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AN APPROACH TO LAGRANGE’S THEOREM IN
PYTHAGOREAN FUZZY SUBGROUPS

SUPRIYA BHUNIA1 AND GANESH GHORAI1

Abstract. The Pythagorean fuzzy environment is a modern way of depicting
uncertainty. The concept of Pythagorean fuzzy semi-level subgroups of any group is
described in this paper. The Pythagorean fuzzy order of an element in a Pythagorean
fuzzy subgroup is introduced and established various algebraic attributes. The
relation between the Pythagorean fuzzy order of an element of a group and the order
of that group is established. The Pythagorean fuzzy normalizer and Pythagorean
fuzzy centralizer of Pythagorean fuzzy subgroups are discussed. Further, the concept
of Pythagorean fuzzy quotient group and the index of a Pythagorean fuzzy subgroup
are defined. Finally, a framework is developed for proving Lagrange’s theorem in
Pythagorean fuzzy subgroups.

1. Introduction

One of the most important theorems in Abstract algebra is Lagrange’s theorem.
This theorem is very crucial in case of finite groups because it provides an overview
of subgroup size. Lagrange’s theorem has various applications in number theory. For
further details, we refer to [16].

Uncertainty is an unavoidable element of our lives. This universe isn’t built on
assumptions or precise measures. It is not always feasible to make straightforward
decisions. We face a significant problem in dealing with errors in decision-making
situations. In 1965, Zadeh [19] proposed the fuzzy set as a way to deal with ambiguity
in real-world problems. Following that, fuzzy sets become a worldwide study trend.
Rosenfeld [15] was the first to examine the concept of fuzzy subgroup and its features
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in 1971. The concepts of fuzzy coset and fuzzy normal subgroup were introduced by
Ajmal and Prajapati [2]. Dixit et al. [10] addressed fuzzy level subgroups and the
union of fuzzy subgroups in 1990. Biswas[8] was the first to suggest the concept of an
anti-fuzzy subgroup. The concepts of fuzzy normal subgroup, fuzzy coset, and fuzzy
quotient subgroup were presented by Ajmal and Prajapati [2] in 1992. Chakraborty
and Khare [9] investigated a variety of fuzzy homomorphism features. Ajmal [3]
also looked into homomorphisms of fuzzy subgroups. Kim [11] established the order
of fuzzy subgroups and fuzzy p-subgroups in 1994. In 1999, Ray [14] proposed the
product of fuzzy subgroups. Many researchers have been studying the features of fuzzy
groups in recent years. In 2015, Tarnauceanu [17] developed fuzzy normal subgroups
of finite groups. Addis [1] proposed fuzzy homomorphism theorems for groups in 2018.
In 2021, Bhunia [5] and Ghorai [7] presented the concept of (α, β)-Pythagorean fuzzy
sets and characterized (α, β)-Pythagorean fuzzy subgroups.

When it comes to decision-making, assigning membership values isn’t always ad-
equate. Atanassov [4] established the intuitionistic fuzzy set in 1986 by attributing
non-membership degrees to membership degrees. Yager [18] defined Pythagorean
fuzzy set (PFS) in 2013 using this approach. In comparison to intuitionistic fuzzy
sets, this set provides a modern technique to model vagueness and uncertainty with
high precision and accuracy. Peng [13] and Yang presented some results relating
to it. Bhunia et al. [6] started exploring Pythagorean fuzzy subgroups (PFSG) in
2021. Pythagorean fuzzy subgroup was shown to be a larger class of Intuitionistic
fuzzy subgroup. The major goal of this study is to prove Lagrange’s theorem in
Pythagorean fuzzy subgroups. This article is designed in such a way that we can
approach Lagrange’s theorem.

This paper’s outline is as follows: in Section 2, we review several key definitions
and ideas. In Section 3, we define Pythagorean fuzzy order of elements of groups
and go over some of its features. Section 4 discusses the algebraic properties of
the Pythagorean fuzzy subgroup. We introduce the concept of a Pythagorean fuzzy
quotient group and prove Lagrange’s theorem in Section 5. In Section 6, we come to
a conclusion.

2. Preliminaries

This section covers some definitions and concepts that are crucial for the develop-
ment of subsequent sections.
Definition 2.1 ([18]). A PFS ψ on a set C is defined by ψ = {(m,µ(m), ν(m)) |
m ∈ C} where µ(m) ∈ [0, 1] and ν(m) ∈ [0, 1] are the degree of membership and non
membership of m ∈ C, respectively, which fulfill the condition 0 ≤ µ2(m) +ν2(m) ≤ 1
for all m ∈ C.

PFS will be denoted as ψ = (µ, ν) rather than ψ = {(m,µ(m), ν(m)) | m ∈ C}.
Definition 2.2 ([6]). Let ψ = (µ, ν) be a PFS on a group (C, ◦). Then ψ is a PFSG
of C if:
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(i) µ2(m ◦ n) ≥ µ2(m) ∧ µ2(n) and ν2(m ◦ n) ≤ ν2(m) ∨ ν2(n) for all m,n ∈ C;
(ii) µ2(m−1) ≥ µ2(m) and ν2(m−1) ≤ ν2(m) for all m ∈ C.

Here, µ2(m) = {µ(m)}2 and ν2(m) = {ν(m)}2 for all m ∈ C.

Proposition 2.1 ([6]). Let ψ = (µ, ν) be a PFS on a group (C, ◦). Then ψ is a PFSG
of (C, ◦) if and only if µ2(m ◦ n−1) ≥ µ2(m) ∧ µ2(n) and ν2(m ◦ n−1) ≤ ν2(m) ∨ ν2(n)
for all m,n ∈ C.

Definition 2.3 ([6]). Let ψ = (µ, ν) be a PFSG on a group (C, ◦). Then for m ∈ C,
the PFLC of ψ is the PFS mψ = (mµ,mν), defined by (mµ)2(u) = µ2(m−1 ◦ u),
(mν)2(u) = ν2(m−1 ◦ u) and the PFRC of ψ is the PFS ψm = (µm, νm), defined by
(µm)2(u) = µ2(u ◦m−1), (νm)2(u) = ν2(u ◦m−1) for all u ∈ C.

Definition 2.4 ([6]). Let ψ = (µ, ν) be a PFSG on a group (C, ◦). Then ψ is a
PFNSG on the group (C, ◦) if every PFLC of ψ is a PFRC of ψ on C.

Equivalently, mψ = ψm for all m ∈ C.

Proposition 2.2 ([6]). Let ψ = (µ, ν) be a PFSG on a group (C, ◦). Then ψ is a
PFNSG on C if and only if µ2(m ◦ n) = µ2(n ◦m) and ν2(m ◦ n) = ν2(n ◦m) for all
m,n ∈ C.

Proposition 2.3 ([6]). Let ψ = (µ, ν) be a PFSG on a group (C, ◦). Then ψ is a
PFNSG of C if and only if µ2(k ◦ u ◦ k−1) = µ2(u) and ν2(k ◦ u ◦ k−1) = ν2(u) for all
u, k ∈ C.

3. Pythagorean Fuzzy Order of Elements in PFSG

This section establishes the Pythagorean fuzzy order of elements in PFSGs and
introduce the concept of Pythagorean fuzzy semi-level subgroups of any group. We
also compare the fuzzy order of elements in fuzzy subgroups with the Pythagorean
fuzzy order of elements in PFSGs. We also go over some of the algebraic features of
Pythagorean fuzzy order of elements in PFSGs.

Theorem 3.1. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C. Then
Γ(m) = {n ∈ C | µ2(n) ≥ µ2(m), ν2(n) ≤ ν2(m)} is a subgroup of C.

Proof. We have Γ(m) = {n ∈ C | µ2(n) ≥ µ2(m), ν2(n) ≤ ν2(m)}, where m ∈ C. So,
Γ(m) ⊂ C as m ∈ Γ(m). Also, e ∈ Γ(m) as µ2(e) ≥ µ2(m) and ν2(e) ≤ ν2(m). Let
p, q ∈ Γ(m). Then

µ2(pq−1) ≥ µ2(p) ∧ µ2(q−1) = µ2(p) ∧ µ2(q) ≥ µ2(m).

In the same way, we can prove that ν2(pq−1) ≤ ν2(m). Thus, pq−1 ∈ Γ(m).
Therefore, Γ(m) is a subgroup of C. □

Definition 3.1. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C. Then the
subgroup Γ(m) is a Pythagorean fuzzy semi-level subgroup of C corresponding to m.
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Definition 3.2. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C. Then the
Pythagorean fuzzy order (PFO) of m in ψ is denoted by PFO(m)ψ and defined by
the order of the Pythagorean fuzzy semi-level subgroup of m in C.

Therefore, PFO(m)ψ = O(Γ(m)) for all m ∈ C.

Example 3.1. Consider the group (Z4,+4).
Assign membership and non-membership degree of the elements of Z4 by

µ(0) = 0.95, µ(1) = 0.65, µ(2) = 0.65, µ(3) = 0.85,
ν(0) = 0.25, ν(1) = 0.75, ν(2) = 0.75, ν(3) = 0.45.

Clearly, ψ = (µ, ν) is a PFSG on Z4. Then PFO of the elements of Z4 in ψ is
presented by

PFO(0)ψ = O(Γ(0)) = 2, PFO(1)ψ = O(Γ(1)) = 4,
PFO(2)ψ = O(Γ(2)) = 4, PFO(3)ψ = O(Γ(3)) = 2.

From above example, we see that PFO(0)ψ ̸= O(0) and PFO(0)ψ = PFO(3)ψ = 2.

Remark 3.1. The PFO of an element in PFSG may not always be same to the element’s
order in the group.

Proposition 3.1. Assume ψ = (µ, ν) is a PFSG on a group C. Then PFO(e)ψ ≤
PFO(m)ψ for all m ∈ C, where e is group’s identity.

Proof. Let PFO(e)ψ = s, where s ∈ Z+. Assume that Γ(e) = {m1,m2, . . . ,ms},
where mi ̸= mj for all i, j.

Then µ2(m1) = µ2(m2) = · · · = µ2(ms) = µ2(e) and ν2(m1) = ν2(m2) = · · · =
ν2(ms) = ν2(e).

As ψ = (µ, ν) is a PFSG on C, µ2(e) ≥ µ2(m) and ν2(e) ≤ ν2(m) for all m ∈ C. So,
m1,m2, . . . ,ms ∈ Γ(u). Then Γ(e) ⊆ Γ(u). Thus, O(Γ(e)) ≤ O(Γ(m)) for all m ∈ C.
Therefore, PFO(e)ψ ≤ PFO(m)ψ for all m ∈ C. □

The next result represents a relation between the order and PFO of an element in
a group.

Theorem 3.2. Assume ψ = (µ, ν) is a PFSG on a group C. Then O(m) divides
PFO(m)ψ for all m ∈ C.

Proof. Let m ∈ C and O(m) = k, where k ∈ Z+. Then mk = e. Consider D = ⟨m⟩
as a subgroup of C.

Now, µ2(m2) ≥ µ2(m) ∧ µ2(m) = µ2(m) and ν2(m2) ≤ ν2(m) ∨ ν2(m) = ν2(m).
Therefore, by induction, µ2(mp) ≥ µ2(m) and ν2(mp) ≤ ν2(m) for all p ∈ Z+.

So, m,m2, . . . ,mk ∈ Γ(m). Consequently, D ⊆ Γ(m). Therefore, D is a subgroup
of Γ(m).

Thus, by Lagrange’s theorem, O(D)|O(Γ(m)). Therefore, O(m)|PFO(m)ψ. Since
m is a random element of C, O(m)|PFO(m)ψ for all m ∈ C. □
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We will now construct a relationship between the PFO of an element of a group in
PFSG and the group’s order.

Theorem 3.3. Assume ψ = (µ, ν) is a PFSG on a group C. Then PFO of each
element of C in ψ divides the order of C.

Proof. According to the definition, PFO(m)ψ = O(Γ(m)) for all m ∈ C.
From Theorem 3.1, Γ(m) is a subgroup of C. Therefore, by Lagrange’s theorem,

the order of Γ(m) divides the order of C. That is O(Γ(m))|O(C).
This represent that PFO(m)ψ|O(C) for all m ∈ C. Hence, the PFO of each element

of C in ψ divides the order of C. □

Theorem 3.4. Assume ψ = (µ, ν) is a PFSG on a group C. Then PFO(m)ψ =
PFO(m−1)ψ for all m ∈ C.

Proof. Let m ∈ C. Then PFO(m)ψ = O(Γ(m)).
As ψ = (µ, ν) is a PFSG on C, then µ2(m) = µ2(m−1) and ν2(m) = νβ(m−1).

Therefore, Γ(m) = {n ∈ C | µ2(n) ≥ µ2(m−1), ν2(n) ≤ ν2(m−1)} = Γ(m−1).
This proves that, O(Γ(m)) = O(Γ(m−1)). That is PFO(m)ψ = PFO(m−1)ψ.

Therefore, PFO(m)ψ = PFO(m−1)ψ for all m ∈ C. □

Now, we will introduce the PFO of a PFSG on a group.

Definition 3.3. Assume ψ = (µ, ν) is a PFSG on a group C. Then the PFO of the
PFSG ψ is denoted by PFO(ψ) and is defined by PFO(ψ) = ∨{PFO(m)ψ | m ∈ C}.

Example 3.2. Consider the PFSG ψ on Z4 in Example 3.1.
The PFO of the elements of Z4 in ψ is presented by PFO(0)ψ = 2, PFO(1)ψ = 4,

PFO(2)ψ = 4 and PFO(3)ψ = 2. Therefore, PFO(ψ) = ∨{PFO(m)ψ | m ∈ Z4}=4.

Theorem 3.5. The PFO of each PFSG on a group is the same as the group’s order.

Proof. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C.
Without sacrificing generality, we assume that µ2(n) ≥ µ2(m) and ν2(n) ≤ ν2(m)

for all n ∈ C. Since Γ(m) = {n ∈ C | µ2(n) ≥ µ2(m), ν2(n) ≤ ν2(m)}, then Γ(m) = C.
Also, |Γ(m)| ≥ |Γ(n)| for all n ∈ C. Consequently, PFO(ψ) = PFO(m)ψ.

Again PFO(m)ψ = O(Γ(m)). Therefore, PFO(ψ) = O(C).
Hence, the PFO of an PFSG on a group is the same as group’s order. □

Remark 3.2. For a PFSG on a group C, the PFO of an element of C divides the PFO
of that PFSG.

Theorem 3.6. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C such that
PFO(m)ψ = s. If gcd(s, t) = 1, then µ2(mt) = µ2(m) and ν2(mt) = ν2(m).

Proof. Since PFO(m)ψ = s, then ms = e. Also ψ = (µ, ν) is a PFSG on C, then
µ2(mt) ≥ µ2(m) and ν2(mt) ≤ ν2(m).
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As gcd(s, t) = 1, then there exist a and b such that as+ bt = 1. Now
µ2(m) =µ2(mas+bt) ≥ µ2(mas) ∧ µ2(mbt) ≥ µ2(e) ∧ µ2(mt) = µ2(mt).

Therefore, µ2(m) ≥ µ2(mt). Same way we can prove that ν2(m) ≤ ν2(mt). Hence,
µ2(mt) = µ2(m) and ν2(mt) = ν2(m). □

Theorem 3.7. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C. If µ2(mt) =
µ2(e) and ν2(mt) = ν2(e) then t|PFO(m)ψ, where t ∈ Z.

Proof. Let PFO(m)ψ = s. We can suppose that q is the smallest integer for which
µ2(mq) = µ2(e) and ν2(mq) = ν2(e) holds.

By division algorithm, there exist a, b ∈ Z such that s = at + b where 0 ≤ b < t.
Now

µ2(mb) =µ2(ms−at)
≥µ2(ms) ∧ µ2((m−1)at)
=µ2(ms) ∧ µ2(mat) = µ2(e) ∧ µ2((mt)a)
≥µ2(e) ∧ µ2(mt)
=µ2(e).

Similarly, ν2(mb) ≤ ν2(e). Thus, µ2(mb) = µ2(e) and ν2(mb) = ν2(e). This
contradicts q’s minimality as 0 ≤ b < t.

Therefore, b = 0, so s = at. Hence, t|PFO(m)ψ. □

Theorem 3.8. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C. If
PFO(m)ψ = s, then PFO(mv)ψ = s

gcd(s,v) , where v ∈ Z.

Proof. Let PFO(mv)ψ = a and gcd(s, v) = g.
As PFO(m)ψ = s then by Theorem 3.7, ms = e. Now

µ2((mv)
s
g ) = µ2((ms)

v
g ) = µ2(e

v
g ) = µ2(e).

Similarly, ν2((mv)
s
g ) = ν2(e). As a result of the Theorem 3.7, s

g
divides a.

Also, gcd(s, v) = g, then there exist p, q ∈ Z such that sp+ vq = g. Therefore,
µ2(mga) =µ2(m(ps+vq)a)

=µ2(mpsamvqa)
≥µ2((ms)pa) ∧ µ2((mva)q)
≥µ2(ms) ∧ µ2((mv)a)
=µ2(e) ∧ µ2(e)
=µ2(e).

As a result, the only option is µ2(mga) = µ2(e). Similarly, ν2(mga) = ν2(e).
Thus, by Theorem 3.7, ga|s, that is a| s

g
. Therefore, a = s

g
. Hence, PFO(mv)ψ =

s
gcd(s,v) . □
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Theorem 3.9. Assume ψ = (µ, ν) is a PFSG on a group C and m ∈ C. If
PFO(m)ψ = z and g ∼= h (mod z), then PFO(mg)ψ = PFO(mh)ψ, where g, h, z ∈ Z.

Proof. Let PFO(mg)ψ = l1 and PFO(mh)ψ = l2.
As g ∼= h (mod z), then g = wz + h, where w ∈ Z. Then

µ2((mg)l2) =µ2((mzw+h)l2) = µ2(mwzl2mhl2)
≥µ2((mz)wl2) ∧ µ2((mh)l2)
=µ2(e) ∧ µ2(e)
=µ2(e).

As a result, the only option is µ2((mg)l2) = µ2(e). Similarly, ν2((mg)l2) = ν2(e).
Thus by Theorem 3.7, l2|l1. In the same manner, we can prove that l1|l2. Thus l1 = l2.

Hence PFO(mg)ψ = PFO(mh)ψ, where g, h ∈ Z. □

Theorem 3.10. Assume ψ = (µ, ν) is a PFNSG on a group C and m ∈ C. Then
PFO(m)ψ = PFO(nmn−1)ψ for all n ∈ C.

Proof. Let n be any element of C.
As ψ is a PFNSG on the group C, then µ2(m) = µ2(nmn−1) and ν2(m) =

ν2(nmn−1). Therefore the Pythagorean fuzzy semi-level subgroup corresponding
to m is equal to nmn−1.

This implies that Γ(m) = Γ(nmn−1). Consequently, O(Γ(m)) = O(Γ(nmn−1)).
Since n is a random element of C, hence PFO(m)ψ = PFO(nmn−1)ψ for all n ∈
C. □

Theorem 3.11. Assume ψ = (µ, ν) is a PFNSG on a group C. Then PFO(mn)ψ =
PFO(nm)ψ for all m,n ∈ C.

Proof. Assume m and n are elements of C.
Then we have µ2(mn) = µ2((n−1n)(mn)) = µ2(n−1(nm)n). Similarly, ν2(mn) =

ν2(n−1(nm)n). Therefore, Γ(mn) = Γ(n−1(mn)(n−1)−1). Consequently, PFO(mn)ψ
= PFO(n−1(nm)(n−1)−1)ψ.

Using Theorem 3.10, we get PFO(n(nm)n−1)ψ = PFO(nm)ψ. As m and n are
random elements of C, hence PFO(mn)ψ = PFO(nm)ψ for all m,n ∈ G. □

Theorem 3.12. Assume ψ = (µ, ν) is a PFSG on a commutative group C and m,n
are two elements of C such that gcd(PFO(m)ψ, PFO(n)ψ) = 1. If µ2(mn) = µ2(e)
and ν2(mn) = ν2(e), then PFO(m)ψ = PFO(n)ψ = 1.

Proof. Assume PFO(m)ψ = p and PFO(n)ψ = q. So, we get gcd(p, q) = 1. Now

µ2(mqnq) = µ2((mn)q) ≥ µ2(mn) = µ2(e).
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As a result, the only option is µ2(mqnq) = µ2(e). Also,

µ2(mq) =µ2(mqnqv−q)
≥µ2(mqnq) ∧ µ2((n−1)q)
=µ2(e) ∧ µ2(e)
=µ2(e).

So, we get µ2(mq) = µ2(e). Similarly, anyone can verify that ν2(mq) = ν2(e).
Using Theorem 3.15, we get q|p. Again gcd(p, q) = 1, thus q = 1. Similarly, we can

present that p = 1.
Hence, PFO(m)ψ = PFO(n)ψ = 1. □

Theorem 3.13. Generators of a cyclic group have same PFO in a PFSG.

Proof. Assume C is a cyclic group of order k.
Let m,n are any two generators of C. Then mk = e = nk.
As m is a generator, then n = mp for some p ∈ Z+. Therefore, k and p are co-prime,

so gcd(k, p) = 1. Thus, by Theorem 3.6, we get PFO(m)ψ = PFO(mp)ψ = PFO(n)ψ.
For an infinite cyclic group it has only two generator. Ifm is a generator of C, thenm−1

is the only other generator. Thus, by Theorem 3.4, we get PFO(m)ψ = PFO(m−1)ψ.
Hence, any generators of a cyclic group have same PFO in a PFSG. □

4. Some Algebraic Attributes of PFSG

The concepts of Pythagorean fuzzy normalizer (PFNL) and Pythagorean fuzzy
centralizer (PFCL) are developed in this section. We also look into a number of
algebraic properties of it.

Definition 4.1. Assume ψ = (µ, ν) is a PFSG on a group C. Then PFNL of ψ is
denoted by δ(ψ) and defined by δ(ψ) = {m | m ∈ C, µ2(x) = µ2(mxm−1) and ν2(m) =
ν2(mxm−1)} for all x ∈ G.

Example 4.1. Consider the group C = (Z,+).
Assume ψ = (µ, ν) is a PFS on Z, which is presented by

µ(m) =
{

0.87, where m ∈ 2Z,
0.62, elsewhere,

ν(m) =
{

0.31, where m ∈ 2Z,
0.68, elsewhere.

We can clearly verify that ψ = (µ, ν) is a PFSG on Z. Then the PFNL of ψ is
δ(ψ) = Z.

Theorem 4.1. Assume ψ = (µ, ν) is a PFSG on a finite group C. Then the PFNL
δ(ψ) forms a subgroup of C.
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Proof. Let m,n ∈ δ(ψ). Then

(4.1) µ2(p) = µ2(mpm−1), ν2(p) = ν2(mpm−1), for all p ∈ C,

and

(4.2) µ2(q) = µ2(nqn−1), ν2(q) = ν2(nqn−1), for all q ∈ C.

Clearly, e ∈ δ(ψ), so δ(ψ) is a non-empty finite subset of C.
To show δ(ψ) is a subgroup of C, we need to show mn ∈ δ(ψ). Put p = nqn−1 in

(4.1), we get

(4.3) µ2(nqn−1) = µ2(mnqn−1m−1) and ν2(nqn−1) = ν2(mnqn−1m−1).

Then applying (4.2) in (4.3), we have µ2(q) = µ2(mnqn−1m−1) and ν2(q) =
ν2(mnqn−1m−1).

This shows that µ2(q) = µ2((mn)q(mn)−1) and νβ(q) = νβ((mn)q(mn)−1). There-
fore, mn ∈ δ(ψ). Hence, δ(ψ) forms a subgroup of C. □

Proposition 4.1. Assume ψ = (µ, ν) is a PFSG on a group C. Then ψ = (µ, ν) is
a PFNSG of C if and only if δ(ψ) = C.

Proof. We have δ(ψ) = {m | m ∈ C, µ2(p) = µ2(mpm−1) and ν2(m) = ν2(mpm−1)
for all p ∈ C. Therefore, δ(ψ) ⊆ C.

Assume ψ = (µ, ν) is a PFNSG on C. Then we get µ2(m) = µ2(nmn−1) and
ν2(m) = ν2(nmn−1) for all m,n ∈ C.

This presents that C ⊆ δ(ψ). Hence, δ(ψ) = C.
Conversely, let δ(ψ) = C. Then µ2(m) = µ2(nmn−1) and ν2(m) = ν2(nmn−1) for

all m,n ∈ C. Hence, ψ = (µ, ν) forms a PFNSG on C. □

Theorem 4.2. Assume ψ = (µ, ν) is a PFSG on a group C. Then ψ forms a PFNSG
on the group δ(ψ).

Proof. Let m,n ∈ δ(ψ). Then µ2(w) = µ2(mwm−1) and ν2(w) = ν2(mwm−1) for all
w ∈ C. As δ(ψ) forms a subgroup of C, then nm ∈ δ(ψ). Putting w = nm in above
relation we have µ2(nm) = µ2(mnmm−1) and ν2(nm) = ν2(mnmm−1). This presents
that µ2(nm) = µ2(mn) and ν2(nm) = ν2(mn). Hence, ψ forms a PFNSG on the
group δ(ψ). □

Definition 4.2. Assume ψ = (µ, ν) is a PFSG on a group C. Then PFCL of ψ is
denoted by ω(ψ) and defined by ω(ψ) = {m | m ∈ C, µ2(mn) = µ2(nm) and ν2(mn) =
ν2(nm)} for all n ∈ C.

Example 4.2. From Example 3.1, consider the PFSG ψ on the group Z4. Then the
PFCL of ψ is ω(ψ) = Z4.

Theorem 4.3. The PFCL of a PFSG on a group forms a subgroup of the group.
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Proof. Assume ψ = (µ, ν) is a PFSG on a group C. Then the PFCL of ψ is presented
by ω(ψ) = {m | m ∈ C, µ2(mn) = µ2(nm) and ν2(mn) = ν2(nm)} for all n ∈ C.

Let s, t ∈ ω(ψ). Then for all r ∈ C, we get
µ2((st)r) = µ2(s(tr)) = µ2((tr)s) = µ2(t(rs)) = µ2((rs)t) = µ2(r(st)).

Thus, µ2((st)r) = µ2(r(st)) for all r ∈ C.
Similarly, we get ν2((st)r) = ν2(r(st)) for all r ∈ C. This presents that st ∈ ω(ψ).

Also, for all g ∈ C, we get
µ2(s−1g) = µ2((g−1s)−1) = µ2(g−1s) = µ2(sg−1) = µ2((gs−1)−1) = µ2(gs−1).

Thus, µ2(s−1g) = µ2(gs−1) for all g ∈ C.
Similarly, we get ν2(s−1g) = ν2(gs−1) for all g ∈ C. This presents that for s ∈ ω(ψ),

we have s−1 ∈ ω(ψ). Hence, ω(ψ) forms a subgroup of C. □

5. Lagrange’s Theorem in PFSG

This section revolves around the development of theories for Lagrange’s theorem
fuzzification in PFSG.

Theorem 5.1. Assume ψ = (µ, ν) is a PFNSG on a finite group C and Λ is the set of
all PFCs of ψ on C. Then Λ constructs a group with the composition mψ◦nψ = (mn)ψ
for all m,n ∈ C.

Proof. To prove (Λ, ◦) constructs a group with the composition mψ ◦ nψ = (mn)ψ
for all m,n ∈ C, we need to verify that ◦ is well defined.

Let m,n, p, q ∈ C such that mψ = pψ and nψ = qψ.
Therefore, mµ(x) = pµ(x), mν(x) = pν(x) and nµ(x) = qµ(x), nν(x) = qν(x) for

all x ∈ C. This presents that for all x ∈ C

(5.1) µ2(m−1x) = µ2(p−1x), ν2(m−1x) = ν2(p−1x)
and
(5.2) µ2(n−1x) = µ2(q−1x), ν2(n−1x) = ν2(q−1x).
We need to verify that mψ ◦ nψ = pψ ◦ qψ. So, (mn)ψ = (pq)ψ. We get (mn)µ(x) =
µ2(n−1m−1x) and (pq)µ(x) = µ2(q−1p−1x) for all x ∈ C. Then

µ2(n−1m−1x) =µ2(n−1m−1pp−1x)
=µ2(n−1m−1pqq−1p−1x)
≥µ2(n−1m−1pq) ∧ µ2(q−1p−1x).

So,
(5.3) µ2(n−1m−1x) ≥ µ2(n−1m−1pq) ∧ µ2(q−1p−1x).
Replace x with m−1pq in (5.2), then

µ2(n−1m−1pq) = µ2(q−1m−1pq).
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As ψ = (µ, ν) is a PFNSG on C, then µ2(q−1m−1pq) = µ2(m−1p). Replace x with p
in (5.1), we get

µ2(m−1p) = µ2(p−1p) = µ2(e).
Consequently, µ2(n−1m−1pq) = µ2(e).

From (5.3), we get µ2(n−1m−1x) ≥ µ2(q−1p−1x).
Similarly, µ2(q−1p−1x) ≥ µ2(n−1m−1x). Therefore, µ2(n−1m−1x) = µ2(q−1p−1x),

for all x ∈ C. Also, we can verify that ν2(n−1m−1x) = ν2(q−1p−1x) for all x ∈ C.
This presents that (mn)µ(x) = (pq)µ(x) and (mn)ν(x) = (pq)ν(x) for all x ∈ C.
Consequently, (mn)ψ = (pq)ψ. Hence, ◦ is well defined on Λ. Clearly, Λ’s identity
element is eψ. Also, m−1ψ ∈ Λ is the inverse of mψ in Λ. That is (mψ)◦(m−1ψ) = eψ.
Therefore, (Λ, ◦) constructs a group with the composition mψ ◦ nψ = (mn)ψ for all
m,n ∈ C. □

Definition 5.1. The index of ψ is denoted by [C : ψ] and defined by [C : ψ] = O(Λ).

Example 5.1. Consider the group C = (Z4,+4). From Example 3.1, take the PFSG
ψ on Z4. We can clearly show that ψ is a PFNSG on the group C = (Z4,+4). Then
the set of all PFCs of ψ is Λ = {0ψ, 1ψ, 2ψ, 3ψ}.

Now (1µ)2(1) = µ2(1−1 +4 1) = µ2(3 +4 1) = µ2(0) = 0.9025, (2µ)2(1) = µ2(2−1 +4
1) = µ2(2 +4 1) = µ2(3) = 0.7225 and (3µ)2(1) = µ2(3−1 +4 1) = µα(1 +4 1) = µ2(2) =
0.4225.

Thus, (1µ)2(1) ̸= (2µ)2(1) ̸= (3µ)2(1). This presents that 1ψ ̸= 2ψ ̸= 3ψ. Therefore,
the index of ψ is [C : ψ] = O(Λ) = 4.

Theorem 5.2. Assume ψ = (µ, ν) is a PFNSG on a finite group C. Then a PFS
Ψ = (µ∗, ν∗) on Λ defined by µ∗(mµ) = µ(m) and ν∗(mν) = ν(m) constructs a PFSG
on (Λ, ◦) for all m ∈ C.

Proof. Let mψ, nψ ∈ Λ, where m,n ∈ C. Then
µ2

∗((mµ) ◦ (nµ)) =µ2
∗((mn)µ) = µ2(mn)

≥µ2(m) ∧ µ2(n)
=µ2

∗(mµ) ∧ µ2
∗(nµ).

Therefore, µ2
∗((mµ) ◦ (nµ)) ≥ µ2

∗(mµ) ∧ µ2
∗(nµ).

Similarly, we get ν2
∗((mν) ◦ (nν)) ≤ ν2

∗(mν) ∨ν2
∗(nν). Also, µ2

∗(m−1µ) = µ2(m−1) =
µ2(m) = µ2

∗(mµ). Similarly, ν2
∗(m−1ν) = ν2

∗(mν). Therefore, Ψ = (µ∗, ν∗) constructs
a PFSG on (Λ, ◦). □

Definition 5.2. The PFSG Ψ = (µ∗, ν∗) on the group (Λ, ◦) is referred to as
Pythagorean fuzzy quotient group (PFQG) on ψ.

Example 5.2. From Example 5.1, consider the PFNSG ψ on the group (Z4,+4). Then
the set of all PFCs of ψ is Λ = {0ψ, 1ψ, 2ψ, 3ψ}. We create a PFS Ψ = (µ∗, ν∗) on Λ
by µ∗(mµ) = µ(m) and ν(mν) = ν(m).
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Then µ∗(0µ) = µ(0) = 0.95, µ∗(1µ) = µ(1) = 0.65, µ∗(2µ) = µ(2) = 0.65, µ∗(3µ) =
µ(3) = 0.85 and ν∗(0ν) = ν(0) = 0.25, ν∗(1ν) = ν(1) = 0.75, ν∗(2ν) = ν(2) = 0.75,
ν∗(3ν) = ν(3) = 0.45.

We can clearly verify that Ψ = (µ∗, ν∗) is a PFSG on Λ. Hence, Ψ = (µ∗, ν∗) is the
PFQG on ψ.

Theorem 5.3. Assume ψ = (µ, ν) is a PFNSG on a finite group C and constructs
a function κ : C → Λ by κ(m) = mψ for all m ∈ C. Then κ forms a group
homomorphism with kernel ker(κ) = {m ∈ C | µ2(m) = µ2(e), ν2(m) = ν2(e)}.

Proof. Let m,n ∈ C.
Then κ(mn) = (mn)ψ = (mψ)◦ (mψ) = κ(m)◦κ(n). This presents that κ : C → Λ

forms a group homomorphism. The kernel of κ is presented by

ker(κ) ={m ∈ C | κ(m) = eψ}
={m ∈ C | mψ = eψ}
={m ∈ C | mψ(n) = eψ(n) for all n ∈ C}
={m ∈ C | mµ(n) = eµ(n),mν(n) = eν(n) for all n ∈ C}
={m ∈ C | µ2(m−1n) = µ2(n), ν2(m−1n) = ν2(n) for all n ∈ C}
={m ∈ C | µ2(m) = µ2(e), ν2(m) = ν2(e)}.

Hence, ker(κ) = {m ∈ C | µ2(m) = µ2(e), ν2(m) = ν2(e)}. □

Remark 5.1. ker(κ) forms a subgroup of C.

Theorem 5.4. Assume ψ = (µ, ν) is a PFNSG on a finite group C. Then [C : ψ]
divides O(C).

Proof. Λ = {mψ | m ∈ C}, the set of all PFC of ψ on C is finite as C is finite.
Theorem 5.3 proves that κ : C → Λ defined by κ(m) = mψ for all m ∈ C is a

group homomorphism.
We define H = {m ∈ C | mψ = eψ} = ker(κ), which is a subgroup of C. C is now

decomposed as union of left cosets modulo p by

C = m1H ∪m2H ∪m3H ∪ · · · ∪mpH,

where mpH = H.
We need to verify that there exists a one-one relation between Λ’s elements and

cosets miH of C.
We consider an element p ∈ H and coset miH of C. Then we get κ(mip) = mipψ =

(miψ) ◦ (pψ) = (miψ) ◦ (eψ) = (miψ). This represents that κ maps elements of miH
to miψ.

We now create a mapping κ between {miH| 1 ≤ i ≤ p} and Λ by κ(miH) = miψ.
Let maψ = mbψ. Then m−1

b maψ = eψ. Therefore, m−1
b ma ∈ H. This presents that

maH = mbH.
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Hence, κ(miH) = miψ is a one-one map. As a result, we can establish that the
number of distinct cosets is same as Λ’s cardinality. That is [C : H] = [C : ψ].

Since [C : H] divides O(C), then [C : ψ] must divide O(C). □

6. Conclusion

Various fuzzy algebraic structures have significant importance in decision making
problems. This paper explores the study of PFSGs. We have arranged the sections
of this paper in such a way that we can approach Lagrange’s theorem at the end.
In this paper, we have defined Pythagorean fuzzy semi-level subgroups. We have
introduced the notion of PFO of an element in PFSG and discussed various algebraic
properties of it. Further, We have developed the concept of PFNL and PFCL of
a PFSG. Moreover, we have introduced PFQG and the index of a PFSG. Finally,
we have presented Lagrange’s theorem in the form of PFS. In future work, we will
implement direct product of groups and group actions in PFSG.
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