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HIGHER CODERIVATIONS ON COALGEBRAS AND

CHARACTERIZATION

E. TAFAZOLI1 AND M. MIRZAVAZIRI2

Abstract. In this paper we define higher coderivations on a coalgebra C and then
we characterize them in terms of the coderivations on C. Indeed, we show that each
higher coderivation is a combination of compositions of coderivations. Finally we
prove a one to one correspondence between the set of all higher coderivations on C

and all sequences of coderivations on C.

1. Introduction

A coalgebra (C, ∆, ε) over a field κ is a κ-vector space C together with the κ-
linear maps ∆ : C → C ⊗ C and ε : C → κ, such that (I

C
⊗ ∆)∆ = (∆ ⊗ I

C
)∆,

(coassociativity) and (I
C

⊗ ε)∆ = (ε ⊗ I
C
)∆, (counitary). The maps ∆ and ε are

called, respectively, coproduct and counit of the coalgebra C. Given an element c of
the coalgebra (C, ∆, ε), we know that there exist elements c

1,i
and c

2,i
in C such that

∆(c) =
∑

i c
1,i

⊗ c
2,i

. In Sweedlers notation, this is abbreviated to
∑

c
(1)

⊗ c
(2)

. Here,

the subscripts “(1)” and “(2)” indicate the order of the factors in the tensor product.
For more about basic definitions in coalgebras notion, you can see [1] and [3].

A κ-linear map f : C → C on a κ-coalgebra (C, ∆, ε) is called a coderivation if
∆f = (I

C
⊗f +f ⊗ I

C
)∆. One can see examples and a general definition of coalgebras

and coderivations in the sense of comodules in [2, 4, 6]. In this paper we define
higher coderivations on a coalgebra C and then characterize them in terms of the
coderivations on C. Indeed, we show that each higher coderivation is a combination of
compositions of coderivations. As a corollary we characterize all higher coderivations
which are ordinary. We have some nearly same properties for higher derivations, you

Key words and phrases. Coalgebra, coderivation, higher coderivation.
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8 E. TAFAZOLI AND M. MIRZAVAZIRI

can see in [5] and [7]. Throughout the paper, all coalgebras are assumed over a field
of characteristic zero.

2. The Results

Throughout the paper, C denotes a coalgebra over a field of characteristic zero
and I is the identity mapping on C. A coalgebra (C, ∆, ε) over a field κ is a κ-vector
space C together with the κ-linear maps ∆ : C → C ⊗ C and ε : C → κ, such that
(I

C
⊗ ∆)∆ = (∆ ⊗ I

C
)∆, (coassociativity), and (I

C
⊗ ε)∆ = (ε ⊗ I

C
)∆, (counitary).

The maps ∆ and ε are called, respectively, coproduct and counit of the coalgebra
C. A κ-linear map f : C → C on a κ-coalgebra (C, ∆, ε) is called a coderivation if
∆f = (I

C
⊗ f + f ⊗ I

C
)∆.

Now we define a new concept, named higher coderivation and then characterize
this, but at first we prove some properties, following.

Proposition 2.1. If f is a coderivation on coalgebra (C, ∆, ε), then we have

(2.1) ∆fn =
n
∑

k=0

(

n

k

)

(fk ⊗ fn−k)∆,

for each nonnegative integer n.

Proof. We use induction on n. For n = 1 and a ∈ C we have

∆f(a) =
∑

a(1) ⊗ f(a(2)) + f(a(1)) ⊗ a(2),

and its true, since f is a coderivation on C. Now suppose that the equality is true for
n, then for n + 1, in the left side of equality, we have

∆fn+1(a) = ∆fn(f(a)) =
n
∑

k=0

(

n

k

)

(fk ⊗ fn−k)∆(f(a)),

because of f being a coderivation, we have

∆fn+1(a) =
n
∑

k=0

(

n

k

)

(fk ⊗ fn−k)(I ⊗ f + f ⊗ I)∆(a)

=
n
∑

k=0

∑

(

n

k

)

fk(a(1)) ⊗ fn+1−k(a(2)) + fk+1(a(1)) ⊗ fn−k(a(2)).

On the other side we have
n+1
∑

k=0

(

n + 1

k

)

(fk ⊗ fn+1−k)∆(a)

=
n+1
∑

k=0

∑

(

n + 1

k

)

fk(a(1)) ⊗ fn+1−k(a(2))

=

[

n
∑

k=0

∑

((

n

k

)

+

(

n

k − 1

))

(

fk(a(1)) ⊗ fn+1−k(a(2))


]

+ fn+1(a(1)) ⊗ a(2)
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=

[

n
∑

k=0

∑

(

n

k

)

fk(a(1)) ⊗ fn+1−k(a(2))

+
n−1
∑

k=−1

∑

(

n

k

)

(

fk+1(a(1)) ⊗ fn+1−(k+1)(a(2))


]

+ fn+1(a(1)) ⊗ a(2)

=
n
∑

k=0

∑

(

n

k

)

fk(a(1)) ⊗ fn+1−k(a(2)) +
n
∑

k=−1

∑

(

n

k

)

fk+1(a(1)) ⊗ fn−k(a(2)),

and we have the result. □

We name the relation (2.1) general coLiebnitz rule for coderivations.
If we define a sequence ¶fn♢ of linear mappings on C by f0 = I and fn = λn

n!
, where I

is the identity mapping on C, then general coLeibniz rule ensures us that fn’s satisfy
the condition

(2.2) ∆fn =
n
∑

k=0

(fk ⊗ fn−k)∆,

for each nonnegative integer n. This motivates us to consider the sequences ¶fn♢ of
linear mappings on a coalgebra C satisfying (2.2). We call such a sequence a higher
coderivation.

Definition 2.1. Let C be a coalgebra. We define a sequence ¶fn♢ of linear mappings
on C a higher coderivation if ∆fn(a) =

∑n
k=0(fk ⊗ fn−k)∆(a) for each a ∈ C and each

nonnegative integer n.

Though, if λ : C → C is a coderivation then fn = λn

n!
is a higher coderivation. We

name this kind of higher coderivation an ordinary higher coderivation.

Proposition 2.2. Let ¶fn♢ be a higher coderivation on a coalgebra C with f0 = I.

Then there is a sequence ¶λn♢ of coderivations on C such that

(n + 1)fn+1 =
n
∑

k=0

fn−kλk+1,

for each nonnegative integer n.

Proof. We use induction on n. Because of ¶fn♢ being a higher coderivation, for n = 0
we have

∆f1(a) = [(f0 ⊗ f1) + (f1 ⊗ f0)]∆(a)

=
∑

f0(a(1)) ⊗ f1(a(2)) + f1(a(1)) ⊗ f0(a(2))

=
∑

a(1) ⊗ f1(a(2)) + f1(a(1)) ⊗ a(2).

Thus, if λ0 = I and λ1 = f1, then λ1 is a coderivation on A and

∆(f0λ1)(a) = ∆(λ1(a)) =
∑

λ0(a(1)) ⊗ λ1(a(2)) + λ1(a(1)) ⊗ λ0(a(2)).
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Now suppose that λk it is defined and is a coderivation for k ≤ n. Putting λn+1 =
(n+1)fn+1−

∑n−1
k=0 fn−kλk+1, we show that the well-defined mapping λn+1 is a coderiva-

tion on C. For a ∈ C, since ¶fn♢ is a higher coderivation and λ1, . . . , λn are coderiva-
tions, we have

∆λn+1(a) = (n + 1)∆fn+1(a) −
n−1
∑

k=0

∆(fn−kλk+1)(a)

=(n + 1)∆fn+1(a)

−
n−1
∑

k=0

n−k
∑

l=0

∑

(fl ⊗ fn−k−l)
(

a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)



=(n + 1)
n+1
∑

k=0

(fk ⊗ fn+1−k)∆(a)

−
n−1
∑

k=0

n−k
∑

l=0

∑

(fl ⊗ fn−k−l)
(

a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)



=(n + 1)
n+1
∑

k=0

∑

fk(a(1)) ⊗ fn+1−k(a(2))

−
n−1
∑

k=0

n−k
∑

l=0

∑

(fl ⊗ fn−k−l)
(

a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)



=(n + 1)
n+1
∑

k=0

∑

fk(a(1)) ⊗ fn+1−k(a(2))

−
n−1
∑

k=0

n−k
∑

l=0

∑

fl(a(1)) ⊗ fn−k−l(λk+1(a(2))) + fl(λk+1(a(1))) ⊗ fn−k−l(a(2)).

Now, by properties of tensor product, we have

∆λn+1(a) =
n+1
∑

k=0

∑

(k + n + 1 − k)
(

fk(a(1)) ⊗ fn+1−k(a(2))


−
n−1
∑

k=0

n−k
∑

l=0

∑

(fl ⊗ fn−k−l)
(

a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)



=
n+1
∑

k=0

∑

kfk(a(1)) ⊗ fn+1−k(a(2)) + fk(a(1)) ⊗ (n + 1 − k)fn+1−k(a(2))

−
n−1
∑

k=0

n−k
∑

l=0

∑

(fl ⊗ fn−k−l)
(

a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)



.

Writing

K =
n+1
∑

k=0

∑

kfk(a(1)) ⊗ fn+1−k(a(2)) −
n−1
∑

k=0

n−k
∑

ℓ=0

∑

fℓλk+1(a(1)) ⊗ fn−k−ℓ(a(2)),
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L =
n+1
∑

k=0

∑

fk(a(1)) ⊗ (n + 1 − k)fn+1−k(a(2))

−
n−1
∑

k=0

n−k
∑

ℓ=0

∑

fℓ(a(1)) ⊗ fn−k−ℓλk+1(a(2)),

we have ∆λn+1(a) = K + L. Let us compute K and L. In the summation
∑n−1

k=0

∑n−k
ℓ=0 ,

we have 0 ≤ k + ℓ ≤ n and k ̸= n. Thus, if we put r = k + ℓ then we can write it as
the form

∑n
r=0

∑

k+ℓ=r,k ̸=n. Putting ℓ = r − k we indeed have

K =
n+1
∑

k=0

∑

kfk(a(1)) ⊗ fn+1−k(a(2))

−
n
∑

r=0

∑

0≤k≤r,k ̸=n

∑

fr−kλk+1(a(1)) ⊗ fn−r(a(2))

=
n+1
∑

k=0

∑

kfk(a(1)) ⊗ fn+1−k(a(2))

−
∑

(

n−1
∑

r=0

r
∑

k=0

fr−kλk+1(a(1)) ⊗ fn−r(a(2)

)

−
n−1
∑

k=0

fn−kλk+1(a(1)) ⊗ a(2).

Putting r + 1 instead of k in the first summation we have

K +
n−1
∑

k=0

∑

fn−kλk+1(a(1)) ⊗ a(2)

=
n
∑

r=0

∑

(r + 1)fr+1(a(1)) ⊗ fn−r(a(2)) −
n−1
∑

r=0

r
∑

k=0

∑

fr−kλk+1(a(1)) ⊗ fn−r(a(2))

=
∑

(

n−1
∑

r=0

[

(r + 1)fr+1(a(1)) −
r
∑

k=0

fr−kλk+1(a(1))

]

⊗ fn−r(a(2)

)

+ (n + 1)fn+1(a(1)) ⊗ a(2)).

By our assumption

(r + 1)fr+1(a) =
r
∑

k=0

(fr−kλk+1)(a),

for r = 0, . . . , n − 1. We can therefore deduce that

K =
∑

[

(n + 1)fn+1(a(1)) −
n−1
∑

k=0

fn−kλk+1(a(1))

]

⊗ a(2) =
∑

λn+1(a(1)) ⊗ a(2).

By a similar argument we have

L =
∑

a(1) ⊗

[

(n + 1)fn+1(a(2)) −
n−1
∑

k=0

fn−kλk+1(a(2))

]

=
∑

a(1) ⊗ λn+1(a(2)).

Thus,

∆λn+1(a) = K + L = (I ⊗ λn+1 + λn+1 ⊗ I)∆(a),
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whence λn+1 is a coderivation on C. □

To illustrate the recursive relation mentioned in Proposition 2.2, let us compute
some terms of ¶dn♢.

Example 2.1. Using Proposition 2.2, the first five terms of ¶fn♢ are

f0 = I,

f1(a) = f0(λ1(a)) = λ1(a) → f1 = λ1,

2f2(a) = f1(λ1(a)) + f0(λ2(a)) = λ1
2(a) + λ2(a) → 2f2 = λ2

1 + λ2,

f2 =
1

2
λ2

1 +
1

2
λ2,

3f3 = f2λ1 + f1λ2 + f0λ3 =


1

2
λ2

1 +
1

2
λ2



λ1 + λ1λ2 + λ3,

f3 =
1

6
λ3

1 +
1

6
λ2λ1 +

1

3
λ1λ2 +

1

3
λ3,

4f4 = f3λ1 + f2λ2 + f1λ3 + f0λ4

=


1

6
λ3

1 +
1

6
λ2λ1 +

1

3
λ1λ2 +

1

3
λ3



λ1 +


1

2
λ2

1 +
1

2
λ2



λ2 + λ1λ3 + λ4,

f4 =
1

24
λ4

1 +
1

24
λ2λ

2
1 +

1

12
λ1λ2λ1 +

1

12
λ3λ1 +

1

8
λ2

1λ2 +
1

8
λ2

2 +
1

4
λ1λ3 +

1

4
λ4.

Theorem 2.1. Let ¶fn♢ be a higher coderivation on a coalgebra C with f0 = I. Then

there is a sequence ¶λn♢ of coderivations on C such that

(n + 1)fn+1 =
n+1
∑

i=2









∑

∑i

j=1
rj=n





i
∏

j=1

1

ri + · · · + rj



λri
· · · λr1









,

where the inner summation is taken over all positive integers rj, with
∑i

j=1 rj = n.

Proof. We show that if fn is of the above form then it satisfies the recursive relation
of Proposition 2.2. Since the solution of the recursive relation is unique, this proves
the theorem. Simplifying the notation we put ari,...,r1 =

∏i
j=1

1
ri+···+rj

. Note that if

r1 + · · · + ri = n + 1 then (n + 1)ari,...,r1 = ari,...,r2 . Moreover, an+1 = 1
n+1

. Now we
have

(n + 1)fn+1 =
n+1
∑

i=2





∑

∑i

j=1
rj=n+1

ari,...,r1(n + 1)λri
· · · λr1



+ λn+1

=
n+1
∑

i=2





n+2−i
∑

r1=1

∑

∑i

j=2
rj=n+1−r1

ari,...,r2λri
· · · λr2



λr1 + λn+1

=
n
∑

r1=1

n−(r1−1)
∑

i=2





∑

∑i

j=2
rj=n−(r1−1)

ari,...,r2λri
· · · λr2



λr1 + λn+1
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=
n
∑

r1=1

fn−(r1−1)λr1 + λn+1

=
n
∑

k=0

fn−kλk+1. □

Example 2.2. We evaluate the coefficients ari,...,r1 for the case n = 4.
For n = 4 we can write

4 = 1 + 3 = 3 + 1 = 2 + 2 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

By the definition of ari,...,r1 we have

a4 =
1

4
,

a1,3 =
1

1 + 3
·

1

3
=

1

12
,

a3,1 =
1

3 + 1
·

1

1
=

1

4
,

a2,2 =
1

2 + 2
·

1

2
=

1

8
,

a1,1,2 =
1

1 + 1 + 2
·

1

1 + 2
·

1

2
=

1

24
,

a1,2,1 =
1

1 + 2 + 1
·

1

2 + 1
·

1

1
=

1

12
,

a2,1,1 =
1

2 + 1 + 1
·

1

1 + 1
·

1

1
=

1

8
,

a1,1,1,1 =
1

1 + 1 + 1 + 1
·

1

1 + 1 + 1
·

1

1 + 1
·

1

1
=

1

24
.

We can therefore deduce that

f4 =
1

4
λ4 +

1

12
λ3λ1 +

1

4
λ1λ3 +

1

8
λ2λ2 +

1

24
λ2λ1λ1 +

1

12
λ1λ2λ1 +

1

8
λ1λ1λ2 +

1

24
λ1λ1λ1λ1.

Theorem 2.2. Let C be a coalgebra, F be the set of all higher coderivations

¶fn♢n=0,1,... on C with f0 = I and Λ be the set of all sequences ¶λn♢n=0,1,... of coderiva-

tions on C with λ0 = 0. Then there is a one to one correspondence between F and

Λ.

Proof. Let ¶λn♢ ∈ Λ. Define fn : C → C by f0 = I and

fn =
n
∑

i=1





∑

∑i

j=1
rj=n





i
∏

j=1

1

ri + · · · + rj



λri
· · · λr1



.

We show that ¶fn♢ ∈ F . By Theorem 2.1, ¶fn♢ satisfies the recursive relation

(n + 1)fn+1 =
n
∑

k=0

fn−kλk+1.
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To show that ¶fn♢ is a higher coderivation, we use induction on n. For n = 0 we have

∆f0(a) = ∆(a) =
∑

a(1) ⊗ a(2) =
∑

f0(a(1)) ⊗ f0(a(2)) =
∑

(f0(a))(1) ⊗ (f0(a))(2).

Let us assume that ∆fk(a) =
∑k

i=0(fi ⊗ fk−i)∆(a) for k ≤ n. Thus, we have

(n + 1)∆fn+1(a) =
n
∑

k=0

∆fn−kλk+1(a)

=
n
∑

k=0

n−k
∑

i=0

(fi ⊗ fn−k−i)∆λk+1(a)

=
n
∑

k=0

n−k
∑

i=0

(fi ⊗ fn−k−i)(I ⊗ λk+1 + λk+1 ⊗ I)∆(a)

=
n
∑

k=0

n−k
∑

i=0

∑

(fi ⊗ fn−k−i)
(

∑

a(1) ⊗ λk+1(a(2)) ⊗ λk+1(a(1)) ⊗ a(2)



=
n
∑

k=0

n−k
∑

i=0

∑

fi(a(1)) ⊗ fn−k−i(λk+1(a(2)))

+ fi(λk+1(a(1)) ⊗ fn−k−i(a(2)).

Using our assumption, we can write

(n + 1)∆fn+1(a) =
n
∑

i=0

∑

fi(a(1)) ⊗ (n − i + 1)fn−i+1(a(2))

+
n
∑

i=0

∑

(n − i + 1)
(

fn−i+1(a(1)) ⊗ fi(a(2))


=
n
∑

i=0

∑

(n + 1 − i)fi(a(1)) ⊗ fn+1−i(a(2))

+
n+1
∑

i=1

∑

i(fi(a(1)) ⊗ fn+1−i(a(2))

=(n + 1)
n+1
∑

k=0

∑

fk(a(1)) ⊗ fn+1−k(a(2))

=(n + 1)
n+1
∑

k=0

(fk ⊗ fn+1−k)∆(a).

Thus, ¶fn♢ ∈ F .
Conversely, suppose that ¶fn♢ ∈ F . Define λn : C → C by λ0 = 0 and

λn = nfn −
n−2
∑

k=0

fn−1−kλk+1.
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Then Proposition 2.2 ensures us that ¶λn♢ ∈ Λ. Now define φ : Λ → F by φ(¶λn♢) =
¶fn♢, where

fn =
n
∑

i=1





∑

∑i

j=1
rj=n





i
∏

j=1

1

ri + · · · + rj



λri
· · · λr1



.

Now φ is clearly a one to one correspondence. □

Recall that a higher coderivation ¶fn♢ is called ordinary if there is a coderivation
λ such that fn = λn

n!
for all n.

Corollary 2.1. A higher coderivation ¶fn♢ = φ(¶λn♢) on a coalgebra C is ordinary

if and only if λn = 0 for n ≥ 2. In this case fn =
fn

1

n!
.

3. Conclusion

In this paper proving an equality for a coderivation on a coalgebra C, named general
coLiebnitz rule for coderivations, we defined higher coderivations on a coalgebra C and
then we characterized them in terms of the coderivations on C. Indeed, we showed that
each higher coderivation is a combination of compositions of coderivations. Finally we
proved there is a one to one correspondence between the set of all higher coderivations
on C and all sequences of coderivations on C. As a corollary we characterize all higher
coderivations which are ordinary.
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EXISTENCE RESULTS FOR KIRCHHOFF NONLOCAL

FRACTIONAL EQUATIONS

FANG-FANG LIAO1, SHAPOUR HEIDARKHANI2, AND AMJAD SALARI3

Abstract. Fractional and nonlocal operators of elliptic type arise in a quite natural
way in many different contexts. In this paper, we study the existence of solutions for
a class of fractional equations, while the nonlinear part of the problem admits some
perturbation property. We obtain some new criteria for existence of two and inĄnitely
many solutions, using critical point theory. Some recent results are extended and
improved. Several examples are presented to demonstrate the applications of our
main results.

1. Introduction

In this paper we investigate the existence of multiple nontrivial weak solutions for
Kirchhoff fractional problem

(Lλ
f )

{
−LKu = λf(u), in Ω,
u = 0, inR

n\Ω,

where Ω is a bounded domain in (Rn, ♣ · ♣) with n > 2s, s ∈ (0, 1) and ♣ · ♣ is the usual
Euclidean norm in R

n, with smooth (Lipschitz) boundary ∂Ω and Lebesgue measure
♣Ω♣, λ > 0, and f : R → R is a continuous function. Moreover, LK is the nonlocal
operator deĄned as follows:

LKu(x) =M
∫

Q
♣u(x) − u(y)♣2K(x− y)dxdy



×
∫

Rn


u(x+ y) + u(x− y) − 2u(x)


K(y)dy,

Key words and phrases. fractional equation, p-Laplacian operator, nonlocal problem, singularity,
multiple solutions, critical point theory.
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where M : R+ → R is a continuous function, Q := (Rn × R
n)\O with O := (CΩ) ×

(CΩ) ⊂ R
n × R

n and CΩ := R
n\¶0♢, K : Rn\¶0♢ → (0,+∞) is a function with the

properties that:

(κ1) γK ∈ L1(Rn) where γ(x) = min¶♣x♣2, 1♢;
(κ2) there exists θ > 0 such that K(x) ≥ θ♣x♣−(n+2s) for any x ∈ R

n\¶0♢;
(κ3) K(x) = K(−x) for any x ∈ R

n\¶0♢.

A special case of LK is the fractional Laplace operator deĄned as

−(−∆)su(x) :=
∫

Rn

u(x+ y) + u(x− y) − 2u(x)

♣y♣n+2s
dy, x ∈ R

n,

which corresponds to the case M ≡ 1 and K(x) = ♣x♣−(n+2s). One typical feature of
problem (Lλ

f ) is the nonlocality, in the sense that the value of (−∆)su at any point
x ∈ Ω depends not only on Ω, but actually on the entire space R

n. In the special
case, fractional Laplacian operator −(−∆)s (up to normalization constants) may be
deĄned as

−(−∆)su(x) := P.V.
∫

Rn

♣u(x) − u(y)♣

♣x− y♣n+2s
dy, x ∈ R

n,

where P.V. is a particular value. It may be seen as the inĄnitesimal small generators of
a Lévy motion stable diffusion operations [1]. This operator has been used in modelling
various applied phenomena, like phase transitions, materials science, conservation
laws, minimal surfaces, water waves, optimization, plasma physics, etc. On the
other hand, and more importantly, fractional and non-fractional operators Ąnd many
speciĄc applications also in bio-mathematics and physics, which nowadays is a rather
fashionable Ąeld of research; we, for instance, refer to [15,20,21]. To see more features,
you can see [30, 34] and references therein. Recently, a lot of research work has
been done to the study of semiclassical standing waves for the non-linear fractional
Schrödinger equation of the form

(1.1) iε
∂ψ

∂t
= ε2s (−∆)s ψ + P (x)ψ − f(x, ♣ψ♣), x ∈ R

n,

where ε is a small positive constant, which corresponds to the Planck constant, (−∆)s,
0 < s < 1, is the fractional Laplacian, P (x) is a potential function. Problem (1.1)
models naturally many physical problems, such as phase transition, conservation
laws, especially in fractional quantum mechanics, etc. (see [16]). It was introduced
by Laskin [19] as a fundamental equation of fractional quantum mechanics in the
study of particles on stochastic Ąelds modelled by Lévy process. We refer to [12]
for more physical background. To obtain standing waves of the fractional non-linear

Schrödinger equation (1.1), we set ψ(x, t) = e
−iEt

ε u(x) for some function u ∈ Hs(Rn),
and let V (x) = P (x) − E. Then problem (1.1) is reduced to the following equation:

(1.2) ε2s (−∆)s u+ V (x)u = f(x, u), x ∈ R
n.

In quantum mechanics, when ε tends to 0, the existence and multiplicity of solutions
to (1.2) is of particular importance.
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In the nonlocal case, that is, when s ∈ (0, 1), the nonlocal model has attracted
much attentions recently. For the case of a bounded domain, Ricceri [33] established
a theorem tailor-made for a class of nonlocal problems involving nonlinearities with
bounded primitive. In [8], Molica Bisci and Repovš studied a class of nonlocal
fractional Laplacian equations depending on two real parameters. More precisely, by
using an appropriate analytical context on fractional Sobolev spaces due to Servadei
and Valdinoci, they established the existence of three weak solutions for nonlocal
fractional problems exploiting an abstract critical point result for smooth functionals.
They emphasized that the dependence of the underlying equation from one of the
real parameters is not necessarily of affine type. For more related results, we refer the
reader to [24Ű26] and the references therein.

The interest in studying problems like problem (Lλ
f ) relies not only on mathematical

purposes but also on their signiĄcance in real models. For example, in the Appendix
of paper [17], the authors constructed a stationary Kirchhoff variational problem,
which models, as a special signiĄcant case, the nonlocal aspect of the tension arising
from nonlocal measurements of the fractional length of the string.

Kirchhoff models take into consideration the length changes of the string produced
by transverse vibrations (see [18]). Fractional and nonlocal operators of elliptic type
which is modeled by the singularity at inĄnity is an emerging research Ąeld. From the
physical viewpoint, nonlocal operators play a considerable role in characterizing a set
of phenomena. A general reference for this issue is [39], where the author explained
two models of Ćow in porous media, including nonlocal diffusion effects, providing
a long list of references related to physical phenomena and nonlocal operators. The
Ąrst model is based on DarcyŠs law, and the pressure is associated with the density by
an inverse fractional Laplacian operator. The second model mostly follows fractional
Laplacian Ćows but it is nonlinear. In contrast to the usual porous medium Ćows, it
has inĄnite speed of propagation. On the other hand, fractional nonlocal operators
arise in a quite natural way in many different contexts. See for instance the references
[5Ű7] and [2,4,8,13,25,28,38]. For example, Molica Bisci in [25] studied the existence
of inĄnitely many weak solutions to the problem (Lλ

f ) where f(x, u) replaced by f(u)
with x ∈ Ω in the case λ = 1 and M ≡ 1. We have shown in Remark 4.1 that our
results in Theorem 1.2 are different from [25, Theorem 1.1].

Recently, some researchers have studied the existence and multiplicity of solutions
for fractional equations of Kirchhoff type; we refer the reader to [3, 10, 11, 14, 23, 29,
40, 42] and the references therein. For example Chen and Deng in [10] based on
EkelandŠs variational principle investigated the existence of solutions to a Kirchhoff
type problem involving the fractional p-Laplacian operator. It established in [23] the
multiplicity of weak solutions for a Kirchhoff-type problem driven by a fractional
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p-Laplacian operator with homogeneous Dirichlet boundary conditions:



M

∫∫

R2N

♣u(x) − u(y)♣p

♣x− y♣N+ps
dxdy


(−∆)s

pu(x) = f(x, u), in Ω,

u = 0, inR
n\Ω,

where Ω is an open bounded subset of RN with Lipshcitz boundary ∂Ω, (−∆)s
p is the

fractional p-Laplacian operator with 0 < s < 1 < p < N such that sp < N , M is
a continuous function and f is a Carathéodory function satisfying the Ambrosetti-
Rabinowitz condition. When f satisĄes the suplinear growth condition, they obtained
the existence of a sequence of nontrivial solutions by using the symmetric mountain
pass theorem, and when f satisĄes the sub-linear growth condition, they obtained
inĄnitely many pairs of nontrivial solutions by applying the Krasnoselskii genus theory.
By using an appropriate analytical context on fractional Sobolev spaces, Molica Bisci
and Tulone in [29] obtained the existence of one non-trivial weak solution for nonlocal
fractional problem (Lλ

f ) in the case M(x) = a+ bx where a, b are positive numbers.
Xiang et al. in [40] studied the problem

{
M

x, [u]ps,p


(−∆)s

pu(x) = f(x, u, [u]ps,p), in Ω,

u = 0, inR
n\Ω,

where [u]ps,p =
∫∫

R2N
♣u(x)−u(y)♣p

♣x−y♣N+ps dxdy, (−∆)s
p is a fractional p-Laplace operator, Ω is

an open bounded subset of R
N with Lipschitz boundary, M : Ω × R

+
0 → R

+ is a
continuous function and f : Ω × R × R

+
0 → R is a continuous function satisfying

the Ambrosetti-Rabinowitz condition. They obtained the existence of nonnegative
solutions by using the Mountain Pass Theorem and an iterative scheme.

The present paper focuses on this issue since it is clear that in problem (Lλ
f ) there

is a singularity in the term Lk(u), which causes difficulties in the proof. In this paper,
we are concerned with the existence results for the problem (Lλ

f ), and prove at least

two weak solutions and inĄnitely many weak solutions for the problem (Lλ
f ). Several

special cases of the main results and two illustrating examples are also presented. We
use the following assumptions throughout this paper:

(M) M : R+ → R
+ is a continuous function that satisĄes m0t

α−1 ≤ M(t) ≤ m1t
α−1

for all t ∈ R
+, where m1 > m0 > 0 and 1 < α < 2n

n−2s
;

(F1) there exists a constant β > 2m1α
m0

with 0 < βF (t) ≤ ξf(t) for all t ∈ R\¶0♢;

(F2) lim♣t♣→+∞
f(t)

♣t♣α−1 = 0, i.e., f is (α− 1)-sublinear at inĄnity.

The main results of this paper are presented as follows.

Theorem 1.1. Assume that the assumptions (M), (F1) and (F2) hold. Then, if

f(t) ≥ 0 for all t ∈ R, the problem (Lλ
f ) has at least two weak solutions.

Theorem 1.2. Assume that the assumptions (M), (F1) and (F2) hold. Then, if f(t)
is odd, the problem (Lλ

f ) has infinitely many weak solutions.
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2. Preliminaries

In this part, we discuss some preliminary results which can be found in [34]. The
functional space E denotes the linear space of Lebesgue measurable functions from
R

n to R such that the restriction to Ω of any function u in E belongs to L2(Ω) and


(x, y) 7→ (u(x) − u(y))
√
K(x− y)


∈ L2


(Rn × R

n)\(CΩ × CΩ), dxdy

.

We denote by E0 the following linear subspace of E

E0 := ¶u ∈ E : u = 0 a.e. in R
n\Ω♢.

We remark that E and E0 are nonempty, since C2
0(Ω) ⊆ E0 by [34, Lemma 11].

Moreover, the space E is endowed with the norm deĄned as

∥u∥E := ∥u∥L2(Ω) +
∫

Q
♣u(x) − u(y)♣2K(x− y)dxdy

1/2

.

It is easily seen that ∥ · ∥E is a norm on E (see [35]). By [35, Lemmas 6 and 7] in the
sequel we can take the function

(2.1) E0 ∋ u 7→ ∥u∥E0
:=
∫

Q
♣u(x) − u(y)♣2K(x− y)dxdy

1/2

as norm on E0. Also (E0, ∥ · ∥E0
) is a Hilbert space with scalar product

⟨u, v⟩X0
:=
∫

Q
(u(x) − u(y))(v(x) − v(y))K(x− y)dxdy.

See [35, Lemma 7]. Note that in (2.1) (and in the related scalar product) the integral
can be extended to all Rn × R

n, since v ∈ E0 (and so v = 0 a.e. in R
n\Ω). While

for a general kernel K satisfying conditions from (κ1)-(κ3) we have that E0 ⊂ Hs(Rn),
in the model case K(x) := ♣x♣−(n+2s) the space E0 consists of all the functions of the
usual fractional Sobolev space Hs(Rn) which vanish a.e. outside Ω (see [37, Lemma
7]). Here Hs(Rn) denotes the usual fractional Sobolev space endowed with the norm
(the so-called Gagliardo norm)

∥u∥E := ∥u∥Hs(Rn) = ∥u∥L2(Rn) +

∫

Rn×Rn

♣u(x) − u(y)♣2

♣x− y♣n+2s
dxdy

1/2

.

Remark 2.1. By [34, Lemma 8], the embedding j : E0 →֒ Lν(Rn) is continuous for
any ν ∈ [1, 2∗], while it is compact whenever ν ∈ [1, 2∗), where 2∗ := 2n

n−2s
denotes

the fractional critical Sobolev exponent. For further details on the fractional Sobolev
spaces we refer to [12] and to the references therein, while for other details on E and
E0 we refer to [12], where these functional spaces were introduced, and also to [35Ű37],
where various properties of these spaces were proved.
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Definition 2.1 ([24]). We say that u ∈ E0 is a weak solution of (Lλ
f ) if for all v ∈ E0

M
∫

Q
♣u(x) − u(y)♣2K(x− y)dxdy

 ∫

Q
(u(x) − u(y))(v(x) − v(y))K(x− y)dxdy

− λ
∫

Ω
f(u(x))v(x)dx = 0.

We refer the reader to [22,32] for the following notations and results.

Theorem 2.1 ([22, Theorem 4.4]). Let X be a Banach space, ϕ : X → R a function

bounded from below and differentiable on X. If ϕ satisfies the (PS)c-condition with

c = infX ϕ, then ϕ has a minimum on X.

It is clear that the (PS)-condition implies the (PS)c-condition for each c ∈ R.

Theorem 2.2 ([22, Theorem 4.10]). Let φ ∈ C1(X,R), and φ satisfy the Palais-Smale

condition. Assume that there exist u0, u1 ∈ X and a bounded neighborhood Ω of u0

satisfying u1 /∈ Ω and infv∈∂Ω φ(v) > max¶φ(u0), φ(u1)♢, then there exists a critical

point u of φ, i.e., φ′(u) = 0, with φ(u) > max¶φ(u0), φ(u1)♢.

Theorem 2.3 ([32, Theorem 9.12]). Let X be an infinite dimensional real Banach

space. Let φ ∈ C1(X,R) be an even functional which satisfies the (PS)-condition and

φ(0) = 0. Suppose that X = V
⊕

E, where V is infinite dimensional, and φ satisfies

that

(i) there exist α > 0 and ρ > 0 such that φ(u) ≥ α for all u ∈ E with ∥u∥ = ρ;
(ii) for any finite dimensional subspace W ⊂ X, there is R = R(W ) such that

φ(u) ≥ 0 on W \BR(W ).

Then φ possesses an unbounded sequence of critical values.

We refer the reader to the paper [9, 41] in which Theorems 2.2 and 2.3 were suc-
cessfully employed to ensure the multiple solutions of degenerate nonlocal problems
and nonlinear impulsive differential equations with Dirichlet boundary conditions,
respectively.

Corresponding to the functions f and M we introduce the functions F : R → R

and M̂ : [0,+∞) → R, respectively, as F (t) :=
∫ t

0 f(ξ)dξ for all t ∈ R and M̂(t) :=∫ t
0 M(ξ)dξ for all t ∈ [0,+∞), and consider the functionals Φ,Ψ : E0 → R deĄned by

(2.2) Φ(u) =
1

2
M̂

∥u∥2

E0


and Ψ(u) =

∫

Ω
F (u(x))dx,

for all u ∈ E0. Thus, by the assumption (M) we have

m0

2α
∥u∥2α

E0
≤ Φ(u) ≤

m1

2α
∥u∥2α

E0
,
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which means that the functional Φ : E0 → R is coercive. On the other hand, Φ and
Ψ are continuously Gâteaux differentiable. More precisely, we have

Φ′(u)(v) =M
∫

Q
♣u(x) − u(y)♣2K(x− y)dxdy



×
∫

Q
(u(x) − u(y))(v(x) − v(y))K(x− y)dxdy

and

Ψ′(u)(v) =
∫

Ω
f(u(x))v(x)dx,

for every u, v ∈ E0. Fix λ > 0. A critical point of the functional Jλ := Φ − λΨ is
a function u ∈ E0 such that Φ′(u)(v) − λΨ′(u)(v) = 0 for every v ∈ E0. Hence, the
critical points of the functional Jλ are weak solutions of problem (Lλ

f ).

3. Proofs of Main Results

We prove Theorems 1.1 and 1.2 in this section. For this we need the following
remark and lemma.

Remark 3.1. If the assumption (F1) holds and m = min♣t♣=1 F (t), then by the same
argument as in [9, Remark 3.1], there exists a constant C2 such that F (t) ≥ m♣t♣β −C2

for all t ∈ R.

Lemma 3.1. Assume that (F1) holds and λ > 0. Then Jλ(u) satisfies the (PS)-
condition.

Proof. Let ¶un♢n∈N ⊂ X0 such that ¶Jλ(un)♢n∈N is bounded and J ′
λ(un) → 0 as n →

+∞. Then, there exists a positive constant c0 such that ♣Jλ(un)♣ ≤ c0, ♣J ′
λ(un)♣ ≤ c0 for

all n ∈ N. Therefore, we infer to deduce from the deĄnition of J ′
λ and the assumption

(F1) that

c0 + c1∥un∥E0
≥βJλ(un) − J ′

λ(un)(un)

≥


2β

α
m0 −m1


∥un∥α

E0
− λ

∫

Ω
(βF (un(t)) − f(un(t))(un(t))) dt

≥


2β

α
m0 −m1


∥un∥α

E0
,

for some c1 > 0. Since β > 2m1α
m0

, this implies that (un) is bounded. Now, as the same

argument in [10, Lemma 2.2 (i)], we can prove that ¶un♢ converges strongly to u in
E0. Consequently, Jλ satisĄes (PS)-condition. □

3.1. Proof of Theorem 1.1.

Proof. In our case it is clear that Jλ(0) = 0. Lemma 3.1 has shown that Jλ satisĄes
the (PS)-condition.
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Step 1. Since 1 ≤ α < 2n
n−2s

, by Remark 2.1 the embedding E0 →֒ Lα(Rn) is compact
and there exists C1 > 0 such that for all u ∈ E0, C1∥u∥Lα(Rn) ≤ ∥u∥E0

or

C2α
1

∫

Ω
♣u(x)♣αdx ≤

∫

Q
♣u(x) − u(y)♣2K(x− y)dxdy

α

,

which implies that

λα := inf
u∈E0\¶0♢

∫
Q ♣u(x) − u(y)♣2K(x− y)dxdy

∫
Ω ♣u(x)♣2αdx

> 0.

By the assumptions (M) and (F2), and since f(t) ≥ 0 for all t ∈ R, we can take ε < 2α
sufficiently small such that for sufficiently great σ > 0, ♣f(t)♣ ≤ εm0

α
♣t♣2α−1 for all ♣t♣ ≥

σ and ♣F (t)♣ ≤ εm0

2α2 ♣t♣2α + (max♣t♣≤σ f(t))♣t♣. Thus, for every u ∈ E0

Ψ(u) ≤
εm0

2α2

∫

Ω
♣u(x)♣αdx+ max

♣t♣≤σ
f(t)

∫

Ω
♣u(x)♣dx.(3.1)

By Hölder inequality, we have

∫

Ω
♣u(x)♣dx ≤

√
♣Ω♣

∫

Ω
♣u(x)♣2dx

 1

2

.

Then, by (3.1)

Ψ(u) ≤
εm0

2α2
∥u∥2α

Lα(Ω) +
√

♣Ω♣ max
♣t♣≤σ

f(t)
∫

Ω
♣u(x)♣2dx

 1

2

≤
εm0

2α2
∥u∥2α

Lα(Ω) +
√

♣Ω♣ max
♣t♣≤σ

f(t)λ
− 1

2

1 ∥u∥E0

≤
εm0

2α2
∥u∥2α

E0
+
√

♣Ω♣ max
♣t♣≤σ

f(t)λ
− 1

2

1 ∥u∥E0
.

Then, for any u ∈ X by (2.2)

(3.2) Jλ(u) ≥
m0

2α


1 −

ε

α


∥u∥2α

E0
− C2 max

♣t♣≤σ
f(t) ∥u∥E0

,

where C2 =
√

♣Ω♣
λ1

. Now, by means of α > ε
2
, p > 1 and (3.2), it follows that Jλ is a

coercive functional and is bounded from below. Since Jλ satisĄes (PS)-condition by
Lemma 3.1, Theorem 2.1 follows that there exists a minimum point u0 of Jλ on E0

and 0 = Jλ(0) ≥ Jλ(u0) and J ′
λ(u0) = 0.

Step 2. Since u0 is a minimum point of Jλ on E0 we can consider L > 0 sufficiently
large such that Jλ(u0) ≤ 0 < infu∈∂BL

Jλ(u) where BL = ¶u ∈ E0 : ∥u∥E0
< L♢. Now

we will show that there exists u1 with ∥u1∥E0
> L such that Jλ(u1) < inf∂BL

Jλ(u).
For this, let ℓ1(t) ∈ E0 and u1 = rℓ1, r > 0 where ℓ1 corresponding to λ1 is the Ąrst
eigenfunction of (Lλ

f ) and ∥ℓ1∥E0
= 1. By Remark 3.1, there exist constants a1, a2 > 0
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such that F (t) ≥ a1♣t♣
β − a2 for all t ∈ R. Thus,

Jλ(u1) = (Φ − λΨ)(rℓ1) ≤
m1

2α
∥rℓ1∥

2α
E0

− λ
∫

Ω
F (rℓ1(x))dx

≤
m1r

2α

2α
− λrβa1

∫

Ω
♣ℓ1(x)♣βdx+ λa2♣Ω♣.

So by β ≥ 2m1α
m0

, there exists sufficiently large r > L > 0 such that Jλ(rℓ1) < 0.

Therefore, max¶Jλ(u0), Jλ(u1)♢ < infu∈∂BL
Jλ(u). Then, Theorem 2.2 by X := E0 and

φ := Jλ gives the critical point u∗. Therefore, u0 and u∗ are two critical points of Jλ,
which are two solutions of (Lλ

f ). □

3.2. Proof of Theorem 1.2.

Proof. Put X := E0. It is clear that, Jλ is continuously Gâteaux differentiable. In
view of (2.2) it is obvious that Jλ(u) is even and Jλ(0) = 0.

Step 1. We will show that Jλ satisĄes condition (i) in Theorem 2.3. The inequality
(3.2) shows the coercivity of Jλ and together with (PS)-condition, by minimization
theorem [22, Theorem 4.4] the functional Jλ has a minimum critical point u with
Jλ(u) ≥ α > 0 and ∥u∥E0

= ρ for ρ > 0 small enough.
Step 2. We will show that Jλ satisĄes condition (ii) in Theorem 2.3. Let W ⊂ E0

be a Ąnite dimensional subspace. By Remark 3.1, there exist constants a1, a2 > 0
such that F (t) ≥ a1♣t♣

β − a2 for all t ∈ R. Now, For every r > 0 and u ∈ W \ ¶0♢
with ∥u∥E0

= 1, one has

Jλ(ru) = (Φ − λΨ)(ru) ≤
m1

2α
∥ru∥2α

E0
− λ

∫

Ω
F (ru(x))dx

≤
m1r

2α

2α
∥u∥2α

E0
− λrβa1

∫

Ω
♣u(x)♣βdx+ λa2♣Ω♣ → −∞, r → +∞.

The above inequality implies that there exists r0 such that ∥ru∥E0
> ρ and Jλ(ru) < 0

for every r ≥ r0 > 0. Since W is a Ąnite dimensional subspace, there exists R =
R(W ) > 0 such that Jλ(u) ≤ 0 on W \ BR(W ). According to Theorem 2.3, the
functional Jλ(u) possesses inĄnitely many critical points, i.e., the problem (Lλ

f ) has
inĄnitely many weak solutions. □

4. Examples and Remarks

In this section we present two examples and some remarks of our main results.

Example 4.1. Let n = 2, s = 1
2
, Ω = ¶(x1, x2) ∈ R

2 : x2
1 +x2

2 ≤ 4♢ ⊂ R
2, M(t) = tK(t)

for all t ∈ R
+ where K(t) is 2-periodic extension of the function k(t) = 2 − ♣t − 1♣,

0 ≤ t ≤ 2, f(t) = 1 + t8 for all t ∈ R. We observe that 2n
n−2s

= 4, thus M satisĄes
the condition (M) by m0 = 1, m1 = 2 and α = 2. Also, M and f are two continuous

functions, f(t) ≥ 0 for all t ∈ R, limξ→0+
f(ξ)
ξα−1 = limξ→0+

1+ξ8

ξ
= +∞, thus the

assumption (F2) is satisĄed. Moreover, taking into account that lim♣ξ♣→+∞
ξf(ξ)
F (ξ)

=
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lim♣ξ♣→+∞
ξ+ξ9

ξ+ 1

9
ξ9

= 9 > 8 = 2m1α
m0

, by choosing β = 9 > 8 = 2m1α
m0

, there exists ϱ > 1

such that the assumption (F1) is fulĄlled for all ♣ξ♣ > ϱ. Hence, by applying Theorem
1.1, for every λ > 0, the problem





−M

∫

(R2×R2)\(Ω×Ω)

♣u(x) − u(y)♣2

♣x− y♣3
dxdy



×
∫

R2

u(x+ y) + u(x− y) − 2u(x)

♣y♣3
dy = λ(1 + u8), in Ω,

u = 0, on ∂Ω,

possesses at least two nontrivial weak solutions in the space

H
1/2
0 :=

{
u ∈ H1/2(R2) : u = 0 a.e. in R

2\Ω
}
.

Example 4.2. Let n = 2, s = 1
2
, Ω = ¶(x1, x2) ∈ R

2 : x2
1 + x2

2 ≤ 4♢ ⊂ R
2, M(t) =

(3
2

+ 1
2

sin t)t for all t ∈ R
+, f(t) = 1 + t9 for all t ∈ R. We observe that 2n

n−2s
= 4,

thus M satisĄes the condition (M) by m0 = 1, m1 = 2 and α = 2. Also, M and f

are two continuous functions, f is odd and limξ→0+
f(ξ)
ξα−1 = limξ→0+

1+ξ9

ξ
= +∞, thus

the assumption (F2) is satisĄed. Moreover, taking into account that lim♣ξ♣→+∞
ξf(ξ)
F (ξ)

=

lim♣ξ♣→+∞
ξ+ξ10

1

2
ξ+ 1

10
ξ10

= 10 > 8 = 2m1α
m0

, by choosing β = 10 > 8 = 2m1α
m0

, the assumption

(F1) is fulĄlled. Hence, by choosing σ = 1
2

and applying Theorem 1.2, for every λ > 0,
the problem





−M

∫

(R2×R2)\(Ω×Ω)

♣u(x) − u(y)♣2

♣x− y♣3
dxdy



×
∫

R2

u(x+ y) + u(x− y) − 2u(x)

♣y♣3
dy = λ(1 + u9), in Ω,

u = 0, on ∂Ω,

has inĄnitely many weak solutions in the space H
1/2
0 .

Remark 4.1. Example 4.2 shows that our existence results to establish inĄnitely many
solutions for the problem (Lλ

f ) in Theorem 1.2 is different from the existence results
of Molica Bicsi in [25, Theorem 1.1]. Because, Ąrstly in Example 4.2 we have M ̸= 1,
while in [25, Theorem 1.1], M ≡ 1, and the second the function f in [25, Theorem
1.1] should satisfy in

(4.1) ♣f(t)♣ ≤ a1 + a2♣t♣
q−1, a1, a2 > 0, q ∈


2,

2n

n− 2s


, t ∈ R,

while in Example 4.2, 2n
n−2s

= 4 and f(t) = 1 + t9, and so f does not apply to (4.1).

Remark 4.2. By [28, Subsection 1.1], if f(0) ̸= 0, then Theorem 1.1 ensures the
existence of two nontrivial weak solutions for the problem (Lλ

f ). If the condition

f(0) ̸= 0 does not hold, the second solution u2 of the problem (Lλ
f ) may be trivial, but

the problem has at least a nontrivial solution. Moreover, by the same argument as
[28, Corollary 3] we can prove that, under the condition that f(0) = 0, the solutions



KIRCHHOFF NONLOCAL FRACTIONAL EQUATIONS 27

given by Theorem 1.1 has constant sign, i.e., Theorem 1.1 provides non-negative
(non-positive) solutions.

Remark 4.3. By the similar arguments as given in the proof of [28, Subsection 4.1] the
non-triviality of the second weak solution ensured by Theorem 1.1 can be achieved
also in the case f(0) = 0 requiring the extra condition at zero in the form of

(4.2) lim sup
ξ→0+

f(ξ)

♣ξ♣
= ∞ and lim inf

ξ→0+

f(ξ)

♣ξ♣
> −∞.

Indeed, let λ > 0 and let Φ and Ψ be as given in Section 3. Due to Theorem 2.1 and
Lemma 3.1, Jλ = Φ − λΨ has a critical point uλ that is a global minimum of Jλ. We
will prove that the function uλ cannot be trivial. Let us show that

(4.3) lim sup
∥u∥→0+

Ψ(u)

Φ(u)
= +∞.

Owing to the assumptions (4.2), we can consider a sequence ¶ξn♢ ⊂ R
+ converging

to zero and two constants σ, κ (with 0 < σ < 1) such that limn→+∞
f(ξn)
♣ξn♣

= +∞ and

F (ξ) ≥ κ♣ξ♣2 for every ξ ∈ [0, σ]. We consider a set G ⊂ B of positive measure and a
function v ∈ X such that v(t) ∈ [0, 1] for every t ∈ Ω, v(t) = 1 for every t ∈ G and
v(t) = 0 for every x ∈ Ω \D. Hence, Ąx N > 0 and consider a real positive number η
with

N <
2αη♣G♣ + 2ακ

∫
D\G ♣v(t)♣2dt

m1∥v∥2α
E0

.

Then, there is n0 ∈ N such that ξn < σ and F (ξn) ≥ η♣ξn♣2 for every n > n0. Now, for
every n > n0, by considering the properties of the function v (that is 0 ≤ ξnv(t) < σ
for n large enough), one has

Ψ(ξnv)

Φ(ξnv)
≥
F (ξn)♣G♣ +

∫
D\G F (ξnv(t))dt

Φ(ξnv)
>

2αη♣G♣ + 2ακ
∫

D\G ♣v(t)♣2dt

m1∥v∥2α
E0

> N.

Since N could be arbitrarily large, we get limn→∞
Ψ(ξnv)
Φ(ξnv)

= +∞, from which (4.3)

clearly follows. So, there exists a sequence ¶ζn♢ ⊂ X strongly converging to zero such
that, for n large enough, Jλ(ζn) = Φ(ζn) − λΨ(ζn) < 0. Since uλ is a global minimum
of Jλ, we obtain Jλ(uλ) < 0, so that uλ is not trivial.

Remark 4.4. We observe that if f is non-negative, Theorem 1.1 is a bifurcation result
in the sense that the pair (0, 0) ∈ Eλ

f ⊂ E0 × R with

Eλ
f :=

{
(uλ, λ) ∈ E0 × (0,∞) : uλ is a non-trivial weak solution of (Lλ

f )
}
.

Practically, by the proof of Theorem 1.1, ∥uλ∥E0
→ 0 as λ → 0. Hence, there exist

two sequences ¶uj♢ in E0 and ¶λj♢ in R
+ (here uj = uλj

) such that λj → 0+ and
∥uj∥ → 0, as j → ∞. Moreover, since f is nonnegative, Ψ(u) < 0 for all u ∈ R

and thus the mapping (0, λ∗) ∋ λ 7→ Iλ(uλ) is strictly decreasing. Hence, for every
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λ1, λ2 ∈ (0, λ∗), with λ1 ≠ λ2, the weak solutions uλ1
and uλ2

ensured by Theorem 1.1
are different.

Remark 4.5. If f(u) is an odd function we can give the same result as Theorem 1.2
by setting the following assumptions on nonlinear term:

(F3) there exist constants R > 0 and 0 < λL1 <
1
2

min¶1,m0♢ such that F (u) ≤
L1♣u♣2 for all u ∈ R with ♣u♣ ≤ R;

(F4) there exist constants R1 > 0, δ1 > 0 and α1 > β such that F (u) ≥ δ1♣u♣α1 , for
all u ∈ R with ♣u♣ ≥ R;

(F5) there exist constants β > m1α
m0

, δ1 ≥ 0 and 0 < α2 < 2 such that νF (ξ)−ξf(ξ) ≤

δ2♣u♣α2 .
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GENERALIZATIONS OF SOME BERNSTEIN-TYPE

INEQUALITIES FOR THE POLAR DERIVATIVE OF A

POLYNOMIAL

ABDULLAH MIR AND ADIL HUSSAIN

Abstract. In this paper, we establish some new Bernstein-type bounds for the
polar derivative of constrained polynomials on the unit circle in the plane. The
obtained results sharpen some known estimates for the ordinary derivative of poly-
nomials as special cases.

1. Introduction

Let Pn denote the class of all complex polynomials P (z) :=
∑n

v=0 cvzv of degree
n. The extremal problems of functions of complex variables and the results where
some approches to obtaining the classical inequalities are developed on using various
methods of the geometric function theory are known for various norms and for many
classes of functions such as polynomials with various constraints, and on various
regions of the complex plane. A classical result due to Bernstein [2], that relates an
estimate of the size of the derivative and the polynomial for the sup-norm on the unit
circle states that: if P ∈ Pn, then

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≤ n max
♣z♣=1

♣P (z)♣.(1.1)

The above inequality (1.1) was proved by Bernstein in 1912. Later in 1985, Frappier,
Rahman and Ruscheweyh [3] strengthened (1.1), by proving that if P ∈ Pn, then

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≤ n max
1≤l≤2n

∣

∣

∣P (e
ilπ

n )
∣

∣

∣.(1.2)
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Clearly (1.2) represents a reĄnement of (1.1), since the maximum of ♣P (z)♣ on ♣z♣ = 1
may be larger than the maximum of ♣P (z)♣ taken over the (2n)th roots of unity, as
is shown by the simple example P (z) = zn + ia, a > 0. Following the approach of
Frappier, Rahman and Ruscheweyh [3], Aziz [1] showed that the bound in (1.2) can
be considerably improved. In fact, Aziz proved that if P ∈ Pn, then

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≤
n

2
(Mα + Mα+π),(1.3)

where

Mα = max
1≤l≤n

∣

∣

∣P (ei(α+2lπ)/n)
∣

∣

∣,(1.4)

for all real α.
In the same paper, Aziz obtained a lower bound for the maximum of ♣P ′(z)♣ on

♣z♣ = 1, by proving that if P ∈ Pn, then

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≥
n

2

{

2max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣−
(

M0 + Mπ

)

}

.(1.5)

If we restrict ourselves to the class of polynomials having no zeros in ♣z♣ < 1, then
(1.1) can be replaced by

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≤
n

2
max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣,(1.6)

whereas, if P (z) has no zeros in ♣z♣ > 1, then

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≥
n

2
max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣.(1.7)

Inequality (1.6) was conjectured by Erdős and later proved by Lax [6], whereas
inequality (1.7) is due to Turán [18]. Ideally, it is natural to look for improving results
in (1.3) when P (z) does not vanish in the unit disk, and accordingly Aziz [1] proved
that if P ∈ Pn, and P (z) ̸= 0 in ♣z♣ < 1, then for every real number α,

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≤
n

2

{

M2
α + M2

α+π

}
1

2

,(1.8)

where Mα is deĄned by (1.4).
It is important to mention that different versions of the Bernstein and Turán-

type inequalities have appeared in the literature in more generalized forms in which
the underlying polynomial is replaced by more general classes of functions. These
inequalities have their own signiĄcance and importance in Approximation theory. One
of such generalization is moving from the domain of ordinary derivative of polynomials
to their polar derivative. Before proceeding to our main results, let us remind that
the polar derivative DβP (z) of P (z) where P ∈ Pn, with respect to the point β is
deĄned as

DβP (z) := nP (z) + (β − z)P ′(z).
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Note that DβP (z) is a polynomial of degree at most n − 1. This is the so-called polar
derivative of P (z) with respect to β (see [7]). It generalizes the ordinary derivative in
the sense that

lim
β→∞

{

DβP (z)

β

}

:= P ′(z),

uniformly with respect to z for ♣z♣ ≤ R, R > 0.
More information on the polar derivative of a polynomial can be found in the

comprehensive books of Milovanović et al. [9] and Rahman and Schmeisser [17].
Over the last four decades many different authors produced a large number of differ-

ent versions and generalizations of the above inequalities by introducing restrictions
on the multiplicity of zero at z = 0, the modulus of largest root of P (z), restrictions on
coefficients, using higher order derivatives, etc. Many of these generalizations involve
the comparison of polar derivative DβP (z) with various choices of P (z), β and other
parameters. The latest research and development on this topic can be found in the
papers ([5, 8, 10,11,13Ű16,20]).

The main purpose of this paper is to obtain some upper bound estimates for the
maximal modulus of polar derivative of a polynomial on a disk under the assumption
that the polynomial has no zeros either in the disk ♣z♣ < k or in ♣z♣ > k, k > 0.
The obtained results sharpen as well generalize some already known estimates for the
ordinary derivative of polynomials as special cases.

2. Main Results

Theorem 2.1. If P ∈ Pn and P (z) ̸= 0 in ♣z♣ < k, k ≥ 1, then for every complex

number β with ♣β♣ ≥ 1

max
♣z♣=1

∣

∣

∣DβP (z)
∣

∣

∣ ≤
n

2



2max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣+
(

♣β♣ − 1
)







M2
α + M2

α+π

−
2

(1 + k)



(k − 1) +
2

n

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣







∣

∣

∣P (z)
∣

∣

∣

2







1

2



,(2.1)

where Mα is defined by (1.4).
The result is best possible for k = 1 and equality in (2.1) holds for P (z) = zn + 1,

with real β ≥ 1.

By taking α = 0 in (2.1), we get the following result.
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Corollary 2.1. Let P ∈ Pn and P (z) ̸= 0 in ♣z♣ < k, k ≥ 1. If t1, t2, . . . , tn are the

zeros of zn + 1 and s1, s2, . . . , sn are the zeros of zn − 1, then for ♣β♣ ≥ 1

max
♣z♣=1

∣

∣

∣DβP (z)
∣

∣

∣ ≤
n

2



2max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣+
(

♣β♣ − 1
)







(

max
1≤j≤n

♣P (tj)♣
)2

+
(

max
1≤j≤n

♣P (sj)♣
)2

−
2

(1 + k)



(k − 1) +
2

n

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣







∣

∣

∣P (z)
∣

∣

∣

2







1

2



.(2.2)

The result is best possible for k = 1 and equality in (2.2) holds for P (z) = zn + 1, with

real β ≥ 1.

Dividing both sides of inequality (2.1) by ♣β♣ and letting ♣β♣ → ∞, we get the
following result.

Corollary 2.2. If P ∈ Pn and P (z) ̸= 0 in ♣z♣ < k, k ≥ 1, then we have for every

real α

max
♣z♣=1

♣P ′(z)♣ ≤
n

2







M2
α + M2

α+π −
2

(1 + k)



(k − 1) +
2

n

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣

]

∣

∣

∣P (z)
∣

∣

∣

2







1

2

,

where Mα is defined by (1.4).

It is easy to verify that Corollary 2.2 generalizes as well as sharpens inequality (1.8).
Taking k = 1 in Corollary 2.2, we get the following result.

Corollary 2.3. If P ∈ Pn and P (z) ̸= 0 in ♣z♣ < 1, then we have for every real α,

max
♣z♣=1

♣P ′(z)♣ ≤
n

2







M2
α + M2

α+π −
2

n

(

♣c0♣ − ♣cn♣

♣c0♣ + ♣cn♣



∣

∣

∣P (z)
∣

∣

∣

2







1

2

,

where Mα is defined by (1.4).

The bound obtained in Corollary 2.3 is always sharper than the bound obtained
from inequality (1.8), for this it needs to show that

♣c0♣ − ♣cn♣

♣c0♣ + ♣cn♣
≥ 0,

which is equivalent to

♣c0♣ ≥ ♣cn♣,

which is true as P (z) ̸= 0 in ♣z♣ < 1.
If we divide both sides of inequality (2.2) by ♣β♣ and let ♣β♣ → ∞, we get the

following result.



GENERALIZATIONS OF SOME BERNSTEIN-TYPE INEQUALITIES 35

Corollary 2.4. Let P ∈ Pn and P (z) ̸= 0 in ♣z♣ < k, k ≥ 1. If t1, t2, . . . , tn are the

zeros of zn + 1, and s1, s2, . . . , sn are the zeros of zn − 1, then

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≤
n

2







(

max
1≤j≤n

♣P (tj)♣
)2

+
(

max
1≤j≤n

♣P (sj)♣
)2

−
2

(1 + k)



(k − 1) +
2

n

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣







∣

∣

∣P (z)
∣

∣

∣

2







1

2

.(2.3)

The result is best possible for k = 1 and equality in (2.3) holds for P (z) = zn + 1.

Remark 2.1. It is easy to see that Corollary 2.4 generalizes the following result due
to Wali and Shah [19, Corollary 1].

Theorem 2.2. Let P ∈ Pn and P (z) ̸= 0 in ♣z♣ < 1. If t1, t2, . . . , tn are the zeros of

zn + 1, and s1, s2, . . . , sn are the zeros of zn − 1, then for ♣z♣ = 1, we have

∣

∣

∣P ′(z)
∣

∣

∣ ≤
n

2







(

max
1≤j≤n

∣

∣

∣P (tj)
∣

∣

∣

)2

+
(

max
1≤j≤n

∣

∣

∣P (sj)
∣

∣

∣

)2

−
2

n

(

♣c0♣ − ♣cn♣

♣c0♣ + ♣cn♣



∣

∣

∣P (z)
∣

∣

∣

2







1

2

.(2.4)

Equality in (2.4) holds for P (z) = zn + 1.

If P (z) has all its zeros on ♣z♣ = k, k > 1, then from Theorem 2.1, we get the
following result.

Corollary 2.5. If P ∈ Pn and P (z) has all its zeros on ♣z♣ = k, k > 1, then for every

complex number β, with ♣β♣ ≥ 1

max
♣z♣=1

∣

∣

∣DβP (z)
∣

∣

∣ ≤
n

2



2max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣+
(

♣β♣ − 1
)

{

M2
α + M2

α+π − 2

(

k − 1

k + 1



♣P (z)♣2
}

1

2



,

where Mα is defined by (1.4).

Next as an application of Theorem 2.1, we prove the following result.

Theorem 2.3. Let P (z) =
∑n

v=0 cvzv ∈ Pn, c0 ̸= 0, with P (z) ̸= 0 in ♣z♣ > k, k ≤ 1,
then for every complex number γ with ♣γ♣ ≤ 1, we have for ♣z♣ = 1

∣

∣

∣DγP (z)
∣

∣

∣ ≤
n

2



2♣γ♣max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣+
(

1 − ♣γ♣
)

×







M2
α + M2

α+π −
2

(1 + k)



(1 − k) +
2k

n

(

kn♣cn♣ − ♣c0♣

kn♣cn♣ + ♣c0♣

]

∣

∣

∣P (z)
∣

∣

∣

2







1

2



,(2.5)

where Mα is defined by (1.4).
The result is best possible for k = 1 and equality in (2.5) holds for P (z) = zn + 1,

with real γ ≤ 1.
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Remark 2.2. If we take γ = 0 in (2.5), we get for ♣z♣ = 1
∣

∣

∣nP (z) − zP ′(z)
∣

∣

∣

≤
n

2







M2
α + M2

α+π −
2

(1 + k)



(1 − k) +
2k

n

(

kn♣cn♣ − ♣c0♣

kn♣cn♣ + ♣c0♣

]

∣

∣

∣P (z)
∣

∣

∣

2







1

2

.(2.6)

If max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣ =
∣

∣

∣P (eiφ)
∣

∣

∣, we get from (2.6) that

∣

∣

∣P ′(eiφ)
∣

∣

∣ ≥
n

2



2max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣

−







M2
α + M2

α+π −
2

(1 + k)



(1 − k) +
2k

n

(

kn♣cn♣ − ♣c0♣

kn♣cn♣ + ♣c0♣







∣

∣

∣P (z)
∣

∣

∣

2







1

2



.(2.7)

Since max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≥
∣

∣

∣P ′(eiφ)
∣

∣

∣, we get from (2.7) that

max
♣z♣=1

∣

∣

∣P ′(z)
∣

∣

∣ ≥
n

2



2max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣

−







M2
α + M2

α+π −
2

(1 + k)



(1 − k) +
2k

n

(

kn♣cn♣ − ♣c0♣

kn♣cn♣ + ♣c0♣







∣

∣

∣P (z)
∣

∣

∣

2







1

2



.(2.8)

Taking k = 1 in (2.8), we immediately get a reĄnement of (1.5) when all the zeros of
P (z) lie in ♣z♣ ≤ 1.

Remark 2.3. It may be remarked here that for k = 1, Theorems 2.1 and 2.3 were
recently established by Mir [11].

3. Lemmas

We need the following lemmas to prove our theorems.

Lemma 3.1. If xv, v = 1, 2, . . . , n is a sequence of real numbers such that xv ≥ 1 for

all v ∈ N, then

n
∑

v=1

xv − 1

xv + 1
≥

∏n
v=1 xv − 1

∏n
v=1 xv + 1

, for all n ∈ N.

Proof of Lemma 3.1. We prove this result with the help of mathematical induction
and we use induction on n. The result is trivially true for n = 1.

For n = 2

x1 − 1

x1 + 1
+

x2 − 1

x2 + 1
≥

x1x2 − 1

x1x2 + 1
,
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if

2(x1x2 − 1)

1 + x1 + x2 + x1x2

≥
x1x2 − 1

x1x2 + 1
,

i.e., if (x1 − 1)(x2 − 1) ≥ 0, which is true, since x1, x2 ≥ 1. This shows that the result
holds for n = 2. Assume the result is true for n = r ∈ N. Now since

∏r
v=1 xv ≥ 1, we

have
r+1
∑

v=1

xv − 1

xv + 1
=

r
∑

v=1

xv − 1

xv + 1
+

xr+1 − 1

xr+1 + 1

≥

∏r
v=1 xv − 1

∏r
v=1 xv + 1

+
xr+1 − 1

xr+1 + 1
(by induction hypothesis)

≥

∏r+1
v=1 xv − 1

∏r+1
v=1 xv + 1

(by the case n = 2).

This shows that the result holds for n = r + 1 as well. Therefore by the principle of
mathematical induction, it follows that the result holds for all n ∈ N. This completes
the proof of Lemma 3.1. □

Lemma 3.2. If P ∈ Pn and P (z) ̸= 0 in ♣z♣ < k, k ≥ 1, then for each point z on

♣z♣ = 1 for which P (z) ̸= 0, we have

Re
(

zP ′(z)

P (z)

)

≤
1

1 + k

{

n −

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣

}

.(3.1)

Proof of Lemma 3.2. Recall that P ∈ Pn and P (z) has all its zeros in ♣z♣ ≥ k, k ≥ 1.
If z1, z2, . . . , zn are the zeros of P (z) =

∑n
v=0 cvzv of degree n, then ♣zv♣ ≥ k, k ≥ 1,

and we can write P (z) = cn
∏n

v=1(z − zv). This gives

zP ′(z)

P (z)
=

n
∑

v=1

z

z − zv

.

Now for the points eiθ, 0 ≤ θ ≤ 2π, with P (eiθ) ̸= 0, we have

Re

(

eiθP ′(eiθ)

P (eiθ)



=
n
∑

v=1

Re

(

eiθ

eiθ − zv



≤
n
∑

v=1

1

1 + ♣zv♣

=
n

1 + k
−

1

1 + k

n
∑

v=1

♣zv♣ − k

♣zv♣ + 1

≤
n

1 + k
−

1

1 + k

n
∑

v=1

♣zv♣ − k

♣zv♣ + k
(as k ≥ 1)

=
n

1 + k
−

1

1 + k

n
∑

v=1

♣zv♣/k − 1

♣zv♣/k + 1
.
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Since ♣zv♣/k ≥ 1, v = 1, 2, . . . , n, we get on using Lemma 3.1 for the points eiθ,
0 ≤ θ ≤ 2π, with P (eiθ) ̸= 0,

Re

(

eiθP ′(eiθ)

P (eiθ)



≤
n

1 + k
−

1

1 + k





∏n
v=1 ♣zv♣/k − 1

∏n
v=1 ♣zv♣/k + 1





=
n

1 + k
−

1

1 + k





♣c0♣/kn♣cn♣ − 1

♣c0♣/kn♣cn♣ + 1



,

which is equivalent to (3.1). This completes the proof of Lemma 3.2. □

Lemma 3.3. If P ∈ Pn, then for ♣z♣ = 1, and for any real number α,

∣

∣

∣P ′(z)
∣

∣

∣

2
+
∣

∣

∣Q′(z)
∣

∣

∣

2
≤

n2

2

(

M2
α + M2

α+π

)

,

where Mα is defined by (1.4).

The above lemma is due to Aziz [1].

Lemma 3.4. If P ∈ Pn, then for ♣z♣ = 1,
∣

∣

∣P ′(z)
∣

∣

∣+
∣

∣

∣Q′(z)
∣

∣

∣ ≤ n max
♣z♣=1

♣P (z)♣.

The above lemma is a special case of a result due to Govil and Rahman [4].

4. Proof of the Theorems

Proof of Theorem 2.1. Recall that P ∈ Pn and P (z) has all its zeros in ♣z♣ ≥ k, k ≥ 1.
First, we suppose that P (z) has no zeros on ♣z♣ = k, k > 1 and therefore, all the zeros
of P (z) lie in ♣z♣ > k, we have by Lemma 3.2 for ♣z♣ = 1

2Re

(

zP ′(z)

P (z)



≤
2

1 + k

{

n −

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣

}

.(4.1)

Also it easily follows that
∣

∣

∣Q′(z)
∣

∣

∣ =
∣

∣

∣nP (z) − zP ′(z)
∣

∣

∣, for ♣z♣ = 1,(4.2)

where Q(z) = znP (1
z̄
). This implies

∣

∣

∣

∣

∣

zQ′(z)

P (z)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

n −
zP ′(z)

P (z)

∣

∣

∣

∣

∣

2

= n2 +

∣

∣

∣

∣

∣

zP ′(z)

P (z)

∣

∣

∣

∣

∣

2

− 2nRe

(

zP ′(z)

P (z)



,

which by using (4.1) yields for ♣z♣ = 1

2
∣

∣

∣P ′(z)
∣

∣

∣

2
≤
∣

∣

∣P ′(z)
∣

∣

∣

2
+
∣

∣

∣Q′(z)
∣

∣

∣

2
+



2n2

1 + k
−

2n

1 + k

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣



− n2

]

♣P (z)♣2.(4.3)
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On combining Lemma 3.3 and inequality (4.3), we get for ♣z♣ = 1

∣

∣

∣P ′(z)
∣

∣

∣ ≤
n

2







M2
α + M2

α+π −
2

(1 + k)



(k − 1) +
2

n

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣

]

∣

∣

∣P (z)
∣

∣

∣

2







1

2

.(4.4)

The above inequality (4.4) trivially holds for k = 1 as well as for points z on ♣z♣ = 1
for which P (z) = 0 by (1.8). Using the deĄnition of polar derivative of a polynomial
P ∈ Pn with respect to the complex number β, we have

∣

∣

∣DβP (z)
∣

∣

∣ =♣nP (z) + (β − z)P ′(z)♣

≤
∣

∣

∣nP (z) − zP ′(z)
∣

∣

∣+ ♣β♣
∣

∣

∣P ′(z)
∣

∣

∣

=
∣

∣

∣Q′(z)
∣

∣

∣+ ♣β♣
∣

∣

∣P ′(z)
∣

∣

∣ (using (4.2))

≤nmax
♣z♣=1

♣P (z)♣ + (♣β♣ − 1)
∣

∣

∣P ′(z)
∣

∣

∣ (by Lemma 3.4).(4.5)

Inequality (4.5) in conjunction with inequality (4.4) gives,

max
♣z♣=1

∣

∣

∣DβP (z)
∣

∣

∣ ≤
n

2



2max
♣z♣=1

∣

∣

∣P (z)
∣

∣

∣+
(

♣β♣ − 1
)







M2
α + M2

α+π

−
2

(1 + k)



(k − 1) +
2

n

(

♣c0♣ − kn♣cn♣

♣c0♣ + kn♣cn♣





♣P (z)♣2







1

2



.

This completes the proof of Theorem 2.1. □

Proof of Theorem 2.3. By hypothesis, the polynomial P (z) =
∑n

v=0 cvzv, c0 ̸= 0 has

all its zeros in ♣z♣ ≤ k, k ≤ 1, therefore, the polynomial Q(z) = znP (1
z̄
) has no zeros in

♣z♣ < 1/k, 1/k ≥ 1. Applying Theorem 2.1 to the polynomial Q(z), we get for ♣β♣ ≥ 1
and ♣z♣ = 1

∣

∣

∣DβQ(z)
∣

∣

∣ ≤
n

2



2max
♣z♣=1

♣Q(z)♣ +
(

♣β♣ − 1
)







Y 2
α + Y 2

α+π

−
2

(1 + 1/k)



(1/k − 1) +
2

n

(

♣cn♣ − 1/kn♣c0♣

♣cn♣ + 1/kn♣c0♣

]

♣Q(z)♣2







1

2



.(4.6)

Since ♣P (z)♣ = ♣Q(z)♣ for ♣z♣ = 1, it follows that

Yα = max
1≤l≤n

∣

∣

∣Q(ei(α+2lπ)/n)
∣

∣

∣ = max
1≤l≤n

∣

∣

∣P (ei(α+2lπ)/n)
∣

∣

∣ = Mα.
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Using this in (4.6), we get for ♣β♣ ≥ 1 and ♣z♣ = 1

∣

∣

∣DβQ(z)
∣

∣

∣ ≤
n

2



2max
♣z♣=1

♣P (z)♣ +
(

♣β♣ − 1
)







M2
α + M2

α+π

−
2

(1 + k)



(1 − k) +
2k

n

(

kn♣cn♣ − ♣c0♣

kn♣cn♣ + ♣c0♣

]

♣P (z)♣2







1

2



.(4.7)

For ♣z♣ = 1, we have zz = 1, then it is easy to verify (for example, see [11]), that for
♣α♣ ≠ 0

∣

∣

∣DβQ(z)
∣

∣

∣ =
∣

∣

∣β̄
∣

∣

∣

∣

∣

∣D1/β̄P (z)
∣

∣

∣.

Replacing 1/β̄ by γ, so that ♣γ♣ ≤ 1, we obtain from (4.7), that

∣

∣

∣DγP (z)
∣

∣

∣ ≤
n

2



2♣γ♣max
♣z♣=1

♣P (z)♣ +
(

1 − ♣γ♣
)







M2
α + M2

α+π

−
2

(1 + k)



(1 − k) +
2k

n

(

kn♣cn♣ − ♣c0♣

kn♣cn♣ + ♣c0♣

]

♣P (z)♣2







1

2



,

for ♣z♣ = 1 and ♣γ♣ ≤ 1.
This completes the proof of Theorem 2.3. □
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NOTE ON THE MULTIFRACTAL FORMALISM OF COVERING

NUMBER ON THE GALTON-WATSON TREE

NAJMEDINE ATTIA1 AND MERIEM BEN HADJ KHALIFA2

Abstract. We consider, for t in the boundary of Galton-Watson tree (∂T), the
covering number Nn(t) by cylinder of generation n. For a suitable set I and a
sequence (sn,γ), we establish almost surely, and uniformly on γ, the Hausdorff and
packing dimensions of the set ¶t ∈ ∂T : Nn(t) − nb ∼ sn,γ♢ for b ∈ I.

1. Introduction and main results

Let (N,X) be a random vector with independent components taking values in
N2, where N denotes the set of non-negative integers. Then let ¶(Nu, Xu)♢u∈

⋃
n≥0

Nn
+

be a family of independent copies of the vector (N,X) indexed by the set of finite
words over the alphabet N+: the set of positive integers (n = 0 corresponds to the
empty sequence denoted ∅). Let T be the Galton-Watson tree with defining elements
¶Nu♢: we have ∅ ∈ T, if u ∈ T and i ∈ N+ then ui, the concatenation of u and i,
belongs to T if and only if 1 ≤ i ≤ Nu and if ui ∈ T, then u ∈ T. Similarly, for each
u ∈ ⋃

n≥0 N
n
+, denote by T(u) the Galton-Watson tree rooted at u and defined by the

¶Nuv♢, v ∈ ⋃
n≥0 N

n
+.

We assume that E(N) > 1 so that the Galton-Watson tree is supercritical. We also
assume that the probability of extinction is equal to 0, so that P(N ≥ 1) = 1.

For each infinite word t = t1t2 · · · ∈ N
N+

+ and n ≥ 0, we set t♣n = t1 · · · tn ∈ Nn
+

(t♣0 = ∅). If u ∈ Nn
+ for some n ≥ 0, then n is the length of u and it is denoted by ♣u♣.

We denote by [u] the set of infinite words t ∈ N
N+

+ such that t♣♣u♣ = u.

Key words and phrases. Random covering, Hausdorff dimension, indexed martingale, Galton-
Watson tree.
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The set N
N+

+ is endowed with the standard ultrametric distance

d : (u, v) 7→ e− sup¶♣w♣:u∈[w],v∈[w]♢,

with the convention exp(−∞) = 0. The boundary of the Galton-Watson tree T is
defined as the compact set

∂T =
⋂

n≥1

⋃

u∈Tn

[u],

where Tn = T ∩ Nn
+.

We consider Xu as the covering number of the cylinder [u], that is to say, the
cylinder [u] is cut off with probability p0 = P(X = 0) and is covered m times with
probability pm = P(X = m), m = 1, 2, . . .

For t ∈ ∂T, set

Nn(t) =
n∑

k=1

Xt1···tk .

Since this quantity depends on t1 · · · tn only, we also denote by Nn(u) the constant value
of Nn(·) over [u] whenever u ∈ Tn. The quantity Nn(t) is called the covered number
(or more precisely the n-covered number) of the point t by cylinder of generation k,
k = 1, 2, . . . , n.

Consider an individual infinite branch t1 · · · tn · · · in ∂T. When E(X) is defined, the
strong law of large number yields limn→∞ n−1

Nn(t) = E(X). It is also well known, in
the theory of the birth process, (see [15]) that almost surely (a.s.) limn→∞ Nn(t) = +∞
for every t ∈ D = ¶0, 1♢N if and only if

p0 = P(X = 0) <
1

2
.

If this condition is satisfied, then a.s. every point is infinitely covered.
We consider, for b ∈ R, the set

Eb =

t ∈ ∂T : lim

n→∞

Nn(t)

n
= b


.

These level sets can be described geometrically through their Hausdorff dimensions.
They have been studied by many authors, see [3,8,11,14,16,21] and [4,7] for a general
case. All these papers also deal with the multifractal analysis of associated Mandelbrot
measures (see also [1, 2, 19] for the study of Mandelbrot measures dimension).

We will assume that the free energy of X defined as

τ(q) = logE
( N∑

i=1

eqXi

)

is finite over R. We will assume, without loss of generality, that X is not constant so
that the function τ is strictly convex. Let τ ∗ stand for the Legendre transform of the
function τ , defined as

τ ∗(b) := inf
q∈R

(
τ(q) − qb

)
, b ∈ R.
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We say that the multifractal formalism holds at b ∈ R if

dimEb = DimEb = τ ∗(b),

where dim Eb is the Hausdorff dimension of Eb and Dim Eb is the packing dimension
of Eb (see Section A for the definition). In the following, we define the sets

J =

q ∈ R; τ(q) − qτ ′(q) > 0


,

Ω1
α = int


q : E

[∣∣∣
N∑

i=1

eqXi

∣∣∣
α

< ∞


,

Ω1 =
⋃

α∈(1,2]

Ω1
α,

J = J ∩ Ω1 and I =

τ ′(q); q ∈ J


.

Remark 1.1. It is well known, see [6, Proposition 3.1], that L = ¶α ∈ R, τ ∗(α) ≥ 0♢,
is a convex, compact and non-empty set. In addition, if we assume that J = J

then I = int(L), where int(L) is the interior of L (see also [6, Proposition 3.1.]) In
particular, I is an interval.

Next, we define for b, γ ∈ R and for any positive sequence sγ = ¶sn,γ♢n such that
sn,γ = o(n) and γ 7→ sn,γ is analytic function, the set

Eb,sγ =

t ∈ ∂T : Nn(t) − nb ∼ sn,γ as n → +∞


,

where Nn(t) − nb ∼ sn,γ means that (Nn(t) − nb)n and (sn,γ)n are two equivalent
sequences. It is clear that Eb,sγ ⊂ Eb. So, we can get with a simple covering argument,
with probability 1, for all b ∈ R and γ ∈ R,

(1.1) dimEb,sγ ≤ dimEb ≤ DimEb ≤ τ ∗(b),

(see Proposition 1 in [5] and Proposition 2.7 in [4]). Let us mention that the methods
used to compute Hausdorff dimension of the sets Eb in, for example, [4, 7, 17,18]) do
not give results on dim Eb,sγ . These sets were considered by Kahane and Fan in [15].
The authors considered the space ¶0, 1♢N and they compute, for each b, almost surely
(a.s.), the Hausdorff dimension of Eb,sγ under the hypothesis :

sn,γ = o(n), ηn(γ) = sn,γ − sn−1,γ = o(1) and
√
n ln lnn = o(sn,γ).

A special case of a sequence satisfying the above hypothesis is sn,γ = nγ with γ ∈
(1/2, 1). Later, Attia in [5], gives a stronger result in the sense that, a.s. for all b ∈ I,
he computed the Hausdorff dimensions of the sets Eb,sγ under the hypothesis

(1.2) sn,γ = o(n), ηn(γ) = sn,γ − sn−1,γ = o(1)

and there exists ϵn → 0 such that

(1.3)
∑

n≥1

exp
(

− ϵ
n∑

k=1

ϵk ηk(γ)2
)
< +∞, for all ϵ > 0.
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In particular, we can choose

sn,γ =
n∑

k=1

1

kγ
with γ ∈ (0, 1/2).

Theorem 1.1 ([5]). Let sγ be a positive sequence satisfying (1.2) and (1.3). Then,

a.s. for all b ∈ I

dimEb,sγ = dimEb = τ ∗(b).

This requires, for a given sequence sγ , a simultaneous building of an inhomogeneous
Mandelbrot measure and a computing of their dimensions. In particular, for

sn,γ =
n∑

k=1

1

kγ
,

we have for all γ ∈ (0, 1/2), a.s. dimEb,sγ = τ ∗(b). To state our main result, let
sγ = (sn,γ)n be a positive sequence and we define the set Λs to be any set of R such
that

(1.4) Λs ⊆

γ ∈ R, such that (sn,γ) satisfies (1.2) and (1.3)



and, for k ≥ 1

(1.5) η̃k = inf
γ∈Λs

ηk(γ) > 0.

We suppose the following hypothesis.

Hypothesis 1.2. There exists a sequence ϵn → 0 such that

∑

n≥1

exp
(

− ϵ
n∑

k=1

ϵkη̃
2
k

)
< +∞, for all ϵ > 0.

Clearly this hypothesis is satisfied, for sn,γ =
∑n
k=1

1
kγ , with Λs = [ϵ, 1/2), ϵ > 0.

Applying the previous theorem we get the conclusion for each γ ∈ Λs a.s. The goal
of this note is to give a uniform result on γ. In addition, we determine the packing
dimensions of the sets Eb,sγ . More precisely we have the following result.

Theorem 1.3. Let sγ = (sn,γ)n≥1 be a positive sequence and consider a set Λs

satisfying (1.4) and (1.5). Under Hypothesis 1.2, we have, a.s.. for all b ∈ I and for

all γ ∈ Λs

dimEb,sγ = dimEb = DimEb = DimEb,sγ = τ ∗(b).

2. Construction of Inhomogeneous Mandelbrot Measures

We define, for (q, p) ∈ J × [1,∞), the function

φ(p, q) = exp
(
τ(pq) − pτ(q)

)
.
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From [5], for all nontrivial compact sets K ⊂ J there exist 1 < pK < 2 and p̃K > 1
such that we have

(2.1) sup
q∈K

φ(pK , q) < 1, for all 1 < p ≤ pK ,

and

(2.2) sup
q∈K

E

(( N∑

i=1

eqXi

)p̃K

)
< ∞.

Now, we will construct the inhomogeneous Mandelbrot measure. For q ∈ J and
k ≥ 1, we define ψk(q, γ) as the unique t, such that

τ ′(t) = τ ′(q) + ηk(γ).

For u ∈ ⋃
n≥0 N

n
+ and q ∈ J we define, for 1 ≤ i ≤ Nu

V (ui, q) =
exp

(
qXui

)

E

( N∑

i=1

exp
(
qXi

)) = exp
(
qXui − τ(q)

)

and, for all n ≥ 0

Yn(q, γ, u) =
∑

v1···vn∈Tn(u)

n∏

k=1

V
(
u · v1 · · · vk, ψ♣u♣+k(q, γ)

)
.

When u = ∅, this quantity will be denoted by Yn(q, γ) and when n = 0, their values
equals 1.

The sequence
(
Yn(q, γ, u)

)

n≥1
is a positive martingale with expectation 1, which

converges almost surely and in L1 norm to a positive random variable Y (q, γ, u) (see
[9] or [10, Theorem 1]). However, our study will need the almost sure simultaneous
convergence of these martingales to positive limits.

Proposition 2.1. (a) Let K = K×Kγ be a compact subset of J×Λs. There exists pK ∈
(1, 2] such that for all u ∈ ⋃

n≥0 N
n
+ the continuous functions (q, γ) ∈ K 7→ Yn(q, γ, u)

converge uniformly, almost surely and in LpK
norm, to a limit (q, γ) ∈ K 7→ Y (q, γ, u).

In particular, E(sup(q,γ)∈K
Y (q, γ, u)pK) < ∞. Moreover, Y (·, ·, u) is positive almost

surely.

In addition, for all n ≥ 0, σ
(
¶(Xu1, . . . , XuNu

), u ∈ Tn♢
)

and σ
(
¶Y (·, ·, u), u ∈

Tn+1♢
)

are independent, and the random functions Y (·, ·, u), u ∈ Tn+1, are indepen-

dent copies of Y (·, ·):= Y (·, ·, ∅).
(b) With probability 1, for all q ∈ J and γ ∈ Λs, the weights

µγq

(
[u]
)

=
[ n∏

k=1

exp
(
ψk(q, γ)Xu1...uk

− τ(ψk(q, γ))
)
Y (q, γ, u)

define a measure on ∂T, where n = ♣u♣.
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The measure µγq will be used to approximate from below the Hausdorff dimension
of the set Eb,sγ .

Proof. (a) Fix a compact K ⊂ J and a compact Kδ ⊂ Λs. Since ηk(γ) = ◦(1), we
can fix, without loss of generality, a compact neighborhood K ′ ⊂ J of K and suppose
that,

∀(q, γ) ∈ K = K ×Kγ, for all k ≥ 1, ψk(q, γ) ∈ K ′.

Fix a compact neighborhood K
′′ = K ′′ ×K ′′

γ of K ′ ×Kγ . By (2.2), we can find p̃K′′ > 1,
such that

sup
q∈K′′

E

(( N∑

i=1

eqXi

)p̃
K′′
)
< ∞.

By (2.1), we can fix 1 < pK ≤ min(2, p̃K′′) such that supq∈K′′ φ(pK, q) < 1. Then
for each (q, γ) ∈ K ′ × K, there exists a neighborhood Vq × Vγ ⊂ C2 of (q, γ), whose
projection to R2 is contained in K

′′, and such that for all u ∈ T, (z, z′) ∈ Vq × Vγ and
k ≥ 1, the random variable

V (u, z) =
exp(zXu)

E

( N∑

i=1

exp(zXi)
) , Γ(z) =

E

(∑N
i=1 Xi exp(zXi)

)

E

(∑N
i=1 exp(zXi)

)

and the analytic extension of ηk, denoted also by ηk, are well defined. For (z, z′) ∈
Vq × Vγ and k ≥ 1, we define ψk(z, z

′) as the unique t such that

Γ(t) = Γ(z) + ♣ηk(z′)♣.
Moreover, we have

sup
z∈Vq

φ(pK, z) < 1, where φ(pK, z) =
E

(∑N
i=1 ♣ezXi♣pK

)

∣∣∣∣E
( N∑

i=1

ezXi

)∣∣∣∣
pK

.

By extracting a finite covering of K ′ ×Kγ from
⋃
q,γ Vq × Vγ , we find a neighborhood

V = VK × VKγ ⊂ C2 of K ′ ×Kγ such that

sup
z∈VK

φ(pK, z) < 1

and for all (z, z′) ∈ V, ψk(z, z
′) is defined and belongs to VK . Since the projection

of VK to R is included in K ′′ and the mapping z 7→ E
(∑N

i=1 e
zXi

)
is continuous and

does not vanish on VK , by considering a smaller neighborhood of K ′ included in VK
if necessary, we can assume that

CVK
= sup

z∈VK

E

(∣∣∣∣∣

N∑

i=1

ezXi

∣∣∣∣∣

pK
∣∣∣∣∣E

(
N∑

i=1

ezXi

∣∣∣∣∣

−pK

< ∞.
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Now, for u ∈ T, we define the analytic extension to V of Yn(q, γ, u) given by

Yn(z, z′, u) =
∑

v∈Tn(u)

n∏

k=1

V (u · v1 · · · vk, ψ♣u♣+k(z, z
′))

=


n∏

k=1

E
( N∑

i=1

eψk(z,z′)Xi

)]−1 ∑

v∈Tn(u)

n∏

k=1

eψ♣u♣+k(z,z′)X(uv♣k).

We denote also Yn(z, z′, ∅) by Yn(z, z′). By Lemma 3 in [5], there exists a constant
CpK

such that for all (z, z′) ∈ V

E
(

♣Yn(z, z′) − Yn−1(z, z
′)♣pK

)

≤CpK
E

(∣∣∣∣∣

N∑

i=1

V (i, ψn(z, z′))

∣∣∣∣∣

pK

n−1∏

k=1

E

(
N∑

i=1

♣V (i, ψk(z, z
′))♣pK


.

Notice that E

(∑N
i=1 ♣V (i, ψk(z, z

′))♣pK

)
= φ(pK, ψk(z, z

′)). Then

E

(
♣Yn(z, z′) − Yn−1(z, z

′)♣pK

)
≤ CpK

E

(∣∣∣∣∣

N∑

i=1

V (i, ψn(z, z′))

∣∣∣∣∣

pK

n−1∏

k=1

φ
(
pK, ψk(z, z

′)
)
.

≤ CpK
CVK

n−1∏

k=1

sup
z∈VK

φ(pK, z),

where we have used the fact that ψk(z, z
′) ∈ VK for all k ≥ 1. With probability

1, the functions (z, z′) ∈ V 7→ Yn(z, z′), n ≥ 0, are analytic. Fix a closed polydisc
D(z0, 2ρ) ⊂ V with z0 = (z1, z

′
1) and ρ = (ρ1, ρ2). Theorem B.1 gives

sup
(z,z′)∈D(z0,ρ)

♣Yn(z, z′) − Yn−1(z, z
′)♣ ≤ 4

∫

[0,1]2
♣Yn(ζ(t)) − Yn−1(ζ(t))♣ dt,

where, for t = (t1, t2) ∈ [0, 1]2

ζ(t) = (ζ1(t1), ζ2(t2)) = (z1 + ρ1e
i2πt1 , z′

1 + ρ2e
i2πt2).

Furthermore Jensen’s inequality and Fubini’s Theorem give

E

(
sup

z∈D(z0,ρ)
♣Yn(z, z′) − Yn−1(z, z

′)♣pK


≤ E

((
4
∫

[0,1]2
♣Yn(ζ(t)) − Yn−1(ζ(t))♣ dt

pK


≤ 4pKE

(∫

[0,1]2
♣Yn(ζ(t)) − Yn−1(ζ(t))♣pK dt



= 4pK

∫

[0,1]2
E ♣Yn(ζ(t)) − Yn−1(ζ(t))♣pK dt

≤ 4pKCVK
CpK

n−1∏

k=1

sup
z∈VK

φ(pK, z).
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Since sup
z∈VK

φ(pK, z) < 1, it follows that

∑

n≥1

∥∥∥∥∥ sup
(z,z′)∈D(z0,ρ)

♣Yn(z, z′) − Yn−1(z, z
′)♣
∥∥∥∥∥
pK

< ∞.

This implies, (z, z′) 7→ Yn(z, z′) converges uniformly, almost surely and in LpK norm
over the compact D(z0, ρ) to a limit (z, z′) 7→ Y (z, z′). This also implies that

∥∥∥∥ sup
z∈D(z0,ρ)

Y (z, z′)
∥∥∥∥
pK

< ∞.

Since K can be covered by finitely many such discs D(z0, ρ) we get the uniform
convergence, almost surely and in LpK norm, of the sequence ((q, γ) ∈ K 7→ Yn(q, γ))n≥1

to (q, γ) ∈ K 7→ Y (q, γ). Moreover, since J×Λs can be covered by a countable union of
such compact K we get the simultaneous convergence for all (q, γ) ∈ J×Λs. The same
holds simultaneously for all the functions (q, γ) ∈ J × Λs 7→ Yn(q, γ, u), u ∈ ⋃

n≥0 N
n
+,

because
⋃
n≥0 N

n
+ is countable.

To finish the proof of Proposition 2.1 (1), we must show that with probability 1,
(q, γ) ∈ K 7→ Y (q, γ) does not vanish. Without loss of generality we can suppose
that K = [0, 1]2. If I is a dyadic closed subcube of [0, 1]2, we denote by EI the event
¶∃ (q, γ) ∈ I : Y (q, γ) = 0♢. Let I0, I1, I2, I3 stand for the 22 dyadic intervals of
I in the next generation. The event EI being a tail event of probability 0 or 1. If
we suppose that P(EI) = 1, then there exists j ∈ ¶0, 1, 2, 3♢ such that P(EIj

) = 1.
Suppose now that P(EK) = 1. The previous remark allows to construct a decreasing
sequence (I(n))n≥0 of dyadic subcubes of K such that P(EI(n)) = 1. Let (q0, γ0)
be the unique element of ∩n≥0I(n). Since (q, γ) 7→ Y (q, γ) is continuous we have
P(Y (q0, γ0) = 0) = 1, which contradicts the fact that (Yn(q0, γ0))n≥1 converges to
Y (q0, γ0) in L1.

(b) It is a consequence of the branching property

Yn+1(q, γ, u) =
N∑

i=1

exp
(
ψn+1(q, γ)Xui − τ(ψn+1(q, γ))

)
Yn(q, γ, ui). □

3. Proof of Theorem 1.3

The proof of Theorem 1.3 can be deduced from the two following propositions.
Their proof are developed in the next section.

Proposition 3.1. Suppose Hypothesis 1.2, with probability 1, for all q ∈ J and γ ∈ Λs,

Nn(t) − nb ∼ sn,γ, for µγq -almost every t ∈ ∂T,

where b = τ ′(q).

Proposition 3.2. With probability 1, for all (q, γ) ∈ J × Λs, for µγq -almost every

t ∈ ∂T

lim
n→∞

log Y (q, γ, t♣n)

n
= 0.
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From Proposition 3.1, we have with probability 1, for all q ∈ J and γ ∈ Λs, that

µγq
(
Eb,sγ

)
= 1, (b = τ ′(q)). In addition, with probability 1, for all (q, γ) ∈ J× Λs, for

µγq -almost every t ∈ Eb,sγ , from the same Proposition and proposition 3.2, we have

lim
n→∞

log(µγq [t♣n])

log(diam([t♣n]))

= lim
n→∞

− 1

n
log

(
n∏

k=1

exp
(
ψk(q, γ)Xt1...tk − τ(ψk(q, γ))

)
Y (q, γ, t♣n)



= lim
n→∞

− 1

n

n∑

k=1

ψk(q, γ)Xt1...tk +
1

n

n∑

k=1

τ(ψk(q, γ)) − log Y (q, γ, t♣n)

n

= lim
n→∞

− 1

n

n∑

k=1

ψk(q, γ)Xt1...tk +
1

n

n∑

k=1

τ(ψk(q, γ)).

Since ηk(γ) = ◦(1) and then ψk(q, γ) → q, we get

lim
n→∞

log(µγq [t♣n])

log(diam([t♣n]))
= −qτ ′(q) + τ(q) = τ ∗(τ ′(q)).

We deduce the result from the mass distribution principle (Theorem A.1) and (1.1).

4. Proof of Propositions 3.1 and 3.2

4.1. Proof of Proposition 3.1. Let K = K×Kγ be a compact subset of J× Λs. For
b = τ ′(q), q ∈ J, γ ∈ Λs, n ≥ 1, ϵ > 0 and sγ = (sn,γ)n≥1 we set

E1
b,n,γ,ϵ =


t ∈ ∂T :

n∑

k=1

(
Xt1···tk(t) − b− ηk(γ)

)
≥ ϵ

n∑

k=1

ηk(γ)

,

E−1
b,n,γ,ϵ =


t ∈ ∂T :

n∑

k=1

(
Xt1···tk(t) − b− ηk(γ)

)
≤ −ϵ

n∑

k=1

ηk(γ)

.

Suppose that we have shown that for, λ ∈ ¶−1, 1♢, we have:

(4.1) E

(
sup

(q,γ)∈K

∑

n≥1

µγq (E
λ
b,n,γ,ϵ)

)
< ∞.

Then, with probability 1, for all (q, γ) ∈ J × Λs, λ ∈ ¶−1, 1♢, and ϵ ∈ Q∗
+,

∑

n≥1

µγq (E
λ
b,n,γ,ϵ) < ∞,

consequently, by the Borel-Cantelli lemma, for µγq -almost every t, we have

n∑

k=1

Xt1···tk(t) − b− ηk(γ) = ◦
( n∑

k=1

ηk(γ)
)
, so Nn(t) − nb ∼ sn,γ,

which yields the desired result.
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Let us prove (4.1) when λ = 1 (the case λ = −1 is similar ). Let θ = (θn) be a
positive sequence and (q, γ) ∈ K. One has

sup
(q,γ)∈K

µγq

(
E1
b,n,γ,ϵ

)
≤ sup

(q,γ)∈K

∑

u∈Tn

µγq ([u]) 1{
E1

b,n,γ,ϵ

}(tu),

where tu is any point in [u]. Denote tu simply by t, then

sup
(q,γ)∈K

µγq

(
E1
b,n,γ,ϵ

)

≤ sup
(q,γ)∈K

∑

u∈Tn

µγq [u]
n∏

k=1

exp
(
θkXt1···tk − θkb− θkηk(γ)(1 + ϵ)

)

≤ sup
(q,γ)∈K

∑

u∈Tn

n∏

k=1

exp
(

(ψk(q, γ) + θk)Xt1···tk − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)
)

× Y (q, γ, u).

For (q, γ) ∈ K, θ = (θn) and n ≥ 1, we set

Hn(q, γ, θ)

=
∑

u∈Tn

n∏

k=1

exp
(

(ψk(q, γ) + θk)Xt1···tk − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)
)
M(u),

where

M(u) = sup
(q,γ)∈K

Y (q, γ, u).

Recall the proof of Proposition 2.1, there exists a neighborhood V = VK × VKγ
⊂ C2

of K = K ×Kγ such that

Γ(z) =
E

(∑N
i=1 Xi exp(zXi)

)

E

(∑N
i=1 exp(zXi)

)

is well defined for z ∈ VK , for k ≥ 1, ηk(z
′) is defined for z′ ∈ VKγ

and ∀(z, z′) ∈ V,
ψk(z, z

′) is defined and belongs to VK .
For ϵ > 0, (z, z′) ∈ V and n ≥ 1, we define

Hn(z, z′, θ) =
∑

u∈Tn

n∏

k=1

exp
(

(ψk(z, z
′) + θk)Xu♣k

− θkΓ(z) − θkηk(z
′)(1 + ϵ)

)

× E

( N∑

i=1

exp
(
ψk(z, z

′)Xi

))−1

M(u).

Proposition 4.1. There exist a neighborhood V
′ ⊂ V of K, a positive constant CK

and a positive sequence θ such that for all (z, z′) ∈ V
′, for all n ∈ N∗

E(♣Hn(z, z′, θ)♣) ≤ CK exp
(

− ϵ

4

n∑

k=1

ϵkη̃
2
k

)
,
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where the sequences (ϵn)n and (η̃n)n are the sequences used in Hypothesis 1.2.

Lemma 4.1. There exist a positive sequence θ = (θn) and a positive constant CK such

that for all (q, γ) ∈ K we have

E
(
Hn(q, γ, θ)

)
≤ CK exp

(
− ϵ

2

n∑

k=1

ϵkη̃
2
k

)
.

Proof of Lemma 4.1. Let θ = (θn) be a positive sequence, clearly we have

E
(
Hn(q, γ, θ)

)
=

n∏

k=1

E

( N∑

i=1

exp
(

(ψk(q, γ) + θk)Xi

)

× exp
(

− τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)
)
E(M(u))

≤C′
K

n∏

k=1

exp
(
τ(ψk(q, γ) + θk) − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)

)
,

where, by Proposition 2.1, C′
K = E

(
M(u)

)
= E

(
M(∅)

)
< ∞ for all u ∈ ⋃

n≥0 N
n
+.

Since ηk(γ) = o(1), we can fix a compact neighborhood K ′ of K and suppose that
for all k ≥ 1 and (q, γ) ∈ K, we have ψk(q, γ) ∈ K ′. For (q, γ) ∈ K and k ≥ 1, writing
the Taylor expansion with integral rest of order 2 of the function g : θ 7→ τ(ψk(q, γ)+θ)
at 0, we get

g(θ) = g(0) + θg′(0) + θ2
∫ 1

0
(1 − t)g′′(tθ)dt,

with g′′(tθ) ≤ mK = sup
t∈[0,1]

sup
q∈K′

sup
γ∈Kγ

g′′(tθ). It follows that for all k ≥ 1

τ(ψk(q, γ) + θk) − τ((ψk(q, γ)) − θkτ
′((ψk(q, γ)) ≤ θ2

kmK.

Recall that τ ′(ψk(q, γ)) = τ ′(q) + ηk(γ). Then

E
(
Hn(q, γ, θ)

)
≤ C′

K

n∏

k=1

exp
(
τ(ψk(q, γ) + θk) − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)

)
,

≤ C′
K

n∏

k=1

exp
(

− θkηk(γ)ϵ+ θ2
kmK

)
.

Choose the sequence θ such that θk = ϵkη̃k. Then

E
(
Hn(q, γ, θ)

)
≤ C′

K

n∏

k=1

exp
(

− ϵkη̃
2
k(ϵ− ϵkmK)

)
.

Since ϵk → 0 then for k large enough we have ϵ − ϵkmK >
ϵ

2
. Then, there exists a

constant CK such that

E
(
Hn(q, γ, θ)

)
≤ CK exp

(
− ϵ

2

n∑

k=1

ϵkη̃
2
k

)
. □
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Proof of Proposition 4.1. Since E(♣Hn(q, γ, θ)♣) ≤ CK exp
(

− ϵ
2

∑n
k=1 ϵkη̃

2
k

)
for q ∈ K,

there exists a neighborhood Vq,γ ⊂ V of (q, γ) such that for all (z, z′) ∈ Vq,γ we have

E(♣Hn(z, z′, θ)♣) ≤ CK exp
(

− ϵ

4

n∑

k=1

ϵkη̃
2
k

)
.

By extracting a finite covering of K from
⋃

(q,γ)∈K Vq,γ , we find a neighborhood V
′ ⊂ V

of K such that

E(♣Hn(z, z′, θ)♣) ≤ CK exp
(

− ϵ

4

n∑

k=1

ϵkη̃
2
k

)
. □

With probability 1, the functions (z, z′) ∈ V
′ 7→ Hn(z, z′, θ) are analytic. Fix a

closed polydisc D(z0, 2ρ) ⊂ V , with z0 = (z1, z
′
1) and ρ = (ρ1, ρ2). Theorem B.1 gives

sup
(z,z′)∈D(z0,ρ)

∣∣∣Hn(z, z′, θ)
∣∣∣ ≤ 2

∫

[0,1]2

∣∣∣Hn(ζ(t), θ)
∣∣∣dt,

where for t = (t1, t2) ∈ [0, 1]2

ζ(t) = (ζ1(t1), ζ2(t2)) = (z1 + ρ1e
i2πt1 , z′

1 + ρ2e
i2πt2).

Furthermore Fubini’s Theorem gives

E

(
sup

z∈D(z0,ρ)
♣Hs

n(z, z′, θ)♣


≤ E
(
2
∫

[0,1]2
♣Hn(ζ(t), θ)♣ dt

)

≤ 4
∫

[0,1]2
E ♣Hn(ζ(t), θ)♣ dt

≤ 4 exp

(
− ϵ

4

n∑

k=1

ϵkη̃
2
k


.

Finally, we get

E

(
sup

(q,γ)∈K

µγq
(
E1
b,n,γ,ϵ

)
≤ 4 exp

(
− ϵ

4

n∑

k=1

ϵkη̃
2
k

)

and, then, under Hypothesis 1.2, we get (4.1), which finish the proof of Proposition 3.1.

4.2. Proof of Propostion 3.2. Let K = K ×Kγ be a compact subset of J× Λs. For
a > 1, (q, γ) ∈ K and n ≥ 1, we set

E+
n,a =

{
t ∈ ∂T : Y (q, γ, t♣n) > an

}

and

E−
n,a =

{
t ∈ ∂T : Y (q, γ, t♣n) < a−n

}
.

It is sufficient to show that for E ∈ ¶E+
n,a, E

−
n,a♢

(4.2) E

(
sup

(q,γ)∈K

∑

n≥1

µγq (E)
)
< ∞.
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Indeed, if this holds, then with probability 1, for each (q, γ) ∈ K and E ∈ ¶E+
n,a, E

−
n,a♢,∑

n≥1 µ
γ
q (E) < ∞, hence by the Borel-Cantelli lemma, for µγq -almost every t ∈ ∂T, if

n is big enough we have

− log a ≤ lim inf
n→∞

1

n
log Y (q, γ, t♣n) ≤ lim sup

n→∞

1

n
log Y (q, γ, t♣n) ≤ log a.

Letting a tend to 1 along a countable sequence yields the result.
Let us prove (4.2) for E = E+

n,a (the case E = E−
n,a is similar). At first we have,

sup
(q,γ)∈K

µγq (E
+
n,a) = sup

(q,γ)∈K

∑

u∈Tn

µγq ([u])1{
Y (q,γ,u)>an

}

= sup
(q,γ)∈K

∑

u∈Tn

Y (q, γ, u)
n∏

k=1

exp
(
ψk(q, γ)X(u) − τ

(
ψk(q, γ)

))
1{

Y (q,γ,u)>an

}

≤ sup
(q,γ)∈K

∑

u∈Tn

(Y (q, γ, u))1+ν
n∏

k=1

exp
(
ψk(q, γ)Xu − τ

(
(ψk(q, γ)

))
a−ν ,

≤ sup
(q,γ)∈K

∑

u∈Tn

M(u)1+ν
n∏

k=1

exp
(
ψk(q, γ)Xu − τ

(
ψk(q, γ)

))
a−ν ,

where M(u) = sup(q,γ)∈K
Y (q, γ, u) and ν > 0 is an arbitrary parameter. For q ∈ K,

γ ∈ Kγ and ν > 0 we set

Ln(q, γ, ν) =
∑

u∈Tn

M(u)1+ν
n∏

k=1

exp
(
ψk(q, γ)Xu − τ

(
ψk(q, γ)

))
a−ν .

Recall the proof of Proposition 2.1, there exists a neighborhood V ⊂ C2 of K such

that for all (z, z′) ∈ V and k ≥ 1 ψk(z, z
′) is well defined and E

(∑N
i=1 e

ψk(z,z′)Xi

)
̸= 0.

Lemma 4.2. Fix a > 1. For (z, z′) ∈ V and ν > 0, let

Ln(z, z′, ν) =




n∏

k=1

E

(
N∑

i=1

exp
(
ψk(z, z

′)Xi

)−1



×
∑

u∈Tn

M(u)1+ν
n∏

k=1

exp
(
ψk(z, z

′)Xu♣k

)
a−ν .

There exist a neighborhood V
′ ⊂ C2 of K and a positive constant CK such that, for all

(z, z′) ∈ V
′, for all integer n ≥ 1

(4.3) E

(∣∣∣∣Ln(z, z′, pK − 1)
∣∣∣∣
)

≤ CKa
−n(pK−1)/4,

where pK provided by Proposition 2.1.

Proof. Write V = VK × VKγ
. For z ∈ VK and ν > 0, let

L̃1(z, ν) =

∣∣∣∣∣E
(

N∑

i=1

exp
(
zXi

)∣∣∣∣∣

−1

E

(
N∑

i=1

∣∣∣∣ exp
(
zXi

)∣∣∣∣


a−ν .
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Let q ∈ K. Since E(L̃1(q, ν)) = a−ν , there exists a neighborhood Vq ⊂ VK of q such

that for all z ∈ Vq we have E

(∣∣∣L̃1(z, ν)
∣∣∣
)

≤ a−ν/2. Let γ ∈ Kγ. Recall the proof of

Proposition 2.1 and since ηk(γ) = ◦(1), we can find a neighborhood Vγ ⊂ VKγ
of Kγ

such that, for all k ≥ 1, (z, z′) ∈ Vq × Vγ, we have

E

(∣∣∣L̃1(ψk(z, z
′), ν)

∣∣∣
)

≤ a−ν/3.

By extracting a finite covering of K from
⋃

(q,γ)

Vq×Vγ , we find a neighborhood V
′ ⊂ V

of K such that for all (z, z′) ∈ V
′ and k ≥ 1

E

(∣∣∣L̃1(ψk(z, z
′), ν)

∣∣∣
)

≤ a−ν/4.

Therefore,

E
(∣∣∣Ln(z, z′, ν)

∣∣∣
)

=




n∏

k=1

∣∣∣∣∣E
(

N∑

i=1

exp
(
ψk(z, z

′)Xi

)∣∣∣∣∣

−1

E



∣∣∣∣∣
∑

u∈Tn

M(u)1+ν
n∏

k=1

exp
(
ψk(z, z

′)Xu

)∣∣∣∣∣


 a−nν

≤



n∏

k=1

∣∣∣∣∣E
(

N∑

i=1

exp
(
ψk(z, z

′)Xi

)∣∣∣∣∣

−1

E



∑

u∈Tn

M(u)1+ν
n∏

k=1

∣∣∣∣∣ exp
(
ψk(z, z

′)Xu

)∣∣∣∣∣


 a−nν .

By Proposition 2.1, there exists pK ∈ (1, 2] such that for all u ∈ ⋃
n≥0 N

n
+,

E
(
M(u)pK

)
= E

(
M(∅)pK

)
= CK < ∞.

Now take ν = pK − 1 in the last calculation, it follows, from the independence of

σ
(
¶Y (·, ·, u), u ∈ Tn♢

)
and σ

(
¶(Xu1, . . . , XuNu

), u ∈ Tn−1♢
)

for all n ≥ 1, that

E

(∣∣∣∣Ln(z, z′, pK − 1)
∣∣∣∣
)

≤



n∏

k=1

∣∣∣∣∣E
(

N∑

i=1

exp
(
ψk(z, z

′)Xi

)∣∣∣∣∣

−1



n∏

k=1

E

( N∑

i=1

∣∣∣∣ exp
(
ψk(z, z

′)Xi

)∣∣∣∣
)n

CKa
−n(pK−1)

=CK

n∏

k=1

E

(∣∣∣L̃1(ψk(z, z
′), pK − 1)

∣∣∣
)

≤CKa
−n(pK−1)/4,

then lemma is now proved. □

With probability 1, the functions (z, z′) ∈ V
′ 7→ Ln(z, z′, ν) are analytic. Fix a

closed polydisc D(z0, 2ρ) ⊂ V
′, with z0 = (z1, z

′
1) and ρ = (ρ1, ρ2). Theorem B.1 gives

sup
z∈D(z0,ρ)

∣∣∣Ln(z, pK − 1)
∣∣∣ ≤ 4

∫

[0,1]2

∣∣∣Ln(ζ(t), pK − 1)
∣∣∣dt,
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where, for t = (t1, t2) ∈ [0, 1]2

ζ(t) = (ζ1(t1), ζ2(t2)) = (z1 + ρ1e
i2πt1 , z′

1 + ρ2e
i2πt2).

Furthermore Fubini’s Theorem gives

E

(
sup

z∈D(z0,ρ)
♣Ln(z, pK − 1)♣


≤ E

(
4
∫

[0,1]2
♣Ln(ζ(t), pK − 1)♣ dt



≤ 4
∫

[0,1]2
E ♣Ln(ζ(t), pK − 1)♣ dt

≤ 4CKa
−n(pK−1)/4.

Since a > 1 and pK − 1 > 0, we get (4.2).

Appendix A. Hausdorff and Packing Dimensions

Given a subset K of N
N+

+ endowed with a metric d making it σ-compact, s > 0 and
E a subset of K, the s-dimensional Hausdorff measure of E is defined as

Hs(E) = lim
δ→0+

inf
∑

i∈N

(diam(Ui)
s

,

the infimum being taken over all the countable coverings (Ui)i∈N of E by subsets of K
of diameters less than or equal to δ. Then, the Hausdorff dimension of E is defined as

dimE = sup¶s > 0 : Hs(E) = ∞♢ = inf¶s > 0 : Hs(E) = 0♢,
with the convention sup ∅ = 0 and inf ∅ = ∞.

Packing measures and dimensions are defined as follows. Given s > 0 and E ⊂ K
as above, one first defines

P
s
(E) = lim

δ→0+
sup

{
∑

i∈N

(diam(Bi)
s

}
,

the supremum being taken over all the packings ¶Bi♢i∈N of E by balls centered on
E and with diameter smaller than or equal to δ. Then, the s-dimensional packing
measure of E is defined as

P s(E) = lim
δ→0+

inf

{
∑

i∈N

P
s
(Ei)

}
,

the infimum being taken over all the countable coverings (Ei)i∈N of E by subsets of K
of diameters less than or equal to δ. Then, the packing dimension of E is defined as

DimE = sup¶s > 0 : P s(E) = ∞♢ = inf¶s > 0 : P s(E) = 0♢,
with the convention sup ∅ = 0 and inf ∅ = ∞. For more details the reader is referred
to [13,20].
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If µ is a positive and finite Borel measure supported on K, then its lower Hausdorff
and packing dimensions is defined as

dim(µ) = inf
{

dimF : F Borel, µ(F ) > 0
}

Dim (µ) = inf
{
DimF : F Borel, µ(F ) > 0

}

and its upper Hausdorff and packing dimensions are defined as

dim(µ) = inf
{

dimF : F Borel, µ(F ) = ∥µ∥
}

Dim (µ) = inf
{
DimF : F Borel, µ(F ) = ∥µ∥

}
.

We have (see [12])

dim(µ) =ess infµ lim inf
r→0+

log µ(B(t, r))

log(r)
,

Dim (µ) =ess infµ lim sup
r→0+

log µ(B(t, r))

log(r)

and

dim(µ) =ess supµ lim inf
r→0+

log µ(B(t, r))

log(r)
,

Dim (µ) =ess supµ lim sup
r→0+

log µ(B(t, r))

log(r)
,

where B(t, r) stands for the closed ball of radius r centered at t. If dim(µ) = dim(µ)
(resp. Dim (µ) = Dim (µ)), this common value is denoted dimµ (resp. Dim (µ)), and
if dimµ = Dimµ, one says that µ is exact dimensional.

Recall the mass distribution principle.

Theorem A.1. ([13, Theorem 4.2]). Let ν be a positive and finite Borel probability

measure on a compact metric space (X, d). Assume that M ⊆ X is a Borel set such

that ν(M) > 0 and

M ⊆
{
t ∈ X : lim inf

r→0+

log ν(B(t, r))

log r
≥ δ

}
.

Then the Hausdorff dimension of M is bounded from below by δ.

Appendix B. Cauchy Formula in Several Variables

Let us recall the Cauchy formula for holomorphic functions in several variables.

Definition B.1. Let d ≥ 1, a subset D of Cd is an open polydisc if there exist
open discs D1, . . . , Dd of C such that D = D1 × · · · × Dd. If we denote by ζj the
centre of Dj, then ζ = (ζ1, . . . , ζd) is the centre of D and if rj is the radius of Dj

then r = (r1, . . . , rd) is the multiradius of D. The set ∂D = ∂D1 × · · · × ∂Dd is the
distinguished boundary of D. We denote by D(ζ, r) the polydisc with center ζ and
radius r.
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Let D = D(ζ, r) be a polydisc of Cd and g ∈ C(∂D) a continuous function on ∂D.
We define the integral of g on ∂D as

∫

∂D
g(ζ)dζ1 · · · dζd = (2iπ)dr1 · · · rd

∫

[0,1]d
g(ζ(θ))ei2πθ1 · · · ei2πθddθ1 · · · dθd,

where ζ(θ) = (ζ1(θ), . . . , ζd(θ)) and ζj(θ) = ζj + rje
i2πθj for j = 1, . . . , d.

Theorem B.1. Let D = D(a, r) be polydisc in Cd with a multiradius whose compo-

nents are positive, and f be a holomorphic function in a neiborhood of D. Then, for

all z ∈ D

f(z) =
1

(2iπ)d

∫

∂D

f(ζ)dζ1 · · · dζd
(ζ1 − z1) · · · (ζd − zd)

.

It follows that

sup
z∈D(a,r/2)

♣f(z)♣ ≤ 2d
∫

[0,1]d
♣f(ζ(θ))♣ dθ1 · · · dθd.
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BERTRAND’S PARADOX: NEW PROBABILISTIC MODELS

ZORAN VIDOVIĆ1

Abstract. In this paper two new generating procedure of a random chord are
obtained and thereby new solutions of BertrandŠs paradox are proposed.

1. Introduction

Paradox, on its own, is a puzzle that confronts some already established principles.
Bertand’s paradox was developed as a probability question that raised severe objec-
tions on the principle of indifference while dealing with geometrical probability. The
question that defines this paradox: “What is the probability that a chord selected “at
random” in a circle is larger than a side of the inscribed equilateral triangle?”

In [3], Bertrand obtained probabilities 1/3, 1/2 and 1/4 by different random chord
generation procedures: by choosing a chord with one end at a vertex of the inscribed
equilateral triangle in a circle; by choosing a chord perpendicular to the diameter
which is the right bisector of the equilateral triangle; and selecting a point inside a
circle and denoting it as a chord midpoint, respectively. This puzzle has fascinated
many since its discovery and a series of papers with outstanding solutions of this
problem have been published, see e.g. [1,2,4–9]. Here, we provide two new models of
random chord construction in a circle and obtain associated probabilities of Bertrand’s
paradox.

The paper is organized as follows. In Section 2, we propose two new procedures for
generating a random chord in a circle and obtain probabilities of Bertrand’s paradox
for each case. Section 3 concludes this paper.

Key words and phrases. BertrandŠs paradox, new solutions, Monte Carlo simulations.
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2. New Models and Solutions

In [7], an attempt was made to look at classical models of Bertrand’s paradox as
limits of a continuous family of planar probabilistic models. Such family is seen by
fixing a point, say A, at a distance h > 1 from a unit circle and constructing lines that
intersect the circle and point A. However, this family of chord constructing models
undermines the randomness selection of distance h and, so, it yields inappropriate
results with respect to Bertrand’s paradox. Motivated by this issue, in [10] a chord
generating procedure is presented that overcomes this obstacle. Here, we additionally
provide two new methods of generating random chords in a circle with the same
intention.

For both models, we will denote X as the distance from the center of the circle and
the chord and L as the corresponding chord length.

2.1. First model. The first method is obtained as follows.

Step 1. Let a point A be such that its distance from the center of the circle OA is a
random variable Y ∼ U(0, 1) and is lying on the x axis.

Step 2. Using the circle invariance property we can obtain a point on a x axis, say P ,
so that the relation OP · OA = 1 holds.

Step 3. Angle ϕ is determined by the circle tangent and the x axis, with P as its vertex;
Step 4. Select a line which is directed by an angle θ ∈ U(0, ϕ), with P as its starting

point. A chord is formed by its intersection with the circle (Figure 1.).

In this case, we have X =
√

1 − L2

4
, ϕ = arcsin(Y ) and θ = arcsin



Y
√

1 − L2

4



.

Using transformation technique, the distribution function of L can be found as

FI(l) =
∫ 1

0

∫ l

0

xy

4 arcsin(y)
√

1 − x2

4

√

1 − (1 − x2

4
)y2

dx dy

=
∫ 1

0

arcsin(y) − arcsin


y
√

4−l2

2



arcsin(y)
dy, 0 < l < 2.(2.1)

Integral (2.1) cannot be obtained explicitly, so we can only provide numerical solutions.
For the Bertrand’s case l =

√
3 we have

(2.2) P
{

LI ≥
√

3
}

= 1 − FI(
√

3) = 0.4694.

2.2. Second model. The second method is obtained as follows.

Step 1. Let a point A be determined by a random angle ϕ ∼ U(0, π/2) on a circumfer-
ence of a circle.

Step 2. Let a tangent t of a circle be determined by point A.
Step 3. Angle δ is determined by the circle tangent and the x axis, with P as its vertex.
Step 4. Select a line which is directed by an angle θ ∈ U(0, δ), with P as its starting

point. A chord is formed by its intersection with the circle (Figure 2).



BERTRANDŠS PARADOX: NEW PROBABILISTIC MODELS 63

Figure 1. Solution I.

Figure 2. Solution II.

For this case, we have X =
√

1 − L2

4
and sin θ = cos ϕ

√

1 − L2

4
. Further, the

distribution function of L can be obtained as

FII(l) =
2

π

∫ π/2

0

∫ l

0

x cos y

4(π
2

− y)
√

1 − x2

4

√

1 − (1 − x2

4
) cos2 y

dx dy

=
2

π

∫ π/2

0

arcsec


2 sec(y)
√

4−l2



− y

π − 2y
dy, 0 < l < 2.(2.3)
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As above, integral (2.3) cannot be obtained explicitly, so we can obtain numerical
solutions. For the Bertrand’s case l =

√
3 we have

(2.4) P
{

LII ≥
√

3
}

= 1 − FII(
√

3) = 0.4454.

3. Conclusion

Overall, in this paper we presented two new generating procedures of random chords
in a circle. The distribution function (2.3) is also obtained in [10] using a different
method of constructing random chords. The results presented in this paper extend
those can be found in [4, 9, 10] on Bertrand’s paradox.

In [6], procedures of chord construction were classified by disjoint procedures: (i)
inside the circle, (ii) on the circle circumference and (iii) outside of the circle. Pro-
posed generating models connect procedures (i), (ii) and (iii), and confronts such
classification. This may be a motivation to overlook Bertrand’s paradox in a quite
different manner.

Acknowledgements. The author would like to thank the referees for their valuable
comments and suggestions that significantly improved the quality of the paper.
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ON Z-SYMMETRIC MANIFOLD WITH CONHARMONIC

CURVATURE TENSOR IN SPECIAL CONDITIONS

AYŞE YAVUZ TAŞCI1 AND FÜSUN ÖZEN ZENGIN2

Abstract. The object of the present paper is to study the Z-symmetric manifold
with conharmonic curvature tensor in special conditions. In this paper, we prove
some theorems about these manifolds by using the properties of the Z-tensor.

1. Introduction

Conformal geometry has deep importance in pure mathematics, such as complex
analysis, Riemann surface theory, differential geometry and algebraic topology, [2, 21,
22]. Computational conformal geometry is important in digital geometry processing.
Discrete conformal geometry has been presented to compute conformal mapping which
has been broadly applied in numerous practical fields, including computer vision and
graphics, visualization, medical imaging, etc. In medical imaging, conformal geometry
has been applied to surface parametrization and extract intrinsic features for natural
objects like brain, colon, spleen and other human organs.

Historically, conformal mappings have been considered in many monographs, sur-
veys and papers. Also, the theory of conformal mappings has very important applica-
tions in general relativity.

Let (M, g) and (M̄, ḡ) be two n-dimensional Riemannian manifolds with metric
tensors gij and ḡij, respectively. Both metrics are defined in a common coordinate
system (xi). The correspondence between (M, g) and (M̄, ḡ) is conformal, if the

Key words and phrases. Conharmonic curvature tensor, Z-symmetric tensor, Codazzi tensor,
Torse-forming vector Ąeld, Recurrent tensor.
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fundamental tensors gij and ḡij of two manifolds M and M̄ are in the relation

ḡij(x) = e2σ(X)gij(x),(1.1)

where σ(x) is a scalar function of the x’s.
By the transformation (1.1), it also follows that the relation between the Christoffel

symbols Γh
ij and Γ̄h

ij compatible with the metrics gij and ḡij, respectively is given by

Γ̄h
ij = δh

i σj + δh
j σi − σhgij,(1.2)

where σi = ∂σ
∂xi , σh = ghiσi, gij are the components of the inverse matrix to gij, and

δh
i is the Kronecker delta.

A conformal mapping is called homothetic if the function σ is a constant, that is,
ḡij(x) = cgij(x). The condition is equivalent to σi = 0, hence, the mapping is also an
affine one.

Denoting Rh
ijk and R̄h

ijk are the Riemann tensors of the manifolds M and M̄ , respec-
tively, then we have [11,20]

R̄h
ijk =Rh

ijk + δh
k σij − δh

j σik + ghl(σlkgij − σligjk) + (δh
k gij − δh

j gik)∆1σ,

S̄ij =Sij + (n − 2)σij + (∆2σ + (n − 2)∆1σ)gij,

r̄ =e−2σ(r + 2(n − 1)∆2σ + (n − 1)(n − 2)∆1σ),(1.3)

where σi = ∂iσ, ∆lσ = gijσiσj, ∆2σ = gijσi,j, σij = σi,j − σiσj. We denote that
Sij = Rh

ijh and S̄ij = R̄h
ijh are their Ricci tensors and r = Sijg

ij and r̄ = S̄ij ḡ
ij are

their scalar curvatures.
It is known that a harmonic function is defined as a function whose Laplacian

vanishes. In generally, the harmonic function is not invariant under the conformal
transformation. In [14], Ishii obtained the conditions which a harmonic function
remains invariant and he introduced the conharmonic transformation as a subgroup
of the conformal transformation (1.1) satisfying the condition [14]

σh
,h + σh

,hσh
, = 0,(1.4)

where comma denotes the covariant differentiation with respect to the metric g.
Thus, we can say that the conharmonic transformation which is a special type of

conformal transformations preserves the harmonicity of smooth functions. It is well
known that such transformations have an invariant tensor, so-called the conharmonic
curvature tensor. It is easy to verify that this tensor is an algebraic curvature tensor,
that is, it possesses the classical symmetry properties of the Riemannian curvature
tensor.

A rank-four tensor L that remains invariant under conharmonic transformation of
a Riemannian manifold (M, g) is given by

L(X, Y, Z, U) =R(X, Y, Z, U) −
1

n − 2
[g(Y, Z)S(X, U) − g(X, Z)S(Y, U)

+ g(X, U)S(Y, Z) − g(Y, U)S(X, Z)],(1.5)
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where R and S denote the Riemannian curvature tensor of type (0, 4) defined by
R(X, Y, Z, U) = g(R(X, Y )Z, U) and the Ricci tensor of type (0, 2), respectively.
The curvature tensor defined by (1.5) is known as conharmonic curvature tensor. A
manifold whose conharmonic curvature tensor vanishes at every point of the manifold
is called conharmonically flat. Thus, this tensor represents the deviation of the
manifold from conharmonic flatness.

Q denotes the symmetric endomorphism of the tangent space at each point of the
manifold corresponding to the Ricci tensor S of type (0, 2), that is

g(QX, Y ) = S(X, Y ).(1.6)

Let
{

ei, i = 1, 2, . . . , n
}

be an orthonormal basis of the tangent space at each point

of the manifold. From (1.5), we have

L(X, Y ) =
n
∑

i=1

L(X, ei, ei, Y ) =
n
∑

i=1

L(ei, X, Y, ei) = −
r

n − 2
g(X, Y )(1.7)

and
n
∑

i=1

L(ei, ei, X, Y ) =
n
∑

i=1

L(X, Y, ei, ei) = 0,(1.8)

where r is the scalar curvature of the manifold. Also, from (1.5) it follows that [26]

L(X, Y, Z, U) = −L(Y, X, Z, U),

L(X, Y, Z, U) = −L(X, Y, U, Z),

L(X, Y, Z, U) = L(Z, U, X, Y ),

L(X, Y, Z, U) + L(X, Z, U, Y ) + L(X, U, Y, Z) = 0.(1.9)

In [26], Shaikh and Hui showed that the conharmonic curvature tensor satisfies the
symmetries and skew-symmetric properties of the Riemannian curvature tensor as
well as cyclic ones. This tensor has valuable applications in general relativity. In [1],
Abdussatter investigated its physical significance in the theory of general relativity.
The conharmonic transformation has also been studied by Siddique and Ahsan [27],
Ghosh, De and Taleshian [12], and many others.

A non-flat Riemannian manifold which is called a recurrent manifold [25] if the
curvature tensor of this manifold satisfies the relation

(∇W R)(X, Y, Z, U) = A(W )R(X, Y, Z, U),(1.10)

where A is a non-zero 1-form. A non-flat Riemannian manifold which is called a
Ricci-recurrent manifold if the Ricci tensor of this manifold satisfies the relation
[5, 23,28]

(∇XS)(Y, Z) = A(X)S(Y, Z),(1.11)

where A is a non-zero 1-form.
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A vector field ξ in a Riemannian manifold M is called torse-forming if it satisfies
the condition ∇Xξ = αX + λ(X)ξ, where X ∈ TM , λ(X) is a linear form and α is a
function, [4, 19,29].

In the local transcription, this reads

ξh
,i = αδh

i + ξhλi,(1.12)

where ξh and λi are the components of ξ and λ respectively, and δh
i is the Kronecker

symbol. A torse-forming vector field ξ is called, [19,29],
i) recurrent if α = 0, i.e.,

ξh
,i = ξhλi;(1.13)

ii) concircular if the form λi is gradient covector (i.e., λi = λ,i), i.e.,

ξh
,i = αδh

i ;(1.14)

iii) convergent if it is concircular and α = const.exp(λ).
A φ(Ric)-vector field is a vector field on an n dimensional Riemannian manifold

(M, g) with metric g and Levi-Civita connection ∇, which satisfies the condition [13]

∇φ = µRic,(1.15)

where µ is some constant and Ric is the Ricci tensor. Obviously, when (M, g) is an
Einstein space, the vector field φ is concircular. Moreover, when µ = 0, the vector
field φ is covariantly constant. In the following we suppose that µ ≠ 0 and (M, g)
is neither an Einstein space nor a vacuum solution of the Einstein equations. In a
locally coordinate neighbourhood U(x), the equation (1.15) is written as

φh
,i = µSh

i ,(1.16)

where φi and Sh
i are components of φ and Ric, respectively. After lowering indices,

(1.16) has the form

φi,j = µSij,(1.17)

where φi = φαgiα and Sij = giαSα
j .

2. Z-Tensor on a Riemannian Manifold

In 2012, Mantica and Molinari defined a generalized symmetric tensor of type (0, 2)
which is called Z-tensor and given by [15]

(2.1) Zkl = Skl + ϕgkl,

where ϕ is an arbitrary scalar function. The scalar Z̄ is the trace of Z-tensor and
from (2.1), it can be written as

(2.2) Z̄ = gklZkl = r + nϕ.

The classical Z-tensor is obtained with the choice ϕ = − 1
n
r. Shortly, the generalized

Z-tensor is called as the Z-tensor. In some cases, the Z-tensor gives the several well
known structures on Riemannian manifolds. For example, i) if Zkl = 0 (i.e, Z-flat),
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then this manifold reduces to an Einstein manifold [3]; ii) if ∇jZkl = λjZkl (Z-
recurrent), then this manifold reduces to a generalized Ricci recurrent manifold [6]; iii)
if ∇jZkl = ∇kZjl (Codazzi tensor), then we find ∇jSkl−∇kSjl = 1

2(n−1)
(gkl∇j−gjl∇k)r

[10]. This result gives us that this manifold is a nearly conformal symmetric manifold
(NCS)n [24]. iv) The relation between the Z-tensor and the energy-stress tensor of
Einstein’ s equations [9], with cosmological constant Λ is Zjl = kTjl, where ϕ = −1

2
r+Λ

and k is the gravitational constant. In this case, the Z-tensor may be considered
as a generalized Einstein gravitational tensor with arbitrary scalar function ϕ. The

vacuum solution (Z = 0) determines an Einstein space Λ =


n−2
2n



r; the conservation

of total energy-momentum (∇lTkl = 0) gives ∇jZkl = 0 then this spacetime gives the
conserved enery-momentum density.

This manifold has received a great deal of attention and is studied in considerable
detail by many authors [7, 8, 15–18, 30, 31]), etc. Motivated by the above studies, in
the present, we examine the properties of a Z-symmetric manifold with conharmonic
curvature tensor.

The present paper is organized as follows. In Section 1 and Section 2, after reviewing
the basics about symmetric spaces and Z-tensor, respectively. In Section 3 we will
discuss Z-symmetric manifolds with conharmonic curvature tensor and mention some
properties of these manifolds. We will concentrate on this paper that will be of
relevance in our forthcoming paper.

3. Z-Symmetric Manifold with Conharmonic Curvature Tensor

In this section, we consider a Z-symmetric manifold with conharmonic curvature
tensor. In the local coordinates, consider the equations (1.5) and (2.1), the relation
between the Z-tensor and the conharmonic curvature tensor is found as

Lhijk =Rhijk −
1

n − 2
[gijZhk − gikZhj + ghkZij − ghjZik] +

2ϕ

n − 2
[gijghk − gikghj].

(3.1)

By taking the covariant derivative of (3.1), we can find

Lhijk,l =Rhijk,l −
1

n − 2
[gijZhk,l − gikZhj,l + ghkZij,l − ghjZik,l]

+
2ϕl

n − 2
[gijghk − gikghj].(3.2)

Suppose now that our manifold is Z-recurrent. Considering the equation (1.11) for
Z-tensor, we can write Zij,l = λlZij. Hence, we see from (3.2) that

Lhijk,l =Rhijk,l −
λl

n − 2
[gijZhk − gikZhj + ghkZij − ghjZik] +

2ϕl

n − 2
[gijghk − gikghj].

(3.3)
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It is obtained by (3.1)

1

n − 2
[gijZhk − gikZhj + ghkZij − ghjZik] =Rhijk − Lhijk +

2ϕ

n − 2
[gijghk − gikghj].

(3.4)

By the aid of (3.4), the expression (3.3) can be written as

Lhijk,l − λlLhijk = Rhijk,l − λlRhijk +
2

n − 2
(gijghk − gikghj)(ϕl − λlϕ).(3.5)

In the following theorems, a Riemannian manifold admitting covariantly constant
conharmonic curvature tensor and recurrent Z-tensor with the recurrence vector field
λl will be shown by (M, g).

Theorem 3.1. The vector field ϕl and the recurrence vector field λl of (M, g) must

be parallel and they satisfy the relation

ϕl =


r

n
+ ϕ



λl.

Proof. Differentiating covariantly of (1.5) and assuming that the conharmonic curva-
ture tensor is covariantly constant, it is not hard to see that the scalar curvature must
be constant. If the Z-tensor is recurrent tensor admitting λl recurrence vector field
then we have from (1.11) and (2.1)

λlZij = Sij,l + ϕlgij.(3.6)

Multiplying (3.6) by gij, we get

λlZ̄ = r,l + nϕl.(3.7)

Since r must be constant, from (2.2), the equation (3.7) takes the following form

λl(r + nϕ) = nϕl.(3.8)

Arraying the equation (3.8), finally we obtain

ϕl =


r

n
+ ϕ



λl.(3.9)

Hence, the proof is completed. □

Theorem 3.2. On (M, g), r
n

is an eigenvalue of the Ricci tensor S corresponding to

the eigenvector δ defined by λ(X) = g(X, δ).

Proof. Suppose that the Z-tensor is recurrent tensor. As we already know from the
equation (1.11), we have

Zij,l = λlZij.(3.10)

Multiplying (3.10) by gil, we get

Z l
j,l = λlZjl.(3.11)



Z-SYMMETRIC MANIFOLD WITH CONHARMONIC CURVATURE TENSOR 71

We remark that in a Riemannian manifold with covariantly constant conharmonic
curvature tensor, the scalar curvature is constant. From this result and the Ricci
Identity, we have Sl

j,l = 0. Thus, we see that

Z l
j,l = ϕj.(3.12)

From (2.1), (3.11) and (3.12), one can show that

ϕj = λl(Sjl + ϕgjl).(3.13)

On the other hand, if we use the equation (3.9), (3.13) takes the form


r

n
+ ϕ



λj = λlSjl + ϕλj.(3.14)

Finally, the equation (3.14) shows that

λlSjl =
r

n
λj.(3.15)

Hence, the proof is completed. □

Theorem 3.3. A necessary and sufficient condition for the vector field ϕl generated

by the scalar function ϕ of (M, g) to be divergence-free is that the divergence of the

vector field λl be of negative value in the form

λl
,l = −♣♣λ♣♣2.

Proof. From Theorem 3.1, we know that the relation between ϕl and λl vector fields
is in the form

ϕl =


r

n
+ ϕ



λl.(3.16)

Taking the covariant derivative of (3.16), we get

ϕl,m = ϕmλl +


r

n
+ ϕ



λl,m.(3.17)

Substituting the equation (3.16) in (3.17), one can prove the relation

ϕl,m =


r

n
+ ϕ



λmλl +


r

n
+ ϕ



λl,m.(3.18)

Multiplying (3.18) by glm, we find

ϕl
,l =



r

n
+ ϕ





♣♣λ♣♣2 + λl
,l



.(3.19)

Now, suppose that the vector field ϕl is divergence-free. Of course, r ≠ −nϕ from
(3.16), then by using (3.19), we obtain

λl
,l = −♣♣λ♣♣2.(3.20)

Conversely, if the equation (3.20) is satisfied then from (3.19), we can find ϕl
,l = 0.

Hence, the proof is completed. □
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Theorem 3.4. If the vector field λl on (M, g) is divergence-free then the divergence

of the vector field ϕl is in the form

ϕl
,l =

n

r + nϕ
♣♣ϕ♣♣2.

Proof. From Theorem 3.3, we know that the relation (3.17) holds. In this case, if we
use (3.16) and (3.17) then we get

ϕl,m =



n

r + nϕ



ϕmϕl +



r + nϕ

n



λl,m.(3.21)

Multiplying (3.21) by glm, we find

ϕl
,l =



n

r + nϕ



♣♣ϕ♣♣2 +



r + nϕ

n



λl
,l.(3.22)

Now, suppose that the vector field λl is divergence-free. Finally, the divergence of the
vector field ϕl is found in the following form

ϕl
,l =

n

r + nϕ
♣♣ϕ♣♣2.(3.23)

Thus, the proof is completed. □

Theorem 3.5. If (M, g) admits a torse-forming vector field associated by the 1-form

ϕl in the relation ϕl,m = ρglm + αmϕl, then the vector field λl is also torse-forming

vector field satisfying the equation

λl,m = γglm + βmλl,

where γ = nρ
r+nφ

and βm = αm − λm.

Proof. Assume that the vector field ϕl is a torse-forming vector field with a scalar
function ρ and a vector field αm. As we know from (1.12) that

ϕl,m = ρglm + αmϕl.(3.24)

Substituting the equation (3.24) in (3.17), thus we see that

ρglm + αmϕl = ϕmλl +


r

n
+ ϕ



λl,m.(3.25)

Also, we can use the equation (3.16) in (3.25). Then

λl,m =
nρ

r + nϕ
glm + (αm − λm)λl.(3.26)

Defining γ = nρ
r+nφ

and βm = αm − λm, (3.26) takes the form

λl,m = γglm + βmλl.(3.27)

Thus, the vector field λl is a torse-forming vector field. Hence, the proof is completed.
□
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Theorem 3.6. If (M, g) admits a torse-forming vector field associated by the 1-form

ϕl in the relation ϕl,m = ρglm + λmϕl, then the vector field λl forms a concircular

vector field in the form λl,m = γglm, where γ = nρ
r+nφ

.

Proof. Assume that the vector field ϕl is a torse-forming vector field with a scalar
function ρ and a vector field λl. If we take λm = αm in (3.26), we get

λl,m =
nρ

r + nϕ
glm.(3.28)

Taking γ = nρ
r+nφ

, we obtain

λl,m = γglm.(3.29)

Thus, the vector field λl forms a concircular vector field. Hence, the proof is completed.
□

Theorem 3.7. If the vector field ϕl of (M, g) is a concircular vector field, then the

vector field λl forms a torse-forming vector field in the relation

λl,m =
nρ

r + nϕ
glm − λlλm.

Proof. Assume that the vector field ϕl is a concircular vector field with a scalar
function ρ, i.e.,

ϕl,m = ρglm.(3.30)

Using the equation (3.30) in (3.18), we get

ρglm =


r

n
+ ϕ



λlλm +


r

n
+ ϕ



λl,m.(3.31)

Finally, from (3.31), we obtain

λl,m =
nρ

r + nϕ
glm − λlλm.(3.32)

Thus, the vector field λl forms a torse-forming vector field. Hence, the proof is
completed. □

Theorem 3.8. If the vector field λl of (M, g) has constant length and the vector field

ϕl is a concircular vector field, then the equation ρ = c2( r
n

+ ϕ) holds, where ♣♣λ♣♣ = c.

Proof. Assume that the vector field λl is of constant length, i.e., λlλ
l = c2. Multiplying

(3.32) by λl, we find

λlλl,m =



nρ

r + nϕ
− λlλ

l



λm.(3.33)

Since λl is of constant length, then we have λlλl,m = 0. By substituting the last
relation and λlλ

l = c2 in (3.33), finally we obtain

ρ = c2


r

n
+ ϕ



.(3.34)

Thus, the proof is completed. □
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Theorem 3.9. If the vector field λl of (M, g) is a concircular vector field in the

form λl,m = ρglm, then the vector field ϕl is a torse-forming vector field satisfying the

equation

ϕl,m =
n

r + nϕ
ϕmϕl +

ρ(r + nϕ)

n
glm.

Proof. Suppose that the vector field λl of (M, g) is a concircular vector field, i.e., the
equation

λl,m = ρglm(3.35)

holds. Using the equations (3.21) and (3.35), we see that

ϕl,m =



n

r + nϕ



ϕmϕl +
ρ(r + nϕ)

n
glm.(3.36)

This result shows that ϕl is a torse-forming vector field. Hence, the proof is completed.
□

Theorem 3.10. If the vector field λl of (M, g) is a concircular vector field in the

form λl,m = ρglm and the vector field ϕl has constant length, then the scalar function

ρ generating the vector field λl has negative value and it satisfies the equation ρ =
−( nc

r+nφ
)2.

Proof. Let the vector field λl be a concircular vector field and the vector field ϕl be
of constant length. Multiplying (3.36) by ϕl, we get

ϕlϕl,m =



n

r + nϕ



ϕmϕlϕ
l +

ρ(r + nϕ)

n
ϕm.(3.37)

Since the vector field ϕl is of constant length, then we have ϕlϕl,m = 0. If we take
♣♣ϕ♣♣ = c, the equation (3.37) reduces to



nc2

r + nϕ



ϕm +
ρ(r + nϕ)

n
ϕm = 0.(3.38)

Finally, from (3.38), we obtain

ρ = −



nc

r + nϕ

2

.

Thus, the proof is completed. □

Theorem 3.11. If the vector field ϕl of (M, g) is a recurrent vector field in the

form ϕl,m = αmϕl, then the vector field λl is also recurrent vector field in the form

λl,m = (αm − λm)λl.

Proof. Suppose that the vector field ϕl is recurrent vector field. Thus, we have

ϕl,m = αmϕl.(3.39)
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Substituting the equation (3.39) in (3.17), we get

αmϕl = ϕmλl +


r

n
+ ϕ



λl,m.(3.40)

Finally, from (3.40), it can be obtained that

λl,m = (αm − λm)λl.(3.41)

Thus, the proof is completed. □

Theorem 3.12. A recurrent vector field ϕm, with the recurrence vector field αm of

(M, g) admits the relation αm = λm if and only if the vector field λm is covariantly

constant or is of constant length.

Proof. If we take αm = λm in Theorem 3.11 then from (3.41), we get

λl,m = 0.(3.42)

Thus, we can say that the vector field λl is covariantly constant. Conversely, if the
relation (3.42) is satisfied, from (3.41) we have αm = λm. Similarly, suppose that the
vector field λl has constant length. If we multiply the equation (3.41) by λl, then we
have αm = λm. The converse is also true. Hence, the proof is completed. □

Theorem 3.13. Let the vector field λl of (M, g) be a λ(Ric) vector field in the form

λl,m = µSlm. A necessary and sufficient condition the vector field ϕl to be divergence-

free is that the scalar function µ to be in the form

µ = −



n

r + nϕ

2
♣♣ϕ♣♣2

r
.

Proof. Assume that the vector field λl is a λ(Ric) vector field, from (1.17),

λl,m = µSlm,(3.43)

where µ is a scalar function. Putting the equation (3.43) in (3.21), one can easily
obtain that

ϕl,m =



n

r + nϕ



ϕlϕm + µ



r + nϕ

n



Slm.(3.44)

Multiplying the equation (3.44) by glm, it is found that

ϕl
,l =



n

r + nϕ



♣♣ϕ♣♣2 + µ



r + nϕ

n



r.(3.45)

Now, assume that the vector field ϕl is divergence-free. In this case, the equation
(3.45) reduces to

µ = −



n

r + nϕ

2
♣♣ϕ♣♣2

r
.(3.46)

Conversely, if the scalar function µ satisfies the relation (3.46), from (3.45), it can be
obtained that ϕl is divergence-free. Thus, the proof is completed. □
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Theorem 3.14. If the vector field λl is a λ(Ric) vector field in the form λl,m = µSlm

and the vector field ϕl of (M, g) has constant length, then the value − 1
µ
( n||φ||

r+nφ
)2 is

an eigenvalue of the Ricci tensor S corresponding to the eigenvector δ defined by

ϕ(X) = g(X, δ).

Proof. Assume that the vector field λl is a λ(Ric) vector field in the form λl,m = µSlm

and the vector field ϕl is of constant length. Multiplying (3.44) by ϕl then we get

ϕlϕl,m =



n

r + nϕ



♣♣ϕ♣♣2ϕm + µ



r + nϕ

n



ϕlSlm.(3.47)

Because ϕl is of constant length, we have ϕlϕl,m = 0. In this case, from (3.47), we
obtain

ϕlSlm = −
1

µ



n♣♣ϕ♣♣

r + nϕ

2

ϕm.(3.48)

Thus, the proof is completed. □

Theorem 3.15. If the vector field λl is a λ(Ric) vector field in the form λl,m = µSlm

and the vector field ϕl of (M, g) is a concircular vector field, then the Ricci tensor is

in the following form

Slm = aglm + bϕmϕl,

which is a quasi-Einstein manifold where a = nρ
µ(r+nφ)

, b = − 1
µ
( n

r+nφ
)2.

Proof. Assume that the vector field λl is a λ(Ric) vector field in the form λl,m = µSlm

and the vector field ϕl of (M, g) is a concircular vector field. From the equation (3.44),
one can obtain that

ρglm =



n

r + nϕ



ϕlϕm +



r + nϕ

n



µSlm.(3.49)

We easily find from (3.49) that

Slm =
nρ

µ(r + nϕ)
glm −

1

µ



n

r + nϕ

2

ϕlϕm.(3.50)

Finally, the Ricci tensor can be written in the form

Slm = aglm + bϕmϕl,(3.51)

where a = nρ
µ(r+nφ)

, b = − 1
µ
( n

r+nφ
)2. Therefore, this manifold is a quasi-Einstein

manifold. In this case, the proof is completed. □

Theorem 3.16. If the vector fields λl and ϕl of (M, g) are λ(Ric) and ϕ(Ric) vector

fields in the forms λl,m = µSlm and ϕl,m = αSlm, respectively, then the Ricci tensor is

in the following form

Slm = γϕlϕm,

where γ = n2

(r+nφ)(nα−µ(r+nφ))
, r + nϕ ̸= 0, α ̸= µ( r+nφ

n
) and α, µ, γ are scalar functions.

Thus, this manifold reduces to a quasi-Einstein manifold.
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Proof. Assume that the vector fields λl and ϕl of (M, g) are λ(Ric) and ϕ(Ric) vector
fields, respectively. In this case, we have from (1.17)

λl,m = µSlm and ϕl,m = αSlm.(3.52)

Substituting the relations (3.52) in (3.21), we get

αSlm =
n

r + nϕ
ϕlϕm + µ



r + nϕ

n



Slm.(3.53)

Finally, Ricci tensor takes the form

Slm = γϕlϕm,(3.54)

where γ = n2

(r+nφ)(nα−µ(r+nφ))
and r + nϕ ̸= 0, α ̸= µ( r+nφ

n
). This means that this

manifold reduces to a quasi-Einstein manifold. Hence, the proof is completed. □

Theorem 3.17. The vector fields λl and ϕl of (M, g) are λ(Ric) and ϕ(Ric) vector

fields in the forms λl,m = µSlm and ϕl,m = αSlm, respectively. If the eigenvalue

determined by the vector field αk is r, then the eigenvalue determined by the vector

field µk is also r.

Proof. Assume that the vector fields λl and ϕl of (M, g) are λ(Ric) and ϕ(Ric) vector
fields, respectively. As we already know the relations in (3.52), if we use the equations
(3.18) and (3.52), then we get

αSlm =


r

n
+ ϕ



(µSlm + λlλm).(3.55)

Arraying the equation (3.55), we find


α −


r

n
+ ϕ



µ



Slm =


r

n
+ ϕ



λlλm.(3.56)

Now, let’s find the covariant derivative of (3.56) and use the equation (3.16), one can
easily see that



αk −


r

n
+ ϕ



(λkµ + µk)


Slm +


α −


r

n
+ ϕ



µ



Slm,k

=


r

n
+ ϕ



[µ(λlSmk + λmSlk) + λlλmλk].(3.57)

We arrive at the following relation multiplying (3.57) by glm



αk −


r

n
+ ϕ



µk



r =


r

n
+ ϕ



[2µλlSlk + ♣♣λ♣♣2λk + λkµr].(3.58)

Again, multiplying (3.57) by glk, we get

αlSlk −


r

n
+ ϕ



µlSlk =


r

n
+ ϕ



[2µ(λlSlk + ♣♣λ♣♣2λk + λkµr].(3.59)

At the end, substracting the equations (3.58) and (3.59), we obtain

αlSlk − αkr =


r

n
+ ϕ



(µlSlk − µkr).(3.60)
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So, we can say that if the eigenvalue determined by the vector field αk is r, then the
eigenvalue determined by the vector field µk is also r. Thus, the proof is completed. □

Theorem 3.18. If the vector field ϕl of (M, g) is a ϕ(Ric) vector field in the form

ϕl,m = αSlm, then the Laplacian of the trace function of the Z-tensor is

∆Z̄ = nαr.

Proof. As we know that in a Riemannian manifold with covariantly constant conhar-
monic curvature tensor, the scalar curvature must be constant. Thus, going back to
the relation (2.1), we get

Z̄,k = nϕk.(3.61)

By taking the covariant derivative of (3.61), it can be found

Z̄,kl = nϕk,l.(3.62)

Now, let us asuume that the vector field ϕl is a ϕ(Ric) vector field. In this case, the
equation (3.62) takes the form

Z̄,kl = nαSkl.(3.63)

Multiplying the equation (3.63) by gkl, we obtain

gklZ̄,kl = ∆Z̄ = nαr.(3.64)

Hence, the proof is completed. □

Theorem 3.19. If the vector field ϕl of (M, g) is a ϕ(Ric) vector field in the form

ϕl,m = αSlm, then the scalar curvature satisfies the relation

r =
nϕδ

nα − δ
,

where δ ̸= nα.

Proof. Assume that the vector field ϕl is a ϕ(Ric) vector field in the form ϕl,m = αSlm.
Hence, from (3.18), one can easily find that

αSlm =



r + nϕ

n



(λlλm + λl,m) .(3.65)

Let’s multiply (3.65) by glm. Thus, it takes the form

αr =



r + nϕ

n





♣♣λ♣♣2 + λl
,l



.(3.66)

Now, let’s take δ = ♣♣λ♣♣2 + λl
,l and δ ̸= nα. Finally, it is obtained that

r =
nϕδ

nα − δ
.(3.67)

Hence, this completes the proof. □
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A STUDY ON THE BLOW-UP OF SOLUTIONS FOR A LAMÉ
SYSTEM OF INVERSE PROBLEM

MOHAMMAD SHAHROUZI1

Abstract. We consider the Lamé system of inverse problem in a bounded domain
with nonlinear boundary condition. When 2 < m ≤ p

4
, we obtain the blow-up result

for the weak solution with positive initial energy and sufficiently large initial data.

1. Introduction

We study the following Lamé system of inverse problem of determining a pair of
functions ¶u(x, t), f(t)♢ that satisfy:

utt − ∆eu− div (♣∇u♣m−2∇u) + h(x, t, u,∇u) = ♣u♣p−2u+ f(t)ω(x), x ∈ Ω, t > 0,

(1.1)

{

u(x, t) = 0, x ∈ Γ0, t > 0,
µ∂u

∂ν
(x, t) + ♣∂u

∂ν
♣m−2 ∂u

∂ν
+ (λ+ µ)div u = 0, x ∈ Γ1, t > 0,

(1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,(1.3)
∫

Ω
u(x, t)ω(x)dx = 1, t > 0,(1.4)

where Ω is a bounded domain of Rn, n ≥ 1, with smooth boundary ∂Ω = Γ0 ∪ Γ1

and ν is the unit outward normal to ∂Ω. Let u = (u1, . . . , un) be a vector function,

div u = u1
x1

+ u2
x2

+ · · · + un
xn

be the divergence of u, ∆ =
∑n

i=1
∂2

∂x2

i

. We write

∆u =

(

n
∑

i=1

u1
xixi

,
n
∑

i=1

u2
xixi

, . . . ,
n
∑

i=1

un
xixi

T

.
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Here ∆e denotes the elasticity operator, which is the n× n matrix-valued differential
operator defined by

∆eu = µ∆u+ (λ+ µ)∇(div u),

µ and λ are the Lamé constants which satisfy the following conditions

µ > 0, λ+ µ ≥ 0.

Also, m and p are constants such that p,m > 2. In addition, h(x, t, u,∇u) and ω(x)
are real functions that satisfy specific conditions that will be enunciated later (see
(A1)-(A3)).

Elasticity systems with constants Lamé coefficients in direct problems (ω(x) ≡ 0)
has attracted considerable attention in recent years, where diverse type of dissipative
mechanisms have been introduced and several results have been obtained. In [1]
Bchatnia and Daolati studied behavior of the energy for solutions to a Lamé system
on a bounded domain with localized nonlinear damping and external force. Later,
Bchatnia and Guesmia [2] considered the Lamé system in 3-dimension bounded domain
with infinite memories and proved that system is well-possed and stable. Moreover,
they established solutions converge to zero at infinity in terms of the growth of the
infinite memories. Li and Bao [19] investigated the following memory-type elasticity
problem

utt − µ∆u− (µ+ λ)∇(div u) +
∫ t

0
g(t− s)∆u(s)ds = 0, in Ω × (0,∞),

u = 0, on Γ0 × (0,∞),

µ
∂u

∂ν
−
∫ t

0
g(t− s)

∂u

∂ν
(s)ds+ (µ+ λ)(div u)ν + h(ut) = 0, on Γ1 × (0,∞),

u(x, 0) = u0, ut(x, 0) = u1, in Ω.

The authors obtained global existence and the general energy decay of solutions by
using perturbed energy method.

Boulaaras [6] proved asymptotic stability result of global solution for a coupled
Lamé system with a viscoelastic term and the logarithmic nonlinearity. He obtained
this result taking into account that the kernel is not necessarily decreasing. Recently,
Bocanegra-Rodríguez et al. [5] investigated the longtime dynamics of the following
semilinear Lamé systems

∂2
t u− µ∆u− (λ+ µ)∇div u+ α∂tu+ f(u) = b,

defined in bounded domains of R3 with Dirichlet boundary condition. They proved
the existence of finite dimensional global attractors subjected to a critical forcing
f(u). Moreover, they showed the upper-semicontinuity of attractors with respect to
the parameter when (λ+ µ) → 0 (see also [3, 4, 9, 10]).

Inverse problems are the problems that consist of finding an unknown property of
an object, or medium, to a probing signal (see [21]). In contrast with the extensive
literature on global behaviour of solutions in direct problems, we know little about
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the inverse problems. For instance, Eden and Kalantarov in [8] studied the following
inverse source problem:

ut − ∆u− ♣u♣pu+ b(x, t, u,∇u) = F (t)ω(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
∫

Ω
u(x, t)ω(x)dx = 1, t > 0,

and by using the modified concavity method established global nonexistence results as
well as stability results depending on the sign of nonlinearity. For more information
about the concavity argument, we refer the readers to [16–18]. In [26] Shahrouzi and
Tahamtani by using the same method found conditions on data that guaranteeing the
global nonexistence and asymptotic stability results for a class of Petrovsky inverse
source problems (see also [22–24, 27]). Bukhgěim et al. [7] considered an inverse
problem for the stationary elasticity system with constant Lamé coefficients and
variable matrix coefficient depending on the spatial variables and frequency. They
proved uniqueness theorem by reduction of the inverse problem to a family of equations
with the M. Riesz potential. For more results on the Lamé system of inverse problems,
we refer the reader to [11–15,25] and references therein.

The paper is organized as follows. In Section 2, we present some notations, assump-
tions and known results needed for our work and state our main result: Theorem 2.1.
Section 3 is devoted to the proof of the blow-up result.

2. Preliminaries and Main Result

We begin this section by introducing some hypotheses and our main result. We
shall assume that the functions ω(x), h(x, t, u,∇u) and the functions appearing in the
data satisfy the following conditions:

(A1) u0 ∈ H1
0 (Ω) ∩ Lp+2(Ω), u1 ∈ L2(Ω),

∫

Ω u0(x)ω(x)dx = 1;
(A2) ω ∈ H2(Ω) ∩H1

0 (Ω) ∩ Lp+2(Ω),
∫

Ω ω
2(x)dx = 1;

(A3) for some positive M1,M2 we have ♣h(x, t, u,∇u)♣ ≤ M1♣u♣
p

2 +M2♣∇u♣
m
2 .

Throughout this paper all the functions considered are real-valued. We denote by
∥ · ∥q the Lq-norm over Ω . In particular, the L2-norm is denoted ∥ · ∥ in Ω and ∥ · ∥Γi

in Γi. Also we use familiar function spaces H1
0 , H

2.
We recall the trace Sobolev embedding

H1
Γ0

(Ω) →֒ Lq(Γ1), for 2 ≤ q <
2(n− 1)

n− 2
,

where

H1
Γ0

(Ω) = ¶u ∈ H1(Ω) : u♣Γ0
= 0♢

and the embedding inequality

∥u∥q,Γ1
≤ Bq∥∇u∥2,
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where Bq is the optimal constant.
We sometimes use the Young’s inequality

(2.1) ab ≤ βaq + C(β, q)bq′

, a, b ≥ 0, β > 0,
1

q
+

1

q′
= 1,

where C(β, q) = 1
q′

(βq)−
q′

q are constants.

The following lemma was introduced in [16]. It will be used in the next section in
order to prove the blow-up result.

Lemma 2.1. Let α > 0, c1, c2 ≥ 0 and c1 + c2 > 0. Assume that ψ(t) is a twice

differentiable positive function such that

ψ
′′

ψ − (1 + α)
[

ψ
′
]2

≥ −2c1ψψ
′ − c2[ψ]2,

for all t ≥ 0. If

ψ(0) > 0 and ψ′(0) + γ2α
−1ψ(0) > 0,

then

ψ(t) → +∞, as t → t1 ≤ t2 =
1

2
√

c2
1 + αc2

log
γ1ψ(0) + αψ′(0)

γ2ψ(0) + αψ′(0)
.

Here

γ1 = −c1 +
√

c2
1 + αc2 and γ2 = −c1 −

√

c2
1 + αc2.

We consider the following problem that is obtained from (1.1)–(1.4) by substituting
u(x, t) = eξtv(x, t):

vtt + 2ξvt + ξ2v − ∆ev − eξ(m−2)tdiv
(

♣∇v♣m−2∇v


+ e−ξtĥ(t, v)

=eξ(p−2)t♣v♣p−2v + e−ξtf(t)ω(t), x ∈ Ω, t > 0,(2.2)
{

v(x, t) = 0, x ∈ Γ0, t > 0,
µ∂v

∂ν
(x, t) + eξ(m−2)t♣∂v

∂ν
♣m−2 ∂v

∂ν
+ (λ+ µ)div v = 0, x ∈ Γ1, t > 0,

(2.3)

v(x, 0) = u0(x), vt(x, 0) = u1(x) − ξu0(x), x ∈ Ω,(2.4)
∫

Ω
v(x, t)ω(x)dx = e−ξt, t > 0,(2.5)

where

ĥ(t, v) := h(x, t, eξtv, eξt∇v),

and the value of the parameter ξ will be prescribed later.
By using the idea of Prilepko et al. [20] and (A2), one can easily see that the

problem (2.2)–(2.5) is equivalent to (2.2)–(2.4) in which the unknown function f(t) is
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replaced by

e−ξtf(t) =µ
∫

Ω
∇v∇ωdx+ (λ+ µ)

∫

Ω
(div v)(divω(x))dx

+ eξ(m−2)t
∫

Ω
♣∇v♣m−2∇v∇ωdx+ e−ξt

∫

Ω
ĥ(t, v)ω(x)dx

− eξ(p−2)t
∫

Ω
♣v♣p−2vω(x)dx.(2.6)

Define the total energy functional associated with problem (2.2)–(2.4) as follows

(2.7) Eξ(t) =
1

p
eξ(p−2)t∥v∥p

p −
1

2
I(t),

where

I(t) = ∥vt∥
2 + ξ2∥v∥2 + µ∥∇v∥2 + (λ+ µ)

∫

Ω
(div v)2dx+

2

m
eξ(m−2)t∥∇v∥m

m.

Now, we are in a position to state blow-up result.

Theorem 2.1. Let the conditions (A1)-(A3) be satisfied. Assume that 2 < m ≤ p

4

and for sufficiently large initial data and ξ > 0
√

√

√

√

3(pM2
1 + 2mM2

2 )

8m(m− 1)
≤ξ <

(m− 1)
∫

Ω u0u1dx

(m+ 1)∥u0∥2
,(2.8)

Eξ(0) ≥
2D1

ξ(p+ 2)
+
D2

2m
,

where

D1 =
µξ

p− 2
∥∇ω∥2 +

(λ+ µ)ξ

p− 2

∫

Ω
(divω(x))2

dx+
ξ2(pM2

1 + 2mM2
2 )

4p+ 8m
∥ω∥2

+
ξ∥∇ω∥m

m

m
[

p−2
12(m−1)

]m−1 +
ξ∥ω∥p

p

p
[

p−2
6(p−1)

]p−1 ,(2.9)

D2 =
µ

2m
∥∇ω∥2 +

(λ+ µ)

2m

∫

Ω
(divω(x))2

dx+
ξ2(3pM2

1 + 6mM2
2 )

8m
∥ω∥2

+
ξm∥∇ω∥m

m

mm
[

1
3(m−1)

]m−1 +
ξp∥ω∥p

p

p
[

2m
3(p−1)

]p−1 .(2.10)

Then there exists a finite time t1 such that the solution of the problem (1.1)–(1.4)
blows up in t1, that is

∥u(t)∥ → +∞, as t → t1.

3. Blow-up

In this section we are going to prove that for sufficiently large initial data some
of the solutions blow up in a finite time. To prove the blow-up result (Theorem 2.1)
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for certain solutions with positive initial energy, we need the following lemma for the
problem (2.2)–(2.5).

Lemma 3.1. Under the conditions of Theorem 2.1, the energy functional Eξ(t),
defined by (2.7), satisfies

Eξ(t) ≥ Eξ(0) −
2D1

ξ(p+ 2)
.

Proof. A multiplication of equation (2.2) by vt and integrating over Ω gives

E ′

ξ(t) =2ξ∥vt∥
2 −

ξ(m− 2)

m
eξ(m−2)t∥∇v∥m

m +
ξ(p− 2)

p
eξ(p−2)t∥v∥p

p

+ e−ξt
∫

Ω
vtĥ(t, v)dx+ ξe−2ξtf(t).(3.1)

Plugging definition of f(t), (2.6) into (3.1), we obtain

E ′

ξ(t) =2ξ∥vt∥
2 −

ξ(m− 2)

m
eξ(m−2)t∥∇v∥m

m +
ξ(p− 2)

p
eξ(p−2)t∥v∥p

p + e−ξt
∫

Ω
vtĥ(t, v)dx

+ ξµe−ξt
∫

Ω
∇v∇ωdx+ ξ(λ+ µ)e−ξt

∫

Ω
(div v) (divω(x)) dx

+ ξeξ(m−3)t
∫

Ω
♣∇v♣m−2∇v∇ω(x)dx+ ξe−2ξt

∫

Ω
ĥ(t, v)ω(x)dx

− ξeξ(p−3)t
∫

Ω
♣v♣pvω(x)dx.(3.2)

Next, we estimate the terms on the right-hand side of (3.2). Using (A3), Cauchy-
Schwartz and Young’s inequality (2.1), we obtain

e−ξt

∣

∣

∣

∣

∫

Ω
vtĥ(t, v)dx

∣

∣

∣

∣

≤M1

∫

Ω
vte

ξ( p

2
−1)t♣v♣

p

2dx+M2

∫

Ω
vte

ξ( m
2

−1)t♣∇v♣
m
2 dx

≤ M1∥vt∥e
ξ( p

2
−1)t∥v∥

p

2
p +M2∥vt∥e

ξ( m
2

−1)t∥∇v∥
m
2

m

≤ β1e
ξ(p−2)t∥v∥p

p + β2e
ξ(m−2)t∥∇v∥m

m +

(

M2
1

4β1

+
M2

2

4β2



∥vt∥
2,(3.3)

where β1 and β2 are arbitrary positive constants

µξe−ξt

∣

∣

∣

∣

∫

Ω
∇v∇ωdx

∣

∣

∣

∣

≤
µξ(p− 2)

4
∥∇v∥2 +

µξ

p− 2
e−2ξt∥∇ω∥2,(3.4)

ξ(λ+ µ)e−ξt

∣

∣

∣

∣

∫

Ω
(div v) (divω(x)) dx

∣

∣

∣

∣

≤
ξ(λ+ µ)(p− 2)

4

∫

Ω
(div v)2

dx+
ξ(λ+ µ)

p− 2
e−2ξt

∫

Ω
(divω(x))2

dx,(3.5)

ξeξ(m−3)t

∣

∣

∣

∣

∫

Ω
♣∇v♣m−2∇v∇ω(x)dx

∣

∣

∣

∣

≤ ξeξ(m−2)t∥∇v∥m−1
m e−ξt∥∇ω∥m

≤β3e
ξ(m−2)t∥∇v∥m

m +
ξme−2ξt

m
[

β3m

m−1

]m−1 ∥∇ω∥m
m,(3.6)
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where β3 is an arbitrary positive constant,

ξe−2ξt

∣

∣

∣

∣

∫

Ω
ĥ(t, v)ω(x)dx

∣

∣

∣

∣

≤M1

∫

Ω
eξ( p

2
−1)t♣v♣

p

2 ξe−ξtω(x)dx+M2

∫

Ω
eξ( m

2
−1)t♣∇v♣

m
2 ξe−ξtω(x)dx

≤eξ( p

2
−1)t∥v∥

p

2
p .M1ξe

−ξt∥ω∥ + eξ( m
2

−1)t∥∇v∥
m
2

m .M2ξe
−ξt∥ω∥

≤β4e
ξ(p−2)t∥v∥p

p + β5e
ξ(m−2)t∥∇v∥m

m +

(

M2
1

4β4

+
M2

2

4β5



ξ2e−2ξt∥ω∥2,(3.7)

where β4 and β5 are arbitrary positive constants.
Finally, we have for any positive β6:

ξeξ(p−3)t

∣

∣

∣

∣

∫

Ω
♣v♣pvω(x)dx

∣

∣

∣

∣

≤ξEξ(p−2)t∥v∥p−1
p e−ξt∥ω∥p

≤β6e
ξ(p−2)t∥v∥p

p +
ξpe−2ξt

p
[

β6p

p−1

]p−1 ∥ω∥p
p.(3.8)

Combining (3.3)–(3.8) with (3.2), we deduce

E ′

ξ(t) ≥



2ξ −

(

M2
1

4β1

+
M2

2

4β2

]

∥vt∥
2 −

(

ξ(m− 2)

m
+ β2 + β3 + β5



eξ(m−2)t∥∇v∥m
m

+

(

ξ(p− 2)

p
− β1 − β4 − β6



eξ(p−2)t∥v∥p
p −

µξ(p− 2)

4
∥∇v∥2

−
ξ(λ+ µ)(p− 2)

4

∫

Ω
(div v)2

dx− e−2ξtD1,(3.9)

where

D1 =
µξ

p− 2
∥∇ω∥2 +

(λ+ µ)ξ

p− 2

∫

Ω
(divω(x))2

dx+
ξ2(β5M

2
1 + β4M

2
2 )

4(β4 + β5)
∥ω∥2

+
ξm∥∇ω∥m

m

m
[

β3m

m−1

]m−1 +
ξp∥ω∥p

p

p
[

β6p

p−1

]p−1 .

By virtue of (3.9), we obtain from (2.7) the following inequality

E ′

ξ(t) −
ξ(p− 2)

2
Eξ(t) ≥

(

ξ(p− 2m+ 2)

2m
− β2 − β3 − β5



eξ(m−2)t∥∇v∥m
m

+

(

ξ(p− 2)

2p
− β1 − β4 − β6



eξ(p−2)t∥v∥p
p

+



ξ(p+ 6)

4
−

(

M2
1

4β1

+
M2

2

4β2

]

∥vt∥
2 − e−2ξtD1.
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At this point if we choose β1 = β4 = β6 = ξ(p−2)
6p

and β2 = β3 − β5 = ξ(p−2)
12m

, then we
gain

E ′

ξ(t) −
ξ(p− 2)

2
Eξ(t) ≥

ξ(p− 4m+ 6)

4m
∥∇v∥m

m +



ξ(p+ 6)

4
−

3pM2
1 + 6mM2

2

2ξ(p− 2)

]

∥vt∥
2

− e−2ξtD1.

Hence, by choosing m ≤ p+6
4

and

ξ ≥

√

√

√

√

6(pM2
1 + 2mM2

2 )

p2 + 4p− 12
,

we get

(3.10) E ′

ξ(t) −
ξ(p− 2)

2
Eξ(t) ≥ −e−2ξtD1.

Integrating the differential inequality (3.10) between 0 and t gives that

Eξ(t) ≥ Eξ(0) −
D1

ξ(p+ 2)
,

where D1 satisfies (2.9) and proof of Lemma 3.1 is completed. □

Proof of Theorem 2.1. For obtain the blow-up result, the choice of the following
functional is standard (see [17,18])

(3.11) ψ(t) = ∥v(t)∥2,

then

(3.12) ψ′(t) = 2
∫

Ω
vvtdx, ψ′′(t) = 2

∫

Ω
vvttdx+ 2∥vt∥

2.

A multiplication of equation (2.2) by v and integrating over Ω gives
∫

Ω
vvttdx = − 2ξ

∫

Ω
vvtdx− ξ2∥v∥2 − µ∥∇v∥2 − (λ+ µ)

∫

Ω
(div v)2dx

− eξ(m−2)t∥∇v∥m
m − e−ξt

∫

Ω
vĥ(t, v)dx+ eξ(p−2)t∥v∥p

p

+ µe−ξt
∫

Ω
∇v∇ωdx+ (λ+ µ)e−ξt

∫

Ω
(div v)(divω(x))dx

+ eξ(m−3)t
∫

Ω
♣∇v♣m−2∇v∇ωdx+ e−2ξt

∫

Ω
ĥ(t, v)ω(x)dx

− eξ(p−3)t
∫

Ω
♣v♣p−2vω(x)dx,(3.13)

where the definition of unknown function (2.6) has been used.
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By combining (2.7) with (3.13), one can easily verify that
∫

Ω
vvttdx =ηEξ(t) − 2ξ

∫

Ω
vvtdx+

η

2
∥vt∥

2 + ξ2


η

2
− 1



∥v∥2 + µ



η

2
− 1



∥∇v∥2

+ (λ+ µ)


η

2
− 1

 ∫

Ω
(div v)2

dx+


η

m
− 1



eξ(m−2)t∥∇v∥m
m

+

(

1 −
η

p



eξ(p−2)t∥v∥p
p − e−ξt

∫

Ω
vĥ(t, v)dx+ µe−ξt

∫

Ω
∇v∇ωdx

+ (λ+ µ)e−ξt
∫

Ω
(div v)(divω(x))dx+ eξ(m−3)t

∫

Ω
♣∇v♣m−2∇v∇ωdx

+ e−2ξt
∫

Ω
ĥ(t, v)ω(x)dx− eξ(p−3)t

∫

Ω
♣v♣p−2vω(x)dx.(3.14)

Applying (A3), Cauchy-Schwartz inequality and the Young’s inequality (2.1) to
estimate the terms on the right-hand side of (3.14)

e−ξt

∣

∣

∣

∣

∫

Ω
vĥ(t, v)dx

∣

∣

∣

∣

≤M1∥v∥e( p

2
−1)ξt∥v∥

p

2
p +M2∥v∥e( m

2
−1)ξt∥∇v∥

m
2

m

≤θ1e
(p−2)ξt∥v∥p

p + θ2e
(m−2)ξt∥∇v∥m

m +

(

M2
1

4θ1

+
M2

2

4θ2



∥v∥2,(3.15)

where θ1 and θ2 are positive constants,

µe−ξt

∣

∣

∣

∣

∫

Ω
∇v∇ωdx

∣

∣

∣

∣

≤
µη

4
∥∇v∥2 +

µe−2ξt

η
∥∇ω∥2,(3.16)

(λ+ µ)e−ξt

∣

∣

∣

∣

∫

Ω
(div v)(divω(x))dx

∣

∣

∣

∣

≤
η(λ+ µ)

4

∫

Ω
(div v)2dx+

(λ+ µ)e−2ξt

η

∫

Ω
(divω(x))2dx,(3.17)

and

eξ(m−3)t

∣

∣

∣

∣

∫

Ω
♣∇v♣m−2∇v∇ωdx

∣

∣

∣

∣

≤ξeξ(m−2)t∥∇v∥m−1
m e−ξt∥∇ω∥m

≤θ3e
ξ(m−2)t∥∇v∥m

m +
ξme−2ξt

m
[

mθ3

m−1

]m−1 ∥∇ω∥m
m,(3.18)

where θ3 is an arbitrary positive constant. Also, similar to (3.7), we have

e−2ξt

∣

∣

∣

∣

∫

Ω
ĥ(t, v)ω(x)dx

∣

∣

∣

∣

≤θ4e
ξ(p−2)t∥v∥p

p + θ5e
ξ(m−2)t∥∇v∥m

m

+

(

M2
1

4θ4

+
M2

2

4θ5



ξ2e−2ξt∥ω∥2,(3.19)

where θ4 and θ5 are positive constants. Furthermore, for θ6 > 0 we derive

(3.20) eξ(p−3)t
∫

Ω
♣v♣p−2vω(x)dx ≤ θ6e

ξ(p−2)t∥v∥p
p +

ξpe−2ξt

p
[

pθ6

p−1

]p−1 ∥ω∥p
p.
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Utilizing (3.15)–(3.20) with (3.14), we get
∫

Ω
vvttdx ≥ηEξ(t) − 2ξ

∫

Ω
vvtdx+



ξ2(
η

2
− 1) −

(

M2
1

4θ1

+
M2

2

4θ2

]

∥v∥2

+ µ



η

4
− 1



∥∇v∥2 +
η

2
∥vt∥

2 + (λ+ µ)


η

4
− 1

 ∫

Ω
(div v)2

dx

+


η

m
− 1 − θ2 − θ3 − θ5



eξ(m−2)t∥∇v∥m
m

+

(

1 −
η

p
− θ1 − θ4 − θ6



eξ(p−2)t∥v∥p
p − e−2ξt





µ

η
∥∇ω∥2

+
λ+ µ

η

∫

Ω
(divω(x))2dx+

ξm

m
[

mθ3

m−1

]m−1 ∥∇ω∥m
m

+

(

M2
1

4θ4

+
M2

2

4θ5



ξ2∥ω∥2 +
ξp

p
[

pθ6

p−1

]p−1 ∥ω∥p
p



.

Now by choosing η = 2m, θ2 = θ3 = θ5 = 1
3

and θ1 = θ4 = θ6 = 2m
3p

, we conclude that

∫

Ω
vvttdx ≥2mEξ(t) − 2ξ

∫

Ω
vvtdx+

η

2
∥vt∥

2 +



ξ2(m− 1) −

(

3pM2
1

8m
+

3M2
2

4

]

∥v∥2

+ µ



m

2
− 1



∥∇v∥2 + (λ+ µ)


m

2
− 1

 ∫

Ω
(div v)2

dx

+

(

1 −
4m

p



eξ(p−2)t∥v∥p
p − e−2ξtD2,

where D2 satisfies (2.10). Let 2 < m ≤ p

4
and

ξ ≥

√

√

√

√

3(pM2
1 + 2mM2

2 )

8m(m− 1)
,

it holds that
∫

Ω
vvttdx ≥ 2mEξ(t) − 2ξ

∫

Ω
vvtdx+m∥vt∥

2 − e−2ξtD2.

According to Lemma 3.1 and hypothesis of Theorem 2.1, we obtain

(3.21)
∫

Ω
vvttdx ≥ −2ξ

∫

Ω
vvtdx+m∥vt∥

2.

To this end, by substituting (3.11) and (3.12) in (3.21), we arrive at

ψ′′(t) ≥ −2ξψ′(t) + 2(m+ 1)∥vt∥
2,

finally we get

ψ(t)ψ′′(t) ≥
(m+ 1)

2
[ψ′(t)]2 − 2ξψ(t)ψ′(t).
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Considering 2 < m ≤ p

4
, it is obvious that

max







√

√

√

√

3(pM2
1 + 2mM2

2 )

8m(m− 1)
,

√

√

√

√

6(pM2
1 + 2mM2

2 )

p2 + 4p− 12







=

√

√

√

√

3(pM2
1 + 2mM2

2 )

8m(m− 1)
.

Hence by attention to (2.8) we see that the hypotheses of Lemma 2.1 are fulfilled with
α = m−1

2
, c1 = ξ, c2 = 0 and

ψ′(0) −
4ξ

m− 1
ψ(0) > 0,

thus conclusion of Lemma 2.1 gives us that some solutions of problem (2.2)–(2.5)
blow up in a finite time and since this system is equivalent to (1.1)–(1.4), the proof
is completed.
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UNIFORM ULTIMATE BOUNDEDNESS RESULTS FOR SOME

SYSTEM OF THIRD ORDER NONLINEAR DELAY

DIFFERENTIAL EQUATIONS

M. O. OMEIKE1

Abstract. The paper is concerned with the study of the uniform ultimate bound-
edness of solutions of the third-order system of nonlinear delay differential equation

...

X +AẌ + BẊ + H(X(t − r)) = P (t, X, Ẋ, Ẍ),

where A, B are real n × n constant symmetric matrices, r is a positive real constant
and X ∈ R

n, using the Lyapunov-Krasovskii functional method and following the
arguments used in [1] and [10], we obtained results which give an n−dimensional
analogue of an earlier result of [13] and extend other earlier results for the case in
which we do not necessarily require that H(X(t − r)) be differentiable.

1. Introduction

Let R denote the real line, −∞ < t < ∞ and R
n denote the real n-dimensional

Euclidean space R × R × · · · × R (in n places) with the usual norm which will be
represented throughout by ∥ · ∥.

Consider the delay differential equation of the form

(1.1)
...

X +AẌ + BẊ + H(X(t − r)) = P (t, X, Ẋ, Ẍ),

where X ∈ R
n, H : R

n → R
n, P : R × R

n × R
n × R

n → R
n, A and B are real

n × n constant symmetric matrices, r is a positive real constant and the dots indicate
differentiation with respect to t. We shall assume that H and P are continuous in
their respective arguments.
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Equation (1.1) is the vector version for systems of real third-order nonlinear delay
differential equations of the form

...
xi +

n
∑

k=1

aikẍk +
n

∑

k=1

bikẋk + hi(x1(t − r), x2(t − r), . . . , xn(t − r))

=pi(t, x1, . . . , xn, ẋ1, . . . , ẋn, ẍ1, . . . , ẍn),

i = 1, 2, . . . , n, in which aik and bik are real constants, r is a positive real constant
and hi, pi are continuous in their respective arguments. The case when n = 1 and
r = 0 which give rise to the nonlinear differential equations of the form

(1.2)
...
x +aẍ + bẋ + h(x) = p(t, x, ẋ, ẍ)

have been greatly studied by several authors for stability, boundedness, convergence
and periodicity of solutions (see [5, 8, 14]). Similarly, equations of the form (1.2) for
which a, b are not necessarily constants have been studied by several authors in the
literature (see [14]). For the case n = 1 and r > 0, delay differential equations of the
form

(1.3)
...
x +aẍ + bẋ + h(x(t − r)) = p(t, x, ẋ, ẍ)

have been studied for stability, boundedness and periodicity of solutions by several
authors in the literature. In [18], sufficient conditions which ensure the stability (for
p(t, x, ẋ, ẍ) = 0) and boundedness (for p(t, x, ẋ, ẍ) ̸= 0) of solutions of equation (1.3)
were obtained. In [13], equation (1.3) (in which h is not necessarily differentiable) was
studied, and the author obtained conditions which ensure that solutions are bounded.
Similarly, equations of the form (1.3) for which a, b are not necessarily constants have
been studied by several authors in the literature. It is worth mentioning that equation
(1.1), when r = 0, gives rise to the nonlinear vector differential equations of the form

(1.4)
...

X +AẌ + BẊ + H(X) = P (t, X, Ẋ, Ẍ),

where A, B, H and P are as defined above. Equations of the form (1.4) have been
studied by several authors for boundedness and periodicity of solutions ([1,6,10]). In [6]
the authors studied equation (1.4) when H(X) is continuous and differentiable, while
in [1] and [10] the authors studied (1.4) when H(X) is not necessarily differentiable.
Similarly, qualitative properties of solutions of (1.4) for which A, B are not necessarily
constants have been investigated by several authors (see [2,7,9,15]). However, there are
few papers in connection with the qualitative properties of solutions of systems of third
order nonlinear delay differential equations in literature. Recently, in [12], equation
(1.1) in which r = r(t), H ∈ C

′(Rn) and P (t, X, Ẋ, Ẍ) = P (t) was investigated
for the boundedness of solutions, while in [17], the author studied the stability and
boundedness of solutions of the equation

...

X +H(Ẋ)Ẍ + G(Ẋ(t − r)) + cX(t − r) = P (t, X, Ẋ, Ẍ),

where H, G are continuous and differentiable in their arguments and P is continuous
in its arguments. To the best of our knowledge the extension of the results in [1]
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and [13] to equation (1.1) does not exist in literature. Throughout all the foregoing
papers, the Lyapunov’s second (or direct) method has been used as a main tool to
carry out the proofs of the main results for scalar and vector ordinary differential
equations, while the Lyapunov-Krasovskii functional method has been used for scalar
and vector delay differential equations ([1] - [19]). In the present paper, we shall
use the Lyapunov-Krasovskii functional method as a basic tool in our proofs. In the
present paper, we also used the same method as a basic tool in our proofs. The
motivation for the present work is derived from the papers mentioned above, and
the object of this paper is to prove the uniform boundedness results under specified
conditions on H and P. Specifically, unlike in [12], we shall only assume that H is not
necessarily differentiable, and that for any X, Y ∈ R

n (following [1] and [10]), there
exists an n × n operator C(X, Y ) such that

(1.5) H(X) = H(Y ) + C(X, Y )(X − Y )

for which the eigenvalues λi(C(X, Y )), i = 1, 2, . . . , n, are continuous and satisfy

0 < δh ≤ λi(C(X, Y )) ≤ ∆h

for fixed constants δh and ∆h. Moreover, we shall assume that

∆h ≤ kδaδb, k < 1,

where

(1.6) k = min

{

α(1 − β)δb

δa(α + ∆a)2
,
α(1 − β)δa

(δa + 2α)2

}

and

(1.7) 0 < δa ≤ λi(A) ≤ ∆a,

(1.8) 0 < δb ≤ λi(B) ≤ ∆b,

with λi(A) and λi(B) as the eigenvalues of A and B, respectively.
The result in this paper is the n-dimensional analog of a result in [13]. Moreover, we

shall improve on the results in [12] when H(X(t − r)) is not necessarily differentiable
and r(t) = r > 0.

1.1. Notation and definitions. Given any X, Y in R
n the symbol ⟨X, Y ⟩ will be

used to denote the usual scalar product in R
n, that is ⟨X, Y ⟩ =

∑n
i=1 xiyi. Thus

∥X∥2 = ⟨X, X⟩. The matrix A is said to be positive definite when ⟨AX, X⟩ > 0 for
all nonzero X in R

n.
The following notations (see [12, 13]) will be useful in subsequent sections. For

x ∈ R
n, ♣x♣ is the norm of x. For a given r > 0, t1 ∈ R, C(t1) = ¶ϕ : [t1 − r, t1] →

R
n/ϕ is continuous♢. In particular, C = C(0) denotes the space of continuous func-

tions mapping the interval [−r, 0] into R
n and for ϕ ∈ C, ∥ϕ∥ = sup−r≤θ≤0 ♣ϕ(0)♣. CH

will denote the set of ϕ such that ∥ϕ∥ ≤ H. For any continuous function x(u) defined
on −h ≤ u < A, A > 0, and any fixed t, 0 ≤ t < A, the symbol xt will denote the
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restriction of x(u) to the interval [t − r, t], that is, xt is an element of C defined by
xt(θ) = x(t + θ), −r ≤ θ ≤ 0.

2. Some Preliminary Results

In this section, we shall state the algebraic results required in the proofs of our
main results. The proofs are not given since they are found in [1, 2, 6, 7, 9–11,15,16].

Lemma 2.1 ([1,2,6,7,9–11,15,16]). Let D be a real symmetric positive definite n × n
matrix, then for any X in R

n, we have

δd∥X∥2 ≤ ⟨DX, X⟩ ≤ ∆d∥X∥2,

where δd, ∆d are the least and the greatest eigenvalues of D, respectively.

Lemma 2.2 ([1, 2, 6, 7, 9–11, 15, 16]). Let Q, D be any two real n × n commuting

symmetric matrices. Then

(i) the eigenvalues λi(QD), i = 1, 2, . . . , n, of the product matrix QD are all real

and satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D);

(ii) the eigenvalues λi(Q + D), i = 1, 2, . . . , n, of the sum of matrices Q and D are

real and satisfy


min
1≤j≤n

λj(Q) + min
1≤k≤n

λk(D)


≤ λi(Q + D) ≤


max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)


.

Lemma 2.3. Let H ∈ C(Rn) be a continuous vector function and that H(0) = 0.

Then

H(U) = C(U, 0)X(t) − C(U, 0)
∫ t

t−r
Y (s)ds,

where U = X(t − r).

Proof of Lemma 2.3. From (1.5), we have that

(2.1) H(X(t − r)) = H(Y (t − r)) + C(X(t − r), Y (t − r))(X(t − r) − Y (t − r)).

If we set Y (t − r) = 0 in (2.1), we obtain

(2.2) H(X(t − r)) = C(X(t − r), 0)X(t − r).

Since

X(t − r) = X(t) −
∫ t

t−r
Y (s)ds,

where

Ẋ(t) =
dX(t)

dt
= Y (t),

it follows from (2.2) that

H(X(t − r)) = C(X(t − r), 0)X(t) − C(X(t − r), 0)
∫ t

t−r
Y (s)ds.

Let U = X(t − r), hence the result follows. □
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Corollary 2.1. If r = 0, then (2.2) reduces to H(X) = C(X, 0)X.

3. Boundedness

First, consider a system of delay differential equations

(3.1) ẋ = F (t, xt), xt(θ) = x(t + θ), −r ≤ θ ≤ 0,

where F : R×CH → R
n is a continuous mapping and takes bounded set into bounded

sets. The following lemma is a well-known result obtained in [4].

Lemma 3.1 ([4]). Let V (t, ϕ) : R × CH → R be continuous and locally Lipschitz in

ϕ. If

(i) W (♣x(t)♣) ≤ V (t, xt) ≤ W1(♣x(t)♣) + W2



∫ t
t−r(t) W3(♣x(s)♣)ds



, and

(ii) V̇(3.1) ≤ −W3(♣x(s)♣) + M,

for some M > 0, where W (r), Wi, i = 1, 2, 3, are wedges, then the solutions of (3.1)
are uniformly bounded and uniformly ultimately bounded for bound B.

To study the boundedness of solutions of (1.1) for which P (t, X, Ẋ, Ẍ) ̸= 0, we
would need to write (1.1) in the form

Ẋ = Y,(3.2)

Ẏ = Z,

Ż = −AZ − BY − H(X(t − r)) + P (t, X, Y, Z).

Our main theorem in this paper stated with respect to (3.2), which is an n-dimensional
analogue of a result in [13] is the following.

Theorem 3.1. Consider (3.2), let H(0) = 0 and suppose that

(i) there exists an n × n real continuous operator C(X, Y ) for any vectors X, Y ∈
R

n such that

H(X) = H(Y ) + C(X, Y )(X − Y )

whose eigenvalues λi(C(X, Y )), i = 1, 2, . . . , n, satisfy

(3.3) 0 < δh ≤ λi(C(X, Y )) ≤ ∆h;

(ii) the constant symmetric matrices A and B have positive eigenvalues, commute

with themselves as well with the operator C(X, Y ) for any X, Y ∈ R
n and that

∆h ≤ kδaδb,

where k (< 1) is the constant defined in (1.6);
(iii) there exist finite constants ∆0 ≥ 0, ∆1 ≥ 0, such that the vector P satisfies

(3.4) ∥P (t, X, Y, Z)∥ ≤ ∆0 + ∆1(∥X∥ + ∥Y ∥ + ∥Z∥)
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uniformly in t, for all arbitrary X, Y, Z ∈ R
n. Then, if ∆1 is sufficiently small, the

solutions to the system (3.2) are uniformly bounded and uniformly ultimately bounded

provided

r < min

{

δbδh

∆b∆h

,
2βδaδb

∆h[1 + (1 − β)∆b + 2(∆a + α + αδ−1
a )]

,
α

∆h(1 + 2αδ−1
a )

}

.

Proof. The main tool in the proof of Theorem 3.1 is the Lyapunov functional

2V (Xt, Yt, Zt) =β(1 − β)⟨BX, BX⟩ + β⟨BY, Y ⟩ + 2α⟨BY, A−1Y ⟩(3.5)

+ α⟨A−1Z, Z⟩ + α⟨A−1(AY + Z), AY + Z⟩

+ ⟨Z + AY + (1 − β)BX, Z + AY + (1 − β)BX⟩

+ λ
∫ 0

−r

∫ t

t+s
⟨Y (θ), Y (θ)⟩dθds,

where 0 < β < 1 and α, λ > 0 are constants.
Obviously, the function V (Xt, Yt, Zt) is positive definite since each term of (3.5) is

positive. Hence the condition (i) of Lemma 3.1 is satisfied. Now, let us compute the
time derivative of the functional V (Xt, Yt, Zt) for the solution (Xt, Yt, Zt) of system
(3.2). By V̇ , we denote the time derivative of the function V = V (Xt, Yt, Zt) for the
solution (Xt, Yt, Zt) of the system (3.2). Then

dV

dt
= − ⟨(1 − β)BX, H(X(t − r))⟩ − ⟨αBY, Y ⟩ − ⟨βAY, BY ⟩

− ⟨(I + 2αA−1)Z, H(X(t − r))⟩ − ⟨(αI + A)Y, H(X(t − r))⟩

− ⟨αZ, Z⟩ + ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ

+ ⟨(1 − β)BX + (αI + A)Y + (I + 2αA−1)Z, P (t, X, Y, Z)⟩.

Upon using (2.2), we obtain

dV

dt
= − ⟨(1 − β)BX, C(U, 0))X⟩ − ⟨αBY, Y ⟩ − ⟨βAY, BY ⟩

− ⟨αZ, Z⟩ − ⟨(I + 2αA−1)Z, C(U, 0)X⟩ − ⟨(αI + A)Y, C(U, 0)X⟩

+
∫ t

t−r
⟨(1 − β)BX(s) + (αI + A)Y (s)

+ (I + 2αA−1)Z(s), C(U, 0)Y (s)⟩ds

+ ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ

+ ⟨(1 − β)BX + (αI + A)Y + (I + 2αA−1)Z, P (t, X, Y, Z)⟩

= − U1 − U2 − U3 + U4 + U5,
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where

U1 =
1

2
⟨X, (1 − β)BC(U, 0)X⟩ + ⟨Y, βABY ⟩ +

1

2
⟨αZ, Z⟩,

U2 =
1

4
⟨X, (1 − β)BC(U, 0)X⟩ + ⟨(αI + A)Y, C(U, 0)X⟩ + ⟨αBY, Y ⟩,

U3 =
1

4
⟨X, (1 − β)BC(U, 0)X⟩ + ⟨(I + 2αA−1)Z, C(U, 0)X⟩ +

1

2
⟨αZ, Z⟩,

U4 =
∫ t

t−r
⟨(1 − β)BX(s) + (αI + A)Y (s)

+ (I + 2αA−1)Z(s), C(U, 0)Y (s)⟩ds + ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ

and

U5 = ⟨(1 − β)BX + (αI + A)Y + (I + 2αA−1)Z, P (t, X, Y, Z)⟩.

From (1.7), (1.8) and (3.3), we have

U1 ≥
1 − β

2
δbδh∥X∥2 + βδaδb∥Y ∥2 +

α

2
∥Z∥2(3.6)

≥δ1(∥X∥2 + ∥Y ∥2 + ∥Z∥2),

where δ1 = min
{

(1−β)
2

δbδh, βδaδb,
α
2

}

.

Next, we give estimates for ⟨(αI + A)Y, C(U, 0)X⟩ and ⟨(I + 2αA−1)Z, C(U, 0)X⟩.
For some k1 > 0, k2 > 0, conveniently chosen later, we obtain

⟨(αI + A)Y, C(U, 0)X⟩ =
∥

∥

∥

∥

k1(αI + A)
1

2 Y +
1

2
k−1

1 (αI + A)
1

2 C(U, 0)X
∥

∥

∥

∥

2

− ⟨k2
1(αI + A)Y, Y ⟩

−
1

4
k−2

1 ⟨(αI + A)C(U, 0)X, C(U, 0)X⟩

and

⟨(I + 2αA−1)Z, C(U, 0)X⟩ =
∥

∥

∥

∥

k2(I + 2αA−1)
1

2 Z +
1

2
k−1

2 (I + 2αA−1)
1

2 C(U, 0)X
∥

∥

∥

∥

2

− ⟨k2
2(I + 2αA−1)Z, Z⟩

−
1

4
k−2

2 ⟨(I + 2αA−1)C(U, 0)X, C(U, 0)X⟩,

thus

U2 =
∥

∥

∥

∥

k1(αI + A)
1

2 Y +
1

2
k−1

1 (αI + A)
1

2 C(U, 0)X
∥

∥

∥

∥

2

+
〈{

αB − k2
1(αI + A)

}

Y, Y
〉

+


1

4

{

(1 − β)B − k−2
1 (αI + A)C(U, 0)

}

C(U, 0)X, X
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and

U3 =
∥

∥

∥

∥

k2(I + 2αA−1)
1

2 Z +
1

2
k−1

2 (I + 2αA−1)
1

2 C(U, 0)X
∥

∥

∥

∥

2

+
〈{

αI − k2
2(I + 2αA−1)

}

Z, Z
〉

+


1

4

{

(1 − β)B − k−2
2 (I + 2αA−1)C(U, 0)

}

C(U, 0)X, X


.

By Lemma 2.1 and Lemma 2.2, we have

U2 ≥


αδb − k2
1(α + ∆a)♢∥Y ∥2 +

1

4
δh¶(1 − β)δb −

1

k2
1

(α + ∆a)∆h



∥X∥2 ≥ 0,(3.7)

provided
(α + ∆a)∆h

(1 − β)δb

≤ k2
1 ≤

αδb

α + ∆a

and

(3.8) ∆h ≤
αδ2

b (1 − β)

(α + ∆a)2
.

In a similar manner,

(3.9) U3 ≥ 0,

provided
(2α + δa)∆h

(1 − β)δaδb

≤ k2
2 ≤

αδa

2α + δa

and

(3.10) ∆h ≤
αδbδ

2
a(1 − β)

(2α + δa)2
.

Combining (3.8) and (3.10), we have

∆h ≤ kδaδb,

where

k = min

{

α(1 − β)δb

δa(α + ∆a)2
,
α(1 − β)δa

(δa + 2α)2

}

< 1.

For U4, using the identity 2♣⟨u, v⟩♣ ≤ ∥u∥2 + ∥v∥2, we obtain

♣U4♣ ≤
1

2
(1 − β)∆b∆hr∥X∥2 +

1

2
(α + ∆a)∆hr∥Y ∥2(3.11)

+
1

2
(1 + 2αδ−1

a )∆hr∥Z∥2 +


1

2
(1 − β)∆b∆h

+
1

2
(α + ∆a)∆h +

1

2
(1 + 2αδ−1

a )∆h


∫ t

t−r
⟨Y (s), Y (s)⟩ds

+ ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ.
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If we choose

λ =
1

2
∆h

[

(1 − β)∆b + (α + ∆a) + (1 + 2αδ−1
a )

]

in (3.11), we obtain

♣U4♣ ≤
1

2
(1 − β)∆b∆hr∥X∥2 +

1

2
(1 + 2αδ−1

a )∆hr∥Z∥2(3.12)

+
1

2
∆hr

[

1 + (1 − β)∆b + 2(∆a + α + αδ−1
a )

]

∥Y ∥2.

Finally, we are left with U5. Since P (t, X, Y, Z) satisfies (3.4), by Schwarz’s inequality
we obtain

♣U5♣ ≤
[

(1 − β)∆b∥X∥ + (α + ∆a)∥Y ∥ + (1 + 2αδ−1
a )∥Z∥

]

∥P (t, X, Y, Z)∥(3.13)

≤δ2(∥X∥ + ∥Y ∥ + ∥Z∥) [∆0 + ∆1(∥X∥ + ∥Y ∥ + ∥Z∥)] ,

where δ2 = max ¶(1 − β)∆b, (α + ∆a), (1 + 2αδ−1
a )♢ .

Combining inequalities (3.6), (3.7), (3.9), (3.12) and (3.13), we obtain

dV

dt
≤ −

1

2
(1 − β)[δbδh − r∆b∆h]∥X∥2

−


βδaδb −
1

2
∆hr

[

1 + (1 − β)∆b + 2(∆a + α + αδ−1
a )

]



∥Y ∥2

−
1

2

[

α − ∆hr(1 + 2αδ−1
a )

]

∥Z∥2

+ δ2(∥X∥ + ∥Y ∥ + ∥Z∥) [∆0 + ∆1(∥X∥ + ∥Y ∥ + ∥Z∥)] .

Now if we choose

r < min

{

δbδh

∆b∆h

,
2βδaδb

∆h [1 + (1 − β)∆b + 2(∆a + α + αδ−1
a )]

,
α

∆h(1 + 2αδ−1
a )

}

,

we get

dV

dt
≤ − γ(∥X∥2 + ∥Y ∥2 + ∥Z∥2) + 3δ2∆1(∥X∥2 + ∥Y ∥2 + ∥Z∥2)

+ δ2∆0(∥X∥ + ∥Y ∥ + ∥Z∥)

= − (γ − 3δ2∆1)(∥X∥2 + ∥Y ∥2 + ∥Z∥2) + δ2∆0(∥X∥ + ∥Y ∥ + ∥Z∥).

If we choose ∆1 < γ

3δ2

, then there is some θ > 0, such that

d

dt
V (Xt, Yt, Zt) ≤ − θ(∥X∥2 + ∥Y ∥2 + ∥Z∥2) + nθ(∥X∥ + ∥Y ∥ + ∥Z∥)

= −
θ

2
(∥X∥2 + ∥Y ∥2 + ∥Z∥2)

−
θ

2

{

(∥X∥ − n)2 + (∥Y ∥ − n)2 + (∥Z∥ − n)2
}

+
3θ

2
n2

≤ −
θ

2



∥X∥2 + ∥Y ∥2 + ∥Z∥2


+
3θ

2
n2,
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for some n, θ > 0.
This completes the proof. □
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LOGARITHMICALLY COMPLETE MONOTONICITY OF

RECIPROCAL ARCTAN FUNCTION

VLADIMIR JOVANOVIĆ1 AND MILANKA TREML1

Abstract. We prove the conjecture stated in F. Qi and R. Agarwal, On complete

monotonicity for several classes of functions related to ratios of gamma functions,
J. Inequal. Appl. (2019), that the function 1/ arctan is logarithmically completely
monotonic on (0, ∞), but not a Stieltjes transform.

1. Introduction

By a completely monotonic function (shortly CM) we mean here an infinitely
differentiable function f : (0, ∞) → R, such that

(−1)nf (n) ≥ 0, n = 0, 1, 2, . . .

If f ′ is completely monotonic and f ≥ 0, then we call f a Bernstein function. Here
we are mostly interested in logarithmically completely monotonic functions, that is,
infinitely differentiable functions f : (0, ∞) → (0, ∞) with the property

(−1)n(log f)(n) ≥ 0, n = 1, 2, 3, . . .

A basic fact concerning CM - functions is the Bernstein theorem: a function f is CM
if and only if there exists a non-decreasing function α on (0, ∞) satisfying

f(x) =
∫ ∞

0
e−xtdα(t),

for all x > 0 (see [9, p. 161]). In some occasions it has been proven a stronger property
which leads to complete monotonicity of a function f , namely that there exist a ≥ 0
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and a non-negative Borel measure µ on [0, ∞) for which the equality

f(x) = a +
∫ ∞

0

dµ(t)

x + t

holds for x > 0, where the measure µ fulfills the condition
∫ ∞

0

dµ(t)

1 + t
< ∞.

Such functions are called Stieltjes transforms. We recall that all Stieltjes transforms
are logarithmically completely monotonic (see [2] and further generalizations [3]), and
the latter are CM (see [5], but also [7] and [8]).

In [6] the authors set the conjecture that the function f(x) = 1
arctan x

is logarithmi-
cally completely monotonic on (0, ∞), but not a Stieltjes transform. The aim of this
paper is to justify these assertions. We will do it in the next section.

2. Formulations and Proofs

Theorem 2.1. The function f(x) = 1
arctan x

is logarithmically completely monotonic

on (0, ∞).

The idea of the proof of Theorem 2.1 is based on the Remark 1 in [1], where
the authors suggest employing the residue theorem in an attempt to obtain integral
representations of functions under consideration.

Proof. It suffices to prove that

g(x) = −(log f(x))′ =
1

(x2 + 1) arctan x

is CM on (0, ∞). In what follows we always assume that log denotes the principle
value of logarithm, i.e., log z = ln ♣z♣ + i arg z, with arg z ∈ (−π, π].

Let us consider the integral
∫

ΓR,r

G(z) dz, over the ”keyhole“ contour ΓR,r given in

Figure 1, where

G(z) =
z + 1

z(z − z0) log z

and z0 = i−x
i+x

for x > 0.
We assume R > 1 and r < 1. Note that ♣z0♣ = 1 and that 1, z0 are the only

singularities of G lying inside ΓR,r. From the residue theorem, we have
∫

ΓR,r

G(z) dz = 2πi(Res(G(z); z0) + Res(G(z); 1)).

Since z0 is a first-order pole, it follows

Res(G(z); z0) =
1 + z0

z0 log z0

=
1 + i−x

i+x
i−x
i+x

log i−x
i+x

=
2i

(i − x)2i arctan x
= −

(i + x)

(x2 + 1) arctan x
,
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Figure 1. Keyhole contour ΓR,r

where we used the fact that arctan x = 1
2i

log 1+ix
1−ix

, for x > 0. Similarly,

Res(G(z); 1) = lim
z→1

(z − 1)
1 + z

z(z − z0) log z
=

2

1 − z0

=
2

1 − i−x
i+x

=
i + x

x
,

whence,

(2.1) g(x) =
1

x
−

1

2πi(x + i)

∫

ΓR,r

G(z) dz.

Now, it remains to calculate the integral
∫

ΓR,r
G(z) dz. In order to accomplish it, we

start from the relation

(2.2)
∫

ΓR,r

G(z) dz =
∫

ΓR

G(z) dz +
∫

Γr

G(z) dz +
∫

Γ+

R,r

G(z) dz +
∫

Γ−

R,r

G(z) dz.

The first two integrals vanish as R → ∞ and r → 0+. It follows from the estimates
∣

∣

∣

∣

∫

ΓR

G(z) dz

∣

∣

∣

∣

≤ 2Rπ max
♣z♣=R

♣z + 1♣

♣z♣♣ log z♣♣z − z0♣
≤ 2π

R + 1

(ln R − 2π)(R − 1)

and
∣

∣

∣

∣

∫

Γr

G(z) dz

∣

∣

∣

∣

≤ 2rπ max
♣z♣=r

♣z + 1♣

♣z♣♣ log z♣♣z − z0♣
≤ 2π

1 + r

(− ln r − 2π)(1 − r)
.

We also have for t < 0

lim
z→t

ℑz>0

G(z) =
t + 1

t(ln(−t) + πi)(t − z0)
= G+(t)
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and

lim
z→t

ℑz<0

G(z) =
t + 1

t(ln(−t) − πi)(t − z0)
= G−(t).

Consequently,

(2.3)
∫

Γ+

R,r

G(z) dz +
∫

Γ−

R,r

G(z) dz =
∫ −r

−R
[G+(t) − G−(t)] dt.

Let us denote I = lim
R→∞

r→0+

∫

ΓR,r

G(z) dz. From (2.2) and (2.3) we obtain

I =
∫ 0

−∞
[G+(t) − G−(t)] dt

=
∫ 0

−∞

2πi(t + 1) dt

t(log2(−t) + π2)(t − z0)

= 2πi

∫ ∞

0

(1 − t) dt

t(log2 t + π2)(t + z0)
.

Using z0 = i−x
i+x

, we have

I =
∫ ∞

0

2πi(1 − t) dt

t(log2 t + π2)(t + i−x
i+x

)

=
∫ ∞

0

2πi(i + x)(1 − t) dt

t(log2 t + π2)(x(t − 1) + i(t + 1))

= −2πi(i + x)
∫ ∞

0

((1 − t)2x + i(1 − t2)) dt

t(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

Note that (2.1) implies

(2.4) g(x) =
1

x
−

1

2πi(x + i)
I

and since
1

2πi(x + i)
I is real, we conclude that

∫ ∞

0

(1 − t2) dt

t(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
= 0.

Therefore, from (2.4), it follows

(2.5) g(x) =
1

x
+
∫ ∞

0

(1 − t)2x dt

t(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

Employing
1

x
=
∫ ∞

0

dt

xt(log2 t + π2)
,

we get

g(x) =
∫ ∞

0

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.
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The substitution t 7→ 1
t

implies
∫ 1

0

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
=
∫ ∞

1

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

Hence,

(2.6) g(x) = 2
∫ 1

0

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

For a, b, x > 0 it is

2a2x2 + b2

x(a2x2 + b2)
=

1

x
+

1

2



1

x + bi
a

+
1

x − bi
a



and using

1

x
=
∫ ∞

0
e−xs ds,

1

x + bi
a

=
∫ ∞

0
e−xse− bi

a
s ds,

1

x − bi
a

=
∫ ∞

0
e−xse

bi
a

s ds,

one obtains
2a2x2 + b2

x(a2x2 + b2)
=
∫ ∞

0
e−xs



1 + cos
bs

a



ds.

Setting a = 1 − t and b = 1 + t yields

2(1 − t)2x + (1 + t)2

x(x2(1 − t)2 + (1 + t)2)
=
∫ ∞

0
e−xs



1 + cos
1 + t

1 − t
s



ds.

From (2.6), we have

g(x) = 2
∫ 1

0



∫ ∞

0

e−xs(1 + cos 1+t
1−t

s) ds

t(ln2 t + π2)



dt,

and, finally, after interchanging integration order, we obtain

(2.7) g(x) =
∫ ∞

0



∫ 1

0

2(1 + cos 1+t
1−t

s) dt

t(ln2 t + π2)



e−xs ds.

Now, it is evident that (2.7) implies complete monotonicity of g. □

Theorem 2.2. The function f(x) = 1
arctan x

is not a Stieltjes transform on (0, ∞).

For the proof of this theorem, we the use following result on Stieltjes transforms
from [4].

Proposition 2.1. If f ̸= 0 is a Stieltjes transform, then 1
f

is a Bernstein function.

Proof of Theorem 2.2. The function h(x) = 1
f(x)

= arctan x is not a Bernstein func-
tion, since

h(3)(x) = −2
3x2 − 1

(1 + x2)3

changes its sign on (0, ∞). Therefore, according to Proposition 2.1, f is not a Stieltjes
transform. □
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APPROXIMATION BY MODIFIED SZÁSZ OPERATORS WITH A
NEW MODIFICATION OF BRENKE TYPE POLYNOMIALS

AJAY KUMAR1

Abstract. In the present article we study the approximation properties of modi-
Ąed Szász operators with a new modiĄcation of Brenke type polynomials. First, we
estimate the rate of convergence, for the newly deĄned operators, by means of modu-
lus of smoothness, PeetreŠs K-functional and Lipschitz type functions. Furthermore,
we also prove a Voronovskaja type asymptotic theorem.

1. Introduction and Preliminaries

In 1950, Szász [18] extended the theory of well known Bernstein operators for the
finite interval [0, 1] to infinite interval R+

0 := [0,∞) and established the convergence
properties in the infinite interval R+

0 by defining the operators for f ∈ C(R+
0 ) as

Sn(f ;x) := e−nx
∞
∑

k=0

(nx)k

k!
f



k

n



, x ∈ R
+
0 , n ∈ N.(1.1)

A generalization of (1.1) was established by Jakimovski-Leviatan in [12] with the
help of the Appell polynomials as

Pn(f ;x) :=
e−nx

A(1)

∞
∑

k=0

pk(nx)f



k

n



, x ∈ R
+
0 , n ∈ N,(1.2)

where A(x) =
∑∞

n=0 bnx
n, bn ∈ R, is an analytic function on the disk ♣x♣ < R,

R > 1, with A(1) ̸= 0. The polynomials pk(x) =
∑k

i=0 bi
xk−i

(k−i)!
, k ∈ N, are the Appell

polynomials which are generated by A(z)ezx =
∑∞

k=0 pk(x)zk under the assumption

Key words and phrases. Rate of convergence, Modulus of continuity, Szász Operators,
Voronovskaja type theorem.
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that pk(x) ≥ 0 for all x ∈ [0,∞). In particular, if A(z) = 1, then pk(x) = xk

k!
, and the

operators (1.2) reduce to the operators (1.1).
Ismail [11] defined another generalization of (1.1) and (1.2) with the help of Sheffer

type polynomials ¶uk(x)♢k≥1, which are generated by

A(s)etB(s) =
∞
∑

k=0

uk(t)sk, ♣s♣ < R,

where A(s) =
∑∞

k=0 aks
k, a0 ̸= 0 and B(s) =

∑∞
k=1 bks

k, b1 ̸= 0, are analytic functions
on the disc ♣s♣ < R, R > 1, and ak and bk are the real coefficients. Under the following
assumptions:

(i) for t ∈ R
+
0 , uk(t) ≥ 0, k ∈ N0 := N ∪ ¶0♢;

(ii) A(1) ̸= 0 and B(1)(1) = 1,

Ismail introduced and studied some important approximation properties of the fol-
lowing operators

Qn(f ;x) =
e−nxB(1)

A(1)

∞
∑

k=0

uk(nx)f



k

n



, x ∈ R
+
0 , n ∈ N.(1.3)

In particular, when A(t) = t and B(t) = 1, the operator (1.3) reduces to the Szász
operator (1.1) and for the case B(t) = t, the operator Qn(f ;x) yields the operator
Pn(f ;x) defined in (1.2).

Let vk(x) =
∑k

r=0 ak−rbrx
r, k ∈ N ∪ ¶0♢, be the Brenke type polynomials on the

disk ♣x♣ < R, (R > 1) which are generated by

A(s)B(xs) =
∞
∑

k=0

vk(x)sk,(1.4)

where A(s) =
∑∞

k=0 aks
k, a0 ≠ 0, and B(s) =

∑∞
k=0 bks

k, bk ≠ 0, are analytic functions
on the disk ♣s♣ < R, R > 1.

Under the following assumptions:

(i) A(1) ̸= 0, ar−kbr

A(1)
≥ 0, 0 ≤ r ≤ k, k ∈ N ∪ ¶0♢;

(ii) B : R+
0 → (0,∞);

(iii) (1.4) and the power series A(t) and B(t) converge for ♣t♣ < R, R > 1.

Varma et al. [20] presented a generalization of Szász operators by means of the Brenke
type polynomials as

Rn(f ;x) :=
1

A(1)B(nx)

∞
∑

k=0

vk(nx)f



k

n



, x ≥ 0, n ∈ N.(1.5)

In particular, if B(t) = et, the operator (1.5) reduces to the operator (1.2) and if
B(t) = et and A(t) = 1 the operator (1.5) reproduces the Szász operator (1.1).
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Cheikh and Romdhane [6] defined the d-symmetric d-orthogonal polynomials of
Brenke type as

A(tρ+1)B(xt) =
∞
∑

k=0

qk(x)tk,(1.6)

where A(t) =
∑∞

k=0 akt
k, B(t) =

∑∞
k=0 bkt

k with a0bk ≠ 0 for all k ∈ N, are analytic
functions on the disk ♣t♣ < R, R > 1, and ρ is a positive integer. In particular case,
A(t) = exp(x) and B(t) = exp(x), the polynomials (1.6) reduce to the Gould-Hopper
polynomials [10] and also when ρ = 0, (1.6) reduces to (1.4).

Motivated by the work above, we present a new modification of Szász operators
with the generalized form of Brenke type polynomials qk(x) as

Dn(f ;x) :=
1

A(1)B(nx)

∞
∑

k=0

qk(nx)f



k

n



, x ≥ 0, n ∈ N,(1.7)

where qk(x) is defined in (1.6). The purpose of this article is to establish some
approximation properties for the operator (1.7), under the following certain conditions

(i) A(1) ̸= 0, ak−mbk

A(1)
≥ 0, 0 ≤ k ≤ m, m ∈ N0;

(ii) B : R+
0 → (0,∞);

(iii) (1.6) and the power series for A(t) and B(t) converge for ♣t♣ < R, R > 1.

In particular, the operator Dn(f ;x) have the following reductions

(i) if ρ = 0, the operator (1.7) reduces to the operator (1.5);
(ii) if ρ = 0, and B(t) = et, the operator (1.7) reduces to the operator (1.2);
(iii) if ρ = 0, A(t) = et and B(t) = 1, the operator (1.7) reproduces the Szász

operator (1.1).

For some other recent papers on the topic dealing with the generalization of Szász
type operators using different classes of polynomials, see [1–3,5, 7, 8, 13–15,17,19,21]
and the references cited therein.

The rest of the paper is organised as follows. In Section 2, we present some auxiliary
results. In Section 3, we estimate the rate of convergence with the help of classical
and second-order modulus of smoothness and Peetre’s K-functional and also give the
order of approximation for the Lipschitz type space. Lastly, we discuss a quantitative
Voronovskaja-type theorem.

2. Auxiliary Results

In this section, we present some important auxiliary results which will be used in
this later work.

Lemma 2.1. From the generating function (1.6) of the Brenke type polynomials, we

have the following equalities:
∞
∑

k=0

qk(nx) =A(1)B(nx),
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∞
∑

k=0

kqk(nx) =(ρ+ 1)A(1)(1)B(nx) + nxB(1)(nx)A(1),

∞
∑

k=0

k2qk(nx) =(ρ+ 1)2(A(2)(1) + A
(1)(1))B(nx) + 2n(ρ+ 1)xA(1)(1)B(1)(nx)

+ n2x2
A(1)B(2)(nx) + nxA(1)B(1)(nx),

∞
∑

k=0

k3qk(nx) =(ρ+ 1)3(A(3)(1) + 3A(2)(1))B(nx) + (ρ2 + 1)(ρ+ 1)A(1)(1)B(nx)

+ 3n(ρ+ 1)2xA(2)(1)B(1)(nx) + 3n(ρ+ 1)(ρ+ 2)xA(1)(1)B(1)(nx)

+ 3(ρ+ 1)n2x2
A

(1)(1)B(2)(nx) + n3x3
A(1)B(3)(nx)

+ 3n2x2
A(1)B(2)(nx) + nxA(1)(1)B(nx),

∞
∑

k=0

k4qk(nx) =(ρ+ 1)4(A(4)(1) + 6A(3)(1) + 7A(2)(1))B(nx)

+ (ρ+ 1)(ρ3 + 3ρ2 − 9ρ+ 1)A(1)(1)B(nx)

+ 4nx(ρ+ 1)3
A

(3)(1)B(1)(nx)

+ 9nx(ρ+ 2)(ρ+ 1)2
A

(2)(1)B(1)(nx) + 6n2x2(ρ+ 1)2
A

(2)(1)B(2)(nx)

+ 3(ρ+ 7)(ρ+ 1)n2x2
A

(1)(1)B(2)(nx) + 4(ρ+ 1)n3x3
A

(1)(1)B(3)(nx)

+ n4x4
A(1)B(4)(nx) + 6n3x3

A(1)B(3)(nx)

+ 7n2x2
A(1)B(2)(nx) + nxA(1)B(1)(nx)

+ (ρ+ 1)(ρ2 + 20ρ+ 11)A(1)(1)B(1)(nx),

where A(r)(x) = drA(x)
dxr and B(r)(x) = drB(x)

dxr for all r ∈ N.

Proof. Differentiating (1.6) with respect to t, we have
∞
∑

k=0

kqk(x)tk−1 =(ρ+ 1)tρA(1)(tρ+1)B(xt) + xA(tρ+1)B(1)(xt),

∞
∑

k=0

k2qk(x)tk−2 =(ρ+ 1)2t2ρ
A

(2)(tρ+1)B(xt) + ρ(ρ+ 1)tρ−1
A

(1)(tρ+1)B(xt)

+ x2
A(tρ+1)B(2)(xt) + xA(tρ+1)B(1)(xt)

+ (ρ+ 1)tρA(1)(tρ+1)(2xB(1)(xt) + B(xt)),
∞
∑

k=0

k3qk(x)tk−3 =(ρ+ 1)3t3ρ
A

(3)(tρ+1)B(xt) + (ρ+ 1)tρA(1)(tρ+1)(3x2
B

(2)(xt)

+ B(xt)) + 3ρ(ρ+ 1)2t2ρ−1
A

(2)(tρ+1)B(xt)

+ (ρ+ 1)tρ−1
A

(1)(tρ+1)(3ρB(xt) + 3x(ρ+ 2)B(1)(xt))

+ x3
A(tρ+1)B(3)(xt) + 3x2

A(tρ+1)B(2)(xt) + xA(tρ+1)B(1)(xt)
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+ (ρ+ 1)2t2ρ
A

(2)(tρ+1)(3xB(1)(xt) + 3B(xt))

+ ρ(ρ2 − 1)tρ−2
A

(1)(tρ+1)B(xt),
∞
∑

k=0

k4qk(x)tk−4 =4x3(ρ+ 1)tρA(1)(tρ+1)B(3)(xt) + 6x2(ρ+ 1)2t2ρ
A

(2)(tρ+1)B(2)(xt)

+ 6x2(ρ+ 1)ρtρ−1
A

(1)(tρ+1)B(2)(xt)

+ 4x(ρ+ 1)3t3ρ
A

(3)(tρ+1)B(1)(xt)

+ 6x(ρ+ 1)2ρt2ρ−1
A

(2)(tρ+1)B(1)(xt)

+ 6xρ(ρ+ 1)2t2ρ−1
A

(2)(tρ+1)B(1)(xt)

+ 3xρ(ρ2 − 1)tρ−2
A

(1)(tρ+1)B(1)(xt) + (ρ+ 1)4t4d
A

(4)(tρ+1)B(xt)

+ 6ρ(ρ+ 1)3t3d−1
A

(3)(tρ+1)B(xt)

+ 3ρ(ρ+ 1)2(2ρ− 1)t2ρ−2
A

(2)(tρ+1)B(xt)

+ xρ(ρ2 − 1)tρ−2
A

(1)(tρ+1)B(1)(xt)

+ ρ(ρ2 − 1)(ρ+ 1)t2ρ−2
A

(2)(tρ+1)B(xt)

+ ρ(ρ2 − 1)(d− 2)td−3
A

(1)(tρ+1)B(xt) + x4
A(tρ+1)B(4)(xt)

+ 6

{

3x2(ρ+ 1)tρA(1)(tρ+1)B(2)(xt)

+ 3x(ρ+ 1)2t2ρ
A

(2)(tρ+1)B(1)(xt)

+ 3xρ(ρ+ 1)tρ−1
A

(1)(tρ+1)B(1)(xt) + (ρ+ 1)3t3ρ
A

(3)(tρ+1)B(xt)

+ 3ρ(ρ+ 1)2t2ρ−1
B

(2)(tρ+1)B(xt) + ρ(ρ2 − 1)tρ−2
A

(1)(tρ+1)B(xt)

+ x3
A(tρ+1)B(3)(xt) + 3



2x(ρ+ 1)tρA(1)(tρ+1)B(1)(xt)

+ (ρ+ 1)2t2ρ
B

(2)(tρ+1)B(xt) + ρ(ρ+ 1)tρ−1
A

(1)(tρ+1)B(xt)

+ x2
A(tρ+1)B(2)(xt) + (ρ+ 1)tρA(1)(tρ+1)B(xt)

+ xA(tρ+1)B(1)(xt)

]

− 2



(ρ+ 1)tρA(1)(tρ+1)B(xt) + xA(tρ+1)B(1)(xt)

]}

+ 6

{

(ρ+ 1)tρA(1)(tρ+1)B(xt) + xA(tρ+1)B(1)(xt)

}

− 11

{

2x(ρ+ 1)tρA(1)(tρ+1)B(1)(xt) + (ρ+ 1)2t2ρ
B

(2)(tρ+1)B(xt)

+ ρ(ρ+ 1)tρ−1
A

(1)(tρ+1)B(xt) + x2
A(tρ+1)B(2)(xt)
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+ (ρ+ 1)tρA(1)(tρ+1)B(xt) + xA(tρ+1)B(1)(xt)

}

.

The desired lemma is obtained by substituting t = 1 and x = nx, in the above
computations. □

Lemma 2.2. For x ∈ R
+
0 , the rth order moments Dn(tr;x), r = 0, 1, 2, 3, 4, of the

operators Dn are defined as:

Dn(1;x) = 1,

Dn(t;x) = xb1 + pa1,

Dn(t2;x) = x2b2 +
x

n
b1



1 + 2npa1



+ p2


a2 + a1



,

Dn(t3;x) = 3px2a1b2 + 3xp2a2b1 + 3xp


p+
1

n



a1b1 + p3a3 + 3p3a2

+ p



p2 − 2

n
+

2

n2



a1 + x3b3 +
3x2

n
b2 +

x

n2
a1,

Dn(t4;x) = x4b4 +
x3

n
b3



6 + 4npa1



+
x2

n2
b2



7 + 6n2p2a2 + 3np(np+ 6)a1



+
x

n3
b1



1 + 4n3p3a3 + 9n2p2(np+ 1)a2



+
1

n3



n2p3 − 18np2 − 8p


a1b1

+ p4a4 + 6p4a3 + 7p4a2 +


p4 − 12

n2
p2 +

12

n3
p



a1,

where p = ρ+1
n
, ar = A(r)(1)

A(1)
and br = B(r)(nx)

B(nx)
, r ∈ N. These notations will be used

throughout the paper.

Proof. Using Lemma 2.1 and (1.7), the proof of this lemma can be easily obtained.
Hence the details are omitted. □

As a consequence of Lemma 2.2, we have the following result.

Lemma 2.3. For x ∈ R
+
0 , the central moments Dn((t − x)m;x), m = 1, 2, 4, are

defined by

Dn(t− x;x) =x(b1 − 1) + pa1,

Dn((t− x)2;x) =x2


b2 − 2b1 + 1


+ 2xpa1



b1 − 1


+
x

n
b1 + p2(a2 + a1),

Dn((t− x)4;x) =x4


1 − 4b1 + 6b2 − 4b3 + b4



− x3


− 4pa1 − 12

n
b2 + 4pa1b3 +

6

n
b1

+ 12pa1b1 +
6

n
b3 − 12pa1b2



+ x2


6p2a1 − 4

n2
a1 + 6p2a2

− 12p2a2b1 − 12p


p+
1

n



a1b1 + 6p2a2b2 + 3p


p+
6

n



a1b2 +
7

n2
b2



− x



4p3a3 − 12p3a2 − 4


p3 − 2

n
p2 − 2

n2
p



a1 + 4p3a3b1
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+ 9


p3 +
p2

n



a2b1 +
1

n3
b1



+


p3

n
+

16

n2
p2 − 6

n3
p



a1b1 + p4a4

+ 6p4a3 + 7p4a2 +


p4 − 12
p2

n2
+ 12

p

n3



a1.

For the remainder of the work we denote ξρ
n(x) = Dn((t− x)2;x) and assume that

lim
s→∞

drB(s)
dsr

B(s)
= 1, for 1 ≤ r ≤ k, k ∈ N.(2.1)

Also, let CE(R+
0 ) be the space of all continuous functions on the interval R+

0 with
♣f(t)♣ ≤ αeβx for all t ≥ 0 and positive finite numbers α and β.

Theorem 2.1. Let f ∈ CE(R+
0 ). If ρ ∈ N, then

lim
n→∞

Dn(f ;x) = f(x),

converges uniformly in each compact subset of R+
0 .

Proof. With the help of Lemma 2.2 and condition (2.1), we have

lim
n→∞

Dn(tr;x) = xr, for r = 0, 1, 2.

The above convergence is satisfied uniformly in every compact subset of R+
0 . Hence,

by applying Korokin’s type theorem (vi) of Theorem 4.1.4 in [4], we get the desired
result. □

Next, we present some useful definitions which are needed in the sequel.

Definition 2.1. Let δ > 0 and f ∈ C∗(R+
0 ). Then the usual modulus of continuity

ω(f ; δ) is defined as

ω(f ; δ) := sup
♣x−y♣≤δ

♣f(x) − f(y)♣, for all x, y ∈ [0,∞),

where C∗(R+
0 ) be a space of uniformly continuous functions defined on [0,∞). It is

also known that, for any δ > 0,

♣f(x) − f(y)♣ ≤ ω(f ; δ)



♣x− y♣
δ

+ 1



, for all x, y ∈ R
+
0 .

Definition 2.2. Let f ∈ CB(R+
0 ). Then the second order modulus of smoothness is

defined by

ω2(f ; δ) := sup
0<t≤δ

∥f(· + 2t) − 2f(· + t) + f(·)∥CB
,

where CB(R+
0 ) is a class of bounded and uniformly continuous real-valued functions

with the norm ∥f∥CB
= supx∈R

+
0

♣f(x)♣.
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Definition 2.3 ([9] ). Let f ∈ CB(R+
0 ). The Peetre’s K-functional is defined by

K(f ; δ) := inf
{

∥f − g∥CB
+ δ∥g∥C2

B

}

, for all g ∈ C2
B(R+

0 ),(2.2)

where C2
B(R+

0 ) := ¶g ∈ CB(R+
0 ) : g′ ∈ ACloc(R

+
0 ), g′′ ∈ CB(R+

0 )♢ endowed with the
norm ∥g∥C2

B

:= ∥g∥CB
+ ∥g′∥CB

+ ∥g′′∥CB
and g′ ∈ ACloc(R

+
0 ) means that g′ is locally

absolutely continuous function. It is also known that from [9], there exists an absolute
constant C > 0, such that

K(f ; δ) ≤ Cω2(f ;
√
δ).(2.3)

It is clear that the following inequality

K(f, δ) ≤ M
{

ω2(f ;
√
δ) + min(1, δ)∥f∥CB

}

,(2.4)

is valid, for all δ > 0. The constant M > 0 is independent of f and δ.

3. The Order of Approximation

In this section, we establish the rate of convergence for the operators Dn in terms
of Peetre’s K-functional, classical and second-order modulus of continuity.

Theorem 3.1. Let f ∈ CE(R+
0 ) and ρ ∈ N. Then the operators Dn satisfy the

following inequality:

♣Dn(f ;x) − f(x)♣ ≤ 2ω


f ;
√

ξ
ρ
n(x)



,

where ξ := ξρ
n(x) = Dn((t−x)2;x) = x2



b2−2b1+1


+2xpa1



b1−1


+ x
n
b1+p2(a2+a1),

see Lemma 2.3.

Proof. In view of the fact that Dn(1;x) = 1 and (1.7), we have

♣Dn(f ;x) − f(x)♣ ≤ 1

A(1)B(nx)

∞
∑

k=0

qk(nx)

∣

∣

∣

∣

∣

f



k

n



− f(x)

∣

∣

∣

∣

∣

≤ 1

A(1)B(nx)

∞
∑

k=0

qk(nx)



1

δ

∣

∣

∣

∣

∣

k

n
− x

∣

∣

∣

∣

∣

+ 1



ω(f ; δ)

≤
{

1 +
1

δA(1)B(nx)

∞
∑

k=0

qk(nx)

∣

∣

∣

∣

∣

k

n
− x

∣

∣

∣

∣

∣

}

ω(f ; δ).(3.1)

In view of Lemma 2.3 and applying Cauchy-Schwarz inequality, we get

∞
∑

k=0

qk(nx)

∣

∣

∣

∣

∣

k

n
− x

∣

∣

∣

∣

∣

≤
{

∞
∑

k=0

qk(nx)

∣

∣

∣

∣

∣

k

n
− x

∣

∣

∣

∣

∣

2}1/2

≤


∞
∑

k=0

qk(nx)

1/2 ∞
∑

k=0

qk(nx)

∣

∣

∣

∣

∣

k

n
− x

∣

∣

∣

∣

∣

21/2

=
√

A(1)B(nx)


A(1)B(nx)Dn((t− x)2;x)
1/2
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=A(1)B(nx)


Dn((t− x)2;x)
1/2

=A(1)B(nx)
√

ξ
ρ
n(x).(3.2)

Combining (3.1) and (3.2), we have

♣Dn(f ;x) − f(x)♣ ≤






1 +

√

ξ
ρ
n(x)

δ







ω(f ; δ).

Choosing δ =
√

ξ
ρ
n(x), we obtain the desired result. □

Remark 3.1. For ρ = 0, Theorem 3.1 represents the Theorem 2 for the operators given
by (1.5) (see [20]).

Theorem 3.2. Let f ∈ C2
B(R+

0 ) and ρ ∈ N. Then we have

♣Dn(f ;x) − f(x)♣ ≤ ψ∥f∥C2
B

(R+
0 ),

where ψ := ψρ
n(x) =

[

1
2



b2 − 2b1 + 1


x2 +
{

n


b1 − 1


pa1 + 1


+ b1

}

x
n

+ pa1 + p2(a2 +

a1)
]

∥f∥C2
B

(R+
0 ).

Proof. Let x ∈ R
+
0 . Applying Taylor’s expansion to the function f ∈ C2

B(R+
0 ) and

using the linearity of Dn, we have

Dn(f ;x) − f(x) = f ′(x)Dn(t− x;x) +
1

2
f (2)(ξ)Dn((t− x)2;x), ξ ∈ (x, t).

Using Lemma 2.3, we have

♣Dn(f ;x) − f(x)♣ ≤
{

x(b1 − 1) + pa1

}

∥f ′∥CB(R+
0 )(3.3)

+
1

2

{

x2


b2 − 2b1 + 1


+ 2xpa1



b1 − 1


+
x

n
b1 + p2(a2 + a1)

}

∥f (2)∥CB(R+
0 )

≤


1

2



b2 − 2b1 + 1


x2 +
{

n


b1 − 1


pa1 + 1


+ b1

}x

n

+ pa1 + p2(a2 + a1)


∥f∥C2
B

(R+
0 ).

This completes the proof of the theorem. □

Theorem 3.3. Let f ∈ CB(R+
0 ). Then the following inequality satisfy:

♣Dn(f ;x) − f(x)♣ ≤ 2M
{

ω2(f ;
√
δ) + min(1, δ)∥f∥CB(R+

0 )

}

,

where δ := δρ
n(x) = 1

2
ψρ

n(x) and M is a positive constant which is independent of the

function f and δ. Also, ψρ
n(x) is defined in Theorem 3.2.
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Proof. Let h ∈ C2
B(R+

0 ). In view of the Theorem 3.2, we have

♣Dn(f ;x) − f(x)♣ =♣Dn(f − h;x)♣ + ♣Dn(h;x) − h(x)♣ + ♣f(x) − h(x)♣
≤2∥f − h∥CB

+ ψ∥h∥C2
B

(R+
0 )

≤2
[

∥f − h∥CB
+ δ∥h∥C2

B
(R+

0 )

]

.

Left-hand side of the above inequality is independent of h ∈ C2
B(R+

0 ), so

♣Dn(f ;x) − f(x)♣ ≤ 2K(f ; δ),

where K(f ; δ) is defined in (2.2). Taking into account the relation (2.4) in the above
inequality, we have

♣Dn(f ;x) − f(x)♣ ≤ 2M
{

ω2(f ;
√
δ) + min(1, δ)∥f∥CB(R+

0 )

}

.

This is the required result. □

Theorem 3.4. Let x ∈ R
+
0 and f ∈ CB(R+

0 ). Then we have the following relation

♣Dn(f ;x) − f(x)♣ ≤ 4ω2



f ;
√

λ
ρ
n



+ ω(f ; γρ
n),

where

λρ
n := λρ

n(x) =
1

8

{

ξρ
n(x) +



x(b1 − 1) + pa1 − x
2
}

(3.4)

and

γρ
n := γρ

n(x) = ♣x(b1 − 1) + pa1 − x♣ = ♣Dn((t− x);x) − x♣.(3.5)

Proof. Let us consider a new auxiliary operators D̃n(f ;x) on CB(R+
0 ) defined by

D̃n(f ;x) := Dn(f ;x) − f


x(b1 − 1) + pa1



+ f(x).(3.6)

From the above auxiliary operators, it is observe that D̃n(1;x) = 1 and D̃n(t;x) = x.

Let h ∈ C2
B(R+

0 ), C2
B(R+

0 ) = ¶h ∈ CB(R+
0 ) : h′, h(2) ∈ CB(R+

0 )♢, then by Taylor series
theorem, we have

h(t) = h(x) + (t− x)h′(x) +
∫ t

x
(t− ν)h(2)(ν)dν.

Using Lemma 2.3 and (3.6) and applying the operators D̃n on both sides of the above
equation, we have

D̃n(h;x) − h(x) = D̃n



∫ t

x
(t− ν)h(2)(ν)dν;x



.

It follows from (3.6) that

D̃n(h;x) − h(x) =Dn



∫ t

x
(t− ν)h(2)(ν)dν;x



+
∫ x(b1−1)+pa1

x



x(b1 − 1) + pa1 − ν


h(2)(ν)dν
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≤∥h(2)∥
2

Dn((t− x)2;x) +
∥h(2)∥

2



x(b1 − 1) + pa1 − x
2

=
∥h(2)∥

2

{

ξρ
n(x) +



x(b1 − 1) + pa1 − x
2}

,

considering (3.4), we obtain

♣D̃n(h;x) − h(x)♣ ≤ 4λρ
n∥h(2)∥,(3.7)

where λρ
n is given in (3.4).

In view of Lemma 2.3 and (3.6), we have

♣D̃n(f ;x)♣ ≤ ∥Dn(f ;x)∥ + 2∥f∥ ≤ 3∥f∥, for all f ∈ CB(R+
0 ).(3.8)

Combining (3.6), (3.7) and (3.8), we obtain

♣Dn(f ;x) − f(x)♣ ≤♣D̃n(f − h;x) − (f − h)(x)♣ + ♣D̃n(h;x) − h(x)♣
+
∣

∣

∣f


x(b1 − 1) + pa1



− f(x)
∣

∣

∣

≤4


∥f − h∥ + λρ
n∥h(2)∥



+ ω


f ;
∣

∣

∣x(b1 − 2) + pa1

∣

∣

∣



,

taking the infimum on the first term of the above inequality for h ∈ C2
B(R+

0 ) and
using the inequalities (3.5) and (2.2), we have

♣Dn(f ;x) − f(x)♣ ≤ 4K(f ;λρ
n) + ω(f ; γρ

n),

where γρ
n is given in (3.5) and in view of the relation (2.3), we get our desired result. □

Remark 3.2. It is note that from Theorem 3.1- Theorem 3.4, the operators Dn(f ;x) →
f(x), when λρ

n, γ
ρ
n, ψα

n and ξα
n tend to zero as n → ∞ with the assumption (2.1).

Now, we estimate the following local approximation result for the function belonging
to Lipschitz-type space.

For µ ≥ 0, ν > 0 to be fixed, the class of two parameteric Lipschitz type functions
[16] is defined as

Lip
ζ,ν
M (α) =

{

f ∈ CB(R+
0 ) : ♣f(t) − f(x)♣ ≤ M ♣t− x♣α

(t+ ζx2 + νx)
α

2
, t, x ∈ (0,∞)

}

,

where M is positive constant and 0 < α ≤ 1. In particular, at ζ = 0 and ν = 1, the
space Lip0,1

M (α) reduced to the space L∗
M(α) defined in [18].

Theorem 3.5. Let f ∈ L
ζ,ν
M (α) and ρ ∈ N. Then, for all x > 0, we have

♣Dn(f, x) − f(x)♣ ≤ M



ξρ
n(x)

ζx2 + νx


α

2

,

where ξρ
n(x) is defined in Lemma 2.3.
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Proof. Let x ∈ (0,∞) and f ∈ L
ζ,ν
M (α). We have

♣Dn(f, x) − f(x)♣ ≤ Dn(♣f(t) − f(x)♣, x)

≤ MDn



♣t− x♣α
(ζx2 + νx+ t)

α

2
, x



≤ M

(ζx2 + νx)
α

2
Dn



♣t− x♣α, x


.(3.9)

First, we consider the case α = 1. Applying Cauchy-Schwarz inequality in (3.9) at
α = 1, we obtain

♣Dn(f, x) − f(x)♣ ≤ M

(ζx2 + νx)
1
2



Dn((t− x)2, x)


1
2 ≤ M



ξρ
n(x)

ζx2 + νx


1
2

.

Thus, the result holds for α = 1.
Now, we prove the result is true for 0 < α < 1. Then, for x ∈ (0,∞), f ∈ L

ζ,ν
M (α)

and applying Hölder’s inequality in (3.9) by taking p = 2
α

and q = 2
2−α

, we obtain

♣Dn(f, x) − f(x)♣ ≤ M

(ζx2 + νx)
α

2
Dn



♣t− x♣, x
α
.

Finally, applying the Cauchy-Schwartz inequality, we obtain

♣Dn(f ;x) − f(x)♣ ≤ M

(ζx2 + νx)
α

2

{

Dn((t− x)2;x)
}

α

2 = M



ξα
n (x)

ζx2 + νx


α

2

.

This completes the proof of theorem. □

4. Voronovskaja-Type Result

The following assumptions are required to discuss a quantitative Voronovskaja-type
result for the operators (1.7).

Assumptions:

(i) limn→∞ n(b1 − 1) = α(x);
(ii) limn→∞ n(b2 − 2b1 + 1) = β(x);
(iii) limn→∞ n(b3 − 2b2 + b1) = λ(x);
(iv) limn→∞ n(b3 − 3b2 + 3b1 − 1) = δ(x);
(v) limn→∞ n2(b4 − 4b3 + 6b2 − 4b1 + 1) = γ(x);

where α(x), β(x), λ(x), δ(x) and γ(x) are continuous and bounded functions on R
+
0 .

Taking into account (2.1), Lemma 2.3 and the above assumptions, we have the
following.

Lemma 4.1. The operators (1.7) verify:

(i) limn→∞ nDn((t− x);x) = xα(x) + pa1;

(ii) limn→∞ nDn((t− x)2;x) = x2β(x) + x;

(iii) limn→∞ n2Dn((t− x)4;x) = x4γ(x) − x3¶4npa1δ(x) + 6λ(x)♢ − (3n2p2 + 10np−
12)a1 + 7.
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Theorem 4.1. Let f ∈ C2
B(R+

0 ). Then we have

lim
n→∞

n¶Dn(f ;x) − f(x)♢ =
{

xα(x) + pa1

}

f ′(x) +
{

x2β(x) + x
}f (2)(x)

2
.

Proof. Let x ∈ R
+
0 be an arbitrary but fixed number. Applying the Taylor series

theorem to the function f ∈ C2
B(R+

0 ), we have

f(t) − f(x) = (t− x)f ′(x) +
1

2
(t− x)2f (2)(x) + κ(t, x)(t− x)2,(4.1)

where κ(t, x) ∈ CE(R+
0 ) and satisfies limt→x κ(t, x) = 0. Now, applying the operators

Dn both sides on the equation (4.1), we get

lim
n→∞

n¶Dn(f ;x) − f(x)♢ = lim
n→∞

nf ′(x)Dn(t− x;x) + lim
n→∞

n
1

2
Dn((t− x)2;x)f (2)(x)

+ lim
n→∞

nDn(κ(t, x)(t− x)2;x).(4.2)

In the last term of (4.2), we apply the Cauchy-Schwartz inequality

nDn(κ(t, x)(t− x)2;x) ≤
√

n2Dn((t− x)4;x)Dn(κ2(t, x);x).(4.3)

Since κ(t, x) → 0 as t → x, it follows from Theorem 2.1 that

lim
n→∞

Dn(κ2(t, x);x) = κ2(x, x) = 0,(4.4)

uniformly for x ∈ [0, b], b > 0.
Combining the equations from (4.2)–(4.4) and taking into account the Lemma 4.1,

we conclude that

lim
n→∞

n¶Dn(f ;x) − f(x)♢ =
{

xα(x) + pa1

}

f ′(x) +
{

x2β(x) + x
}f (2)(x)

2
.

This completes the proof of the theorem. □
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EXISTENCE OF CLASSICAL SOLUTIONS FOR BROER-KAUP
EQUATIONS

DALILA BOURENI1, SVETLIN G. GEORGIEV2, AREZKI KHELOUFI3,
AND KARIMA MEBARKI4

Abstract. In this paper we investigate the Cauchy problem for one dimensional
Broer-Kaup equations for existence of global classical solutions. We give conditions
under which the considered equations have at least one and at least two classical
solutions. To prove our main results we propose a new approach based upon recent
theoretical results.

1. Introduction

Study of existence of global classical solutions of nonlinear models is one of the
important works in nonlinear science. In this paper, we investigate the Cauchy problem
for a model describing the bi-directional propagation of long waves in shallow water
which was proposed by Broer and Kaup [2,9] and called Broer-Kaup (BK) equations.
Namely, we are concerned with the following system:

ut + uux + vx = 0, t ∈ (0, ∞), x ∈ R,

vt + ux + 2(uv)x + uxxx = 0, t ∈ (0, ∞), x ∈ R,

u(0, x) = u0(x), x ∈ R,

v(0, x) = v0(x), x ∈ R,

(1.1)

where

(H1): u0, v0 ∈ C
1(R), 0 ≤ u0, v0 ≤ B on R for some positive constant B.

Here the unknowns u = u(t, x) and v = v(t, x) denote respectively, the horizontal
velocity and the elevation of the water wave. The Broer-Kaup equations of system

Key words and phrases. Broer-Kaup equations, classical solution, fixed point, initial value problem.
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(1.1) can be obtained from the symmetry constraints of the Kadomtsev-Petviashvili
(KP) equation and are a mathematical model of many nonlinear waves, see [12]. More
precisely, they describe the evolution of the horizontal velocity component u(t, x) of
water waves of height v(t, x) propagating in both directions in an infinite narrow
channel of finite constant depth. Several methods have been used to capture different
nature of solutions contained in Broer-Kaup equations like traveling wave solutions,
periodic wave solutions, dromion solutions, solitary wave solutions and soliton-like
solutions, see [21] and [29]. By qualitative analysis method, a sufficient condition for
the existence of peaked periodic wave solutions to the Broer-Kaup equations was given
in [8] and some exact explicit expressions of peaked periodic wave solutions were also
presented. In [16], fission and fusion phenomena were revealed and soliton solutions
were obtained. A family of traveling wave solutions is given in [18,19] and [7]. Solitary
wave solutions to the Broer-Kaup equations are considered in [14] by using the first
integral method. By application of the sub-ode method [25], new and more general
form solutions are obtained for the Broer-Kaup equations. Using a consistent tanh
expansion method, Chen et al. [1] gave the interaction solutions between the solitons
and other different types of nonlinear waves. In [13], some smooth and peaked solitary
wave solutions have been constructed by the bifurcation method of dynamical system.
By using a Darboux transformation, Zhou et al. [27] obtained new exact solutions for
Broer-Kaup system. In [6], new type of solitary wave solutions for the Broer-Kaup
equations were presented by using the He’s variational principle.

Various algebraic aspects of BK equations solutions have been studied. Kupersh-
midt [11] showed that BK equations are integrable and possess infinite number of
conservation laws and tri-Hamiltonian structure. In [4], The geometric properties of
non-Noether symmetries as well as their applications were discussed.

The analysis by many methods of the (2+1)-dimensional BK system can be found
in [26] and [28] and the references therein. The (1+1)-dimensional and the (2 +
1)-dimensional higher order Broer-Kaup equation was considered for example in [23]
and [20], respectively. Concerning generalized and variable coefficient Broer-Kaup
equations, see for example [22] and [10]. Recently, fractional and stochastic Broer-
Kaup system, were studied in [3] and [24].

The aim of this paper is to investigate the initial value problem (1.1) for existence
and nonuniqueness of global classical solutions. For goal, a new topological approach
which uses the abstract theory of the sum of two operators is used for investigations
of existence of at least one and at least two classical solutions. This basic and new
idea can be used for investigations for existence of global classical solutions for many
of the interesting equations of mathematical physics. Here, by a classical solution
to the Broer-Kaup equations we mean a solution at least three times continuously
differentiable in x and once in t for any t ≥ 0. In other words, (u, v) belongs to the
space C

1([0, ∞),C3(R)) ×C
1([0, ∞),C3(R)) of continuously differentiable functions on

[0, ∞) with values in the Banach space C
3(R).
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The paper is organized as follows. In the next section, we give some properties of
solutions of problem (1.1). First, we give an integral representation of these solutions,
then we prove some a priori estimates in a sense that will be defined later on. In
Section 3 we prove our main results about existence and multiplicity of solutions for
the Broer-Kaup system (1.1). Finally, in Section 4 we give an example to illustrate
our main results.

2. Some Properties of Solutions of Problem (1.1)

Let X = X1 × X1, where X1 = C
1([0, ∞),C3(R)). For (u, v) ∈ X, define the

operators S1
1 , S2

1 and S1 as follows.

S1
1(u, v)(t, x) = u(t, x) − u0(x) +

∫ t

0
(u(t1, x)ux(t1, x) + vx(t1, x))dt1,

S2
1(u, v)(t, x) = v(t, x) − v(0, x) +

∫ t

0


ux(t1, x) + 2ux(t1, x)v(t1, x)

+ 2u(t1, x)vx(t1, x) + uxxx(t1, x)


dt1,

S1(u, v)(t, x) =

S1

1(u, v)(t, x), S2
1(u, v)(t, x)


, (t, x) ∈ [0, ∞) × R.

2.1. Integral representation of the solutions.

Lemma 2.1. Suppose that (H1) is satisfied. If (u, v) ∈ X satisfies the equation

(2.1) S1(u, v)(t, x) = 0, (t, x) ∈ [0, ∞) × R,

then (u, v) is a solution of the IVP (1.1).

Proof. Let (u, v) ∈ X be a solution of the equation (2.1). Then

(2.2) S1
1(u, v)(t, x) = 0, S2

1(u, v)(t, x) = 0, (t, x) ∈ [0, ∞) × R.

We differentiate both equations of (2.2) with respect to t and x and we find

ut(t, x) + u(t, x)ux(t, x) + vx(t, x) = 0,

vt(t, x) + ux(t, x) + 2ux(t, x)v(t, x) + 2u(t, x)vx(t, x) + uxxx(t, x) = 0,

(t, x) ∈ [0, ∞) × R. We put t = 0 in both equations of (2.2) and we arrive at

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R.

This completes the proof. □

Lemma 2.2. Suppose (H1) and let h ∈ C([0, ∞) × R) be a positive function almost

everywhere on [0, ∞) × R. If (u, v) ∈ X satisfies the following integral equations:
∫ t

0

∫ x

0
(t − t1)(x − x1)

3h(t1, x1)S
1
1(u, v)(t1, x1)dx1dt1 = 0, (t, x) ∈ [0, ∞) × R,

and
∫ t

0

∫ x

0
(t − t1)(x − x1)

3h(t1, x1)S
2
1(u, v)(t1, x1)dx1dt1 = 0, (t, x) ∈ [0, ∞) × R,
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then (u, v) is a solution to the IVP (1.1).

Proof. We differentiate three times with respect to t and three times with respect to
x the integral equations of Lemma 2.2 and we find

h(t, x)S1(u, v)(t, x) = 0, (t, x) ∈ [0, ∞) × R,

whereupon

S1(u, v)(t, x) = 0, (t, x) ∈ [0, ∞) × R.

Hence and Lemma 2.1, we conclude that (u, v) is a solution to the IVP (1.1). This
completes the proof. □

2.2. A priori estimates. In the sequel, X = X1 × X1 where X1 = C
1([0, ∞),C3(R))

will be endowed with the norm

∥(u, v)∥ = max ¶∥u∥X1 , ∥v∥X1♢ , (u, v) ∈ X,

with

∥u∥X1 = max

{
sup

(t,x)∈[0,∞)×R

♣u(t, x)♣, sup
(t,x)∈[0,∞)×R

♣ut(t, x)♣, sup
(t,x)∈[0,∞)×R

♣ux(t, x)♣,

sup
(t,x)∈[0,∞)×R

♣uxx(t, x)♣, sup
(t,x)∈[0,∞)×R

♣uxxx(t, x)♣
}

,

provided it exists. Let

B1 = 4(B + B2).

Lemma 2.3. Under hypothesis (H1) and for (u, v) ∈ X with ∥(u, v)∥ ≤ B, the

following estimates hold:

♣S1
1(u, v)(t, x)♣ ≤ B1(1 + t), (t, x) ∈ [0, ∞) × R,

and

♣S2
1(u, v)(t, x)♣ ≤ B1(1 + t), (t, x) ∈ [0, ∞) × R.

Proof. Suppose that (H1) is satisfied and let (u, v) ∈ X with ∥(u, v)∥ ≤ B.

(i) Estimation of ♣S1
1(u, v)(t, x)♣, (t, x) ∈ [0, ∞) × R:

♣S1
1(u, v)(t, x)♣ =

∣∣∣∣∣u(t, x) − u0(x) +
∫ t

0
(u(t1, x)ux(t1, x) + vx(t1, x)) dt1

∣∣∣∣∣

≤ ♣u(t, x)♣ + ♣u0(x)♣ +
∫ t

0
(♣u(t1, x)♣♣ux(t1, x)♣ + ♣vx(t1, x)♣) dt1

≤ 2B + (B + B2)t

≤ (3B + B2)(1 + t)

≤ B1(1 + t).
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(ii) Estimation of ♣S2
1(u, v)(t, x)♣, (t, x) ∈ [0, ∞) × R:

∣∣∣∣S
2
1(u, v)(t, x)

∣∣∣∣ =
∣∣∣∣v(t, x) − v(0, x) +

∫ x

0


ux(t1, x) + 2ux(t1, x)v(t1, x)

+ 2u(t1, x)vx(t1, x) + uxxx(t1, x)


dx1dt1

∣∣∣∣

≤ ♣v(t, x)♣ + ♣v(0, x)♣ +
∫ x

0


♣ux(t1, x)♣ + 2♣ux(t1, x)♣♣v(t1, x)♣

+ 2♣u(t1, x)♣♣vx(t1, x)♣ + ♣uxxx(t1, x)♣


dx1dt1

≤ 2B + (2B + 4B2)t

≤ 4(B + B2)(1 + t)

= B1(1 + t).

This completes the proof. □

Suppose

(H2): g ∈ C([0, ∞) × R) is a positive function almost everywhere on [0, ∞) × R

such that

16(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1 ≤ A,

(t, x) ∈ [0, ∞) × R, for some constant A > 0.

In the last section, we will give an example for a function g that satisfies (H2). For
(u, v) ∈ X, define the operators

S1
2(u, v)(t, x) =

∫ t

0

∫ x

0
(t − t1)(x − x1)

3g(t1, x1)S
1
1(u, v)(t1, x1)dx1dt1,

S2
2(u, v)(t, x) =

∫ t

0

∫ x

0
(t − t1)(x − x1)

3g(t1, x1)S
2
1(u, v)(t1, x1)dx1dt1

and

S2(u, v)(t, x) =

S1

2(u, v)(t, x), S2
2(u, v)(t, x)


, (t, x) ∈ [0, ∞) × R.(2.3)

Lemma 2.4. Under hypothesis (H1) and (H2) and for (u, v) ∈ X, with ∥(u, v)∥ ≤ B,

the following estimate holds:

∥S2(u, v)∥ ≤ AB1.

Proof. Suppose (H1) and (H2) and let (u, v) ∈ X, with ∥(u, v)∥ ≤ B.
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(i) Estimation of ♣S1
2(u, v)(t, x)♣, (t, x) ∈ [0, ∞) × R:

♣S1
2(u, v)(t, x)♣ =

∣∣∣∣∣

∫ t

0

∫ x

0
(t − t1)(x − x1)

3g(t1, x1)S
1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣∣

≤
∫ t

0

∣∣∣∣∣

∫ x

0
(t − t1)♣x − x1♣3g(t1, x1)♣S1

1(u, v)(t1, x1)♣dx1

∣∣∣∣∣dt1

≤ B1(1 + t)
∫ t

0

∣∣∣∣∣

∫ x

0
(t − t1)♣x − x1♣3g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 8B1(1 + t)2♣x♣3
∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 8B1(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1.

(ii) Estimation of
∣∣∣ ∂

∂t
S1

2(u, v)(t, x)
∣∣∣, (t, x) ∈ [0, ∞) × R:

∣∣∣∣∣
∂

∂t
S1

2(u, v)(t, x)

∣∣∣∣∣ =

∣∣∣∣∣

∫ t

0

∫ x

0
(x − x1)

3g(t1, x1)S
1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣∣

≤
∫ t

0

∣∣∣∣∣

∫ x

0
♣x − x1♣3g(t1, x1)♣S1

1(u, v)(t1, x1)♣dx1

∣∣∣∣∣dt1

≤ B1(1 + t)
∫ t

0

∣∣∣∣∣

∫ x

0
♣x − x1♣3g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 8B1(1 + t)2♣x♣3
∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 8B1(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1.

(iii) Estimation of
∣∣∣ ∂

∂x
S1

2(u, v)(t, x)
∣∣∣, (t, x) ∈ [0, ∞) × R:

∣∣∣∣∣
∂

∂x
S1

2(u, v)(t, x)

∣∣∣∣∣ = 3

∣∣∣∣∣

∫ t

0

∫ x

0
(t − t1)(x − x1)

2g(t1, x1)S
1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣∣

≤ 3B1(1 + t)
∫ t

0

∣∣∣∣∣

∫ x

0
(t − t1)(x − x1)

2g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 12B1(1 + t)2x2
∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 12B1(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1.
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(iv) Estimation of
∣∣∣ ∂2

∂x2 S1
2(u, v)(t, x)

∣∣∣, (t, x) ∈ [0, ∞) × R:
∣∣∣∣∣

∂2

∂x2
S1

2(u, v)(t, x)

∣∣∣∣∣ = 6

∣∣∣∣∣

∫ t

0

∫ x

0
(t − t1)(x − x1)g(t1, x1)S

1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣∣

≤ 6
∫ t

0

∣∣∣∣∣

∫ x

0
(t − t1)♣x − x1♣g(t1, x1)♣S1

1(u, v)(t1, x1)♣dx1

∣∣∣∣∣dt1

≤ 6B1(1 + t)
∫ t

0

∣∣∣∣∣

∫ x

0
(t − t1)♣x − x1♣g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 12B1(1 + t)2♣x♣
∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 12B1(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1.

(v) Estimation of
∣∣∣ ∂3

∂x3 S1
2(u, v)(t, x)

∣∣∣, (t, x) ∈ [0, ∞) × R:
∣∣∣∣∣

∂3

∂x3
S1

2(u, v)(t, x)

∣∣∣∣∣ = 6

∣∣∣∣∣

∫ t

0

∫ x

0
(t − t1)g(t1, x1)S

1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣∣

≤ 6
∫ t

0

∣∣∣∣∣

∫ x

0
(t − t1)g(t1, x1)♣S1

1(u, v)(t1, x1)♣dx1

∣∣∣∣∣dt1

≤ 6B1(1 + t)
∫ t

0

∣∣∣∣∣

∫ x

0
(t − t1)g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 12B1(1 + t)2
∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ 12B1(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1.

Similarly, the same estimates (i)-(v) can be proved for the operator S2
2 . Finally,

∥S2(u, v)∥ ≤ AB1.

This completes the proof. □

3. Main Results

3.1. Existence of nonnegative solutions. The following theorem (see its proof in
[17]) will be used to prove Theorem 3.2.

Theorem 3.1. Let E be a Banach space and

E1 = ¶x ∈ E : ∥x∥ ≤ R♢,
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with R > 0. Consider two operators T and S, where

Tx = −ϵx, x ∈ E1,

with ϵ > 0 and S : E1 → E be continuous and such that

(i) (I − S)(E1) resides in a compact subset of E and

(ii) ¶x ∈ E : x = λ(I − S)x, ∥x∥ = R♢ = ∅ for any λ ∈

0, 1

ϵ


.

Then there exists x∗ ∈ E1 such that

Tx∗ + Sx∗ = x∗.

In the sequel, suppose that the constants B and A which appear in the conditions
(H1) and (H2), respectively, satisfy the following inequality:

(H3): AB1 < B, where B1 = 4(B + B2).

Our first main result for existence of classical solutions of the IVP (1.1) is as follows.

Theorem 3.2. Assume that the hypotheses (H1), (H2) and (H3) are satisfied.

Then the IVP (1.1) has at least one nonnegative solution (u, v) ∈ C
1([0, ∞),C3(R)) ×

C
1([0, ∞),C3(R)).

Proof. Choose ϵ ∈ (0, 1), such that ϵB1(1 + A) < B.

For (u, v) ∈ X = C
1([0, ∞),C3(R)) × C

1([0, ∞),C3(R)), we will write

(u, v) ≥ 0 if u(t, x) ≥ 0 and v(t, x) ≥ 0, for any (t, x) ∈ [0, ∞) × R.

Let
˜̃̃
Y denotes the set of all equi-continuous families in X with respect to the norm

∥ · ∥,
˜̃
Y =

˜̃̃
Y be the closure of

˜̃̃
Y , Ỹ =

˜̃
Y ∪ ¶(u0, v0)♢ and

Y = ¶(u, v) ∈ Ỹ : (u, v) ≥ 0, ∥(u, v)∥ ≤ B♢.

Note that Y is a compact set in X. For (u, v) ∈ X, define the operators

T (u, v)(t, x) = −ϵ(u, v)(t, x), (t, x) ∈ [0, ∞) × R,

S(u, v)(t, x) = (u, v)(t, x) + ϵ(u, v)(t, x) + ϵS2(u, v)(t, x), (t, x) ∈ [0, ∞) × R.

For (u, v) ∈ Y and by using Lemma 2.4, it follows that

∥(I − S)(u, v)∥ = ∥ϵ(u, v) − ϵS2(u, v)∥
≤ ϵ∥(u, v)∥ + ϵ∥S2(u, v)∥
≤ ϵB1 + ϵAB1

= ϵB1(1 + A)

< B.

Thus, S : Y → X is continuous and (I − S)(Y ) resides in a compact subset of X.
Now, suppose that there is a (u, v) ∈ X so that ∥(u, v)∥ = B and

(u, v) = λ(I − S)(u, v)
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or
1

λ
(u, v) = (I − S)(u, v) = −ϵ(u, v) − ϵS2(u, v)

or 
1

λ
+ ϵ


(u, v) = −ϵS2(u, v),

for some λ ∈

0, 1

ϵ


. Hence, ∥S2(u, v)∥ ≤ AB1 < B,

ϵB <


1

λ
+ ϵ


B =


1

λ
+ ϵ


∥(u, v)∥ = ϵ∥S2(u, v)∥ < ϵB,

which is a contradiction. In virtue of Theorem 3.1, the operator T + S has a fixed
point (u∗, v∗) ∈ Y . Therefore,

(u∗, v∗)(t, x) =T (u∗, v∗)(t, x) + S(u∗, v∗)(t, x)

= − ϵ(u∗, v∗)(t, x) + (u∗, v∗)(t, x) + ϵ(u∗, v∗)(t, x) + ϵS2(u
∗, v∗)(t, x),

(t, x) ∈ [0, ∞) × R, whereupon

0 = S2(u
∗, v∗)(t, x), (t, x) ∈ [0, ∞) × R.

Lemma 2.2 yields that (u∗, v∗) is a solution to the IVP (1.1). This completes the
proof. □

3.2. Multiplicity of nonnegative solutions. Let E be a real Banach space.

Definition 3.1. A closed, convex set P in E is said to be cone if

(a) αx ∈ P for any α ≥ 0 and for any x ∈ P;
(b) x, −x ∈ P implies x = 0.

Definition 3.2. A mapping K : E → E is said to be completely continuous if it is
continuous and maps bounded sets into relatively compact sets.

Definition 3.3. Let X and Y be real Banach spaces. A mapping K : X → Y is said
to be expansive if there exists a constant h > 1 such that

∥Kx − Ky∥Y ≥ h∥x − y∥X ,

for any x, y ∈ X.

The following result (see details of its proof in [5] and [17]) will be used to prove
Theorem 3.4.

Theorem 3.3. Let P be a cone of a Banach space E; Ω a subset of P and U1, U2 and U3

three open bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that

T : Ω → P is an expansive mapping, S : U3 → E is a completely continuous and

S(U3) ⊂ (I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω ̸= ∅, (U3 \ U2) ∩ Ω ̸= ∅, and there

exists w0 ∈ P\¶0♢ such that the following conditions hold:

(i) Sx ̸= (I − T )(x − λw0) for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λw0);
(ii) there exists ε > 0 such that Sx ≠ (I − T )(λx) for all λ ≥ 1 + ε, x ∈ ∂U2 and

λx ∈ Ω;
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(iii) Sx ̸= (I − T )(x − λw0) for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λw0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or

x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

In the sequel, suppose that the constants B and A which appear in the conditions
(H1) and (H2), respectively, satisfy the following inequality:

(H4): AB1 < L
5
, where B1 = 4(B +B2) and L is a positive constant that satisfies

the following conditions:

r < L < R1 ≤ B, R1 >


2

5m
+ 1


L,

with r and R1 are positive constants and m > 0 is large enough.

Our second main result for existence and multiplicity of classical solutions of the IVP
(1.1) is as follows.

Theorem 3.4. Assume that the hypotheses (H1), (H2) and (H4) are satisfied. Then

the IVP (1.1) has at least two nonnegative solutions

(u1, v1), (u2, v2) ∈ C
1([0, ∞),C3(R)) × C

1([0, ∞),C3(R)).

Proof. Set X = C
1([0, ∞),C3(R)) × C

1([0, ∞),C3(R)) and let

P̃ = ¶(u, v) ∈ X : (u, v) ≥ 0 on [0, ∞) × R♢.

With P we will denote the set of all equi-continuous families in P̃ . For (u, v) ∈ X,
define the operators

T1(u, v)(t, x) = (1 + mϵ)(u, v)(t, x) −


ϵ
L

10
, ϵ

L

10


, (t, x) ∈ [0, ∞) × R,

S3(u, v)(t, x) = −ϵS2(u, v)(t, x) − mϵ(u, v)(t, x) −


ϵ
L

10
, ϵ

L

10


, (t, x) ∈ [0, ∞) × R,

where ϵ is a positive constant, m > 0 is large enough and the operator S2 is given
by formula (2.3). Note that any fixed point (u, v) ∈ X of the operator T1 + S3 is a
solution to the IVP (1.1). Now, let us define

U1 = Pr = ¶(u, v) ∈ P : ∥(u, v)∥ < r♢,

U2 = PL = ¶(u, v) ∈ P : ∥(u, v)∥ < L♢,

U3 = PR1
= ¶(u, v) ∈ P : ∥(u, v)∥ < R1♢,

Ω = PR2
= ¶(u, v) ∈ P : ∥(u, v)∥ ≤ R2♢, with R2 = R1 +

A

m
B1 +

L

5m
.

(a) Let (u1, v1), (u2, v2) ∈ Ω, then

∥T1(u1, v1) − T1(u2, v2)∥ = (1 + mϵ)∥(u1, v1) − (u2, v2)∥,

whereupon T1 : Ω → X is an expansive operator with a constant h = 1 + mϵ > 1.
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(b) Let (u, v) ∈ PR1
, then Lemma 2.4 yields

∥S3(u, v)∥ ≤ ϵ∥S2(u, v)∥ + mϵ∥(u, v)∥ + ϵ
L

10
≤ ϵ


AB1 + mR1 +

L

10


.

Therefore, S3(PR1
) is uniformly bounded. Since S3 : PR1

→ X is continuous, we
have that S3(PR1

) is equi-continuous. Consequently, S3 : PR1
→ X is completely

continuous.
(c) Let (u1, v1) ∈ PR1

and set

(u2, v2) = (u1, v1) +
1

m
S2(u1, v1) +


L

5m
,

L

5m


.

Note that S1
2(u1, v1) + L

5
≥ 0, S2

2(u1, v1) + L
5

≥ 0 on [0, ∞) × R. We have u2, v2 ≥ 0
on [0, ∞) × R and

∥(u2, v2)∥ ≤ ∥(u1, v1)∥ +
1

m
∥S2(u1, v1)∥ +

L

5m
≤ R1 +

A

m
B1 +

L

5m
= R2.

Therefore, (u2, v2) ∈ Ω and

−ϵm(u2, v2) = −ϵm(u1, v1) − ϵS2(u1, v1) − ϵ


L

10
,

L

10


− ϵ


L

10
,

L

10



or

(I − T1)(u2, v2) = −ϵm(u2, v2) + ϵ


L

10
,

L

10


= S3(u1, v1).

Consequently, S3(PR1
) ⊂ (I − T1)(Ω).

(d) Assume that for any (w0, z0) ∈ P
∗ = P \ ¶0♢ there exist λ ≥ 0 and (u, v) ∈

∂Pr ∩ (Ω + λ(w0, z0)) or (u, v) ∈ PR1
∩ (Ω + λ(w0, z0)) such that

S3(u, v) = (I − T1)((u, v) − λ(w0, z0)).

Then

−ϵS2(u, v) − mϵ(u, v) − ϵ


L

10
,

L

10


= −mϵ((u, v) − λ(w0, z0)) + ϵ


L

10
,

L

10



or

−S2(u, v) = λm(w0, z0) +


L

5
,
L

5


.

Hence,

∥S2v∥ =
∥∥∥∥λm(w0, z0) +


L

5
,
L

5

∥∥∥∥ >
L

5
.

This is a contradiction.
(e) Let ε1 = 2

5m
. Assume that there exist (u1, v1) ∈ ∂PL and λ1 ≥ 1 + ε1 such that

λ1(u1, v1) ∈ PR1
and

(3.1) S3(u1, v1) = (I − T1)(λ1(u1, v1)).

Since (u1, v1) ∈ ∂PL and λ1(u1, v1) ∈ PR1
, it follows that


2

5m
+ 1


L < λ1L = λ1∥(u1, v1)∥ ≤ R1.
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Moreover,

−ϵS2(u1, v1) − mϵ(u1, v1) − ϵ


L

10
,

L

10


= −λ1mϵ(u1, v1) + ϵ


L

10
,

L

10



or

S2(u1, v1) +


L

5
,
L

5


= (λ1 − 1)m(u1, v1).

From here,

2
L

5
≥
∥∥∥∥S2(u1, v1) +


L

5
,
L

5

∥∥∥∥ = (λ1 − 1)m∥(u1, v1)∥ = (λ1 − 1)mL

and
2

5m
+ 1 ≥ λ1,

which is a contradiction.
Therefore, all conditions of Theorem 3.4 hold. Hence, the IVP (1.1) has at least

two solutions (u1, v1) and (u2, v2) so that

∥(u1, v1)∥ = L < ∥(u2, v2)∥ ≤ R1

or
r ≤ ∥(u1, v1)∥ < L < ∥(u2, v2)∥ ≤ R1.

□

4. An Example

Below, we will illustrate our main results. Let

h(s) = log
1 + s11

√
2 + s22

1 − s11
√

2 + s22
, l(s) = arctan

s11
√

2

1 − s22
, s ∈ R, s ̸= ±1.

Then

h′(s) =
22

√
2s10(1 − s22)

(1 − s11
√

2 + s22)(1 + s11
√

2 + s22)
,

l′(s) =
11

√
2s10(1 + s20)

1 + s40
, s ∈ R, s ̸= ±1.

Therefore,

−∞ < lim
s→±∞

(1 + s + s2)h(s) < ∞,

−∞ < lim
s→±∞

(1 + s + s2)l(s) < ∞.

Hence, there exists a positive constant C1 so that

(1+s+s2+s3+s4+s5+s6)


1

44
√

2
log

1 + s11
√

2 + s22

1 − s11
√

2 + s22
+

1

22
√

2
arctan

s11
√

2

1 − s22


≤ C1,

(1+s+s2+s3+s4+s5+s6)


1

44
√

2
log

1 + s11
√

2 + s22

1 − s11
√

2 + s22
+

1

22
√

2
arctan

s11
√

2

1 − s22


≤ C1,



EXISTENCE OF CLASSICAL SOLUTIONS FOR BROER-KAUP EQUATIONS 137

s ∈ R. Note that lim
s→±1

l(s) = π
2

and by [15, pp. 707, Integral 79], we have

∫
dz

1 + z4
=

1

4
√

2
log

1 + z
√

2 + z2

1 − z
√

2 + z2
+

1

2
√

2
arctan

z
√

2

1 − z2
.

Let

Q(s) =
s10

(1 + s44)(1 + s + s2)2
, s ∈ R,

and

g1(t, x) = Q(t)Q(x), t ∈ [0, ∞), x ∈ R.

Then there exists a constant C2 > 0 such that

12(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g1(t1, x1)dx1

∣∣∣∣∣∣
dt1 ≤ C2, (t, x) ∈ [0, ∞) × R.

Let

g(t, x) =
A

C2

g1(t, x), (t, x) ∈ [0, ∞) × R.

Then

12(1 + t)2

1 + ♣x♣ + x2 + ♣x♣3

 ∫ t

0

∣∣∣∣∣

∫ x

0
g(t1, x1)dx1

∣∣∣∣∣∣
dt1 ≤ A, (t, x) ∈ [0, ∞) × R,

i.e., (H2) holds. Now, consider the initial value problem

ut + uux + vx = 0, t ∈ (0, ∞), x ∈ R,

vt + ux + 2(uv)x + uxxx = 0, t ∈ (0, ∞), x ∈ R,

u(0, x) =
1

1 + x2 + x4
, x ∈ R,

v(0, x) =
1

1 + 3x2 + x8
, x ∈ R,

(4.1)

so that (H1) holds, with B = 10, for example. Take

B = 10 and A =
1

104
.

Then

AB1 = A.4(B + B2) =
1

104
· 4(10 + 102) < B.

So, condition (H3) is fulfilled. Thus, the conditions (H1), (H2) and (H3) are
satisfied. Hence, by Theorem 3.2, it follows that problem (4.1) has at least one
solution (u, v) ∈ C

1([0, ∞),C3(R)) × C
1([0, ∞),C3(R)).

In the sequel, take

R1 = B = 10, L = 5, r = 4, m = 1050, A = ϵ =
1

104
.
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Clearly,

r < L < R1 ≤ B, ϵ > 0, R1 >


2

5m
+ 1


L, AB1 <

L

5
,

i.e., (H4) holds. Hence, by Theorem 3.4, it follows that the initial value problem
(4.1) has at least two nonnegative solutions (u1, v1), (u2, v2) ∈ C

1([0, ∞),C3(R)) ×
C

1([0, ∞),C3(R)).
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SEMI-SLANT LIGHTLIKE SUBMANIFOLDS OF GOLDEN

SEMI-RIEMANNIAN MANIFOLDS

SACHIN KUMAR1 AND AKHILESH YADAV2

Abstract. The aim of our paper is to introduce the notion of semi-slant lightlike
submanifolds of golden semi-Riemannian manifolds. We give non-trivial examples
of semi-slant lightlike submanifolds and provide a characterization theorem of such
submanifolds. Further, we obtain necessary and sufficient conditions for integrability
of the distributions and investigate the geometry of the leaves of the foliation
determined by the distributions. We also obtain a necessary and sufficient condition
for the induced connection to be a metric connection. Finally, we obtain necessary
and sufficient condition for mixed-geodesic semi-slant lightlike submanifold of golden
semi-Riemannian manifold.

1. Introduction

A submanifold of a semi-Riemannian manifold is called a lightlike submanifold
if the induced metric on it is degenerate, i.e., there exists a non zero X ∈ Γ(TM)
such that g(X,Z) = 0 for all Z ∈ Γ(TM). In [4], Duggal and Bejancu introduced a
non-degenerate screen distribution to construct a nonintersecting lightlike transversal
vector bundle of the tangent bundle and they studied the geometry of arbitrary
lightlike submanifold of a semi-Riemannian manifold. Lightlike geometry has its
applications in general relativity, particularly in black hole theory. Many authors have
studied lightlike submanifolds in various spaces ([5, 17]). In [15], authors introduced
a new class of lightlike submanifolds namely, semi-slant lightlike submanifolds of
indefinite Kaehler manifolds. In [15], authors investigated the integrability of various
distributions, obtained a characterization theorem of such lightlike submanifolds and

Key words and phrases. Golden structure, golden semi-Riemannian manifolds, gauss and wein-
garten formulae, lightlike submanifolds.
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established equivalent conditions for totally geodesic foliation of distributions. In
[16], authors introduced a general notion of lightlike submanifolds namely, semi-slant
lightlike submanifolds of indefinite Sasakian manifolds. In [16], authors found some
equivalent conditions for integrability and totally geodesic foliation of distributions.
Golden proportion ψ is the real positive root of the equation x2 −x− 1 = 0 (thus ψ =
1+

√
5

2
≈ 1.618 . . . ). Inspired by the Golden proportion, Crasmareanu and Hretcanu

defined golden structure P̃ which is a tensor field satisfying P̃ 2 − P̃ − I = 0 on M
[3]. Golden structure was inspired by the Golden proportion, which was described by
Kepler (1571–1630).

A Riemannian manifold M with a golden structure P̃ is called a golden Riemannian
manifold and was studied in ([3,9]). In [9], authors studied invariant submanifolds of a
golden Riemannian manifold. Submanifolds of golden manifolds in semi-Riemannian
geometry were studied by Poyraz and Yasar [12]. In [12], they proved that there is
no radical anti-invariant lightlike hypersurface of a golden semi-Riemannian manifold
and also studied screen semi-invariant and screen conformal screen semi-invariant
lightlike hypersurfaces of a golden semi-Riemannian manifold. Transversal and Screen
transversal lightlike submanifolds of metallic semi-Riemannian manifolds were studied
in ([6, 8]). In [13], authors proved that there is no radical anti-invariant lightlike sub-
manifold of a golden semi-Riemannian manifolds. In [7], author studies the geometry
of screen transversal lightlike submanifolds and radical screen transversal lightlike
submanifolds and screen transversal anti-invariant lightlike submanifolds of golden
semi-Riemannian manifolds and investigate the geometry of distributions. Screen
pseudo-slant and golden GCR-lightlike submanifolds of a golden semi-Riemannian
manifold were studied in ([1, 11]). In [10], N. Onen Poyraz introduced screen semi-
invariant lightlike submanifolds of a golden semi-Riemannian manifolds and found the
conditions of integrability of distributions. In [10], they proved some results for to-
tally umbilical screen semi-invariant lightlike submanifolds of golden semi-Riemannian
manifolds.

The purpose of this paper is to study semi-slant lightlike submanifold of golden
semi-Riemannian manifolds. The paper is arranged as follows. In Section 2, some
definitions and basic results about lightlike submanifolds and golden semi-Riemannian
manifold are given. In Section 3, we study semi-slant lightlike submanifolds of a golden
semi-Riemannian manifold giving examples, provide a characterization theorem and
investigate the integrability of distributions. We also obtain necessary and sufficient
conditions for semi-slant lightlike submanifolds of golden semi-Riemannian manifolds
to be metric connection. In Section 4, we find necessary and sufficient conditions
for totally geodesic foliation determined by distributions on a semi-slant lightlike
submanifolds of golden semi-Riemannian manifolds. We also obtain necessary and
sufficient conditions for semi-slant lightlike submanifolds of golden semi-Riemannian
manifolds to be mixed geodesic.



SEMI-SLANT LIGHTLIKE SUBMANIFOLDS 143

2. Preliminaries

Let M be a C∞-differentiable manifold. If a (1, 1) type tensor field P̃ on M satisfies
the following equation

P̃ 2 = P̃ + I,(2.1)

then P̃ is called a golden structure on M , where I is the identity transformation.
Let (M, g) be a semi-Riemannian manifold and P̃ be a golden structure on M . If P̃
satisfies the following equation

g(P̃U,W ) = g(U, P̃W ),(2.2)

then (M, g, P̃ ) is called a golden semi-Riemannian manifold [14], also, if P̃ is integrable,
then we have [3]

∇U P̃W = P̃∇UW.(2.3)

Now, from (2.2) we get

g(P̃U, P̃W ) = g(P̃U,W ) + g(U,W ),(2.4)

for all U,W ∈ Γ(TM).
Let (M, g) be a real (m + n)-dimensional semi-Riemannian manifold of constant

index q, such that m,n ≥ 1, 1 ≤ q ≤ m + n − 1 and (M, g) be an m-dimensional
submanifold of M , where g is the induced metric of g on M . If g is degenerate
on the tangent bundle TM of M , then M is called a lightlike submanifold [4] of
M . Let S(TM) be a screen distribution which is a semi-Riemannian complementary
distribution of Rad(TM) in TM , that is

TM = Rad(TM) ⊕orth S(TM).(2.5)

Consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian
complementary vector bundle of Rad(TM) in TM⊥. Let tr(TM) and ltr(TM) be
complementary (but not orthogonal) vector bundles to TM in TM ♣M and Rad(TM)
in S(TM⊥)⊥, respectively. Then

tr(TM) =ltr(TM) ⊕orth S(TM⊥),(2.6)

TM ♣M =TM ⊕ tr(TM),(2.7)

TM ♣M =S(TM) ⊕orth [Rad(TM) ⊕ ltr(TM)] ⊕orth S(TM⊥).(2.8)

Theorem 2.1 ([4]). Let (M, g, S(TM), S(TM⊥)) be an r-lightlike submanifold of

a semi-Riemannian manifold (M, g). Suppose U is a coordinate neighbourhood of

M and ¶ξi♢, i ∈ ¶1, 2, . . . , r♢, is a basis of Γ(Rad(TM ♣U)). Then there exist a

complementary vector subbundle ltr(TM) of Rad(TM) in S(TM⊥)⊥ and a basis

¶Ni♢, i ∈ ¶1, 2, . . . , r♢, of Γ(ltr(TM ♣U)) such that g(Ni, ξj) = δij and g(Ni, Nj) = 0
for any i, j ∈ ¶1, 2, . . . , r♢.



144 S. KUMAR AND A. YADAV

Following are four cases of a lightlike submanifold


M, g, S(TM), S(TM⊥)


.

Case 1. r-lightlike if r < min (m,n).

Case 2. Co-isotropic if r = n < m, S


TM⊥


= ¶0♢.

Case 3. Isotropic if r = m < n, S (TM) = ¶0♢.
Case 4. Totally lightlike if r = m = n, S(TM) = S(TM⊥) = ¶0♢.
The Gauss and Weingarten formulae are given as

∇XY =∇XY + h(X, Y ),(2.9)

∇XV = − AVX + ∇t
XV,(2.10)

for all X, Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where {∇XY,AVX} belong to Γ(TM)
and {h(X, Y ),∇t

XV } belong to Γ(tr(TM)). ∇ and ∇t are linear connections on
M and on the vector bundle tr(TM), respectively. From (2.9) and (2.10), for any
X, Y ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)), we have

∇XY =∇XY + hl (X, Y ) + hs (X, Y ) ,(2.11)

∇XN = − ANX + ∇l
XN +Ds (X,N) ,(2.12)

∇XW = − AWX + ∇s
XW +Dl (X,W ) ,(2.13)

where hl(X, Y ) = L (h(X, Y )), hs(X, Y ) = S (h(X, Y )), Dl(X,W ) = L(∇t
XW ),

Ds(X,N) = S(∇t
XN). L and S are the projection morphisms of tr(TM) on ltr(TM)

and S(TM⊥), respectively. ∇l and ∇s are linear connections on ltr(TM) and S(TM⊥)
called the lightlike connection and screen transversal connection on M , respectively.

Also by using (2.9), (2.11)–(2.13) and metric connection ∇, we obtain

g(hs(X, Y ),W ) + g(Y,Dl(X,W )) =g(AWX, Y ),(2.14)

g(Ds(X,N),W ) =g(N,AWX).(2.15)

Now, denote the projection of TM on S(TM) by S. Then from the decomposition
of the tangent bundle of a lightlike submanifold, for any X, Y ∈ Γ(TM) and ξ ∈
Γ(Rad(TM)), we have

∇XSY =∇∗
XSY + h∗(X,SY ),(2.16)

∇Xξ = − A∗
ξX + ∇∗t

Xξ.(2.17)

By using above equations, we obtain

g(hl(X,SY ), ξ) = g(A∗
ξX,SY ).(2.18)

It is important to note that in general ∇ is not a metric connection on M . Since
∇ is metric connection, by using (2.11), we get

(∇Xg)(Y, Z) = g(hl(X, Y ), Z) + g(hl(X,Z), Y ),(2.19)

for all X, Y, Z ∈ Γ(TM).
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Definition 2.1 ([2]). An equivalence relation on an n-dimensional semi-Riemannian
manifold (M, g) in which the equivalence classes are connected, immersed submanifolds
(called the leaves of the foliation) of a common dimension k, 0 < k ≤ n, is called a
foliation on M . If each leaf of a foliation F on a semi-Riemannian manifold (M, g) is
totally geodesic submanifold of M , we say that F is a totally geodesic foliation.

3. Semi Slant Lightlike Submanifolds

In this section, we study semi-slant lightlike submanifolds of golden semi Riemannian
manifolds. We now give the following lemmas which will be useful to define slant
notion on the screen distribution.

Lemma 3.1. Let M be a q-lightlike submanifold of a golden semi-Riemannian man-

ifold M of index 2q. Suppose that P̃ Rad(TM) is a distribution on M such that

Rad(TM) ∩ P̃ Rad(TM) = ¶0♢. Then P̃ ltr(TM) is a subbundle of the screen distri-

bution S(TM) and P̃ Rad(TM) ∩ P̃ ltr(TM) = ¶0♢.

Proof. Since by hypothesis P̃ Rad(TM) is a distribution on M such that P̃ Rad(TM)∩
Rad(TM) = 0, we have P̃ Rad(TM) ⊂ S(TM). Now we claim that ltr(TM) is not
invariant with respect to P̃ . Let us suppose that ltr(TM) is invariant with respect
to P̃ . Choose ξ ∈ Γ(Rad(TM)) and N ∈ Γltr(TM) such that g(N, ξ) = 1. Then
from (2.4), we have 1 = g(ξ,N) = g(P̃ ξ, P̃N) − g(P̃ ξ, N) = 0, due to P̃ ξ ∈ ΓS(TM)
and P̃N ∈ Γltr(TM). This is a contradiction, so ltr(TM) is not invariant with
respect to P̃ . Also P̃N does not belong to S(TM⊥), since S(TM⊥) is ortogonal to
S(TM), g(P̃N, P̃ ξ) must be zero, but from (2.4) we have g(P̃N, P̃ ξ) = g(P̃ ξ, N) +
g(N, ξ) ̸= 0, for some ξ ∈ Γ Rad(TM), this is again a contradiction. Thus, we
conclude that P̃ ltr(TM) is a distribution on M . Moreover, P̃N does not belong
to Rad(TM). Indeed, if P̃N ∈ Γ Rad(TM), we would have P̃ 2N = P̃N + N ∈
Γ(P̃ Rad(TM)), but this is impossible. Finally, let P̃N ∈ Γ(P̃ Rad(TM)), we obtain
P̃ 2N = P̃N + N ∈ Γ(P̃ Rad(TM) + Rad(TM)), this is not possible. Hence, P̃N
does not belong to P̃ Rad(TM). Thus, we conclude that P̃ ltr(TM) ⊂ S(TM) and
P̃ Rad(TM) ∩ P̃ ltr(TM) = ¶0♢. □

Lemma 3.2. Let M be a q-lightlike submanifold of a golden semi-Riemannian mani-

fold M of index 2q. Suppose P̃ Rad(TM) is a distribution on M such that Rad(TM)∩
P̃ Rad(TM) = ¶0♢. Then any complementary distribution to P̃ Rad(TM)⊕P̃ ltr(TM)
in S(TM) is Riemannian.

Proof. Let M be an m-dimensional q-lightlike submanifold of an (m+n)-dimensional
golden semi-Riemannian manifold M of index 2q. From Lemma 3.1, we have
P̃ Rad(TM) ∩ P̃ ltr(TM) = ¶0♢ and P̃ Rad(TM) ⊕ P̃ ltr(TM) ⊂ S(TM). We denote
the complementary distribution to P̃ Rad(TM) ⊕ P̃ ltr(TM) in S(TM) by D. Then
we have a local orthonormal frame of fields on M along M ¶ξi, Ni, P̃ ξi, P̃Ni, Xα,Wa♢,
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i ∈ ¶1, 2, . . . , q♢, α ∈ ¶3q+1, . . . ,m♢, a ∈ ¶q+1, . . . , n♢, where ¶ξi♢ and ¶Ni♢ are light-
like bases of Rad(TM) and ltrTM , respectively and ¶Xα♢ and ¶Wa♢ are orthonormal
bases of D and S(TM⊥), respectively.

Now, from the bases ¶ξ1, . . . , ξq, N1, . . . , Nq, P̃ ξ1, . . . , P̃ ξq, P̃N1, . . . , P̃Nq♢ of
Rad(TM) ⊕ ltrTM ⊕ P̃ Rad(TM) ⊕ P̃ ltr(TM), we can construct an orthonormal
bases ¶U1, . . . , U2q, V1, . . . , V2q♢ as follows:

U1 =
1√
2

(ξ1 +N1), U2 =
1√
2

(ξ1 −N1),

U3 =
1√
2

(ξ2 +N2), U4 =
1√
2

(ξ2 −N2),

...

U2q−1 =
1√
2

(ξq +Nq), U2q =
1√
2

(ξq −Nq),

V1 =
1√
2

(P̃ ξ1 + P̃N1), V2 =
1√
2

(P̃ ξ1 − P̃N1),

V3 =
1√
2

(P̃ ξ2 + P̃N2), V4 =
1√
2

(P̃ ξ2 − P̃N2),

...

V2q−1 =
1√
2

(P̃ ξq + P̃Nq), V2q =
1√
2

(P̃ ξq − P̃Nq).

Hence, Span¶ξi, Ni, P̃ ξi, P̃Ni♢ is a non-degenerate space of constant index 2q. Thus
we conclude that Rad(TM) ⊕ ltr(TM) ⊕ P̃ Rad(TM) ⊕ P̃ ltr(TM) is non-degenerate
and of constant index 2q on M . Since index(TM) = index(Rad(TM) ⊕ ltr(TM) ⊕
P̃ Rad(TM) ⊕ P̃ ltr(TM)) + index (D ⊕orth S(TM⊥)), we have 2q = 2q + index
(D+S(TM⊥)). Thus, D⊕orthS(TM⊥) is Riemannian, i.e., index (D⊕orthS(TM⊥)) =
0. Hence, D is Riemannian. □

Definition 3.1. Let M be a q-lightlike submanifold of a golden semi-Riemannian
manifold M of index 2q such that 2q < dim(M). Then we say that M is a semi-slant
lightlike submanifold of M if following conditions are satisfied:

(i) P̃ Rad(TM) is a distribution on M such that Rad(TM) ∩ P̃ Rad(TM) = ¶0♢;
(ii) there exist non-degenerate orthogonal complementary distributions D1 and D2

on M such that S(TM) = (P̃ Rad(TM) ⊕ P̃ ltr(TM)) ⊕orth D1 ⊕orth D2;
(iii) the distribution D1 is an invariant distribution, i.e., P̃D1 = D1;
(iv) the distribution D2 is slant with angle θ(̸= 0), i.e., for each x ∈ M and each

non-zero vector X ∈ (D2)x, the angle θ between P̃X and the vector subspace (D2)x
is a non-zero constant, which is independent of the choice of x ∈ M and X ∈ (D2)x.

This constant angle θ is called slant angle of distribution D2. A semi-slant lightlike
submanifold is said to be proper if D1 ̸= ¶0♢, D2 ̸= ¶0♢ and θ ̸= π

2
.
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From the above definition, we have the following decomposition

TM = Rad(TM) ⊕orth (P̃ Rad(TM) ⊕ P̃ ltr(TM)) ⊕orth D1 ⊕orth D2.(3.1)

Now, for any vector field X tangent to M , we put

P̃X = PX + FX,(3.2)

where PX and FX are tangential and transversal parts of P̃X, respectively. Also for
any V ∈ Γ(tr(TM)), we write

P̃ V = BV + CV,(3.3)

where BV and CV are tangential and transversal parts of P̃ V , respectively.
We denote the projections on Rad(TM), P̃ Rad(TM), P̃ ltr(TM), D1 and D2 in

TM by P1, P2, P3, P4 and P5, respectively. Similarly, we denote the projections
of tr(TM) on ltr(TM) and S(TM⊥) by Q1 and Q2, respectively. Thus, for any
X ∈ Γ(TM), we get

X = P1X + P2X + P3X + P4X + P5X.(3.4)

Now applying P̃ to (3.4), we have

P̃X = P̃P1X + P̃P2X + P̃P3X + P̃P4X + P̃P5X,(3.5)

which gives

P̃X = P̃P1X + P̃P2X + P̃P3X + P̃P4X + PP5X + FP5X,(3.6)

where P̃P2X = K1P̃P2X +K2P̃P2X, P̃P3X = L1P̃P3X +L2P̃P3X and PP5X (resp.
FP5X) denotes the tangential (resp. transversal) component of P̃P5X. Thus, we
get P̃P1X ∈ Γ(P̃ Rad(TM)), K1P̃P2X ∈ Γ(Rad(TM)), K2P̃P2X ∈ Γ(P̃ Rad(TM)),
L1P̃P3X ∈ Γ(ltr(TM)), L2P̃P3X ∈ Γ(P̃ ltr(TM)), P̃P4X ∈ Γ(P̃D1), PP5X ∈ Γ(D2)
and FP5X ∈ Γ(S(TM⊥)). Also, for any W ∈ Γ(tr(TM)), we have

W = Q1W +Q2W.(3.7)

Applying P̃ to (3.7), we obtain

P̃W = P̃Q1W + P̃Q2W,(3.8)

which gives

P̃W = P̃Q1W +BQ2W + CQ2W,(3.9)

where BQ2W (resp. CQ2W ) denotes the tangential (resp. transversal) component
of P̃Q2W . Thus, we get P̃Q1W ∈ Γ(P̃ ltr(TM)), BQ2W ∈ Γ(D2) and CQ2W ∈
Γ(S(TM⊥)).

Proposition 3.1. There exist no isotropic or totally lightlike proper semi-slant light-

like submanifolds of a golden semi-Riemannian manifold (M, g, P̃ ).

Proof. We suppose that M is isotropic or totally lightlike, then S(TM) = 0, hence
D1 = 0 and D2 = 0. □
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Lemma 3.3. Let (M, g) be a semi-slant lightlike submanifold of a golden semi-

Riemannian manifold (M, g, P̃ ). Then we have

(∇XP )Y =AFYX +Bh(X, Y ),(3.10)

(∇t
XF )Y =Ch(X, Y ) − h(X,PY ),(3.11)

P 2X =PX +X −BFX,(3.12)

FX =FPX + CFX,(3.13)

PBV =BV −BCV,(3.14)

C2V =CV + V − FBV,(3.15)

g(PX, Y ) − g(X,PY ) =g(X,FY ) − g(FX, Y ),(3.16)

g(PX,PY ) =g(PX, Y ) + g(X, Y ) + g(FX, Y ) − g(PX,FY )

− g(FX,PY ) − g(FX,FY ),(3.17)

where (∇XP )Y = ∇XPY − P∇XY and (∇t
XF )Y = ∇t

XFY − F∇XY for all X, Y ∈
Γ(TM) and V ∈ Γ(tr(TM)).

Proof. Using (2.3), (2.9), (2.10), (3.2) and (3.3), on comparing tangential and transver-
sal parts of the resulting equation, we obtain (3.10) and (3.11). Applying P̃ to (3.2),
using (2.1) and (3.2), taking tangential and transversal parts of the resulting equation,
we get (3.12) and (3.13). Applying P̃ to (3.3), using (2.1) and (3.3), taking tangential
and transversal parts of the resulting equation, we get (3.14) and (3.15). Finally,
using (2.2), (2.4) and (3.2), we obtain (3.16) and (3.17). □

Proposition 3.2. Let (M, g) be a semi-slant lightlike submanifold of a golden semi-

Riemannian manifold (M, g, P̃ ). Then P is a golden structure on M if and only if

FX = 0.

Proof. Let P is a golden structure on M then, from (3.12), FX = 0. Conversely, let
FX = 0. Then our result follows from (3.12). □

Example 3.1. Let (R12
2 , g, P̃ ) be a golden semi-Riemannian manifold, where metric g

is of signature (−,−,+,+,+,+,+,+,+,+,+,+) with respect to the canonical basis
¶∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂x9, ∂x10, ∂x11, ∂x12♢ and (x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10, x11, x12) be standard coordinate system of R12

2 .
Taking, P̃ (∂x1, . . . , ∂x12) = ((1 − ψ)∂x1, ψ∂x2, ψ∂x3, (1 − ψ)∂x4, (1 − ψ)∂x5, ψ∂x6,

(1−ψ)∂x7, ψ∂x8, ψ∂x9, ψ∂x10, (1−ψ)∂x11, (1−ψ)∂x12), where ψ = 1+
√

5
2

and (1−ψ) =
1−

√
5

2
are the roots of equation x2 − x− 1 = 0. Thus, P̃ 2 = P̃ + I and P̃ is a golden

structure on R
12
2 . Suppose M is a submanifold of R12

2 given by x1 = ψu1 + u2 − u3,
x2 = u1 − ψu2 + ψu3, x3 = u1 + ψu2 + ψu3, x4 = ψu1 − u2 − u3, x5 = ψu4, x6 = ψu5,
x7 = (1−ψ)u4, x8 = (1−ψ)u5, x9 = ψu6, x10 = ψu7, x11 = (1−ψ)u6, x12 = (1−ψ)u7.
The local frame of TM is given by ¶Z1, Z2, Z3, Z4, Z5, Z6, Z7♢, where Z1 = ψ∂x1 +
∂x2 + ∂x3 + ψ∂x4, Z2 = ∂x1 − ψ∂x2 + ψ∂x3 − ∂x4, Z3 = −∂x1 + ψ∂x2 + ψ∂x3 − ∂x4,
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Z4 = ψ∂x5 + (1 − ψ)∂x7, Z5 = ψ∂x6 + (1 − ψ)∂x8, Z6 = ψ∂x9 + (1 − ψ)∂x11 and
Z7 = ψ∂x10 + (1 − ψ)∂x12.

Hence Rad(TM) = Span ¶Z1♢ and S(TM) = Span ¶Z2, Z3, Z4, Z5, Z6, Z7♢.
Now ltr(TM) is spanned by N1 = 1

2(2+ψ)
(−ψ∂x1−∂x2+∂x3+ψ∂x4) and S(TM⊥) is

spanned by W1 = (1−ψ)∂x5−ψ∂x7, W2 = (1−ψ)∂x6−ψ∂x8, W3 = (1−ψ)∂x9−ψ∂x11

and W4 = (1 − ψ)∂x10 − ψ∂x12.
It follows that P̃Z1 = Z3, P̃N1 = Z2 and P̃Z4 = (1 − ψ)Z4, P̃Z5 = ψZ5, which

implies D1 is invariant, i.e., P̃D1 = D1 and D1 = Span¶Z4, Z5♢ and distribution
D2 = Span¶Z6, Z7♢ is a slant distribution with slant angle θ = arccos( 4√

21
). Hence M

is a semi-slant 1-lightlike submanifold of R12
2 .

Example 3.2. Let (R12
2 , g, P̃ ) be a golden semi-Riemannian manifold, where metric g

is of signature (+,−,+,−,+,+,+,+,+,+,+,+) with respect to the canonical basis
¶∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂x9, ∂x10, ∂x11, ∂x12♢ and (x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10, x11, x12) be standard coordinate system of R12

2 .
Taking, P̃ (∂x1, . . . , ∂x12) = (ψ∂x1, ψ∂x2, (1 − ψ)∂x3, (1 − ψ)∂x4, ψ∂x5, ψ∂x6, (1 −

ψ)∂x7, (1 − ψ)∂x8, (1 − ψ)∂x9, ψ∂x10, (1 − ψ)∂x11, ψ∂x12), where ψ = 1+
√

5
2

and (1 −
ψ) = 1−

√
5

2
are the roots of equation x2 −x−1 = 0. Thus P̃ 2 = P̃+I and P̃ is a golden

structure on R
12
2 . Suppose M is a submanifold of R12

2 given by x1 = u1 + ψu2 − ψu3,
x2 = u1 +ψu2 +ψu3, x3 = ψu1 −u2 +u3, x4 = ψu1 −u2 −u3, x5 = ψu4, x6 = (1−ψ)u4,
x7 = ψu5, x8 = (1 − ψ)u5, x9 = ψu6, x10 = (1 − ψ)u6, x11 = ψu7, x12 = (1 − ψ)u7.
The local frame of TM is given by ¶Z1, Z2, Z3, Z4, Z5, Z6, Z7♢, where Z1 = ∂x1 +∂x2 +
ψ∂x3 + ψ∂x4, Z2 = ψ∂x1 + ψ∂x2 − ∂x3 − ∂x4, Z3 = −ψ∂x1 + ψ∂x2 + ∂x3 − ∂x4,
Z4 = ψ∂x5 + (1 − ψ)∂x6, Z5 = ψ∂x7 + (1 − ψ)∂x8, Z6 = ψ∂x9 + (1 − ψ)∂x10,
Z7 = ψ∂x11 + (1 − ψ)∂x12.

Hence, Rad(TM) = Span ¶Z1♢ and S(TM) = Span ¶Z2, Z3, Z4, Z5, Z6, Z7♢.
Now ltr(TM) is spanned by N1 = 1

2(2+ψ)
(−∂x1+∂x2−ψ∂x3+ψ∂x4) and S(TM⊥) is

spanned byW1 = (1−ψ)∂x5−ψ∂x6, W2 = (1−ψ)∂x7−ψ∂x8, W3 = (1−ψ)∂x9−ψ∂x10,
W4 = (1 − ψ)∂x11 − ψ∂x12.

It follows that P̃Z1 = Z2, P̃N1 = Z3 and P̃Z4 = ψZ4, P̃Z5 = (1 − ψ)Z5, which
implies D1 is invariant, i.e., P̃D1 = D1 and D1 = Span¶Z4, Z5♢ and distribution
D2 = Span¶Z6, Z7♢ is a slant distribution with slant angle θ = arccos(1/

√
6). Hence

M is a semi-slant 1-lightlike submanifold of R12
2 .

Theorem 3.1. Let M be a q-lightlike submanifold of a golden semi-Riemannian

manifold M of index 2q. Then M is a semi-slant lightlike submanifold of M if and

only if

(i) P̃ Rad(TM) is a distribution on M such that Rad(TM) ∩ P̃ Rad(TM) = 0;

(ii) the screen distribution S(TM) split as S(TM) = (P̃ Rad(TM) ⊕ P̃ ltr(TM))
⊕orth D1 ⊕orth D2;

(iii) there exists a constant λ ∈ [0, 1) such that P 2X = λ(P̃X +X);
for all X ∈ Γ(D2). Moreover, in this case λ = cos2 θ and θ is the slant angle of D2.
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Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian
manifold M . Then the distribution P̃ Rad(TM) is a distribution on M such that
Rad(TM)∩ P̃ Rad(TM) = 0 and S(TM) = (P̃ Rad(TM)⊕ P̃ ltr(TM))⊕orthD1 ⊕orth

D2.
Now for any X ∈ Γ(D2), we have ♣PX♣ = ♣P̃X♣ cos θ, which implies

cos θ =
♣PX♣
♣P̃X♣ .(3.18)

In view of (3.18), we get cos2 θ = |PX|2
|P̃X|2 = g(PX,PX)

g(P̃X,P̃X)
= g(X,P 2X)

g(X,P̃ 2X)
, which gives

g(X,P 2X) = cos2 θ g(X, P̃ 2X).(3.19)

Since M is a semi-slant lightlike submanifold, cos2 θ = λ (constant) ∈ [0, 1) and
therefore from (3.19), we get g(X,P 2X) = λg(X, P̃ 2X) = g(X,λP̃ 2X), which implies

g(X, (P 2 − λP̃ 2)X) = 0.(3.20)

Since (P 2 − λP̃ 2)X ∈ Γ(D2) and the induced metric g = g♣D2×D2
is non-degenerate

(positive definite), from (3.20), we have (P 2 − λP̃ 2)X = 0, which implies

P 2X = λP̃ 2X = λ(P̃X +X),(3.21)

for all X ∈ Γ(D2). This proves (iii).
Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. From (iii), we

have P 2X = λP̃ 2X, for all X ∈ Γ(D2), where λ (constant) ∈ [0, 1).
Now

cos θ =
g(P̃X, PX)

♣P̃X♣♣PX♣ =
g(X, P̃PX)

♣P̃X♣♣PX♣ =
g(X,P 2X)

♣P̃X♣♣PX♣ = λ
g(X, P̃ 2X)

♣P̃X♣♣PX♣ = λ
g(P̃X, P̃X)

♣P̃X♣♣PX♣ .

From above equation, we get

cos θ = λ
♣P̃X♣
♣PX♣ .(3.22)

Therefore, (3.18) and (3.22) give cos2 θ = λ (constant). Hence, M is a semi-slant
lightlike submanifold. □

Corollary 3.1. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M with slant angle θ, then for any X, Y ∈ Γ(D2), we have

(i) g(PX,PY ) = cos2 θ(g(X, Y ) + g(X,PY ));
(ii) g(FX,FY ) = sin2 θ(g(X, Y ) + g(PX, Y )).

Proof. From (2.2), (3.2) and (3.21), we obtain

g(PX,PY ) = g(X,λ(P̃ Y + Y )) = cos2 θ(g(X, Y ) + g(X,PY )).

Moreover, from (2.2), (3.2) and (i) part of Corollary 3.1, we get

g(FX,FY ) = g(X, Y ) + g(PX, Y ) − g(PX,PY ) = sin2 θ(g(X, Y ) + g(PX, Y )).

Hence, the proof is complete. □
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Theorem 3.2. Let M be a semi-slant lightlike submanifold of a golden semi Riemann-

ian manifold M . Then Rad(TM) is integrable if and only if the following conditions

hold:

(i) g(hl(X, P̃Y ), ξ) = g(hl(Y, P̃X), ξ);
(ii) g(h∗(X, P̃Y ), N) = g(h∗(Y, P̃X), N);
(iii) g(∇∗

XP̃ Y − ∇∗
Y P̃X, P̃Z1) = g(∇∗

XP̃ Y − ∇∗
Y P̃X, Z1);

(iv) g(∇∗
XP̃ Y − ∇∗

Y P̃X, PZ) + g(hs(X, P̃Y ) − hs(Y, P̃X), FZ) = g(∇∗
XP̃ Y −

∇∗
Y P̃X, Z),

for any X, Y, ξ ∈ Γ(Rad(TM)), Z1 ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)).

Proof. From the definition of semi-slant lightlike submanifolds, Rad(TM) is integrable
if and only if g([X, Y ], P̃ ξ) = g([X, Y ], P̃N) = g([X, Y ], Z1) = g([X, Y ], Z) = 0, for
all X, Y, ξ ∈ Γ(Rad(TM)), Z1 ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)). Then from
(2.4), (2.11), (2.16) and (3.6), we obtain

g([X, Y ], P̃ ξ) =g(∇XY − ∇YX, P̃ ξ) = g(∇XP̃ Y − ∇Y P̃X, ξ)

=g(hl(X, P̃Y ) − hl(Y, P̃X), ξ),(3.23)

g([X, Y ], P̃N) =g(∇XY − ∇YX, P̃N) = g(∇XP̃ Y − ∇Y P̃X,N)

=g(h∗(X, P̃Y ) − h∗(Y, P̃X), N),(3.24)

g([X, Y ], Z1) = g(P̃ [X, Y ], P̃Z1) − g(P̃ [X, Y ], Z1)

=g(∇XP̃ Y − ∇Y P̃X, P̃Z1) − g(∇XP̃ Y − ∇Y P̃X, Z1)

=g(∇∗
XP̃ Y − ∇∗

Y P̃X, P̃Z1)

− g(∇∗
XP̃ Y − ∇∗

Y P̃X, Z1),(3.25)

g([X, Y ], Z) =g(P̃ [X, Y ], P̃Z) − g(P̃ [X, Y ], Z)

=g(∇XP̃ Y − ∇Y P̃X, PZ + FZ) − g(∇XP̃ Y − ∇Y P̃X, Z)

=g(∇∗
XP̃ Y − ∇∗

Y P̃X, PZ) + g(hs(X, P̃Y ) − hs(Y, P̃X), FZ)

− g(∇∗
XP̃ Y − ∇∗

Y P̃X, Z).(3.26)

From (3.23), (3.24), (3.25) and (3.26), we derive our theorem. □

Theorem 3.3. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M . Then P̃ Rad(TM) is integrable if and only if the following

conditions hold:

(i) g(hl(P̃X, Y ), ξ) = g(hl(P̃ Y,X), ξ);
(ii) g(A∗

XP̃ Y, P̃Z1) = g(A∗
Y P̃X, P̃Z1);

(iii) g(A∗
XP̃ Y − A∗

Y P̃X, PZ) = g(hs(P̃ Y,X) − hs(P̃X, Y ), FZ);
(iv) g(AN P̃X, P̃Y ) = g(AN P̃ Y, P̃X),

for any X, Y, ξ ∈ Γ(Rad(TM)), Z1 ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)).

Proof. From the definition of semi-slant lightlike submanifolds, P̃ Rad(TM) is in-
tegrable if and only if g([P̃X, P̃Y ], P̃ ξ) = g([P̃X, P̃Y ], Z1) = g([P̃X, P̃Y ], Z) =
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g([P̃X, P̃Y ],
N) = 0, for all X, Y, ξ ∈ Γ(Rad(TM)), Z1 ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)).
Since ∇ is metric connection and using (2.4), (2.11), (2.12), (2.17) and (3.6), we
obtain

g([P̃X, P̃Y ], P̃ ξ) =g(∇P̃XP̃ Y − ∇P̃ Y P̃X, P̃ ξ)

=g(hl(P̃X, Y ) − hl(P̃ Y,X), ξ),(3.27)

g([P̃X, P̃Y ], Z1) =g(∇P̃XY, P̃Z1) − g(∇P̃ YX, P̃Z1)

=g(A∗
XP̃ Y, P̃Z1) − g(A∗

Y P̃X, P̃Z1),(3.28)

g([P̃X, P̃Y ], Z) =g(∇P̃XY, PZ + FZ) − g(∇P̃ YX,PZ + FZ)

=g(A∗
XP̃ Y − A∗

Y P̃X, PZ) − g(hs(P̃ Y,X) − hs(P̃X, Y ), FZ),(3.29)

g([P̃X, P̃Y ], Z) = − g(P̃ Y,∇P̃XN) + g(P̃X,∇P̃ YN)

=g(AN P̃X, P̃Y ) − g(AN P̃ Y, P̃X).(3.30)

From (3.27), (3.28), (3.29) and (3.30), proof is completed. □

Theorem 3.4. Let M be a semi-slant lightlike submanifold of a golden semi Riemann-

ian manifold M . Then P̃ ltr(TM) is integrable if and only if the following conditions

hold:

(i) g(AN1
P̃N2, N) = g(AN2

P̃N1, N);
(ii) g(AN1

P̃N2, P̃Z1) = g(AN2
P̃N1, P̃Z1);

(iii) g(AN1
P̃N2 − AN2

P̃N1, PZ) = g(Ds(P̃N2, N1) −Ds(P̃N1, N2), FZ);
(iv) g(AN P̃N1, P̃N2) = g(AN P̃N2, P̃N1),

for any N1, N2, N ∈ Γ(ltr(TM)), Z1 ∈ Γ(D1) and Z ∈ Γ(D2).

Proof. From the definition of semi-slant lightlike submanifolds, P̃ ltr(TM) is inte-
grable if and only if g([P̃N1, P̃N2], P̃N) = g([P̃N1, P̃N2], Z1) = g([P̃N1, P̃N2], Z) =
g([P̃N1, P̃N2], N) = 0, for any N1, N2, N ∈ Γ(ltr(TM)), Z1 ∈ Γ(D1) and Z ∈ Γ(D2).
Taking ∇ is metric connection and from (2.4), (2.11), (2.12), (2.16) and (3.6), we
obtain

g([P̃N1, P̃N2], P̃N) =g(∇P̃N1
P̃N2 − ∇P̃N2

P̃N1, P̃N)

=g(AN1
P̃N2, N) − g(AN2

P̃N1, N),(3.31)

g([P̃N1, P̃N2], Z1) =g(∇P̃N1
N2, P̃Z1) − g(∇P̃N2

N1, P̃Z1)

=g(AN1
P̃N2, P̃Z1) − g(AN2

P̃N1, P̃Z1),(3.32)

g([P̃N1, P̃N2], Z) =g(∇P̃N1
N2, PZ + FZ) − g(∇P̃N2

N1, PZ + FZ)

=g(AN1
P̃N2 − AN2

P̃N1, PZ)

− g(Ds(P̃N2, N1) −Ds(P̃N1, N2), FZ),(3.33)

g([P̃N1, P̃N2], N) = − g(P̃N2,∇P̃N1
N) + g(P̃N1,∇P̃N2

N)
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=g(AN P̃N1, P̃N2) − g(AN P̃N2, P̃N1).(3.34)

From (3.31), (3.32), (3.33) and (3.34), we derive our theorem. □

Theorem 3.5. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M . Then D1 is integrable if and only if the following conditions

hold:

(i) g(∇∗
XP̃ Y−∇∗

Y P̃X, PZ)+g(hs(X, P̃Y )−hs(Y, P̃X), FZ) = g(∇∗
XP̃ Y−∇∗

Y P̃X, Z);
(ii) g(∇∗

XP̃ Y − ∇∗
Y P̃X, P̃N) = g(h∗(X, P̃Y ) − h∗(Y, P̃X), N);

(iii) g(ANX, P̃Y ) = g(ANY, P̃X),
for any X, Y ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)).

Proof. From the definition of semi-slant lightlike submanifolds, D1 is integrable if
and only if g([X, Y ], Z) = g([X, Y ], N) = g([X, Y ], P̃N) = 0 for all X, Y ∈ Γ(D1),
Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)). Since ∇ is metric connection and from (2.4), (2.11),
(2.12), (2.16) and (3.6), we obtain

g([X, Y ], Z) =g(P̃ [X, Y ], P̃Z) − g(P̃ [X, Y ], Z)

=g(∇XP̃ Y − ∇Y P̃X, PZ + FZ) − g(∇XP̃ Y − ∇Y P̃X, Z)

=g(∇∗
XP̃ Y − ∇∗

Y P̃X, PZ) + g(hs(X, P̃Y ) − hs(Y, P̃X), FZ)

− g(∇∗
XP̃ Y − ∇∗

Y P̃X, Z),(3.35)

g([X, Y ], N) =g(P̃ [X, Y ], P̃N) − g(P̃ [X, Y ], N)

=g(∇XP̃ Y − ∇Y P̃X, P̃N) − g(∇XP̃ Y − ∇Y P̃X,N)

=g(∇∗
XP̃ Y − ∇∗

Y P̃X, P̃N) − g(h∗(X, P̃Y ) − h∗(Y, P̃X), N),(3.36)

g([X, Y ], P̃N) = − g(∇XN, P̃Y ) + g(∇YN, P̃X)

=g(ANX, P̃Y ) − g(ANY, P̃X).(3.37)

From (3.35), (3.36) and (3.37), proof is completed. □

Theorem 3.6. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M . Then D2 is integrable if and only if the following conditions

hold:

(i) g(∇XPY − AFYX, P̃Z) + g(∇Y PX − AFXY, Z) = g(∇XPY − AFYX,Z) +
g(∇Y PX − AFXY, P̃Z);

(ii) g(∇XPY − AFYX, P̃N) + g(∇Y PX − AFXY,N) = g(∇XPY − AFYX,N) +
g(∇Y PX − AFXY, P̃N);

(iii) g(∇XPY − AFYX,N) = g(∇Y PX − AFXY,N),
for any X, Y ∈ Γ(D2), Z ∈ Γ(D1) and N ∈ Γ(ltr(TM)).

Proof. From the definition of semi-slant lightlike submanifolds, D2 is integrable if
and only if g([X, Y ], Z) = g([X, Y ], N) = g([X, Y ], P̃N) = 0 for all X, Y ∈ Γ(D2),
Z ∈ Γ(D1) and N ∈ Γ(ltr(TM)). Then from (2.4), (2.11), (2.13) and (3.6), we obtain

g([X, Y ], Z) =g(P̃ [X, Y ], P̃Z) − g(P̃ [X, Y ], Z)
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=g(∇XP̃ Y − ∇Y P̃X, P̃Z) − g(∇XP̃ Y − ∇Y P̃X, Z)

=g(∇XPY − AFYX, P̃Z) + g(∇Y PX − AFXY, Z)

− g(∇XPY − AFYX,Z) − g(∇Y PX − AFXY, P̃Z),(3.38)

g([X, Y ], N) =g(P̃ [X, Y ], P̃N) − g(P̃ [X, Y ], N)

=g(∇XP̃ Y − ∇Y P̃X, P̃N) − g(∇XP̃ Y − ∇Y P̃X,N)

=g(∇XPY − AFYX, P̃N) + g(∇Y PX − AFXY,N)

− g(∇XPY − AFYX,N) − g(∇Y PX − AFXY, P̃N),(3.39)

g([X, Y ], P̃N) =g(∇XP̃ Y − ∇Y P̃X,N)

=g(∇XPY − AFYX,N) − g(∇Y PX − AFXY,N).(3.40)

From (3.38), (3.39) and (3.40), we derive our theorem. □

Theorem 3.7. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M . Then the induced connection ∇ is a metric connection if and

only if

(i) P∇XP̃ Y ∈ Γ(Rad(TM));
(ii) Bhl(X, P̃Y ) = P3∇XP̃ Y and P2∇XP̃ Y = 0;

(iii) Bhs(X, P̃Y ) = P5∇XP̃ Y and P4∇XP̃ Y = 0,

for all X ∈ Γ(TM) and Y ∈ Γ(Rad(TM)).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian
manifold M . Then the induced connection ∇ on M is a metric connection if and only
if Rad(TM) is parallel distribution with respect to ∇ [4]. For any X ∈ Γ(TM) and
Y ∈ Γ(Rad(TM)), we have ∇XY = P̃∇XP̃ Y − ∇XP̃ Y , using (2.11), (3.2) and (3.9),
we get ∇XY = P∇XP̃ Y + F∇XP̃ Y + Bhl(X, P̃Y ) + Bhs(X, P̃Y ) + Chs(X, P̃Y ) −
∇XP̃ Y−hl(X, P̃Y )−hs(X, P̃Y ). By comparing tangential components of both sides of
above equation, we obtain ∇XY = P∇XP̃ Y+Bhl(X, P̃Y )+Bhs(X, P̃Y )−P1∇XP̃ Y−
P2∇XP̃ Y − P3∇XP̃ Y − P4∇XP̃ Y − P5∇XP̃ Y , which completes the proof. □

4. Foliations Determined by Distributions

In this section, we obtain necessary and sufficient conditions for foliations de-
termined by distributions on a semi-slant lightlike submanifold of a golden semi-
Riemannian manifold to be totally geodesic.

Definition 4.1 ([5]). A semi-slant lightlike submanifold M of a golden semi-Riemanni-
an manifold M is said to be a mixed geodesic if its second fundamental form h satisfies
h(X, Y ) = 0, for all X ∈ Γ(D1) and Y ∈ Γ(D2). Thus M is mixed geodesic semi-
slant lightlike submanifold if hl(X, Y ) = 0 and hs(X, Y ) = 0, for all X ∈ Γ(D1) and
Y ∈ Γ(D2).

Theorem 4.1. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M . Then Rad(TM) defines a totally geodesic foliation if and only
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if g(hl(X,K1P̃P2Z)+hl(X,K2P̃P2Z)+∇l
XL1P̃P3Z+hl(X,L2P̃P3Z)+hl(X, P̃P4Z)+

hl(X,PP5Z)+Dl(X,FP5Z), Y ) = g(∇XK1P̃P2Z+∇XK2P̃P2Z−AL1P̃P3Z
X+∇XL2P̃

P3Z + ∇XP̃P4Z + ∇XPP5Z − AFP5ZX, P̃Y ) for all X, Y ∈ Γ(Rad(TM)) and Z ∈
Γ(S(TM)).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian man-
ifold M . The distribution Rad(TM) defines a totally geodesic foliation if and only if
∇XY ∈ Γ(Rad(TM)), for all X, Y ∈ Γ(Rad(TM)). Since ∇ is a metric connection,
using (2.4), (2.11), (2.12), (2.13) and (3.6), for any X, Y ∈ Γ(Rad(TM)) and Z ∈
Γ(S(TM)), we get g(∇XY, Z) = g(Y,∇XP̃P2Z + ∇XP̃P3Z + ∇XP̃P4Z + ∇XPP5Z +
∇XFP5Z)−g(P̃ Y,∇XP̃P2Z+∇XP̃P3Z+∇XP̃P4Z+∇XPP5Z+∇XFP5Z), which im-
plies g(∇XY, Z) = g(hl(X,K1P̃P2Z)+hl(X,K2P̃P2Z)+∇l

XL1P̃P3Z+hl(X,L2P̃P3Z)
+ hl(X, P̃P4Z) + hl(X,PP5Z) +Dl(X,FP5Z), Y ) − g(∇XK1P̃P2Z + ∇XK2P̃P2Z −
AL1P̃P3Z

X + ∇XL2P̃P3Z+ ∇XP̃P4Z+ ∇XPP5Z−AFP5ZX, P̃Y ). Thus, the theorem
is completed. □

Theorem 4.2. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M . Then D1 defines a totally geodesic foliation if and only if

(i) g(∇XPZ − AFZX, P̃Y ) = g(∇XPZ − AFZX, Y );
(ii) g(∇∗

XP̃ Y, P̃N) = g(h∗(X, P̃Y ), N);
(iii) h∗(X, P̃Y ) has no components in Γ(Rad(TM)),

for all X, Y ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γltr(TM).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian
manifold M . The distribution D1 defines a totally geodesic foliation if and only
if ∇XY ∈ Γ(D1), for all X, Y ∈ Γ(D1). Since ∇ is metric connection, from (2.4),
(2.11), (2.13) and (3.6), for any X, Y ∈ Γ(D1) and Z ∈ Γ(D2), we obtain g(∇XY, Z) =
−g(P̃ Y,∇XPZ + ∇XFZ) + g(Y,∇XPZ + ∇XFZ), which gives g(∇XY, Z) =
−g(P̃ Y,∇XPZ −AFZX) + g(Y,∇XPZ −AFZX). From (2.4), (2.11) and (2.16), for
any X, Y ∈ Γ(D1) and N ∈ Γ(ltr(TM)), we obtain g(∇XY,N) = g(∇XP̃ Y, P̃N) −
g(∇XP̃ Y,N), which implies g(∇XY,N) = g(∇∗

XP̃ Y, P̃N) − g(h∗(X, P̃Y ), N). Now,
from (2.2), (2.11) and (2.16), for any X, Y ∈ Γ(D1) and N ∈ Γ(ltr(TM)), we obtain
g(∇XY, P̃N) = g(∇XP̃ Y,N), which implies g(∇XY, P̃N) = g(h∗(X, P̃Y ), N). This
proves the theorem. □

Theorem 4.3. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold M . Then D2 defines a totally geodesic foliation if and only if

(i) g(∇XP̃Z, Y ) − g(PY,∇XP̃Z) = g(FY, hs(X, P̃Z));
(ii) g(∇XPY − AFYX, P̃N) = g(∇XPY − AFYX,N);
(iii) ∇XPY − AFYX has no components in Γ(Rad(TM)),

for all X, Y ∈ Γ(D2), Z ∈ Γ(D1) and N ∈ Γ(ltr(TM)).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian man-
ifold M . The distribution D2 defines a totally geodesic foliation if and only if ∇XY ∈
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Γ(D2), for allX, Y ∈ Γ(D2). Since ∇ is metric connection, From (2.4), (2.11) and (3.6),
for any X, Y ∈ Γ(D2) and Z ∈ Γ(D1), we obtain g(∇XY, Z) = −g(PY,∇XP̃Z) −
g(FY,∇XP̃Z) + g(Y,∇XP̃Z), which implies g(∇XY, Z) = −g(PY,∇XP̃Z) − g(FY,
hs(X, P̃Z)) + g(Y,∇XP̃Z)). In view of (2.4), (2.11), (2.13) and (3.6), for any X, Y ∈
Γ(D2) and N ∈ Γ(ltr(TM)), we obtain g(∇XY,N) = g(∇XPY + ∇XFY, P̃N) −
g(∇XPY+∇XFY,N), which gives g(∇XY,N) = g(∇XPY−AFYX, P̃N)−g(∇XPY−
AFYX,N). Now, from (2.2), (2.11), (2.13) and (3.6), for any X, Y ∈ Γ(D2) and
N ∈ Γ(ltr(TM)), we obtain g(∇XY, P̃N) = g(∇XPY + ∇XFY,N), which gives
g(∇XY, P̃N) = g(∇XPY − AFYX,N). Hence, the proof is completed. □

Theorem 4.4. Let M be a mixed geodesic semi-slant lightlike submanifold of a golden

semi-Riemannian manifold M . Then D2 defines a totally geodesic foliation if and

only if

(i) g(PY,∇XP̃Z) = g(Y,∇XP̃Z);
(ii) g(∇XP̃N, Y ) − g(∇XP̃N, PY ) = g(hs(X, P̃N), FY );
(iii) ∇XPY − AFYX has no components in Γ(Rad(TM)),

for all X, Y ∈ Γ(D2), Z ∈ Γ(D1) and N ∈ Γ(ltr(TM)).

Proof. Let M be a mixed geodesic semi-slant lightlike submanifold of a golden semi-
Riemannian manifolds M , we have hs(X, P̃Z) = 0, for all X ∈ Γ(D2) and Z ∈ Γ(D1).
The distribution D2 defines a totally geodesic foliation if and only if ∇XY ∈ Γ(D2),
for all X, Y ∈ Γ(D2). Since ∇ is metric connection, From (2.4), (2.11) and (3.6),
for any X, Y ∈ Γ(D2) and Z ∈ Γ(D1), we obtain g(∇XY, Z) = −g(PY,∇XP̃Z) −
g(FY,∇XP̃Z) + g(Y,∇XP̃Z), which implies g(∇XY, Z) = −g(PY,∇XP̃Z) − g(FY,
hs(X, P̃Z)) + g(Y,∇XP̃Z). From (2.4), (2.11) and (3.6), for any X, Y ∈ Γ(D2)
and N ∈ Γ(ltr(TM)), we obtain g(∇XY,N) = −g(PY,∇XP̃N) − g(FY,∇XP̃N) +
g(Y,∇XP̃N), which gives g(∇XY,N) = g(∇XP̃N, Y ) − g(∇XP̃N, PY ) − g(hs(X,
P̃N), FY ). Now, from (2.2), (2.11), (2.13) and (3.6), for any X, Y ∈ Γ(D2) and
N ∈ Γ(ltr(TM)), we obtain g(∇XY, P̃N) = g(∇XPY + ∇XFY,N), which gives
g(∇XY, P̃N) = g(∇XPY − AFYX,N). Hence, the proof is completed. □

Theorem 4.5. Let M be a semi-slant lightlike submanifold of a golden semi Rie-

mannian manifold (M, g, P̃ ). Then M is mixed geodesic if and only if the following

hold:

(i) F (∇XPZ − AFZX) = −C(hs(X,PZ) + ∇s
XFZ);

(ii) hl(X,PZ) +Dl(X,FZ) = hs(X,PZ) + ∇s
XFZ,

for any X ∈ Γ(D1) and Z ∈ Γ(D2).

Proof. From (2.9), (2.11), (2.13), (3.2), (3.6) and (3.9), we obtain

h(X,Z) =P̃ (∇XPZ + hl(X,PZ) + hs(X,PZ) − AFZX + ∇s
XFZ +Dl(X,FZ))

− (∇XPZ + hl(X,PZ) + hs(X,PZ) − AFZX + ∇s
XFZ +Dl(X,FZ))

− ∇XZ.
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Taking transversal part of this equation, we get

h(X,Z) =F (∇XPZ − AFZX) + C(hs(X,PZ) + ∇s
XFZ) − hl(X,PZ) − hs(X,PZ)

− ∇s
XFZ −Dl(X,FZ).

Hence, h(X,Z) = 0 if and only if (i) and (ii) hold. Hence, the proof is completed. □
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