ON NORMALIZED SIGNLESS LAPLACIAN RESOLVENT ENERGY

Ş. B. BOZKURT ALTINDAĞ ${ }^{1}$, I. MILOVANOVIĆ ${ }^{2}$, E. MILOVANOVIĆ ${ }^{2}$, AND M. MATEJIĆ ${ }^{2}$

Abstract

Let G be a simple connected graph with n vertices. Denote by $\mathcal{L}^{+}(G)=$ $D(G)^{-1 / 2} Q(G) D(G)^{-1 / 2}$ the normalized signless Laplacian matrix of graph G, where $Q(G)$ and $D(G)$ are the signless Laplacian and diagonal degree matrices of G, respectively. The eigenvalues of matrix $\mathcal{L}^{+}(G), 2=\gamma_{1}^{+} \geq \gamma_{2}^{+} \geq \cdots \geq$ $\gamma_{n}^{+} \geq 0$, are normalized signless Laplacian eigenvalues of G. In this paper, we introduce the normalized signless Laplacian resolvent energy of G as $E R N S(G)=$ $\sum_{i=1}^{n} \frac{1}{3-\gamma_{i}^{+}}$. We also obtain some lower and upper bounds for $E R N S(G)$ as well as its relationships with other energies and signless Kemeny's constant.

1. Introduction

Let $G=(V, E), V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, be a simple connected graph with n vertices and m edges, where $|V|=n$ and $|E|=m$. Denote by d_{i} the degree of the vertex v_{i} of $G, i=1,2, \ldots, n$. If v_{i} and v_{j} are two adjacent vertices of G, then we denote this by $i \sim j$.

Let $A(G)$ be the adjacency matrix of G. Eigenvalues of $A(G), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, are said to be the (ordinary) eigenvalues of G [11]. Then the energy of the graph G is defined as [15]

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Various properties and bounds on $E(G)$ may be found in the monographs [19,22] and references cited therein.

[^0]In line with concept of graph energy, the resolvent energy of G is put forward in [18] as

$$
E R(G)=\sum_{i=1}^{n} \frac{1}{n-\lambda_{i}}
$$

For the basic properties and bounds of $E R(G)$, the reader may refer to [1, 13, 34, 35].
Let $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ denote the diagonal degree matrix of G. The Laplacian and signless Laplacian matrices of G are, respectively, defined as $L(G)=$ $D(G)-A(G)$ and $Q(G)=D(G)+A(G)$. Denote by $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1}>\mu_{n}=0$ and $q_{1} \geq q_{2} \geq \cdots \geq q_{n} \geq 0$ the eigenvalues of $L(G)$ and $Q(G)$, respectively [26]. Recently, Laplacian resolvent and signless Laplacian resolvent energies of G are, respectively, introduced as [7]

$$
R L(G)=\sum_{i=1}^{n} \frac{1}{n+1-\mu_{i}}
$$

and

$$
R Q(G)=\sum_{i=1}^{n} \frac{1}{2 n-1-q_{i}}
$$

Since graph G is connected, the matrix $D(G)^{-1 / 2}$ is well defined. Then, the normalized Laplacian matrix of G is defined by [10]

$$
\mathcal{L}(G)=D(G)^{-1 / 2} L(G) D(G)^{-1 / 2}=I_{n}-R(G),
$$

where I_{n} is the $n \times n$ unity matrix and $R(G)$ is the Randić matrix [2]. The following properties for the normalized Laplacian eigenvalues, $\gamma_{1}^{-} \geq \gamma_{2}^{-} \geq \cdots \geq \gamma_{n-1}^{-}>\gamma_{n}^{-}=0$, are valid [36]

$$
\begin{equation*}
\sum_{i=1}^{n-1} \gamma_{i}^{-}=n \quad \text { and } \quad \sum_{i=1}^{n-1}\left(\gamma_{i}^{-}\right)^{2}=n+2 R_{-1}(G) \tag{1.1}
\end{equation*}
$$

where

$$
R_{-1}(G)=\sum_{i \sim j} \frac{1}{d_{i} d_{j}}
$$

is a kind of topological index of G called as general Randić index [8,31].
The matrix $\mathcal{L}^{+}(G)=D(G)^{-1 / 2} Q(G) D(G)^{-1 / 2}=I_{n}+R(G)$ is defined to be the normalized signless Laplacian matrix of G [10]. Some well known identities concerning the normalized signless Laplacian eigenvalues, $\gamma_{1}^{+} \geq \gamma_{2}^{+} \geq \cdots \geq \gamma_{n}^{+} \geq 0$, are [9]

$$
\begin{equation*}
\sum_{i=1}^{n} \gamma_{i}^{+}=n \quad \text { and } \quad \sum_{i=1}^{n}\left(\gamma_{i}^{+}\right)^{2}=n+2 R_{-1}(G) \tag{1.2}
\end{equation*}
$$

For $i=1,2, \ldots, n$, the following relations (see $[14,24]$) exist

$$
\begin{equation*}
\gamma_{i}^{-}=1-\rho_{n-i+1} \quad \text { and } \quad \gamma_{i}^{+}=1+\rho_{i} . \tag{1.3}
\end{equation*}
$$

Here, $1=\rho_{1} \geq \rho_{2} \geq \cdots \geq \rho_{n}$ are the Randić eigenvalues of $G[2,24]$.

Motivated by the definitions of graph resolvent energies $E R, R L$ and $R Q$ and considering the fact that $\gamma_{i}^{-} \leq 2,1 \leq i \leq n$, Sun and Das [33] defined the normalized Laplacian resolvent energy of G as

$$
E R N(G)=\sum_{i=1}^{n} \frac{1}{3-\gamma_{i}^{-}}
$$

Since the property $\gamma_{i}^{+} \leq 2,1 \leq i \leq n$, is also satisfied by the normalized signless Laplacian eigenvalues, we now introduce the normalized signless Laplacian resolvent energy of G as follows

$$
\operatorname{ERNS}(G)=\sum_{i=1}^{n} \frac{1}{3-\gamma_{i}^{+}} .
$$

Notice that in the case of bipartite graph the normalized Laplacian and normalized signless Laplacian eigenvalues coincide [3]. From hence, for bipartite graphs, ERN (G) is equal to $E R N S(G)$.

Before we proceed, let us recall another graph invariant closely related to normalized Laplacian eigenvalues and so called Kemeny's constant. It is defined as [6]

$$
K(G)=\sum_{i=1}^{n-1} \frac{1}{\gamma_{i}^{-}}
$$

For more information on $K(G)$, see [21, 27].
Since for connected non-bipartite graphs $\gamma_{i}^{+}>0$ for $i=1,2, \ldots, n$, [4], very recently, in an analogous manner with Kemeny's constant, signless Kemeny's constant of connected non-bipartite graphs is considered as [28]

$$
K^{+}(G)=\sum_{i=1}^{n} \frac{1}{\gamma_{i}^{+}}
$$

In [28], it is also emphasized that $K(G)$ coincides with $K^{+}(G)$ in the case of bipartite graphs.

In this paper, we obtain some lower and upper bounds for $E R N S(G)$ as well as its relationships with other energies and $K^{+}(G)$.

2. Lemmas

We now recall some known results on graph spectra and analytical inequalities that will be used in our main results.

Lemma 2.1 ([14]). For any connected graph G, the largest normalized signless Laplacian eigenvalue is $\gamma_{1}^{+}=2$.

Lemma 2.2 ([14]). Let G be a graph of order $n \geq 2$ with no isolated vertices. Then

$$
\gamma_{2}^{+}=\gamma_{3}^{+}=\cdots=\gamma_{n}^{+}=\frac{n-2}{n-1}
$$

if and only if $G \cong K_{n}$.

Lemma 2.3 ([4]). If G is a connected non-bipartite graph of order n, then $\gamma_{i}^{+}>0$ for $i=1,2, \ldots, n$.

Lemma 2.4 ([3]). If G is a bipartite graph, then the eigenvalues of \mathcal{L} and \mathcal{L}^{+}coincide.
Lemma 2.5 ([23]). Let G be a connected graph of order n. Then $\gamma_{2}^{-} \geq 1$, the equality holds if and only if G is a complete bipartite graph.

Lemma 2.6 ([12]). Let G be a connected graph with $n>2$ vertices. Then $\gamma_{2}^{-}=\gamma_{3}^{-}=$ $\cdots=\gamma_{n-1}^{-}$if and only if $G \cong K_{n}$ or $G \cong K_{p, q}$.
Lemma 2.7 ([10]). Let G be a bipartite graph with n vertices Then for $i=1,2, \ldots, n$, $\gamma_{i}^{-}+\gamma_{n-i+1}^{-}=2$.
Lemma 2.8 ([24]). For any connected graph G, the largest Randić eigenvalue is $\rho_{1}=1$.

Lemma 2.9 ([2]). Let G be a graph with n vertices and Randić matrix $R(G)$. Then

$$
\operatorname{tr}\left(R(G)^{2}\right)=2 R_{-1}
$$

and

$$
\operatorname{tr}\left(R(G)^{3}\right)=2 \sum_{i \sim j} \frac{1}{d_{i} d_{j}}\left(\sum_{k \sim i, k \sim j} \frac{1}{d_{k}}\right) .
$$

Lemma 2.10 ([30]). Let $x=\left(x_{i}\right)$ and $a=\left(a_{i}\right)$ be two sequences of positive real numbers, $i=1,2, \ldots, n$. Then for any $r \geq 0$

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{r+1}}{\left(\sum_{i=1}^{n} a_{i}\right)^{r}} \tag{2.1}
\end{equation*}
$$

Equality holds if and only if $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{n}}{a_{n}}$.
Lemma 2.11 ([20]). Let $a=\left(a_{i}\right)$ and $p=\left(p_{i}\right)$ be two sequences of positive real numbers such that $\sum_{i=1}^{n} p_{i}=1$ and $0<r \leq a_{i} \leq R<+\infty, i=1,2, \ldots, n, r, R \in \mathbb{R}$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} a_{i} \sum_{i=1}^{n} \frac{p_{i}}{a_{i}} \leq \frac{1}{4}\left(\sqrt{\frac{R}{r}}+\sqrt{\frac{r}{R}}\right)^{2} \tag{2.2}
\end{equation*}
$$

Equality holds if and only if $R=a_{1}=a_{2}=\cdots=a_{n}=r$.

3. Lower and Upper Bounds on $E R N S(G)$

In this section, we establish some lower and upper bounds for $E R N S(G)$.

Theorem 3.1. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then, for any real α, such that $\gamma_{2}^{+} \geq \alpha \geq \frac{n-2}{n-1}$,

$$
\begin{equation*}
\operatorname{ERNS}(G) \geq 1+\frac{1}{3-\alpha}+\frac{(n-2)^{2}}{2 n-4+\alpha} \tag{3.1}
\end{equation*}
$$

If $\alpha=\frac{n-2}{n-1}$, equality holds if and only if $G \cong K_{n}$.
Proof. By arithmetic-harmonic mean inequality [29], we have

$$
\sum_{i=3}^{n} a_{i} \sum_{i=3}^{n} \frac{1}{a_{i}} \geq(n-2)^{2},
$$

where $a_{i}>0, i=3,4, \ldots, n$, are arbitrary real numbers. For $a_{i}=3-\gamma_{i}^{+}, i=$ $3,4, \ldots, n$, the above inequality transforms into

$$
\sum_{i=3}^{n}\left(3-\gamma_{i}^{+}\right) \sum_{i=3}^{n} \frac{1}{3-\gamma_{i}^{+}} \geq(n-2)^{2}
$$

that is

$$
\sum_{i=1}^{n} \frac{1}{3-\gamma_{i}^{+}} \geq \frac{1}{3-\gamma_{1}^{+}}+\frac{1}{3-\gamma_{2}^{+}}+\frac{(n-2)^{2}}{\sum_{i=3}^{n}\left(3-\gamma_{i}^{+}\right)}
$$

Then, it follows from the above, (1.2) and Lemma 2.1 that

$$
\begin{equation*}
\operatorname{ERNS}(G) \geq 1+\frac{1}{3-\gamma_{2}^{+}}+\frac{(n-2)^{2}}{2 n-4+\gamma_{2}^{+}} \text {. } \tag{3.2}
\end{equation*}
$$

Now, consider the function defined as follows

$$
f(x)=\frac{1}{3-x}+\frac{(n-2)^{2}}{2 n-4+x} .
$$

It can be easily seen that f is increasing for $x \geq \frac{n-2}{n-1}$. Then for any real $\alpha, \gamma_{2}^{+} \geq \alpha \geq$ $\frac{n-2}{n-1}$,

$$
f\left(\gamma_{2}^{+}\right) \geq f(\alpha)=\frac{1}{3-\alpha}+\frac{(n-2)^{2}}{2 n-4+\alpha} .
$$

Based on this inequailty and (3.2), we obtain the lower bound (3.1). Equality in (3.1) holds if and only if

$$
\gamma_{2}^{+}=\alpha \quad \text { and } \quad \gamma_{3}^{+}=\cdots=\gamma_{n}^{+} .
$$

If $\alpha=\frac{n-2}{n-1}$, then from the above and Lemma 2.2, one can easily conclude that the equality in (3.1) holds if and only if $G \cong K_{n}$.

Corollary 3.1. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then

$$
\operatorname{ERNS}(G) \geq 1+\frac{(n-1)^{2}}{2 n-1}
$$

Equality holds if and only if $G \cong K_{n}$.

Considering the techniques in Theorem 3.1 with Lemmas 2.1, 2.4 and 2.6, we obtain the following result for bipartite graphs.

Theorem 3.2. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then, for any real α, such that $\gamma_{2}^{+}=\gamma_{2}^{-} \geq \alpha \geq 1$

$$
\operatorname{ERNS}(G)=E R N(G) \geq \frac{4}{3}+\frac{1}{3-\alpha}+\frac{(n-3)^{2}}{2 n-7+\alpha}
$$

If $\alpha=1$, equality holds if and only if $G \cong K_{p, q}, p+q=n$.
In [5], it was obtained that

$$
\begin{equation*}
\gamma_{2}^{+}=\gamma_{2}^{-} \geq 1+\sqrt{\frac{2\left(R_{-1}(G)-1\right)}{n-2}} \tag{3.3}
\end{equation*}
$$

From Theorem 3.2 and (3.3), we directly have the following.
Corollary 3.2. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
\operatorname{ERNS}(G)=E R N(G) \geq \frac{4}{3}+\frac{1}{2-\sqrt{\frac{2\left(R_{-1}(G)-1\right)}{n-2}}}+\frac{(n-3)^{2}}{2 n-6+\sqrt{\frac{2\left(R_{-1}(G)-1\right)}{n-2}}} . \tag{3.4}
\end{equation*}
$$

From Theorem 3.2 and Lemma 2.5, we have the following result. It was proven in Theorem 3.8 of [33].

Corollary 3.3 ([33]). Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
\operatorname{ERNS}(G)=\operatorname{ERN}(G) \geq \frac{n}{2}+\frac{1}{3} \tag{3.5}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{p, q}$.
Remark 3.1. Note that the lower bound (3.4) is stronger than the lower bound (3.5).
Theorem 3.3. Let G be a connected graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
E R N S(G) \geq \frac{1}{3}\left(n+2+\frac{(n-2)^{2}}{2\left(n-1-R_{-1}(G)\right)}\right) \tag{3.6}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{n}$ or $G \cong K_{p, q}, p+q=n$.
Proof. Suppose G is a connected non-bipartite graph with $n \geq 3$ vertices. Then, by Lemmas 2.1 and 2.3, $\gamma_{1}^{+}=2$ and $\gamma_{i}^{+}>0, i=2,3, \ldots, n$. For $r=1$ the inequality (2.1) transforms into

$$
\begin{equation*}
\sum_{i=2}^{n} \frac{x_{i}^{2}}{a_{i}} \geq \frac{\left(\sum_{i=2}^{n} x_{i}\right)^{2}}{\sum_{i=2}^{n} a_{i}} \tag{3.7}
\end{equation*}
$$

Setting $x_{i}=\gamma_{i}^{+}, a_{i}=\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right), i=2,3, \ldots, n$, in (3.7) and using (1.2) and Lemma 2.1, we have

$$
\begin{equation*}
\sum_{i=2}^{n} \frac{\left(\gamma_{i}^{+}\right)^{2}}{\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)} \geq \frac{\left(\sum_{i=2}^{n} \gamma_{i}^{+}\right)^{2}}{\sum_{i=2}^{n} \gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)}=\frac{(n-2)^{2}}{2\left(n-1-R_{-1}(G)\right)} \tag{3.8}
\end{equation*}
$$

On the other hand, from the above and Lemma 2.1, we also have

$$
\begin{align*}
\sum_{i=2}^{n} \frac{\left(\gamma_{i}^{+}\right)^{2}}{\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)} & =\sum_{i=2}^{n} \frac{\gamma_{i}^{+}}{3-\gamma_{i}^{+}}=\sum_{i=2}^{n} \frac{\gamma_{i}^{+}-3+3}{3-\gamma_{i}^{+}} \\
& =-(n-1)+3(E R N S(G)-1) \\
& =3 E R N S(G)-n-2 . \tag{3.9}
\end{align*}
$$

From (3.8) and (3.9), the inequality (3.6) is obtained.
Equality in (3.8) holds if and only if

$$
\frac{1}{3-\gamma_{2}^{+}}=\frac{1}{3-\gamma_{3}^{+}}=\cdots=\frac{1}{3-\gamma_{n}^{+}},
$$

that is $\gamma_{2}^{+}=\gamma_{3}^{+}=\cdots=\gamma_{n}^{+}$. By Lemma 2.2, when G is non-bipartite graph, equality in (3.6) holds if and only if $G \cong K_{n}$.

Now, suppose G is a connected bipartite graph with $n \geq 3$ vertices. Then, by Lemmas 2.1 and 2.4, $\gamma_{1}^{+}=2$ and $\gamma_{2}^{+} \geq \gamma_{3}^{+} \geq \cdots \geq \gamma_{n-1}^{+}>\gamma_{n}^{+}=0$. The inequality (2.1) can be considered as

$$
\sum_{i=2}^{n-1} \frac{x_{i}^{2}}{a_{i}} \geq \frac{\left(\sum_{i=2}^{n-1} x_{i}\right)^{2}}{\sum_{i=2}^{n-1} a_{i}}
$$

Taking $x_{i}=\gamma_{i}^{+}, a_{i}=\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right), i=2,3, \ldots, n-1$, in the above inequality and considering (1.2), we get

$$
\begin{equation*}
\sum_{i=2}^{n-1} \frac{\left(\gamma_{i}^{+}\right)^{2}}{\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)} \geq \frac{\left(\sum_{i=2}^{n-1} \gamma_{i}^{+}\right)^{2}}{\sum_{i=2}^{n-1} \gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)}=\frac{(n-2)^{2}}{2\left(n-1-R_{-1}(G)\right)} . \tag{3.10}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\sum_{i=2}^{n-1} \frac{\left(\gamma_{i}^{+}\right)^{2}}{\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)} & =\sum_{i=2}^{n-1} \frac{\gamma_{i}^{+}}{3-\gamma_{i}^{+}}=\sum_{i=2}^{n-1} \frac{\gamma_{i}^{+}-3+3}{3-\gamma_{i}^{+}}= \\
& =-(n-2)+3\left(E R N S(G)-1-\frac{1}{3}\right)= \\
& =3 E R N S(G)-n-2 .
\end{aligned}
$$

From the above and inequality (3.10) we arrive at (3.6).

Equality in (3.10) holds if and only if

$$
\frac{1}{3-\gamma_{2}^{+}}=\frac{1}{3-\gamma_{3}^{+}}=\cdots=\frac{1}{3-\gamma_{n-1}^{+}},
$$

that is when $\gamma_{2}^{+}=\gamma_{3}^{+}=\cdots=\gamma_{n-1}^{+}$. Since G is a bipartite graph, by Lemmas 2.4 and 2.6, equality in (3.6) holds if and only if $G \cong K_{p, q}, p+q=n$.

Corollary 3.4. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
\operatorname{ERNS}(G)=\operatorname{ERN}(G) \geq \frac{1}{3}\left(n+2+\frac{(n-2)^{2}}{2\left(n-1-R_{-1}(G)\right.}\right) .
$$

Equality holds if and only if $G \cong K_{p, q}, p+q=n$.
Theorem 3.4. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
E R N S(G) \leq 1+\frac{4 n-5-(n-1)\left(\gamma_{2}^{+}+\gamma_{n}^{+}\right)}{\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right)} \tag{3.11}
\end{equation*}
$$

Equality holds if and only if $\gamma_{i}^{+} \in\left\{\gamma_{2}^{+}, \gamma_{n}^{+}\right\}$, for $i=2,3, \ldots, n$.
Proof. For every $i=2,3, \ldots, n$, the following inequalities are valid

$$
\begin{align*}
\left(3-\gamma_{2}^{+}-3+\gamma_{i}^{+}\right)\left(3-\gamma_{n}^{+}-3+\gamma_{i}^{+}\right) & \leq 0 \\
\left(3-\gamma_{i}^{+}\right)^{2}+\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right) & \leq\left(6-\gamma_{2}^{+}-\gamma_{n}^{+}\right)\left(3-\gamma_{i}^{+}\right), \\
\left(3-\gamma_{i}^{+}\right)+\frac{\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right)}{3-\gamma_{i}^{+}} & \leq 6-\gamma_{2}^{+}-\gamma_{n}^{+} \tag{3.12}
\end{align*}
$$

After summation of (3.12) over $i, i=2,3, \ldots, n$, we obtain

$$
\sum_{i=2}^{n}\left(3-\gamma_{i}^{+}\right)+\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right) \sum_{i=2}^{n} \frac{1}{3-\gamma_{i}^{+}} \leq\left(6-\gamma_{2}^{+}-\gamma_{n}^{+}\right) \sum_{i=2}^{n} 1
$$

that is

$$
\begin{equation*}
2 n-1+\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right)(E R N S(G)-1) \leq\left(6-\gamma_{2}^{+}-\gamma_{n}^{+}\right)(n-1) \tag{3.13}
\end{equation*}
$$

from which (3.11) is obtained.
Equality in (3.12) holds if and only if $\gamma_{i}^{+} \in\left\{\gamma_{2}^{+}, \gamma_{n}^{+}\right\}$, for every $i=2,3, \ldots, n$, which implies that equality in (3.11) holds if and only if $\gamma_{i}^{+} \in\left\{\gamma_{2}^{+}, \gamma_{n}^{+}\right\}$, for every $i=2,3, \ldots, n$.

Corollary 3.5. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
E R N S(G) \leq 1+\frac{\left((n-1)\left(6-\gamma_{2}^{+}-\gamma_{n}^{+}\right)\right)^{2}}{4(2 n-1)\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right)} . \tag{3.14}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{n}$.

Proof. After applying the arithmetic-geometric mean inequality, AM-GM, on (3.13) we obtain

$$
2 \sqrt{(2 n-1)\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right)(E R N S(G)-1)} \leq\left(6-\gamma_{2}^{+}-\gamma_{n}^{+}\right)(n-1)
$$

from which (3.14) is obtained.
The proof of the next theorem is fully analogous to that of Theorem 3.4, thus omitted.

Theorem 3.5. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
E R N S(G)=E R N(G) \leq \frac{4}{3}+\frac{2(n-2)}{\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n-1}^{+}\right)} .
$$

Equality holds if and only if $G \cong K_{p, q}, p+q=n$.
Theorem 3.6. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
\operatorname{ERNS}(G) \leq \frac{1}{3}\left(n+2+\frac{\left((n-2)\left(6-\gamma_{2}^{+}-\gamma_{n}^{+}\right)\right)^{2}}{8\left(n-1-R_{-1}(G)\right)\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right)}\right) \tag{3.15}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{n}$.
Proof. Setting $p_{i}=\frac{\gamma_{i}^{+}}{n-2}, a_{i}=\frac{1}{3-\gamma_{i}^{+}}, i=2,3, \ldots, n, R=\frac{1}{3-\gamma_{2}^{+}}, r=\frac{1}{3-\gamma_{n}^{+}}$in (2.2), we have that

$$
\sum_{i=2}^{n}\left(\frac{\gamma_{i}^{+}}{n-2}\right)\left(\frac{1}{3-\gamma_{i}^{+}}\right) \sum_{i=2}^{n}\left(\frac{\gamma_{i}^{+}}{n-2}\right)\left(3-\gamma_{i}^{+}\right) \leq \frac{1}{4}\left(\sqrt{\frac{3-\gamma_{n}^{+}}{3-\gamma_{2}^{+}}}+\sqrt{\frac{3-\gamma_{2}^{+}}{3-\gamma_{n}^{+}}}\right)^{2} .
$$

Considering this with (1.2) and (3.9) and Lemma 2.1, we obtain that

$$
\frac{2\left(n-1-R_{-1}(G)\right)}{(n-2)^{2}}(3 \operatorname{ERNS}(G)-n-2) \leq \frac{1}{4}\left(\frac{\left(6-\gamma_{2}^{+}-\gamma_{n}^{+}\right)^{2}}{\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n}^{+}\right)}\right)
$$

From the above result, we arrive at the upper bound (3.15). The equality in (3.15) holds if and only if

$$
\frac{1}{3-\gamma_{2}^{+}}=\frac{1}{3-\gamma_{3}^{+}}=\cdots=\frac{1}{3-\gamma_{n}^{+}},
$$

that is

$$
\gamma_{2}^{+}=\gamma_{3}^{+}=\cdots=\gamma_{n}^{+} .
$$

Thus, in view of Lemma 2.2, we conclude that the equality in (3.15) holds if and only if $G \cong K_{n}$.

Using the techniques in Theorem 3.6 with Lemmas 2.1, 2.4, 2.6, 2.7 and 2.11, we have the following.

Theorem 3.7. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
\operatorname{ERNS}(G)=\operatorname{ERN}(G) \leq \frac{1}{3}\left(n+2+\frac{2(n-2)^{2}}{\left(n-1-R_{-1}(G)\right)\left(3-\gamma_{2}^{+}\right)\left(3-\gamma_{n-1}^{+}\right)}\right)
$$

Equality holds if and only if $G \cong K_{p, q}, p+q=n$.

4. Relations Between $E R N S(G)$ and other Energies

One of the chemically/mathematically most important graph spectrum-based invariants in graph theory is the concept of graph energy introduced in [15]. Due to the evident success of graph energy, a number of graph energies and energy-like graph invariants have been put forward in the literature. We first recall some of them.

For a graph G, in full analogy with the graph energy [15], Randić (normalized Laplacian or normalized signless Laplacian) energy is defined as [2, 8, 17]

$$
R E(G)=\sum_{i=1}^{n}\left|\rho_{i}\right|
$$

where $1=\rho_{1} \geq \rho_{2} \geq \cdots \geq \rho_{n}$ are the Randić eigenvalues of $G[2,24]$.
In analogous manner with Laplacian energy-like invariant [25], Laplacian incidence energy is introduced as [32]

$$
\operatorname{LIE}(G)=\sum_{i=1}^{n-1} \sqrt{\gamma_{i}^{-}}
$$

and by analogy with incidence energy [16], the Randić (normalized) incidence energy is put forward in $[9,14]$ as

$$
I_{R} E(G)=\sum_{i=1}^{n} \sqrt{\gamma_{i}^{+}}
$$

Here, $\gamma_{1}^{-} \geq \gamma_{2}^{-} \geq \cdots \geq \gamma_{n-1}^{-}>\gamma_{n}^{-}=0$ and $2=\gamma_{1}^{+} \geq \gamma_{2}^{+} \geq \cdots \geq \gamma_{n}^{+} \geq 0$ are, respectively, the normalized Laplacian and normalized signless Laplacian eigenvalues of $G[10,14]$. Note that $L I E$ is equal to $I_{R} E$, for bipartite graphs [3].

Now, we are ready to give some relationships between $E R N S(G)$ and other energies emphasized in the above.

Theorem 4.1. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
\operatorname{ERNS}(G) \geq 1+\frac{(R E(G)-1)^{2}}{4 R_{-1}-2 \sum_{i \sim j} \frac{1}{d_{i} d_{j}}\left(\sum_{k \sim i, k \sim j} \frac{1}{d_{k}}\right)-1} \tag{4.1}
\end{equation*}
$$

Equality is achieved for $G \cong K_{n}$.

Proof. For $x_{i}=\left|\gamma_{i}^{+}-1\right|$ and $a_{i}=\frac{1}{3-\gamma_{i}^{+}}, i=2,3, \ldots, n$, the inequality (3.7) becomes

$$
\begin{equation*}
\sum_{i=2}^{n}\left(\gamma_{i}^{+}-1\right)^{2}\left(3-\gamma_{i}^{+}\right) \geq \frac{\left(\sum_{i=2}^{n}\left|\gamma_{i}^{+}-1\right|\right)^{2}}{\sum_{i=2}^{n} \frac{1}{3-\gamma_{i}^{+}}} \tag{4.2}
\end{equation*}
$$

From (1.3) and Lemmas 2.8 and 2.9, we have

$$
\begin{align*}
\sum_{i=2}^{n}\left(\gamma_{i}^{+}-1\right)^{2}\left(3-\gamma_{i}^{+}\right) & =\sum_{i=2}^{n} \rho_{i}^{2}\left(2-\rho_{i}\right) \\
& =2 \sum_{i=2}^{n} \rho_{i}^{2}-\sum_{i=2}^{n} \rho_{i}^{3} \\
& =2\left(2 R_{-1}-1\right)-\left(2 \sum_{i \sim j} \frac{1}{d_{i} d_{j}}\left(\sum_{k \sim i, k \sim j} \frac{1}{d_{k}}\right)-1\right) \\
& =4 R_{-1}-2 \sum_{i \sim j} \frac{1}{d_{i} d_{j}}\left(\sum_{k \sim i, k \sim j} \frac{1}{d_{k}}\right)-1 . \tag{4.3}
\end{align*}
$$

Then by (4.2) and (4.3) and Lemma 2.1, we get that

$$
4 R_{-1}-2 \sum_{i \sim j} \frac{1}{d_{i} d_{j}}\left(\sum_{k \sim i, k \sim j} \frac{1}{d_{k}}\right)-1 \geq \frac{(R E(G)-1)^{2}}{\operatorname{ERNS}(G)-1} .
$$

From the above, the inequality (4.1) follows. One can easily check that the equality in (4.1) is achieved for $G \cong K_{n}$.

Theorem 4.2. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
E R N S(G) \geq \frac{1}{3}\left(n+2+\frac{\left(I_{R} E(G)-\sqrt{2}\right)^{2}}{2 n-1}\right) \tag{4.4}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{n}$.
Proof. Taking $x_{i}=\sqrt{\gamma_{i}^{+}}, a_{i}=3-\gamma_{i}^{+}, i=2,3, \ldots, n$, in (3.7)

$$
\sum_{i=2}^{n} \frac{\gamma_{i}^{+}}{3-\gamma_{i}^{+}} \geq \frac{\left(\sum_{i=2}^{n} \sqrt{\gamma_{i}^{+}}\right)^{2}}{\sum_{i=2}^{n}\left(3-\gamma_{i}^{+}\right)}
$$

Considering this with (1.2) and (3.9) and Lemma 2.1

$$
3 E R N S(G)-n-2 \geq \frac{\left(I_{R} E(G)-\sqrt{2}\right)^{2}}{2 n-1}
$$

From the above we obtain (4.4). Equality in (4.4) holds if and only if

$$
\frac{\sqrt{\gamma_{2}^{+}}}{3-\gamma_{2}^{+}}=\frac{\sqrt{\gamma_{3}^{+}}}{3-\gamma_{3}^{+}}=\cdots=\frac{\sqrt{\gamma_{n}^{+}}}{3-\gamma_{n}^{+}}
$$

that is if and only if

$$
\left(\sqrt{\gamma_{i}^{+}}-\sqrt{\gamma_{j}^{+}}\right)\left(3+\sqrt{\gamma_{i}^{+} \gamma_{j}^{+}}\right)=0, \quad i \neq j
$$

which implies that equality in (4.4) holds if and only if $G \cong K_{n}$.
Theorem 4.3. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
\operatorname{ERNS}(G)=\operatorname{ERN}(G) \geq \frac{1}{3}\left(n+2+\frac{(L I E(G)-\sqrt{2})^{2}}{2(n-2)}\right) .
$$

Equality holds if $G \cong K_{p, q}, p+q=n$.

5. Relationships Between $E R N S(G)$ and $K^{+}(G)$

In this section, we present some relationships between $\operatorname{ERNS}(G)$ and $K^{+}(G)$.
Theorem 5.1. Let G be a connected non-bipartite graph wit $n \geq 3$ vertices. Then

$$
\begin{equation*}
E R N S(G) \geq \frac{3}{2}-K^{+}(G)+\frac{3(n-1)^{2}}{2\left(n-1-R_{-1}(G)\right)} . \tag{5.1}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{n}$.
Proof. The arithmetic-harmonic mean inequality can be considered as [29]

$$
\begin{equation*}
\sum_{i=2}^{n} a_{i} \sum_{i=2}^{n} \frac{1}{a_{i}} \geq(n-1)^{2} . \tag{5.2}
\end{equation*}
$$

For $a_{i}=\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right), i=2,3, \ldots, n$, the above inequality transforms into

$$
\begin{equation*}
\sum_{i=2}^{n} \gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right) \sum_{i=2}^{n} \frac{1}{\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)} \geq(n-1)^{2} . \tag{5.3}
\end{equation*}
$$

From the above, (1.2) and Lemma 2.1,

$$
\begin{equation*}
\sum_{i=2}^{n} \frac{1}{\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)} \geq \frac{(n-1)^{2}}{2\left(n-1-R_{-1}(G)\right)} . \tag{5.4}
\end{equation*}
$$

On the other hand, by Lemma 2.1, we have that

$$
\begin{aligned}
\sum_{i=2}^{n} \frac{1}{\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)} & =\frac{1}{3}\left(\sum_{i=2}^{n} \frac{1}{\gamma_{i}^{+}}+\sum_{i=2}^{n} \frac{1}{3-\gamma_{i}^{+}}\right) \\
& =\frac{1}{3}\left(K^{+}(G)-\frac{1}{2}+\operatorname{ERN} S(G)-1\right) \\
& =\frac{1}{3}\left(K^{+}(G)-\frac{3}{2}+\operatorname{ERN} S(G)\right)
\end{aligned}
$$

Combining this with (5.4) we arrive at (5.1). Equality in (5.3) holds if and only if $\gamma_{2}^{+}\left(3-\gamma_{2}^{+}\right)=\gamma_{3}^{+}\left(3-\gamma_{3}^{+}\right)=\cdots=\gamma_{n}^{+}\left(3-\gamma_{n}^{+}\right)$. Suppose $i \neq j$. Then, from the identity $\gamma_{i}^{+}\left(3-\gamma_{i}^{+}\right)=\gamma_{j}^{+}\left(3-\gamma_{j}^{+}\right)$, follows that $\left(\gamma_{i}^{+}-\gamma_{j}^{+}\right)\left(3-\gamma_{i}^{+}-\gamma_{j}^{+}\right)=0$. Thus, we conclude
that equality in (5.3) holds if and only if $\gamma_{2}^{+}=\gamma_{3}^{+}=\cdots=\gamma_{n}^{+}$. Having this in mind and Lemma 2.2, we conclude that equality in (5.1) holds if and only if $G \cong K_{n}$.

Using the similar idea in Theorem 5.1 with Lemmas 2.1, 2.4 and 2.6, we get the following.

Theorem 5.2. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
E R N S(G)=E R N(G) \geq \frac{11}{6}-K(G)+\frac{3(n-2)^{2}}{2\left(n-1-R_{-1}(G)\right)}
$$

Equality holds if and only if $G \cong K_{p, q}, p+q=n$.
Theorem 5.3. Let G be a connected non-bipartite graph with $n \geq 3$ vertices. Then

$$
\begin{equation*}
\operatorname{ERNS}(G) \geq \frac{1}{3}\left(n+2+\frac{2(n-1)^{2}}{6 K^{+}(G)-2 n-1}\right) \tag{5.5}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{n}$.
Proof. For $a_{i}=\frac{\gamma_{i}^{+}}{3-\gamma_{i}^{+}}, i=2,3, \ldots, n$, the inequality (5.2) transforms into

$$
\begin{equation*}
\sum_{i=2}^{n} \frac{\gamma_{i}^{+}}{3-\gamma_{i}^{+}} \sum_{i=2}^{n} \frac{3-\gamma_{i}^{+}}{\gamma_{i}^{+}} \geq(n-1)^{2} \tag{5.6}
\end{equation*}
$$

On the other hand, by Lemma 2.1, we have that

$$
\sum_{i=2}^{n} \frac{3-\gamma_{i}^{+}}{\gamma_{i}^{+}}=3\left(K^{+}(G)-\frac{1}{2}\right)-(n-1)=3 K^{+}(G)-n-\frac{1}{2}
$$

From the above, (3.9) and (5.6), we obtain (5.5). Equality in (5.6) holds if and only if

$$
\frac{\gamma_{2}^{+}}{3-\gamma_{2}^{+}}=\frac{\gamma_{3}^{+}}{3-\gamma_{3}^{+}}=\cdots=\frac{\gamma_{n}^{+}}{3-\gamma_{n}^{+}}
$$

Suppose $i \neq j$. Then equality in (5.6) holds if and only if $\frac{\gamma_{i}^{+}}{3-\gamma_{i}^{+}}=\frac{\gamma_{j}^{+}}{3-\gamma_{j}^{+}}$, that is if and only if $\gamma_{2}^{+}=\gamma_{3}^{+}=\cdots=\gamma_{n}^{+}$. By Lemma 2.2, equality in (5.5) holds if and only if $G \cong K_{n}$.

Conisdering the same idea in Theorem 5.3 together with Lemma 2.1, 2.4 and 2.6, we have the following.

Theorem 5.4. Let G be a connected bipartite graph with $n \geq 3$ vertices. Then

$$
E R N S(G)=E R N(G) \geq \frac{1}{3}\left(n+2+\frac{2(n-2)^{2}}{6 K(G)-2 n+1}\right)
$$

Equality holds if and only if $G \cong K_{p, q}, p+q=n$.

References

[1] L. E. Allem, J. Capaverde, V. Trevisan, I. Gutman, E. Zogić and E. Glogić, Resolvent energy of unicyclic, bicyclic and tricyclic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017), 95-104.
[2] Ş. B. Bozkurt, A. D. Gungor, I. Gutman and A. S. Cevik, Randić matrix and Randić energy, MATCH Commum. Math. Comput. Chem. 64 (2010), 239-250.
[3] Ş. B. Bozkurt Altındağ, Note on the sum of powers of normalized signless Laplacian eigenvalues of graphs, Mathematics Interdisciplinary Research 4(2) (2019), 171-182. https://dx.doi.org/ $10.22052 /$ mir 2019.208991 .1180
[4] Ş. B. Bozkurt Altındağ, Sum of powers of normalized signless Laplacian eigenvalues and Randić (normalized) incidence energy of graphs, Bull. Int. Math. Virtual Inst. 11(1) (2021), 135-146. https://doi.org/10.7251/BIMVI2101135A
[5] Ş. B. Bozkurt Altındağ, I. Milovanović, M. Matejić and E. Milovanović, On the degree Kirchhoff index of bipartite graphs, Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and Mechanics 13(1) (2021), 1-8.
[6] S. Butler, Algebraic aspects of the normalized Laplacian, in: A. Beveridge, J. Griggs, L. Hogben, G. Musiker and P. Tetali (Eds.), Recent Trends in Combinatorics, IMA Vol. Math. Appl. 159, Springer, 2016, 295-315. https://doi.org/10.1007/978-3-319-24298-9_13
[7] A. Cafure, D. A. Jaume, L. N. Grippo, A. Pastine, M. D. Safe, V. Trevisan and I. Gutman, Some results for the (signless) Laplacian resolvent, MATCH Commun. Math. Comput. Chem. 77 (2017), 105-114.
[8] M. Cavers, S. Fallat and S. Kirkland, On the normalized Laplacian energy and general Randić index R_{-1} of graphs, Linear Algebra Appl. 433 (2010), 172-190. https://doi.org/10.1016/ j.laa.2010.02.002
[9] B. Cheng and B. Liu, The normalized incidence energy of a graph, Linear Algebra Appl. 438 (2013), 4510-4519. https://doi.org/10.1016/j.laa.2013.01.003
[10] F. R. K. Chung, Spectral Graph Theory, Amer. Math. Soc., Providence, 1997.
[11] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
[12] K. Ch. Das, A. D. Gungor and Ş. B. Bozkurt, On the normalized Laplacian eigenvalues of graphs, Ars Combin. 118 (2015), 143-154.
[13] M. Ghebleh, A. Kanso and D. Stevanović, On trees with smallest resolvent energy, MATCH Commun. Math. Comput. Chem. 77 (2017), 635-654.
[14] R. Gu, F. Huang and X. Li, Randić incidence energy of graphs, Trans. Comb. 3(4) (2014), 1-9. https://doi.org/10.22108/TOC.2014.5573
[15] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz Graz. 103 (1978), 1-22.
[16] I. Gutman, D. Kiani and M. Mirzakhah, On incidence energy of graphs, MATCH Commun. Math. Comput. Chem. 62 (2009), 573-580.
[17] I. Gutman, B. Furtula and Ş. B. Bozkurt, On Randić energy, Linear Algebra Appl. 442 (2014), 50-57. https://doi.org/10.1016/j.laa.2013.06.010
[18] I. Gutman, B. Furtula, E. Zogić and E. Glogić, Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016), 279-290.
[19] I. Gutman and X. Li, Graph Energies - Theory and Applications, University of Kragujevac, Kragujevac, 2016.
[20] P. Henrići, Two remarks on the Kantorovich inequality, Amer. Math. Monthly 68 (1961), 904-906. https://doi.org/10.2307/2311698
[21] M. Levene and G. Loizou, Kemeny's constant and the random surfer, Amer. Math. Monthly 109 (2002), 741-745. https://doi.org/10.2307/3072398
[22] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[23] J. Li, J. M. Guo and W. C. Shiu, Bounds on normalized Laplacian eigenvalues of graphs, J. Inequal. Appl. 316 (2014), 1-8. https://doi.org/10.1186/1029-242X-2014-316
[24] B. Liu, Y. Huang and J. Feng, A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem. 68 (2012), 913-916.
[25] J. Liu and B. Liu, A Laplacian-energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59 (2008), 355-372.
[26] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994), 143-176. https://doi.org/10.1016/0024-3795(94)90486-3
[27] E. I. Milovanović, M. M. Matejić and I. Ž Milovanović, On the normalized Laplacian spectral radius, Laplacian incidence energy and Kemeny's constant, Linear Algebra Appl. 582 (2019), 181-196. https://doi.org/10.1016/j.laa.2019.08.004
[28] I. Milovanović, E. Milovanović, M. Matejić and Ş. B. Bozkurt Altındağ, Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs, Commn. Comb. Optim. 6(2) (2021), 259-271. https://doi.org/22049/CCO.2021.26987.1173
[29] D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer Verlag, Berlin, Heidelberg, New York, 1970.
[30] J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, Wien, Hölder, 1913, 1295-1438.
[31] M. Randić, On characterization of molecule branching, J. Amer. Chem. Soc. 97 (1975), 66096615. https://pubs.acs.org/doi/10.1021/ja00856a001
[32] L. Shi and H. Wang, The Laplacian incidence energy of graphs, Linear Algebra Appl. 439 (2013), 4056-4062. https://doi.org/10.1016/j.laa.2013.10.028
[33] S. Sun and K. C. Das, Comparison of resolvent energies of Laplacian matrices, MATCH Commun. Math. Comput. Chem. 82 (2019), 491-514.
[34] E. Zogić and E. Glogić, New bounds for the resolvent energy of graphs, Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and Mechanics 9(2) (2017), 187-191. https://doi.org/10.5937/SPSUNP1702187Z
[35] E. Zogić, B. Borovićanin, E. Glogić, I. Milovanović and E. Milovanović, New bounds for some spectrum-based topological indices of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021), 685-701.
[36] P. Zumstein, Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph, Th. Diploma, ETH Zürich, 2005.
${ }^{1}$ Yenikent Kardelen Konutlari, Selçuklu, 42070
Konya, Turkey
Email address: srf_burcu_bozkurt@hotmail.com

[^1]
[^0]: Key words and phrases. Normalized signless Laplacian eigenvalues, normalized signless Laplacian resolvent energy, bounds.

 2020 Mathematics Subject Classification. Primary: 05C50. Secondary: 05C90.
 DOI 10.46793/KgJMat2405.673A
 Received: January 30, 2021.
 Accepted: August 20, 2021.

[^1]: ${ }^{2}$ Faculty of Electronic Engineering,
 University of Niš
 Email address: igor@elfak.ni.ac.rs
 Email address: ema@elfak.ni.ac.rs
 Email address: marjan.matejicelfak.ni.ac.rs

