n. Finally, we need to prove the following relation
438, Ya(Dn) = 0.

Suppose that T' is sufficiently large. For each y € B, we consider

Nol)(t) =55t + st 4 s [t = (0= 9 s, ()

1

+ m /tT(t —5)* 1 f(s,y(s))ds.

Then, from (H,), we obtain that

V)0 = N < g5 [ 1w
< F(la) (/TOO a(t)dt + R/Too(l + ta)b(t)dt) :

this shows that

o t2=*Np(B)(t) t* “N(B)(t)
T\t 14t

>—>0 as T — oo,t € J

Where H; denotes the Hausdorff metric in space E. By Property of non-compactness
measure, we get

(3.8) lim ~ <’W<B)(t>> . (M@)(ﬂ> |

T—o00 14 te 14 te
Let € > 0, from (3.8), then exists T > 0 such that, for T > T, we have
2~ N(B)(t t2=“Nr(B)(t
(EENBWY (N0
14 te 14 to

Using Lemma 2.3, Lemma 3.2 and assumption (Hs), for eachn € Nand ¢ € [0,T], T >
T, we get

>N (Dy41)(2)
K ( 14 o )

<et g 0 (0 g,

1 7 N s27“N(D,)(s)
Ss—l—w/o (1+8)£(S)52%%}7< 1T o0 )ds.
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Then
=N (Dy1)(1) 1 /T s2ON(D,)(s)
<edt —— | (1435 ds.
52}3%}7< T g _5+F(a) ; (1+ s%) (8)52}3%7 e s
SQ_O‘N(Dn)(s)>
<e+ su ,
I(a) se[o,%’V( L+ so
where

T = /000(1 + sY)(s)ds.

Consequently, since ¢ is arbitrary, we obtain

TYa(Dy)

M) for each n € N.

Va(Dm—l) <

By induction, we can show that

T

n+1
Va(DnJrl) < (M) 704<D0)7 for each n € N.

Hence, by (3.1), we get
438, %a(Dn) = 0.

Taking into account Lemma 2.1, we infer that D, = ﬂ D,, is nonempty, convex and

n=0
compact. From Theorem 2.1, we conclude that N : D, — D, has a fixed point
y € Do, which is a solution of problem (1.1)—(1.3). O

4. EXAMPLE

As an application of our results, we consider the following fractional differential
equation

s o Vi) osin(t)\T B
(4.1) D2y(t)_<(1+t3)65t+1+t2>n1’ teJ=(0,+00),
(4.2) I2.y(t) =yo,
(4.3) DZ.y(60) =Ync-
Let

E= {(y17y27 ey Yny - ) ’ sup |yn‘ < OO},
with the norm ||y|| = sup,, |y.|, then E is a Banach space and problem (4.1)—(4.3) can
be regarded as a problem of the form (1.1)—(1.3), with

a=, and f(tay(t)) = (f(t,y1<t)), T 7f<t7yn(t))7 e ‘)7

where
\/Eyn (t) 4 Sin(t)

, neN.
(1+t2)est 1+t

ft,yn(t)) =
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We shall verify the conditions (Hs)—(Hy). Evidently, f is Carathéodory function in
J x E and
Vi

iy < ——ly@)|| +
IO < g O
With the aid of simple computation, we find that

o 1 3 o ] s
Slap — ~ r() @[T gdt=T <o
/o ¢ 5~ \g) M ) 1T

Finally, we verify the condition (H3). For any bounded set B C E, we have

B = Yt B+ {Sm(“ }

(14 ¢2)e 1+ ¢2

14+ ¢2

Then

C(F(LB) < (H\f)v B(#)).

Since [5° e ?dt = 1 < T'(2), we conclude that the condition (Hj) is satisfied. There-
fore, Theorem 3.1 ensures that the Problem (4.1)—(4.3) has a solution.

5. CONCLUSION

We hope that we have given some result as far as we know not existing in the
literature concerning existence solution for Riemann-Liouville fractional differential
equation on the half line involving the discontinuity of the state y at 0T, to over-
come this obstruction we have defined a special weight space of continuous function
Co ([0, +00)). The constructed space is in a natural way. In this work we have assumed
a more general growth condition (H;) unlike what is in the literature, condition (Hs)
being supposed to overcome the equiconvergence at infinity, condition (H3) ensure
the proof of Tykhonoff fixed point theorem, these conditions are optimal in the sense
that no condition implies the other. We make use in our approach Tykhonoff fixed
point theorem combining with analysis functional tools and a suitable measure of
non-compactness. The paper is ended by an example to illustrate the main result.

Acknowledgements. The authors would like to express their deep gratitude to the
referee for his/her meticulous reading and valuable suggestions which have definitely
improved the paper.
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FOLDING THEORY APPLIED TO FUZZY (POSITIVE)
IMPLICATIVE (PRE)FILTERS IN EQ-ALGEBRAS

AKBAR PAAD! AND AZAM JAFARI!

ABSTRACT. In this paper, the concepts of fuzzy n-fold positive implicative and fuzzy
n-fold implicative (pre)filters in FQ-algebras are introduced and several properties
of them are provided. Moreover, the relationship between fuzzy n-fold positive
implicative (pre)filter and fuzzy n-fold implicative (pre)filter is considered. Using
the level subset of a fuzzy set in FQ-algebras, some characterizations of fuzzy n-fold
(positive) implicative (pre)filters in EQ-algebras are given. Also, we investigate
under what conditions the fuzzy n-fold positive implicative (pre)filter is a fuzzy
n-fold implicative (pre)filter in EQ-algebras.

1. Introduction

EQ-algebras were proposed by Novik and De Baets [6,8]. One of the motivations
was to introduce a special algebra as the correspondence of truth values for high-order
fuzzy type theory (FTT) [7] that generalizes the system of classical type theory [1]
in which the sole basic connective is equality. Analogously, the basic connective in
(FTT) should be fuzzy equality. Another motivation is from the equational style of
proof in logic. It has three connectives: meet A, product ® and fuzzy equality ~. The
implication operation — is the derived of the fuzzy equality ~ and it together with
® no longer strictly form the adjoint pair in general. E(Q-algebras are interesting and
important for studying and researching and residuated lattices are particular cases of
EQ-algebras. In fact, EQ-algebras generalize non-commutative residuated lattices [3].
From the point of view of logic, the main diference between residuated lattices and
EQ-algebras lies in the way the implication operation is obtained. While in residuated

Key words and phrases. EQ-Algebra, fuzzy n-fold positive implicative (pre)filter, fuzzy n-fold
implicative (pre)filter.
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lattices it is obtained from (strong) conjunction, in EQ-algebras it is obtained from
equivalence. Consequently, the two kinds of algebras differ in several essential points
despite their many similar or identical properties. Since residuated lattices (BL-
algebras, MV -algebras, MT L-algebras, and Ry-algebras) are particular types of FQ-
algebras, it is natural and meaningful to extend some notions of residuated lattices
to EQ-algebras. Filter theory plays an important role in studying these algebras
because the properties of filters have a strong influence on the structure properties
of algebras. From a logical point of view, various filters correspond to various sets
of provable formulas. Up to now, some types of (fuzzy) filters on ordered algebras
based logical algebras have been widely studied [2,4,5,10] and some important results
have been obtained. Fuzzy algebra is an important branch of fuzzy mathematics and
Rosenfeld [12] started the study of fuzzy algebraic structures with the introduction
of the concept of fuzzy sub-groups in 1971. Since then these ideas have been applied
to other algebraic structures such as semigroups, rings, ideals, modules and vector
spaces. So generalization existing results in BL-algebras and residuated lattices, to
EQ-algebras is important tool for studying various algebraic and logical systems in
special case EQ-algebras.

In BL-algebras, residuated lattices, MTL-algebra fuzzy (n-fold) implicative filters
and fuzzy (n-fold) positive implicative filters were provided. In EQ-algebras, the
notions of implicative filters and positive implicative filters were introduced by Liu
and Zhang. Moreover, Paad and et al. [11] extended this filters to n-fold implicative
filters and n-fold positive implicative filters in EQ-algebras and fuzzy implicative
filters and fuzzy positive implicative filters were provided by Xin and et al. [13].
This motivates us to extend different types of fuzzy (implicative, positive implicative)
(pre)filters of EQ-algebras. Hence, in this paper, we introduce the notions fuzzy
n-fold implicative and fuzzy n-fold positive implicative (pre)filters in EQ-algebras
and investigate the properties and characterized them as it have done in residuated
lattices. Moreover, we study the relationship between fuzzy n-fold positive implicative
(pre)filters and fuzzy n-fold implicative (pre)filters. In the follow, by using the level
subset of a fuzzy set in EQ-algebras, we give some characterizations of fuzzy n-fold
(positive) implicative (pre)filters in EQ-algebras. Also, we investigate under what
conditions the fuzzy n-fold positive implicative (pre)filter is fuzzy n-fold implicative
(pre)filter in EQ-algebras.

2. PRELIMINARIES

Definition 2.1 ([3,6]). An EQ-algebra is an algebra (L, A\, ®, ~, 1) of type (2,2,2,0)
satisfying the following axioms.

(E1) (L,A, 1) is a A-semilattice with top element 1. We set < y if and only if
TNy =2x.

(E2) (L,®,1) is a commutative monoid and ® is isotone with respect to <.

(E3) v ~x =1 (reflexivity axiom).

(E4) (xANy)~2) O (s~z) <z~ (sAy) (substitution axiom).
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(EB) (x~y)O(s~t) < (xr~s)~ (y~t) (congruence axiom).
(E6) (xtAyAz)~ax<(xAy)~ x (monotonicity axiom).

(E7) x @y < x ~y (boundedness axiom),

for all s,t,z,y,z € L.

Let L be an FEQ-algebra. Then for all z,y € L, we put
r—=y=(@Ay)~z, T=x~1

The derived operation — is called implication and if L contains an element 0 such
that 0 < x, for any € L, then 0 is called bottom element and we may define the
unary operation = on L by -z =z ~ 0.

Definition 2.2 ([6]). Let L be an EQ-algebra. Then L is called:

() separated, if x ~ y = 1 implies x = y for all z,y € L;

(17) good, if & =z for all x € L;

(i77) residuated, if (x ©y) Az =2 Oy if and only if z A ((y A 2) ~ y) = z for all
x,y,z € L.

Lemma 2.1 ([3,6]). Let L be an EQ-algebra. Then the following properties hold for
any x,y,z € L:

()x~y=y~zr,z~y<z—y,xz0y<zAy<zvy;

() z<l~z=1—-ax<y—ux

(1) x >y < (y = 2) = (x = 2);

() z—=>y<(z—=2)—= (2 —=>vy),

(v) ifx <y, thenz —y=1;

(i) ifx <y, thenz—ax<z—ox,y—z<x—2

(vii) if L contains a bottom element 0, then =0 =1, mx = x — 0.

In general, the identity * — (y — 2z) = y — (x — z) may not be true in EQ-
algebras. We call that FQ-algebra L has exchange principle if x — (y — 2) =y —
(x — 2) for any z,y,z € L.

Theorem 2.1 ([6]). Let L be an EQ-algebra. Then the following are equivalent:
(1) L is good;
(17) L is separated and satisfies exchange principle;
(13i) L 1is separated and satisfies v < (x — y) — y for any x,y € L.

Theorem 2.2 ([3]). Let L be a residuated EQ-algebra. Then for any x,y,z € L:
() zy<zifand only if vt <y — z;
(17) (zQYy) > z=2— (y = 2).

Definition 2.3 ([3]). Let L be an FQ-algebra and () # F C L. Then F is called a
prefilter of L if it satisfies for any x,y € L

(F1) 1€ F,

(F2)ifre F,x —yeF,theny e F.

A prefilter F' is said to be a filter if it satisfies:

(F3)ifz -y € F, then (r©®2) = (y®=z) € F for any x,y,z € L.
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Note that prefilter and filters are coincide in residuated F(Q-algebras.

Definition 2.4 ([5]). Let F' be a prefilter of EQ-algebra L. Then we say that F' has
weak exchange principle, if it satisfies for any x,y,z € L

r— (y — z) € Fimplies y — (x — z) € F.

Definition 2.5 ([5,11]). Let F' be a prefilter of FQ-algebra L. Then F is called an
n-fold positive implicative prefilter if it satisfies:

(F5) 2" — (y = 2) € F, 2" —y € Fimply 2" — z € F for all x,y,2 € L.

If Fis a filter and satisfies (F'5), then F' is called an n-fold positive implicative
filter and 1-fold positive implicative (pre)filter is called positive implicative (pre)filter.

Theorem 2.3 ([5]). Let F' be a prefilter of EQ-algebra L. Then the following are
equivalent.

(1) F is a positive implicative prefilter.

(17) (x N (z = y)) >y €F foranyx,y € L.

Definition 2.6 ([5,11]). Let L be an FQ-algebra and () # FF C L. Then F is called
an n-fold implicative prefilter if

(1) 1 € F;

(17) z = ((2" - y) = x) € Fand z € F imply « € F for any z,y,z € L.

1-fold implicative (pre)filter is called implicative (pre)filter.

Theorem 2.4 ([11]). Let F' C Q be two prefilters of EQ-algebra L and L has exchange
principle. If F' is an n-fold positive implicative prefilter, then so is Q.

Theorem 2.5 ([11]). Let F' and G be two prefilters of EQ-algebra L such that F C G.
If F is an n-fold implicative prefilter with the weak exchange principle, then G is an
n-fold implictive prefilter.

Theorem 2.6 ([11]). Let F' be an n-fold implicative filter of residuated EQ-algebra
L. Then F is an n-fold positive implicative filter of L.

A fuzzy set of L is a mapping u : L — [0, 1] and for all ¢ € [0, 1], the set p, = {z €
L | p(x) >t} is called a level subset of p.

Definition 2.7 ([13]). Let u be a fuzzy set of EQ-algebra L. Then p is called a fuzzy
prefilter of L if it satisfies for all z,y € L:

(FF1) p(z) < p(l);

(FF2) p(z) A p(z —y) < ply).

A fuzzy prefilter u is called a fuzzy filter if it satisfies:

(FF3) plzr = y) <p((x @ z2) = (y© 2)) for all z,y, 2z € L.

Definition 2.8 ([13]). Let u be a fuzzy prefilter of EQ-algebra L. Then p is called a
fuzzy positive implicative prefilter of L if it satisfies for all x,y,z € L:

(FF4) plz = (y = 2)) Az = y) < plx — 2).

A fuzzy filter p of L is called a fuzzy positive implicative filter if it satisfies (F'F'4).
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Definition 2.9 ([13]). Let u be a fuzzy set of EQ-algebra L. Then p is called a fuzzy
implicative prefilter of L if it satisfies for all x,y, 2 € L:

(FF1) p(z) < p(l);

(FF5) p(z = ((z = y) = 2)) A p(z) < p(x).
Proposition 2.1 ([13]). Let p be a fuzzy prefilter of EQ-algebra L. Then for any
x,y,z € L:

(1) if x <y, then p(x) < p(y);

(1) if u is a fuzzy filter, then p(x — y) A p(y — 2) < p(z — 2).
Theorem 2.7 ([13]). Let pu be a fuzzy filter of EQ-algebra L. Then p is a fuzzy
positive implicative filter of L if and only if p((z A (x — y)) — y) = p(l) for all
x,y € L.

Note. From now on, in this paper, L will denote a EF(Q-algebra, unless otherwise
stated.

3. Fuzzy n-FoLD POSITIVE IMPLICATIVE (PRE)FILTERS IN EQ-ALGEBRAS

In this section, we introduce the concept of fuzzy n-fold positive implicative
(pre)filters in EQ-algebras and we give some relate results.

Definition 3.1. Let u be a fuzzy prefilter of L. Then p is called a fuzzy n-fold positive
implicative prefilter of L if for all x,y, 2z € L, it satisfies

(FFG6) p(a™ = (y = 2)) Ap(a" — y) < p(a" — 2).

A fuzzy n-fold positive implicative prefilter u is called a fuzzy n-fold positive im-
plicative filter of L if it satisfies (F'F'3).

Example 3.1 ([13]). Let L ={0,a,b,1} be a chain with Cayley tables as follows:

®|0]a|b|1l ~|0lal|b]|l —10]alb]|1
010/0]0]0 0 [1]0]0]0 0O [1]1]1]1
a |Olalala|, |a|0|1l]lalal|, |a [O]1|1]1].
b |0lal|b|b b |0ja|l1]1 b |0]all]1l
1 /0]a|lb]|1 1 |0jall]|1l 1 [0]la|l]1l

Routine calculation shows that (L, A, ®,~, 1) is an FQ-algebra. Define fuzzy set u
in L as follows: u(1) = 0.8, u(b) = 0.6 and p(0) = p(a) = 0.4. One can check that
is a fuzzy n-fold positive implicative prefilter of L for any natural number n.

Theorem 3.1. Let p be a fuzzy prefilter of L. Then p is a fuzzy n-fold positive
implicative prefilter if and only if for any t € [0,1], O # p; is an n-fold positive
implicative prefilter of L.

Proof. The proof is straightforward. O

Theorem 3.2. Let p be a fuzzy prefilter of L. Then p is a fuzzy n-fold positive
implicative prefilter of L if and only if for any a € L, p®™ : L — [0,1] is a fuzzy
prefilter of L, where u®"(x) = p(a™ — x) for any x € L.
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Proof. Suppose that u is a fuzzy n-fold positive implicative prefilter of L. Since
a" — 1 =1, we get that p(a™ — 1) = p(1) and so pu®"(1) = p(a™ — 1) = u(l).
From " — = < 1, we have p(a™ — z) < p(1), that is u®"(x) < p(1). Therefore,
p®"(z) < p®™(1), for any € L. On the other hand, since p is a fuzzy n-fold positive
implicative prefilter of L, we conclude that pu(a™ — (x — y))Ap(a™ — x) < p(a” — y),
for any a,z,y € L, that is p®™(x — y) A p®™(z) < u®"(y). Therefore, u®" is a fuzzy
prefilter in L.

Conversely, let for any a € L, p*" is a fuzzy prefilter of L. Then p*" is a fuzzy
prefilter of L and so it follows that pu*"(y — 2) A p®"(y) < p®"(2), for any y,z € L.
Hence, p(z" — (y — 2)) A p(z™ = y) < p(a™ — z) for any x,y,z € L. Therefore, p
is a fuzzy n-fold positive implicative prefilter of L. O

z,n

Proposition 3.1. Let p be a fuzzy n-fold positive implicative prefilter of L. Then for
any a € L, u®»" is the fuzzy prefilter containing p.

Proof. Assume that p is a fuzzy n-fold positive implicative prefilter of L, then by
Theorem 3.2, u®™ is a fuzzy prefilter of L. Since by Lemma 2.1 (i7), = < a™ — z, by
Proposition 2.1 (i), we get that u(x) < p(a™ — z) and so pu(x) < p®*(x). Therefore,
p®™ is the fuzzy prefilter containing p. OJ

Proposition 3.2. Let i and v be two fuzzy prefilters of L. Then for any a,b € L
and natural number n, the following statements hold:

(1) p»" = p if and only if p(a™) = p(1);

(i) a < b implies that u*™ C u";

(1ii) p C v implies that p®" C v*";

(v) (L))" = p® Ars" (pUp)®" = p" Jrs",

Proof. (i) Let u®™ = pu, for a € L and natural number n. Then u(a™) = p®™(a™) =
u(a™ — a™) = p(1). Conversely, assume that u(a™) = p(1), since by Lemma 2.1
(17), x < a™ — x, for any * € L and since p is a fuzzy prefilter, we get that
w(x) < p(a™ — ) = p®"(x). Hence, p C p®™. On the other hand, since p is a fuzzy
prefilter, we have u(a”™ — x) = p(a™ — ) A u(l) = p(a™ — ) A p(a™) < p(x), for all
x € L. Hence, u®"(a) < u(x) and so u®™ C p. Therefore, u»" = p.

(#7) Suppose that a,b,z € L and a < b. Then by (EQ2), a" < b" and so by
Lemma 2.1 (iv), " — z < a" — x and since p is a fuzzy prefilter, we get that
pu(d" — x) < pla™ — z). Hence, u®"(z) < p®"(x) and so u>" C u".

(¢73) Suppose that p C v and x € L, then p(a™ — z) < v(a™ — x) and so
pue™ Copen,

(iv) For any x € L, we have

(nUv)*(x) = (pUvr)(a" = z) = pla"™ — z) Vr(a" — ) = p*"(z) V4" (x).
Thus, (pUv)®" = p®™ U pr®™. Similarly, (N v)®»" = p®" N v%". O

Theorem 3.3. Let p be a fuzzy n-fold positive implicative prefilter of L. Then for
any r,y € L
p(a" o (z = y)" —y) = p(l).
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Proof. Let p be a fuzzy n-fold positive implicative prefilter of L and z,y € L. Then
"o —y)" = (r = y)ApE"o@x—y)" = x) < pu(z"o(zr — y)" — y). Since
by Lemma 2.1 (i), 2" ® (x = y)" < (z = y)" <z —yand 2" O (x = y)" < 2" < x,
we conclude that 2" ® (z = y)" — (r > y) =1 and 2" © (x — y)" — x = 1. Hence,
pa" © (@ = y)" = (@ = y) = u(l) and p(a" © (xr — y)" — ) = p(1) and so
p(a" o (z = y)" —y) = p(l). O

Theorem 3.4. Let p be a fuzzy prefilter of L. Then the following statements are
equivalent:

(1) p is a fuzzy n-fold positive implicative prefilter of L;

(17) p(z" = (2™ = y)) < p(e" = y) for all z,y € L;

(17) p(z" = (2™ — y)) = p(z™ — y) for all z,y € L.

Proof. (i) = (i1) Suppose that p is a fuzzy n-fold positive implicative prefilter of L.
Then by Definition 3.1, we have

p(@" = (2" = y)) A p(l)
p(@" = (2" = y)) A p(a" — 2")
< p(a" = y).

pe" = (2" = y))

Therefore, p(z" — (2™ — y)) < p(z" = y).

(1) = (uii) Since by Lemma 2.1 (i), 2" — y < 2™ — (2™ — y), by Proposition 2.1
(1), we get that u(z™ — y) < p(z" — (™ — y)) and so by (i7), we that conclude that
p(z™ = (@ = y)) = pla” = y).

(i4i) = (i) Since by Lemma 2.1 (iii), we have 2" — (y — 2) < ((y — 2) —
(" = 2)) = (@™ = (2™ — z)) and 2" - y < (y — 2) = (2" — z), we get
that pu(z" — (v = 2)) < w(((y — 2) = (@™ — 2)) = (2™ — (2" — z))) and
™ = y) < u((y — 2z) = (™ — 2)), by Proposition 2.1 (). Hence, by (iii) we
conclude that

p(@" = y) Ap(e" — (y — 2)) <p(ly — 2) = (@" = 2))
Au(((y = 2) = (@" = 2)) = (2" — (2" = 2)))
<p(z" — (2" = 2))
=p(x" — z).

Therefore, u is a fuzzy n-fold positive implicative prefilter of L. 0J

Proposition 3.3 ([9]). The following properties are equivalent:
(1) an EQ-algebra L is residuated;
(17) the EQ-algebra L is good, and

(xOy) = z<z— (y— 2),

holds for all x,y,z € L.
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Definition 3.2. Let L be an FQ-algebra. Then we say that L has condition (x), if
for any x,y,z € L

(xOy) —z<z—(y—2). (%

Note that by Proposition 3.3, every residuated E(Q)-algebra satisfying in the condi-
tion (x) and the following example shows that the FQ-algebra satisfying the condition
(*) may not be a residuated EQ-algebra.

Ezample 3.2 ([5]). Let L ={0,a,b,1} be a chain with Cayley tables as follows:

®l0]alb]|l ~|0lalb|1l —10]al|b|1
010(010/0 0O|ljlalala 0O [1]1]1]|1
a |0|0falal, |a|a|l|b|b|, |a |a|l]1]|1
b [0O]la|b|b b lalb|1]1 b |a|b|1]1
1 {0fla|b]|1l 1 lalb|l]|1 1 Ja|b|1]1

Routine calculation shows that (L, A, ®,~, 1) is an EQ-algebra. It is easily checked
that L satisfies (%) for any x,y, z € L and L is not residuated because 1 < 1 — b, but
10140

Theorem 3.5. Let L be an EQ-algebra by condition (%) and u be a fuzzy n-fold
positive implicative prefilter of L. Then for any x € L pu(x™ — z**) = p(1).

Proof. Assume that p is a fuzzy n-fold positive implicative prefilter of L and = € L.
Since 2" — 7?" = "Oa" — 2"Gx" = 1, we get that p(x"Gz™ — 2"Oz") = (1) and
since by (%), 2"Oz" — 2"Oa™ < 2" — (2™ — (2"©2™)), we conclude that p(z"©z"™ —
2" @) < p(x" — (2" — (2" ©®a™))). Hence, pu(z" — (2" — (2" ©@2™))) = p(1) and
so by Theorem 3.4, we conclude that pu(z" — 2™ ® ™) = p(z" — 2**) = u(1). O

Theorem 3.6. Let p be a fuzzy prefilter of good EQ-algebra L. Then the following
statements are equivalent:

(1) p is a fuzzy n-fold positive implicative prefilter;

(i) p(z" — (2" = y)) < p(a™ —y) for any z,y € L;

(131) p(z™ — (y — 2)) < p((z" = y) = (2" — 2)) for any x,y,z € L.

Proof. (i) = (ii) Let u be a fuzzy n-fold positive implicative prefilter of L and x,y € L.
Then by Lemma 2.1 (i) we have:

plz™ = (2" = y))

ple" = (2" = y)) A p(l)

= p(" = (x = y)) Ap(e" — ")

< pa" = y).
(i) = (i1i) Let z,y,z € L. Then by Lemma 2.1 (iv) y = z < (2" — y) — (2" — 2)
and so by Lemma 2.1 (vi), we conclude that 2" — (y — 2) < 2" — ((z" = y) —
(z™ — z)). Hence, by Theorem 2.1, we have

= (2" =y = (2" —2)=2"—= (2" = (2" = y) — 2)),
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and so by Proposition 2.1 (i), we obtain
pla" = (y = 2)) < pa” = (@" = (2" = y) = 2)).
Now, by (ii) we have
pla" = (2" = (" = y) = 2)) <ple” = ((@" = y) = 2)),
and since p(z" — ((z" = y) — 2)) = p((z" = y) — (™ — z)), we conclude that
p(a" = (y = 2)) <pl((@" = y) = (@" = 2)).
(13i) = (i) Let x,y,z € L. Then, by (iii), we have

pz" = (y = 2)) Ap(z” = y) < p((@™ —y) = (2" = 2)) Ap(” —y)
< p(x" = 2).

Therefore, i is a fuzzy n-fold positive implicative prefilter of L. 0J

Theorem 3.7. Let p be a fuzzy prefilter of residuated EQ-algebra L. Then the
following statements are equivalent:

(1) p is a fuzzy n-fold positive implicative filter of L;

(1) p(z"™ = y) < p(a™ —y) for any x,y € L;

(i1) p(az™ = (y = 2)) < p((@™ = y) = (2™ — 2)) for any x,y,z € L.

Proof. The proof is similar to the proof of Theorem 3.6. O

Definition 3.3 ([13]). Let u be a fuzzy prefilter of L. Then we say that p has weak
exchange principle, if it satisfies u(z — (y — 2)) = u(ly — (r — 2)) for all x,y, z € L.

Theorem 3.8. Let ui, v be two fuzzy prefilters of L and satisfy weak exchange principle
such that p C v and p(1) = v(1). If p is a fuzzy n-fold positive implicative prefilter,
then so is v.

Proof. Let p be a fuzzy n-fold positive implicative prefilter of L. Then, by Theorem
3.1, for each t € [0,1], @ # p; is an n-fold positive implicative prefilter of L and satisfies
weak exchange principle because if v — (y — z) € p, then p(y — (z — 2)) = p(z —
(y = z)) >tand soy — (x — z) € ;. Hence, p; satisfies weak exchange principle
and by similar way v; satisfies weak exchange principle. Now, since yu C v, we get
that u; C vy, for each ¢ € [0,1] and so, by Theorem 2.4, for each t € [0, 1], §) # v; is an
n-fold positive implicative prefilter of L. Thus, by Theorem 3.1, v is a fuzzy n-fold
positive implicative prefilters of L. 0

Theorem 3.9. Let i be a fuzzy filter of L and satisfy weak exchange principle such
that pu(z" — 2™ @ 2") = p(l) and p((z™ © (2" — y)) — y) = p(1) for any x,y € L.
Then p is a fuzzy n-fold positive implicative filter of L.
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Proof. Let p be a fuzzy filter of L such that satisfy weak exchange principle and
x,y,z € L. Then by Proposition 2.1 (i)

px" = (y = 2)) Ap(a" = y) = ply = (@" = 2)) Ap” = y)

(" ©y) = (@" 0 (2" = 2)))
u((fff" ") = (2" ©y))
p((z" ©2") = (2" © (2" — 2)))
p((z" ©a") = (2" O (2" — 2))) A p(l)
p((z"
ulx

IN >IN

") = (2" O (" = 2)))
(" ( O’E))

IN >

p(a” = (a" )
p(a" — (a" (:r — )
pla” = (2" © (a" = 2)))
p((a" o (3" = 2)) = 2)
p(a™ = z).

IN >

Therefore, u is a fuzzy n-fold positive implicative filter of L. OJ

Proposition 3.4. If p be a fuzzy positive implicative filter of L, then u((x ® (x —
y)) = y) = p(l) for any z,y € L.

Proof. 1f pu be a fuzzy positive implicative filter of L, then by Theorem 2.7, pu((xA(x —
y)) = y) = p(l), forany x,y € L. From z®(z — y) < zA(x — y), we have (zA(z —
y)) >y < (z©(x—y)) —y. Hence, u((zA(x = y)) = y) < p((zo(z —y) = y).
Therefore, pu((x © (x — y)) = y) = p(1). O

Theorem 3.10. Let L be an EQ-algebra with condition (%) and p be a fuzzy filter
of L such that satisfy weak exchange principle. Then the following statements are
equivalent:

(1) p is a fuzzy positive implicative filter;

(1) p(x — 2?) = p(1) and p((z © (x = y)) = y) = p(1) for any v,y € L.

Proof. 1t follows from Theorem 3.5, Theorem 3.9 and Proposition 3.4, whenever
n=1. [

Theorem 3.11. Let u be a fuzzy filter of residuated EQ-algebra L. Then u is a fuzzy
n-fold positive implicative filter of L if and only if u(x™ — 2**) = u(1) for any x € L.

Proof. Let p be a fuzzy n-fold positive implicative filter of residuated EFQ-algebra L.
Then L satisfies in condition (%) and so, by Theorem 3.5, u(z™ — z**) = u(1), for
any x € L. Conversely, let pu(x™ — 2°") = u(1) for any # € L. Then, by Theorem
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2.2 (4i) and Proposition 2.1 (i7) for x,y € L we have

©x" = y)
2" = —y)

("
(
(2" = y) A (1)
(
("

pa" = (2" = y)) = p(z

Il
= = = X

)
o* — ) A p(a" — 2°")

IA

" —y).
Therefore, by Theorem 2.2, y is a fuzzy n-fold positive implicative filter of L. U

Theorem 3.12. Let L be an EQ-algebra with condition (%) and u be a fuzzy n-fold
positive implicative filter of L. Then p is a fuzzy (n+ 1)-fold positive implicative filter
of L.

Proof. Let p be a fuzzy n-fold positive implicative filter of L and x,y,z € L. Then
by Theorem 3.5, u(z™ — z**) = u(1). By Lemma 2.1 (i) and (vi), we have z?" =
2" < 2"l and so 2" — (y — 2) < 2" — (y — 2) and 2" — gy < 2"y
and since 2" — (y — 2) = ()" = (y — 2) and 2" — y = (2?)" — y, by
Proposition 2.1 (i), we get that p(2"™ — (y — 2)) < p((@®>)" = (y — 2)) and
(™™ — y) < p((z?)™ — y). Now, by Proposition 2.1 (ii), we have

p(@™t = (y = 2) ApE™t = y) <p = (y = 2)) Apu((@®)" = y)

[
~—

S
—~

VAN VAR VAN

Therefore, p is a fuzzy (n + 1)-fold positive implicative filter of L. O

Theorem 3.13. Let L be a residuated EQ-algebra and i be a fuzzy filter of L. Then
the following statements are equivalent:

(1) p is a fuzzy n-fold positive implicative filter;

(i7) ("“—>y)<ﬂ($ —y) for any x,y € L;

(130) p(z™ — (2" = y)) < p(a™ — y) for any x,y € L;

(iv) p(z" (y = 2)) < p((z" = y) = (2" — 2)) for any x,y,z € L;
(v) p(x™ — 2*) = p(1) for any v € L;

(vi) p((x" @ y) — 2) < p((x Ay)™ — 2) for any x,y,z € L.

Proof. Let L be a residuated EQ-algebra and p be a fuzzy filter of L. Then by
Theorem 3.7, Theorem 3.6 and Theorem 3.11, the parts (i), (i7), (%), (iv) and (v)
are equivalent.
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(i) = (vi) Let u be a fuzzy n-fold positive implicative filter of L and z,y,z € L.
Then by Lemma 2.1 (vi) and Proposition 2.1 (i), we have

p((a" Oy) = 2) = pa" = (y = 2))

(
< pl(zAy) = (2" — 2))
= p(@" = ((z Ay) = 2)
<pl@Ay)" = ((Ay) = 2))
= pu((@Ay)" — (@ Ay) = 2) Ap(l)
=p((@Ay)" = (@A Ay) = 2) Apl(zAy)" = (2 Ay))
< p((zAy)" — 2)

(vi) = (v) Let &,y € L. Then by (vi), we have
pla™ = y) = p((@" O 7) = y)
< p((zAz)" = y)
= p(e" = y),

and since (v) and (i) are equivalent, we conclude that (vi) and (i) are equivalent and
the proof is complete. O

4. Fuzzy n-FoLD IMPLICATIVE (PRE)FILTERS IN EQ-ALGEBRAS

In this section we introduce the concept of fuzzy n-fold implicative (pre)filters in
EQ-algebras and we give some related results.

Definition 4.1. Let u be a fuzzy set of L. Then p is called a fuzzy n-fold implicative
prefilter of L if it satisfies for all x,y,z € L

(FF1) p(x) < p(1);

(FFT) p(z — (2" = y) = 2)) Ap(2) < p(x).

A fuzzy n-fold implicative prefilter u is called a fuzzy n-fold implicative filter of L
if it satisfies (F'F'3).

Ezxample 4.1 ([13]). Let L ={0,a,b,c, 1} be a chain with Cayley tables as follows:

®l0]alblc|1 ~[0]lalblc|1 —10lalblc|l
010/0]0(0]O0 0[1]0]0|0]0 O (1]1(1]1]1
a|0]0]0]|0]a a|0|1]|b|b]|b a [0O[1]1|1|1
b 10/0|0]O0O|b]” |b|O]b|1l|lclc|” |b |O|D|1]1]1
c 10/0]0(0]c c|0lblec|l]|1 c |0lblc|1]1
1|0fla|blc|1 110(b|lc|l1]|1 1 [0]b|ec|l]1

Routine calculation shows that (L, A\, ®,~, 1) is an EQ-algebra. Define a fuzzy set u
in L as follows: u(1) = pu(a) = u(b) = p(c) = t1 and pu(0) = to, where 0 <ty < t; < 1.
We can see that p is a fuzzy 2-fold implicative prefilter of L.
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Theorem 4.1. Let i be a fuzzy set of L. Then i is a fuzzy n-fold implicative prefilter
if and only if for any t € [0,1], u; is an n-fold implicative prefilter of L.

Proof. The proof is straightforward. O
Theorem 4.2. Fvery fuzzy n-fold implicative prefilter of L is a fuzzy prefilter.

Proof. Suppose that u is a fuzzy n-fold implicative prefilter of L. Then u(x) < p(1),
for all z € L. Firstly, we prove if z < y, then u(x) < u(y). Let z,y € L such
that + < y. Then by Lemma 2.1 (i) and (vi), we have y < (y* — y) — y and so
x—=y<z— ((y" = y) — y) and since by Lemma 2.1 (v), = — y = 1, we get that
x—= ((y" — y) = y) = 1. Hence, u(x = ((v" — y) — y)) = p(1) and since p is a
fuzzy n-fold implicative prefilter, we have

() = p(z) A pl) = p() A ple — ((Y" —y) = y) < ply).

Now, by y <1 — y, we get that z = y <z — (1 = y) and so u(x — y) < p(x —
(1 — y)). Hence, by Definition 4.1, we have

ple = y) A pr) < ple— (1= y)) A p(r)
= plz = (" = 1) = y) A p()
< u(y).
Therefore, pu is a fuzzy prefilter of L. 0

Theorem 4.3. Let i be a fuzzy (pre)filter of L. The following statements are equiva-
lent:

(1) p is a fuzzy n-fold implicative (pre)filter of L;

(i1) p((2" — 4) > 2) < p(z) for all 2,y € L;

(1ii) p((z™ = y) — x) = p(x) for all x,y € L.

Proof. (i) = (i1) Suppose that p is a fuzzy n-fold implicative (pre)filter of L. Then

p(l = (2" = y) = @) = p(l = ((&" = y) = 2) A p(1) < p(z).
Since by Lemma 2.1 (ii), (2" - y) - 2 <1 — ((¢" — y) — z), by Proposition 2.1
(1), we conclude that p((z" — y) = x) < pu(1 — ((z" — y) — z)). Consequently, we
have pu((2™ — y) — x) < p(x).

(1) = (di17) Since by Lemma 2.1 (i), x < (2" — y) — =z, it follows that by
Proposition 2.1 (i), pu(z) < p((2™ — y) — ). Combining (i7), we get u((z"™ — y) —
7) = ().

(1i1) = (i) Let p be a fuzzy prefilter of L. Then for x,y,2 € L, u(x) < u(1) and
by (iii) we have

plz = (" = y) = ) Apz) < p((a" = y) = 2) = p(z).
Therefore, p is a fuzzy n-fold implicative prefilter of L. 0

Theorem 4.4. Let p be a fuzzy n-fold implicative prefilter of residuated EQ-algebra
L. Then p is a fuzzy n-fold positive implicative prefilter.
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Proof. Let u be a fuzzy n-fold implicative prefilter of residuated EQ-algebra L. Then
by Theorem 4.1, for each t € [0, 1], @ # p; is an n-fold implicative prefilter of L and
so by Theorem 2.6, for each t € [0, 1], 0 # p, is a n-fold positive implicative prefilter
of L. Therefore, by Theorem 3.1, i is a fuzzy n-fold positive implicative prefilter of
L. O

Theorem 4.5. Let L be an EQ-algebra with bottom element 0 and p be a fuzzy
(pre)filter of L. The following statements are equivalent:

(1) p is a fuzzy n-fold implicative (pre)filter of L;

(17) p(—x™ — x) < p(x) forallz € L;

(171) p(—z™ — ) = p(z) for all z € L.

Proof. (i) = (i1) Assume that u is a fuzzy n-fold implicative (pre)filter of L. Then
by Theorem 4.3, for all x € L,

p(oa” = x) = p((2" = 0) = x) < p(w).

(#4) = (4i7) Since by Lemma 2.1 (i7), < —2™ — z, we get that u(x) < p(—2" — x)
as 1 is a fuzzy prefilter of L. Combining (ii), we get u(—a™ — z) = p(z).

(13i) = (i) Let u be a fuzzy prefilter of L. Then by Lemma 2.1 (vi) and by 0 <y,
we have 2" = 2" — 0 < 2" — y and so (2" — y) — ¢ < —2" — x. Hence, by
Proposition 2.1 (i), p((z" — y) — ) < p(—-z™ — z). Combining (iiz), we get that
w((z™ — y) — x) < p(x). Therefore, by Theorem 4.3, p is a fuzzy n-fold implicative
(pre)filter of L. O

Theorem 4.6. Let p and v be two fuzzy (pre)filters of L such that u C v. If pis a
fuzzy n-fold implicative (pre)filter with weak exchange principle of L, then v is a fuzzy
n-fold implicative (pre)filter of L.

Proof. Let p be a fuzzy n-fold implicative (pre)filter of L. Then by Theorem 4.1,
for each ¢t € [0,1], ) # p, is an n-fold implicative (pre)filter of L and since pu C v,
we get that p; C vy, for each ¢ € [0,1]. Now, since for each ¢t € [0,1], @ # p, is an
n-fold implicative (pre)filter of L, by Theorem 2.5, we conclude that for each t € [0, 1],
() # vy is an n-fold implicative (pre)filter of L. Therefore, by Theorem 3.1, v is a fuzzy
n-fold implicative (pre)filters of L. O

Theorem 4.7. Let p be a fuzzy (pre)filter of EQ-algebra L. If p is a fuzzy n-fold
implicative (pre)filter of L, then p is a fuzzy (n + 1)-fold implicative (pre)filter of L.

Proof. Let u be a fuzzy n-fold positive implicative (pre)filter of L. Since z"** < z™,
we get that by Lemma 2.1 (vi), 2" — y < 2" — y and so (z"™! — y) — 2 <
(™ — y) — x. Hence, by Proposition 2.1 (i), we have u((z"™ — y) — z) < p((z" —
y) — ) and since by Theorem 4.5, u((z" — y) — x) < p(z), we conclude that
p((z"™ — y) — x) < p(z). Therefore, by Theorem 4.5, p is a fuzzy (n + 1)-fold
implicative (pre)filter of L. O
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Theorem 4.8. Let L be an EQ-algebra with a bottom element 0 and p be a fuzzy
prefilter of L with weak exchange principle. Then the following statements are equiv-
alent:

(1) p is a fuzzy n-fold implicative prefilter of L;

(i1) wlx — (72" =) Aply — 2) < plz — 2) forall x,y,z € L;

(130) p(x — (—2" — 2)) < plr — 2) forall z,z € L;

(1) plx = (72" = 2)) = plz — z) for all z,z € L.

Proof. (i) = (ii) Let pu be a fuzzy n-fold implicative prefilter of L and xz,y,z € L.
Then by Lemma 2.1 (i) and (iv), y — 2z < (x = y) = (r — z) and =2" — (x —
y) < ((x > y) = (x — 2)) = (72" — (x — 2)), and so by Proposition 2.1 (i),
wy = z) < pl((z = y) = (¢ = 2)) and p(=2" = (z = y) < p(((z = y) = (2 =
z)) = (—2" — (z — z))). Now, by weak exchange principle we have

ply = 2) ANple = (22" = y)) = ply = 2) Ap(=2" = (2 = y))
p((z = y) = (x = 2))
p(((z —y) = (r = 2)) = (72" = (= 2)))
p(=2" = (z = 2)),

IN >IN

and since by Lemma 2.1 (i), 2 < x — z, by (FQ2) we get that 2" < (z — 2)"
and so —(x — z)" < =z". Hence, 72" — (z — 2) < =(x — 2)" = (r — z) and
so by Proposition 2.1 (i), u(=2" — (z — 2)) < p(-(x — 2)" — (z — 2)) and
since p is a fuzzy n-fold implicative prefilter of L, by Theorem 4.5 we conclude that
w(=(z — 2)" = (r — 2)) < p(z — z). Consequently, we obtain

plz — (2" = y) Apuly — 2) < plz — 2).

(77) = (i) Suppose that p satisfies p(z — (22" = y)) A u(y = z) < p(x — 2), for
all x,y,z € L. Then

p(a” — x) = p(-a"™ — ) A p(l)

(
< p(l = (m2" = ) Az — x)
< pu(l — )
= p(1 — x) Ap(l)
< p(x).

Therefore, by Theorem 4.5, i is a fuzzy n-fold implicative prefilter of L.
(i1) = (uii) Let x,z € L. Then by (i), we have:

ple = (02" = z)) =p
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(i7) = (iv) From z < —=2" — z, it follows that * — 2z < 2 — (=2" — 2). Then
(e — 2) < plr — (-2" — 2)) as p is a fuzzy prefilter. Combining (iii), we get
e — (72" — 2)) = ple — 2).

() = (i) Let pu(lx — (=2" — 2)) = plzr — z), for all ,z € L. Then p(l —
(m2™ — x)) = p(1 — x) and since p is a fuzzy prefilter, we get that pu(1 — z) =
(1l — z) A p(l) < p(r) and so pu(l — (m2™ — z)) < p(z). Moreover, from
" — < 1 — (-2" — ), it follows that by Proposition 2.1 (i), u(-z" — z) <
u(l — (m2™ — x)). Consequently, we obtain p(—z"™ — z) < u(z). Therefore, by
Theorem 4.5 pu is a fuzzy n-fold implicative prefilter of L. O

Theorem 4.9. Let 1 be a fuzzy n-fold implicative prefilter with the weak exchange
principle. Then for any x,y € L

p((@" —y) = y) < p((y = z) = ).

Proof. Let pu be a fuzzy n-fold implicative prefilter of L and put v = (y — =) — =.
Then, by Lemma 2.1 (iii), (2" - y) >y < (y = ) — ((#" — y) — z) and so, by
Proposition 2.1 (i),

p((z" = y) = y) <pl(ly = 2) = (" = y) = 1))
= u((@" = y) = ((y = z) = z))
= u((@" = y) = u),
by Lemma 2.1 (i), we have x < (y — x) — = = w and so by (FQ2) we get
that 2" < u". Hence, by Lemma 2.1 (vi), we have v* — y < z" — y and so

(" = y) - u < (u" — y) — u. Hence, by 2.1 (i) and Theorem 4.3, p((z" — y) —
u) < p((u"” — y) — u) < p(u). Consequently, we obtain

p((@" —=y) = y) < p((y = x) = x). o

Theorem 4.10. Let p be a fuzzy n-fold positive implicative prefilter of L. If u((x —
y)" = y) < p((y = z) = x) for any x,y € L, then p is a fuzzy n-fold implicative
prefilter of L.

Proof. Suppose that p is a fuzzy n-fold positive implicative prefilter of L and pu((x —
y)" = vy) < u((y — ) = x), for any x,y € L. Then by Lemma 2.1 (i7) and (vi), we
have y < 2" — y and (2" — y) — © < y — = and so by Proposition 2.1 (i), we get
that

(4.1) p((@" = y) = x) < ply — o).

(z —y) = (2" = y) = y), by
p((z = y) = ((@" = y) = y))

Moreover, since by Lemma 2.1 (iii), (z" — y) — «
Proposition 2.1 (i), we get that u((z™ — y) — z)
and so by (4.1), we have

<
<

(4.2) p((@" = y) = z) <p((z = y) = (2" = y) = y) Ay = 2).
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Now, since by Lemma 2.1 (i) and (vi), (x — y)" <2 — y and (x — y) — ((z" —
y) =y < ((x = y)" = ((z" = y) — y)), we conclude that
p((x —=y) = (2" = y) = y) <pllz—y)" = (2" = y) = y)),
and since 2" <z and (z — y)" < x — y < 2" — y, we get that (z — y)" — (2" —
y) =land so pu((z — y)" = (2" — y)) = p(1) and since p((z = y)" = y) < p((y —
x) — x) and since p is a fuzzy n-fold positive implicative prefilter of L, we get that
p((x = y)" = (2" = y) = y) = pllz = y)" = ((@" = y) = y) Apl)
=z —=y)" = [@" = y) =)
A (e —y)" = (2" = y))
< p((z—=y)" = y)
< u((y = ) = ).
Hence, by (4.2), we conclude that

p((a" = y) = x) < p(ly = ) = 2) Aply = ) < plx).
Therefore, by Theorem 4.3, i is a fuzzy n-fold implicative prefilter of L. O

Theorem 4.11. Let pu be fuzzy positive implicative prefilter of L with the weak ex-
change principle. Then the following are equivalent:

(1) w is a fuzzy implicative prefilter of L;

(it) p((x = y) = y) < p((y > z) = ) for allz,y € L.

Proof. 1t follows from Theorem 4.9 and Theorem 4.10, whenever n = 1. O

Theorem 4.12. Let L be an EQ-algebra with a bottom element 0 and p be a fuzzy
n-fold positive implicative prefilter of L. If u(—=(—-x)") < u(x) for any x € L, then p
s a fuzzy n-fold implicative prefilter of L.

Proof. Let u be a fuzzy n-fold positive implicative prefilter of L. Then for any x € L,
by Lemma 2.1 (iii), 72" — = < (z — 0) —» (-2" — 0) = ~z — (—z" — 0).
Hence, by Proposition 2.1 (i), we have u(—-2"™ — ) < u(—z — (—z" — 0)) and since
(mx)™ < =z, by Lemma 2.1 (vi), we get that -z — (-2" — 0) < (-2)" — (-2 — 0)
and so p(-x — (—z" — 0)) < p((-x)" — (-2™ — 0)). Hence, p(—2" — z) <
u((—z)* — (-z™ — 0)). Now, since 2" < x, we have -z < —z™ and so (—z)" < -,
we conclude that (—z)" < —z™ and so (—z)" — —a™ = 1 and since p is a fuzzy n-fold
positive implicative prefilter, we conclude that

p((-2)" = (=" = 0)) = p((=2)" = (m2" = 0)) A (1)
= p((=2)" = (22" = 0)) A p((-2)" — —2™)
< p((=z)" = 0),
and since by hypothesis pu(—=(—z)") = p((-z)” — 0) < wu(zr), we get that

uw(—x" — x) < p(x). Therefore, by Theorem 4.5, p is a fuzzy n-fold implicative
prefilter of L. O
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Theorem 4.13. Let L be an EQ-algebra with a bottom element 0 and u be a fuzzy
n-fold implicative prefilter of L. Then p(——x") < p(z) for all z € L.

Proof. Let u be a fuzzy n-fold implicative prefilter of L and x € L. Then by Lemma
2.1 (vi), =—a" = 2" — 0 < =2 — x and so by Proposition 2.1 (i), u(-—z™) <
u(—z™ — x) and since by Theorem 4.5, pu(—-z" — z) < p(zx), we conclude that
p(=ma") < p(r). 0

5. CONCLUSION

In this paper, the notion of fuzzy n-fold positive implicative and fuzzy n-fold
implicative (pre)filters in EQ-algebras are introduced and several properties of them
are stated. Using the concept of level subsets, some characterizations of fuzzy n-
fold (positive) implicative (pre)filters are proved. Furthermore, we discussed the
relationship between fuzzy n-fold positive implicative (pre)filters and fuzzy n-fold
implicative (pre)filters and verified that under what conditions the fuzzy n-fold positive
implicative (pre)filters and fuzzy n-fold implicative (pre)filters are equivalent in FQ-
algebras. In this article, there are theorems and propositions that have been proved
by adding some conditions to an EQ-algebra. One of the important questions for
future research is how we can prove these theorems without these conditions or with
less conditions. Also, how to define the notions of fuzzy n-fold fantastic filters in
EQ-algebras? What is the relation between fuzzy n-fold fantastic filters and other
types fuzzy filters?
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NEW TAUBERIAN THEOREMS FOR CESARO SUMMABLE
TRIPLE SEQUENCES OF FUZZY NUMBERS

CARLOS GRANADOS!, AJOY KANTI DAS?, AND SUMAN DAS?

ABSTRACT. The purpose of this paper is to establish new results on Tauberian
theorem for Cesaro summability of triple sequences of fuzzy numbers. Besides, we
extend and unify several results in the available literature. Furthermore, a huge
number of special cases, theorems and their implications are proved. We show some
illustrative examples in support of the results obtained in this paper.

1. INTRODUCTION

The notion of the fuzzy set was originally introduced by Zadeh [23]. Later, Matloka
[11] established bounded and convergent sequences of fuzzy numbers and proved that
every convergent sequence is bounded. Then, Nanda [12] studied the spaces of bounded
and convergent sequences of fuzzy numbers and proved that every Cauchy sequence
of fuzzy numbers is convergent. Subrahmanyam [14] presented the notion of Cesaro
summability of sequences of fuzzy numbers and established Tauberian hypotheses
identified with the Cesaro summability method. Talo and Canak [15] introduced
the necessary and sufficient Tauberian conditions, under which convergence follows
from Cesaro convergence of sequences of fuzzy numbers. Altin et al. [1] studied the
concept of statistical summability by (C,1)-mean for sequences of fuzzy numbers
and obtained a Tauberian theorem on that basis. Talo and Basar [16] introduced
the concept of slow decreasing sequence for fuzzy numbers and have proved that
Cesaro summable sequence (X,,) is convergent, if (X,,) is slowly decreasing. Canak
[3] established the concept of the slow oscillation (that is, both slowly decreasing and

Key words and phrases. Triple Cesaro summability, slow oscillation, Tauberian condition, sequence
of fuzzy numbers.
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slowly increasing) sequences for fuzzy numbers and proved that Cesaro summable
sequence (X,,) is convergent if (X,,) is slowly oscillating. Later on, many researchers
have investigated on sequences and sequences of fuzzy numbers for proving Tauberian
theorems. Different classes of sequences and sequences of fuzzy numbers have been
presented and studied by Tripathy et al. [22], Dutta [4], Dutta [5], Dutta and Bilgin
6], Tripathy and Debnath [21], Dutta and Basar [7], Jena et al. [9], Jena et al. [10]
and many others. Canak [3] introduced Tauberian theorem for Cesaro summability of
sequences of fuzzy numbers. Later on, Jena et al. [8] proved some Tauberian theorems
on Cesaro summable double sequences of fuzzy numbers and proved some interesting
results. The reader can refer to the monograph [2] and the papers [17-19] and [20] on
the classical sequence spaces and related topics. Motivated by the above-mentioned
works, in this paper we present the notion of ((C,1,1,1)X)-summability of a triple
sequences of fuzzy numbers defined in Definition 2.11. This paper is organized in two
principal parts. In the first one, we provide the necessary definitions which are useful
for the development of this paper, and the second one, we show theorems, lemmas
and corollaries that we obtained.

2. NOTATIONS AND DEFINITIONS

In this section, we recall some well-know notions which are useful for the developing
of this paper. Besides, we define some new notions on Cesaro means (C,1,1,1) of
triple sequences (X,,,y) of fuzzy numbers.

Definition 2.1. Let D denote the set of all closed and bounded intervals X = [z, 23]
on the real line R. For X,Y € D, we define

d(X,Y) = max{|zy — y1], |z2 — g2},
where X = [z, 29] and Y = [y, yo]
Remark 2.1. Tt is known that (D, d) is a complete metric space.

Definition 2.2. A fuzzy number X is a fuzzy set on R and is a mapping X : R — [0, 1]
associating each number t with its grade of membership X (¢).

Definition 2.3. A fuzzy number X is said to be convex if,
X(t) =min{X(s),X(r)}, s<t<r.

Definition 2.4. If there exists ty € R, such that X (¢y) = 1, then the fuzzy number
X is called normal. Besides, a fuzzy number X is said to be upper semi-continuous
if, for each X~1(]0,z + ¢]) for all x € (0, 1), is open in the usual topology of R. The
set of all upper semicontinuous, normal, convex fuzzy numbers is denoted by R(|0, 1]).
For a € (0, 1], a-level set X of fuzzy number X is defined by

Xo={teR:X(t)>a).
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Definition 2.5. The set X is defined as the closure of the following set {t € R :
X(t) > 0}. We define d : R([0, 1]) x R(]0,1]) = R4 U {0}, by

d(X,Y) = sup d(X* Y.

0<a<l1

Definition 2.6. A triple sequence (X,,,,) of fuzzy numbers is a function X : N U
{0} x NU{0} x NU{0} — R([0,1]) and is said to be convergent to a fuzzy number
Xy if, for every € > 0, there exists a positive integer ny such that

J(ang,Xo) <e, asm,n,g > ng.
Remark 2.2. We will denote
An)(mng :CZ(anm Xm,n—l,g)a
Am)(mng :CZ(anga mel,n,g)a
Ag)(mng :CZ(anga Xm,n,g—l)
and
Am,n,g)(mng == J(angy Xm—l,n,g) - J(Xm,n—l,g—la Xm—l,n—l,g—1)7 X—l = 0.

Definition 2.7. A triple sequence (X, ) of fuzzy numbers is said to be bounded, if
there exists a positive number K > 0 such that

d(Xomng, Xo) < K, asm,n,g € NU{0}.

Definition 2.8. The Cesaro transform (C,1,1,1)X of triple sequences (X, ) of
fuzzy numbers is defined by

1

2.1 C.1,1, 1) X)pne = X
m n g (111)
_ “pgh
SDIDM L
p=0g=0h—0 P4

Analogous to (2.1), we can define the (C,1,0,0)-, (C,0,0,1)- and (C,0,1,0)- trans-
forms of a sequence (X,,,,y) as follows

1 m

(2.2) ((C,1,0,0)X ) yng = mHZ ongs
1 n

1,0O)X) g =—— Xmaas

((C,O, 70) ) g ”‘1‘1(1:20 q9

1 g
070707 1)X)mn e anha
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respectively. Additionally, analogues to (2.1) and (2.2), we can define the (C,1,1,0)-,
(C,0,1,1)- and (C, 1,0, 1)-transforms of a sequence (X,,,,) as follows

m
m

((071’170)X)mng ( >n+1 Zzn(:) pqg»

p=0g¢q
1 L
C.0,1, D)X )ppg =7 Xongh
( P =G g+ 1) 2
(C,1,0,1)%) TrESIP N
0717071 X mng — nh7
I (m+1) pOhO

respectively.

Remark 2.3. A triple sequence X = (X,,ny) of fuzzy numbers is (C, 1, 1, 1)-summable
to a fuzzy number L if for every € > 0, we have

d(((C, 1,1, DX )mng, L) < e, asm,n,g— oo.

Similarly, we say that it is (C, 1,0, 0)-summable to a fuzzy number L if for every
e > 0, we have

d(((C,1,0,0)X )yung, L) < &, asm,n,g — oo,
(C,0,0,1)-summable to a fuzzy number L if for every £ > 0, we have
d(((C,0,0,1)X)yung, L) < &, asm,n,g — oo,
and (C,0,1,0)-summable to a fuzzy number L if for every £ > 0, we have
d(((C,0,1,0)X )yung, L) < &, asm,n,g— oo.

We say that it is (C, 1, 1, 0)-summable, (C,0, 1, 1)-summable and (C, 1,0, 1)- sum-
mable to a fuzzy number L if for every ¢ > 0 we have d(((C,1,1,0)X )y, L) < €,
d(((C,0,1, 1)X)imng, L) < € and d(((C, 1,0, D)X )mng, L) < € as m,n, g — 00, respec-
tively.

Definition 2.9. For each non-negative integers k, r and j, we define ((C, k, 7,7)X ) mng
as follows:

((C, K, j, T)X)mng
1
(m+1)(n+1)(g+

m n g
1 ZZZ((Cuk—17j_1,r_1)X)phq7 k,r,j > 1,

p 049=0 h=0

angv k?hj = 0.

Definition 2.10. A triple sequence X = (X,,,,) of fuzzy numbers is said to be
(C, k,r,j)-summable to a fuzzy number L if for every ¢ > 0, we have

d_(((cv kvjar)X)mnga L) <eg, asm,n,g — 00.
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Remark 24. If k = 1, r = 1 and j = 1, then (C,k,r, j)-summability reduces to
(C,1,1,1)-summability. Moreover, if & # 0, r = 0 and 57 = 0, then (C,r,k,j)-
summability reduces to (C,k,0,0)-summability. If & = 0, r # 0 and j = 0, then
(C,r, k, 7)-summability reduces to (C, 0, r,0)-summability. Finally, if £ = 0, » = 0 and
j # 0, then (C,r, k, j)-summability reduces to (C, 0,0, j)-summability.

Remark 2.5. Note that, Cesaro summability of X = (X,,,,) refers (C,1,1,1) and
(C, k,r, j)-summability of X = (X,)-

Remark 2.6. It can also be noted that, the convergence of a triple sequence X = (X,4)
of fuzzy numbers implies the Cesaro summability of X = (X,,,,), but the converse is
not generally true as can be seen in the following example.

Ezample 2.1. Consider a function f(a,b,c) = e™sin(11b). The sequence (X,,y) of
fuzzy numbers which is the sequence of coefficients in the Taylor’s series expansion
of the function f(a,b,c) about origin is Cesaro summable but not convergent. For
the proof of converse part, certain conditions are presented in terms of oscillatory
behavior of triple sequence X = (X,,,,4) of fuzzy numbers.

Definition 2.11. Let us define (X,,,,) as

m n g (L,1,1)

ang_Yﬂ(llné 1)+ZZZ “pah +X0007 manag€N7
p=1q=1h=1 pqh

where

(23) Xong — ((C,1, 1, 1) X)ung =Y, gV (AX)

mmng
1 m n g
ZZZth(A,,hX h)-
(m—i—l)(n—l—l (g+1) ;5= pa

Further, in analogy to Kronecker identity for a single sequence of fuzzy numbers,
we can write

1 m

2.4 Y (LO0) (A X A, X

( ) mng ( ) (m_'_1>122:1p( P png)a
1 n

2. Y OLO (A X A, X

( 5) mng ( ) (n_l_l)(;q( q» mqg)a
1 g

2.6 yOOD(AX R(ALX ),

(2.6) g (AX) =75 2 A X

as the (C, 1,0, 0)-mean of the sequence (mA,;, X,,n,y) of fuzzy numbers, (C, 0, 1, 0)-mean
of the sequence (nA;,X,,,,) of fuzzy numbers and (C, 0,0, 1)-mean of the sequence
(9A; Xyng) of fuzzy numbers, respectively.

We define Y,(,10) Y, (.01 b and Y,{%:1') in the similar manner to (2.4), (2.5) and
(2.6)
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Remark 2.7. Since the sequence lené D (AngXmng) of fuzzy numbers is the (C, 1,1, 1)-
mean of the sequence mng(A,ng Xmng) of fuzzy number, the sequence mng(A,,gXmng)

is (C, 1,1, 1)-summable to a fuzzy number L, whenever

d( (1,1,1) (Amnngng) L)<e, asm,n,g— oo.

mng

Definition 2.12. For each non-negative integers k, r and j, we define Y%%J) as
follows:

1 s - (k= Lir—1,—1)
ZZZY N N
y (krg) (m+1)(n+1)(g p 0 ¢=0 h=0 pat
mng
mng(Amnngng>7 k,?",j = 0

Definition 2.13. The sequence mng(AyngXmng) of fuzzy numbers is said to be
(C, k,r,7)-summable to a fuzzy number L if for every ¢ > 0, we have

d(Yk” (ApingXmng), L) < e, asm,n,g— oo.

mng
Remark 28. If k = 1, r = 1 and j = 1, then (C,k,r, j)-summability reduces to
(C,1,1,1)-summability. Moreover, if & # 0, r = 0 and 57 = 0, then (C,r,k,)-
summability reduces to (C, k,0,0)-summability. Besides, if k =0, r # 0 and j = 0,
then (C,r, k, j)-summability reduces to (C,0,r,0)-summability. For k£ =0, » = 0 and
Jj #0, (C,r k, j)-summability reduces to (C, 0,0, j)-summability.

Now, we define the De la Vallée Poussin transform of triple sequence (X, ) of fuzzy
numbers for sufficiently large non-negative integers m,n,g for A > 1 and 0 < A <1
| R CY)

Pl = (ol = D = ) (el =) 2, 2, 2,

i=m+1 p=n+1u=g+1

and

1 m n g

i=Am~+1 p=An+1 u=Ag+1

Ting(X) =

(m —
respectively.

Definition 2.14 ([13]). A single sequence X = (X,,) of fuzzy numbers is slowly
oscillating (in the sense of Stanojevic) if

lim limsup max d(X, X,) = 0.

A—1+ n n+1<k<[An]

Similar to Definition 2.14, we will define a triple sequence X = (X,,,,) of fuzzy
numbers.

Definition 2.15. A triple sequence X = (X,,,4) of fuzzy numbers is slowly oscillating
(in the sense of Stanojevié) if

lim limsup max ( Z Z Z Aavaame)

A=1t mn,g mALnt1,g+1<ip,u[Mm],[An],[\g] a=m+1 b=m+1 v=—+1
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3. MAIN RESULTS

Lemma 3.1. A triple sequence X = (Xinng) of fuzzy numbers is slowly oscillating if
and only if (Y, 1’171)) is slowly oscillating and bounded.

Proof. Let X = (X,uny) be a slowly oscillation triple sequence. First of all, let us show
that d(V,(:11,0) = O(1).

We have by definition of slow oscillation, for A > 1,

lim lim sup max ( Z Z Z AapoXapw, )Ss

A=1t mon,g m+1ln+1,g+1<i,p,u<[Am,An,Ag| a=m+1 bemt+1 v=t1

m n g

and let us rewrite the finite sum Z Z Z ipuA X, as the series
i=1p=1u=1

[ elNNe SlENe o)

Yy )y DA
a=0b=0v=0 M n g mmn g
i,pus

2“—}—1217—1—12“—1-17 ~9a’9b’ v
Clearly,
d Z Z Z 1puAXipy, 0
i=1p=1u=1
<d > Z Z Z ipuAXipy, 0
a=0b=0v=0 M n g mn g
20+ 120+ 120 4 1 V"5 9a 000
(S5 )
a=0b=0 v= g 20’
and
max
m n g Amo An Ag
1 1 1<i,p,u<
R I R T R aat aa s !

B % p u
d % Z Z Aa,b,’uXa,b,vu 0

“:2a+1+ b= 2b+1+ U= 2v+1+1

(o clNe ole o}

<mngC <Z Z Z 2a+b+v> =mngC*, C*>0.

a=0 b=0 v=0
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Therefore, we have

(1,1,1) _ 3 1 -
d(Y (AX) O)_d((m+1)(n+ pz:ng;)hz%pqh p.a.h X, )O)

mng
=0(1), asm,n,g— oc.

Since
Y(l 1 1)
{((0717171 mng — ZZZ pqh 00}
p=1q9=1h=1

is slowly oscillating, hence, (Y,(1:11)) is slowly oscillating.

Now, to prove the converse part, consider (Y,(1:1:1)) is hounded and slowly oscillating.

mng
Thus, the boundedness of (V,(41) implies that ((C,1,1,1)X ) is slowly oscillating.
Moreover, (Y,(:1D) being oscillating slowly, so by Kronecker identity (2.3), (Xung) is
oscillating slowly. 0
Lemma 3.2. Let X = (X,ng) be a triple sequence of fuzzy numbers with m, n
sufficiently large, then the following statements hold.
(a) For A >1
(3.1)

d(Xomng, ((C, 1,1, 1) X ) nng)

_ (] +D)([An]+ DAl +1) (5
_([)\m] _ m)([)\n] _ n)([}\g] N g) {d(((C, L1, I)X)[)\m] [An],[Ag]> ((C, 1,1, 1)X)[)\m},n,g)

- d((((], L1, 1)X)m7[)\n]7[/\9]7 ((O’ L1, 1)X>m”g)}

[Am] +1 -

+ ([)\n] _ m)([)\g] _ m) d(((Cv 11, 1)X)[)\m],n,g, ((C, 1, 1, 1)X)m7n7g)
[An] +1 _

D= n)(Pgl =) G L LDt (G 111D X D)

+ ol A(((C, 1,1, 1) X ) agls (C 1,1, 1) X ) g(X)

([Am] = g)([A\n] — 9)

1 Am] ] [Ag]
(] = m)(\n] — n)(Ag] — g) (Z DS szu,ang).

i=m+1 p=n+1u=g+1

(b) For0 <A <1

(3.2)  d(Xpng, ((C,1,1,1) X ) 1ng)

_ (Dol + ([l + (gl + 1)
I [ T 7 L I

- J(((Oa 17 17 1)X) JAn],[Ag)» ((07 1a 1a 1)X)[>\m]:[)\"},[>\g})}
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[Am]+1 -
T = p) AUE L L DX g, (111X )
[An] 41
(n— [\n]) (((C 1,1 1)X>m,n,g, (C,1,1, 1)X)m7[)\n}?g)
Mgl +1 -

o = Ag])d(((C,l,l, DX ) g, ((Co 1,1, 1) X )0 0g)
1 m n g

~ (m = [m])(n — [nl)(g - )\g])d ( 2 > ) (ang7X’ipu)) .

i=[Am]+1 p=[An]+1 u=[Ag]+1

Proof. We just prove (3.1), (3.2) by the similar way.
We have by De la Vallée Poussin mean of triple sequence (X,,ny) of fuzzy numbers

Tinng(X)
1 Dl Dal D)

N ([)\m] — M)([)\n] — n)([)\g] Z Z Z szu

i=m+1 p=n+1u=g+1

1 [Am]  [m] [An] [0 Agl - [g]
:([)‘m] _m)([)\n] —7’L>([)\g] { (% ;%) (p O p= 0) (u 0 u= O)} e

[Am] [An] [Mu] [Am] [n]  [u]

~(m] = m) (D] — n)([hg] — { (ZZZ ZZZ) }

i=0 p=0u=0 i=0 p=0u=0

3

(
(] + )]+ D(Ag] + DO LX) v
(o] + 1) (] + D(g] + V(111X D)
1
~ (Dol — (] — (g g DD D
(O 1 D)X a4+ D+ 1)+ 1(C1,1,1) X))
_ (D) + () + (g 1)
(] — )] — ) (Prg] g Do
YIRS CUESTATESS
(Don] —m) ] — ) Drg] — 9
([Am] + 1)
(D] —m)
1

{ (([M]c] +

(C, 1,1, 1) X)) ing

(€11 1)X)[Am1,mg}
)

((An] + D([Ag] + 1)
m)([An] =n)([Ag] = 9)

[ ((Ca ]-7 17 1)X>m7[)\n},g
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(Dn] 1) ] ——(C,1,1,1)X),, [M]g}
A

( 1)
(=)

{ )\m +1 +1)(
(B

(I

9l +1)
)\n =) (g =gy (& L L DX map

(
9]+ )
= g)((c 1,1,1)X),, Ag]}
+{ ([Am] + 1)([An] + 1)([Ag] + 1)
(I -

] m)([An] —n)([Ag] — 9)

((C,1,1,1)X ) g

_ (Mgl +1
(Dl - g)“al’l’l)X)mnﬁ((0,1,1,1)X>mng},

which implies
Tmng — ((07 1’ 17 1)X)mng
_ (] + D[] + (Mgl +1) -
Ol = m) (] = m) (gl — gy DX o

(C. L1, D)X) ) — d(((C, 1,1, D)X ) ) gy (€1 1,1, 1) X )imng)}

(] +1) -

([}\m] _ m) d(((C7 L1, 1)X)[>\m],n,g, (C, 1,1, 1)X)mng)
+ (([[/)\\Z]] i;)) J«(C’ 17 1’ 1)X)m7[>\n]797 ((07 17 17 1>’ X)mng)

(Mgl +1) 7

(] _g)d(((al,l,l)X)mnpg ((C 1,1, 1) X ) ang)-

Besides,

1 Am]  [An]  [Ag]
s = T = (] =) (D] — ) (g] — 9)" (Z 2 2 X m)

i=m+1 p=n+1u=g+1

On subtracting (((C, 1,1, 1) X)xm] an],[ng)) from the above identity, we have
d(Xmngs ((C;1,1,1)X ) ng)
:d(Tmng(X>7 ((Cv L1, 1)X)[)\m],[>\n],[)\g]

1 [Am]  [An]  [Ag]
(] —m) (] —n)([hg] — ( > Z Z Xmng )

(] + D0l + Dl + 1) -
= o] — ) (D] — ) (Drg] — 9)

{d(((C, 1, 1, 1) X) o, gl (G5 1,1, 1)X) punfng)

d(((cv 1? 17 1)X)m,[>\n]v[/\g]7 ((Ov 17 17 1)X)mng)}
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[Am] +1 _
A= my gl =y (G 1L DD, (O 11, D X))

[An] +1 -
T ([)\m] _ n)([/\g] _ TL) d<<<C7 17 17 1)X> ,[Anl,go ((C, 1, 1, 1)X)m,n,g)

Mgl +1 .

ol — )] = g (O 11 DD mniag, (O 11 D))
1 [Am]  [An]  [Ag] .

AT (S )

Theorem 3.1. If a triple sequence (ang) of fuzzy number is (C,1,1,1)-summable to
a fuzzy number L and (Xng) is slowly oscillating (in the sense of Stanojevic), then

d(Xyng, L) < &, asm,n,g — oc.
Proof. Let (Xyung) be (C, 1,1, 1)-summable to a fuzzy number L, this implies o}
is (C,1,1,1)-summable to a fuzzy number L. Now, from (2.3), we have (¥,(:1 1)) is
(C,1,1,1)-summable to zero. Hence, by Lemma 3.1, (Y&;}]’l)) is slowly oscillating.
Additionally, by Lemma 3.2 part (a), we obtain

(3.3) d(Yyug", (C1, 1, 1)X)mng(Yq§i§ )
(

( C? 17 17 l)X)[Amng(Y(l’l’l)))

mng

— A(C L L DX D prig g (V). (O L)X ) (V)

[Am] +1 1 (1,1,1)
ol = m) (g = ) UG L 1 D)X parng (Y5, (CL 1,1, 1) X ) )
An] +1 1 (1,1,1)
+ Dl — ny (gl (G 1 L DX (Vg (€22, D)X D)
+ [)\g] s J(((C’ 1’ 1’ 1)X)m7n7[>\g]<yn(11ﬁ;1)v <<C> 1> 17 1)X)mng))

(] = ) (A = g)
1 [Am]  [An]  [Ag] 111) -
(Dl = m) (] = n) (] - (Z >3 Yy >>).

i=m+1 p=n+1u=g+1

It is easy to verify that for A > 1 and suﬂi(nently large n and g

(Am] + 1)([(An] + D([Ag] +1) (Am] + 1)([An] + 1)([Ag] + 1)
([Am] =m)([An] =n)([Ag] —g) ~([Am] =1 —m)([An] =1 —n)([Ag] -1 —g)
9N3
<()\ — 1)3
Now, by (3.3),

d(Y(l o 1)7 (C, 1,1, 1)X)mng<y(l71’l))>

mng mng
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9N3

Smﬂﬂ”ng(yﬁné ), (€1, 1, ) X))l ag] (Yong)

[Am]  [An] [Ag] (1 " @11)
o Z Z Z pu ? Ymng )

max
m+1,n+1,9+1<i,p,u<[Am],[An] [)\g] it ] p=nt1 u—gt1

Taking lim sup on both sides in the above inequality, we have

lim sup d(Y(1 L1) ,((C 1,1, 1)X)mng(Y(1 L 1)))

mng
m,n,g
N 7 (1,1,1) (1,1,1)
S ()\ _ 1)3 hInl;lSl;p d(Tmng<Ymng )7 ((Ca 17 17 1)X)[)\m] [An], [/\g](ymng ))

] [An] - [Ag] 11
— lim sup max > D |« ng ),Y#n;l))

m,n,g m+1n+1,9+1<i,pu<[Am],[An] [)\g] immt ] pent1 u—gt1

Moreover, ((C,1,1,1)X)pum paLpg (Yaiit?) — 0 as m,n, g — oo, so first term on

mng
the right hand side of above inequality, must vanish. This implies,
(3:4)  Tmsupd(Y 0D, (C 11 1)) g (VD))
m,n,g

mng mng

Am]  [An]  [Ag] SO
<lim sup max Z Z Z zpu 7m1nglyl)) .

m,n,g m+1,n+1,g+1§z,p,u§[>\m],[)\n],[Ag] immot pe=nt1 u—gt1

As A — 17 in (3.4), thus we have
lim sup d(Y,(L50 ((C)1,1,1) X )y (Y, ELDY) < 0.

mng mng
m,n,g

This implies d(Y,(519,0) < € as m,n,g — oco. Since (Xpung) is summable to a

fuzzy number L by (C,1,1,1) mean and d(Y, (LY 0) < € as m,n,g — oo, thus

mng

cZ(ang, L) <e, myn,g— oo. d

Corollary 3.1. If (Xyung) is (C, k,r, j)-summable to a fuzzy number L and (X,ung) is
slowly oscillating (in the sense of Stanoyemc) then

d(Xpng, L) < &, asm,n,g — oc.

Proof. Let X = (X,ny) be slowly oscillating. Then, ((C, k,r, j)X) is slowly oscillating
by Lemma 3.1. Furthermore, since X = (X,,,,) is (C, k, r, j)-summable to a fuzzy
number L, we have by Theorem 3.1 that

(3.5) d(((C, k, 7, )X )mng, L) <€ as m,n,g — oo.
Now, from the definition,
(3.6) (C k7, )X ) mng = ((C, 1,1, 1) X ) g ((Co k= 1,r = 1, § — 1) X ) nng)-

It is clear that (3.5) and (3.6) imply X = (Xinn,) is (C, k—1,7—1, j — 1)-summable to
a fuzzy number L. Thus, (((C,k—1,7—1,7—1)X).n,) is slowly oscillating by Lemma
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3.1. Therefore, by Theorem 3.1, we have J(((_C, k—1,1r—1,7—1)X)mng, L) < € as
m,n,g — oo. Continuing in this way, we get d(X,ny, L) < € as m,n, g — oo. O

Remark 3.1. If k # 0,7 = 0 and j = 0, then (C,r, k,j)-summability reduces to
(C,k,0,0)-summability. Besides, if £ = 0,7 # 0 and j7 = 0, then (C,r, k, j)-summa-
bility reduces to (C,0,r,0)-summability. Finally, if £ = 0, » = 0 and j # 0, then
(C,r, k, j)-summability reduces to (C,0, 0, j)-summability.

Theorem 3.2. If a triple sequence (X,ung) of fuzzy number is (C,1,1,1)-summable

to a fuzzy number L and Y,(51V (Ayng Xonng) s slowly oscillating, then

d(ang, L)<e, asm,n,g— oc.

Proof. Since (Xnng) is (C, 1,1, 1)-summable to a fuzzy number L, so ((C, 1,1, 1) X ),
is (C,1,1,1)-summable to a fuzzy number L. Hence, (Y,(1:1:)) is (O, 1,1, 1)-summable

mng

to zero by (2.3). Using identity (2.3) to (Y, (41Y) we have Y (Y,{;:}:V) is Cesaro sum-

mable to zero. This means that Y (Y,(:1:)) is slowly oscillating by Lemma 3.1. Now,
by Lemma 3.2 part (a), we get

(3.7) d(Y (Y5g"), (C 1,1, 1) X) g (Vi5ig)
_ (] + D(An] + 1D)([Ag] +1)
([Am] —m)([An] —n)([Ag] — 9)

[
((Cv 17 17 1>X)[>\m],n,gY<Y(1 o 1)))

{d(((C, 1,1, 1) X) g vg] Y (Yol

mng

—d((C,1, 1, D)X ) g Y (VD) (€ 1,1, 1) X) g V(YD)

e = O L L DX ¥ O, (€11, 1) X))
[An] +1 - G

+ ([AMm] —n)([Ag] — n)d(<<c’ L L D)X )m pl.gY Vg™, ((C 1,1, 1) X g )

b P o Y, (€11 1) X))

([Am] = g)([An] - g)

1 Am] ] [ LD 11D
(] = m)([An] — n)([Ag] — (Z > vt vt )).

i=m+1 p=n+1u=g+1

It is easy to verify that for A > 1 and sufficiently large n and g

(Am] + D((An] + D([Ag] + 1) (Am] + D) ([(An] + D([Ag] + 1)
([Am] —m)([An] = n)((Ag] —g) — ([Am] =1 =m)([An] =1 —n)([Ag] =1 —g)
9N3
< ()\ — 1)3
Now, by (3.7),
d(Y (Y, (C, 1,1, 1) X ) ngY (Vg ™?)
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9A3

< 1 WmngY Vi), (G 1 D)X 1 Y (V)

mng

[Am)] [An] [Ag] (1 n i
o Z Z Z lpu Y(Yrgnid ))) .

max
m+1,n+1,g+1<i,p,u<[Am],[An] [)\g it ] pe=nt1 g1

Taking lim sup on both sides in the above inequality, we have
lim sup d(Y (Y;550), (C, 1, 1, 1) X )mngY (Yie™))

mng mng
m,n,g
97)\3 1 7 (17171) (17171)
< ()\ . 1)3 hg}sg‘p d(Tmngy(Ymng )a ((07 17 L 1)X)[)\m],[)\n},[/\g}Y(Ymng ))

y Am]  [An]  [Ag] @l 1 L
— l1imsup max Z Z Z )/;pu Y(Ymng ))

m,n,g m+1n+1,9+1<i,pu<[Am],[An] [)\g imma1 p=nt1 u—g+1

Further, ((C, 1,1, 1)X)p\mH,\n],P\g]Y(Y(l’l’l)) — 0 as m,n, g — oo, so first term in the

mng
right hand side of above inequality, must vanish. This implies

(3.8)

lim sup d(Y, (1Y ((C)1,1,1) X )y Y (Y, (51D)Y)

mn mn
g g g

myn,g m+1n+1,g+1<ipu<[Am],[An], [/\g immt1 pe=nt1 u—gt1

[Am]  [An]  [Ag] 0L
<lim ey ma S SED SNCERURGISELIIE

Taking A — 17 in (3.8), we have
lim sup d(Y (V,(50D), (01,1, 1) X ) yung Y (YELDY)) < 0,

mng mng
m,n,g

which implies, d(Y (Y,(L11D),0)) < € as m,n, g — 0o. Since (X,n,) is summable to a

mng

fuzzy number L by (C,1,1,1) mean and d(Y (Y,(;1V),0) < £ as m,n, g — oo, thus

d(Xomng, L) < €, as m,n, g — oc. O

Corollary 3.2. If (X)) is (C,k,r,j)-summable to a fuzzy number L and
mlné D(AX) is slowly oscillating, then

d(Xyng, L) < &, asm,n,g — oc.

Proof. As Yng,;;’l)(AX) is slowly oscillating, setting X = (X,,,,) instead of
Y, (L1, 1)(AX) then ((C,k,7, )X )mng( mlnél (AX)) is slowly oscillating by Lemma

3 1 Moreover, as Y,{.} 1)(AX) is (C, k,r,j)-summable to a fuzzy number L, so by
Theorem 3.2,

(3.9) d(((C. k7, )X )ng (Vg (AX)), L) <2, as m,n, g — oo.
By definition,
(3.10)

(Cr k7, )X g (Vg P (AX))

mng
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=((C, 1, 1, 1)X g (Vs V (AXN(Cok = L = 1, j = 1) X g (Vi (AX))).

mng mng

From (3.9) and (3.10) we have Y,(LLD(AX) is (O, k — 1,7 — 1,5 — 1)-summable to a

mng
fuzzy number L. Thus, ((C,k—1,r—1,5— l)X)mng(Yélﬁévl)(AX)) is slowly oscillating
by Lemma 3.1. Therefore, by Theorem 3.1, we have

d((Ck—1,7 = 1,7 — D) X)png(VILD(AX)), L) <&, asm,n, g — oo.

mng

Continuing this way, we get d((Y,(41V(AX)), L) < e as m,n, g — oo. O

Remark 3.2. If k # 0, r = 0 and j = 0, then (C,r, k,j)-summability reduces to
(C,k,0,0)-summability. Besides, if &k = 0, r # 0 and j = 0, then (C,r,k,j)-su-
mmability reduces to (C,0,r,0)-summability. Finally, if £ = 0, r = 0 and j # 0,
then (C,r, k, j)-summability reduces to (C, 0,0, j)-summability and consequently more
corollaries can be generated from the main results of this paper.
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