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ON THE EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR A
STRONGLY DAMPED NONLINEAR COUPLED

PETROVSKY-WAVE SYSTEM

MOHAMED SAADAOUI1, MOUNIR BAHLIL2,3, AND MAMA ABDELLI3

Abstract. In this paper, we consider the initial-boundary value problem for a class
of nonlinear coupled wave equation and Petrovesky system in a bounded domain.
The strong damping is nonlinear. First, we prove the existence of global weak
solutions by using the energy method combined with Faedo-Galarkin method and
the multiplier method.

In addition, under suitable conditions on functions gi(·), i = 1, 2 and a(·), we
obtain both exponential and polynomial decay estimates. The method of proofs is
direct and based on the energy method combined with the multipliers technique, on
some integral inequalities due to Haraux and Komornik.

1. Introduction

The study of nonlinear wave phenomena was performed by certain eminent scientists.
The theory of nonlinear waves, on the other hand, emerged as a coherent science in
the late 1960s and early 1970s, which were the years of its rapid growth. While study
in this area was undertaken only recently, the theory of nonlinear damped waves is
still an emerging theme. In this paper, we study the existence and decay properties
of solutions for the initial boundary value problem of the Petrovsky-wave system of
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the type 

y′′
1 + ∆2y1 − a(x)∆y2 − g1(∆y′

1) = 0, x ∈ Ω, t ≥ 0,

y′′
2 − ∆y2 − a(x)∆y1 − g2(∆y′

2) = 0, x ∈ Ω, t ≥ 0,

∆y1 = y1 = y2 = 0, x ∈ Γ, t ≥ 0,

yi(x, 0) = y0
i (x), y′

i(x, 0) = y1
i (x), x ∈ Ω, i = 1, 2,

(1.1)

where Ω is a bounded domain of Rn with regular boundary Γ and gi : R → R is a
nondecreasing continuous function with gi(0) = 0, i = 1, 2.

When a(x) = 0, the Petrovsky equation has been investigated in [7] by Komornik.
The author has used the semigroup approach to present the existence and uniqueness
of a global solution y1 for (1.1). Then, using a multiplier technique, he directly proved
exponential and polynomial decay estimates for the associated energy.

Bahlil et al. [4], studied the system:
y′′

1 + a(x)y2 + ∆2y1 − g1(y′
1(x, t)) = f1(y1, y2), in Ω × R+,

y′′
2 + a(x)y1 − ∆y2 − g2(y′

2(x, t)) = f2(y1, y2), in Ω × R+,
∂νy1 = y1 = v = y2 = 0, on Γ × R+,

(1.2)

under suitable assumptions on the weight of the damping, they proved the global
existence of solutions by use of the potential well method due to Payne and Sattinger
[13] and Sattinger [14] combined with the Faedo-Galerkin method.

Also they proved general stability estimates using some properties of convex func-
tions and the multiplier method.

In [5] Guesmia studied problem (1.2) with fi(y1, y2) = 0. He proved the existence
of a global weak solution and uniform decay of solutions.

Motivated by previous works, it is interesting to investigate the global existence and
decay of solutions to problem (1.1). Firstly, we show that, under suitable conditions
on the functions gi and a, the solutions are global in time. After that, we establish
the rate of decay of solutions by the multiplier method. Precisely, we show that the
decay rate of energy function is exponential or polynomial.

This article is organized as follows: in the next section, we give some preliminaries.
In Section 3, we study the existence of global solutions of the problem (1.1). Then in
Section 4, we are devoted to the proof of decay estimate.

2. Preliminaries and Main Results

In this section, we present some material for the proof of our result.
We first introduce the following spaces: H = L2 (Ω)×L2 (Ω), W = H1

0 (Ω)×H1
0 (Ω),

H3
∆ (Ω) = {v ∈ H3 (Ω) : v = ∆v = 0 on Γ} and ∥u∥2

H3
∆(Ω) =

∫
Ω |∇∆v|2 dx, and

V =
(
H3

∆ (Ω) ∩ H2 (Ω)
)

× H2 (Ω) , Ṽ =
(
H3

∆ (Ω) ∩ H4 (Ω)
)

×
(
H3

∆ (Ω) ∩ H2 (Ω)
)

.

Let H ′, V ′, Ṽ ′, W ′ the dual spaces of H, V, Ṽ , W, respectively. We have
Ṽ ⊂ V ⊂ W ⊂ H = H ′ ⊂ W ′ ⊂ Ṽ ′ ⊂ V.
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For the relaxation function g and a we assume the following.
(H0) Let a : Ω → R be non-increasing differentiable function bounded such that

a (x) ∈ W 1,∞ (Ω) , ∥a∥L∞(Ω) = min
{ 1

c′ , 1
}

,(2.1)

where c′ > 0 is the constant ∥∇∆v∥ ≤ c′∥∆v∥.
(H1) gi : R → R, i = 1, 2, are non-increasing differentiable functions such that gi

is a C1 and globally lipschitz with gi (0) = 0 and there exists p ≥ 1, cj, j = 1, . . . , 4,
τ0, τ1 are strictly positive constants for all s ∈ R satisfying

c1|s|p ≤ gi(s) ≤ c2|s|
1
p , if |s| ≤ 1,(2.2)

c3|s| ≤ gi(s) ≤ c4|s|, if = |s| > 1,(2.3)
exists τ0, τ1 > 0, τ0 ≤ g′

i(s) ≤ τ1, for all s ∈ R.(2.4)

Now inspired by Komornik [7], we define the energy associated with the solution of
system (1.1).

Lemma 2.1. The energy associated with the solution of the problem (1.1) by the
following formula

E(t) = 1
2

∫
Ω

(
|∇y′

1|2 + |∇y′
2|2 + |∇∆y1|2 + |∆y2|2

)
dx +

∫
Ω

a(x)∆y1∆y2dx(2.5)

is a nonnegative function and satisfies E ′(t) ≤ 0 .

Proof. Multiplying the first equation in (1.1) by −∆y′
1 and the second equation by

−∆y′
2, integrating over Ω using integration by part and Green’s formula, we get

1
2

d

dt

[∫
Ω

(
|∇y′

1|2 + |∇y′
2|2 + |∇∆y1|2 + |∆y2|2

)
dx + 2

∫
Ω

a(x)∆y1∆y2 dx
]

= −
∫

Ω
∆y′

1g1(∆y′
1) + ∆y′

2g2(∆y′
2) dx.

Using Hölder’s inequality, Sobolev embedding and condition (2.1), we get∫
Ω

a(x)∆y1∆y2dx ≥ −1
2∥a∥L∞(Ω)

√
c′

√
c′

∫
Ω

|∆y1∆y2| dx

≥ −1
2∥a∥L∞(Ω)

∫
Ω

( 1
c′ |∆y1|2 + c′|∆y2|2

)
dx

≥ −1
2∥a∥L∞(Ω)

∫
Ω

(
c′2

c′ |∇∆y1|2 + c′|∆y2|2
)

dx

≥ −c′

2 ∥a∥L∞(Ω)

∫
Ω

(
|∇∆y1|2 + |∆y2|2

)
dx.

Then

E(t) ≥ 1
2

∫
Ω

(
|∇y′

1|2 + |∇y′
2|2 + (1 − c′∥a∥L∞(Ω))(|∇∆y1|2 + |∆y2|2)

)
dx ≥ 0.
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Now, E is a nonnegative function

□(2.6) E ′(t) = −
∫

Ω
(∆y′

1g1(∆y′
1) + ∆y′

2g2(∆y′
2)) dx.

3. Global Existence

In this section, we use the Faedo-Galerkin approximation to construct an approxi-
mate solutions of (1.1). We are now in the position to state our results.

Theorem 3.1. Let (y0
1, y0

2) ∈ Ṽ and (y1
1, y1

2) ∈ V , arbitrarily. Assume that (2.1) and
(2.2)–(2.4) hold. Then system (1.1) has a unique weak solution satisfying

(y1, y2) ∈ L∞(R+, Ṽ ), (y′
1, y′

2) ∈ L∞(R+, V )
and

(y′′
1 , y′′

2) ∈ L∞(R+, W ).

Proof. We use the Faedo-Galerkin method to prove the existence of global solutions.
Let T > 0 be fixed and denoted by V k the space generated by {w1

i , w2
i , . . . , wk

i }, where
the set {wk

i , k ∈ N} is a basis of Ṽ .
We construct approximate solution yk

i , k = 1, 2, 3, . . . , in the form

yk
i (x, t) =

k∑
j=1

cjk(t)wj
i (x),

where cjk, j = 1, 2, . . . , k, are determined by the following ordinary differential equa-
tions 

(ÿk
1 + ∆2yk

1 − a(x)∆yk
2 − g1(∆ẏk

1 ), wj
1) = 0, for all wj

1 ∈ V k,

(ÿk
2 − ∆uk

2 − a(x)∆yk
1 − g2(∆ẏk

2 ), wj
2) = 0, for all wj

2 ∈ V k,

yk
i (0) = y0k

i , ẏk
i (0) = y1k

i , x ∈ Ω, i = 1, 2,

(3.1)

with initial conditions

yk
1 (0) =y0k

1 =
k∑

j=1
⟨y0

1, wj
1⟩wj

1 → y0
1, in H4(Ω) ∩ H3

∆(Ω) as k → +∞,(3.2)

yk
2 (0) =y0k

2 =
k∑

j=1
⟨y0

2, wj
2⟩wj

2 → y0
2, in H3

∆(Ω) ∩ H2(Ω) as k → +∞,(3.3)

ẏk
1 (0) =y1k

1 =
k∑

j=1
⟨y1

1, wj
1⟩wj

1 → y1
1, in H3

∆(Ω) ∩ H2(Ω) as k → +∞,(3.4)

ẏk
2 (0) =y1k

2 =
k∑

j=1
⟨y1

2, wj
2⟩wj

2 → y1
2, in H2(Ω) as k → +∞,(3.5)
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and

− ∆2y0k
1 + a(x)∆y0k

2 + g1(∆y1k
1 ) → −∆2y0

1 + a(x)∆y0
2 + g1(∆y1

1), in H1
0 (Ω) as k → +∞,

(3.6)

∆y0k
2 + a(x)∆y0k

1 + g2(∆y1k
2 ) → ∆y0

2 + a(x)∆y0
1 + g2(∆y1

2), in H1
0 (Ω) as k → +∞.

(3.7)

By using some a priori estimates to show that tk = ∞. Then, we show that the sequence of
solutions to (3.1) converges to a solution of (1.1) with the claimed smoothness.

The first estimate. Taking wj
i = −2∆ẏk

i in (3.1), we obtain

d

dt

∫
Ω

(
|∇ẏk

1 |2 + |∇ẏk
2 |2 + |∇∆yk

1 |2 + |∆yk
2 |2
)

dx + 2a(x)∆yk
1∆yk

2 dx

+ 2
∫

Ω
∆ẏk

1g1(∆ẏk
1 ) dx + 2

∫
Ω

∆ẏk
2g2(∆ẏk

2 ) dx = 0.

(3.8)

Integrating it over (0, t), we obtain∫
Ω

(
|∇ẏk

1 (t)|2 + |∇ẏk
2 (t)|2

)
dx +

(
1 − c′∥a∥L∞(Ω)

) ∫
Ω

(
|∇∆yk

1 (t)|2 + |∆yk
2 (t)|2

)
dx

+ 2
∫ t

0

∫
Ω

∆ẏk
1 (s)g1(∆ẏk

1 (s)) dx ds + 2
∫ t

0

∫
Ω

∆ẏk
2 (s)g2(∆ẏk

2 (s)) dx ds

≤Ak(0) ≤ C1,

(3.9)

where

Ak(0) =
∫

Ω

(
|∇ẏk

1 (t)|2 + |∇ẏk
2 (t)|2

)
dx + (1 + c′∥a∥L∞(Ω))

∫
Ω

(
|∇∆yk

1 (t)|2 + |∆yk
2 (t)|2

)
dx,

for some C1 independent of k. These estimates imply that the solutions yk
i exist globally in

]0, +∞[. Estimate (3.9) yields

yk
1 is bounded in L∞(0, T ; H3

∆(Ω)),(3.10)
yk

2 is bounded in L∞(0, T ; H2(Ω)),(3.11)
ẏk

1 is bounded in L∞(0, T ; H1
0 (Ω)),(3.12)

ẏk
2 is bounded in L∞(0, T ; H1

0 (Ω)),(3.13)
∆ẏk

i gi(∆ẏk
i ) is bounded in L1(A),(3.14)

where A = Ω × (0, T ).
The second estimate. Taking wj

i = ∆2ẏk
i in (3.1), implies

d

dt

∫
Ω

(
|∆ẏk

1 |2 + |∆ẏk
2 |2 + |∆2yk

1 |2 + |∇∆yk
2 |2 + 2a(x)∇∆yk

1∇∆yk
2

)
dx

+ 2
∫

Ω
∇a(x)∆yk

2∇∆ẏk
1 dx + 2

∫
Ω

∇a(x)∆yk
1∇∆ẏk

2 dx

+ 2
∫

Ω
|∇∆ẏk

1 |2g′
1(∆ẏk

1 ) dx + 2
∫

Ω
|∇∆ẏk

2 |2g′
2(∆ẏk

2 ) dx = 0

.(3.15)



884 M. SAADAOUI, M. BAHLIL, AND M. ABDELLI

By Using Hölder’s inequality and Sobolev embedding, (3.10) and condition (2.2), we have∣∣∣∣2 ∫
Ω

a(x)∇∆yk
1∇∆yk

2 dx

∣∣∣∣ ≤ 2∥a∥
∫

Ω
|∇∆yk

1 ||∇∆yk
2 | dx

≤ 2∥a∥2
∫

Ω
|∇∆yk

1 |2 dx + 1
2

∫
Ω

|∇∆yk
2 |2 dx

≤ 2∥a∥2C ′ + 1
2

∫
Ω

|∇∆yk
2 |2 dx

(3.16)

and

2
∣∣∣∣∫

Ω
∇a(x)∆yk

2∇∆ẏk
1 dx

∣∣∣∣ ≤ 2
∫

Ω
|∇a(x)||∆yk

2 ||∇∆ẏk
1 | dx

≤ 2
√

τ0

∫
Ω

|∇a(x)||∆yk
2 ||∇∆ẏk

1 |
√

g′
1(∆ẏk

1 ) dx

≤
∫

Ω
|∇∆ẏk

1 |2g′
1(∆ẏk

1 ) dx + 1
τ0

∥∇a∥2
∫

Ω
|∆yk

2 |2 dx

≤
∫

Ω
|∇∆ẏk

1 |2g′
1(∆ẏk

1 ) dx + 1
τ0

∥∇a∥2C ′.

(3.17)

Similarly, we have

2
∣∣∣∣∫

Ω
∇a(x)∆yk

1∇∆ẏk
2 dx

∣∣∣∣ ≤
∫

Ω
|∇∆ẏk

2 |2g′
2(∆ẏk

2 ) dx + 1
τ0

∥∇a∥2
∫

Ω
|∆yk

1 |2 dx

≤
∫

Ω
|∇∆ẏk

2 |2g′
2(∆ẏk

2 ) dx + c′

τ0
∥∇a∥2

∫
Ω

|∇∆yk
1 |2 dx

≤
∫

Ω
|∇∆ẏk

2 |2g′
2(∆ẏk

2 ) dx + c′

τ0
∥∇a∥2C ′.

(3.18)

Combining (3.16)–(3.18), into (3.15) and integrating over (0, t), we obtain

F k(t) +
∫ t

0

∫
Ω

|∇∆ẏk
1 (s)|2g′

1(∆ẏk
1 (s)) dx dt +

∫ t

0

∫
Ω

|∇∆ẏk
2 (s)|2g′

2(∆ẏk
2 (s)) dx dt

≤Bk(0) ≤ C2, for all t ∈ [0, tk),

where C2 independent of k and

F k(t) =
∫

Ω

(
|∆ẏk

1 |2 + |∆ẏk
2 |2 + |∆2yk

1 |2
)

dx + 1
2

∫
Ω

|∇∆yk
2 |2 dx,

Bk(0) =
∫

Ω

(
|∆y1k

1 |2 + |∆y1k
2 |2 + |∆2y0k

1 |2
)

dx + 2∥a∥2C ′ + 1
2

∫
Ω

|∇∆y0k
2 |2 dx

+
(

c′

τ0
∥∇a∥2C ′ + c′

τ0
∥∇a∥2C ′

)
T.

Therefore, we conclude that

yk
1 is bounded in L∞(0, T ; H4(Ω)),(3.19)

yk
2 is bounded in L∞(0, T ; H3

∆(Ω)),(3.20)
ẏk

1 is bounded in L∞(0, T ; H2(Ω)),(3.21)
ẏk

2 is bounded in L∞(0, T ; H2(Ω)).(3.22)
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The third estimate. Assume that t < T and let 0 < ξ < T − t and

ykξ
i (x, t) = yk

i (x, t + ξ), i = 1, 2.

So, Uk,ξ
1 (x, t) = yk

1 (x, t + ξ) − yk
1 (x, t), solves the differential equation(

Ük,ξ
1 + ∆2Uk,ξ

1 − a(x)∆yk,ξ
2 − (g1(∆ẏkξ

1 ) − g1(∆ẏk
1 )), wj

1

)
= 0, for all wj

1 ∈ V k,(3.23)

and the set
Uk,ξ

2 (x, t) = yk
2 (x, t + ξ) − yk

2 (x, t).
Uk,ξ

2 solves the differential equation(
Ük,ξ

2 − ∆Uk,ξ
2 − a(x)∆Uk,ξ

1 − (g2(∆ẏkξ
2 ) − g2(∆ẏk

2 )), wj
2

)
= 0, for all wj

2 ∈ V k.(3.24)

Choosing wj
1 = −∆ẏ1

kξ in (3.23) and wj
2 = ∆U̇2

kξ in (3.24), and using the fact that gi is
nondecreasing, we obtain

d

dt

∫
Ω

(
|∇U̇1

kξ(x, t)|2 + |∇U̇2
kξ(x, t)|2 + |∇∆Ukξ

1 (x, t)|2 + |∆Ukξ
2 (x, t)|2

)
dx

+ 2 d

dt

∫
Ω

a(x)∆Ukξ
2 (x, t)∆Ukξ

1 (x, t) dx ≤ 0, for all t ≥ 0.

Integrating over [0, t], we get∫
Ω

(
|∇U̇1

kξ(t)|2 + |∇U̇2
kξ(t)|2

)
dx + (1 − c′∥a∥)

∫
Ω

(
|∇∆Ukξ

1 (t)|2 + |∆Ukξ
2 (t)|2

)
dx

≤C2

∫
Ω

(
|∇U̇1

kξ(0)|2 + |∇U̇2
kξ(0)|2 + |∇∆Ukξ

1 (0)|2 + |∆Ukξ
2 (0)|2

)
dx,

where C2 is a positive constant depending only on ∥a∥ and c′. By dividing by ξ2, and pass
to the limit when ξ → 0, we have∫

Ω

(
|∇ÿk

1 (t)|2 + |∇ÿk
2 (t)|2 + |∇∆ẏk

1 (t)|2 + |∆ẏk
2 (t)|2

)
dx

≤C ′
2

∫
Ω

(
|∇ÿk

1 (0)|2 + |∇ÿk
2 (0)|2 + |∇∆y1k

1 |2 + |∆y1k
2 |2

)
dx.

Now we estimate ∥∇ÿk
i (0)∥. Choosing v = −∆ÿk

i in (3.1) and substitute t = 0 , we obtain

∥∇ÿk
1 (0)∥2 =

∫
Ω

∇ÿk
1 (0)∇

(
−∆2y0k

1 − a(x)y0k
2 + g1(∆y1k

1 )
)

dx

and
∥∇ÿk

2 (0)∥2 =
∫

Ω
∇ÿk

2 (0)∇
(
∆y0k

2 − a(x)y0k
1 + g2(∆y1k

2 )
)

dx.

By Cauchy-Schwarz inequality, we obtain

∥∇ÿk
1 (0)∥ ≤

(∫
Ω

∣∣∣∇ (
−∆2y0k

1 − a(x)y0k
2 + g1(∆y1k

1 )
)∣∣∣2 dx

) 1
2

and

∥∇ÿk
2 (0)∥ ≤

(∫
Ω

∣∣∣∇ (
∆y0k

2 − a(x)y0k
1 + g2(∆y1k

2 )
)∣∣∣2 dx

) 1
2

.

(3.6) and (3.7) yields
(ÿk

1 (0), ÿk
2 (0)) are bounded in W × W.(3.25)
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And by (3.4), (3.5) and (3.25) we deduce∫
Ω

(
|∇ÿk

1 (t)|2 + |∇ÿk
2 (t)|2 + |∇∆ẏk

1 (t)|2 + |∆ẏk
2 (t)|2

)
dx ≤ C3, for all t ≥ 0,

where C3 is a positive constant independent of k ∈ N. Therefore, we deduce

ẏk
1 is bounded in L∞(0, T ; H3

∆(Ω)),(3.26)
ẏk

2 is bounded in L∞(0, T ; H2(Ω)),(3.27)
ÿk

1 is bounded in L∞(0, T ; H1
0 (Ω)),(3.28)

ÿk
2 is bounded in L∞(0, T ; H1

0 (Ω)).(3.29)

Applying Dunford-Pettis and Banach-Alaoglu-Bourbaki theorems, we conclude from (3.10)–
(3.14), (3.19)–(3.22) and (3.26)–(3.29) that there exists a subsequence {ym

i } of {yk
i } such

that

(ym
1 , ym

2 ) ⇀(y1, y2), weak-star in L∞(0, T ; Ṽ ),(3.30)
(ẏm

1 , ẏm
2 ) ⇀(y′

1, y′
2), weak-star in L∞(0, T ; V ),(3.31)

(ÿm
1 , ÿm

2 ) ⇀(y′′
1 , y′′

2), weak-star in L∞(0, T ; W ),(3.32)
(ẏm

1 , ẏm
2 ) →(y′

1, y′
2), almost everywhere in Ω × [0, +∞),(3.33)

gi(∆ẏm
i ) ⇀χi, weak-star in L2(A).(3.34)

As (ym
1 , ym

2 ) is bounded in L∞(0, T ; Ṽ ) by (3.30) and the injection of Ṽ in H is compact,
we have

(ym
1 , ym

2 ) → (y1, y2), strong in L2(0, T ; H).(3.35)

On the other hand, using (3.30), (3.32) and (3.35), we obtain∫ T

0

∫
Ω

(
ÿm

1 (x, t) + ∆2ym
1 (x, t) − a(x)∆ym

2 (x, t)
)

w dxdt

→
∫ T

0

∫
Ω

(
y′′

1(x, t) + ∆2y1(x, t) − a(x)∆y2(x, t)
)

w dxdt

(3.36)

and ∫ T

0

∫
Ω

(
ÿm

2 (x, t) − ∆ym
2 (x, t) − a(x)∆ym

1 (x, t)
)
w dxdt

→
∫ T

0

∫
Ω

(
y′′

2(x, t) − ∆y2(x, t) − a(x)∆y1(x, t)
)
w dxdt,

(3.37)

for all w ∈ L2(0, T ; L2(Ω)).
It remains to prove the convergence∫ T

0

∫
Ω

gi(∆ẏm
i ) w dxdt →

∫ T

0

∫
Ω

gi(∆y′
i) w dxdt,

when m → +∞. To finish the proof we shall use the following lemma.

Lemma 3.1. Let gi(∆y′
i) ∈ L1(A) and ∥gi(∆y′

i)∥L1(A) ≤ K, where K is a constant inde-
pendent of t. Then gi(∆ẏm

i ) → gi(∆y′
i) in L1(A).
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Proof. Let g(∆y′) ∈ L1(A). Since gi is continuous, we deduce from (3.33)
gi(∆ẏk

i ) →gi(∆y′
i), almost everywhere in A,(3.38)

∆ẏm
i gi(∆ẏm

i ) →∆y′
igi(∆y′

i), almost everywhere in A.

Also, by (3.13) and Fatou’s lemma, we have∫ T

0

∫
Ω

∆y′
i(x, t)gi(∆y′

i(x, t)) dxdt ≤ K1, for T > 0.(3.39)

Now, we can estimate
∫ T

0
∫

Ω |gi(∆y′
i(x, t))| dxdt. By using Cauchy-Schwarz inequality and

(2.3), we have the following.
1. If |∆y′

i| ≥ 1, then∫ T

0

∫
Ω

|gi(∆y′
i(x, t))| dx dt ≤ c|A|1/2

(∫ T

0

∫
Ω

|gi(∆y′
i(x, t))|2 dx dt

)1/2

≤ c|A|1/2
(∫ T

0

∫
Ω

∆y′
igi(∆y′

i(x, t)) dx dt

)1/2

≤ K2.

2. If |∆y′
i| < 1, then∫ T

0

∫
Ω

|gi(∆y′
i(x, t))| dx dt ≤ c|A|1/2

(∫ T

0

∫
Ω

|gi(∆y′
i(x, t))|2 dx dt

)1/2

≤ c|A|1/2
(∫ T

0

∫
Ω

|gi(∆y′
i(x, t))|

2
p+1 dx dt

)1/2

≤ c|A|(3p+1)/2(p+1)
(∫ T

0

∫
Ω

∆y′
igi(∆y′

i(x, t)) dx dt

)1/(p+1)

≤ K3, for T > 0.

Then ∫ T

0

∫
Ω

|gi(∆y′
i(x, t))| dxdt ≤ K, for T > 0.

And let E ⊂ Ω × [0, T ] and |E| is the measure of E and the set

E1 =
{

(x, t) ∈ E : |gi(∆ẏm
i (x, t))| ≤ 1√

|E|

}
, E2 = E\E1.

If M(r) = inf{|s| : s ∈ R and |gi(s)| ≥ r}, then∫
E

|gi(∆ẏm
i )| dxdt ≤ c

√
|E| +

(
M

(
1√
|E|

))−1 ∫
E2

|∆ẏm
i gi(∆ẏm

i )| dxdt.

By applying (3.13), we deduce

sup
m

∫
E

gi(∆ẏm
i ) dxdt → 0, when |E| → 0.

From Vitali’s convergence theory, we deduce
gi(∆ẏm

i ) → gi(∆y′
i), in L1(A).
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Proof of lemma is completed. □

End of proof of Theorem 3.1. Now (3.34) implies that

gi(∆ẏm
i ) ⇀ gi(∆y′

i), weak-star in L2([0, T ] × Ω).

We deduce, for all v ∈ L2([0, T ] × L2(Ω), that∫ T

0

∫
Ω

gi(∆ẏm
i )w dxdt →

∫ T

0

∫
Ω

gi(∆y′
i)w dxdt.

Finally, for all w ∈ L2([0, T ] × L2(Ω)):∫ T

0

∫
Ω

(
y′′

1(x, t) + ∆2y1(x, t) − a(x)∆y2(x, t) − g1(∆y′
1(x, t))

)
w dxdt = 0

and ∫ T

0

∫
Ω

(
y′′

2(x, t) − ∆y2(x, t) − a(x)∆y1(x, t) − g2(∆y′
2(x, t))

)
w dxdt = 0.

Therefore, (y1, y2) are a solutions for the problem (1.1).
This concludes the proof of Theorem 3.1. □

4. Asymptotic Behavior

In this section, we prove stability result for the energy of the solution of system
(1.1), by using the multiplier technique.

Theorem 4.1. Let (y0
1, y0

2) ∈ Ṽ and (y1
1, y1

2) ∈ V . Assume that (2.1)–(2.4) hold. The
energy of system (1.1), given by (2.5) decay estimate:

E(t) ≤ Ct−2/(p−1), for all t > 0 if p > 1,(4.1)

and

E(t) ≤ C ′E(0)e−wt, for all t > 0 if p = 1,(4.2)

where C is a positive constant only depending on E(0) and C ′, w are positive constants
independent of the initial data.

Proof. This proof is established in two steps.
Step 1. Multiplying the first equation of (1.1) by −Eµ∆y1, we obtain

0 =
∫ T

S
−Eµ

∫
Ω

∆y1
(
y′′

1 + ∆2y1 − a(x)∆y2 + g1(∆y′
1)
)
dxdt

= −
[
Eµ

∫
Ω

y′
1∆y1 dx

]T

S
+ µ

∫ T

S
E ′Eµ−1

∫
Ω

∆y1y
′
1 dxdt

− 2
∫ T

S
Eµ

∫
Ω

|∇y′
1|2 dxdt +

∫ T

S
Eµ

∫
Ω

(
|∇y′

1|2 + |∇∆y1|2
)

dxdt

+
∫ T

S
Eµ

∫
Ω

a(x)∆y1∆y2 dxdt +
∫ T

S
Eµ

∫
Ω

∆y1g1(∆y′
1) dxdt.
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Step 2. Multiplying the second equation of (1.1) by −Eµ∆y2, we obtain

0 =
∫ T

S
−Eµ

∫
Ω

∆y2
(
y′′

2 + ∆y2 − a(x)∆y1 + g2(∆y′
2)
)

dxdt

= −
[
Eµ

∫
Ω

y′
2∆y2 dx

]T

S
+ µ

∫ T

S
E ′Eµ−1

∫
Ω

∆y2y
′
2 dxdt

− 2
∫ T

S
Eµ

∫
Ω

|∇y′
2|2 dxdt +

∫ T

S
Eµ

∫
Ω

(
|∇y′

2|2 + |∆y2|2)
)

dxdt

+
∫ T

S
Eµ

∫
Ω

a(x)∆y2∆y1 dxdt +
∫ T

S
Eµ

∫
Ω

∆y2g2(∆y′
2) dxdt.

By their sum, we obtain

∫ T

S
Eµ+1 dt ≤

[
Eµ

∫
Ω

(
y′

1∆y1 + y′
2∆y2

)
dx
]T

S

− µ
∫ T

S
E ′Eµ−1

∫
Ω

(
∆y1y

′
1 + ∆y2y

′
2

)
dxdt

+ 2
∫ T

S
Eµ

∫
Ω

(
|∇y′

1|2 + |∇y′
2|2
)
dxdt

−
∫ T

S
Eµ

∫
Ω

(
∆y1g1(∆y′

1) + ∆y2g2(∆y′
2)
)
dxdt.

(4.3)

Since E is non-increasing, we find that

[
Eµ

∫
Ω

(y′
1∆y1 + y′

2∆y2) dx
]T

S
≤cEµ+1(S),

µ
∣∣∣∣ ∫ T

S
E ′Eµ−1

∫
Ω

(∆y1y
′
1 + ∆y2y

′
2) dxdt

∣∣∣∣ ≤cEµ+1(S).

Using these estimates, we conclude from (4.3) that

∫ T

S
Eµ+1 dt ≤CEµ+1(S) + 2

∫ T

S
Eµ

∫
Ω

(
|∇y′

1|2 + |∇y′
2|2
)

dxdt

+
∫ T

S
Eµ

∫
Ω

(
|∆y1||g1(∆y′

1)| + |∆y2||g2(∆y′
2)|
)
dxdt.

(4.4)

Now, we estimate the terms of the right-hand side of the inequality (4.4), see Komornik
[7].

We consider the following partition of Ω

Ω+ = {x ∈ Ω : |∆y′
i| ≥ 1}, Ω− = {x ∈ Ω : |∆y′

i| < 1}.
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By using Sobolev embedding and Young’s inequality, we obtain

∫ T

S
Eµ

∫
Ω+

|∆y1||g1(∆y′
1)| dxdt +

∫ T

S
Eµ

∫
Ω+

|∇y′
1|2 dxdt

≤ε
∫ T

S
Eµ

∫
Ω+

|∆y1|2 dxdt + C(ε)
∫ T

S
Eµ

∫
Ω+

|g1(∆y′
1)|2 dx dt + c

∫ T

S
Eµ

∫
Ω+

|∆y′
1|2

≤εc′
∫ T

S
Eµ

∫
Ω

|∇∆y1|2 dxdt +
(

C(ε)c2 + c

c1

) ∫ T

S
Eµ

∫
Ω

∆y′
1g1(∆y′

1) dxdt

≤εC
∫ T

S
Eµ+1 dt + C1(ε)

∫ T

S
Eµ(−E ′) dt

≤εC
∫ T

S
Eµ+1 dt + C1(ε, µ)Eµ+1(S).

(4.5)

Similarly, we have∫ T

S
Eµ

∫
Ω+

|∆y2||g2(∆y′
2)| dxdt +

∫ T

S
Eµ

∫
Ω+

|∇y′
2|2 dxdt

≤εC
∫ T

S
Eµ+1 dt + C2(ε, µ)Eµ+1(S).

(4.6)

Summing (4.5) and (4.6), we obtain∫ T

S
Eµ

∫
Ω+

(
|∆y1||g1(∆y′

1)| + |∆y2||g2(∆y′
2)|
)

dxdt(4.7)

+
∫ T

S
Eµ

∫
Ω+

(
|∇y′

1|2 + |∇y′
2|2
)

dxdt

≤εC
∫ T

S
Eµ+1 dt + C(ε, µ)Eµ+1(S)

and ∫ T

S
Eµ

∫
Ω−

(
|∆y1||g1(∆y′

1)| + |∇y′
1|2
)

dxdt

≤ε′c′
∫ T

S
Eµ

∫
Ω

|∇∆y1|2 dxdt + C(ε′)
∫ T

S
Eµ

∫
Ω

(
|∆y′

1|2 + |g1(∆y′
1)|2

)
dxdt

≤ε′c′
∫ T

S
Eµ+1 dt + C(ε′)

∫ T

S
Eµ

∫
Ω
(∆y′

1g1(∆y′
1))

2
p+1 dxdt

≤ε′C
∫ T

S
Eµ+1 dt + C(ε′, p)

∫ T

S
Eµ

(∫
Ω

∆y′
1g1(∆y′

1) dx
) 2

p+1
dt.

(4.8)

Similarly, we have∫ T

S
Eµ

∫
Ω−

(
|∆y2||g2(∆y′

2)| + |∇y′
2|2
)

dxdt

≤ε′C
∫ T

S
Eµ+1 dt + C(ε′, p)

∫ T

S
Eµ

(∫
Ω

∆y′
2g2(∆y′

2) dx
) 2

p+1
dt.

(4.9)
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Summing (4.8) and (4.9), we obtain∫ T

S
Eµ

∫
Ω−

(
|∆y1||g1(∆y′

1)| + |∆y2||g2(∆y′
2)|
)

dxdt

+
∫ T

S
Eµ

∫
Ω−

(
|∇y′

1|2 + |∇y′
2|2
)

dxdt

≤ε0C
∫ T

S
Eµ+1 dt + C(ε0, p)

∫ T

S
Eµ (−E ′)

2
p+1 dt

≤ ε0C
∫ T

S
Eµ+1 dt + ε1

∫ T

S
Eµ p+1

p−1 dt + C (ε1, p) E(S).

(4.10)

Comblining (4.7) and (4.10) in (4.4), we find∫
Ω

Eµ+1 dt ≤ CE(S) + C ′Eµ+1(S) + εC
∫ T

S
Eµ+1 dt + ε1

∫ T

S
Eµ p+1

p−1 dt.

We choose µ such that µp+1
p−1 = µ+1, so, µ = p−1

2 , and choosing ε and ε1 small enough,
we obtain ∫

Ω
Eµ+1 dt ≤ C ′E(S) + C ′Eµ(0)E(S),

where C ′ is positive constant independent of E(0). Hence, the estimates (4.1) and
(4.2) follow by applying the following result of Martinez.

Lemma 4.1. Let E : R+ → R+ be a non-increasing function and assume that there
are two constants µ ≥ 0, ω > 0 such that∫ +∞

t
E(s)µ+1 ds ≤ ωE(0)µE(t), for all t ≥ 0.

Then, we have for every t > 0
E(t) ≤ E(0)

(
1 + µ

1 + ωµt

)− 1
µ

, if µ > 0,

E(t) ≤ E(0)e1−ωt, if µ = 0.

For a short proof of this lemma we refer to [12].
This completes the proof of Theorem 4.1. □
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