Kragujevac Journal of Mathematics Volume 48(6) (2024), Pages 921–934.

SUFFICIENT CONDITIONS OF SUBCLASSES OF SPIRAL-LIKE FUNCTIONS ASSOCIATED WITH MITTAG-LEFFLER FUNCTIONS

GANGADHARAN MURUGUSUNDARAMOORTHY¹ AND TEODOR BULBOACĂ²

ABSTRACT. The purpose of the present paper is to find the sufficient conditions for some subclasses of analytic functions associated with Mittag-Leffler functions to be in subclasses of spiral-like univalent functions. Further, we discuss geometric properties of an integral operator related to Mittag-Leffler functions.

1. Introduction and Definitions

Let \mathbf{E}_{α} be the function defined by

$$\mathbf{E}_{\alpha}(z) := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)}, \quad z \in \mathbb{C}, \ \alpha \in \mathbb{C}, \ \text{with} \ \operatorname{Re} \alpha > 0,$$

that was introduced by Mittag-Leffler [14] and commonly known as the *Mittag-Leffler* function. Wiman [25] defined a more general function $\mathbf{E}_{\alpha,\beta}$ generalizing the \mathbf{E}_{α} Mittag-Leffler function, that is

$$\mathbf{E}_{\alpha,\beta}(z) := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)}, \quad z \in \mathbb{C}, \ \alpha, \beta \in \mathbb{C}, \ \text{with } \operatorname{Re} \alpha > 0, \ \operatorname{Re} \beta > 0.$$

DOI 10.46793/KgJMat2406.921M

Received: August 20, 2021. Accepted: October 01, 2021.

Key words and phrases. Univalent functions, spiral-like functions, starlike and convex functions, Hadamard (convolution) product, Mittag-Leffler functions.

²⁰²⁰ Mathematics Subject Classification. Primary: 30C45. Secondary: 33E12, 33E30.

When $\beta = 1$, it is abbreviated as $\mathbf{E}_{\alpha}(z) = \mathbf{E}_{\alpha,1}(z)$. Observe that the function $\mathbf{E}_{\alpha,\beta}$ contains many well-known functions as its special case, for example,

$$\mathbf{E}_{1,1}(z) = e^{z}, \quad \mathbf{E}_{1,2}(z) = \frac{e^{z} - 1}{z}, \quad \mathbf{E}_{2,1}\left(z^{2}\right) = \cosh z,$$

$$\mathbf{E}_{2,1}\left(-z^{2}\right) = \cos z, \quad \mathbf{E}_{2,2}\left(z^{2}\right) = \frac{\sinh z}{z}, \quad \mathbf{E}_{2,2}\left(-z^{2}\right) = \frac{\sin z}{z},$$

$$\mathbf{E}_{4}(z) = \frac{1}{2}\left(\cos z^{1/4} + \cosh z^{1/4}\right), \quad \mathbf{E}_{3}(z) = \frac{1}{2}\left[e^{z^{1/3}} + 2e^{-\frac{1}{2}z^{1/3}}\cos\left(\frac{\sqrt{3}}{2}z^{1/3}\right)\right].$$

We recall the error function erf given by [1, p. 297]

$$\operatorname{erf}(z) := \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)} z^{2n+1},$$

the complement of the error function erfc defined by

$$\operatorname{erfc}(z) := 1 - \operatorname{erf}(z) = 1 - \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)} z^{2n+1},$$

and the normalized form of the error function erf denoted by Erf (normalized with the condition Erf'(0) = 1) is given by

$$Erf(z) := \frac{\sqrt{\pi z}}{2} erf(\sqrt{z}) = z + \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(n-1)!(2n-1)} z^n.$$

It is of interest to note that by fixing $\alpha = 1/2$ and $\beta = 1$ we get

$$\mathbf{E}_{\frac{1}{2},1}(z) = e^{z^2}\operatorname{erfc}(-z),$$

that is

$$\mathbf{E}_{\frac{1}{2},1}(z) = e^{z^2} \left(1 + \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)} z^{2n+1} \right).$$

The Mittag-Leffler function arises naturally in the solution of fractional order differential and integral equations, and especially in the investigations of fractional generalization of kinetic equation, random walks, Lévy flights, super-diffusive transport and in the study of complex systems. Several properties of Mittag-Leffler function and generalized Mittag-Leffler function can be found for example in [2,3,8,9,11,12]. We note that the above generalized (Mittag-Leffler) function $\mathbf{E}_{\alpha,\beta}$ does not belongs to the family \mathcal{A} , where \mathcal{A} represents the class of functions whose members are of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathbb{D},$$

which are analytic in the open unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0. Let S be the subclass of \mathcal{A} whose members

are univalent in \mathbb{D} . Thus, it is expected to define the following normalization of Mittag-Leffler functions as below, due to Bansal and Prajapat [3]:

(1.2)
$$E_{\alpha,\beta}(z) := z\Gamma(\beta) \mathbf{E}_{\alpha,\beta}(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} z^n,$$

that holds for the parameters $\alpha, \beta \in \mathbb{C}$ with $\operatorname{Re} \alpha > 0$, $\operatorname{Re} \beta > 0$ and $z \in \mathbb{C}$. In this paper we shall confine our attention to the case of real-valued parameters α and β , and we will consider that $z \in \mathbb{D}$.

For functions $f \in \mathcal{A}$ be given by (1.1) and $g \in \mathcal{A}$ given by $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, $z \in \mathbb{D}$, we define the *Hadamard product* (or convolution) of f and g by

$$(f * g)(z) := z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in \mathbb{D}.$$

The two well known subclasses of S are namely the class of starlike and convex functions (for details see Robertson [20]). Thus, a function $f \in \mathcal{A}$ given by (1.1) is said to be starlike of order γ , $0 \le \gamma < 1$, if and only if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \gamma, \quad z \in \mathbb{D},$$

and this function class is denoted by $S^*(\gamma)$. We also write $S^*(0) =: S^*$, where S^* denotes the class of functions $f \in \mathcal{A}$ such that $f(\mathbb{D})$ is starlike domain with respect to the origin.

A function $f \in \mathcal{A}$ is said to be *convex of order* γ , $0 \le \gamma < 1$, if and only if

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \gamma, \quad z \in \mathbb{D},$$

and this class is denoted by $\mathcal{K}(\gamma)$. Further, $\mathcal{K} := \mathcal{K}(0)$ represents the well-known standard class of convex functions. By Alexander's duality relation (see [6]), it is a known fact that

$$f \in \mathcal{K} \Leftrightarrow zf'(z) \in \mathcal{S}^*$$
.

A function $f \in \mathcal{A}$ is said to be *spiral-like* if

$$\operatorname{Re}\left(e^{-i\xi}\frac{zf'(z)}{f(z)}\right) > 0, \quad z \in \mathbb{D},$$

for some $\xi \in \mathbb{C}$ with $|\xi| < \frac{\pi}{2}$, and the class of spiral-like functions was introduced in [23]. Also, the function f is said to be convex spiral-like if zf'(z) is spiral-like. Due to Murugusundramoorthy [15,16], we consider the following subclasses of spiral-like functions as below.

Definition 1.1. For $0 \le \rho < 1$, $0 \le \gamma < 1$ and $|\xi| < \frac{\pi}{2}$, let define the class $S(\xi, \gamma, \rho)$ by

$$\mathcal{S}(\xi, \gamma, \rho) := \left\{ f \in \mathcal{A} : \operatorname{Re}\left(e^{i\xi} \frac{zf'(z)}{(1-\rho)f(z) + \rho zf'(z)}\right) > \gamma \cos \xi, \ z \in \mathbb{D} \right\}.$$

By virtue of Alexander's relation (see [6]) we define the following subclass $\mathcal{K}(\xi, \gamma, \rho)$.

Definition 1.2. For $0 \le \rho < 1$, $0 \le \gamma < 1$ and $|\xi| < \frac{\pi}{2}$, let define the class $\mathcal{K}(\xi, \gamma, \rho)$ by

$$\mathcal{K}(\xi,\gamma,\rho) := \left\{ f \in \mathcal{A} : \operatorname{Re}\left(e^{i\xi} \frac{zf''(z) + f'(z)}{f'(z) + \rho zf''(z)}\right) > \gamma \cos \xi, \ z \in \mathbb{D} \right\}.$$

By specializing the parameter $\rho = 0$ in the above two definitions we obtain the subclasses $S(\xi, \gamma) := S(\xi, \gamma, 0)$ and $\mathcal{K}(\xi, \gamma) := \mathcal{K}(\xi, \gamma, 0)$, respectively.

Now we state a sufficient conditions for the function f to be in the above classes.

Lemma 1.1 ([15,16]). A function f given by (1.1) is a member of $S(\xi, \gamma, \rho)$ if

$$\sum_{n=2}^{\infty} \left[(1-\rho)(n-1) \sec \xi + (1-\gamma)(1+n\rho-\rho) \right] |a_n| \le 1-\gamma,$$

where $|\xi| < \frac{\pi}{2}$, $0 \le \rho < 1$, $0 \le \gamma < 1$.

Since $f \in \mathcal{K}(\xi, \gamma, \rho)$ if and only if $zf'(z) \in \mathcal{S}(\xi, \gamma, \rho)$, and from Lemma 1.1 we get the next result.

Lemma 1.2. A function f given by (1.1) is a member of $\mathcal{K}(\xi, \gamma, \rho)$ if

$$\sum_{n=2}^{\infty} n \left[(1 - \rho)(n - 1) \sec \xi + (1 - \gamma)(1 + n\rho - \rho) \right] |a_n| \le 1 - \gamma,$$

where $|\xi| < \frac{\pi}{2}, \ 0 \le \rho < 1, \ 0 \le \gamma < 1$.

The next class $\mathcal{R}^{\tau}(\vartheta, \delta)$ was introduced earlier by Swaminathan [24], and for special cases see the references cited there in.

Definition 1.3. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{R}^{\tau}(\vartheta, \delta)$, where $\tau \in \mathbb{C} \setminus \{0\}$, $0 < \vartheta \leq 1$, and $\delta < 1$, if it satisfies the inequality

$$\left| \frac{(1-\vartheta)\frac{f(z)}{z} + \vartheta f'(z) - 1}{2\tau(1-\delta) + (1-\vartheta)\frac{f(z)}{z} + \vartheta f'(z) - 1} \right| < 1, \quad z \in \mathbb{D}.$$

Lemma 1.3 ([24]). If $f \in \mathbb{R}^{\tau}(\vartheta, \delta)$ is of the form (1.1), then

$$(1.3) |a_n| \leq \frac{2|\tau|(1-\delta)}{1+\vartheta(n-1)}, \quad n \in \mathbb{N} \setminus \{1\}.$$

The bounds given in (1.3) is sharp for

$$f(z) = \frac{1}{\vartheta z^{1-\frac{1}{\vartheta}}} \int_0^z t^{1-\frac{1}{\vartheta}} \left[1 + \frac{2(1-\delta)\tau \ t^{n-1}}{1-2^{n-1}} \right] dt.$$

Now we define the following new linear operator based on convolution (Hadamard) product.

For real parameters α , β , with $\alpha, \beta, \notin \{0, -1, -2, ...\}$ and $E_{\alpha,\beta}$ be given by (1.2), we define the linear operator $\Lambda_{\beta}^{\alpha} : \mathcal{A} \to \mathcal{A}$ with the aid of the convolution product

$$\Lambda_{\beta}^{\alpha} f(z) := f(z) * E_{\alpha,\beta}(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1) + \beta)} a_n z^n, \quad z \in \mathbb{D}.$$

Stimulated by prior results on relations between different subclasses of analytic and univalent functions by using hypergeometric functions (see for example [5,10,13,21,22,24]) and by the recent investigations related with distribution series (see for example [4,7,17–19], we obtain sufficient condition for the function $E_{\alpha,\beta}$ to be in the classes $S(\xi, \gamma, \rho)$ and $\mathcal{K}(\xi, \gamma, \rho)$, and information regarding the images of functions belonging in $\mathcal{R}^{\tau}(\vartheta, \delta)$ by using the convolution operator Λ_{β}^{α} . Finally, we determined conditions for the integral operator $\Psi_{\beta}^{\alpha}(z) = \int_{0}^{z} \frac{E_{\alpha,\beta}(t)}{t} dt$ to belong to the above classes.

2. Inclusion Results

In order to prove our main results, unless otherwise stated throughout this paper, we will use the notation (1.2), therefore

(2.1)
$$E_{\alpha,\beta}(1) - 1 = \sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1) + \beta)},$$

(2.2)
$$E'_{\alpha,\beta}(1) - 1 = \sum_{n=2}^{\infty} \frac{n\Gamma(\beta)}{\Gamma(\alpha(n-1) + \beta)},$$

(2.3)
$$E''_{\alpha,\beta}(1) = \sum_{n=2}^{\infty} \frac{n(n-1)\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)}.$$

Theorem 2.1. If

(2.4)
$$[(1-\rho)\sec\xi + \rho(1-\gamma)]E'_{\alpha,\beta}(1) + (1-\rho)(1-\gamma-\sec\xi)E_{\alpha,\beta}(1) \le 2(1-\gamma),$$

then $E_{\alpha,\beta} \in S(\xi,\gamma,\rho).$

Proof. Since $E_{\alpha,\beta}$ is defined by (1.2), according to Lemma 1.1 it is sufficient to show that

$$(2.5) \qquad \sum_{n=2}^{\infty} \left[(1-\rho)(n-1)\sec\xi + (1-\gamma)(1+n\rho-\rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \le 1-\gamma.$$

Since the left-hand side of the inequality (2.5) could be written as

$$Q_{1}(\xi, \gamma, \rho) := \sum_{n=2}^{\infty} \left[(1 - \rho) \sec \xi (n - 1) + (1 - \gamma)(1 + n\rho - \rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)}$$
$$= \left[(1 - \rho) \sec \xi + \rho(1 - \gamma) \right] \sum_{n=2}^{\infty} \frac{n\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)}$$
$$+ (1 - \rho)(1 - \gamma - \sec \xi) \sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)},$$

therefore, by using (2.1) and (2.2), we get

$$Q_{1}(\xi, \gamma, \rho) = \left[(1 - \rho) \sec \xi + \rho (1 - \gamma) \right] \left[E'_{\alpha, \beta}(1) - 1 \right]$$

$$+ (1 - \rho)(1 - \gamma - \sec \xi) \left[E_{\alpha, \beta}(1) - 1 \right]$$

$$= \left[(1 - \rho) \sec \xi + \rho (1 - \gamma) \right] E'_{\alpha, \beta}(1) + (1 - \rho)(1 - \gamma - \sec \xi) E_{\alpha, \beta}(1)$$

$$- (1 - \gamma).$$

Thus, from the assumption (2.4) it follows that $Q_1(\xi, \gamma, \rho) \leq 1 - \gamma$, that is (2.5) holds, therefore $E_{\alpha,\beta} \in \mathcal{S}(\xi, \gamma, \rho)$.

Theorem 2.2. If

(2.6)
$$\left[(1 - \rho) \sec \xi + \rho (1 - \gamma) \right] E''_{\alpha,\beta}(1) + (1 - \gamma) E'_{\alpha,\beta}(1) \le 2(1 - \gamma),$$

then $E_{\alpha,\beta} \in \mathcal{K}(\xi,\gamma,\rho)$.

Proof. Using the definition (1.2) of $E_{\alpha,\beta}$, in view of Lemma 1.2 it is sufficient to prove that

$$(2.7) \quad \sum_{n=2}^{\infty} n \Big[(1-\rho)(n-1) \sec \xi + (1-\gamma)(1+n\rho-\rho) \Big] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \le 1-\gamma.$$

The left-hand side of the inequality (2.7) could be written as

$$Q_{2}(\xi, \gamma, \rho) := \sum_{n=2}^{\infty} n \left[(1 - \rho)(n - 1) \sec \xi + (1 - \gamma)(1 + n\rho - \rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)}$$

$$= \left[(1 - \rho) \sec \xi + \rho(1 - \gamma) \right] \sum_{n=2}^{\infty} \frac{n(n - 1)\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)}$$

$$+ (1 - \gamma) \sum_{n=2}^{\infty} \frac{n\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)},$$

and from (2.2) and (2.3) we get

$$Q_2(\xi, \gamma, \rho) = \left[(1 - \rho) \sec \xi + \rho (1 - \gamma) \right] E''_{\alpha, \beta}(1) + (1 - \gamma) [E'_{\alpha, \beta}(1) - 1].$$

Hence, the assumption (2.6) implies that $Q_2(\xi, \gamma, \rho) \leq 1 - \gamma$ that is (2.7) holds, and consequently $E_{\alpha,\beta} \in \mathcal{K}(\xi, \gamma, \rho)$.

3. Image Properties of Λ^{α}_{β} Operator

Making use of the Lemma 1.1 and Lemma 1.3 we will focus the influence of the Λ_{β}^{α} operator for the functions of the class $\mathcal{R}^{\tau}(\vartheta, \delta)$, and we will give sufficient conditions such that these images are in the classes $\mathcal{S}(\xi, \gamma, \rho)$ and $\mathcal{K}(\xi, \gamma, \rho)$, respectively.

Theorem 3.1. If

$$\frac{2|\tau|(1-\delta)}{\vartheta} \Big[(1-\rho)\sec\xi + \rho(1-\gamma) \Big] [E_{\alpha,\beta}(1) - 1]
+ (1-\rho)(1-\gamma-\sec\xi) \int_0^1 \left(\frac{E_{\alpha,\beta}(t)}{t} - 1\right) dt \le 1-\gamma,$$

then

$$\Lambda^{\alpha}_{\beta}(\mathcal{R}^{\tau}(\vartheta,\delta)) \subset \mathcal{S}(\xi,\gamma,\rho).$$

Proof. Let $f \in \mathcal{R}^{\tau}(\vartheta, \delta)$ be of the form (1.1). To prove that $\Lambda^{\alpha}_{\beta}(f) \in \mathcal{S}(\xi, \gamma, \rho)$, in view of Lemma 1.1 it is required to show that

$$\sum_{n=2}^{\infty} \left[(1-\rho)(n-1)\sec\xi + (1-\gamma)(1+n\rho-\rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} |a_n| \le 1-\gamma.$$

Let we denote the left-hand side of the above inequality by

$$Q_3(\xi,\gamma,\rho) := \sum_{n=2}^{\infty} \left[(1-\rho)(n-1)\sec\xi + (1-\gamma)(1+n\rho-\rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} |a_n|.$$

Since $f \in \mathcal{R}^{\tau}(\vartheta, \delta)$, by Lemma 1.3 we have

$$|a_n| \le \frac{2|\tau|(1-\delta)}{1+\vartheta(n-1)}, \quad n \in \mathbb{N} \setminus \{1\},$$

and using the inequality $1 + \vartheta(n-1) \ge \vartheta n$ we obtain that

$$Q_{3}(\xi, \gamma, \rho) \leq \frac{2|\tau|(1-\delta)}{\vartheta} \left\{ \sum_{n=2}^{\infty} \frac{1}{n} \left[(1-\rho)(n-1)\sec\xi + (1-\gamma)(1+n\rho-\rho) \right] \right.$$

$$\times \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \right\}$$

$$= \frac{2|\tau|(1-\delta)}{\vartheta} \left\{ \sum_{n=2}^{\infty} \left[(1-\rho)\sec\xi + \rho(1-\gamma) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \right.$$

$$+ (1-\rho)(1-\gamma-\sec\xi) \sum_{n=2}^{\infty} \frac{1}{n} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \right\}.$$

From the above inequality, using (2.1), we get

$$Q_{3}(\xi, \gamma, \rho) \leq \frac{2|\tau|(1-\delta)}{\vartheta} \Big[(1-\rho)\sec \xi + \rho(1-\gamma) \Big] [E_{\alpha,\beta} - 1] + (1-\rho)(1-\gamma-\sec \xi) \int_{0}^{1} \left(\frac{E_{\alpha,\beta}(t)}{t} - 1 \right) dt,$$

hence, the assumption (3.1) implies then $Q_3(\xi, \gamma, \rho) \leq 1 - \gamma$, that is $\Lambda_{\beta}^{\alpha}(f) \in \mathcal{S}(\xi, \gamma, \rho)$.

Using Lemma 1.2 and following the same procedure as in the proof of Theorem 2.2, we have the subsequent result.

Theorem 3.2. If

$$\frac{2|\tau|(1-\delta)}{\vartheta} \left\{ \left[(1-\rho)\sec\xi + \rho(1-\gamma) \right] E'_{\alpha,\beta}(1) + (1-\rho)(1-\gamma-\sec\xi) E_{\alpha,\beta}(1) - (1-\gamma) \right\} \le 1-\gamma,$$

then

$$\Lambda^{\alpha}_{\beta}\left(\mathcal{R}^{\tau}(\vartheta,\delta)\right)\subset\mathcal{K}(\xi,\gamma,\rho).$$

Proof. Let $f \in \mathcal{R}^{\tau}(\vartheta, \delta)$ be of the form (1.1). In view of Lemma 1.2, to prove that $\Lambda_{\beta}^{\alpha}(f) \in \mathcal{K}(\xi, \gamma, \rho)$ we have to show that

$$(3.3) \sum_{n=2}^{\infty} n \left[(1-\rho)(n-1) \sec \xi + (1-\gamma)(1+n\rho-\rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} |a_n| \le 1-\gamma.$$

Since $f \in \mathcal{R}^{\tau}(\vartheta, \delta)$, then by Lemma 1.3 we have

$$|a_n| \le \frac{2|\tau|(1-\delta)}{1+\vartheta(n-1)}, \quad n \in \mathbb{N} \setminus \{1\},$$

and $1 + \vartheta(n-1) \ge \vartheta n$. Denoting the left-hand side of the inequality (3.3) by

$$Q_4(\xi, \gamma, \rho) := \sum_{n=2}^{\infty} n \Big[(1 - \rho)(n - 1) \sec \xi + (1 - \gamma)(1 + n\rho - \rho) \Big] \frac{\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)} |a_n|,$$

we deduce that

$$Q_{4}(\xi, \gamma, \rho) \leq \frac{2|\tau|(1-\delta)}{\vartheta} \sum_{n=2}^{\infty} \left[(1-\rho) \sec \xi (n-1) + (1-\gamma)(1+n\rho-\rho) \right]$$

$$\times \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)}$$

$$= \frac{2|\tau|(1-\delta)}{\vartheta} \left\{ \left[(1-\rho) \sec \xi + \rho(1-\gamma) \right] \sum_{n=2}^{\infty} \frac{n\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} + (1-\rho)(1-\gamma-\sec \xi) \sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \right\}.$$

Now, by using (2.1) and (2.2), the above inequality yields to

$$Q_{4}(\xi, \gamma, \rho) \leq \frac{2|\tau|(1-\delta)}{\vartheta} \left\{ \left[(1-\rho)\sec\xi + \rho(1-\gamma) \right] \left[E'_{\alpha,\beta}(1) - 1 \right] + (1-\rho)(1-\gamma-\sec\xi) \left[E_{\alpha,\beta}(1) - 1 \right] \right\}$$

$$= \frac{2|\tau|(1-\delta)}{\vartheta} \left\{ \left[(1-\rho)\sec\xi + \rho(1-\gamma) \right] E'_{\alpha,\beta}(1) + (1-\rho)(1-\gamma-\sec\xi) E_{\alpha,\beta}(1) - (1-\gamma) \right\}.$$

Therefore, the assumption (3.2) yields to $Q_4(\xi, \gamma, \rho) \leq 1 - \gamma$, which implies the inequality (3.3), that is $\Lambda^{\alpha}_{\beta}(f) \in \mathcal{K}(\xi, \gamma, \rho)$.

4. The Alexander Integral Operator for $E_{\alpha,\beta}$

Theorem 4.1. Let the function Ψ^{α}_{β} be given by

(4.1)
$$\Psi_{\beta}^{\alpha}(z) = \int_{0}^{z} \frac{E_{\alpha,\beta}(t)}{t} dt, \quad z \in \mathbb{D}.$$

If

$$[(1 - \rho) \sec \xi + \rho(1 - \gamma)] E'_{\alpha,\beta}(1) + (1 - \rho)(1 - \gamma - \sec \xi) E_{\alpha,\beta}(1) \le 2(1 - \gamma),$$

then $\Psi^{\alpha}_{\beta} \in \mathcal{K}(\xi, \gamma, \rho)$.

Proof. Since

(4.2)
$$\Psi_{\beta}^{\alpha}(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1) + \beta)} \cdot \frac{z^n}{n}, \quad z \in \mathbb{D},$$

according to Lemma 1.2, it is sufficient to prove that

$$\sum_{n=2}^{\infty} n \left[(1-\rho)(n-1)\sec \xi + (1-\gamma)(1+n\rho-\rho) \right] \frac{1}{n} \cdot \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \le 1-\gamma,$$

or, equivalently

$$\sum_{n=2}^{\infty} \left[(1-\rho)(n-1)\sec\xi + (1-\gamma)(1+n\rho-\rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \le 1-\gamma.$$

Now, the proof of Theorem 4.1 is parallel to that of Theorem 2.1, and so it will be omitted. \Box

Theorem 4.2. Let the function Ψ^{α}_{β} be given by (4.1). If

$$(4.3) \qquad \left[(1-\rho)\sec\xi + \rho(1-\gamma) \right] (E_{\alpha,\beta}(1) - 1) + (1-\rho)(1-\gamma-\sec\xi) \int_0^1 \left(\frac{E_{\alpha,\beta}(t)}{t} - 1 \right) dt \le 1-\gamma,$$

then $\Psi^{\alpha}_{\beta} \in \mathcal{S}(\xi, \gamma, \rho)$.

Proof. Since Ψ^{α}_{β} has the power series expansion (4.2), then by Lemma 1.1 it is sufficient to prove that

$$\sum_{n=2}^{\infty} \frac{1}{n} \left[(1-\rho)(n-1)\sec \xi + (1-\gamma)(1+n\rho-\rho) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \le 1-\gamma.$$

The left-hand side of the above inequality could be rewritten as

$$Q_{5}(\xi, \gamma, \rho) = \sum_{n=2}^{\infty} \frac{1}{n} \left[(1 - \rho)(n - 1) \sec \xi + (1 - \gamma)(1 + n\rho - \rho) \right]$$

$$\times \frac{\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)}$$

$$= \sum_{n=2}^{\infty} \left[(1 - \rho) \sec \xi + \rho(1 - \gamma) \right] \frac{\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)}$$

$$+ (1 - \rho)(1 - \gamma - \sec \xi) \sum_{n=2}^{\infty} \frac{1}{n} \cdot \frac{\Gamma(\beta)}{\Gamma(\alpha(n - 1) + \beta)},$$

and using (2.1) we get

$$Q_5(\xi, \gamma, \rho) \le \left[(1 - \rho) \sec \xi + \rho (1 - \gamma) \right] \left[E_{\alpha, \beta}(1) - 1 \right]$$
$$+ (1 - \rho)(1 - \gamma - \sec \xi) \int_0^1 \left(\frac{E_{\alpha, \beta}(t)}{t} - 1 \right) dt.$$

Therefore, if the assumption (4.3) holds, then $Q_5(\xi, \gamma, \rho) \leq 1 - \gamma$. Hence, $\Psi^{\alpha}_{\beta} \in \mathcal{S}(\xi, \gamma, \rho)$.

Remark 4.1. By taking $\rho = 0$ in Theorems 2.1–4.2, we can easily attain the sufficient condition for $E_{\alpha,\beta} \in \mathcal{S}(\xi,\gamma)$ and $E_{\alpha,\beta} \in \mathcal{K}(\xi,\gamma)$. The function $E_{\alpha,\beta}$ is associated with Mittag-Leffler functions and has not been studied sofar. We left this as an exercise to interested readers.

For the special case $\alpha = 1/2$ and $\beta = 1$, that is connected with the error function can derive some results based on the error function. Thus, a simple computation shows that if

$$\mathcal{E}(z) := E_{\frac{1}{2},1}(z) = \sum_{n=1}^{\infty} \frac{z^n}{\Gamma(\frac{n+1}{2})},$$

then

$$\mathcal{E}(1) = \sum_{n=1}^{\infty} \frac{1}{\Gamma\left(\frac{n+1}{2}\right)}, \quad \mathcal{E}'(1) = \sum_{n=1}^{\infty} \frac{n}{\Gamma\left(\frac{n+1}{2}\right)}, \quad \mathcal{E}''(1) = \sum_{n=2}^{\infty} \frac{n(n-1)}{\Gamma\left(\frac{n+1}{2}\right)},$$
$$\int_{0}^{1} \left(\frac{\mathcal{E}(t)}{t} - 1\right) dt = \sum_{n=2}^{\infty} \frac{1}{n\Gamma\left(\frac{n+1}{2}\right)},$$

(4.4)
$$\mathcal{L} := \Lambda_1^{1/2} f(z) = f(z) * \mathcal{E}(z) = z + \sum_{n=2}^{\infty} \frac{a_n z^n}{\Gamma\left(\frac{n+1}{2}\right)},$$

$$(4.5) \qquad \mathcal{P} := \Psi_1^{1/2}(z) = \int_0^z \frac{\mathcal{E}(t)}{t} dt = \sum_{n=1}^\infty \frac{z^n}{n\Gamma\left(\frac{n+1}{2}\right)}.$$

Using the above relations, from Theorems 2.1 and 2.2 we get, respectively.

Example 4.1. If

$$[(1-\rho)\sec\xi + \rho(1-\gamma)]\sum_{n=1}^{\infty} \frac{n}{\Gamma\left(\frac{n+1}{2}\right)} + (1-\rho)(1-\gamma-\sec\xi)\sum_{n=1}^{\infty} \frac{1}{\Gamma\left(\frac{n+1}{2}\right)} \le 2(1-\gamma),$$

then $\mathcal{E} \in \mathcal{S}(\xi, \gamma, \rho)$.

Example 4.2. If

$$\left[(1-\rho) \sec \xi + \rho (1-\gamma) \right] \sum_{n=2}^{\infty} \frac{n(n-1)}{\Gamma\left(\frac{n+1}{2}\right)} + (1-\gamma) \sum_{n=1}^{\infty} \frac{n}{\Gamma\left(\frac{n+1}{2}\right)} \le 2(1-\gamma),$$

then $\mathcal{E} \in \mathcal{K}(\xi, \gamma, \rho)$.

Similarly, Theorems 4.1 and 4.2 give us the next examples.

Example 4.3. If

$$\frac{2|\tau|(1-\delta)}{\vartheta} \Big[(1-\rho)\sec\xi + \rho(1-\gamma) \Big] \sum_{n=2}^{\infty} \frac{1}{\Gamma\left(\frac{n+1}{2}\right)} + (1-\rho)(1-\gamma-\sec\xi) \sum_{n=2}^{\infty} \frac{1}{n\Gamma\left(\frac{n+1}{2}\right)} \le 1-\gamma,$$

then

$$\mathcal{L}\left(\mathcal{R}^{\tau}(\vartheta,\delta)\right)\subset\mathcal{S}(\xi,\gamma,\rho),$$

where \mathcal{L} is defined by (4.4).

Example 4.4. If

$$\begin{split} &\frac{2\left|\tau\right|\left(1-\delta\right)}{\vartheta}\bigg\{\bigg[\left(1-\rho\right)\sec\xi+\rho(1-\gamma)\bigg]\sum_{n=1}^{\infty}\frac{n}{\Gamma\left(\frac{n+1}{2}\right)}\\ &+\left(1-\rho\right)\left(1-\gamma-\sec\xi\right)\sum_{n=1}^{\infty}\frac{1}{\Gamma\left(\frac{n+1}{2}\right)}-\left(1-\gamma\right)\bigg\}\leq 1-\gamma, \end{split}$$

then

$$\mathcal{L}\left(\mathcal{R}^{\tau}(\vartheta,\delta)\right) \subset \mathcal{K}(\xi,\gamma,\rho),$$

where \mathcal{L} is defined by (4.4).

Finally, from Theorems 4.1 and 4.2 we have the following.

Example 4.5. If

$$\left[(1-\rho)\sec\xi + \rho(1-\gamma) \right] \sum_{n=1}^{\infty} \frac{n}{\Gamma\left(\frac{n+1}{2}\right)} + (1-\rho)(1-\gamma-\sec\xi) \sum_{n=1}^{\infty} \frac{1}{\Gamma\left(\frac{n+1}{2}\right)} \le 2(1-\gamma),$$

then $\mathcal{P} \in \mathcal{K}(\xi, \gamma, \rho)$, where \mathcal{L} is defined by (4.5).

Example 4.6. If

$$\left[(1 - \rho) \sec \xi + \rho (1 - \gamma) \right] \sum_{n=2}^{\infty} \frac{1}{\Gamma\left(\frac{n+1}{2}\right)} + (1 - \rho)(1 - \gamma - \sec \xi) \sum_{n=2}^{\infty} \frac{1}{n\Gamma\left(\frac{n+1}{2}\right)} \le 1 - \gamma,$$

then $\mathcal{P} \in \mathcal{S}(\xi, \gamma, \rho)$, where \mathcal{L} is defined by (4.5).

5. Conclusions

In this investigation we obtained sufficient conditions and inclusion results for functions $f \in \mathcal{A}$ to be in the classes $\mathcal{S}(\xi, \gamma, \rho)$ and $\mathcal{K}(\xi, \gamma, \rho)$, and information regarding the images of functions by applying convolution operator with Mittag-Leffler functions.

The investigation methods are based on some recent results and techniques found in [15] and [16], and we determined sufficient conditions for the functions $E_{\alpha,\beta}$ to belongs to the new defined classes $\mathcal{S}(\xi,\gamma,\rho)$ and $\mathcal{K}(\xi,\gamma,\rho)$.

Moreover, we found sufficient conditions such that the images of the functions belonging to the class $\mathcal{R}^{\tau}(\vartheta, \delta)$ by the new defined convolution operator Λ^{α}_{β} are in the classes $\mathcal{S}(\xi, \gamma, \rho)$ and $\mathcal{K}(\xi, \gamma, \rho)$, respectively.

Finally, we determined sufficient conditions such that the functions Ψ^{α}_{β} obtained as images of $E_{\alpha,\beta}$ via the Alexander integral operator belong to the classes $\mathcal{S}(\xi,\gamma,\rho)$ and $\mathcal{K}(\xi,\gamma,\rho)$.

We emphasize that till now such kind of results doesn't appeared in any previous articles: the general classes $S(\xi, \gamma, \rho)$ and $\mathcal{K}(\xi, \gamma, \rho)$ are completely new and introduced in [15, 16], while any type of such results were not studied previously.

Acknowledgements. The authors are grateful to the reviewers for their valuable remarks, comments, and advices that help us to improve the quality of the paper.

References

- [1] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1965.
- [2] A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat 30(7) (2016), 2075–2081. https://doi.org/10.2298/FIL1607075A
- [3] D. Bansal and J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61(3) (2016), 338–350. https://doi.org/10.1080/17476933.2015.1079628
- [4] T. Bulboacă and G. Murugusundaramoorthy, Univalent functions with positive coefficients involving Pascal distribution series, Commun. Korean Math. Soc. **35**(3) (2020), 867-877. https://doi.org/10.4134/CKMS.c190413
- [5] N. E. Cho, S. Y. Woo and S. Owa, *Uniform convexity properties for hypergeometric functions*, Fract. Calc. Appl. Anal. **5**(3) (2002), 303–313.
- [6] P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften Series 259, Springer Verlag, New York, 1983.

- [7] M. El-Deeb, T. Bulboacă and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59 (2019), 301-314. https://doi.org/10.5666/ KMJ.2019.59.2.301
- [8] B. A. Frasin, An application of an operator associated with generalized Mittag-Leffler function, Konuralp J. Math. 7(1) (2019), 199–202.
- [9] B. A. Frasin, T. Al-Hawary and F. Yousef, Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babeş-Bolyai Math. 65(1) (2020), 67–75. https://doi.org/10.24193/subbmath.2020.1.06
- [10] B. A. Frasin, T. Al-Hawary and F. Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat. 30(1-2) (2019), 223-230. https://doi.org/10.1007/s13370-018-0638-5
- [11] H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math. 2011(2011), Article ID 298628. https://doi.org/10.1155/2011/298628
- [12] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series 301, Longman Scientific & Technical, Harlow, John Wiley & Sons, Inc., New York, 1994.
- [13] E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc. 12 (1961), 885–888.
- [14] G. M. Mittag-Leffler, Sur la nouvelle fonction $\mathbf{E}(x)$, C. R. Acad. Sci. Paris 137 (1903), 554–558.
- [15] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Integral Transforms Spec. Funct. 23(2) (2012), 97–103. https://doi.org/10.1080/10652469.2011.562501
- [16] G. Murugusundaramoorthy, D. Răducanu and K. Vijaya, A class of spirallike functions defined by Ruscheweyh-type q-difference operator, Novi Sad J. Math. 49(2) (2019), 59–71. https://doi. org/10.30755/NSJOM.08284
- [17] G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45(4) (2016), 1101–1107. https://doi.org/10.15672/HJMS.20164513110
- [18] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. 28(2017), 1357–1366. https://doi.org/10.1007/s13370-017-0520-x
- [19] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27(5) (2016), 1021–1027. https://doi.org/10.1007/s13370-016-0398-z
- [20] M. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37(2) (1936), 374–408.
- [21] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (1993), 574-581. https://doi.org/10.1006/jmaa.1993.1044
- [22] H. M. Srivastava, G. Murugusundaramoorthy and S. Sivasubramanian, *Hypergeometric functions* in the parabolic starlike and uniformly convex domains, Integral Transforms Spec. Funct. **18** (2007), 511–520. https://doi.org/10.1080/10652460701391324
- [23] L. Spaček, Contribution à la théorie des fonctions univalentes, Časopis Pro Pěstování Matematiky 62 (1932), 12–19.
- [24] A. Swaminathan, Certain sufficient conditions on Gaussian hypergeometric functions, Journal of Inequalities in Pure and Applied Mathematics 5(4) (2004), Article ID 83, 10 pages.
- [25] A. Wiman, Über die nullstellen der funktionen $\mathbf{E}_{\alpha}(x)$, Acta Math. **29** (1905), 217–134.

¹SCHOOL OF ADVANCED SCIENCES,

Vellore Institute of Technology, deemed to be university,

Vellore-632014, Tamilnadu, India

Email address: gmsmoorthy@yahoo.com

ORCID iD: http://orcid.org/0000-0001-8285-6619

 $^2{\rm Faculty}$ of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

Email address: bulboaca@math.ubbcluj.ro