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HIGHER CODERIVATIONS ON COALGEBRAS AND
CHARACTERIZATION

E. TAFAZOLI' AND M. MIRZAVAZIRI?

ABSTRACT. In this paper we define higher coderivations on a coalgebra C and then
we characterize them in terms of the coderivations on C'. Indeed, we show that each
higher coderivation is a combination of compositions of coderivations. Finally we
prove a one to one correspondence between the set of all higher coderivations on C'
and all sequences of coderivations on C.

1. INTRODUCTION

A coalgebra (C,A,e) over a field k is a k-vector space C' together with the k-
linear maps A : ¢ — C ® C and ¢ : C — &, such that (I, ® A)A = (A® [,)A,
(coassociativity) and (I, ® €)A = (e ® I,)A, (counitary). The maps A and ¢ are
called, respectively, coproduct and counit of the coalgebra C'. Given an element ¢ of
the coalgebra (C, A, ¢), we know that there exist elements ¢, ; and c,, in C such that
Afc) = X c,, ®c,,. In Sweedlers notation, this is abbreviated to 22 ¢y ® ¢, . Here,
the subscripts “(1)” and “(2)” indicate the order of the factors in the tensor product.
For more about basic definitions in coalgebras notion, you can see [1] and [3].

A k-linear map f : C' — C on a k-coalgebra (C,A,¢) is called a coderivation if
Af =1 f+f®I.,)A. One can see examples and a general definition of coalgebras
and coderivations in the sense of comodules in [2,4,6]. In this paper we define
higher coderivations on a coalgebra C' and then characterize them in terms of the
coderivations on C'. Indeed, we show that each higher coderivation is a combination of
compositions of coderivations. As a corollary we characterize all higher coderivations
which are ordinary. We have some nearly same properties for higher derivations, you

Key words and phrases. Coalgebra, coderivation, higher coderivation.
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can see in [5] and [7]. Throughout the paper, all coalgebras are assumed over a field
of characteristic zero.

2. THE RESULTS

Throughout the paper, C' denotes a coalgebra over a field of characteristic zero
and [ is the identity mapping on C. A coalgebra (C, A, ¢€) over a field & is a k-vector
space C' together with the x-linear maps A : C' — C ® C' and € : C' — k, such that
(I, @ A)A = (A®I.)A, (coassociativity), and (I, ® e)A = (¢ ® I,)A, (counitary).
The maps A and ¢ are called, respectively, coproduct and counit of the coalgebra
C. A k-linear map f : C' — C on a k-coalgebra (C, A, ¢) is called a coderivation if
Af = ([c®f+f®[c>A

Now we define a new concept, named higher coderivation and then characterize
this, but at first we prove some properties, following.

Proposition 2.1. If f is a coderivation on coalgebra (C, A, ¢), then we have

2.1) ar =3 ()it e rha

k=0

for each nonnegative integer n.

Proof. We use induction on n. For n =1 and a € C' we have

= _aq) 2) + flaq) ® ag),

and its true, since f is a coderivation on C . Now suppose that the equality is true for
n, then for n + 1, in the left side of equality, we have

n

A a) = AP(f() = > (Z) (& A ()

k=0
because of f being a coderivation, we have

AP =3 ()it e e r+ re DA
k=0
>

> (Z) FFlaqy) © [ aw) + M (aq) @ " (aw).
0

On the other side we have
ntl (n +1

kz;) N )(fk ® fn+1fk)A<a)

-3 (1) e @ e
B2 () () e rsemn]
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[iﬂZ( > M) ® 1 ag)
n; Z( >(fk+1( aqy) @ [ (g ))] + " ag)) ® ap)
DO W ITEFESUNES 95 of W e ETate]

k=—1

and we have the result. U
We name the relation (2.1) general coLiebnitz rule for coderivations.

If we define a sequence {f,,} of linear mappings on C by fo = I and f,, = 27, where [

is the identity mapping on C, then general coLeibniz rule ensures us that f,’s satisfy
the condition

(2.2) Afy =3 (fe® fui)A
k=0

for each nonnegative integer n. This motivates us to consider the sequences {f,} of
linear mappings on a coalgebra C' satisfying (2.2). We call such a sequence a higher
coderivation.

Definition 2.1. Let C be a coalgebra. We define a sequence { f,,} of linear mappings
on C a higher coderivation if Af,(a) =>1_o(fe @ fu_r)A(a) for each a € C and each

nonnegative integer n.

Though, if A : C'— C is a coderivation then f,, = 2+ is a higher coderivation. We
name this kind of higher coderivation an ordinary hzgher coderivation.

Proposition 2.2. Let {f,} be a higher coderivation on a coalgebra C' with fo = I.
Then there is a sequence {\,} of coderivations on C' such that

(n+1 fn-‘rl an k>\k+17

for each nonnegative integer n.

Proof. We use induction on n. Because of {f,,} being a higher coderivation, for n = 0
we have

Afi(a) =[(fo® f1) + (/1 ® fo)lA(a)
= folaw) ® filaw) + filaw) @ folaw)
=2_aw ®f1 (a@) + filaw) @ ag).
Thus, if \y =1 and A\ = fl, then \; is a coderivation on A and

A(foAr)(a) = = Aolaq) ® M(ae) + Mlaq) @ Aolae).
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Now suppose that Ay it is defined and is a coderivation for £ < n. Putting \,;; =
(n+1) fri1— X020 fakAes1, we show that the well-defined mapping A, 1 is a coderiva-
tion on C. For a € C, since {f,} is a higher coderivation and Ay, ..., A, are coderiva-
tions, we have

szMFﬂmﬂﬂhmw—gﬁﬁmMMW)

—(n+ 1)A S (a)
n—1n—k

=22 D (fi® fait) (a(l) ® Mer1(a@) + Mgala)) ® a(z))
k=0 [=0
n+1

=(n+1) Y (fr ® fas1-k)A(a)
k=0
n—1n—=k

= 3D (i@ frk (a(1)®)\k+1( 9)) + Art1(a 1))®a(2))

k=0 =0
n+1

=(n+1) 1; > frla) ® frr—r(ag)

n—1n—~k

=22 > (fi® fuk <&(1 ® Arr1(ag) + At (ag ))®a(2))

k=0 1=0
n+1

=(n+1) Zka ) @ frri-k(ag))

n—1n—~k

= > > > filaw) @ fakai(wralag)) + filteia(aq))) @ farilag)-

k=0 [=0

Now, by properties of tensor product, we have

n+1
Alnyi(a Z S (k+n+1-k) (fk(a(l)) ® fn+1—k(a(2)))

n—1n—=k

> DD (A® fui) (au) ® Arri(ag) + Aera(aq)) ® a(z))
k=0 =0

n+1

=2 > kfilaw) ® faniw(a@) + filaw) ® (n+1 k) funwlag)

k=0
n—1n—=k

=222 (fi® fumk) ( ® Arr1(ag) + Ara(aq)) @ ag ))
k=0 1=0

Writing
n+1 n—1n—=k

K = ZZkfk 1) @ frasi-klam) = D D> feodri(aqy) @ faor—i(ag),

k=0 £=0
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n+1
L= filaw) ® (n+1—Fk)furrlaw)
k=0
n—1n—=k
= 3> felaqy) @ fa—k—eds(ag),
k=0 (=0

we have A\, 1(a) = K+ L. Let us compute K and L. In the summation >}~ Zg 0>
we have 0 < k + ¢ <n and k # n. Thus, if we put r = k 4 ¢ then we can erte it as
the form 377 >y ooy gt Putting £ = r — k we indeed have

n+1

K = szfk ) @ frri-k(ae))

- Z ST ke (aq)) ® far(ag)

r=0 0<k<r,k#n
n+1

—sz‘fk ) @ fori-k(ag)

n—1 r

- Z (Z Z fr—k)\k—H ) ® fn r CL(Q > Z fn k;>\k;+1 ) ® a(2)-

r=0 k=0
Putting r + 1 instead of k in the first summation we have

n—1
K + Z > fackiri(aqy) @ ag)

n—1 r

iz Do) @ fucrlom) = T 3 5 i) © fcr (o)
:Z (”z: [(T-i— 1) fr1(a Zfr kAey1(a )1 ®fn—r(a(2)>

+ (n+1) frs1(aq) @ a@).

By our assumption
,

(r+ 1) frea(a) = D (frokder1)(a),

k=0
forr=0,...,n— 1. We can therefore deduce that

K = Z [ n+ 1)f71+1 Z f’n k?Ak-i-l ‘| & a/(Q Z )\n+1 ( )
By a similar argument we have
L=) ay® [ n+1) foi1(a Z JokArr1(ag) ] > aa) ® s (ag))-

Thus,
A>\n+1(a) =K+ L= (I & )\n—i-l + )\n—i-l ® ])A(CI,),
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whence A, is a coderivation on C. ]

To illustrate the recursive relation mentioned in Proposition 2.2, let us compute
some terms of {d,}.

Ezample 2.1. Using Proposition 2.2, the first five terms of {f,} are
fo=1,
fila) = fo(M(a)) = Aia) = fr = A,
2fs(a) = fi(Mi(a)) + fo(ha(a)) = Ai%(a) + Aa(a) — 2f, = A2 + )y,

1
7)\2 -\
f 2 + 9 2

1 1
3fs = fohi + fide + fods = <2)\§ + 2)\2) AL+ A + A,

1 1 1 1
f3 == 6)\? + 6)\2)\1 ‘|— g)\l)\Q + 5/\3,

4fs= fsh1 + fada + fids + fols
= <1A3+1A At A +1A)A +<1A2+1A>A + XAz + A
M T g T g oA J A oM T 5A2 ) A 1A3 1 A4,
fa= 214)\11 + 214)\2)\% + 112)\1>\2)\1 + 112)\3)\1 + ;)\%& + ;/\3 + le)q)\?, + 118\4-
Theorem 2.1. Let {f,} be a higher coderivation on a coalgebra C' with fo = 1. Then
there is a sequence {\,} of coderivations on C' such that

n+1 i 1
(n+1)fn+1 - Z Z (H T’-’-—f—?“) /\ri-..>\,«1 ,
i J

=2 23:1 ri=n i=1
where the inner summation is taken over all positive integers r;, with 375 _, r; = n.

Proof. We show that if f,, is of the above form then it satisfies the recursive relation

of Proposition 2.2. Since the solution of the recursive relation is unique, this proves

the theorem. Simplifying the notation we put a,, ., = . Note that if

7777 J=1 r;+.. +r
1+ +r; =n-+1then (n+1)a,, - Moreover, a, .1 = n—li-l' Now we
have

..... T1 *ar

22:2 rj=n—(r1—1)
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= Z fn—(rl—l))\rl + )\n+1

ri=1

= fa-k Akt O
k=0

Ezample 2.2. We evaluate the coeflicients a,.,
For n = 4 we can write

4=14+3=3+1=24+2=14+142=1+2+1=24+14+1=1+1+1+1.

~ for the case n = 4.

.....

By the definition of a,, . ,, we have
1
a4—1,
1 1 1
a = — 0 = = —
BT 1433 12
11 1
BT T T
111
22757937 %
B 1 1 1_1
2T 9 142 2
1 1 1 1
a — . - =
PP 041 241 1 12
! 11 1
LT 11 141 1 &
1 1 1 1 1
airi1,1 = : : T = .
1+1+1+1 1+14+1 1+1 1 24
We can therefore deduce that
f—1)\—I—i)\)\—|—1>\)\—l—1)\)\+i)\)\)\+i)\)\)\+1)\)\)\+i)\)\)\)\
4= Mt AT A gAede oAl o AL de AL g At A o AL AL AL

Theorem 2.2. Let C' be a coalgebra, F' be the set of all higher coderivations
{fu}n=01.. on C with fo = I and A be the set of all sequences {\n}n—o1.... of coderiva-
tions on C with \g = 0. Then there is a one to one correspondence between F and
A.

Proof. Let {\,} € A. Define f,,: C' — C by fo = I and

23:1 rj=n j=1

We show that {f,} € F. By Theorem 2.1, {f,} satisfies the recursive relation

(n + 1)fn+1 = Z fn—lc/\k:—&-l‘
k=0
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To show that {f,} is a higher coderivation, we use induction on n. For n = 0 we have

Afo(a) =Y any®@ap =Y folan)) ® folae) =D _(fola)q ® (fola)) e

Let us assume that Afy(a) = S5 ((f; ® fr_i)A(a) for k < n. Thus, we have

(n+ DA fapi(a) =) AfarAeta(a)

WE

k

I
o
i
B

I
NE

(fz®fn k— )A)‘kJrl( )

Lol
Il
(=)
IS =
Il
;y‘ [e=)

Il
NE
(1]

(fz®fn —i) (L @ Apg1 + Ao @ 1)A(a)

bl
I
o
I =
Il
??‘ (=)

I
M=
]

Z (fi @ fon (Za ® Mey1(ag)) @ Nt1(a@)) ® a(z))

bl

Il

(=)
7T
;TD

I
M:

Zfz a@)) ® fo—k—i(Aes1(a)))
k=0 i=

+ z'( ke1(aq) ® frr—iag)).

Using our assumption, we can write

(n+ 1A frsi(a Z Z fi a(1 (n—i+ 1>fn—i+1(a(2))

+iz (=i +1) (fassala) © filaw)

n

ZZ n+1—1i)fi(aw) @ fur1-i(ag)

=0

ntl
+ZZ fz ®fn+1 z( ))
ntl
1) l; > filaq) @ fasi—r(a)
ntl
=(n+1) kz_:(fk ® frr1-k)A(a).

Thus, {f.} € F.
Conversely, suppose that {f,} € F. Define A\, : C — C by Ay = 0 and

n—2

>\n = nfn - Z fn—l—k)\k—l—l-

k=0
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Then Proposition 2.2 ensures us that {\,} € A. Now define ¢ : A — F by p({\.}) =
{fa}, where

fn:zn: Z ﬁ; )‘ri"'>‘7"1

4 ) - T _|_ P + r.
=1 1T j
‘ 22:1 rj=n \J
Now ¢ is clearly a one to one correspondence. O

Recall that a higher coderivation {f,} is called ordinary if there is a coderivation
A such that f,, = ’;—7: for all n.

Corollary 2.1. A higher coderivation {f.} = ¢({\.}) on a coalgebra C' is ordinary
if and only if \, =0 for n > 2. In this case f, = fi

nl "

3. CONCLUSION

In this paper proving an equality for a coderivation on a coalgebra C', named general
coLiebnitz rule for coderivations, we defined higher coderivations on a coalgebra C' and
then we characterized them in terms of the coderivations on C'. Indeed, we showed that
each higher coderivation is a combination of compositions of coderivations. Finally we
proved there is a one to one correspondence between the set of all higher coderivations
on C' and all sequences of coderivations on C'. As a corollary we characterize all higher
coderivations which are ordinary.
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EXISTENCE RESULTS FOR KIRCHHOFF NONLOCAL
FRACTIONAL EQUATIONS

FANG-FANG LIAO!, SHAPOUR HEIDARKHANI?, AND AMJAD SALARI?

ABSTRACT. Fractional and nonlocal operators of elliptic type arise in a quite natural
way in many different contexts. In this paper, we study the existence of solutions for
a class of fractional equations, while the nonlinear part of the problem admits some
perturbation property. We obtain some new criteria for existence of two and infinitely
many solutions, using critical point theory. Some recent results are extended and
improved. Several examples are presented to demonstrate the applications of our
main results.

1. INTRODUCTION

In this paper we investigate the existence of multiple nontrivial weak solutions for
Kirchhoff fractional problem

(L)) —Lgu=Af(u), inQ,
f u=0, in R™\ (),

where 2 is a bounded domain in (R™, |- |) with n > 2s, s € (0,1) and | - | is the usual
Euclidean norm in R™, with smooth (Lipschitz) boundary 02 and Lebesgue measure
|2, A > 0, and f : R — R is a continuous function. Moreover, £ is the nonlocal
operator defined as follows:

Sxcula) =M ( [ @) = w5z - y)dady)
x [ (ule+y)+ ule — y) - 2u(@)) K (y)dy,
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where M : RT — R is a continuous function, @ := (R" x R")\O with O := (€Q) x
(€Q) C R x R™ and €2 := R"\{0}, K : R"\{0} — (0,+00) is a function with the
properties that:

(k1) vK € LY(R") where v(z) = min{|z|?, 1};

(k) there exists § > 0 such that K(z) > 6|z|~"*2%) for any x € R"\{0};

(k3) K(z) = K(—x) for any z € R"\{0}.
A special case of L is the fractional Laplace operator defined as

—(=A)u(x) = /n uz+y) +|Z|(f+; Y) = 2u(x)dy7 reR™,

n+2s

which corresponds to the case M = 1 and K (x) = |z|~™*2%). One typical feature of
problem (£}) is the nonlocality, in the sense that the value of (—A)*u at any point
x € ) depends not only on €2, but actually on the entire space R™. In the special
case, fractional Laplacian operator —(—A)® (up to normalization constants) may be
defined as () )l
u(xr) —u
~(=A)u(x) =PV. [ ’x_y’nédy, z € R,

where P.V. is a particular value. It may be seen as the infinitesimal small generators of
a Lévy motion stable diffusion operations [1]. This operator has been used in modelling
various applied phenomena, like phase transitions, materials science, conservation
laws, minimal surfaces, water waves, optimization, plasma physics, etc. On the
other hand, and more importantly, fractional and non-fractional operators find many
specific applications also in bio-mathematics and physics, which nowadays is a rather
fashionable field of research; we, for instance, refer to [15,20,21]. To see more features,
you can see [30,34] and references therein. Recently, a lot of research work has
been done to the study of semiclassical standing waves for the non-linear fractional
Schrodinger equation of the form

(1) 00 - 2 (A U+ Py~ [ 0]), xR

where ¢ is a small positive constant, which corresponds to the Planck constant, (—A)?,
0 < s < 1, is the fractional Laplacian, P(x) is a potential function. Problem (1.1)
models naturally many physical problems, such as phase transition, conservation
laws, especially in fractional quantum mechanics, etc. (see [16]). It was introduced
by Laskin [19] as a fundamental equation of fractional quantum mechanics in the
study of particles on stochastic fields modelled by Lévy process. We refer to [12]
for more physical background. To obtain standing waves of the fractional non-linear
Schrédinger equation (1.1), we set 1(z, t) = e = u(z) for some function u € H*(R"),
and let V(z) = P(z) — E. Then problem (1.1) is reduced to the following equation:

(1.2) ¥ (=AY u+V(z)u= f(xr,u), xeR™

In quantum mechanics, when ¢ tends to 0, the existence and multiplicity of solutions
to (1.2) is of particular importance.
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In the nonlocal case, that is, when s € (0, 1), the nonlocal model has attracted
much attentions recently. For the case of a bounded domain, Ricceri [33] established
a theorem tailor-made for a class of nonlocal problems involving nonlinearities with
bounded primitive. In [8], Molica Bisci and Repovs studied a class of nonlocal
fractional Laplacian equations depending on two real parameters. More precisely, by
using an appropriate analytical context on fractional Sobolev spaces due to Servadei
and Valdinoci, they established the existence of three weak solutions for nonlocal
fractional problems exploiting an abstract critical point result for smooth functionals.
They emphasized that the dependence of the underlying equation from one of the
real parameters is not necessarily of affine type. For more related results, we refer the
reader to [24-26] and the references therein.

The interest in studying problems like problem (L?) relies not only on mathematical
purposes but also on their significance in real models. For example, in the Appendix
of paper [17], the authors constructed a stationary Kirchhoff variational problem,
which models, as a special significant case, the nonlocal aspect of the tension arising
from nonlocal measurements of the fractional length of the string.

Kirchhoff models take into consideration the length changes of the string produced
by transverse vibrations (see [18]). Fractional and nonlocal operators of elliptic type
which is modeled by the singularity at infinity is an emerging research field. From the
physical viewpoint, nonlocal operators play a considerable role in characterizing a set
of phenomena. A general reference for this issue is [39], where the author explained
two models of flow in porous media, including nonlocal diffusion effects, providing
a long list of references related to physical phenomena and nonlocal operators. The
first model is based on Darcy’s law, and the pressure is associated with the density by
an inverse fractional Laplacian operator. The second model mostly follows fractional
Laplacian flows but it is nonlinear. In contrast to the usual porous medium flows, it
has infinite speed of propagation. On the other hand, fractional nonlocal operators
arise in a quite natural way in many different contexts. See for instance the references
[5-7] and [2,4,8,13,25,28,38]. For example, Molica Bisci in [25] studied the existence
of infinitely many weak solutions to the problem (£}) where f(x,u) replaced by f(u)
with z € ) in the case A = 1 and M = 1. We have shown in Remark 4.1 that our
results in Theorem 1.2 are different from [25, Theorem 1.1].

Recently, some researchers have studied the existence and multiplicity of solutions
for fractional equations of Kirchhoff type; we refer the reader to [3,10,11, 14,23, 29,
40, 42] and the references therein. For example Chen and Deng in [10] based on
Ekeland’s variational principle investigated the existence of solutions to a Kirchhoff
type problem involving the fractional p-Laplacian operator. It established in [23] the
multiplicity of weak solutions for a Kirchhoff-type problem driven by a fractional
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p-Laplacian operator with homogeneous Dirichlet boundary conditions:

P
(//]Rmv |$ — y|N+p?s‘ dl’dy) (—A);u(:p) = f(l’, u)a in ),
u=0, in R™\Q,

where  is an open bounded subset of RV with Lipshcitz boundary 99, (—A)? is the
fractional p-Laplacian operator with 0 < s < 1 < p < N such that sp < N, M is
a continuous function and f is a Carathéodory function satisfying the Ambrosetti-
Rabinowitz condition. When f satisfies the suplinear growth condition, they obtained
the existence of a sequence of nontrivial solutions by using the symmetric mountain
pass theorem, and when f satisfies the sub-linear growth condition, they obtained
infinitely many pairs of nontrivial solutions by applying the Krasnoselskii genus theory.
By using an appropriate analytical context on fractional Sobolev spaces, Molica Bisci
and Tulone in [29] obtained the existence of one non-trivial weak solution for nonlocal
fractional problem (£3}) in the case M(x) = a + bz where a, b are positive numbers.
Xiang et al. in [40] studied the problem

{ M (2, [ul2,) (=A)su(@) = f(z,u, [u]2,), nQ,

u=0, in R™\Q,

where [u]} | = [[pen ‘x y‘Nﬂ,S “dady, (— A)7 is a fractional p-Laplace operator, € is
an open bounded subset of RY with Lipschitz boundary, M : Q x Ry — RT is a
continuous function and f : Q@ x R x Rf — R is a continuous function satisfying
the Ambrosetti-Rabinowitz condition. They obtained the existence of nonnegative
solutions by using the Mountain Pass Theorem and an iterative scheme.

The present paper focuses on this issue since it is clear that in problem (L}‘) there
is a singularity in the term L (u), which causes difficulties in the proof. In this paper,
we are concerned with the existence results for the problem (L?), and prove at least
two weak solutions and infinitely many weak solutions for the problem (L?) Several
special cases of the main results and two illustrating examples are also presented. We

use the following assumptions throughout this paper:
(M) M : RT — R" is a continuous function that satisﬁes mot®™t < M(t) < myto!
for all t € RT, where m; > mg >0and 1 < a < :

n— 28’

(F1) there exists a constant 3 > 2::‘1—;“ with 0 < SF(t) < &f(t) for all t € R\{0};

(F2) lmyy—poo lﬁy—t)l =0, i.e., f is (&« — 1)-sublinear at infinity.

The main results of this paper are presented as follows.

Theorem 1.1. Assume that the assumptions (M), (F1) and (F3) hold. Then, if
f(t) >0 for allt € R, the problem (L£}) has at least two weak solutions.

Theorem 1.2. Assume that the assumptions (M), (F1) and (F2) hold. Then, if f(t)

is odd, the problem (,C}) has infinitely many weak solutions.
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2. PRELIMINARIES

In this part, we discuss some preliminary results which can be found in [34]. The
functional space E denotes the linear space of Lebesgue measurable functions from
R" to R such that the restriction to € of any function u in E belongs to L?(2) and

((w, y) = (u(z) — uy)/K (x — y)) € L2((R" x R")\(CQ x €0), drdy).
We denote by Eg the following linear subspace of E
Ey:={ueE: u=0a.e. in R"\Q}.

We remark that E and Ey are nonempty, since C3(Q2) C Eq by [34, Lemma 11].
Moreover, the space E is endowed with the norm defined as

1/2
Jule = s + (@) = u@)PK @ = y)dedy)

It is easily seen that || - || is a norm on E (see [35]). By [35, Lemmas 6 and 7] in the
sequel we can take the function

1/2
(2.1) Eo 5 u s |Jullg, = (/Q lu(z) — uly) K (@ — y)dxdy)
as norm on Eq. Also (Eo, || - ||g,) is a Hilbert space with scalar product

(u, v) x, = /Q(U(fv) —u(y))(v(z) = v(y) K(x — y)dzdy.

See [35, Lemma 7]. Note that in (2.1) (and in the related scalar product) the integral
can be extended to all R” x R™, since v € Ey (and so v = 0 a.e. in R"\Q2). While
for a general kernel K satisfying conditions from (x1)-(k3) we have that E, C H*(R"),
in the model case K (z) := |z|~("*2%) the space Eq consists of all the functions of the
usual fractional Sobolev space H*(R™) which vanish a.e. outside €2 (see [37, Lemma
7]). Here H*(R™) denotes the usual fractional Sobolev space endowed with the norm
(the so-called Gagliardo norm)

2 1/2
u(z) — u(y
lulls = [l dedy) |

ween) = [|ulliz@n) + (/ann = — gl

Remark 2.1. By [34, Lemma 8], the embedding j : Eg < L”(R") is continuous for
any v € [1,2*], while it is compact whenever v € [1,2*), where 2* := 2% denotes
the fractional critical Sobolev exponent. For further details on the fractional Sobolev
spaces we refer to [12] and to the references therein, while for other details on E and
Eo we refer to [12], where these functional spaces were introduced, and also to [35-37],
where various properties of these spaces were proved.
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Definition 2.1 ([24]). We say that u € E; is a weak solution of (£3}) if for all v € Eq

M (| fu@) = u(@) P (@ = p)dady) [ (u(e) = (@) (v() — o)) K (z - y)dady

We refer the reader to [22,32] for the following notations and results.

Theorem 2.1 ([22, Theorem 4.4]). Let X be a Banach space, ¢ : X — R a function
bounded from below and differentiable on X. If ¢ satisfies the (PS).-condition with
c =infx ¢, then ¢ has a minimum on X.

It is clear that the (PS)-condition implies the (PS).-condition for each ¢ € R.

Theorem 2.2 ([22, Theorem 4.10]). Let p € CH(X,R), and ¢ satisfy the Palais-Smale
condition. Assume that there exist ug,u; € X and a bounded neighborhood €2 of ug
satisfying u; ¢ Q and inf,co0 p(v) > max{p(ug), p(u1)}, then there exists a critical

point u of ¢, i.e., ¢ (u) =0, with p(u) > max{y(ug), p(u1)}.

Theorem 2.3 ([32, Theorem 9.12]). Let X be an infinite dimensional real Banach
space. Let ¢ € CY(X,R) be an even functional which satisfies the (PS)-condition and
©(0) = 0. Suppose that X =V @ E, where V is infinite dimensional, and ¢ satisfies
that

(1) there exist a« > 0 and p > 0 such that p(u) > « for all u € E with ||u|| = p;
(73) for any finite dimensional subspace W C X, there is R = R(W) such that
o(u) >0 on W\ Braw).

Then ¢ possesses an unbounded sequence of critical values.

We refer the reader to the paper [9,41] in which Theorems 2.2 and 2.3 were suc-
cessfully employed to ensure the multiple solutions of degenerate nonlocal problems
and nonlinear impulsive differential equations with Dirichlet boundary conditions,
respectively.

Corresponding to the functions f and M we introduce the functions F' : R — R
and M : [0,4+00) — R, respectively, as F(t) := [ f(€)d¢ for all t € R and M(t) :=
J3 M(€)d€ for all ¢ € [0, +00), and consider the functionals ®, ¥ : Eg — R defined by

1

(2.2) (u) = 3

M (Jullf,) and W) = [ Flu(z)de,

for all u € Ey. Thus, by the assumption (M) we have

mo 2 mq 2
20l < ®(u) < 22 ull,
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which means that the functional ® : Eg — R is coercive. On the other hand, & and
U are continuously Gateaux differentiable. More precisely, we have

@(w)(w) =M ( ] [u(e) ~ u(y) K (@~ y)dzdy)

x /Q (u(z) — u(y))(v(x) — v(y) K (z — y)dzdy
and
V() = [ f(ulz)o()ds,

for every u,v € Eq. Fix A\ > 0. A critical point of the functional Jy := ® — AW is
a function u € Ey such that ®'(u)(v) — AV'(u)(v) = 0 for every v € Eg. Hence, the
critical points of the functional .Jy are weak solutions of problem (£7).

3. ProOOFs OoOF MAIN RESULTS

We prove Theorems 1.1 and 1.2 in this section. For this we need the following
remark and lemma.

Remark 3.1. If the assumption (J7) holds and m = miny—; F'(t), then by the same
argument as in [9, Remark 3.1], there exists a constant Cy such that F(t) > mlt|® —C,
for all t € R.

Lemma 3.1. Assume that (F1) holds and X > 0. Then J\(u) satisfies the (PS)-
condition.

Proof. Let {un}nen C Xo such that {J(u,)}nen is bounded and J5(u,) — 0 as n —
+00. Then, there exists a positive constant ¢y such that |Jy(u,)| < co, |J5(un)| < ¢ for
all n € N. Therefore, we infer to deduce from the definition of J§ and the assumption

(9:1) that

co + 1l[unlley 2BIx(un) — J3(n) (un)

> (L = ) ol = A f (BP0 = )0

2
> (Lo )

for some ¢; > 0. Since 5 > 2:’;—;“, this implies that (u,) is bounded. Now, as the same
argument in [10, Lemma 2.2 (i)], we can prove that {u,} converges strongly to u in
Eo. Consequently, J, satisfies (PS)-condition. O

3.1. Proof of Theorem 1.1.

Proof. In our case it is clear that Jy(0) = 0. Lemma 3.1 has shown that .J, satisfies
the (PS)-condition.
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Step 1. Since 1 < a < = 2 , by Remark 2.1 the embedding Eq < L*(R") is compact
and there exists C; > 0 such that for all u € Eg, C||u|[Le@ny < |Jullg, or

e [ Ju@)lde < ([ fute) ~ u)PK(e - y)dsdy) "
which implies that

 Jylute) — u()PK(x — y)dady
u€Eo\{0} fQ |U(.Z') |2ad$

Ag =

By the assumptions (M) and (F3), and since f(¢) > 0 for all t € R, we can take ¢ < 2«
sufficiently small such that for sufficiently great o > 0, | f(¢)| < =2e[¢]**~! for all |t| >
o and |F(t)] < §2¢8[t[** + (maxy <, f(t))[t|]. Thus, for every u € Eq

(3.1) Z’Zg/ ju(a)|"dz + max f( /|u )|dz.

By Holder inequality, we have

[ u@lde < 190 ( [ )
Then, by (3.1)

EMyo

W(u) < Sl + /12 max £ (/ Ju(a de)
em
<2 °|| 2 +\/ Jmax f(0) e
Em 1
< T2l +\/|Q|I|ﬂg§f(t)A12\|U|lEo-

Then, for any u € X by (2.2)
(32) Ta(w) = 20(1 = 2 fulf = Comax (0 uls,

where Cy = \/» Now, by means of o > 5, p > 1 and (3.2), it follows that J) is a
coercive functional and is bounded from below. Since J), satisfies (PS)-condition by
Lemma 3.1, Theorem 2.1 follows that there exists a minimum point ugy of Jy on Eg
and 0 = Jy(0) > Jy(up) and J3(ug) = 0.

Step 2. Since ug is a minimum point of Jy on Ey we can consider L > 0 sufficiently
large such that Jy(ug) < 0 < infyesp, Jr(u) where By, = {u € Eq : ||u|lg, < L}. Now
we will show that there exists uy with [Jui||g, > L such that Jy(ui) < infgp, Jy(u).
For this, let ¢1(t) € Ey and u; = rf;, r > 0 where ¢; corresponding to A; is the first
eigenfunction of (£}) and ||¢1]|g, = 1. By Remark 3.1, there exist constants ay,as > 0
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such that F(t) > a,|t|® — ay for all t € R. Thus,

Ia(ug) = (& = AV)(rty) < 2—;”7’61”%‘; — )\/QF(T&(Q:))dx

myr2®

< — - )\rﬁal/ 01 ()P dx + Aag| Q.
2a0 Q

So by g > 2;’;—;‘1, there exists sufficiently large r > L > 0 such that Jy(rf;) < 0.

Therefore, max{Jy(up), Jx(u1)} < inf,cop, Jr(u). Then, Theorem 2.2 by X := Ej and

@ = J, gives the critical point u*. Therefore, ug and u* are two critical points of Jj,

which are two solutions of (£3}). O

3.2. Proof of Theorem 1.2.

Proof. Put X := Eq. It is clear that, J, is continuously Gateaux differentiable. In
view of (2.2) it is obvious that Jy(u) is even and J5(0) = 0.

Step 1. We will show that J) satisfies condition () in Theorem 2.3. The inequality
(3.2) shows the coercivity of Jy and together with (PS)-condition, by minimization
theorem [22, Theorem 4.4] the functional J) has a minimum critical point u with
Jr(u) > a> 0 and ||u||g, = p for p > 0 small enough.

Step 2. We will show that Jy satisfies condition (i7) in Theorem 2.3. Let W C Ej
be a finite dimensional subspace. By Remark 3.1, there exist constants aq,as > 0
such that F(t) > a|t|® — ay for all t € R. Now, For every r > 0 and u € W \ {0}
with ||u|lg, = 1, one has

Iy(ru) = (@ — )\\I/)(ru)<—|| i\ / ru(z

mﬂ”

e ulls — Arfa, / u(@)d + Az — —00, 1 +o0.
Q

The above inequahty implies that there exists o such that ||ru||g, > p and Jy(ru) <0
for every r > ro > 0. Since W is a finite dimensional subspace, there exists R =
R(W) > 0 such that Jy(u) < 0 on W \ Bgw). According to Theorem 2.3, the
functional Jy(u) possesses infinitely many critical points, i.e., the problem (L}) has
infinitely many weak solutions. 0

4. EXAMPLES AND REMARKS
In this section we present two examples and some remarks of our main results.

Ezample 4.1. Let n =2, s = 5, Q@ = {(x1,22) € R? : ai+a3 <4} CR?, M(t) = tK(t)
for all t € RT where K (t) is 2-periodic extension of the function k(t) = 2 — |t — 1],
0<t<2 f(t)=1+18 = 4, thus M satisfies
the condition (M) by mg =1, m; =2 and a = 2. Also, M and f are two continuous
functions, f(t) > 0 for all t € R, limg ¢+ gfa@ limg_, o+ IS S = +o00, thus the

13
assumption (Fy) is satisfied. Moreover, taking into account that lim¢)— 400 gFT(E)) =
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§+
such that the assumption (J) is fulfilled for all |{| > p. Hence, by applying Theorem
1.1, for every A > 0, the problem

M / lu(x) — “<y>|2dxdy
R2xR2)\(@xQ) |z —y[3

y / u(z +y) + u’(yx‘s— y) — 2u(:z:)dy — A1+ ), mQ,
RQ

u =0, on 0f2,
possesses at least two nontrivial weak solutions in the space

HY? = {u c H/2(R*): u=0ae. in R2\Q} :

lime| 5400 % =9>8= Z’T”n—;o‘, by choosing f =9 > 8 = 2:2—;‘1, there exists o > 1

Example 4.2. Let n = 2, s = 5, Q@ = {(zy,22) € R* : 2 + 23 <4} C R? M(t) =
(3 + 3sint)t for all ¢t € RY, f(¢t) = 1+t for all ¢ € R. We observe that -22- = 4

n—2s =
thus M satisfies the condition (M) by mg = 1, m; = 2 and o = 2. Also, M and f

are two continuous functions, f is odd and limg_,o+ gﬁ)l = lime_,o+ 1259 = +00, thus

the assumption (JF,) is satisfied. Moreover, taking into account that limje|_, 40 %(g)) =

. 5+§10 - 2 . o 2 .
lime|5 400 Terien = 10 >8 = “ﬂfb—;a, by choosing § =10 > 8 = ’TZ—;O‘, the assumption

(F1) is fulfilled. Hence, by choosing o = % and applying Theorem 1.2, for every A > 0,

the problem
Y, / lu(z) — U(y)lgdxdy
R2xR2)\(@xQ) |z —y[3

x/ u(x+y)+u(x—y)—2u(a:)dy:)\(1+u9), inQ,

lyl?
u =0, on 0f2,

/2

has infinitely many weak solutions in the space H(l)

Remark 4.1. Example 4.2 shows that our existence results to establish infinitely many
solutions for the problem (L?) in Theorem 1.2 is different from the existence results
of Molica Bicsi in [25, Theorem 1.1]. Because, firstly in Example 4.2 we have M # 1,
while in [25, Theorem 1.1], M = 1, and the second the function f in [25, Theorem
1.1] should satisfy in

(4.1) O] < @+ alt™, ana>0,q¢ (2, ) teR,

n—2s
while in Example 4.2, -2~ =4 and f(t) = 1+ t°, and so f does not apply to (4.1).

’ n—2s
Remark 4.2. By [28, Subsection 1.1], if f(0) # 0, then Theorem 1.1 ensures the
existence of two nontrivial weak solutions for the problem (L?) If the condition
f(0) # 0 does not hold, the second solution us of the problem (£}) may be trivial, but
the problem has at least a nontrivial solution. Moreover, by the same argument as
28, Corollary 3] we can prove that, under the condition that f(0) = 0, the solutions
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given by Theorem 1.1 has constant sign, i.e., Theorem 1.1 provides non-negative
(non-positive) solutions.

Remark 4.3. By the similar arguments as given in the proof of [28, Subsection 4.1] the
non-triviality of the second weak solution ensured by Theorem 1.1 can be achieved
also in the case f(0) = 0 requiring the extra condition at zero in the form of

/) S,

4.2 limsup =——* = o0 and liminf —* > —o0.

+2) 2P T 2o T

Indeed, let A > 0 and let & and ¥ be as given in Section 3. Due to Theorem 2.1 and
Lemma 3.1, J, = ® — AV has a critical point u) that is a global minimum of J,. We
will prove that the function uy cannot be trivial. Let us show that

im su ¥(w)
(4.3) 1||u||—>0J1F:) ()

Owing to the assumptions (4.2), we can consider a sequence {{,} C R* converging
f(én)

to zero and two constants o,k (with 0 < o < 1) such that lim,_, = 400 and

|€n
F(&) > k[¢]? for every € € [0,0]. We consider a set § C B of positive measure and a

function v € X such that v(t) € [0, 1] for every t € 2, v(t) = 1 for every t € G and
v(t) =0 for every x € Q\ D. Hence, fix N > 0 and consider a real positive number 7
with

20m|G| 4 2ak [ g [v(t)]dt

ma vl

Then, there is ng € N such that &, < o and F(&,) > n|&,|* for every n > ny. Now, for
every n > ng, by considering the properties of the function v (that is 0 < ,v(t) < o
for n large enough), one has

W) | FEISI+ Jpyg FEv(®)dt  2an|S] + 20k g [u(t)dt

= > > N.
O(&nv) D(&nv) ma|[vl|E
Since N could be arbitrarily large, we get lim,, . ggzz; = +o00, from which (4.3)

clearly follows. So, there exists a sequence {(,} C X strongly converging to zero such
that, for n large enough, Jx((,) = ®((n) — AV((,) < 0. Since wy, is a global minimum
of Jy, we obtain Jy(uy) < 0, so that u, is not trivial.

Remark 4.4. We observe that if f is non-negative, Theorem 1.1 is a bifurcation result
in the sense that the pair (0,0) € E} C Eg x R with

E} = {(u,\, A) € Eg x (0,00) : uy is a non-trivial weak solution of (L})}

Practically, by the proof of Theorem 1.1, |juy|lg, — 0 as A — 0. Hence, there exist
two sequences {u;} in Eg and {);} in R (here u; = u,,) such that \; — 07 and
|u;|| — 0, as j — oo. Moreover, since f is nonnegative, ¥(u) < 0 for all u € R
and thus the mapping (0, \*) 2 A +— I,(uy) is strictly decreasing. Hence, for every
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A1, A2 € (0, A%), with Ay # Ag, the weak solutions uy, and wuy, ensured by Theorem 1.1
are different.

Remark 4.5. If f(u) is an odd function we can give the same result as Theorem 1.2
by setting the following assumptions on nonlinear term:

(F3) there exist constants R > 0 and 0 < AL; < §min{l,mg} such that F(u) <
Li|uf? for all u € R with |u| < R;

(F4) there exist constants Ry > 0, 6; > 0 and «; > [ such that F'(u) > 6;|u|*, for
all u € R with |u| > R;

(F5) there exist constants 3 > "1 §; > 0and 0 < ap < 2 such that vF(§)—{f(§) <
52|u|0‘2.
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GENERALIZATIONS OF SOME BERNSTEIN-TYPE
INEQUALITIES FOR THE POLAR DERIVATIVE OF A
POLYNOMIAL

ABDULLAH MIR AND ADIL HUSSAIN

ABSTRACT. In this paper, we establish some new Bernstein-type bounds for the
polar derivative of constrained polynomials on the unit circle in the plane. The
obtained results sharpen some known estimates for the ordinary derivative of poly-
nomials as special cases.

1. INTRODUCTION

Let P, denote the class of all complex polynomials P(z) := >0 ¢,2" of degree

n. The extremal problems of functions of complex variables and the results where
some approches to obtaining the classical inequalities are developed on using various
methods of the geometric function theory are known for various norms and for many
classes of functions such as polynomials with various constraints, and on various
regions of the complex plane. A classical result due to Bernstein [2], that relates an
estimate of the size of the derivative and the polynomial for the sup-norm on the unit
circle states that: if P € P, then

(1.1) max P’(z)‘ <n r‘£1|a>1<|P(z)\.

The above inequality (1.1) was proved by Bernstein in 1912. Later in 1985, Frappier,
Rahman and Ruscheweyh [3] strengthened (1.1), by proving that if P € P, then

(1.2) max P'(z)‘ < n max ’P(e%ﬁ) :

|z|=1 1<1<2n

Key words and phrases. Polar derivative, Bernstein inequality, zeros.
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Clearly (1.2) represents a refinement of (1.1), since the maximum of |P(z)| on |2| =1
may be larger than the maximum of |P(z)| taken over the (2n)" roots of unity, as
is shown by the simple example P(z) = 2" + ia, a > 0. Following the approach of
Frappier, Rahman and Ruscheweyh [3], Aziz [1] showed that the bound in (1.2) can
be considerably improved. In fact, Aziz proved that if P € P,,, then

(13) max| P'(2)] < 5 (Mo + Masr),
where

_ i(a+2lm)/n
(1.4 M, = g [P0/

for all real a.

In the same paper, Aziz obtained a lower bound for the maximum of |P’(z)| on
|z| = 1, by proving that if P € P, then
(1.5) m|a>l<’P' ‘ > {2m|zi>1<‘P(z)‘ - (Mo + Mﬂ>}
If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then
(1.1) can be replaced by

)

(1.6) max P'(z)‘ < 5 max P(2)

|z|=1 |z|=1

whereas, if P(z) has no zeros in |z| > 1, then

(1.7) max|P'(z)

2]=1

n
> max P (z)‘
Inequality (1.6) was conjectured by Erdés and later proved by Lax [6], whereas
inequality (1.7) is due to Turan [18]. Ideally, it is natural to look for improving results
n (1.3) when P(z) does not vanish in the unit disk, and accordingly Aziz [1] proved
that if P € P,,, and P(z) # 0 in |z| < 1, then for every real number «,

1
(1.8) max|P/(2)| < {M2 4 Mjﬂ}g,
where M, is defined by (1.4).

It is important to mention that different versions of the Bernstein and Turan-
type inequalities have appeared in the literature in more generalized forms in which
the underlying polynomial is replaced by more general classes of functions. These
inequalities have their own significance and importance in Approximation theory. One
of such generalization is moving from the domain of ordinary derivative of polynomials
to their polar derivative. Before proceeding to our main results, let us remind that
the polar derivative DgP(z) of P(z) where P € IP,,, with respect to the point J is
defined as

DgP(z) :==nP(z)+ (8 — 2)P'(2).
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Note that D P(z) is a polynomial of degree at most n — 1. This is the so-called polar
derivative of P(z) with respect to 3 (see [7]). It generalizes the ordinary derivative in
the sense that

lim {DﬁP(z)} = P'(2),
B—o0 5
uniformly with respect to z for |z| < R, R > 0.

More information on the polar derivative of a polynomial can be found in the
comprehensive books of Milovanovié et al. [9] and Rahman and Schmeisser [17].

Over the last four decades many different authors produced a large number of differ-
ent versions and generalizations of the above inequalities by introducing restrictions
on the multiplicity of zero at z = 0, the modulus of largest root of P(z), restrictions on
coefficients, using higher order derivatives, etc. Many of these generalizations involve
the comparison of polar derivative DgP(z) with various choices of P(z), 8 and other
parameters. The latest research and development on this topic can be found in the
papers ([5,8,10,11,13-16, 20]).

The main purpose of this paper is to obtain some upper bound estimates for the
maximal modulus of polar derivative of a polynomial on a disk under the assumption
that the polynomial has no zeros either in the disk |z| < k or in |z| > k, k& > 0.
The obtained results sharpen as well generalize some already known estimates for the
ordinary derivative of polynomials as special cases.

2. MAIN RESULTS

Theorem 2.1. If P € P, and P(z) # 0 in |z| < k, k > 1, then for every complex
number 3 with |f| > 1

n
2

) 2 (|col = ke ) ?
> Ten (““ b2 (e +kn,cn|>)lp<z>\ } ]

where M, is defined by (1.4).
The result is best possible for k = 1 and equality in (2.1) holds for P(z) = 2" + 1,
with real § > 1.

maX‘Dﬁp(z)‘ <

|z|=1 |z|=1

2max| P(2)| + (18] - 1){Ma2 + M2,

By taking a = 0 in (2.1), we get the following result.
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Corollary 2.1. Let P € P, and P(z) #0 in |z| <k, k> 1. Ifty,ta,...,t, are the
zeros of 2" + 1 and s1, 8o, . .., S, are the zeros of 2™ — 1, then for |5] > 1

max| D3 P(2) <z

1
2 2 (|co| — k™|cnl 2| *
2.2 — k—1 - — P .
22) (1+k) (( )+n<\c0|+k:n\cn! ‘ <2)‘
The result is best possible for k =1 and equality in (2.2) holds for P(z) = 2"+ 1, with
real 5 > 1.

2max P(z)‘ + (|6[ — 1){<max |P(tj)|>2 + <max |P(Sj)’)2

=1 1<j<n 1<jsn

Dividing both sides of inequality (2.1) by || and letting |5| — oo, we get the
following result.

Corollary 2.2. If P € P, and P(z) # 0 in |z| < k, k > 1, then we have for every
real o

n 2 2 (|eo| — k™en] 2|’
P’ < AM24+ M2 — E=1)4+—|1—F——1|IIF
ﬁl‘iiq (Z)l — 2{ a + a+m (1 4 k?) [( )+ n <|CO| + k’n|0n| ‘ (2)‘ ’

where M, is defined by (1.4).

It is easy to verify that Corollary 2.2 generalizes as well as sharpens inequality (1.8).
Taking k = 1 in Corollary 2.2, we get the following result.

Corollary 2.3. If P € P, and P(z) # 0 in |z| < 1, then we have for every real
3
n 2 (|co| — el 2
P)| < AM+M,_ — = =—"2||P
I|£l|i}1<| (Z>| = 2{ o T MG n<|00|+|6n| ‘ (Z)‘ )
where M, is defined by (1.4).

The bound obtained in Corollary 2.3 is always sharper than the bound obtained
from inequality (1.8), for this it needs to show that

ol = leal
|col + |enl
which is equivalent to
[col = lenl,

which is true as P(z) # 0 in |z| < 1.
If we divide both sides of inequality (2.2) by |5| and let |5| — oo, we get the
following result.
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Corollary 2.4. Let P € P, and P(z) # 0 in |z| <k, k > 1. Ifty,to,...,t, are the
zeros of 2" + 1, and sq, Sa, ..., S, are the zeros of z" — 1, then

|z]=1 1<5<n 1<y

2 2 (|eo| — E™|en 2 :
(2.3) al ey ((k—1)+n<‘%|+w>>\za<z)\ } .

The result is best possible for k =1 and equality in (2.3) holds for P(z) = 2" + 1.

max P’(z)‘ SZ{<maX |P(tj)|>2 + (ma<>%|P(Sj)‘>2

Remark 2.1. Tt is easy to see that Corollary 2.4 generalizes the following result due
to Wali and Shah [19, Corollary 1].

Theorem 2.2. Let P € P, and P(z) # 0 in |z| < 1. If t1,ts, ..., t, are the zeros of

2"+ 1, and $1, Sa, . . ., Sy, are the zeros of 2™ — 1, then for |z| = 1, we have
2 2 3
, n 2 (eco| — |enl 2
24 |P6)] < 2{ (sl + (ulrel) - 2 (i irel')

Equality in (2.4) holds for P(z) = 2" + 1.

If P(z) has all its zeros on |z| = k, k > 1, then from Theorem 2.1, we get the
following result.

Corollary 2.5. If P € P,, and P(z) has all its zeros on |z| =k, k > 1, then for every
complex number B, with |5| > 1

2max| P(2)| + (18] - 1){M§ + M2, -2 (k — 1) |P(z)|2}$] ,

n
< — R
maX’DgP(z)‘ < 5 | 2max )

|z|=1

where M, is defined by (1.4).
Next as an application of Theorem 2.1, we prove the following result.

Theorem 2.3. Let P(z) = > _qcp2" € Py, co # 0, with P(z) # 0 in |z| > k, k <1,
then for every complex number v with |y| < 1, we have for |z| =1

D,P(2)| <5

2lylmax| P(2)] + (1= hl)

e — 2 [q gy 2 (el =lal\] e
(2.5) {Ma+Ma+w A=) l(l k) + (kn‘cnmc()')“p( ) }

where M, is defined by (1.4).
The result is best possible for k =1 and equality in (2.5) holds for P(z) = 2" + 1,
with real v < 1.

Y
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Remark 2.2. If we take v = 0 in (2.5), we get for |z| =1
’nP(z) - zP’(z)‘

1

(2.6) gZ{MngMgH—@[(1_;{”2:(’%)“13(@]2}2.

k™| cn| + |col

If max P(z)‘ = ’P(ew)‘, we get from (2.6) that

|2[=1

’P'(ei¢)‘ Zg 2max P(z)‘

|z]=1

. ) 2% ( Ken] — |col ) ?
(2.7) - {Ma—i—]\/[aﬂ— T ((1_k)+n<lw>)\za(z)\ } ]

Since max P’(z)‘ > ’P’(e"‘f’)‘, we get from (2.7) that

max P’(z)‘ >g [2maX’P(z)‘

|21=1 - |2|=1

2 2k (k|| — |col 2| ?
2.8 —MEPeME - (1 —k)+ = ) ||P .
Taking k& = 1 in (2.8), we immediately get a refinement of (1.5) when all the zeros of
P(z) liein |z| < 1.
Remark 2.3. It may be remarked here that for k = 1, Theorems 2.1 and 2.3 were

recently established by Mir [11].

3. LEMMAS

We need the following lemmas to prove our theorems.

Lemma 3.1. Ifx,, v=1,2,...,n is a sequence of real numbers such that x, > 1 for
all v € N, then

" ox, — 1 1Ty — 1
> U= llneN.
va—l—l_]_[ﬁ:lxv—l—l’ Jor alln

v=1

Proof of Lemma 3.1. We prove this result with the help of mathematical induction
and we use induction on n. The result is trivially true for n = 1.
For n =2
Jfl—]_ ZL’Q—]_ 1711'2—1
$1+1 $2+1_l’1l’2+1,
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if
2(zyz9 — 1) S T2 — 1
142+ 20+ 2129 z9T0+ 1’
ie., if (1 —1)(x2 — 1) > 0, which is true, since x;,z9 > 1. This shows that the result

holds for n = 2. Assume the result is true for n = r € N. Now since [[,_; z, > 1, we
have

’iwv—l va— Tpa1 — 1
ST+ 1 _U 1 Ty + xrﬂ—l—l

HZ:l Ty, — 1 Ty — 1
1 Lo+ 1 2+ 1
H:}Jrl Ty —
“ILE @
This shows that the result holds for n = r + 1 as well. Therefore by the principle of

mathematical induction, it follows that the result holds for all n € N. This completes
the proof of Lemma 3.1. O

(by induction hypothesis)

(by the case n = 2).

Lemma 3.2. I[f P € P, and P(z) # 0 in |z| < k, k > 1, then for each point z on
|z| =1 for which P(z) # 0, we have

2P'(2) 1 lco| — k™|cn]
3.1 Re( ) < | ¢
(3:1) Piz) ) =1+ k;{” <|co| I
Proof of Lemma 3.2. Recall that P € P, and P(z) has all its zeros in |z| > k, k > 1.

If 21, 29,..., 2, are the zeros of P(z) = > 0_,¢,2" of degree n, then |z,| > k, k > 1,
and we can write P(z) = ¢, [1'_;(z — 2,). This gives

zP'(z) &z

PG =

R )

Now for the points €, 0 < 6 < 27, with P(e?) # 0, we have
zHP/( ) et
() -2 ( =)

:1

_on Z|ZU|_k
14k 1+ kEEZ a1
n |zo| — K
< k>1
14k 1—|—k:z\zv|—|—k (as k2 1)
n 1 |20 /k — 1

1tk 1+k:vz::1|zv|/k+1'
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Since |z,|/k > 1, v = 1,2,...,n, we get on using Lemma 3.1 for the points e,
0 < 60 <27, with P(e?) # 0,

Re eiGP/(eia) < n B 1 H:}L:1|Z’U|/k:_1
P(e?) 14k 14+E\ID-; |zl/k+1
_on 1 (el — 1

14k 14k \ eol/EMca + 1)

which is equivalent to (3.1). This completes the proof of Lemma 3.2. U

Lemma 3.3. If P € P, then for |z| = 1, and for any real number «,
P +|Qe) < f(MQ + M§+7r),
where M, is defined by (1.4).
The above lemma is due to Aziz [1].
Lemma 3.4. If P € P, then for |z| =1,
P(2)| + |@'(2)] < n max| P(2)].

The above lemma is a special case of a result due to Govil and Rahman [4].

4. PROOF OF THE THEOREMS

Proof of Theorem 2.1. Recall that P € P, and P(z) has all its zeros in |z| > k, k > 1.
First, we suppose that P(z) has no zeros on |z| = k, k > 1 and therefore, all the zeros
of P(z) lie in |z| > k, we have by Lemma 3.2 for |z| =1

2P'(2) 2 lco| — K" e
4.1 2 < -
(4. Re( () ) : 1+k{” <|c0| e
Also it easily follows that
(4.2) ‘Q/<Z)‘ = ‘nP(z) — 2P'(2)|, for |z| =1,

where Q(z) = 2"P(1). This implies
2

2Q'(2)
P(2)

2

—n? 4 2P'(z)

P(2)

2_ "Re 2P'(2)
e (7).

_ ’n B 2P'(z2)
P(z)

which by using (4.1) yields for |z| =1

2n? 2 — k"|c,
@) 24P < [P o] + [ - P - e
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On combining Lemma 3.3 and inequality (4.3), we get for |z| =1

NI FPU 2 ( leol = Klcal .\
(4.4) |P(2)] < 2{]\/[ + M2, — T [(k—1)+n(ww>wp(z)] } .

The above inequality (4.4) trivially holds for k = 1 as well as for points z on |z| =1
for which P(z) = 0 by (1.8). Using the definition of polar derivative of a polynomial
P € P, with respect to the complex number 3, we have

|DsP(2)| =[nP(2) + (8 — 2)P'(2)]
<[nP(z) = 2P'(2)| + |BI|P'(2)|
=Q'(2)] +18I|P'(2)| (using (4.2))
(4.5) <nmax| P(2)| + (18] - D|P'(2)|  (by Lemma 3.4).

Inequality (4.5) in conjunction with inequality (4.4) gives,

max‘D/BP(z)‘ SE 2max P(z)‘ + (|B| — 1) M2+ M2,
|z|=1 2| |z=1
%
2 2 (|co| — k"|cn] 9
- k-1 + -] ||P .
<r+@(< ) n(kd+kﬂ%| 14z
This completes the proof of Theorem 2.1. 0

Proof of Theorem 2.3. By hypothesis, the polynomial P(z) = >0, ¢,2", ¢o # 0 has
all its zeros in |z| < k, k < 1, therefore, the polynomial Q(z) = z"P(%) has no zeros in
|z| < 1/k, 1/k > 1. Applying Theorem 2.1 to the polynomial Q(z), we get for || > 1
and |z| =1

\m@@\zkmmm>w0m—o%ﬂ+ﬁﬂ

2 2 ( |en| — 1/k"|col 7
(4.6 ‘<r+umV”k‘”+n<wa+1ﬁw%0bQ“”}]'

Since |P(2)| = |Q(2)| for |z| = 1, it follows that

Jun

_ i(at2m)/ny| _ i(a+2im)/ny|
Yo = max|Q(e )| = max | P(e )| = M.
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Using this in (4.6), we get for |3] > 1 and |z| =1

Ds@(=)| <5 [2max| P(a)] + (18] = 1) ¢ M+ M,

2 2k (k™| cn| — |co 9 :
47 - g |- m (e e

klen| + |col

For |z| = 1, we have 2Z = 1, then it is easy to verify (for example, see [11]), that for

o] #0

DsQ(2)| = 5| Dy/5P(2)].

Replacing 1/8 by 7, so that |y| < 1, we obtain from (4.7), that

n
D, P()| <5 |2himax| P(e)| + (1= [1])§ M2+ M,

[NIE

L2 T o (Kl —lal\] e
a+mw @+HQWAHMNWU| ’

for [z =1 and |y| < 1.
This completes the proof of Theorem 2.3. ([l
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NOTE ON THE MULTIFRACTAL FORMALISM OF COVERING
NUMBER ON THE GALTON-WATSON TREE

NAJMEDINE ATTIA! AND MERIEM BEN HADJ KHALIFA?

ABSTRACT. We consider, for ¢ in the boundary of Galton-Watson tree (0T), the
covering number N, (t) by cylinder of generation n. For a suitable set I and a
sequence (S, ), we establish almost surely, and uniformly on +, the Hausdorff and
packing dimensions of the set {t € 9T : N,,(t) — nb ~ s, ~} for b € I.

1. INTRODUCTION AND MAIN RESULTS

Let (N, X) be a random vector with independent components taking values in
N2 where N denotes the set of non-negative integers. Then let {(N,, Xu)buelJ N

be a family of independent copies of the vector (N, X) indexed by the set of finite
words over the alphabet N, : the set of positive integers (n = 0 corresponds to the
empty sequence denoted )). Let T be the Galton-Watson tree with defining elements
{N,}: we have § € T, if u € T and ¢ € N then ui, the concatenation of u and 1,
belongs to T if and only if 1 <i < N, and if ui € T, then v € T. Similarly, for each
u € U,>o N, denote by T(u) the Galton-Watson tree rooted at u and defined by the
{Nuww}, v € Upso N7

We assume that E(/N) > 1 so that the Galton-Watson tree is supercritical. We also
assume that the probability of extinction is equal to 0, so that P(N > 1) = 1.

For each infinite word ¢t = ¢1t9--- € NT* and n > 0, we set t,, = ty---t, € N}
(to = 0). If w € N% for some n > 0, then n is the length of u and it is denoted by |u].
We denote by [u] the set of infinite words ¢ € N* such that b = u.

Key words and phrases. Random covering, Hausdorff dimension, indexed martingale, Galton-
Watson tree.
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The set NT* is endowed with the standard ultrametric distance

d - (U,U) — e—sup{‘w\:ue[w],ve[w]}’

with the convention exp(—oco) = 0. The boundary of the Galton-Watson tree T is
defined as the compact set
oT = ﬂ U [u],

n>1ueT,
where T,, = TN N7

We consider X, as the covering number of the cylinder [u], that is to say, the
cylinder [u] is cut off with probability pp = P(X = 0) and is covered m times with
probability p,, = P(X =m), m=1,2,...

For t € OT, set

Nn<t> - Z th"‘tlc‘
k=1

Since this quantity depends on t; - - - t,, only, we also denote by N,,(u) the constant value
of N,,(+) over [u] whenever u € T,,. The quantity N, (¢) is called the covered number
(or more precisely the n-covered number) of the point ¢ by cylinder of generation k,
k=1,2,...,n.

Consider an individual infinite branch ¢ - - - ¢, - -+ in T. When E(X) is defined, the
strong law of large number yields lim,, oo n"'N,,(¢) = E(X). It is also well known, in
the theory of the birth process, (see [15]) that almost surely (a.s.) lim,, . N, (t) = 400
for every t € D = {0,1}" if and only if

1

If this condition is satisfied, then a.s. every point is infinitely covered.
We consider, for b € R, the set

N, (¢
Eb:{teaT:Ji_)rgo ”():b}.

n
These level sets can be described geometrically through their Hausdorff dimensions.
They have been studied by many authors, see [3,8,11,14,16,21] and [4,7] for a general
case. All these papers also deal with the multifractal analysis of associated Mandelbrot
measures (see also [1,2,19] for the study of Mandelbrot measures dimension).

We will assume that the free energy of X defined as

7(q) = logE<§: equ>

i=1
is finite over R. We will assume, without loss of generality, that X is not constant so
that the function 7 is strictly convex. Let 7* stand for the Legendre transform of the
function 7, defined as

7" (b) := Inf (T(q) - qb>, b€ R.
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We say that the multifractal formalism holds at b € R if
dim E, = Dim E}, = 77(b),

where dim FEj, is the Hausdorff dimension of Fj, and Dim FEj is the packing dimension
of Ej (see Section A for the definition). In the following, we define the sets

1 ={aeRirl@) = a7(a) > 0},

N
QL = int{q : E“ Zeqxi a} < oo},
i=1

o= U o,

a€e(1,2]

J=JNQ" and I= {T/(Q)QQGH}-

Remark 1.1. It is well known, see [6, Proposition 3.1], that L = {a € R, 7%(a) > 0
is a convex, compact and non-empty set. In addition, if we assume that J =
then [ = int(L), where int(L) is the interior of L (see also [6, Proposition 3.1.]) In
particular, I is an interval.

}
d

Next, we define for b,y € R and for any positive sequence s” = {s,, ,}, such that
Spy = 0(n) and v — s, , is analytic function, the set

Eb,s'v = {t - 8T . Nn(t) —nb ~ Sn,'y as n — +OO},

where N,,(t) — nb ~ s, means that (N, (t) — nb),, and (s,.), are two equivalent
sequences. It is clear that I}, v C Ej. So, we can get with a simple covering argument,
with probability 1, for all b € R and v € R,

(11) dim Eb,s"/ S dim Eb S DlmEb § T*(b),

(see Proposition 1 in [5] and Proposition 2.7 in [4]). Let us mention that the methods
used to compute Hausdorff dimension of the sets Ej in, for example, [4,7,17,18]) do
not give results on dim Ej . These sets were considered by Kahane and Fan in [15].
The authors considered the space {0, 1} and they compute, for each b, almost surely
(a.s.), the Hausdorff dimension of Ej ¢ under the hypothesis :

Spy =0(n),  N(y) = Sny — Sn—1, =0(1) and vnlnlnn = o(s, ).
A special case of a sequence satisfying the above hypothesis is s, , = n” with v €
(1/2,1). Later, Attia in [5], gives a stronger result in the sense that, a.s. for all b € I,
he computed the Hausdorff dimensions of the sets Fj .+ under the hypothesis
(1.2) Spy =0(n),  Nu(Y) = Sny — Sn—1,, = 0(1)
and there exists ¢, — 0 such that
(1.3) > exp ( —€> e nk('y)Q) < 400, foralle>0.

k=1

n>1
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In particular, we can choose

n

1
Sny =D = with v € (0,1/2).

k=1
Theorem 1.1 ([5]). Let s be a positive sequence satisfying (1.2) and (1.3). Then,
a.s. for allb eI

dim Eb,s“/ = dim Eb = 7'* (b)

This requires, for a given sequence s?, a simultaneous building of an inhomogeneous
Mandelbrot measure and a computing of their dimensions. In particular, for
n
1
Sny = Z 7
ok
we have for all v € (0,1/2), a.s. dim B, v = 7%(b). To state our main result, let
s" = (s )n be a positive sequence and we define the set A, to be any set of R such
that

(1.4) A C {7 € R, such that (s, ) satisfies (1.2) and (1.3)}
and, for k£ > 1
(1.5) i = inf () > 0.

We suppose the following hypothesis.

Hypothesis 1.2. There exists a sequence €, — 0 such that

Zexp ( — eZe;ﬁZ) < 400, forall e > 0.
n>1 k=1
Clearly this hypothesis is satisfied, for s,, = >j_; 7+, with A, = [¢,1/2), € > 0.
Applying the previous theorem we get the conclusion for each v € A, a.s. The goal
of this note is to give a uniform result on . In addition, we determine the packing
dimensions of the sets Ej sv. More precisely we have the following result.

Theorem 1.3. Let s7 = (S,,)n>1 be a positive sequence and consider a set A
satisfying (1.4) and (1.5). Under Hypothesis 1.2, we have, a.s.. for allb € I and for
all v € A

dim Ej v = dim E}, = Dim Ej, = Dim B} o» = 77(b).

2. CONSTRUCTION OF INHOMOGENEOUS MANDELBROT MEASURES

We define, for (¢,p) € J x [1,00), the function

#(p,q) = exp (T(pq) — p7(9))-
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From [5], for all nontrivial compact sets K C J there exist 1 < px < 2 and px > 1
such that we have

(2.1) sup p(px,q) <1, forall 1 <p < pg,
qgeK
and
N P
2.2 su ]E( 4% ) < 00.
(2.2) Sup (; )

Now, we will construct the inhomogeneous Mandelbrot measure. For ¢ € J and
k > 1, we define 1x(q,~) as the unique ¢, such that

() = 7(q) + (7).
For u € U,>o N} and ¢ € J we define, for 1 <i < N,

exp (¢X)

E(ﬁ:lexp (qu))

V(ui,q) = = exp (qu' - T(Q))

and, for alln > 0

Yn(‘]a’%u) = Z H V(uvlvka¢|u|+k(Q77)>
vl vn €Ty (u) k=1
When u = (), this quantity will be denoted by Y, (q,v) and when n = 0, their values
equals 1.

The sequence (Yn(q,y7 u)) . is a positive martingale with expectation 1, which
n

converges almost surely and in L' norm to a positive random variable Y(q,v,u) (see
[9] or [10, Theorem 1]). However, our study will need the almost sure simultaneous
convergence of these martingales to positive limits.

Proposition 2.1. (a) Let K = K x K, be a compact subset of < As. There exists px €
(1,2] such that for all u € U,>o N’} the continuous functions (q,7) € K — Y,(q,7,u)
converge uniformly, almost surely and in Ly, norm, to a limit (q,v) € K— Y (q,7,u).
In particular, E(sup(, ek Y (¢,7, u)P¥) < oo. Moreover, Y (-, -, u) is positive almost
surely.

In addition, for all n > 0, a({(Xul,...,XuNu),u € Tn}) and a({Y(~, Lu),u €

Tn+1}) are independent, and the random functions Y (-,-,u),u € T,41, are indepen-
dent copies of Y(-,-):=Y(-,-,0).
(b) With probability 1, for all g € J and v € A, the weights

uJ(M) = Lli[lexp (wk(q,v)Xul...uk - T(wk(q,v)))]Y(q,%u)

define a measure on 0T, where n = |u].
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The measure p will be used to approximate from below the Hausdorff dimension
of the set Ej .

Proof. (a) Fix a compact K C J and a compact K5 C A,. Since n(y) = o(1), we
can fix, without loss of generality, a compact neighborhood K’ C J of K and suppose
that,

V(g,7) e K=K x K, forallk>1,v¢4(q,7) € K.
Fix a compact neighborhood K” = K" x K of K’ x K. By (2.2), we can find px» > 1,
such that

sup E((%eqxi)gwl) < 0.
i=1

qe K//

By (2.1), we can fix 1 < px < min(2,pkr) such that sup,cgr ¢(px,q) < 1. Then
for each (¢,7) € K’ x K, there exists a neighborhood V, x V., C C? of (g, ~), whose
projection to R? is contained in K”, and such that for all u € T, (2,2’) € V, x V,, and
k > 1, the random variable

exp(zXy) I() = E(fovl Xi eXP(ZXi))

E(iexp(in)>7 E<Zi]\i1 eXP(ZXi)>

and the analytic extension of 7, denoted also by 7y, are well defined. For (z,2') €
V, x V, and k > 1, we define 9, (z, 2’) as the unique ¢ such that

L) =T(2) + [m(2)]-

V(u,z) =

Moreover, we have

E ( Zi\il ‘ezxi

pK>'

sup o(pk, z) < 1, where p(pk,2) = ~

z€Vy N 2X;
()

By extracting a finite covering of K’ x K, from U, V, x V,, we find a neighborhood
V = Vg X Vi, C C? of K’ x K, such that

sup ¢(pk, z) <1

z€VEK

and for all (z,2") € V, ¢x(z,7) is defined and belongs to V. Since the projection
of Vk to R is included in K” and the mapping z — IE( >N eZXi) is continuous and
does not vanish on Vi, by considering a smaller neighborhood of K’ included in Vi

if necessary, we can assume that
pK) ’ N
i=1

N —PK
Z e*Xi < 0.

=1

Cy,, = sup ]E<

z2eVK
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Now, for u € T, we define the analytic extension to V of Y,,(q,, u) given by

Vo(z, 2 \u) = > ﬁV (w-vr vk, Ypupa(2, 2))

vET,(u) k=1

n _1 .
[ it E( i S >] o [ etz X ),
b=t =l vETp (u) k=1

We denote also Y, (z,2',0) by Y,(z,2'). By Lemma 3 in [5], there exists a constant
Cy, such that for all (z, 2)

ev
E(|Ya(z,2) = Yaoa(z, 2)™)

p)HE(?W (i, bulz, >|p»<).

ZZ

s%m(

Notice that ]E(val Vi, iz, z))|pK> — o(px, Ui(z, 2')). Then

PK\ n—1
EOn@a—nA@AW)<@£(zv (1,02, ) )HM@WW#U
k=1
n—1
< CPKCVK H sup Qp(pKaz)’
kleEVk

where we have used the fact that (z,2") € Vi for all & > 1. With probability
1, the functions (z,2") € V +— Y, (z,2'), n > 0, are analytic. Fix a closed polydisc
D(z0,2p) C V with 2y = (21, 21) and p = (p1, p2). Theorem B.1 gives

wp [V, (2.7) = Ve ) <4 [ VC) ~ Y (Clo)

(2,2")€D(20,p)
where, for t = (t1,t,) € [0,1]?
C(t) = (Ci(th), Ga(ts) = (21 + 1™, 2] + pre'®™2),

Furthermore Jensen’s inequality and Fubini’s Theorem give

= “p‘”@ﬂﬁ—%»@wm”)gE<@Ame«@»—m1@@nﬁYj

z€D(z0,p)

sw@(ﬁmJn@@»—nA@aMWﬁ)
= [ EIYCU) ~ Yaa S dt

n—1

< 4P Cy, Cppe 11 sup @(px, 2).
kleEVK
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Since sup ¢(pk, z) < 1, it follows that
z€VEK

sup [Yo(z,2") = Y, 1(2, 2|

(Z,Z’)ED(Zo,p)

< OQ.

n>1 PK

This implies, (z,2") — Y,(z,2’) converges uniformly, almost surely and in LP% norm
over the compact D(zg, p) to a limit (z,2") — Y(z,2’). This also implies that

< 00.
PK

sup Y (z,2)
z€D(z0,p)

Since K can be covered by finitely many such discs D(zg, p) we get the uniform
convergence, almost surely and in LP¥ norm, of the sequence ((¢,7) € K — Y,.(q,7))n>1
to (q,7v) € K— Y (q,7). Moreover, since J X A can be covered by a countable union of
such compact K we get the simultaneous convergence for all (¢, ) € J x A;. The same
holds simultaneously for all the functions (q,7) € d x Ay = Y, (q,v,u), u € U,>o N7,
because U,>o N} is countable.

To finish the proof of Proposition 2.1 (1), we must show that with probability 1,
(q,7) € K = Y(q,7v) does not vanish. Without loss of generality we can suppose
that K = [0,1]%. If I is a dyadic closed subcube of [0, 1], we denote by E; the event
{3 (¢,v) € I : Y(q,7) = 0}. Let Iy, I, I, I3 stand for the 22 dyadic intervals of
I in the next generation. The event E; being a tail event of probability 0 or 1. If
we suppose that P(E;) = 1, then there exists j € {0,1,2,3} such that P(£;,) = 1.
Suppose now that P(Ex) = 1. The previous remark allows to construct a decreasing
sequence (I(n))n>o of dyadic subcubes of K such that P(E;u)) = 1. Let (qo,70)
be the unique element of N,>0l(n). Since (gq,7) — Y(q,7) is continuous we have
P(Y(go,7) = 0) = 1, which contradicts the fact that (Y;,(qo,70))n>1 converges to
Y (qo,70) in L.

(b) It is a consequence of the branching property

N
Yor1(g,7,0) = Y2 exp (Cny1(g,7) Xus = T(¥n11(0,7)) ) Yala, 7, ud). [
=1

3. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 can be deduced from the two following propositions.
Their proof are developed in the next section.

Proposition 3.1. Suppose Hypothesis 1.2, with probability 1, for allq € § and v € A,
N,(t) —nb ~ s,,,  for u)-almost every t € 0T,
where b =T1'(q).

Proposition 3.2. With probability 1, for all (q,7v) € 3 x Ay, for pl-almost every
tedT e v
tn

i 108 Y (9,7, )

n—oo n

=0.
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From Proposition 3.1, we have with probability 1, for all ¢ € J and v € A, that
) (Eb,ﬁ) =1, (b=17'(¢)). In addition, with probability 1, for all (¢,v) € J x A, for
pg-almost every t € Ej s, from the same Proposition and proposition 3.2, we have

. log(u;’ [t\n])
n=oo Jog(diam([t},]))

= lim —:L log ( ﬁ exp (@Dk(q, V)Xt 1, — T(WUk(q, '7))))/(% Y, tm))

n—00
k=1

log Y (q,7,tm
— lim —*Z@DkQVth 4t = Z ) M

n—oo n
1 n
—ggngo—*zwkqutl i ﬁz
k=1 k=1

Since () = o(1) and then 1x(q,v) — ¢, we get

. log(ﬂg[t|n]) . / k(]
lim. og(diam([t,]) —q7'(q) + 7(q) = 7(7'(q)).

We deduce the result from the mass distribution principle (Theorem A.1) and (1.1).

4. PROOF OF PROPOSITIONS 3.1 AND 3.2

4.1. Proof of Proposition 3.1. Let K= K x K, be a compact subset of § x A,. For
b=11(q),q€d,v€As,n>1€e>0and s = (s,m)n>1 we set

El

b = {t €aT: kZ: (th---tk(t) —b— nk(v)) > 62%(7)},
Ebgve_{teaT:Zn:(th_.tk()—b—nk )_—Gan }

k=1

Suppose that we have shown that for, A € {—1, 1}, we have:

(4.1) E((sup ZMZ(Eﬁn,7,€)> < o0.

7,7)EK n>1

Then, with probability 1, for all (¢,7) € J x A;, A € {—1,1}, and € € Q% ,

Zluq bn’ye <OO7

n>1

consequently, by the Borel-Cantelli lemma, for p/-almost every ¢, we have

Zth 4, () — b — (v —O<an ), s0 N, (t) — nb ~ sy,

which yields the desired result.
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Let us prove (4.1) when A = 1 (the case A = —1 is similar ). Let § = (6,,) be a
positive sequence and (g,7) € K. One has

sup /utq(Ean) < sup > (] )1{

(g:7)eK (@)€K 4eT,,

Egnw}(tu)’

where ¢, is any point in [u]. Denote t, simply by ¢, then

sup H (Ebn e)
(g:m)eK ! v
< sup > pgfu] [T exp (HkXty--tk — Ok — O (7) (1 + 5))
(@)€K 4T, k=1

< sup > H exp ( V(g y) + 0k) Xyt — T(U1(q, 7)) — Ok — Oemre () (1 + 6))

(@)€K ueT, k=1
X Y(g,7,u).
For (¢,7) € K, 8 = (6,,) and n > 1, we set

H,(q,7,0)

=) H exp ( Ur(q,7) + 0k) Xy, — T(WV(q,7)) — Okb — O () (1 + €)>M(U)a

ueTy k=1

where

M(u) = sup Y(q,7,u).

(a,7)€eK
Recall the proof of Proposition 2.1, there exists a neighborhood V = Vi x Vi C C?
of K= K x K, such that

E < YNX; exp(in)>

E ( >N exp(in)>

is well defined for z € Vi, for k > 1, (%) is defined for 2’ € Vi and V¥(2,2') € V,
(2, 2') is defined and belongs to V.
For e > 0, (z,2/) € Vand n > 1, we define

H,(z,2,0) =) H exp ( (Vr(2,2") + Ok) Xy, — OkT(2) — Opie(27) (1 + 6))

u€Ty, k=1

['(z) =

X E(g;exp <wk(z, z')Xi)> _lM(u).

Proposition 4.1. There exist a neighborhood V' C V of K, a positive constant Cg
and a positive sequence 0 such that for all (z,2') € V', for all n € N*

E(|H,(z,2',0)]) < Ckexp ( - - Zek )

k: 1
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where the sequences (€,)n and (7,), are the sequences used in Hypothesis 1.2.

Lemma 4.1. There exist a positive sequence 8 = (0,,) and a positive constant Cx such
that for all (q,7) € K we have

E(Halg.10)) < Exexp (= 52 i)
k=1

Proof of Lemma 4.1. Let § = (0,,) be a positive sequence, clearly we have

E(Hn(g,7,0)) = H E(;GXP ( Ui,y )+8k)XZ-)
X exp ( — 7(¥r(q: 7)) — Oxb — O (7) (1 + e))]E(M(u))

<€ T exp (7ala,) +00) = 7(6n(0:7) — hb — i) (1 + ) ),

k=1

where, by Proposition 2.1, C'x = E(M(u)) = E(M((Z))) < oo for all u € U, N%.

Since 1 () = o(1), we can fix a compact neighborhood K’ of K and suppose that
for all k > 1 and (q,7) € K, we have ¢y(q,v) € K'. For (¢,7) € K and k > 1, writing
the Taylor expansion with integral rest of order 2 of the function g : 6 — 7(1x(q,y)+0)
at 0, we get

9(0) = 9(0) + 0/ 0) + ¢ [ (1= 1)g"10)ar,

with ¢”(t0) < mk = sup sup sup g¢"(t0). It follows that for all £k > 1
t€[0,1] ge K’ ve K,

T(Wr(q:7) + ) — 7((Wr(, 7)) — 07 (Ui(g, 7)) < O
Recall that 7/(¢x(q,7v)) = 7'(¢) + (7). Then

E(Hn(q.7:0)) < €' Hexp( (ala7) + 00) = T(0(0,7) = 00 = Bem(1)(1 + ),

< Ck H exp < — O (y)e + szK)

k=1

Choose the sequence 6 such that 0, = €,.7;. Then
E(Hal0,7,0)) < €k I exp (= enile — ) ).
k=1

€
Since ¢, — 0 then for k large enough we have € — ¢ymg > 7 Then, there exists a

constant Ck such that

E(Hn<Q7 Y, 0)) < GK €xp ( - % Z ekﬁl%)' U
k=1
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Proof of Proposition 4.1. Since E(|H,(q,7,0)|) < Ck exp ( — 5 k=1 e;ﬁy%) for ¢ € K,
there exists a neighborhood V,., C V of (¢, ) such that for all (z,2’) € V., we have

’ € o ~
E(|H,(z,2,0)]) < Ckexp ( ~ 1 Zekni).
k=1

By extracting a finite covering of K from U, ,)ek V4,7, We find a neighborhood V' C V
of K such that

/ € « ~
E(|Ho (2,2, 0)|) < eKexp<_4zekn,3). 0
k=1

With probability 1, the functions (z,2") € V' — H,(z,2',0) are analytic. Fix a
closed polydisc D(zg,2p) C V, with zy = (21, 2}) and p = (p1, p2). Theorem B.1 gives

sup )\Hn(z,z',e)\ <2 /[071]2 H,(C(1).0)|dt,

(2,2")€D(20,p
where for t = (t1,1,) € [0,1]?
C(t) = (Cu(tr), Gat2)) = (21 + pre®™1, 2] + ppe®™2).
Furthermore Fubini’s Theorem gives
E ( p |Hz<z,zce>|) <E(2 [ |H(C(0.0)|d)
z€D(z0,p) [0,1]2

<4 [ EH.CE).0)dt
[0,1]2

< 4dexp <—€ > 61&71%) :
43
Finally, we get

o (8 ) < 20— )

g,7)eK k=1

and, then, under Hypothesis 1.2, we get (4.1), which finish the proof of Proposition 3.1.

4.2. Proof of Propostion 3.2. Let K = K x K, be a compact subset of J x A,. For
a>1,(q,v) € Kand n > 1, we set

Ef, = {t € dT :Y(q,7:t) > a"}

and

E,,= {t €dT:Y(q,7,tp) < a‘"}.
It is sufficient to show that for E' € {E; , E, ,}

(4.2) E<(sup Zp&(E}) < 0.

)€K R>1
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Indeed, if this holds, then with probability 1, for each (¢,v) € Kand E € {E},, E, ,},
Yon>1 My (E) < 0o, hence by the Borel-Cantelli lemma, for p7-almost every ¢ € 9T, if
n is big enough we have

1 1
—loga <liminf —log Y (q,7,t,) < limsup —logY(q,7,t,) < loga.
n—oo n n—oo M

Letting a tend to 1 along a countable sequence yields the result.
Let us prove (4.2) for E' = E, (the case I/ = E , is similar). At first we have,

) = i 2 F DY agoen)
= Sue, u; Y(q,v,u) ﬁ exp (W(q, )X () = 7(xla, 7))) 1 (——
< sw 3 V() TL e (vl 1) X, — r((@alam) )a .
(47K ueT, k=1
< (qs,;l)le)xu; ];[ (@Dk q,7)Xu — T(@bk(q,v)))a_”,

where M (u) = sup,,yex Y (¢,7,u) and v > 0 is an arbitrary parameter. For q € K,
v € K, and v > 0 we set

La(g,7,0) = M(u)””kf[ exp (wk(q, V)Xo = 7(¥nla, 7)))a”~

ueTy

Recall the proof of Proposition 2.1, there exists a neighborhood V C C? of K such
that for all (z,2") € Vand k > 1 ¢(z, 2') is well defined and E (Zf\il ewk(zvz')xi) # 0.

Lemma 4.2. Fiza > 1. For (z,2') €V and v > 0, let

n

]‘[ ( é exp (i (2, z’)Xi)> _1]

Lzzu

X > M(u)”"kf[lexp (zﬁk(z,z’)Xuk)a”.

ueTy

There exist a neighborhood V' C C? of K and a positive constant Cx such that, for all
(z,2") € V', for all integer n > 1

(4.3) E(

where px provided by Proposition 2.1.

n(’Z?Z/apK — 1)’) < CKa pK 1)/4

Proof. Write V' = Vi x Vi . For z € Vi and v > 0, let

Ly(2,v) | <Zexp(zX)> _1]E<§:

=1

exp (ZXZ)

)
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Let ¢ € K. Since E(Ly(q,v)) = a™", there exists a neighborhood V, C Vi of ¢ such
that for all z € V, we have E ) < a "% Let v € K,. Recall the proof of

Proposition 2.1 and since n(~y ) = ( ), we can find a neighborhood V,, C Vi of K,
such that, for all k > 1, (z,2') € V, x V,, we have

B(|Li(we(z )] ) < 0™,

/—\

By extracting a finite covering of K from U V, x V., we find a neighborhood V' C V
(a,7)

of K such that for all (z,2') € V' and k > 1

E(’El(ﬂ)k(z, 2'), J/)D <a V"
Therefore,
E(‘Ln(z, z’,u)D

N f[ E(iexp (Q’Dk(z’z,)X)> _ E ( 1+V H exp <¢k z,2)X > ) a "
< f[ E(Zexp (wk(z7z’)X)> ) E ( 1+V exp <¢k(z’ Z/)Xu> ) a "
(1,

By Proposition 2.1, there exists pk € (1,2] such that for all u € U,>q N7,

E(M(u)™) = E(M(0)™) = Ck < oc.
Now take v = px — 1 in the last calculation, it follows, from the independence of
o({Y (-, u), ue Ta}) and o({(Xur, .., Xun,), u € Tpo1}) for all n > 1, that

=

Ln(Z, Z/,pK - 1)‘)

n N -1 n N
< H E(Zexp <wk(z, z’)Xi)> 11 ]E(Z exp (@bk(z, z')Xi> ) Cyxa~™Pe=1)
k=1 i=1 k=1 Ni=1
:CK H E(’zl(wk(zv Z/)upK - 1)‘)
k=1
<Cka "Pr=D/4,
then lemma is now proved. 0

With probability 1, the functions (z,2') € V' — L,(z,2/,v) are analytic. Fix a
closed polydisc D(zg,2p) C V', with zg = (21, 2}) and p = (p1, p2). Theorem B.1 gives

sup ‘L 2, PK — 1)‘ <4 Ln(C(t), px — l)ldt,

2€D(20,p) [0,1]2
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where, for t = (t,t5) € [0, 1]?

C(t) = (Gu(tr), Galt2)) = (21 + pre?™, 2] + ppe®™2).

Furthermore Fubini’s Theorem gives
B(_sw (aea=0l) <B(1 [ L.l )
2€D(20,p) [0,1]2

<4 E[Ln(¢(1), pk — 1)] dt

[0,1]2

Since a > 1 and px — 1 > 0, we get (4.2).

APPENDIX A. HAUSDORFF AND PACKING DIMENSIONS

Given a subset K of NT* endowed with a metric d making it o-compact, s > 0 and
E a subset of K, the s-dimensional Hausdorff measure of E' is defined as

H*(E) = lim inf { Z(diam(Ui)s},

+
6—0 ieN

the infimum being taken over all the countable coverings (U;);en of E by subsets of K
of diameters less than or equal to §. Then, the Hausdorff dimension of F is defined as

dim £ = sup{s > 0: H*(E) = oo} = inf{s > 0 : H*(E) = 0},

with the convention sup () = 0 and inf ) = oo.
Packing measures and dimensions are defined as follows. Given s > 0 and £ C K
as above, one first defines

P (E) = 51;151+ sup { ieZN(dlam(Bi) },
the supremum being taken over all the packings {B;}icn of E by balls centered on

E and with diameter smaller than or equal to 6. Then, the s-dimensional packing
measure of F is defined as

P*(E) = lim mf{ZPs(Ei)},

+
6—+0 ieN

the infimum being taken over all the countable coverings (E;);en of E by subsets of K
of diameters less than or equal to §. Then, the packing dimension of E is defined as

Dim E = sup{s > 0: P°(E) = co} = inf{s > 0: P*(E) = 0},

with the convention sup () = 0 and inf () = co. For more details the reader is referred
to [13,20].
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If 14 is a positive and finite Borel measure supported on K, then its lower Hausdorff
and packing dimensions is defined as

dim(p) = inf { dim F' : F Borel, u(F) > O}
Dim (1) = inf {Dim F' : F' Borel, u(F) > 0}
and its upper Hausdorff and packing dimensions are defined as
dim(p) = inf { dim F' : F Borel, u(F) = ||l }
Dim () = inf {DimF : I Borel, u(F) = ||u||}
We have (see [12])
log u(B(t, 7))

dim(p) =essinf, lim inf

r—0+ log(r)
. L log p(B(t,7))
D —=essinf, lim sup ——————2~
im (lu) m 1% lili)()ljp log(r)

and

T 1 B(t
dlm(u) —=ess SuPu lim inf M

r—0+ 10g(7=)
log pu(B(t
Dim () =esssup,, lim sup M’
r—0+ log(r)

where B(t,r) stands for the closed ball of radius r centered at ¢. If dim(u) = dim(u)
(resp. Dim (1) = Dim (p)), this common value is denoted dim  (resp. Dim (p)), and
if dim o = Dim p, one says that p is exact dimensional.

Recall the mass distribution principle.

Theorem A.1. ([13, Theorem 4.2]). Let v be a positive and finite Borel probability
measure on a compact metric space (X,d). Assume that M C X is a Borel set such
that v(M) > 0 and

Mg{teX:liminflmgy(B(t’mzé}.
r—0F log r
Then the Hausdorff dimension of M is bounded from below by 0.

APPENDIX B. CAUCHY FORMULA IN SEVERAL VARIABLES
Let us recall the Cauchy formula for holomorphic functions in several variables.

Definition B.1. Let d > 1, a subset D of C% is an open polydisc if there exist
open discs Dy, ..., D4 of C such that D = Dy x --- x Dy. If we denote by (; the
centre of D, then ¢ = ((i,...,(4) is the centre of D and if r; is the radius of D;
then r = (ry,...,74) is the multiradius of D. The set 0D = 9Dy X --- X 0Dy is the
distinguished boundary of D. We denote by D((,r) the polydisc with center ( and
radius 7.
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Let D = D(¢,r) be a polydisc of C? and g € C(9D) a continuous function on dD.

We define the integral of g on 0D as

/ g(Q)d¢y -+ -d¢y = (Qm)drl .. .Td/ g(C(@))ewﬂgl coe?maqg, . - dby,
oD

[0,1)¢

where ¢(0) = (¢1(0), ..., ¢a(0)) and (;(0) = ¢ + r;e® for j =1,...,d.

Theorem B.1. Let D = D(a,r) be polydisc in C* with a multiradius whose compo-
nents are positive, and f be a holomorphic function in a neiborhood of D. Then, for
all z € D

1= g o

(2imr) G —21)(Ca—2a)

It follows that

1]

swp [f(2)| <2 [ 1F(CO)] by b

z€D(a,r/2) [0,1]¢

REFERENCES

N. Attia, On the exact dimension of Mandelbrot measure, Probab. Math. Statist. 39(2) (2019),
299-314. https://doi.org/10.19195/0208-4147.39.2.4

N. Attia, Hausdorff and packing dimensions of Mandelbrot measure, Internat. J. Math. 31(9)
(2020), Article ID 2050068. https://doi.org/10.1142/50129167X20500688

N. Attia, On the multifractal analysis of branching random walk on Galton-Watson tree
with random metric, J. Theoret. Probab. 34(1) (2020), 90-102. https://doi.org/10.1007/
s10959-019-00984-z

N. Attia and J. Barral, Hausdorff and packing spectra, large deviations and free emergy for
branching random walks in R?, Comm. Math. Phys. 331 (2014), 139-187. https://doi.org/10.
1007/s00220-014-2087-9

N. Attia, On the multifractal analysis of covering number on the Galton Watson tree, J. Appl.
Probab. 56(1) (2019), 265-281. https://doi.org/10.1017/jpr.2019.17

N. Attia, Comportement asymptotique de marches aléatoires de branchement dans R? et dimension
de Hausdorff, SISYPHE - Signals and Systems in Physiology & Engineering - These de doctorat,
tel-00841496, (2012).

N. Attia, On the Multifractal Analysis of the Branching Random Walk in R?, J. Theoret. Probab.
27 (2014), 1329-1349. https://doi.org/10.1007/s10959-013-0488-x

J. Barral, Continuity of the multifractal spectrum of a statistically self-similar measure, J. Theoret.
Probab. 13 (2000), 1027-1060. https://doi.org/10.1023/A:1007866024819

J. D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probab. 14 (1977),
25-37. https://doi.org/10.2307/3213258

[10] J. D. Biggins, Uniform convergence of martingales in the branching random walk, Ann. Probab.

20 (1992), 137-151. https://doi.org/10.1214/a0p/1176989921

[11] J. D. Biggins, B. M. Hambly and O. D. Jones, Multifractal spectra for random self-similar

measures via branching processes, Adv. in Appl. Probab. 43(1) (2011), 1-39. https://doi.org/
10.1239/aap/1300198510

[12] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory

Dynam. Systems 10 (1990), 451-462. https://doi.org/10.1017/5014338570000568X

[13] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2" Edition,

Wiley, Chichester, 2003. https://doi.org/10.1002/0470013850

[14] K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret.

Probab. 7(3) (1994), 681-702. https://doi.org/10.1007/BF02213576


https://doi.org/10.19195/0208-4147.39.2.4
https://doi.org/10.1142/S0129167X20500688
https://doi.org/10.1007/s10959-019-00984-z
https://doi.org/10.1007/s10959-019-00984-z
https://doi.org/10.1007/s00220-014-2087-9
https://doi.org/10.1007/s00220-014-2087-9
https://doi.org/10.1017/jpr.2019.17
https://doi.org/10.1007/s10959-013-0488-x
https://doi.org/10.1023/A:1007866024819
https://doi.org/10.2307/3213258
https://doi.org/10.1214/aop/1176989921
https://doi.org/10.1239/aap/1300198510
https://doi.org/10.1239/aap/1300198510
https://doi.org/10.1017/S014338570000568X
https://doi.org/10.1002/0470013850
https://doi.org/10.1007/BF02213576

60 N. ATTIA AND M. BEN HADJ KHALIFA

[15] A. H. Fan and J. P. Kahane, How many intervals cover a point in random dyadic covering?
Port. Math. 58(1) (2001), 59-75.

[16] R. Holley and E. C. Waymire, Multifractal dimensions and scaling exponents for strongly
bounded random fractals, Ann. Appl. Probab. 2 (1992), 819-845. https://doi.org/10.1214/
aoap/1177005577

[17] R. Lyons, Random walks and percolation on trees, Ann. Probab. 18 (1990), 931-958. https:
//doi.org/10.1214/a0p/1176990730

[18] R. Lyons and R. Pemantle, Random walks in a random environment and first passage percolation
on trees, Ann. Probab. 20 (1992), 125-136. https://doi.org/10.1214/ao0p/1176989920

[19] Q. Liu and A. Rouault, On two measures defined on the boundary of a branching tree, IMA Vol.
Math. Appl. 84 (1997), 187—-201. https://doi.org/10.1007/978-1-4612-1862-3_15

[20] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability,
Cambridges Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge,
1995. https://doi.org/10.1017/cbo9780511623813

[21] G. M. Molchan, Scaling exponents and multifractal dimensions for independent random cascades,

Comm. Math. Phys. 179 (1996), 681-702.

'DEPARTMENT OF MATHEMATICS AND STATISTICS, COLLEGE OF SCIENCE,
KiNnG Farsarn UNIVERSITY, PO. Box : 400 ArL-AHSA 31982, SAUDI ARABIA
Email address: najmeddine.attia@gmail.com

Email address: nattia@kfu.edu.sa

ORCID iD: https://orcid.org/0000-0002-8485-6732

2ESPRIT ScHOOL OF ENGINEERING, TUNIS, TUNISIA
Email address: meriem.benhadjkhlifa@esprit.tn


https://doi.org/10.1214/aoap/1177005577
https://doi.org/10.1214/aoap/1177005577
https://doi.org/10.1214/aop/1176990730
https://doi.org/10.1214/aop/1176990730
https://doi.org/10.1214/aop/1176989920
https://doi.org/10.1007/978-1-4612-1862-3_15
https://doi.org/10.1017/cbo9780511623813
https://orcid.org/0000-0002-8485-6732

KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 49(1) (2025), PAGES 61-64.

BERTRAND’S PARADOX: NEW PROBABILISTIC MODELS
ZORAN VIDOVIC!

ABSTRACT. In this paper two new generating procedure of a random chord are
obtained and thereby new solutions of Bertrand’s paradox are proposed.

1. INTRODUCTION

Paradox, on its own, is a puzzle that confronts some already established principles.
Bertand’s paradox was developed as a probability question that raised severe objec-
tions on the principle of indifference while dealing with geometrical probability. The
question that defines this paradox: “What is the probability that a chord selected “at
random” in a circle is larger than a side of the inscribed equilateral triangle?”

In [3], Bertrand obtained probabilities 1/3, 1/2 and 1/4 by different random chord
generation procedures: by choosing a chord with one end at a vertex of the inscribed
equilateral triangle in a circle; by choosing a chord perpendicular to the diameter
which is the right bisector of the equilateral triangle; and selecting a point inside a
circle and denoting it as a chord midpoint, respectively. This puzzle has fascinated
many since its discovery and a series of papers with outstanding solutions of this
problem have been published, see e.g. [1,2,4-9]. Here, we provide two new models of
random chord construction in a circle and obtain associated probabilities of Bertrand’s
paradox.

The paper is organized as follows. In Section 2, we propose two new procedures for
generating a random chord in a circle and obtain probabilities of Bertrand’s paradox
for each case. Section 3 concludes this paper.
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2. NEw MODELS AND SOLUTIONS

In [7], an attempt was made to look at classical models of Bertrand’s paradox as
limits of a continuous family of planar probabilistic models. Such family is seen by
fixing a point, say A, at a distance h > 1 from a unit circle and constructing lines that
intersect the circle and point A. However, this family of chord constructing models
undermines the randomness selection of distance h and, so, it yields inappropriate
results with respect to Bertrand’s paradox. Motivated by this issue, in [10] a chord
generating procedure is presented that overcomes this obstacle. Here, we additionally
provide two new methods of generating random chords in a circle with the same
intention.

For both models, we will denote X as the distance from the center of the circle and
the chord and L as the corresponding chord length.

2.1. First model. The first method is obtained as follows.

Step 1. Let a point A be such that its distance from the center of the circle OA is a
random variable Y ~ U(0,1) and is lying on the z axis.

Step 2. Using the circle invariance property we can obtain a point on a x axis, say P,
so that the relation OP - OA = 1 holds.

Step 3. Angle ¢ is determined by the circle tangent and the x axis, with P as its vertex;

Step 4. Select a line which is directed by an angle 6 € U(0, ¢), with P as its starting
point. A chord is formed by its intersection with the circle (Figure 1.).

In this case, we have X = /1 — %2, ¢ = arcsin(Y’) and 0 = arcsin (Y 1— L:)

Using transformation technique, the distribution function of L can be found as

dx dy

o= [ [ il
I p—
0 Jo 4arcsin(y)\/1 - %2\/1 —(1- %)yz
y\/4fl2>
2

(2.1)

1 arcsin(y) — arcsin
= / ) ( dy, 0<l<2.
0

arcsin(y)

Integral (2.1) cannot be obtained explicitly, so we can only provide numerical solutions.
For the Bertrand’s case | = v/3 we have

(2.2) P{L; > V3} =1 F(v3) = 0.4604.

2.2. Second model. The second method is obtained as follows.

Step 1. Let a point A be determined by a random angle ¢ ~ U(0,7/2) on a circumfer-
ence of a circle.

Step 2. Let a tangent t of a circle be determined by point A.

Step 3. Angle 9§ is determined by the circle tangent and the = axis, with P as its vertex.

Step 4. Select a line which is directed by an angle 6 € U(0,0), with P as its starting
point. A chord is formed by its intersection with the circle (Figure 2).
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For this case, we have X = /1 — LTZ and sinf = cos¢y/1 — Lf. Further, the

distribution function of L can be obtained as

2 [m/2 gl X oS
Fu)== [T [ — e dudy
0 04(§—y)\/1—z\/1—(1—z)cosy
2 sec(y)
9 m/2 arcsec (——=) —y
(2.3) _ 7/ (Vew) dy, 0<1<2.
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As above, integral (2.3) cannot be obtained explicitly, so we can obtain numerical
solutions. For the Bertrand’s case | = /3 we have

(2.4) P {LH > \/5} =1— F;;(V/3) = 0.4454.
3. CONCLUSION

Overall, in this paper we presented two new generating procedures of random chords
in a circle. The distribution function (2.3) is also obtained in [10] using a different
method of constructing random chords. The results presented in this paper extend
those can be found in [4,9,10] on Bertrand’s paradox.

In [6], procedures of chord construction were classified by disjoint procedures: (i)
inside the circle, (ii) on the circle circumference and (iii) outside of the circle. Pro-
posed generating models connect procedures (i), (ii) and (iii), and confronts such
classification. This may be a motivation to overlook Bertrand’s paradox in a quite
different manner.

Acknowledgements. The author would like to thank the referees for their valuable
comments and suggestions that significantly improved the quality of the paper.
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ON Z-SYMMETRIC MANIFOLD WITH CONHARMONIC
CURVATURE TENSOR IN SPECIAL CONDITIONS

AYSE YAVUZ TASCI! AND FUSUN OZEN ZENGIN?

ABSTRACT. The object of the present paper is to study the Z-symmetric manifold
with conharmonic curvature tensor in special conditions. In this paper, we prove
some theorems about these manifolds by using the properties of the Z-tensor.

1. INTRODUCTION

Conformal geometry has deep importance in pure mathematics, such as complex
analysis, Riemann surface theory, differential geometry and algebraic topology, (2,21,
22]. Computational conformal geometry is important in digital geometry processing.
Discrete conformal geometry has been presented to compute conformal mapping which
has been broadly applied in numerous practical fields, including computer vision and
graphics, visualization, medical imaging, etc. In medical imaging, conformal geometry
has been applied to surface parametrization and extract intrinsic features for natural
objects like brain, colon, spleen and other human organs.

Historically, conformal mappings have been considered in many monographs, sur-
veys and papers. Also, the theory of conformal mappings has very important applica-
tions in general relativity.

Let (M,g) and (M,g) be two n-dimensional Riemannian manifolds with metric
tensors g;; and g;;, respectively. Both metrics are defined in a common coordinate
system (z?). The correspondence between (M,g) and (M,g) is conformal, if the

Key words and phrases. Conharmonic curvature tensor, Z-symmetric tensor, Codazzi tensor,
Torse-forming vector field, Recurrent tensor.
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fundamental tensors g;; and g;; of two manifolds M and M are in the relation

(1.1) Gij(w) = N gyy(x),
where o(x) is a scalar function of the z’s.

By the transformation (1.1), it also follows that the relation between the Christoffel

symbols F% and flhj compatible with the metrics g;; and g;;, respectively is given by

where 0; = 2%, 6" = ¢"o;, g are the components of the inverse matrix to g;;, and

6 is the Kronecker delta.

A conformal mapping is called homothetic if the function o is a constant, that is,
Gij(z) = cgi;(z). The condition is equivalent to o; = 0, hence, the mapping is also an
affine one.

Denoting R?jk and Ri‘]k are the Riemann tensors of the manifolds M and M, respec-
tively, then we have [11,20]

R%k ZR?jk + joij — 5?0% + ¢"(owgi; — ougir) + (O gi; — 5]"lgik:)A10-7

Sij :Sz‘j + (TL — 2)Uij + (AQO’ + (TL — Q)Ala)gij,
(1.3) F=e2(r+2(n—1)A0 + (n—1)(n —2)A0),

where 0; = 0,0, Njo = gY0i05, Moo = ¢gY0, 4, 05 = 0, — 0;0;. We denote that
S = R?jh and S’ij = thjh are their Ricci tensors and r = Sijgij and r = S*ijgij are
their scalar curvatures.

It is known that a harmonic function is defined as a function whose Laplacian
vanishes. In generally, the harmonic function is not invariant under the conformal
transformation. In [14], Ishii obtained the conditions which a harmonic function
remains invariant and he introduced the conharmonic transformation as a subgroup

of the conformal transformation (1.1) satisfying the condition [14]
(1.4) ol +aho =0,

where comma denotes the covariant differentiation with respect to the metric g.

Thus, we can say that the conharmonic transformation which is a special type of
conformal transformations preserves the harmonicity of smooth functions. It is well
known that such transformations have an invariant tensor, so-called the conharmonic
curvature tensor. It is easy to verify that this tensor is an algebraic curvature tensor,
that is, it possesses the classical symmetry properties of the Riemannian curvature
tensor.

A rank-four tensor L that remains invariant under conharmonic transformation of
a Riemannian manifold (M, g) is given by

(1.5) +9(X,U)S(Y,2) —g(Y,U)S(X, Z)],

L(X,Y,Z,U) =R(X,Y, Z,U) — 7112[9(1/, 2)8(X,U) — g(X, Z)S(Y,U)
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where R and S denote the Riemannian curvature tensor of type (0,4) defined by
R(X,Y,Z,U) = g(R(X,Y)Z,U) and the Ricci tensor of type (0,2), respectively.
The curvature tensor defined by (1.5) is known as conharmonic curvature tensor. A
manifold whose conharmonic curvature tensor vanishes at every point of the manifold
is called conharmonically flat. Thus, this tensor represents the deviation of the
manifold from conharmonic flatness.

(@ denotes the symmetric endomorphism of the tangent space at each point of the
manifold corresponding to the Ricci tensor S of type (0,2), that is

(1.6) 9(QX,Y) = S(X.Y).
Let {ei,z' =1,2,... ,n} be an orthonormal basis of the tangent space at each point
of the manifold. From (1.5), we have
(1.7) L(X,)Y)=> L(X,e;,e;,Y)=> L(e;, X, Y, ¢;) = —72g(X, Y)
i=1 i=1 n—

and
(18) ZL(ei,ei,X,Y) IZL(X,Y,(EZ‘,GZ') :0,

i=1 i=1

where 7 is the scalar curvature of the manifold. Also, from (1.5) it follows that [26]
L(X,)Y,Z,U)=—-L(Y, X, Z,U),
L(X,Y,Z,U)=—-L(X,Y,U, Z),
L(X,Y,Z,U)=L(Z,UX,Y),
(1.9) L(X,Y,Z,U)+ L(X,Z,U)Y)+ L(X,U,Y,Z) = 0.
In [26], Shaikh and Hui showed that the conharmonic curvature tensor satisfies the
symmetries and skew-symmetric properties of the Riemannian curvature tensor as
well as cyclic ones. This tensor has valuable applications in general relativity. In [1],
Abdussatter investigated its physical significance in the theory of general relativity.
The conharmonic transformation has also been studied by Siddique and Ahsan [27],
Ghosh, De and Taleshian [12], and many others.

A non-flat Riemannian manifold which is called a recurrent manifold [25] if the
curvature tensor of this manifold satisfies the relation

(1.10) (VwR)(X,Y,Z,U) = AW)R(X,Y, Z,U),

where A is a non-zero 1-form. A non-flat Riemannian manifold which is called a
Ricci-recurrent manifold if the Ricci tensor of this manifold satisfies the relation
5,23, 28]

(L11) (VxS)(Y, Z) = A(X)S(Y. 2).

where A is a non-zero 1-form.
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A vector field £ in a Riemannian manifold M is called torse-forming if it satisfies
the condition Vx& = aX + A\(X)E, where X € TM, A\(X) is a linear form and « is a
function, [4,19,29].

In the local transcription, this reads

(1.12) & =ad! + &N,

where " and )\; are the components of ¢ and A respectively, and 6" is the Kronecker
symbol. A torse-forming vector field ¢ is called, [19,29],
i) recurrent if o = 0, i.e.,

(1.13) & =¢&"\;
i) concircular if the form \; is gradient covector (i.e., \; = A;), i.e.,
(1.14) ¢ = adl

i1i) convergent if it is concircular and a = const.exp(A).
A p(Ric)-vector field is a vector field on an n dimensional Riemannian manifold
(M, g) with metric g and Levi-Civita connection V, which satisfies the condition [13]

(1.15) Vi = pRic,

where p is some constant and Ric is the Ricci tensor. Obviously, when (M, g) is an
Einstein space, the vector field ¢ is concircular. Moreover, when pu = 0, the vector
field ¢ is covariantly constant. In the following we suppose that p # 0 and (M, g)
is neither an Einstein space nor a vacuum solution of the Einstein equations. In a
locally coordinate neighbourhood U(x), the equation (1.15) is written as

(2

where ' and S" are components of ¢ and Ric, respectively. After lowering indices,
(1.16) has the form

(1.17) Pij = Wi,
where ¢; = p®gio and S;; = ngf.

2. Z-TENSOR ON A RIEMANNIAN MANIFOLD

In 2012, Mantica and Molinari defined a generalized symmetric tensor of type (0, 2)
which is called Z-tensor and given by [15]

(2.1) Zy = Sy + O,

where ¢ is an arbitrary scalar function. The scalar Z is the trace of Z-tensor and
from (2.1), it can be written as

(2.2) 7 = g"Zy = r +ne.

The classical Z-tensor is obtained with the choice ¢ = —%T. Shortly, the generalized
Z-tensor is called as the Z-tensor. In some cases, the Z-tensor gives the several well
known structures on Riemannian manifolds. For example, i) if Z, = 0 (i.e, Z-flat),
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then this manifold reduces to an Einstein manifold [3]; ii) if V;Zy = \;jZu (Z-
recurrent), then this manifold reduces to a generalized Ricci recurrent manifold [6]; iii)
if VjZkl = VkZﬂ (COd&ZZi tensor), then we find VjSkZ—Vijl = ﬁ(gklvj—gﬂvk)r
[10]. This result gives us that this manifold is a nearly conformal symmetric manifold
(NCS), [24]. iv) The relation between the Z-tensor and the energy-stress tensor of
Einstein’ s equations [9], with cosmological constant A is Z;; = kT};, where ¢ = —%r—i—A
and k is the gravitational constant. In this case, the Z-tensor may be considered
as a generalized Einstein gravitational tensor with arbitrary scalar function ¢. The
vacuum solution (Z = 0) determines an Einstein space A = ("2—;2)7"; the conservation

of total energy-momentum (V'T};, = 0) gives V;Zj; = 0 then this spacetime gives the
conserved enery-momentum density.

This manifold has received a great deal of attention and is studied in considerable
detail by many authors [7,8,15-18,30, 31]), etc. Motivated by the above studies, in
the present, we examine the properties of a Z-symmetric manifold with conharmonic
curvature tensor.

The present paper is organized as follows. In Section 1 and Section 2, after reviewing
the basics about symmetric spaces and Z-tensor, respectively. In Section 3 we will
discuss Z-symmetric manifolds with conharmonic curvature tensor and mention some
properties of these manifolds. We will concentrate on this paper that will be of
relevance in our forthcoming paper.

3. Z-SYMMETRIC MANIFOLD WITH CONHARMONIC CURVATURE TENSOR

In this section, we consider a Z-symmetric manifold with conharmonic curvature
tensor. In the local coordinates, consider the equations (1.5) and (2.1), the relation
between the Z-tensor and the conharmonic curvature tensor is found as

(3.1)

1 2¢
Lhijk :Rhijk - m[gijzhk - gikZhj + gthij - ghjZik] + m[gijghk - gikghj]-

By taking the covariant derivative of (3.1), we can find

1
Lhijk,l :Rhijk,l - nf[gz'jzhk,l - gikZhj,l + gthij,l - ghjZik,l]

2
20,
(3.2) + m[gijghk — GikGhj)-
Suppose now that our manifold is Z-recurrent. Considering the equation (1.11) for
Z-tensor, we can write Z;;; = N Z;;. Hence, we see from (3.2) that
(3.3)
)\l 2¢l

Lijeg =Rhijkg — m[gijzhk — 9ikZnj + GniZi; — GnjZik) + m[gijghk — GikGhj)-
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It is obtained by (3.1)

(3.4)
1 2
ﬁ[gijzhk — GikZnj + 9niZij — GnjZik) =Rhijk — Lniji + m[gijghk — GikGhj)-

By the aid of (3.4), the expression (3.3) can be written as
2
(3.5) Lpiikg — NiLnije = Rhijieg — N Bhijie + m(gi]’ghk — Jik9nj) (o1 — Ni@).
In the following theorems, a Riemannian manifold admitting covariantly constant

conharmonic curvature tensor and recurrent Z-tensor with the recurrence vector field
A will be shown by (M, g).

Theorem 3.1. The vector field ¢, and the recurrence vector field N, of (M, g) must
be parallel and they satisfy the relation

o= (24 0)n

Proof. Differentiating covariantly of (1.5) and assuming that the conharmonic curva-
ture tensor is covariantly constant, it is not hard to see that the scalar curvature must
be constant. If the Z-tensor is recurrent tensor admitting \; recurrence vector field
then we have from (1.11) and (2.1)

(3.6) NZi; = Siji + dugis.

Multiplying (3.6) by g%, we get

(3.7) NZ =1, +nd.

Since r must be constant, from (2.2), the equation (3.7) takes the following form
(3.8) A(r 4+ no) = ng,.

Arraying the equation (3.8), finally we obtain

(3.9) o= (24 0)n

Hence, the proof is completed. 0]

T

Theorem 3.2. On (M, g), - is an eigenvalue of the Ricci tensor S corresponding to
the eigenvector § defined by \N(X) = g(X, ).

Proof. Suppose that the Z-tensor is recurrent tensor. As we already know from the
equation (1.11), we have

Multiplying (3.10) by g%, we get
(3.11) Z, =NZj.
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We remark that in a Riemannian manifold with covariantly constant conharmonic
curvature tensor, the scalar curvature is constant. From this result and the Ricci
Identity, we have Sj-’l = 0. Thus, we see that

(3.12) Z!, = ¢;.
From (2.1), (3.11) and (3.12), one can show that
(3.13) ¢ = N (St + ¢g;1)-
On the other hand, if we use the equation (3.9), (3.13) takes the form
(3.14) <;+¢)M:A%ﬁ+¢%.
Finally, the equation (3.14) shows that
(315) )\lSjl - ZAJ
n
Hence, the proof is completed. 0

Theorem 3.3. A necessary and sufficient condition for the vector field ¢' generated
by the scalar function ¢ of (M, g) to be divergence-free is that the divergence of the
vector field X' be of negative value in the form

Ny = =11l

Proof. From Theorem 3.1, we know that the relation between ¢; and \; vector fields
is in the form

,
(3.16) o = (n + ¢> Al
Taking the covariant derivative of (3.16), we get
r

(317> ¢l,m = gbm/\l + <TL + ¢> )‘l,m~
Substituting the equation (3.16) in (3.17), one can prove the relation
(3.18) Sum = (= + ) Andi + (= +6) A

n n
Multiplying (3.18) by ¢'™, we find

’

3.19 l:( > AP+ M)
(3.19) =+ 0) (NP + )

Now, suppose that the vector field ¢; is divergence-free. Of course, r # —n¢ from
(3.16), then by using (3.19), we obtain

(3.20) )\fl = —[|A\l]%

Conversely, if the equation (3.20) is satisfied then from (3.19), we can find qﬁfl = 0.
Hence, the proof is completed. O
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Theorem 3.4. If the vector field \; on (M, g) is divergence-free then the divergence
of the vector field ¢; is in the form

l
(b,l =

n
r 4 neo

Proof. From Theorem 3.3, we know that the relation (3.17) holds. In this case, if we
use (3.16) and (3.17) then we get

B n r+ng
(321> ¢l,m - (’I" + n¢> ¢m¢l + ( n ) /\l,m~

Multiplying (3.21) by ¢'™, we find

(3.22) o) = ( - ) ][> + (W) Al

161

r 4 no

Now, suppose that the vector field )\; is divergence-free. Finally, the divergence of the
vector field ¢; is found in the following form
n

(3.23) ¢ = r+n¢l|¢>|l2-

Thus, the proof is completed. U

Theorem 3.5. If (M, g) admits a torse-forming vector field associated by the 1-form
@1 in the relation ¢, = pGim + @i, then the vector field N, is also torse-forming
vector field satisfying the equation

)\l,m = YG9im + Bm/\h

where v = T_’:qu and B = Gy — A

Proof. Assume that the vector field ¢; is a torse-forming vector field with a scalar
function p and a vector field a,,. As we know from (1.12) that

(324> le,m = PGim + @m¢l.
Substituting the equation (3.24) in (3.17), thus we see that
r

(3.25) pim + Ay = S+ (= +6) A
Also, we can use the equation (3.16) in (3.25). Then

np
3.26 ANom = m m — Am) AL
(3.26) tm = T g + (a A
Defining v = Tfﬁd) and £, =  — A, (3.26) takes the form
(327) >\l,m = YG9im + ﬁm)\l

Thus, the vector field )\; is a torse-forming vector field. Hence, the proof is completed.
O
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Theorem 3.6. If (M, g) admits a torse-forming vector field associated by the 1-form
@1 in the relation ¢rm = pgim + Am@i, then the vector field N\, forms a concircular

vector field in the form A, = YGum, where v = rfﬁ¢~

Proof. Assume that the vector field ¢; is a torse-forming vector field with a scalar
function p and a vector field ;. If we take A\, = a,,, in (3.26), we get
np

( ) l, r+n ¢9l

Taking v = £ 5, we obtain

(3.29) ALim = VYim-

Thus, the vector field \; forms a concircular vector field. Hence, the proof is completed.

O

Theorem 3.7. If the vector field ¢; of (M, g) is a concircular vector field, then the
vector field \; forms a torse-forming vector field in the relation
np

N = m — N Am-
l, T+n¢9l l

Proof. Assume that the vector field ¢; is a concircular vector field with a scalar
function p, i.e.,

(3.30) Olm = PYim.-
Using the equation (3.30) in (3.18), we get

r r
(3.31) poim = (= +0) M+ (= +6) M.

n n
Finally, from (3.31), we obtain

np

3.32 ANom = m— NAm-
( ) b T+ ngbgl :
Thus, the vector field )\, forms a torse-forming vector field. Hence, the proof is
completed. 0
Theorem 3.8. If the vector field A\; of (M, g) has constant length and the vector field
¢1 is a concircular vector field, then the equation p = ¢*(L + ¢) holds, where ||| = c.

Proof. Assume that the vector field )\; is of constant length, i.e., Ay A! = ¢?. Multiplying
(3.32) by A, we find

np !
3.33 M, = — A\
( ) b <r+n<b ! )

Since ); is of constant length, then we have A')\;,, = 0. By substituting the last
relation and M\ = ¢2 in (3.33), finally we obtain

(3.34) p=c (T + ¢>> .
n
Thus, the proof is completed. O
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Theorem 3.9. If the vector field N, of (M, g) is a concircular vector field in the
form A = pgim, then the vector field ¢; is a torse-forming vector field satisfying the
equation

n

T+ no

(r + no)

(bl,m - ¢m¢l + piglm
n

Proof. Suppose that the vector field \; of (M, g) is a concircular vector field, i.e., the
equation

(3.35) Aym = PGim
holds. Using the equations (3.21) and (3.35), we see that

n p(r + no)
3.36 m = m ——Oim-
(330 N e L

This result shows that ¢; is a torse-forming vector field. Hence, the proof is completed.
O

Theorem 3.10. If the vector field A\, of (M,g) is a concircular vector field in the
form N\ = pgim and the vector field ¢; has constant length, then the scalar function
p generating the vector field \; has negative value and it satisfies the equation p =

_(T_Z*,C'LQS)2'
Proof. Let the vector field \; be a concircular vector field and the vector field ¢; be
of constant length. Multiplying (3.36) by ¢!, we get

) omrot 4 22)

n
r+neo

Since the vector field ¢; is of constant length, then we have ¢'¢;,, = 0. If we take
|#|| = ¢, the equation (3.37) reduces to

2
(3.38) (T ch¢> b+ qum —0.

Finally, from (3.38), we obtain
2
_ [ nc
P= (r + n¢> '

Thus, the proof is completed. O

(3.37) ¢ bim = ( P

Theorem 3.11. If the vector field ¢; of (M,g) is a recurrent vector field in the
form @ = am@i, then the vector field \; is also recurrent vector field in the form
)\l,m = (Oém — )\m))\l

Proof. Suppose that the vector field ¢; is recurrent vector field. Thus, we have

(3.39) PLim = QmPr.
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Substituting the equation (3.39) in (3.17), we get

(3.40) Qntr = dmi + (= +0) M.

Finally, from (3.40), it can be obtained that

(341) )\l,m = (Oém - )\m>>\l

Thus, the proof is completed. O

Theorem 3.12. A recurrent vector field ¢,,, with the recurrence vector field o, of
(M, g) admits the relation o, = N, if and only if the vector field \,, is covariantly
constant or is of constant length.

Proof. 1If we take «,, = A, in Theorem 3.11 then from (3.41), we get
(3.42) Aim = 0.

Thus, we can say that the vector field )\; is covariantly constant. Conversely, if the
relation (3.42) is satisfied, from (3.41) we have a,,, = Ap,,. Similarly, suppose that the
vector field \; has constant length. If we multiply the equation (3.41) by A, then we
have «,,, = A,,,. The converse is also true. Hence, the proof is completed. O

Theorem 3.13. Let the vector field \; of (M, g) be a A(Ric) vector field in the form
ANim = WSim. A necessary and sufficient condition the vector field ¢, to be divergence-
free is that the scalar function p to be in the form

o Vel
r= r 4 neo ro

Proof. Assume that the vector field ), is a A(Ric) vector field, from (1.17),
(343) >\l,m = ,USlma

where p is a scalar function. Putting the equation (3.43) in (3.21), one can easily
obtain that

B n r+neo
(3.49) o = (s ) 0w+ () i

Multiplying the equation (3.44) by ¢'™, it is found that

n r+neo
3.45 L= 2 :
(3.45 ohi= (g el (02

Now, assume that the vector field ¢; is divergence-free. In this case, the equation
(3.45) reduces to

(3.46) N:_< n >2|r¢||2.

r+ no r

Conversely, if the scalar function p satisfies the relation (3.46), from (3.45), it can be
obtained that ¢; is divergence-free. Thus, the proof is completed. O
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Theorem 3.14. If the vector field A is a A(Ric) vector field in the form A, = wSim
and the vector field ¢; of (M, qg) has constant length, then the value —i(%ﬁ s
an eigenvalue of the Ricci temsor S corresponding to the eigenvector o defined by

P(X) = g(X,9).

Proof. Assume that the vector field \; is a A(Ric) vector field in the form X, ,, = puSiy,
and the vector field ¢; is of constant length. Multiplying (3.44) by ¢' then we get

B n r+neo
(3.47 onn = (L olPom 4.1 (12 s

Because ¢; is of constant length, we have ¢'¢;,, = 0. In this case, from (3.47), we
obtain

1 nlloll '\
3.48 St = —— m-
(3.49 s = -1 (1)
Thus, the proof is completed. O
Theorem 3.15. If the vector field \; is a A(Ric) vector field in the form A, = Sim

and the vector field ¢, of (M, g) is a concircular vector field, then the Ricci tensor is
in the following form

Slm = agim + b¢m¢l>

. . . . . . o np _ 1 n 2
which is a quasi-Einstein manifold where a = ind) b= _E(r+n¢) .

Proof. Assume that the vector field )\, is a A(Ric) vector field in the form \;,,, = Sy,
and the vector field ¢; of (M, g) is a concircular vector field. From the equation (3.44),
one can obtain that

n r+neo

3.49 m = m Stm.-

(3.49) Py <r+nd)>¢l¢ +< . ),Uz
We easily find from (3.49) that

2
np 1 n

3.50 Sim = —F—————0Gim — — m-

(3.50) m= g u(r+n¢> 19

Finally, the Ricci tensor can be written in the form

(351) Slm = agim + b¢m¢l>
where a = M(T’jr”n 5 0= —i(r - ¢)2. Therefore, this manifold is a quasi-Einstein
manifold. In this case, the proof is completed. 0

Theorem 3.16. If the vector fields A\, and ¢; of (M, g) are A(Ric) and ¢(Ric) vector
fields in the forms A\ = S and ¢y = Sy, respectively, then the Ricci tensor is
in the following form

Slm = 7¢l¢m7
where v = (T+n¢)(n;‘;(r+n¢)), r+ng #0, a # u(%) and o, pu, 7y are scalar functions.
Thus, this manifold reduces to a quasi-Finstein manifold.
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Proof. Assume that the vector fields A; and ¢, of (M, g) are A(Ric) and ¢(Ric) vector
fields, respectively. In this case, we have from (1.17)

(3.52) AMom = WSt and  @pm = aSpn.

Substituting the relations (3.52) in (3.21), we get

(3.53) @S = - +nn¢¢l¢’” + (T +nn¢> S

Finally, Ricci tensor takes the form

(3.54) Sim = YP1Pm;

where v = (T+n¢)(n;‘iu(r+n¢)) and r +n¢ # 0, o # u(%) This means that this
manifold reduces to a quasi-Einstein manifold. Hence, the proof is completed. U

Theorem 3.17. The vector fields A\; and ¢, of (M, g) are A(Ric) and ¢(Ric) vector
fields in the forms A = pSim and ¢ = aSpy,, respectively. If the eigenvalue
determined by the vector field oy is r, then the eigenvalue determined by the vector
field g is also r.

Proof. Assume that the vector fields A; and ¢, of (M, g) are A(Ric) and ¢(Ric) vector
fields, respectively. As we already know the relations in (3.52), if we use the equations
(3.18) and (3.52), then we get

(3.55) Sy = (:L + ¢> (1St + Adm).

Arraying the equation (3.55), we find

(3.56) (a - (T + ¢) u) Sim = (T + ¢) A
n n

Now, let’s find the covariant derivative of (3.56) and use the equation (3.16), one can
easily see that

[ak — (:; + ¢) (Arp + Mk)] Stm + (Oé — (:L + ¢> /~b> Stk
357 = (; 4 gb) NS -+ AmSie) + A,
We arrive at the following relation multiplying (3.57) by ¢'™
(3.58) [ozk - (; 4 gb) uk] r— (; 4 ¢) 21\ S+ [|M]2Ae + Apar].
Again, multiplying (3.57) by ¢**, we get
(3.59) 'Sy — (:; + ¢) 1Sy = (:L + ¢> 206\ S, + [|A] P + ]
At the end, substracting the equations (3.58) and (3.59), we obtain
(3.60) oSy — apr = <; + gb) (1! Sy, — pr).
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So, we can say that if the eigenvalue determined by the vector field «y is 7, then the
eigenvalue determined by the vector field puy, is also . Thus, the proof is completed. [J

Theorem 3.18. If the vector field ¢, of (M, g) is a ¢p(Ric) vector field in the form
G1m = S, then the Laplacian of the trace function of the Z-tensor is

AZ = nar.

Proof. As we know that in a Riemannian manifold with covariantly constant conhar-
monic curvature tensor, the scalar curvature must be constant. Thus, going back to
the relation (2.1), we get

By taking the covariant derivative of (3.61), it can be found
(3.62) Z,kl = nQp,.

Now, let us asuume that the vector field ¢; is a ¢(Ric) vector field. In this case, the
equation (3.62) takes the form

(3.63) Z 1y = naSy.

Multiplying the equation (3.63) by g*!, we obtain

(3.64) gklZ,kl = AZ = nar.

Hence, the proof is completed. 0

Theorem 3.19. If the vector field ¢, of (M, g) is a ¢p(Ric) vector field in the form
G1m = S, then the scalar curvature satisfies the relation

. nood
C na—206’

where § # na.

Proof. Assume that the vector field ¢; is a ¢(Ric) vector field in the form ¢ ,,, = @Spy,.
Hence, from (3.18), one can easily find that

(3.65) aSim = (T +n”¢> (N + M) -
Let’s multiply (3.65) by g'™. Thus, it takes the form
r+n
(3.66) ar — ( : ¢> (2 + X
Now, let’s take 6 = [[A||> + X} and & # na. Finally, it is obtained that
nood
3.67 = .
(3:67) -

Hence, this completes the proof. O
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A STUDY ON THE BLOW-UP OF SOLUTIONS FOR A LAME
SYSTEM OF INVERSE PROBLEM

MOHAMMAD SHAHROUZI*

ABSTRACT. We consider the Lamé system of inverse problem in a bounded domain
with nonlinear boundary condition. When 2 < m < &, we obtain the blow-up result
for the weak solution with positive initial energy and sufficiently large initial data.

1. INTRODUCTION
We study the following Lamé system of inverse problem of determining a pair of
functions {u(x,t), f(t)} that satisfy:

(1.1)
Uy — Aeu — div (|Vu" " 2Vu) + h(z, t,u, Vu) = [ulP2u + f(H)w(z), x€Q,t>0,

(1.2) u(z,t) =0, x €y, t >0,
' pSe(z,t) + [54m=2%% + (A + p)dive =0, x€Ty,t>0,
(1.3) u(z,0) =ug(x), w(z,0)=u(x), x€Q,
(1.4) / u(z, t)w(x)de =1, t>0,
Q
where €0 is a bounded domain of R", n > 1, with smooth boundary 02 = I'o U I';
and v is the unit outward normal to Q. Let u = (u',...,u") be a vector function,

. . 2 .
divu =u) +u2 +---+u? be the divergence of u, A =31, 597?. We write

n n n T
_ 1 2 n
Au= (> up, > ul .., > ub |
=1 %

=1 i=1

Key words and phrases. Blow-up, Lamé system, Inverse problem.
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Here A, denotes the elasticity operator, which is the n x n matrix-valued differential
operator defined by

Acu = pAu+ (A + p)V(divu),
1 and A\ are the Lamé constants which satisfy the following conditions

>0, A+p>0.

Also, m and p are constants such that p,m > 2. In addition, h(z,t,u, Vu) and w(x)
are real functions that satisfy specific conditions that will be enunciated later (see
(A1)-(A3)).

Elasticity systems with constants Lamé coefficients in direct problems (w(z) = 0)
has attracted considerable attention in recent years, where diverse type of dissipative
mechanisms have been introduced and several results have been obtained. In [1]
Bchatnia and Daolati studied behavior of the energy for solutions to a Lamé system
on a bounded domain with localized nonlinear damping and external force. Later,
Bchatnia and Guesmia [2] considered the Lamé system in 3-dimension bounded domain
with infinite memories and proved that system is well-possed and stable. Moreover,
they established solutions converge to zero at infinity in terms of the growth of the
infinite memories. Li and Bao [19] investigated the following memory-type elasticity
problem

t
gy — pAu — (p+ X))V (divu) +/ g(t —s)Au(s)ds =0, in Q x (0,00),
0
u=0, onlyx(0,00),
ou t ou )
Ha, ~ / g(t — s)a—(s)ds + (p+ A)(divu)y + h(u) =0, on I'y x (0,00),
v 0 v
w(z,0) = ug, w(x,0) =uy, in .
The authors obtained global existence and the general energy decay of solutions by
using perturbed energy method.
Boulaaras [6] proved asymptotic stability result of global solution for a coupled
Lamé system with a viscoelastic term and the logarithmic nonlinearity. He obtained
this result taking into account that the kernel is not necessarily decreasing. Recently,

Bocanegra-Rodriguez et al. [5] investigated the longtime dynamics of the following
semilinear Lamé systems

Ou — pAu — (A + p)Vdivu + adu + f(u) = b,

defined in bounded domains of R? with Dirichlet boundary condition. They proved
the existence of finite dimensional global attractors subjected to a critical forcing
f(u). Moreover, they showed the upper-semicontinuity of attractors with respect to
the parameter when (A + ) — 0 (see also [3,4,9,10]).

Inverse problems are the problems that consist of finding an unknown property of
an object, or medium, to a probing signal (see [21]). In contrast with the extensive
literature on global behaviour of solutions in direct problems, we know little about
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the inverse problems. For instance, Eden and Kalantarov in [8] studied the following
inverse source problem:

ur — Au — |ulPu + b(z, t,u, Vu) = F(t)w(z), z=€Q,t>0,
u(z,t) =0, x€dNt>0,
u(z,0) = up(x), =z €,

/ u(z, tw(z)de =1, t >0,
Q

and by using the modified concavity method established global nonexistence results as
well as stability results depending on the sign of nonlinearity. For more information
about the concavity argument, we refer the readers to [16-18]. In [26] Shahrouzi and
Tahamtani by using the same method found conditions on data that guaranteeing the
global nonexistence and asymptotic stability results for a class of Petrovsky inverse
source problems (see also [22-24,27]). Bukhgeim et al. [7] considered an inverse
problem for the stationary elasticity system with constant Lamé coefficients and
variable matrix coefficient depending on the spatial variables and frequency. They
proved uniqueness theorem by reduction of the inverse problem to a family of equations
with the M. Riesz potential. For more results on the Lamé system of inverse problems,
we refer the reader to [11-15,25] and references therein.

The paper is organized as follows. In Section 2, we present some notations, assump-
tions and known results needed for our work and state our main result: Theorem 2.1.
Section 3 is devoted to the proof of the blow-up result.

2. PRELIMINARIES AND MAIN RESULT

We begin this section by introducing some hypotheses and our main result. We
shall assume that the functions w(z), h(x,t,u, Vu) and the functions appearing in the
data satisfy the following conditions:

(A1) ug € Hy(Q) N LPT2(Q), uy € L*(Q), Jo uo(z)w(z)dr = 1;

(A2) w e H*(Q) N HY(Q) N LPH2(Q), Jow(x)dz = 1;

(A3) for some positive My, My we have |h(x,t,u, Vu)| < My|u|? + My|Vul=.

Throughout this paper all the functions considered are real-valued. We denote by
|- |l the L%norm over Q . In particular, the L*norm is denoted || - || in Q and || -
in I';. Also we use familiar function spaces Hj, H>.

We recall the trace Sobolev embedding

r;

2(n—1)

Hp, () < LYIy), for2<g< p———

where
H%O(Q) ={uec H(Q) : u|p, = 0}
and the embedding inequality
[ullgr, < Byl[Vull2,
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where B, is the optimal constant.
We sometimes use the Young’s inequality

, 11
(2.1) ab < Ba? + C(B,q)b?, a,b>0,8>0,-+— =1,
q q

where C(3,q) = %(ﬁq)_% are constants.
The following lemma was introduced in [16]. It will be used in the next section in
order to prove the blow-up result.

Lemma 2.1. Let a > 0, ¢1,¢0 > 0 and ¢y + co > 0. Assume that ¥(t) is a twice
differentiable positive function such that

W= (1+a) 0] = 200 — ol
forallt>0. If

¥(0) >0 and ' (0)+ya '(0) >0,
then
71%(0) + av)'(0)

1
log :
2./ +ac,  2¢(0) +ay’(0)
Y =—c+\AE+acs and v = —ci — /2 + acy.

We consider the following problem that is obtained from (1.1)—(1.4) by substituting
u(x,t) = efto(x, t):

¢(t)—>+00, ast — 1t <ty =

Here

vy + 260y + €20 — Av — eSM Uiy (|Vv]m’2Vv) + e N (t,v)

(2.2) =efP= Dy P2y e F(Hw(t), z€Q,t>0,

(2.3) { v(aai,t) =0, o oo . xe€Tly,t>0,
pSe(x,t) 4 St Gem=280 o (X 4 pydive =0, z €Ty, t> 0,

(2.4) v(x,0) = up(z), v(x,0) =ui(x) —Eup(x), =€ Q,

(2.5) /Qv(x,t)w(x)dx =e ¥ t>0,

where

h(t,v) := h(z,t, v, e8'V0),

and the value of the parameter £ will be prescribed later.
By using the idea of Prilepko et al. [20] and (A2), one can easily see that the
problem (2.2)—(2.5) is equivalent to (2.2)—(2.4) in which the unknown function f(¢) is
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replaced by
e S f(t) :,u/Q VoVwdz + (A + p) /Q(div v)(divw(z))dx

L tm-2) /Q V0| "2V oVwde + e & /Q h(t, v)w(w)dz

(2.6) - ef(p’m/ |v[P~?vw(x)d.
0
Define the total energy functional associated with problem (2.2)—(2.4) as follows
| 1
(2.7) Ee(t) = 565(” Mol = S1(0),

where
2
I(t) = |lvell? + E[wll” + pl Vol + (A + p) /Q(div v)?dx + Eeﬂm—?)’fnwnz.
Now, we are in a position to state blow-up result.

Theorem 2.1. Let the conditions (A1)-(A3) be satisfied. Assume that2 <m <%
and for sufficiently large initial data and £ > 0

(2.8) 3(pM?E + 2mM3) <t < (m—1) [ U0U12d$’
8m(m — 1) (m 4 1)|uol]
2D, D,
E:(0) > =2
el )_£(p+2) om
where
73 2 (Aﬂt)é/ . 2 E(pM +2mM3) -~
D, == ~ d d
(=Tl + B [ (vt do 4 ST )
I Vwlim Ellwll
(29) + p—2 m—1 p—2 pp_17
m{m(m—n} p[6<p—1>]
(A +p) £ (3pM7 + 6mM3)

e ®

_ K 2 / . 2

D, =1 W

9 2mHVwH + 5 Q(dlvw(x)) dx +
vl el

[

Then there exists a finite time t; such that the solution of the problem (1.1)—(1.4)
blows up in ty, that is

8m
(2.10) +

m" |5

lu(®)| = 400, ast— t;.

3. BLow-upP

In this section we are going to prove that for sufficiently large initial data some
of the solutions blow up in a finite time. To prove the blow-up result (Theorem 2.1)
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for certain solutions with positive initial energy, we need the following lemma for the
problem (2.2)—(2.5).

Lemma 3.1. Under the conditions of Theorem 2.1, the energy functional Ee(t),

defined by (2.7), satisfies
2D,

Ep+2)

Proof. A multiplication of equation (2.2) by v; and integrating over {2 gives

Ee(t) > E¢(0) —

: £0m =2) _con-2prppm o E@—2) e
e

(3.1) yeét / veh(t,v)de + e f (1),
0
Plugging definition of f(t), (2.6) into (3.1), we obtain
_9 —9 .
I e Ao
p Q
+ £/Le’5t/ VoVwdzr + (A + p)e’gt/ (div o) (divw(z)) dz
Q
+ £eblm=3)t / V| ?VoVw(r)dr + fe*w/ h(t,v)w(x)dx
Q

(3.2) — 565(1”’3”/ [v|Pow(x)d
Q

Next, we estimate the terms on the right-hand side of (3.2). Using (A3), Cauchy-
Schwartz and Young’s inequality (2.1), we obtain

/Qvtfl(t, v)dx

e ¢

§M1/ 0t GV |3 da + Mg/ 0,82 "V V| 2 da
Q
< M5 ol + M2||vt||ef<%—”t||w|%
M2 M?
33 < 5u0 ol 4 ool + (3 + 32

where (3, and (5 are arbitrary positive constants

30 || Vovudd| < BEZD w4 S oy
EN+ p)e A (divv) (divw(x)) dz

(3.5) Sf()\+ui(p_2)/Q(divv)2dx+we_%t/ﬂ(divw(x))zdx,
getlm=a)t /Q Vo™ 2 VoV (z)de| < &2 Volmte VW] m

36 B om+ — g

m—1
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where 3 is an arbitrary positive constant,

/ﬁ(t,v)w(m)dw
0
ng/ eg(g_l)ﬂv\gfe_gtw(a:)da:+Mg/Qeg(%_l)t|Vv\%§e_§tw(x)dx

5672&

<eSED o3 My ]| + e€CF D[ Tul|E . Moge €]

M? M3
(3.7) <Baet P ol[p + B2Vl + < 5 15, )5 e Jlw?,

where [, and 5 are arbitrary positive constants.
Finally, we have for any positive [g:

g | [ opvw(e)da| <EBS ol e ],
E(p-2)t gre !
(3.8) <Boc™ " lvllp + 5= lwllp-
P[]
Combining (3.3)—(3.8) with (3.2), we deduce
m — 2
( T ol = (2 ) e gy
- pE(p — 2
( - a= o) 1ol - =Dy
(3.9) _ g0+ N)( 2) / (div o) de — e %Dy,
Q
where
23 2 O“"/U&/ . 2 52(55M12 +54M22) 2
Dy=2"5 5 I Vel + o (divw(z))” dr + A(Bs + Bs) lw
n meVwH%l ngngl.
am | op [P
mls]” ]

By virtue of (3.9), we obtain from (2.7) the following inequality

i) - 07 ) > (02D gy ) gy
+ <£(p2; 2 _ B —Ba— BG) ef(”‘z)tllvllﬁ

{(p+6) M? M2 t
' [ 4 (4511+ 45 )] [o|* = e Dy.
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At this point if we choose 31 = 84 = s = 5(%7;2) and By = B3 — 5 = 5(1’;7;2), then we
gain

£(p—2) &(p—4m + 6) E(p+6) 3pM?+6mM;
EL(t) — Ee(t) > m — 2
— 672&D1.
Hence, by choosing m < % and
> 6(pM3E + 2mM3)
- p244p—12 7
we get
-2
(3.10) Ee(t) — &y 5 )Eg(t) > —e %D,
Integrating the differential inequality (3.10) between 0 and ¢ gives that
D,
Ee(t) > Be(0) — —2+
() 2 E0) ~ o2
where D, satisfies (2.9) and proof of Lemma 3.1 is completed. O

Proof of Theorem 2.1. For obtain the blow-up result, the choice of the following
functional is standard (see [17,18])

(3.11) b(t) = ()],
then
(3.12) W(t) = 2/vitdm, V() = 2/thtdx+2||ut||2.

A multiplication of equation (2.2) by v and integrating over 2 gives
[ vvude == 2¢ [ vvide = ol = | Vol = 0+ p) | (dive)de
_ Emt gy e /Q vh(t, v)da + S o2
+ pe” /Q VoVwdr + (A + p)e™ /Q(div v)(divw(z))dx
—l—eé(m’S)t/Q |Vv\m’2Vvadx—i—e*%t/giz(t,v)w(x)dx
(3.13) —eg(p’g)t/Q v’ 2w (x)dz,

where the definition of unknown function (2.6) has been used.
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By combining (2.7) with (3.13), one can easily verify that

/vittdx —nEe(t) — 25/vitdx + gnth? + & (;7 - 1) o]l + (;’ - 1) Vo2

n_ v 0)2 T 1) pttm—2)t m
+ O+ ) (2 1>/Q(d1vv) dr + (m 1) =27
+ (1 - 77) eg(p’Q)tHsz — e’gt/ vh(t,v)dz + ue*&/ VoVwdz
p Q Q
+ (A +p)e ™ / (divo)(divw(x))dz + eg(mf?’)t/ V| ?VoVwdz
0 Q
(3.14) +e’25t/ h(t, v)w(z)dz — ef(p’g)t/ |v[P~?vw(x)d.
Q 0

Applying (A3), Cauchy-Schwartz inequality and the Young’s inequality (2.1) to
estimate the terms on the right-hand side of (3.14)

- p m m
1| [ e, v)da| <D eED ol + Mol T
M2 M2
(p—2)&t (m—2)&t m 1 2 2
(3.15 <Ol ol + ope 2K + (34 32 ) ol

where #; and 0y are positive constants,

—o¢t
(3.16) pe=ét /VUdex < %HWHM&HWH{
Q n
A+ p)e € ’ [ (@ivo) diveo(a)da
Q
by by —2£t
(3.17) gn(—i_'u)/(divvfdw%—(—i_'u)e/(divw(x))de,
4 Q n Q
and
=3t / V| 2VoVwdz| <€MDY Vo[ e Vel
Q
m ,—2&t
(3.18) <O Tul| + —V,

m[m93 }m—l
m—1

where 05 is an arbitrary positive constant. Also, similar to (3.7), we have

e 2t /QE(t,U)u)(ZE)dZL” §94ef(p_2)t]|v||§ + 0582 | V||
M2 M?

3.19 L 2 2% w)|?,
(3.19) b (50 + 4 ) el
where 6, and 05 are positive constants. Furthermore, for 65 > 0 we derive

p ,—2Et
(320) I P (e < e ol ol

p[ ]
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Utilizing (3.15)—(3.20) with (3.14), we get

M2 M2
>nkE, -2 / 21 _ 1) — 2
/vittd:c >nEe(t) — 26 Q’uvtd:c—l— [{ (2 ) <49 —i——40 )1 o]l

b (L= 1) IVl + Do+ k) (= 1) [ @ive)*ds

+ (77 -1 92 — ‘93 — 05) €£(m72)tval|z

m

+ <1 - Z — 01— 0, — 96) ef(p_Q)tHUHZ —e % ('ZHVMP

At . m
+ 2 v a2 de + —— V|
noJe m [
M2 M2 1%
F (G G €l anug).
p|2%]
Now by choosing n = 2m, 0, = 05 = 05 = and 0, =0, = 0 = 22, we conclude that
3 M2 3M2
/vittdx >omE(t) — 2£/vitdx+ gHth2 + [g?(m— 1) — ( gm )] o2

+u @ - 1) IS0l + (A + p0) (Z‘ _ 1) [ ive)* s
4
+ (1 — m) eﬁ(p—2)t||v||£ —e %D,
D
where D, satisfies (2.10). Let 2 <m < £ and

(s J 3(pM32 + 2mM3)

8m(m —1)
it holds that
/vittdx > 2mEe(t) — 2{/vitdx + m||vy]|? — e %' Ds.
According to Lemma 3.1 and hypothesis of Theorem 2.1, we obtain
(3.21) /vittdm > —2£/vitd:c + m||v)?.
To this end, by substituting (3.11) and (3.12) in (3.21), we arrive at

W) = =260 (1) + 2(m + 1) [,

finally we get
(m+1)
2

()" (t) = [ ()] — 260 ()Y (1).
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Considering 2 < m < %, it is obvious that

a 3(pM? +2mM3) | 6(pME + 2mM3) 3(pM? + 2mM3)
X = :
8m(m —1) p? +4p — 12 8m(m — 1)
Hence by attention to (2.8) we see that the hypotheses of Lemma 2.1 are fulfilled with
oz:m?_l,clzﬁ, co =0 and
4€
'(0) — 0)>0
W)~ () > 0,

thus conclusion of Lemma 2.1 gives us that some solutions of problem (2.2)-(2.5)
blow up in a finite time and since this system is equivalent to (1.1)-(1.4), the proof
is completed.
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UNIFORM ULTIMATE BOUNDEDNESS RESULTS FOR SOME
SYSTEM OF THIRD ORDER NONLINEAR DELAY
DIFFERENTIAL EQUATIONS

M. O. OMEIKE!

ABSTRACT. The paper is concerned with the study of the uniform ultimate bound-
edness of solutions of the third-order system of nonlinear delay differential equation

X +AX + BX + H(X(t — 1)) = P(t, X, X, X),

where A, B are real n X n constant symmetric matrices, r is a positive real constant
and X € R", using the Lyapunov-Krasovskii functional method and following the
arguments used in [1] and [10], we obtained results which give an n—dimensional
analogue of an earlier result of [13] and extend other earlier results for the case in
which we do not necessarily require that H(X (¢t — r)) be differentiable.

1. INTRODUCTION

Let R denote the real line, —oo < t < oo and R" denote the real n-dimensional
Euclidean space R x R x --- x R (in n places) with the usual norm which will be
represented throughout by || - ||.

Consider the delay differential equation of the form

(1.1) X +AX +BX + H(X(t—7)) = P(t, X, X, X),

where X €¢ R", H : R" - R*", P: RxR" x R" x R* —+ R", A and B are real
n X n constant symmetric matrices, r is a positive real constant and the dots indicate
differentiation with respect to t. We shall assume that H and P are continuous in
their respective arguments.
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Equation (1.1) is the vector version for systems of real third-order nonlinear delay
differential equations of the form

Ti+ > aw@e + Y by + hi(zi(t — 1), 22t — 1), ..., 2, (t — 7))

k=1 k=1
=pi(t,T1, . Ty X1y ooy Ty Ty, X)),
1 =1,2,...,n, in which a;, and b;, are real constants, r is a positive real constant

and h;, p; are continuous in their respective arguments. The case when n = 1 and
r = 0 which give rise to the nonlinear differential equations of the form

(1.2) T +ai + bt + h(x) = p(t,z, &, %)

have been greatly studied by several authors for stability, boundedness, convergence
and periodicity of solutions (see [5,8,14]). Similarly, equations of the form (1.2) for
which a, b are not necessarily constants have been studied by several authors in the
literature (see [14]). For the case n = 1 and r > 0, delay differential equations of the
form

(1.3) T +ai + bt + h(x(t —r)) = p(t,x, &, %)

have been studied for stability, boundedness and periodicity of solutions by several
authors in the literature. In [18], sufficient conditions which ensure the stability (for
p(t,x, &, %) = 0) and boundedness (for p(t, x, &, %) # 0) of solutions of equation (1.3)
were obtained. In [13], equation (1.3) (in which A is not necessarily differentiable) was
studied, and the author obtained conditions which ensure that solutions are bounded.
Similarly, equations of the form (1.3) for which a, b are not necessarily constants have
been studied by several authors in the literature. It is worth mentioning that equation
(1.1), when r = 0, gives rise to the nonlinear vector differential equations of the form

(1.4) X +AX + BX + H(X) = P(t, X, X, X),

where A, B, H and P are as defined above. Equations of the form (1.4) have been
studied by several authors for boundedness and periodicity of solutions ([1,6,10]). In [6]
the authors studied equation (1.4) when H(X) is continuous and differentiable, while
in [1] and [10] the authors studied (1.4) when H(X) is not necessarily differentiable.
Similarly, qualitative properties of solutions of (1.4) for which A, B are not necessarily
constants have been investigated by several authors (see [2,7,9,15]). However, there are
few papers in connection with the qualitative properties of solutions of systems of third
order nonlinear delay differential equations in literature. Recently, in [12], equation
(1.1) in which r = r(t), H € €' (R") and P(t,X,X,X) = P(t) was investigated
for the boundedness of solutions, while in [17], the author studied the stability and
boundedness of solutions of the equation

X +HX)X +GX(t—7)+cX(t—7) =Pt X, X,X),

where H, G are continuous and differentiable in their arguments and P is continuous
in its arguments. To the best of our knowledge the extension of the results in [1]
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and [13] to equation (1.1) does not exist in literature. Throughout all the foregoing
papers, the Lyapunov’s second (or direct) method has been used as a main tool to
carry out the proofs of the main results for scalar and vector ordinary differential
equations, while the Lyapunov-Krasovskii functional method has been used for scalar
and vector delay differential equations ([1] - [19]). In the present paper, we shall
use the Lyapunov-Krasovskii functional method as a basic tool in our proofs. In the
present paper, we also used the same method as a basic tool in our proofs. The
motivation for the present work is derived from the papers mentioned above, and
the object of this paper is to prove the uniform boundedness results under specified
conditions on H and P. Specifically, unlike in [12], we shall only assume that H is not
necessarily differentiable, and that for any X,Y € R" (following [1] and [10]), there
exists an n X n operator C'(X,Y") such that

(1.5) HX)=HY)+CX,Y)(X -Y)

for which the eigenvalues \;(C(X,Y)), i = 1,2,...,n, are continuous and satisfy
0<dn < NICOX,Y)) <Ay

for fixed constants 9, and Aj. Moreover, we shall assume that

Ah < k?(;aéb, k < 1,

where

. a(l = p)o a(l—p)d,
(16) b= mm{éa(aJrAa)?’ (5a+20z)2}
and
(1.7) 0<da < N(A) <A,

with A\;(A) and \;(B) as the eigenvalues of A and B, respectively.

The result in this paper is the n-dimensional analog of a result in [13]. Moreover, we
shall improve on the results in [12] when H(X (¢ — r)) is not necessarily differentiable
and r(t) =r > 0.

1.1. Notation and definitions. Given any X,Y in R" the symbol (X,Y) will be
used to denote the usual scalar product in R”, that is (X,Y) = >, ;y;. Thus
| X]|? = (X, X). The matrix A is said to be positive definite when (AX, X) > 0 for
all nonzero X in R™.

The following notations (see [12,13]) will be useful in subsequent sections. For
x € R, |z| is the norm of z. For a given r > 0, t; € R, C(t1) ={¢ : [t1 —r, t1] —
R™/¢ is continuous}. In particular, C' = C(0) denotes the space of continuous func-
tions mapping the interval [—r, 0] into R™ and for ¢ € C, ||¢|| = sup_,«p<( |¢(0)|. Cr
will denote the set of ¢ such that ||¢|| < H. For any continuous function x(u) defined
on —h <u<A, A>0, and any fixed ¢, 0 <t < A, the symbol z; will denote the
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restriction of z(u) to the interval [t — r,t], that is, x; is an element of C' defined by
() = z(t+0), —r <0 <0.

2. SOME PRELIMINARY RESULTS

In this section, we shall state the algebraic results required in the proofs of our
main results. The proofs are not given since they are found in [1,2,6,7,9-11,15,16].

Lemma 2.1 ([1,2,6,7,9-11,15,16]). Let D be a real symmetric positive definite n x n
matrix, then for any X in R, we have

dal| X1 < (DX, X) < AglI X%
where dq, Ay are the least and the greatest eigenvalues of D, respectively.

Lemma 2.2 ([1,2,6,7,9-11,15,16]). Let Q, D be any two real n X n commuting
symmetric matrices. Then

(i) the eigenvalues \;(QD), i =1,2,...,n, of the product matriz QD are all real
and satisfy

min_ A\ (Q)Ar(D) < M(QD) < max A\ (Q) i (D);

1<5,k<n ~ 1<jk<n
(ii) the eigenvalues \;(Q+ D), i =1,2,...,n, of the sum of matrices @ and D are
real and satisfy

{imin 3@+ min WD)} <x(@+D) < {ma

1<j<n

x (@) + max A(D)}

<n

Lemma 2.3. Let H € C(R"™) be a continuous vector function and that H(0) = 0.

Then
t

H(U) = C(U,0X(t) = C(U,0) [ Y(s)ds,
where U = X (t —r).
Proof of Lemma 2.3. From (1.5), we have that
(21) HX{t—r)=HY({t—7r)+CX{t—r),Y{t—1)(X{t—7)=Y(t—1)).
If we set Y(t —r) = 0in (2.1), we obtain
(2.2) HX({t—r)=C(X({t—r),0)X(t—r).
Since

X(t—r)=X() - [ V(s

where

it follows from (2.2) that
HX({t—7r)=C(X({t—-r),0X(t)—C(X(t—r1),0) Y (s)ds.

Let U = X (t — ), hence the result follows. O
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Corollary 2.1. If r =0, then (2.2) reduces to H(X) = C(X,0)X.

3. BOUNDEDNESS
First, consider a system of delay differential equations
(3.1) t=F(t,x), z(0)=zt+0), —r<60<0,

where F' : R x C'g — R" is a continuous mapping and takes bounded set into bounded
sets. The following lemma is a well-known result obtained in [4].

Lemma 3.1 ([4]). Let V(t,¢) : R x Cg — R be continuous and locally Lipschitz in
o. If

(1) W(lz®)]) < V(t,20) < Willz®)]) + Wa ([0 Wallz(s)])ds) , and

(il) Vis1) < =Wa(Jz(s)]) + M,
for some M > 0, where W(r), W;, i = 1,2, 3, are wedges, then the solutions of (3.1)
are uniformly bounded and uniformly ultimately bounded for bound B.

To study the boundedness of solutions of (1.1) for which P(t, X, X, X) # 0, we
would need to write (1.1) in the form

(3.2) X =Y,
Y = Z,
Z=—-AZ -BY —H(X(t—r))+ P(t,X,Y, 2Z).

Our main theorem in this paper stated with respect to (3.2), which is an n-dimensional
analogue of a result in [13] is the following.

Theorem 3.1. Consider (3.2), let H(0) = 0 and suppose that

(i) there exists an n X n real continuous operator C(X,Y") for any vectors X,Y €
R™ such that

H(X)=HY)+CX,Y)(X -Y)
whose eigenvalues \i(C(X,Y)), i =1,2,...,n, satisfy
(3.3) 0<d, <NC(X,Y)) <Ay

(ii) the constant symmetric matrices A and B have positive eigenvalues, commute
with themselves as well with the operator C(X,Y) for any X,Y € R" and that

Ay, < kdaor,

where k (< 1) is the constant defined in (1.6);
(iii) there ezist finite constants Ao > 0, Ay > 0, such that the vector P satisfies

(3.4) 1P, X, Y, Z)|| < Ao + Ad (X[ + Y]+ [[Z])
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uniformly in t, for all arbitrary X,Y,Z € R". Then, if Ay is sufficiently small, the
solutions to the system (3.2) are uniformly bounded and uniformly ultimately bounded
provided

: { 0p0h 23040 o }
7 < min )

AbAh’ Ah[l + (1 — B)Ab + 2<Aa + o+ 045(;1)]’ Ah(l + 2055(;1
Proof. The main tool in the proof of Theorem 3.1 is the Lyapunov functional

(3.5) 2V(X,,Y,, Z,) =B(1 — B)(BX, BX) + B(BY,Y) + 2a(BY, A~'Y)
+ (A Z,Z) + a{ATHAY + Z), AY + Z)
+(Z+AY + (1 - B)BX,Z+ AY + (1 — B)BX)

A / / ))dods,
—r Jt+s

where 0 < f < 1 and a, A > 0 are constants.

Obviously, the function V(X3,Y;, Z;) is positive definite since each term of (3.5) is
positive. Hence the condition (i) of Lemma 3.1 is satisfied. Now, let us compute the
time derivative of the functional V (X, Y}, Z;) for the solution (Xt, Y:, Z;) of system
(3.2). By V, we denote the time derivative of the function V = V (X4, Yy, Zy) for the
solution (X, Y, Z;) of the system (3.2). Then

av.

i (1=p8)BX, H(X(t —1))) — (aBY,Y) — (BAY, BY)

—
(I 4+ 20ANZ H(X(t— 1)) — (ol + A)Y, H(X(t — 1))
aZ.Z)+ (YY) =\ [ (V). Y (6))d6
+((1 - )BX+(0J+A)Y_—T— (I +20A™NYZ,P(t,X,Y,Z)).
Upon using (2.2), we obtain

N (1= B)BX,C(U,0)X) — (aBY,Y) — (BAY, BY)

" —(aZ,Z) — (I +20A™Z,C(U,0)X) — ((al + A)Y,C(U,0)X)
[ (U= B)BX() + (ol + A)Y(s)
+(I+20A™HZ ( ), C(U,0)Y (s))ds
+ (MY, Y) =\ <Y(9), Y (6))df
+{(1 - B)BX + (;I + A)Y + (I +2aA Y2, P(t,X,Y, 7))
=— Uy — Uy — Uz + Uy + Us,
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where
1

Ur =5 (X, (1= 3)BC(U.0)X) + (Y, FABY) + ;(aZ, Z),

U, :i(x, (1= B)BC(U,0)X) + (ol + A)Y, C(U,0)X) + (aBY,Y),

U, :i(x, (1 = HBOW,0)X) + (I + 204 Z,CU,0)X) + 1 (a7, 2),
U, :/tt (1— B)BX(s) + (oI + A)Y(s)

'

(T +20A"Y2(s), C(U,0)Y (s))ds + WY, Y)Y — A [ (Y(6), Y (6))d6

t—r
and

Us=((1-B)BX + (al + A)Y + (I +2aA™)Z, P(t,X,Y, Z)).
From (1.7), (1.8) and (3.3), we have

1-— «
(3. U2 s X1+ gy I+ 2112

261 (IXI1° + VI + 121%),

where 6, = min {1526,64, 3,05, 5 } -

Next, we give estimates for ((al + A)Y,C(U,0)X) and ((I + 2aA™1)Z,C(U,0)X).
For some k; > 0, ks > 0, conveniently chosen later, we obtain
2

1 1 1
(ol + A)Y,C(U,0)X) = ||k1(al + A)2Y + 5k:;l(od + A)z2C(U,0)X

— (kK{(al + A)YY)

_ ik1—2<(a1 + A)C(U,0)X, C(U,0)X)

and
2

(I +2aA™NZ,C(U,0)X) = ||ko(I + 204 )3 Z + ;kQI(I +20A)2C(U,0)X

— (k3(I +22A™Y)Z, Z)
_ ik2—2<(1 +20A"HC(U,0)X, C(U,0)X),

thus
2

1 1
Us = ki (ol + A)2Y + kil + A)2C(U,0)X

+ <{ozB — K2 (al + A)} Y,Y>

4 <i {(1=8)B = k*(al + A)C(U,0)} C(U,0)X, X>
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and
2

1
Us = ||ko(I +20A 127 + ko (1 + 20A)2C(U,0)X

+ ({al = K3(I + 2047} 2, 2)
+ <i {(1=B)B — k;*(I +20A7)C(U,0)} C(U, O)X,X> .
By Lemma 2.1 and Lemma 2.2, we have

3.7) Uy 2{ad, ~ Ko+ AV + 18(0 — 56, — 5+ A)AIXI? 2 0

ki
provided
(a + Aa)Ah < ]{22 < aéb
(1—6)517 - 1_04+Aa
and
ady (1 —B)
: Ay < 2 22
(3.8) b= (a+ A,)?
In a similar manner,
provided
(2a + d4) Ay, <12 < ad,
(1—=5)00 — 2~ 20+,
and
a5b52(1 — B)

1 Ay < —2— 2
(3.10) S Rat 6,2
Combining (3.8) and (3.10), we have

Ay < kg0,

where

[ a(l=05)% all —p5)d,
k= 1.
i {5a(oz A2 (6, + 2002 [
For Uy, using the identity 2|(u, v)| < |lul|* + ||v]|?, we obtain

1 1
(3.11) Ul <5(1=B)AAwr || X° + S (e + Aa) Aur [ V][

1 1
+ 50+ 205 )12 + {50 - DA
t

+;(oz + Do) Ay + ;(1 + 2045;1)Ah} /)FT(Y(S)v Y(s))ds

F OV YY = A [ (Y(0), Y(0))db.

t—r
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If we choose .
A=A [(1=B)A+ (a+ Ay + (1+ 206, 1)]

in (3.11), we obtain
1 1
(312) I <51 B)MAXIP + 1 (14200, )Awr| 2]

+ ;Ahr 1+ (1= B)A+2(A0 +a+ad, )] V]2
Finally, we are left with Us. Since P(t, X,Y, Z) satisfies (3.4), by Schwarz’s inequality
we obtain
(313) |Us| <[(1 = B)AIX] + (e + AV ] + (1 + 205, D) Z]|| | P(£, X, Y, Z)]
<& (X[ + Y1+ 1211 [Ao + A (I XN+ Y[ + ([ Z1D]

where d; = max {(1 — 8)A, (o + A,), (1 +2ad, 1)} .
Combining inequalities (3.6), (3.7), (3.9), (3.12) and (3.13), we obtain
av 1
— <= (1= A)hon — r A |1 X

1
_ (m(sb — A [T+ (1= ) +2(A +a+ a(s;l)D ek
1
-5 @ = Apr(1 +206,1)] |1 2]

+ (X + 1Y+ 1Z1) [Ao + A (IX[ + Y]]+ [1Z]])] -

Now if we choose
000, 23640 Q
AbAh7 Ah [1 + (1 — B)Ab + 2(Aa + o+ a&gl)]’ Ah(l + 206(5;1) ’

T<min{

we get

dv
— <= (IXIP Y1+ 1217) + 304 (1X[1* + 1Y 11* + 121%)

dt
+ A0 (IX] + YT+ 1121
=— (v = 3080 (IX I + IVI* + 1 Z11*) + s2L0(I X[ + Y]] + 1Z]))-

If we choose A; < %, then there is some 6 > 0, such that

d
ZV(X0 Y5, Z0) < = 0(IXI° + V1P + 1217) + 0o (IX1 + 1Y+ 11211
0
= — XTI+ IYIP + 121P)
0 2 2 2 30 2
—5{(!|X|!—n) + Y =n)"+ (2]l = n) }+§n

0 2 2 2 30 2
<=5 (IXIP+1YIP +1207) + o,
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for some n, 6 > 0.
This completes the proof. O
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LOGARITHMICALLY COMPLETE MONOTONICITY OF
RECIPROCAL ARCTAN FUNCTION

VLADIMIR JOVANOVIC' AND MILANKA TREML!

ABSTRACT. We prove the conjecture stated in F. Qi and R. Agarwal, On complete
monotonicity for several classes of functions related to ratios of gamma functions,
J. Inequal. Appl. (2019), that the function 1/arctan is logarithmically completely
monotonic on (0,00), but not a Stieltjes transform.

1. INTRODUCTION

By a completely monotonic function (shortly CM) we mean here an infinitely
differentiable function f : (0,00) — R, such that

(-=1)"f™ >0, n=0,1,2,...

If " is completely monotonic and f > 0, then we call f a Bernstein function. Here
we are mostly interested in logarithmically completely monotonic functions, that is,
infinitely differentiable functions f : (0,00) — (0, 00) with the property

(=1)"(log /)™ >0, n=1,2,3,...
A basic fact concerning CM - functions is the Bernstein theorem: a function f is CM
if and only if there exists a non-decreasing function o on (0, 00) satisfying

fw) = [~ e da(e),

0

for all z > 0 (see [9, p. 161]). In some occasions it has been proven a stronger property
which leads to complete monotonicity of a function f, namely that there exist a > 0
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and a non-negative Borel measure p on [0, 00) for which the equality

o =es [T

holds for x > 0, where the measure p fulfills the condition

[
o 1+t
Such functions are called Stieltjes transforms. We recall that all Stieltjes transforms
are logarithmically completely monotonic (see [2] and further generalizations [3]), and
the latter are CM (see [5], but also [7] and [8]).

In [6] the authors set the conjecture that the function f(z) = —— is logarithmi-

cally completely monotonic on (0, 00), but not a Stieltjes transform. The aim of this
paper is to justify these assertions. We will do it in the next section.

2. FORMULATIONS AND PROOFS

Theorem 2.1. The function f(z) = arctlanx 1s logarithmically completely monotonic
on (0, 00).

The idea of the proof of Theorem 2.1 is based on the Remark 1 in [1], where
the authors suggest employing the residue theorem in an attempt to obtain integral
representations of functions under consideration.

Proof. 1t suffices to prove that

g(z) = —(log f(x))' = !

(24 1) arctan x

is CM on (0,00). In what follows we always assume that log denotes the principle
value of logarithm, i.e., logz = In |z| + i arg z, with arg z € (—m, 7).
Let us consider the integral / G(z) dz, over the "keyhole“ contour I'g, given in

i FR,T
Figure 1, where

z+1
2(z — z0) log z

G(z) =

andzozzjr—zfor$>0.
We assume R > 1 and r < 1. Note that |2] = 1 and that 1, z; are the only

singularities of G lying inside I'g .. From the residue theorem, we have
/ G(z) dz = 2mi(Res(G(2); 20) + Res(G(2); 1)).
FR,’I‘

Since 2y is a first-order pole, it follows

Res(G(2): 20) = l+z  1+52 2 - (i + )
0T 2 log 2 “Zlog it (i —x)2iarctana (22 + 1) arctan z’
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I'r

FIGURE 1. Keyhole contour I'g,

where we used the fact that arctanx = i log }fji, for > 0. Similarly,

1 2 2 '
Res(G(z);1) = lim(z — 1) R = = — = z—l—x,
z—1 z2(z —20)logz 1—2z 1-27 x
whence,
2.1) (=15 [ G
' K= 2mi(x 4+ 1) Jra, '

Now, it remains to calculate the integral [r  G(z)dz. In order to accomplish it, we
start from the relation

(2.2) /FR,T G(z)dz = /FR G(z)dz + . G(z)dz + /FET G(z)dz + /F?:” G(z)dz.

The first two integrals vanish as R — oo and r — 0+. It follows from the estimates

2 +1] R+1
G(z)dz| <2R <
/FR (2)dz] < W\gfg}}% 1z|| log z||z — 20| — 7T(ln/T-i—Qw)(l’ii—l)
and
|z 4 1] 1+r
G(z)dz| < 2rmmax <27 .
/T (2) 2| < zl=r |z||log z||z — 20| = (=Inr—2m)(1—1)
We also have for t < 0
1
lim G(z) = L+ — G

g t(In(—t) + mi)(t — 20)

Jz>0
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and
. t+1 _
i G = ey — =) ¢
Consequently,
(2.3) /F | Gz + / 2)dz = /_ ;[G*(t) —G(1)] dt.

Let us denote [ = lim G(z)dz. From (2.2) and (2.3) we obtain

R— o0 FRT‘

f—/ G () — G (1)) dt

_/ 2mi(t+ 1) dt

oo t(log®(—t) + 72)(t — zo)
(1—t)dt

= 2mi /0 (

t(log®t + m2)(t + z)’

Using zo = =7, we have
B 2ri(1 —t)dt
/ t(log?t + m2)(t + =2)
2ri(i +x)(1 —t) dt
_/ t(log®t + 72)(z(t — 1) +i(t + 1))

(1—t)%z+i(1 —t%))dt

P /°° .
) | R0 02 1 (1% 07) (log¥t £ 77)
Note that (2.1) implies

1 1
2.4 = —
(24) 9 = L i 1)
1
and since ——— 1 is real, we conclude that
2mi(x + 1)

/oo (1 —¢*)dt _
0 Ha2(1— 12+ (1+1))(log”t +72)
Therefore, from (2.4), it follows

1 oo (1—t)’xdt
(2.5) Q(I) = - + /0 t(l‘Q(l _ t)2 4+ (1 + t)Q)(log2 t+ 7T2).
Employing
B dt
r /0 wt(log®t + 72)’
we get

RO -4 (L)) de
9(z) = /0 wt(@2(1 = )2+ (1+1)?)(log’ t + 72)
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The substitution ¢ — % implies

/1 (21 —t)2z+ (L +t)?) dt _ /oo (2(1 =)z + (1 +¢)?)dt
o xt(x2(1 —1)24 (1+1)2)(log”t +n2) Ji zt(z2(1 —t)2 + (1 +1)2)(log’t + 72)

Hence,
1 (21 —t)2z + (L+ 1)) dt
(2.6) g(z) = / . . R T
o xt(x?(1 —1t)2+ (1+1t)?)(log”t + 72)
For a,b,z > 0 it is

2a22% + b? 71+1 1 n 1
w(a?x?+0?) x 2\z+% Y
and using
1 oo 1 o0 i 1 o0 i
— :/ e ds, —— :/ e e e ds, W :/ e "Seas ds,
T 0 T+, 0 T = 0

one obtains
2a%7% + 1? /OO I te bs p
—— = os — | ds.
x(a’z? + b?) 0 a
Setting a =1—1¢ and b =1+t yields

2(1 —t)%x + (1 +t)? —/ooe“(urcosl“s) s
z(22(1 =2+ (1+)?) Jo 1—t '

From (2.6), we have
o0 e~ "5(1 + cos T s) ds
=2 ([
t(In?t 4 72)
and, finally, after interchanging integration order, we obtain

@27 o(z) = /0 </01 2(1 4 cos 1t )dt) ——

t(Int + 72)
Now, it is evident that (2.7) implies complete monotonicity of g. O
Theorem 2.2. The function f(z) = arctlam is not a Stieltjes transform on (0, 00).

For the proof of this theorem, we the use following result on Stieltjes transforms
from [4].

Proposition 2.1. If f # 0 is a Stieltjes transform, then % is a Bernstein function.

Proof of Theorem 2.2. The function h(x) = ﬁ = arctan x is not a Bernstein func-
tion, since
3% —1
3 - _
(@) (1+22)3

changes its sign on (0, 00). Therefore, according to Proposition 2.1, f is not a Stieltjes
transform. m
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APPROXIMATION BY MODIFIED SZASZ OPERATORS WITH A
NEW MODIFICATION OF BRENKE TYPE POLYNOMIALS

AJAY KUMAR!

ABSTRACT. In the present article we study the approximation properties of modi-
fied Szasz operators with a new modification of Brenke type polynomials. First, we
estimate the rate of convergence, for the newly defined operators, by means of modu-
lus of smoothness, Peetre’s K-functional and Lipschitz type functions. Furthermore,
we also prove a Voronovskaja type asymptotic theorem.

1. INTRODUCTION AND PRELIMINARIES

In 1950, Szész [18] extended the theory of well known Bernstein operators for the
finite interval [0, 1] to infinite interval Ry := [0, 00) and established the convergence
properties in the infinite interval R by defining the operators for f € C(R{) as

(1.1) Sn(fix) == e’mi <n]§)kf<k>, reRS neN
= k! n

A generalization of (1.1) was established by Jakimovski-Leviatan in [12] with the
help of the Appell polynomials as

e—nz o0 k
1.2 P,(f;z):= -1, R, N,
(12) ()= S ];)pkmx)f(n) v eR e
where A(z) = >02,b,2", b, € R, is an analytic function on the disk |z| < R,

k-t

R > 1, with A(1) # 0. The polynomials p,(z) = X%, bim’ k € N, are the Appell
polynomials which are generated by A(z)e** = 32, pr(z)2z* under the assumption

Key words and phrases. Rate of convergence, Modulus of continuity, Szasz Operators,
Voronovskaja type theorem.
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that pg(z) > 0 for all x € [0,00). In particular, if A(z) =1, then pi(z) = %, and the
operators (1.2) reduce to the operators (1.1).

Ismail [11] defined another generalization of (1.1) and (1.2) with the help of Sheffer
type polynomials {ug(z)}x>1, which are generated by

A()ePO = S uy(t)sh, 5| < R,
k=0

where A(s) = 302 aps®, ap # 0 and B(s) = 352, bes”, by # 0, are analytic functions
on the disc |s| < R, R > 1, and a;, and by, are the real coefficients. Under the following
assumptions:

(i) for t € Ry, up(t) >0, k € Ny := NU{0};
(ii) A(1) # 0 and BY(1) = 1,

Ismail introduced and studied some important approximation properties of the fol-
lowing operators

e—nt(l)

(1.3) Qn(f,x)zmguk(nx)f<i>, reRy,neN.

In particular, when A(t) = ¢ and B(t) = 1, the operator (1.3) reduces to the Szdsz
operator (1.1) and for the case B(t) = t, the operator @, (f;z) yields the operator
P,(f;z) defined in (1.2).

Let vg(z) = ¥F_yar_.b.z”, k € NU {0}, be the Brenke type polynomials on the
disk |z| < R, (R > 1) which are generated by

(1.4) A(s)B(xs) = > vp(w)s",

where A(s) = Y02 aps®, ag # 0, and B(s) = 322, bs®, by, # 0, are analytic functions
on the disk |s| < R, R > 1.

Under the following assumptions:

(i) A(1) #0, %255 > 0,0 <r <k, k€ NU{0};
(ii) B :R§ — (0,00);

(iii) (1.4) and the power series A(t) and B(t) converge for |t| < R, R > 1.

Varma et al. [20] presented a generalization of Szasz operators by means of the Brenke
type polynomials as

1

(1.5) R.(f;x) :zwivk(n@f(i), xr>0,neN.

In particular, if B(t) = €', the operator (1.5) reduces to the operator (1.2) and if
B(t) = e' and A(t) = 1 the operator (1.5) reproduces the Szdsz operator (1.1).
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Cheikh and Romdhane [6] defined the d-symmetric d-orthogonal polynomials of
Brenke type as

(1.6) JQ(tp+1)23(xt):::j§i ()",

where A(t) = 02, axt®, B(t) = 252, bit* with agby, # 0 for all k € N, are analytic
functions on the disk |t| < R, R > 1, and p is a positive integer. In particular case,
A(t) = exp(z) and B(t) = exp(x), the polynomials (1.6) reduce to the Gould-Hopper
polynomials [10] and also when p = 0, (1.6) reduces to (1.4).

Motivated by the work above, we present a new modification of Szasz operators
with the generalized form of Brenke type polynomials gx(z) as

a7 Dufa) :=W§qk<m>f(fj), 2> 0mEN,

where gi(x) is defined in (1.6). The purpose of this article is to establish some
approximation properties for the operator (1.7), under the following certain conditions

(i) A1) #0, %z > 0,0 < k < m, m € Ny;
(ii) B : Ry — (0,00);
(iii) (1.6) and the power series for A(t) and B(t) converge for |[t| < R, R > 1.

In particular, the operator D,,(f;z) have the following reductions

(i) if p = 0, the operator (1.7) reduces to the operator (1.5);
(i) if p =0, and B(t) = €', the operator (1.7) reduces to the operator (1.2);
(iii) if p = 0, A(t) = €' and B(t) = 1, the operator (1.7) reproduces the Szész
operator (1.1).

For some other recent papers on the topic dealing with the generalization of Szész
type operators using different classes of polynomials, see [1-3,5,7,8,13-15,17,19,21]
and the references cited therein.

The rest of the paper is organised as follows. In Section 2, we present some auxiliary
results. In Section 3, we estimate the rate of convergence with the help of classical
and second-order modulus of smoothness and Peetre’s K-functional and also give the
order of approximation for the Lipschitz type space. Lastly, we discuss a quantitative
Voronovskaja-type theorem.

2. AUXILIARY RESULTS

In this section, we present some important auxiliary results which will be used in
this later work.

Lemma 2.1. From the generating function (1.6) of the Brenke type polynomials, we
have the following equalities:

kfé qr(nz) =A(1)B(nz),
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Z kqe(nz) =(p + 1)AY (1)B(nz) + neBY (nz)A(1),

Z E*q.(nx) =(p + 1)2(A(2)(1) + A(l)(l))B(nx) +2n(p+ 1)x.A(1)(1)B(1)(nx)

+n222A(1)BP (nx) + nzA(1)BY (n2),
Z Eqe(nz) =(p+ 1)3(AP Q) + 3AD (1)) B(nz) + (p* + 1)(p + DAV (1)B(nz)

+3n(p + 1)22AP(1)BY (nz) + 3n(p + 1)(p + 2)2AY (1)BY (nz)
+3(p+ D222 AD (1) B (ng) + 2> A(1)BE (nx)
+ 3n%22A(1)B? (nz) + ne A (1)B(nz),

i Egp(nz) =(p + DY AD (1) + 643 (1) + 7TAD (1)) B(nz)

k=0
+ (p+ D) (p* + 3p* = 9p 4+ DAY (1) B(nx)
+ dnz(p + 1)2AD (1) BY (nx)
+9nz(p+2)(p + 1)?AP () BY (nz) + 6n222(p + 1)2AP (1) B@ (nz)
+3(p+7)(p + Dn?2? AN (1) B (na) + 4(p + 1)n’a® A (1)B) (na)
+ 02 A1) BW (nx) + 60323 A(1)BS) (na)
+ 7n2? A(1)BP (nz) + n:cA(l)B )(nx)
+ (p+ 1) (p* +20p + 1AV (1) BY (na),
where A" (z) = % and B (z) = dT‘B ) for all r € N.
Proof. Differentiating (1.6) with respect to ¢, we have

Z kae(2)tF = =(p + DPAD P B(xt) + 2 AT BW (2t),

Z K2qu(2)t* 2 =(p + D2* AP (P B(zt) + p(p + 1)tP LA (17T B(xt)

+ 22 AP TYBO (wt) + 2 AT BW (at)
+ (p+ DtPAD Pt (22BW (2t) + B(at)),

Zm JE5 (o + 1PAD (17 ) B(at) + (p -+ DPAD () (3> B (at)

+ B(xt)) + 3p(p + 1)2t*LAD (71 B (1)
+ (p+ DtP LAWY (3pB () + 32(p + 2)BW (at))
+ 23 APTHBO) (wt) 4 322A P B (2t) + 2 A THBD (1)
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+ (p + 1% A@ (71 (32BD (2t) + 3B(at))
+p(p? = D 2AD @) B(at),
Z Kg(a)th = =423 (p + DPAD B (at) + 622 (p + 1)4H2P AP (tpH Y B@ (1)
+ 622 (p + 1) ptPLAD (YB3 (1)
+4z(p + 1)*P AP (1) B (1)
+ 6z(p + 1)?pt*LA@ (1B (11)
+ 6zp(p + 12t LAR (B (1t)
+ 3zp(p* — Dt 2AW P YBW (xt) + (p + DHMAD (#4)B(at)
+ 6p(p + 133 LA (1) B (at)
+3p(p +1)°(2p — ) 2AP (1771 B(at)
+ap(p? = DEPPAW () B (at)
+p(p? = D (p+ D2 AD (4 B(at)
+ p(p* = 1)(d — 2)t4BAD Y B(2t) + 2* AT BW (2t)
+ 6{3952(,0 + DtPAD (Y B (1)
+ 3z(p + 1A APD (Y BWD (21)
+ 3zp(p 4+ Dt TAD Y BW (zt) + (p + 1)3% AB) (1P B (xt)
+3p(p + )X BE () B(at) + p(p® — 1) 2AD (#H)B(at)
+ 23 AT BO) (2t) 43 lQ:p(p + DtrAD (B (22)
+(p+ D)2PBE (B (wt) + p(p + D7 AD () B(at)
+ 22 AT BO (wt) + (p + VP AD (17T B(at)

- :cA(t”“)B(l)(:ct)]
—2 [(p + DtPAD (Y B(wt) + xﬂ(t”H)B(l)(mt)} }
+ 6{(,0 + DtPAD Y B(at) + xA(tp+1)B(1)(xt)}

— 11{2$(p + DAV P TYBD (2t) + (p 4 1)2*P B (17T B(xt)

+ p(p+ Dtr AV Y B(2t) + 22 AP BP (1)
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+wp+UﬁAWQHUB@w+xA@”UBm@w}
The desired lemma is obtained by substituting ¢ = 1 and x = nz, in the above

computations. 0]

Lemma 2.2. For x € R{, the r™* order moments D,(t";x), r = 0,1,2,3,4, of the
operators D,, are defined as:

Du(l;2) =1,
D, (t;x) = xby + pay,

Dot 2) = 22by + by (1 +2 2
(t%2) = 27by + - 1( + npal) +p (a2+a1)7
1
D, (t%; 2) = 3pa*aibs + 3xp*ashy + 3ap (p + n>alb1 + p’az + 3p’as
2 2 322
(P g et ek S
x3 x?
D, (t*; 2) = 2*by + —bs (6 + 4npa1) + —b2 (7 + 6np*ag + 3np(np + 6)&1)
n n
1
+ %bl (1 + 4n’pias + In?p*(np + 1)a2) + 73(”2})3 — 18np? — 8p>a1b1
n n

12, 12
+ﬁm+®%wﬁﬁ@+(4—2ﬁ+wﬁh
n n

where p = ﬂnl, a, = Azgl()l) and b, = 39(;27(5;5); r € N. These notations will be used

throughout the paper.

Proof. Using Lemma 2.1 and (1.7), the proof of this lemma can be easily obtained.
Hence the details are omitted. 0

As a consequence of Lemma 2.2, we have the following result.

Lemma 2.3. For x € Ry, the central moments D, ((t — z)™;x), m = 1,2,4, are
defined by

D,(t —x;x) =x(by — 1) + pay,
D, ((t — x)% ) 2172(62 —2by + 1) + 2xpay (bl - 1) + %bl + p*(ag + ay),

12 6
Du((t = )'52) =2 (1= 4by + 6by — 4by + ba) — 2*(— dpor = by + dpasbs + by
n n
6 4
+ 12paby + —bs — 12pa162) + 22 (6p2a1 - a1+ 6p2as
n n
5 1 9 6 7
— 12p (Igbl — 12p<p + n)albl + 6p agbg + 3p<p + n)albg + nng)

2 2
— a:<4p3a3 — 12pay — 4<p3 — Zp?— 2p) a1 + 4pPagh,
n n
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. 2 1 316 6
+ 9(]33 + p>a2b1 -+ 3b1> + (p + 72]92 - 3p)a1b1 +p4a4
n n n n n

P’ p
+ 6plas + Tp'as + (p4 — 12 + 123)a1.
n n

For the remainder of the work we denote £°(z) = D, ((t — x)?; x) and assume that

d"B(s)

: ds™
(2.1) lim B(s) =1, forl<r<kkeNlN.

Also, let Cg(R{) be the space of all continuous functions on the interval R{ with
|f(t)] < ae’® for all t > 0 and positive finite numbers o and 3.

Theorem 2.1. Let f € Cg(Ry). If p €N, then
T Da(f:2) = f(2),
converges uniformly in each compact subset of Ry .

Proof. With the help of Lemma 2.2 and condition (2.1), we have
Jim D,(t";x)=2", forr=0,1,2.
The above convergence is satisfied uniformly in every compact subset of Ry. Hence,

by applying Korokin’s type theorem (vi) of Theorem 4.1.4 in [4], we get the desired
result. OJ

Next, we present some useful definitions which are needed in the sequel.

Definition 2.1. Let § > 0 and f € C*(R{). Then the usual modulus of continuity
w(f;9d) is defined as

w(f;0) == sup |f(z) = f(y)], forallz,yel0,00),

lz—y|<d

where C*(R{) be a space of uniformly continuous functions defined on [0, 00). It is
also known that, for any 6 > 0,

F@) — F)l < w(f;5><’“’gy’ " 1), for all .y € By,

Definition 2.2. Let f € Cp(R{). Then the second order modulus of smoothness is
defined by

wo(f50) = sup [[f(-+2t) = 2f(- + 1) + f()llc

0<t<

where C5(Ry) is a class of bounded and uniformly continuous real-valued functions
with the norm || f||c, = SUD,cpt |f(x)].
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Definition 2.3 ([9] ). Let f € Cp(R{). The Peetre’s K-functional is defined by
(22)  K(f;0) =t {If — gllc, +0llgllez | forall g € CHRS),

where C%(Ry) := {g € Ca(RY) : ¢ € AC,.(Ry),g" € Cp(Ry)} endowed with the
norm ||glcz = llglloy + l9'lles + 19" llcp and g' € ACi(RG) means that g’ is locally
absolutely continuous function. It is also known that from [9], there exists an absolute
constant C' > 0, such that

(2.3) K(f;6) < Cua(f; V).
It is clear that the following inequality
(2.4) K(f,0) < M {wa(f;V5) +min(L,6)[|fllc } »

is valid, for all 6 > 0. The constant M > 0 is independent of f and 9.

3. THE ORDER OF APPROXIMATION

In this section, we establish the rate of convergence for the operators D,, in terms
of Peetre’s K-functional, classical and second-order modulus of continuity.

Theorem 3.1. Let f € Cg(R{) and p € N. Then the operators D,, satisfy the

following inequality:
Du(f50) = f(a)] < 20 (£ /Eh(z) )

where £ .= & (x) = D, ((t—x)* 1) = 1:2(62—261—1-1)4-2:61)@1 (b1—1)+%b1+p2(a2+a1),

see Lemma 2.3.

Proof. In view of the fact that D (1' x) =1 and (1.7), we have

1Du(fi0) = 100 < gy 2o o[£ () = 0
< A0 2 ) (1"“_95 #1)u(f
(3.1) §{1+ SA( qu nx) }w(f;é).

In view of Lemma 2.3 and applying Cauchy—Schwarz inequality, we get

5 e[t o] < 3 o k}
(S (Satmalt )"

1/2

=\/A(1)B(nz) (A(l)B(nx)'Dn((t — )% x))
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—A(L)B(nz) (Da((t — 2)%2))"”
(3.2) =A(1)B(nz)y/ &R ().
Combining (3.1) and (3.2), we have

&n(x)
Dulfiz) = f@)l < {1+ =5 pw(f: ).
Choosing § = /&h(z), we obtain the desired result. O

Remark 3.1. For p = 0, Theorem 3.1 represents the Theorem 2 for the operators given

by (1.5) (see [20]).

Theorem 3.2. Let f € C4(R{) and p € N. Then we have
Dn(f52) = (@) < PN llez, @)

where 1) := P (x) = [% (b2 —2b; + 1>x2 + {n<b1 — 1) (pal + 1) + bl}% + pay + p?*(ay +

al)] Hf“C%(RS“)'

Proof. Let x € R{. Applying Taylor’s expansion to the function f € C%(R{) and
using the linearity of D,,, we have

Du(f52) = F(2) = F@)Dalt = 252) + 2 FOEDal(t — 0)%2), €€ (5,0)

Using Lemma 2.3, we have
33)  IDu(fi) — f@)] <{xlb — 1)+ pa 1 o)

+ ;{xz (bg —2b; + 1) + 2zpay (bl - 1)

+ b1+ (a2 + a) Pl e

<[5 (02— 201+ 1)+ (b — 1) (por +1) + 0.}

+ ey + 7202 + 00)| I logeg
This completes the proof of the theorem. OJ
Theorem 3.3. Let f € Cg(Ry). Then the following inequality satisfy:

[Do(f3) = ()] < 2M {wn(f;V0) + min(1,0) | fll e }
1

where 0 := 0f(x) = 3¢5 (x) and M is a positive constant which is independent of the

function f and 6. Also, YF(x) is defined in Theorem 3.2.



120 A. KUMAR

Proof. Let h € C%(Ry). In view of the Theorem 3.2, we have
D (f52) = f(@)] =[Dnlf = h;2)| + [Dulh; 2) = h(2)| + | f(z) = h(z)]
<2|If = hlles + ¢lPllez @
<2[|If = hllcs + 6l1hllce )] -
Left-hand side of the above inequality is independent of h € C%(R{), so
Dn(f2) = f(2)] <2K(f;9),

where K (f;0) is defined in (2.2). Taking into account the relation (2.4) in the above
inequality, we have

Do(f32) — f()] < 2M {ws(f;V8) + min(L, 6)|| | oy et } -
This is the required result. [l
Theorem 3.4. Let x € R and f € Cz(Ry). Then we have the following relation

Da(f30) = F(0)] < dwn(f5 M) + wl(f572),

where

(3.4) A= M (x) = ; {{Z(x) + (x(bl — 1)+ pa; — a:)2}
and

(3.5) =) = |z(b — 1) + par — x| = [Dy((t — 2);2) — 2.

Proof. Let us consider a new auxiliary operators D,,(f;z) on Cp(R7) defined by
(3.6) D(f;2) = Du(fs2) = f((br — 1) + par) + f(2).

From the above auxiliary operators, it is observe that D, (1;x) = 1 and D, (t;x) = x.
Let h € C4(RY), CA(RY) = {h € C(RY) : ', h?) € Cp(RJ)}, then by Taylor series

theorem, we have
h(t) = h(z) + (t — o)W ( +/ ) (v

Using Lemma 2.3 and (3.6) and applying the operators D,, on both sides of the above
equation, we have

B, (h: ) — h(z) = D, ( / ‘(= ) (W) x)

It follows from (3.6) that
~ t
D (h; ) — h(x) :®n< / (t — )AD () dv: x)

x(bl—l)—f— a1
+/ ' (x(bl — 1)+ pa; — V)h(Q)(V)dV
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1R

5 R
< 5 ﬂn((t_x) ;CL’)+

(x(bl — 1)+ pa; — x>2

15> ¢, 2
:T{fn(x) + (x(bl — 1)+ pa; — x) },
considering (3.4), we obtain
(3.7) [Dn(h; z) — h(z)] < 4X|®]),

where N\? is given in (3.4).
In view of Lemma 2.3 and (3.6), we have

(3.8) Dl f52)| < IDalfs2)| +2f <3|l for all f € Cp(Ry).
Combining (3.6), (3.7) and (3.8), we obtain
[Du(f52) = F@) SIDalf = hiz) = (f = B)(@)] + [ Dn(hi ) = ()]
+|f((br = 1) + par) = f(z)]
)7

<A(If = Rl + X RO) + (S
taking the infimum on the first term of the above inequality for h € C%(RJ) and
using the inequalities (3.5) and (2.2), we have
Dn(fi2) = f(2)] < 4K (f320) +w(fih),

where 7# is given in (3.5) and in view of the relation (2.3), we get our desired result. [

x(by — 2) + pay

Remark 3.2. Tt is note that from Theorem 3.1- Theorem 3.4, the operators D,,(f;z) —
f(z), when A2 ~2 )% and £ tend to zero as n — oo with the assumption (2.1).

Now, we estimate the following local approximation result for the function belonging
to Lipschitz-type space.

For ;4 > 0, v > 0 to be fixed, the class of two parameteric Lipschitz type functions
[16] is defined as

LigY (a) = {f € CalRY): (1) — flw) < =2l e <o,oo>},

(t+ (x? +vx)>2

where M is positive constant and 0 < o < 1. In particular, at ( = 0 and v = 1, the
space Lipy; (a) reduced to the space L}, (a) defined in [18].

Theorem 3.5. Let f € L5/ (a) and p € N. Then, for all > 0, we have

Dalf2) - f(2)] < M(“))

(2 + v

where £°(x) is defined in Lemma 2.3.
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Proof. Let z € (0,00) and f € L5/ (o). We have
Dn(fsx) = f(@)] < Du(lf(t) = f(2)],2)

<MD [t = x
- "\ Fvr+1)2]

M o

First, we consider the case a = 1. Applying Cauchy-Schwarz inequality in (3.9) at
o = 1, we obtain

(Cz? + Vl')%

Thus, the result holds for o = 1.
Now, we prove the result is true for 0 < a < 1. Then for z € (0 oo) fe LCV( )
and applying Holder’s inequality in (3.9) by taking p = 2 and ¢ =

M o
D,(f,x)— < — 0 t—xl, .
Dulf2) = @)l < g Dallt — o)
Finally, applying the Cauchy-Schwartz inequality, we obtain
M g &) \?
IDulfi0) = o)l € (g (Dl = o} =)
This completes the proof of theorem. 0

4. VORONOVSKAJA-TYPE RESULT

The following assumptions are required to discuss a quantitative Voronovskaja-type
result for the operators (1.7).
Assumptions:
(i) lim, oo n(by — 1) = a(z);
(ii) lim, oo n(by — 2b; + 1) = B(x);
(iii) lim, oo n(bg — 2bg + b1) = A(x);
(iv) limy, 0o n(b3 — 3by + 3by — 1) = 6(x);
(v) limy,_yoo n?(by — 4b3 + 6by — 4by + 1) = y(x);
where a(z), B(z), M(z), §(x) and y(z) are continuous and bounded functions on R .
Taking into account (2.1), Lemma 2.3 and the above assumptions, we have the
following.

Lemma 4.1. The operators (1.7) verify:
(1) limy oo Dy, ((t — 2); 2) = za(2) +pa1,
(i) lim, oo nD,((t — )% 2) = 226(x) +
(iii) lim, oo n2D, ((t — 2)%; 2) = 2ty (x) — $3{4npa15($) +6A(x)} — (3n*p* + 10np —
12)&1 + 7
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Theorem 4.1. Let f € C3(R{). Then we have

lim n{D,(f;7) — f(x)} = {wa(z) + par } f'(z) + {+*B(x) + x|

n—oo

()
e

Proof. Let x € R{ be an arbitrary but fixed number. Applying the Taylor series
theorem to the function f € C%(R7), we have

(1) )~ F@) = (6= ) f' (@) + 5t = 02 FD )+ wlt )¢~ )

where k(t,z) € Cp(R{) and satisfies lim,_,, x(t, z) = 0. Now, applying the operators
D,, both sides on the equation (4.1), we get

T n{D(f:2) — f()} = i nf (@)Dt — w:2) + T g Do(t — )% 0) fO(x)
(4.2) + lim. nD,(k(t,z)(t — )% ).

In the last term of (4.2), we apply the Cauchy-Schwartz inequality

(4.3) nD, (k(t,)(t — 2)% ) < \/n2®n((t — )4 2)D,(K2(t, z); x).

Since k(t,z) — 0 as t — x, it follows from Theorem 2.1 that

(4.4) Jim D, (k*(t,7); 1) = K*(x,2) =0,

uniformly for z € [0,0],b > 0.
Combining the equations from (4.2)—(4.4) and taking into account the Lemma 4.1,
we conclude that

. / 2 f(Z)(x)
lim n{D(f:2) = f(2)} = {wal) + par £/ (2) + {2*B() + o} =5
This completes the proof of the theorem. 0
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EXISTENCE OF CLASSICAL SOLUTIONS FOR BROER-KAUP
EQUATIONS

DALILA BOURENI!, SVETLIN G. GEORGIEV?, AREZKI KHELOUFI?,
AND KARIMA MEBARKI*

ABSTRACT. In this paper we investigate the Cauchy problem for one dimensional
Broer-Kaup equations for existence of global classical solutions. We give conditions
under which the considered equations have at least one and at least two classical
solutions. To prove our main results we propose a new approach based upon recent
theoretical results.

1. INTRODUCTION

Study of existence of global classical solutions of nonlinear models is one of the
important works in nonlinear science. In this paper, we investigate the Cauchy problem
for a model describing the bi-directional propagation of long waves in shallow water
which was proposed by Broer and Kaup [2,9] and called Broer-Kaup (BK) equations.
Namely, we are concerned with the following system:

u +uu, +v, =0, te(0,00),z€R,

Uy 4 Uy + 2(u0)y + Ugze =0, t € (0,00),2 € R,
u(0,2) = ug(x), =z €R,
0(0,2) = w(z), TER,

(1.1)

where
(H1): ug, v € CH(R), 0 < up,v9 < B on R for some positive constant B.

Here the unknowns u = wu(t,x) and v = v(t,z) denote respectively, the horizontal
velocity and the elevation of the water wave. The Broer-Kaup equations of system

Key words and phrases. Broer-Kaup equations, classical solution, fixed point, initial value problem.
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(1.1) can be obtained from the symmetry constraints of the Kadomtsev-Petviashvili
(KP) equation and are a mathematical model of many nonlinear waves, see [12]. More
precisely, they describe the evolution of the horizontal velocity component u(t, z) of
water waves of height v(¢,x) propagating in both directions in an infinite narrow
channel of finite constant depth. Several methods have been used to capture different
nature of solutions contained in Broer-Kaup equations like traveling wave solutions,
periodic wave solutions, dromion solutions, solitary wave solutions and soliton-like
solutions, see [21] and [29]. By qualitative analysis method, a sufficient condition for
the existence of peaked periodic wave solutions to the Broer-Kaup equations was given
in [8] and some exact explicit expressions of peaked periodic wave solutions were also
presented. In [16], fission and fusion phenomena were revealed and soliton solutions
were obtained. A family of traveling wave solutions is given in [18,19] and [7]. Solitary
wave solutions to the Broer-Kaup equations are considered in [14] by using the first
integral method. By application of the sub-ode method [25], new and more general
form solutions are obtained for the Broer-Kaup equations. Using a consistent tanh
expansion method, Chen et al. [1] gave the interaction solutions between the solitons
and other different types of nonlinear waves. In [13], some smooth and peaked solitary
wave solutions have been constructed by the bifurcation method of dynamical system.
By using a Darboux transformation, Zhou et al. [27] obtained new exact solutions for
Broer-Kaup system. In [6], new type of solitary wave solutions for the Broer-Kaup
equations were presented by using the He’s variational principle.

Various algebraic aspects of BK equations solutions have been studied. Kupersh-
midt [11] showed that BK equations are integrable and possess infinite number of
conservation laws and tri-Hamiltonian structure. In [4], The geometric properties of
non-Noether symmetries as well as their applications were discussed.

The analysis by many methods of the (2+1)-dimensional BK system can be found
in [26] and [28] and the references therein. The (1+41)-dimensional and the (2 +
1)-dimensional higher order Broer-Kaup equation was considered for example in [23]
and [20], respectively. Concerning generalized and variable coefficient Broer-Kaup
equations, see for example [22] and [10]. Recently, fractional and stochastic Broer-
Kaup system, were studied in [3] and [24].

The aim of this paper is to investigate the initial value problem (1.1) for existence
and nonuniqueness of global classical solutions. For goal, a new topological approach
which uses the abstract theory of the sum of two operators is used for investigations
of existence of at least one and at least two classical solutions. This basic and new
idea can be used for investigations for existence of global classical solutions for many
of the interesting equations of mathematical physics. Here, by a classical solution
to the Broer-Kaup equations we mean a solution at least three times continuously
differentiable in z and once in ¢ for any t > 0. In other words, (u,v) belongs to the
space C1([0, 00), C3(R)) x C1([0, 00), C3(R)) of continuously differentiable functions on
[0, 00) with values in the Banach space C3(R).
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The paper is organized as follows. In the next section, we give some properties of
solutions of problem (1.1). First, we give an integral representation of these solutions,
then we prove some a priori estimates in a sense that will be defined later on. In
Section 3 we prove our main results about existence and multiplicity of solutions for
the Broer-Kaup system (1.1). Finally, in Section 4 we give an example to illustrate
our main results.

2. SOME PROPERTIES OF SOLUTIONS OF PROBLEM (1.1)
Let X = X' x X! where X! = @€([0,00),C*(R)). For (u,v) € X, define the

operators S}, S? and S as follows.

Stu,v)(t, ) = u(t,z) — up(z) + /Ot(u(tl, T)ug(ty, ) + vp(ty, x))dty,
SZ(u,v)(t, ) = v(t,z) —v(0,2) + /Ot (ux(tl,x) + 2u,(ty, x)v(ty, )

+ QU(tl, $)Ux(t1, iL') + u:m:m(tla .CI?)) dtl,

Si(u,v)(t, ) = (S} (u,v)(t,2), SH(u,v)(t, 7)), (t,2) € [0,00) x R.
2.1. Integral representation of the solutions.
Lemma 2.1. Suppose that (H1) is satisfied. If (u,v) € X satisfies the equation
(2.1) Si(u,v)(t,z) =0, (t,x) € [0,00) x R,
then (u,v) is a solution of the IVP (1.1).
Proof. Let (u,v) € X be a solution of the equation (2.1). Then
(2.2) SH(u,v)(t,x) =0, Si(u,v)(t,z)=0, (tz)€[0,00) xR.
We differentiate both equations of (2.2) with respect to t and = and we find
ur(t, o) + ult, o)uy(t, ) + v (t,x) =0,
v(t, ) + ug(t, x) + 2uy (¢, x)v(t, x) + 2u(t, 2)v,(t, ) + Uy (t, ) = 0,
(t,x) € [0,00) x R. We put ¢t = 0 in both equations of (2.2) and we arrive at
uw(0,2) = up(x), v(0,2)=wve(x), zeR.
This completes the proof. O
Lemma 2.2. Suppose (H1) and let h € C(]0,00) x R) be a positive function almost
everywhere on [0,00) x R. If (u,v) € X satisfies the following integral equations:

/ / t — tl T — [L’l) h(tl,ZL‘l)Sll(U,, v)(tl,xl)d:vldtl = 0, (t,[l’) € [0, OO) X R,

/ / t - tl r — fL’l) h(tl,xl)S (U, ’U)(tl,l'l)dl'ldtl = 0, (t,[L‘) S [0,00) X R,
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then (u,v) is a solution to the IVP (1.1).

Proof. We differentiate three times with respect to ¢ and three times with respect to
x the integral equations of Lemma 2.2 and we find

h(t,x)Si(u,v)(t,z) =0, (t,z) € [0,00) x R,
whereupon
Si(u,v)(t,z) =0, (t,z) €[0,00) x R.

Hence and Lemma 2.1, we conclude that (u,v) is a solution to the IVP (1.1). This
completes the proof. O

2.2. A priori estimates. In the sequel, X = X! x X! where X! = C!([0, 00), C3(R))
will be endowed with the norm

[(u,v)|| = max {||ul|x1, [Jv]|x1}, (u,0) € X,
with
|lullx1 = max{ sup lu(t, )|, sup lug(t, )], sup lug(t, )],
(t,x)€[0,00) xR (t,z)€[0,00) xR (t,z)€[0,00) xR
sup [tz (2, )], sup | U (2, a:)\},
(t,x)€[0,00) xR (t,z)€[0,00) xR

provided it exists. Let
B; = 4(B + B?).

Lemma 2.3. Under hypothesis (H1) and for (u,v) € X with ||(u,v)| < B, the
following estimates hold:
|1 (w,v)(t, 2)| < Bi(1+1), (t,z) € [0,00) xR,
and
182w, 0)(t,2)] < Ba(1+1), (£,2) € [0,00) X R.
Proof. Suppose that (H1) is satisfied and let (u,v) € X with ||(u,v)|| < B.
(i) Estimation of |S](u,v)(¢,z)|, (t,z) € [0,00) x R:

158, 0)t,0)] = [u(t,7) — wola) + [ (ults, )t ) + va(tr,2)) dy

< fu(t, )] + |uo(z)| + /Ot (lu(ty, 2)|[us(ty, )] + [v2(tr, )[) dts
< 2B+ (B + Bt

< 3B+ B*)(1+1)

< Bi(1+1).
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(ii) Estimation of |S?(u,v)(t, )|, (¢t,z) € [0,00) x R:

SZ(u,v)(t, x)

v(t,z) —v(0,2) + /Ox (ux(tl, x) + 2ug(ty, v)v(ty, )

+ 2u(ty, 2)vg(t1, ) + Ugea (t1, :1:)) dz,dt;

< o)+ o0+ [ (Juatr )]+ 2, o6,

+ Q‘U(tl, ZL’)HUm(tl, l’)| + |uxmz(t1, I)|> dxldtl

< 2B+ (2B +4B*)t
< 4(B+ B (1 +1)
= Bi(1+1).

This completes the proof. O

Suppose

(H2): g € €([0,00) x R) is a positive function almost everywhere on [0,00) x R
such that

. t x
16(1 + 1)? (1+\3:]+:1:2+\x]3)/0 |/0 gty 11)d |dt, < A,

(t,x) € [0,00) x R, for some constant A > 0.

In the last section, we will give an example for a function ¢ that satisfies (H2). For
(u,v) € X, define the operators

S(u,v)(t,z) = /Ot /Ox(t — 1)z — 21)%g(t1, 1) S (w, ) (b1, 71 )dzrdty,
S2(u, v)(t, ) = /Ot (=t = 012,203, 0) 11,0y
and
(2.3) Sa(u,v)(t,7) = (S3(u,v)(t,2), S3(u,0)(t, @), (tx) € [0,00) x R.

Lemma 2.4. Under hypothesis (H1) and (H2) and for (u,v) € X, with ||(u,v)| < B,
the following estimate holds:

155 (u, v)|| < ABy.

Proof. Suppose (H1) and (H2) and let (u,v) € X, with ||(u,v)| < B.



130 D. BOURENI, S. G. GORGIEV, A. KHELOUFI, AND K. MEBARKI

(i) Estimation of |S3(u,v)(t,z)], (t,x) € [0,00) x R:

1S3 (u,v)(t,2)| = t/x(t —t)(x — x1)%g(t1, 21) ST (u, v) (t1, 21 )dx dty

t— tl r — 1'1’ g(tl,ilfl)’S (u U)(tl,ili'l)’dl'l dtl

S Bl(l + t)/() '/0 (t - t1>|$ - $1’3g(t1,$1>d$1 dtl

t x
< 8Bl(1+t)2|ac|3/0 ’/0 g(ty, z1)da: |dty

t T
< 8By (14 1) <1+|x|+x2+|x|3)/0 ’/0 g(t1, 11)da
< AB.

dty

(ii) Estimation of ‘ 9S8} (u v)(t x)‘ (t,x) € [0,00) x R:

Sy (u,v)(t, x) ( — 21)g(t1, 1)S] (u, v)(t1, 21)dx dt,

&

3 (t17 171)|Sll (U, U)(tl, $1)|d$1 dtl

t T
S Bl(]_ + t)/o 'A |l’ — I1|Sg(t171'1)dl‘1 dtl

t x
< 8B1(1+t)2]x|3/0 |/0 g(t1, x1)dz |dty

t T
<8Bi(1+1)? (1 + x| 4+ 2 + \:c]g) /0 ‘/0 g(t1, x1)dzy |dty

< AB;.

(iii) Estimation of ‘ 2 St (u,v)(t, z)|,

(t,x) € [0,00) X R:

aSl(uv t,x)

|a{L' / t — tl r — Il) g(tl, l’l)S (U, ?J)(tl, l'1>dl'1dt1

<3Bi(1+1) o L (t —t1)(z — 21)g(t1, w1)das |dty

t
<12B,(1 + t)2x2/ dt,

0

/0 g(tl, l'1>d5ll'1

t T

< AB,.
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(iv) Estimation of ‘a 5> Sa(u,v) (¢, x)|, (t,z) € [0,00) x R:

=6

‘Sl u,v)(t, x) / t—t1)(x — 21)g(t1, 21)S; (u, v)(t1, 21)dr1dt;

Mo — x1|g(ts, 21)| S (u, v) (t1, 1) |day | dty

§6B1(1—|—t)/0 ‘/0 (t — t)|a — 21|g(tr, 21)da |diy

t T
< 12By(1+ t)2|x|/ |/ g(ty, x1)dxy|dt;
o [Jo

t x
< 12By(1 +t)? (1 + |z + 2 + \:U]?’) /0 ‘/0 g(t1, x1)dz|dty

< AB;.

) Estimation of ) & S (u,v)(t, )],

(t,x) € [0,00) x R:

|S1 u,v)(t, x) t—tl (t1,21)St (u,v)(t1, 21 )dr dt,

tl, $1)’Sll(u, U)(tl, x1>’dl'1 dtl

t
< 6B,(1 +t)/ dt,

/(f(t — tl)g<t1, LEl)dl‘l

/ tl,xl d[El

t T
< 12B;(1+1t) (1 + || + 2 + |a:|3)/0 ‘/0 g(t1, x1)dzy

< AB;.

<12B,(1+ 1) / dty

dty

Similarly, the same estimates (i)-(v) can be proved for the operator Sz. Finally,
182 (u, v)|| < AB;.
This completes the proof. 0

3. MAIN RESULTS

3.1. Existence of nonnegative solutions. The following theorem (see its proof in
[17]) will be used to prove Theorem 3.2.

Theorem 3.1. Let E be a Banach space and
={z e £ |lz| <R},
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with R > 0. Consider two operators T and S, where
Tr =—ex, x¢€ FEy,
with € > 0 and S : E; — E be continuous and such that
(i) (I — S)(Ey) resides in a compact subset of E and

(i) {x € E:ax =\ - S)a, ||zl = R} =0 for any A € (0,1).

Then there exists x* € Ey such that
Ta* 4+ Sa* = ™.

In the sequel, suppose that the constants B and A which appear in the conditions

(H1) and (H2), respectively, satisfy the following inequality:
(H3): AB; < B, where B; = 4(B + B?).

Our first main result for existence of classical solutions of the IVP (1.1) is as follows.
Theorem 3.2. Assume that the hypotheses (H1), (H2) and (H3) are satisfied.

Then the IVP (1.1) has at least one nonnegative solution (u,v) € C1([0,00), €3(R)) x
C!([0,00), E*(R)).

Proof. Choose € € (0,1), such that eB;(1 + A) < B.
For (u,v) € X = C!([0,00), C}(R)) x C([0, 00), C3(R)), we will write
(u,v) >0 if u(t,z) >0 and v(t,x) >0, forany (¢,x) € [0,00) x R.

Let ff dengtes the set of all eqlli—continuous families in X with respect to the norm
-1, Y = Y be the closure of 3:/, Y=y u {(up,v9)} and
Y ={(u,v) €Y : (u,v) >0, ||(u,v)| < B}.
Note that Y is a compact set in X. For (u,v) € X, define the operators
T(u,v)(t,x) = —e(u,v)(t,z), (t,z) € [0,00) X R,
S(u,v)(t,x) = (u,v)(t,x) + e(u,v)(t, ) + €S2 (u,v)(t,x), (t,x) € [0,00) x R.
For (u,v) € Y and by using Lemma 2.4, it follows that
(L = S)(u,v)|| = l[e(u, v) — €S (u,v)]]
< €| (u, v) || + €l Sz (u, v)]
<eBy +€eAB;
=eBi(1+ A)
< B.

Thus, S : Y — X is continuous and (I — S)(Y') resides in a compact subset of X.
Now, suppose that there is a (u,v) € X so that ||(u,v)|| = B and

(u,v) = AL — 9)(u,v)
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S0) = (1= 8)(,0) = —(u,0) — cSi(u,v)

or )
()\ + 6) (u,v) = —€Sy(u,v),
for some \ € (0, %) Hence, ||S2(u,v)|| < AB; < B,

1 1
B<(5+¢)B=(5+¢) o) = diS:(uv)] < B,

which is a contradiction. In virtue of Theorem 3.1, the operator 7'+ S has a fixed
point (u*,v*) € Y. Therefore,
(u*, ") (t, ) =T (u*,v")(t,x) + S(u*,v*)(t, z)
=—e(u",v")(t,z) + (u*,v")(t, x) + e(u,v")(t, ) + eSa(u*, v™)(t, ),
(t,x) € [0,00) x R, whereupon
0= Sy(u*,v*)(t,x), (t,x)€[0,00) x R.
Lemma 2.2 yields that (u*,v*) is a solution to the IVP (1.1). This completes the
proof. O

3.2. Multiplicity of nonnegative solutions. Let E be a real Banach space.

Definition 3.1. A closed, convex set P in E is said to be cone if

(a) ax € P for any o > 0 and for any = € P;
(b) x,—x € P implies x = 0.

Definition 3.2. A mapping K : E — F is said to be completely continuous if it is
continuous and maps bounded sets into relatively compact sets.

Definition 3.3. Let X and Y be real Banach spaces. A mapping K : X — Y is said
to be expansive if there exists a constant A > 1 such that

1Kz — Kylly > hllz —yllx,
for any x,y € X.

The following result (see details of its proof in [5] and [17]) will be used to prove
Theorem 3.4.

Theorem 3.3. Let P be a cone of a Banach space E; €2 a subset of P and Uy, Uy and Uy
three open bounded subsets of P such that Uy C Uy C Us and 0 € U,. Assume that
T : Q — P is an expansive mapping, S : Us — E is a completely continuous and
S(U3) C (I —T)(2). Suppose that (Uy\U,)NQ # D, (Us\ Us) NQ # D, and there
exists wy € P\{0} such that the following conditions hold:

(i) Sz # (I = T)(x — Awy) for all A >0 and x € OU; N (Q + Awy);

(i) there exists € > 0 such that Sx # (I —T)(Ax) for all A >1+¢, x € OUy and

Ax € Q;
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(iii) Sx # (I = T)(x — Awg) for all A > 0 and x € U3 N (2 + Awy).
Then T 4+ S has at least two non-zero fixed points x1,xy € P such that
[L’lgaUng and $2€(U3\U2)HQ
or o
$1€(U2\U1)QQ and .TQE(Ug\UQ)ﬂQ.
In the sequel, suppose that the constants B and A which appear in the conditions
(H1) and (H2), respectively, satisfy the following inequality:

(H4): AB; < £, where B; = 4(B+B?) and L is a positive constant that satisfies
the following conditions:

2
r<L< R <B, R1><+1>L,
m

with r and R; are positive constants and m > 0 is large enough.

Our second main result for existence and multiplicity of classical solutions of the IVP
(1.1) is as follows.

Theorem 3.4. Assume that the hypotheses (H1), (H2) and (H4) are satisfied. Then
the IVP (1.1) has at least two nonnegative solutions
(u1,v1), (ug, v9) € C'([0,00), C3(R)) x C'(]0, ), C*(R)).
Proof. Set X = €'(]0, ), €3(R)) x €([0,0), €*(R)) and let
P = {(u,v) € X : (u,v) >0 on [0,00) x R}.

With P we will denote the set of all equi-continuous families in P. For (u,v) € X,
define the operators

ﬂwﬂma@=41+m@mwxm@—<ﬂ%¢$),(a@euxm)xR

L L
Sy(u, v)(t, ) = —€Sa(u, v)(t,x) — me(u,v)(t, z) — (610, €10
where € is a positive constant, m > 0 is large enough and the operator S, is given

by formula (2.3). Note that any fixed point (u,v) € X of the operator T; + Ss is a
solution to the IVP (1.1). Now, let us define

Uy =P ={(u,v) € P:|(u,v)]| <r},
Uy = P = {(u,0) € P [(w,0)]| < L},
Us = Pgr, = {(u,v) € P: ||(u,v)| < Ry},

) (t,2) € [0,00) x R,

)
Q=P = {(w,0) €P: [[(w,0)] < B}, with Ry = By + By + =
=R, = u,v : u,v < 27, W1 9 = 1 m 1 5m
)

(a) Let (u1,v1), (ug,v2) € Q, then
1Ty (w1, v1) — Ti(ug, v2)|| = (1 4+ me)||(ur, v1) — (u2,v2)],

whereupon 77 : {2 — X is an expansive operator with a constant h = 1 + me > 1.
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(b) Let (u,v) € Pg,, then Lemma 2.4 yields

L L
|95 (u, v)|| < €||Sa(u,v)|| + me||(u,v)|| + 10 < 6<A31 +mRy + 10).
Therefore, S3(Pg,) is uniformly bounded. Since S3 : Pr, — X is continuous, we
have that S3(Pg,) is equi-continuous. Consequently, S3 : Pr, — X is completely
continuous. L
(c) Let (uy,vy) € Pp, and set
1 L L
5 = > — 5 > <7 > .
(u2,v2) = (u1,v1) + - o(ur,v1) + 5 B
Note that S3(ui,v1) + £ > 0, S3(u1,v1) + £ > 0 on [0,00) x R. We have ug,va > 0
on [0,00) x R and

1 L A L
| (ug, vo)|| < |[(w,v1)]| + E||S2(U1,U1)|| + 5 < R;+ EBI + 5 = Ry.

Therefore, (ug,v2) € 2 and

—em(ug, vz) = —em(u,v1) — €Sy (ur,v1) — € ( - L) — ( T L)

1010) ~ (0o
or
(= )z, 02) = —em(us, ) + € (15,15 ) = Salun, )
1)\U2,V2) = —€MUz, U2 € 10°10/) — 3(U1, V1 ).

Consequently, S3(Pr,) C (I —T1)().
(d) Assume that for any (wg,z9) € P* = P\ {0} there exist A > 0 and (u,v) €
0P, N (24 M wo, 20)) or (u,v) € Pr, N (2 + Awy, 20)) such that

Ss(u,v) = (I —T1)((u,v) — AMw, 20)).

Then
L L L L
—eSau,0) = me(u,v) — ¢ (15,15 ) = —me((w0) = Awo, 20)) + ¢ (5,70
or L
—Ss(u,v) = Am(wo, 29) + (5, 5) )
Hence,

L L L
st = e+ (£ 5)] > &

This is a contradiction.
(e) Let g1 = % Assume that there exist (u1,v1) € 0P and A\; > 1+ ¢, such that
A (ur,v1) € Pg, and

(31) Sg(ul,vl) = ([ — Tl)(Al(Ul,’Ul)).
Since (u1,v;) € 0P and Ay (uy,v1) € Pp,, it follows that

2
( n 1) L <ML =M\|/(u, )| < Ry
5m
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Moreover,

L L L L
—€Sy(uy,v1) — me(ug,vy) — € (10, 10) = —A\yme(up,v1) + € (10, 10)
or

L L
Sy(ur, v1) + (5, 5) — (0 — Dmug, 0y).
From here,
L L L
27 > ’Sz(ul,vl) + (5, 5>H — (\ = Dml|(us, 00)]| = (M — D)mE
and
2
— + 1 Z >\17
om

which is a contradiction.
Therefore, all conditions of Theorem 3.4 hold. Hence, the IVP (1.1) has at least
two solutions (uy,v1) and (ug, v9) so that

[(ur, 1) || = L < [[(ug, v2) || < Ry

or
r < |[(ug,v1)|| < L < |[(ug, v2)|| < Ry.

O
4. AN EXAMPLE
Below, we will illustrate our main results. Let
1+ s'1/2 + 522 s11,/2
h(s) =log TR S l(s) = arctan 1 S€ R, s#+£1.
Then
w(s) 221/2510(1 — 522)
s) = )
(1— s11\/2 + s22)(1 + s11V/2 + 522)
11v/25'°(1 + s2)
/ —
I'(s) = ey , SER, s#+l
Therefore,
—00 < lim (1+ s+ s*)h(s) < oo,
s—+oo
—_— ] 2
00 < Sginoo(l + s+ 59)I(s) < o0.
Hence, there exists a positive constant C; so that
1 1+811\/§+822 1 511\/5
14s+s2483+st 457+ lo + arctan <y,
( Nt a2 s 1-s2) ="
1+ s11/2 4 ¢22 1 s11/2

14s+s2483+st 57+ lo + arctan < (Ch,
( ) 444/2 gl—sn\/ﬁquQQ 22¢/2 1—s2) ="
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s € R. Note that lg}gl I(s) = 5 and by [15, pp. 707, Integral 79], we have

dz = L log L2242t + arctan .
T+24 42 T1—2v2+22 242 1— 22
Let
510
QW) = mrmnas s R
and

g1(t,x) = Qt)Q(x), te€0,00), z€R.
Then there exists a constant Cy > 0 such that

t T
12(1 4 1)? (1+|x|+x2+|x|3)/0 ‘/0 g1 (tr, 21)day

Let y
g(t,x) = Egl(t,x), (t,x) € [0,00) x R.
2
Then

t T
12(1 +t)? (1—|—|x|+x2+|x|3)/0 ‘/0 g(t1, x1)dxq

i.e., (H2) holds. Now, consider the initial value problem
up +uu, +v, =0, te€(0,00), z€R,
Vg + Uy + 2(u0)y + Uger =0, t € (0,00), x€R,

1
4.1 —
( ) U(O,ZL’)—W, QTGR,
1
0,2) = ————— R
so that (H1) holds, with B = 10, for example. Take
1
B =10 d A= —.
an 08

Then

1
AB, = A4(B+ B?) = o 4(10 + 10%) < B.
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dt; < Oy, (t,l’) c [O, OO) x R.

dty < A, (t,z) €[0,00) xR,

So, condition (H3) is fulfilled. Thus, the conditions (H1), (H2) and (H3) are
satisfied. Hence, by Theorem 3.2, it follows that problem (4.1) has at least one

solution (u,v) € C'([0,00), C*(R)) x €([0, 00), C3(R)).
In the sequel, take
1

_ _ _ _ _ 50 .
Ri=B=10, L=5 r=4 m=10" A=c=_o.
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Clearly,

2 L
r<L< R <B, >0, R1>(+1)L, AB; < —,
5m 5

i.e., (H4) holds. Hence, by Theorem 3.4, it follows that the initial value problem

(4.1) has at least two nonnegative solutions (uy,v1), (ug,v2) € €1([0,00), C3(R)) x
C1([0, 00), C3(R)).
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SEMI-SLANT LIGHTLIKE SUBMANIFOLDS OF GOLDEN
SEMI-RIEMANNIAN MANIFOLDS

SACHIN KUMAR! AND AKHILESH YADAV?

ABSTRACT. The aim of our paper is to introduce the notion of semi-slant lightlike
submanifolds of golden semi-Riemannian manifolds. We give non-trivial examples
of semi-slant lightlike submanifolds and provide a characterization theorem of such
submanifolds. Further, we obtain necessary and sufficient conditions for integrability
of the distributions and investigate the geometry of the leaves of the foliation
determined by the distributions. We also obtain a necessary and sufficient condition
for the induced connection to be a metric connection. Finally, we obtain necessary
and sufficient condition for mixed-geodesic semi-slant lightlike submanifold of golden
semi-Riemannian manifold.

1. INTRODUCTION

A submanifold of a semi-Riemannian manifold is called a lightlike submanifold
if the induced metric on it is degenerate, i.e., there exists a non zero X € I'(TM)
such that g(X,Z) =0 for all Z € T'(T'M). In [4], Duggal and Bejancu introduced a
non-degenerate screen distribution to construct a nonintersecting lightlike transversal
vector bundle of the tangent bundle and they studied the geometry of arbitrary
lightlike submanifold of a semi-Riemannian manifold. Lightlike geometry has its
applications in general relativity, particularly in black hole theory. Many authors have
studied lightlike submanifolds in various spaces ([5,17]). In [15], authors introduced
a new class of lightlike submanifolds namely, semi-slant lightlike submanifolds of
indefinite Kaehler manifolds. In [15], authors investigated the integrability of various
distributions, obtained a characterization theorem of such lightlike submanifolds and

Key words and phrases. Golden structure, golden semi-Riemannian manifolds, gauss and wein-
garten formulae, lightlike submanifolds.
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established equivalent conditions for totally geodesic foliation of distributions. In
[16], authors introduced a general notion of lightlike submanifolds namely, semi-slant
lightlike submanifolds of indefinite Sasakian manifolds. In [16], authors found some
equivalent conditions for integrability and totally geodesic foliation of distributions.
Golden proportion 9 is the real positive root of the equation 22 — 2z —1 = 0 (thus ¢ =
% ~ 1.618...). Inspired by the Golden proportion, Crasmareanu and Hretcanu
defined golden structure P which is a tensor field satisfying P2 — P — I = 0 on M
[3]. Golden structure was inspired by the Golden proportion, which was described by
Kepler (1571-1630).

A Riemannian manifold M with a golden structure P is called a golden Riemannian
manifold and was studied in ([3,9]). In [9], authors studied invariant submanifolds of a
golden Riemannian manifold. Submanifolds of golden manifolds in semi-Riemannian
geometry were studied by Poyraz and Yasar [12]. In [12], they proved that there is
no radical anti-invariant lightlike hypersurface of a golden semi-Riemannian manifold
and also studied screen semi-invariant and screen conformal screen semi-invariant
lightlike hypersurfaces of a golden semi-Riemannian manifold. Transversal and Screen
transversal lightlike submanifolds of metallic semi-Riemannian manifolds were studied
in ([6,8]). In [13], authors proved that there is no radical anti-invariant lightlike sub-
manifold of a golden semi-Riemannian manifolds. In [7], author studies the geometry
of screen transversal lightlike submanifolds and radical screen transversal lightlike
submanifolds and screen transversal anti-invariant lightlike submanifolds of golden
semi-Riemannian manifolds and investigate the geometry of distributions. Screen
pseudo-slant and golden GCR-lightlike submanifolds of a golden semi-Riemannian
manifold were studied in ([1,11]). In [10], N. Onen Poyraz introduced screen semi-
invariant lightlike submanifolds of a golden semi-Riemannian manifolds and found the
conditions of integrability of distributions. In [10], they proved some results for to-
tally umbilical screen semi-invariant lightlike submanifolds of golden semi-Riemannian
manifolds.

The purpose of this paper is to study semi-slant lightlike submanifold of golden
semi-Riemannian manifolds. The paper is arranged as follows. In Section 2, some
definitions and basic results about lightlike submanifolds and golden semi-Riemannian
manifold are given. In Section 3, we study semi-slant lightlike submanifolds of a golden
semi-Riemannian manifold giving examples, provide a characterization theorem and
investigate the integrability of distributions. We also obtain necessary and sufficient
conditions for semi-slant lightlike submanifolds of golden semi-Riemannian manifolds
to be metric connection. In Section 4, we find necessary and sufficient conditions
for totally geodesic foliation determined by distributions on a semi-slant lightlike
submanifolds of golden semi-Riemannian manifolds. We also obtain necessary and
sufficient conditions for semi-slant lightlike submanifolds of golden semi-Riemannian
manifolds to be mixed geodesic.
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2. PRELIMINARIES

Let M be a C®-differentiable manifold. If a (1,1) type tensor field P on M satisfies
the following equation

(2.1) P?=P+1,

then E is called a golden structure on M, where [ is the identity transformation.
Let (M,g) be a semi-Riemannian manifold and P be a golden structure on M. If P
satisfies the following equation

(2'2) ?(PU’ W) = ?(U7 pW))

then (M, g, P) is called a golden semi-Riemannian manifold [14], also, if P is integrable,
then we have [3]

(2.3) Yy PW = PV W.
Now, from (2.2) we get
(2.4) g(PU, PW) = g(PU,W) +g(U,W),

for all U,W € I'(TM).

Let (M,g) be a real (m + n)-dimensional semi-Riemannian manifold of constant
index ¢, such that myn > 1,1 < ¢ < m+n — 1 and (M, g) be an m-dimensional
submanifold of M, where ¢ is the induced metric of g on M. If g is degenerate
on the tangent bundle TM of M, then M is called a lightlike submanifold [4] of
M. Let S(TM) be a screen distribution which is a semi-Riemannian complementary
distribution of Rad(T'M) in T'M, that is

(2.5) TM = Rad(TM) @orer, S(TM).

Consider a screen transversal vector bundle S(TM<1), which is a semi-Riemannian
complementary vector bundle of Rad(T'M) in TM=*. Let tr(TM) and Itr(TM) be
complementary (but not orthogonal) vector bundles to 7'M in T'M|; and Rad(T M)
in S(TM*)*, respectively. Then

(2.6) tr(TM) =ltr(TM) @oper, S(TM™*),
(2.7) TM|y =TM @ tr(TM),
(2.8) TM |y =S(TM) ®opin, [Rad(TM) & ltr(TM)] Sopen S(TM™).

Theorem 2.1 ([4]). Let (M,g,S(TM),S(TM™)) be an r-lightlike submanifold of
a semi-Riemannian manifold (M,q). Suppose U is a coordinate neighbourhood of
M and {&}, i € {1,2,...,7}, is a basis of I'(Rad(T'M|y)). Then there exist a
complementary vector subbundle ltr(TM) of Rad(TM) in S(TM*Y)t and a basis
{N;}, i e {1,2,....r}, of T(ltr(T'M|y)) such that g(N;,&;) = 6;; and G(N;, Nj) =0
foranyi,j e {1,2,...,r}.
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Following are four cases of a lightlike submanifold (M ,9,S5(TM),S(TM L))
Case 1. r-lightlike if » < min (m,n).

Case 2. Co-isotropic if r =n <m, S (TML) = {0}.

Case 3. Isotropic if r =m < n, S(T'M) = {0}.

Case 4. Totally lightlike if r = m =n, S(TM) = S(TM*) = {0}.

The Gauss and Weingarten formulae are given as

(2.9) VxY =VxY + 1h(X,Y),
(2.10) ViV =—AyX + V4V,
for all X, Y € T(TM) and V € T'(tr(TM)), where {VxY, Ay X} belong to I'(T'M)
and {h(X,Y),V5V} belong to I'(tr(TM)). V and V' are linear connections on

M and on the vector bundle tr(T'M), respectively. From (2.9) and (2.10), for any
X, Y e(TM), N € T(itr(TM)) and W € I'(S(TM+*)), we have

(2.11) VxY =VxY +h(X,)Y) + 1 (X,Y),
(2.12) VxN =—AyX + V4N + D* (X, N),
(2.13) VxW =— ApyX + V5W + D' (X, W),

where 1'(X,Y) = L(M(X,Y)), B*(X,Y) = S(h(X,Y)), D\X,W) = L(V4W),

D3*(X,N) = S(ViN). L and S are the projection morphisms of tr(7'M) on ltr(T M)

and S(T M), respectively. V! and V* are linear connections on ltr(T'M) and S(TM*)

called the lightlike connection and screen transversal connection on M, respectively.
Also by using (2.9), (2.11)—(2.13) and metric connection V, we obtain

(2.14) g(*(X,Y), W) +g(Y, D'(X,W)) =g(Aw X, Y),
Now, denote the projection of TM on S(T'M) by S. Then from the decomposition

of the tangent bundle of a lightlike submanifold, for any X,Y € I'(T'M) and £ €
I'(Rad(T'M)), we have

(2.16) VxSY =V5SY + h*(X, SY),
(2.17) V& =— A{X + VY&

By using above equations, we obtain
(2.18) (R (X, SY),€) = g(ALX, SY).

It is important to note that in general V is not a metric connection on M. Since
V is metric connection, by using (2.11), we get

(2'19) (ng)<Y7 Z) = g(hl(Xv Y),Z) +§<hl(X7 Z)7Y)7
for all X,Y,Z € T(TM).
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Definition 2.1 ([2]). An equivalence relation on an n-dimensional semi-Riemannian
manifold (M, g) in which the equivalence classes are connected, immersed submanifolds
(called the leaves of the foliation) of a common dimension k, 0 < k < n, is called a
foliation on M. If each leaf of a foliation F' on a semi-Riemannian manifold (M, g) is
totally geodesic submanifold of M, we say that F is a totally geodesic foliation.

3. SEMI SLANT LIGHTLIKE SUBMANIFOLDS

In this section, we study semi-slant lightlike submanifolds of golden semi Riemannian
manifolds. We now give the following lemmas which will be useful to define slant
notion on the screen distribution.

Lemma 3.1. Let M be a q-lightlike submanifold of a golden semi-Riemannian man-
ifold M of index 2q. Suppose that IBRad(TM) is a distribution on M such that
Rad(TM) N PRad(TM) = {0}. Then Pltr(TM) is a subbundle of the screen distri-
bution S(TM) and PRad(TM) N Pltr(TM) = {0}.

Proof. Since by hypothesis P Rad(TM) is a distribution on M such that P Rad(T'M)N
Rad(TM) = 0, we have PRad(TM) C S(TM). Now we claim that Itr(TM) is not
invariant with respect to P. Let us suppose that ltr(T'M) is invariant with respect
to P. Choose ¢ € T(Rad(TM)) and N € Tltr(TM) such that g(N,€) = 1. Then
from (2.4), we have 1 = g(¢, N) = g(P¢, PN) — g(P¢,N) = 0, due to P& € TS(TM)
and PN € Tltr(TM). This is a contradiction, so Itr(TM) is not invariant with
respect to P. Also PN does not belong to S(TM™1), since S(TM™') is ortogonal to
S(TM), g(PN, P¢) must be zero, but from (2.4) we have g(PN, P¢) = g(P¢, N) +
G(N, &) # 0, for some £ € I'Rad(T'M), this is again a contradiction. Thus, we
conclude that Pltr(TM) is a distribution on M. Moreover, PN does not belong
to Rad(TM). Indeed, if PN € I'Rad(T'M), we would have P2N = PN + N €
I'(PRad(TM)), but this is impossible. Finally, let PN € I'(PRad(TM)), we obtain
P2N = PN + N € I'(PRad(TM) + Rad(TM)), this is not possible. Hence, PN
does not belong to P Rad(TM). Thus, we conclude that Pltr(TM) c S(T'M) and
PRad(TM) N Pltr(TM) = {0}. O

Lemma 3.2. Let M be a g-lightlike submanifold of a golden semi-Riemannian mani-
fold M of index 2q. Suppose PRad(T M) is a distribution on M such that Rad(TM)N
PRad(TM) = {0}. Then any complementary distribution to P Rad(TM)® Pltr(TM)
in S(TM) is Riemannian.

Proof. Let M be an m-dimensional ¢-lightlike submanifold of an (m + n)-dimensional
golden semi-Riemannian manifold M of index 2¢q. From Lemma 3.1, we have
PRad(TM) N Pltr(TM) = {0} and PRad(TM) @ Pltr(TM) C S(TM). We denote
the complementary distribution to P Rad(T'M) @ Pltr(TM) in S(TM) by D. Then
we have a local orthonormal frame of fields on M along M {&;, N;, P&, PN;, X, W,},
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ie{l,2,...,q},a € {3g+1,...,m},a € {qg+1,...,n}, where {} and {N;} are light-
like bases of Rad(T'M) and ltrT M, respectively and {X,} and {IV,} are orthonormal
bases of D and S(T M%), respectively.

Now, from the bases {&,...,&, Ni,..., Ng, P&i,..., P&, PNy,..., PN} of
Rad(TM) & ltrTM @& PRad(TM) @ Pltr(T M ), we can construct an orthonormal
bases {Uy, ..., Uz, Vi,. .., Vo, } as follows:

Uy 7(§1+N1) U; = 7(51 Ny),
Us 7(52 +Ny), U,= 7(52 — Ns),
Unyr = N,), Uy = N,
2g—1 _E(gq + q)> 29 — ﬁ(gq - q)y
- %(P&wpzvl) v, = }(Pfl PNV
V= ;§<P@+PN2) ML:;?(P& PN,)
Voot = (P&, + PN.). Vo — —(PE, — PN,
2g—1 _ﬁ( €q+ q)v 29 — E( gq_ q)-

Hence, Span{&;, N;, P¢;, PN;} is a non-degenerate space of constant index 2¢. Thus
we conclude that Rad(T'M) @ ltr(TM) @ PRad(TM) & Pltr(TM) is non-degenerate
and of constant index 2¢ on M. Since index(T'M) = index(Rad(T'M) & ltr(TM) &
PRad(TM) @ Pltr(TM)) + index (D @orn S(TM™)), we have 2¢ = 2¢ + index
(D+S(TM?)). Thus, D@ oy, S(TM*) is Riemannian, i.e., index (D @y, S(TML)) =
0. Hence, D is Riemannian. O

Definition 3.1. Let M be a ¢-lightlike submanifold of a golden semi-Riemannian
manifold M of index 2¢ such that 2¢ < dim(M). Then we say that M is a semi-slant
lightlike submanifold of M if following conditions are satisfied:

(i) PRad(TM) is a distribution on M such that Rad(TM) N PRad(TM) = {0};

(ii) there exist non-degenerate orthogonal complementary distributions D; and Dy
on M such that S(TM) = (PRad(TM) @& Pltr(TM)) ®orin D1 @ortn Da;

(i) the distribution D, is an invariant distribution, i.e., PD; = D;;

(iv) the distribution D, is slant with angle 6(# 0), i.e., for each x € M and each
non-zero vector X € (Dy),, the angle § between PX and the vector subspace (D),
is a non-zero constant, which is independent of the choice of z € M and X € (Ds),.

This constant angle  is called slant angle of distribution Ds. A semi-slant lightlike
submanifold is said to be proper if Dy # {0}, Dy # {0} and 6 # 7.
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From the above definition, we have the following decomposition
(3.1) TM = Rad(TM) @open, (PRad(TM) @ Pltr(TM)) Bopen D1 ®oren Do
Now, for any vector field X tangent to M, we put
(3.2) PX = PX + FX,
where PX and FX are tangential and transversal parts of PX, respectively. Also for
any V € I'(tr(TM)), we write
(3.3) PV = BV +(CV,
where BV and C'V' are tangential and transversal parts of E’V, respectively.
We denote the projections on Rad(T'M), PRad(T'M), Pltr(T'M), Dy and D, in
TM by P, Py, P3, P, and Ps, respectively. Similarly, we denote the projections

of tr(TM) on ltr(TM) and S(TM*) by @ and Qs, respectively. Thus, for any
X eI(TM), we get

(3.4) X=PX+PBX+PLBX+PX+PX.

Now applying P to (3.4), we have

(3.5) PX = PPX + PP,X + PP3X + PP,X + PPsX,

which gives

(3.6) PX = PP, X + PP, X + PP,X 4+ PP,X + PPsX + FP;X,

where PP,X = K\ PPyX + K;PPy X, PPyX = L1 PP;X + Ly PPy X and PP;X (resp.
FPsX) denotes the tangential (resp. transversal) component of PP;X. Thus, we
get PP,X € D(PRad(TM)), K;PP,X € T'(Rad(TM)), KPP, X € T(PRad(TM)),

L\PP;X € T(Itr(TM)), LyPPsX € T'(Pltr(TM)), PP,X € T'(PD;), PPsX € I'(D,)
and FP;X € T(S(TM*1)). Also, for any W € T'(tr(T'M)), we have

(3.7) W =W + Q. W.
Applying P to (3.7), we obtain

(3.8) PW = PQ\W + PQ,W,
which gives

(3.9) PW = PQ\W + BQ,W + CQ,W,

where BQoW (resp. CQoW) denotes the tangential (resp. transversal) component
of PQuW. Thus, we get PQiW € I'(Pltr(TM)), BQW € T'(Dy) and CQ.W €
L(S(TMH)).

Proposition 3.1. There exist no isotropic or totally lightlike proper semi-slant light-
like submanifolds of a golden semi-Riemannian manifold (M,gq, P).

Proof. We suppose that M is isotropic or totally lightlike, then S(T'M) = 0, hence
Dy =0 and Dy, = 0. [
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Lemma 3.3. Let (M,g) be a semi-slant lightlike submanifold of a golden semi-
Riemannian manifold (M,q, P). Then we have

(3.10) (VxP)Y =Apy X + Bh(X,Y),
(3.11) (VLF)Y =Ch(X,Y) — h(X, PY),
(3.12) P’X =PX + X — BFX,
(3.13) FX =FPX 4+ CFX,
(3.14) PBV =BV — BCYV,
(3.15) C?V =CV +V — FBY,
(3.16)  g(PX,Y) = g(X,PY) =g(X,FY) — g(FX,Y),
g(PX,PY) =g(PX,Y)+g(X,Y) 4+ g(FX,Y) — g(PX,FY)
(3.17) —g(FX,PY) — g(FX,FY),

where (VxP)Y = VxPY — PVxY and (V4 F)Y =VLFY — FVxY for all X,Y €
[(TM) and V € I'(tr(TM)).

Proof. Using (2.3), (2.9), (2.10), (3.2) and (3.3), on comparing tangential and transver-
sal parts of the resulting equation, we obtain (3.10) and (3.11). Applying P to (3.2),
using (2.1) and (3.2), taking tangential and transversal parts of the resulting equation,
we get (3.12) and (3.13). Applying P to (3.3), using (2.1) and (3.3), taking tangential
and transversal parts of the resulting equation, we get (3.14) and (3.15). Finally,
using (2.2), (2.4) and (3.2), we obtain (3.16) and (3.17). O

Proposition 3.2. Let (M, g) ‘be a semi-slant lightlike submanifold of a golden semi-
Riemannian manifold (M,g, P). Then P is a golden structure on M if and only if
FX =0.

Proof. Let P is a golden structure on M then, from (3.12), FX = 0. Conversely, let
FX = 0. Then our result follows from (3.12). O

Ezample 3.1. Let (R32, g, P) be a golden semi-Riemannian manifold, where metric g
is of signature (—, —, +, 4+, +, +, +, +, +, +, +, +) with respect to the canonical basis
{02!, 022,023, 02", 025, 028,027, 028, 02°, 0210, Oz, 022} and (2!, 22, 23, 2%, 25, 25,

z’ a® 2, xw ac”, z'?) be standard coordinate system of R}?.

Taklng, (6m1, o, 021) = (1 =)0zt pdz?, pox3, (1 — )0x?, (1 —1p)0x®, hdxb,
(1—)027, 9028, 10x°, 10z, (1—1p)0x, (1—1))0x'?), where o = 1+\f and (1—1)) =
1- ‘[ are the roots of equation 22 — z — 1 = 0. Thus, P2=P+1] and Pisa golden
Structure on R12. Suppose M is a submanlfold of R12 g1ven by o1 = ul +u? — u?,
2?2 = ut —Yu? +Yud, 23 =t +wu + pud, $ = pul — u3,x5:¢u4,x6:@/}u5,
27 = (1=t 2® = (1—)ud, 2% = Yub, 2% = Yu’, 2!t = (1 —Y)ub, 212 = (1 —)u”.
The local frame of TM is given by {Z1, Zy, Z3, Zy, Zs, Zg, Z7}, where Z; = 9oz’ +
0% + 023 + Y0x?, Zy = 0x' — Y0x® + 03 — 02*, Z3 = —0z' + 0x® + Ydx® — Oz,
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Zy = ox® + (1 —)0z7, Zs = 02 + (1 — ¢)028, Zg = v0x° + (1 — ¢)0x'" and
Zy = 020 + (1 — )02"2.

Hence Rad(T'M) = Span {Z,} and S(TM) = Span {Zs, Zs, Zy, Z5, Zs, Zr}.

Now Itr(TM) is spanned by Ny = 2(2+w j(—¢0x' —0z°+02° +¢6a: )and S(TM*) is
spanned by Wy = (1—¢)0z° —dz", Wy = (1—1)02° —0x®, Wy = (1—1))02° —1pOx!!
and Wy = (1 — ¢)0z'" — ¢oz'?.

It follows that PZ, = Zs, PN, = Zy and PZ, = (1 —¢)Zy, PZ5 = 1 Z5, which
implies Dy is invariant, i.e., PD; = D; and D; = Span{Z,, Zs} and distribution
Dy = Span{Zs, Z} is a slant distribution with slant angle 6 = arccos(ﬁ). Hence M
is a semi-slant 1-lightlike submanifold of R3?.

Example 3.2. Let (R? 7, f’) be a golden semi-Riemannian manifold, where metric g
is of signature (4, —, +, —, +, 4+, +, +, +, +, +, +) with respect to the canonical basis
{02!, 022,023, 02*, 025, 025,027,028, 02°, 0210, Oz, 0212} and (zt, 22, 23, 2*, 25, 25,

27, a8 20, xw m“, 2'%) be standard coordinate system of R1%.

Taking, (8m1, o, 021 = (Yot Yor?, (1 — )03, (1 — p)0x, 0x5 105, (1
)0x", (1 — )08, (1 — )02, vz, (1 — )0x't dz'?), where o = H‘f and (1 —

) =15 ‘[ are the roots of equation 22 —x—1 = 0. Thus P2 = P+1] and P is a golden
structure on Ri%. Suppose M is a submanifold of R? given by z! = u! + ¢u? — Yu?,
2% = u1+wu2+¢u3, 23 = put —uP+ud, 2t = wul—u2—u3, 25 = yut, 2% = (1—)ut,
27 = ud, 28 = (1 — )b, 2° = Yub, 219 = (1 — )ub, 2t = Yu”, 22 = (1 — Y)u’.
The local frame of T'M is given by {Zy, Zo, Zs, Zy, Z5, Z, Z7}, where Z; = Oz' +0x® +
O3 + oxt, Zo = Yozt + ox? — 023 — 01, Z3 = —pOzt + ox? + 03 — Ox?,

= 02° + (1 — ¢)025, Zs = 0x" + (1 — ¥)028, Zg = ¥0x° + (1 — ¥)0x'°,
Zo = 0 + (1 — )2,

Hence, Rad(TM) = Span {Zl} and S(TM) = Span {ZQ, Z3, Z4, Z5, Zﬁ, Z7}

Now [tr(T'M) is spanned by Ny = 2(2+w j(—02! +02? =0z’ +40z") and S(TM™) is
spanned by Wi = (1—1)0x® =105, Wy = (1—1)0x" =08, W3 = (1—1)02° —p0x1°,
W, = (1 — )0zt — pox'?

It follows that PZ, = Z,, PN, = Z3 and PZ, = ¢Zy, PZs = (1 — 1) Zs, which
implies D; is invariant, i.c., PD; = D; and D; = Span{Z,, Zs} and distribution
Dy = Span{Zs, Z;} is a slant distribution with slant angle 6 = arccos(1/4/6). Hence
M is a semi-slant 1-lightlike submanifold of R2%.

Theorem 3.1. Let M be a g-lightlike submanifold of a golden semi-Riemannian
manifold M of index 2q. Then M is a semi-slant lightlike submanifold of M if and
only if

(i) PRad(TM) is a distribution on M such that Rad(TM) N PRad(TM) = 0;

(ii) the screen distribution S(TM) split as S(TM) = (PRad(TM) @ Pltr(TM))
DPorth Dl DPortn D2 5 -

(iii) there exists a constant X € [0,1) such that P2X = \(PX + X);

for all X € T(D,). Moreover, in this case A = cos> 6 and 0 is the slant angle of Ds.
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Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian
manifold M. Then the distribution P Rad(TM) is a distribution on M such that
Rad(TM)NPRad(TM) =0and S(TM) = (PRad(TM)® Pltr(TM)) ®ortn D1 Portn
D,.

Now for any X € I'(Ds), we have |PX| = |PX|cos#, which implies

PX
(3.18) cosf = | - |

|PX]
In view of (3.18), we get cos® = :gﬁ}Q = 58;?;2 = gg:;i;, which gives
(3.19) g(X, P2X) = cos? 0 g(X, P2X).

Since M is a semi-slant lightlike submanifold, cos?# = X (constant) € [0,1) and
therefore from (3.19), we get g(X, P2X) = A\g(X, P2X) = g(X, AP2X), which implies
(3.20) g(X,(P* = A\P?)X) = 0.
Since (P2 — AP2)X € I'(Ds) and the induced metric ¢ = g|p,xp, is non-degenerate
(positive definite), from (3.20), we have (P? — AP?)X = 0, which implies
(3.21) P?X = A\P2X = \(PX + X),
for all X € I'(Ds). This proves (iii).

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. From (iii), we

have P2X = AP2X, for all X € I'(D,), where X (constant) € [0, 1).
Now

cosf = g(PX,PX) — g(X,PPX) _ 9(X, P*X) _ )\g(X,be) _ )\Q(PX,PX)
~Px|IPx| ~ |PX[|PX] _ [PX|PX| " |PX[[PX| " [PX|[PX|

From above equation, we get

|PX]|
3.22 0= ==
(3.22) cos PX|
Therefore, (3.18) and (3.22) give cos?# = X (constant). Hence, M is a semi-slant
lightlike submanifold. ]

Corollary 3.1. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold M with slant angle 0, then for any X,Y € T'(Dy), we have

(i) g(PX, PY) = cos® 0(g(X,Y) + g(X, PY));

(i) g(FX,FY) =sin?0(g(X,Y) + g(PX,Y)).
Proof. From (2.2), (3.2) and (3.21), we obtain

g(PX,PY) = g(X,\(PY +Y)) = cos’8(g(X,Y) + g(X, PY)).

Moreover, from (2.2), (3.2) and (i) part of Corollary 3.1, we get

g(FX,FY) = g(X,Y) +g(PX,Y) = g(PX, PY) = sin? §(g(X,Y) + g(PX.,Y)).

Hence, the proof is complete. O
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Theorem 3.2. Let M be a semi-slant lightlike submanifold of a golden semi Riemann-
ian manifold M. Then Rad(TM) is integrable if and only if the following conditions
hold:

(i) g(r'(X, PY), &) =g(h'(Y, PX),&);

(i) g(h* (X, PY), N) = g(h* (Y, PX), N);

(iii) (VXPY VYPX PZ)) =g(V%PY — VL PX, Zh);

(iv) g(V4PY — Vi PX,PZ) + g(h*(X,PY) — h*(Y,PX),FZ) = g(V4PY —
ViPX,Z),
for any X,Y, ¢ € I'(Rad(TM)), Z, € I'(Dy), Z € I'(D3) and N € I'(itr(TM)).
Proof. From the definition of semi-slant lightlike submanifolds, Rad(TM) is integrable
if and only if g([X,Y], P€) = g([X,Y], PN) = g([X, Y], Z)) = g([X, Y], Z) = 0, for
all X,Y, & e '(Rad(TM)), Z, € I'(Dy), Z € I'(Ds) and N € I'(itr(TM)). Then from
(2.4), (2.11), (2.16) and (3.6), we obtain

g([X, Y], P¢) =g(VxY — Vy X, P¢) = G(VxPY — Vy PX,¢)

(3.23) =g(h'(X, PY) — h(Y, PX),£),
g([X,Y],PN) =g(VxY — VyX,PN) =g(VxPY — VyPX,N)
(3.24) =g(h*(X, PY) — h*(Y, PX),N),
9([X,Y), Z1) = g(P[X,Y], PZ)) - g(P[X, Y], Zy)

=g(VxPY —VyPX,PZ) —G(VxPY —VyPX, Z)
—g(V%PY — Vi PX,PZ))
(3.25) —g(V%PY — Vi PX, 7)),

\Q\

9([X, Y], Z) =g(P[X, Y], PZ) - g(P[X,Y], Z)
=g(VxPY —VyPX,PZ +FZ) - g§(VxPY —VyPX,2)
=g(VyxPY — V3 PX,PZ) +G(h*(X,PY) — h*(Y, PX),FZ)
(3.26) —g(V4PY — V3 PX, 7).
From (3.23), (3.24), (3.25) and (3.26), we derive our theorem. O

Theorem 3.3. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold M. Then PRad(TM) is integrable if and only if the following
conditions hold:

(1) gk (PX,Y),€) = GR(PY, X),);

(i) g(A% PY, PZ,) = (AL PX,PZ,);

(iii) g(A% PY — A} PX ,PZ) = g(hS(PY X) — hS(PX, Y),FZ);

(iv) g(ANPX, PY) = g(AyPY, PX),
for any X, Y, € € I'(Rad(TM)), Z, € I'(D1), Z € I'(Dy) and N € T'(Itr(T'M)).

Proof. From the definition of semi-slant lightlike submanifolds, [f’fiad(YjM ) is in-
tegrable if and only if g([PX, PY], P¢) = G(|[PX,PY]|,Z,) = g(|[PX,PY],Z) =
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9([PX, PY],

N) =0, forall X,Y, & e '(Rad(T'M)), Z, € I'(D1), Z € I'(Ds) and N € I'(itr(T'M)).
Since V is metric connection and using (2.4), (2.11), (2.12), (2.17) and (3.6), we
obtain

G(PX, PY], PE) =g(V p PY — Vo PX, PY)
(3.27) —g(H (PX,Y) = '(PY, X),€),
9([PX,PY),Z1) =g(VpxY. PZ1) = g(Vpy X, PZ)
(3.28) —g(A%4PY, PZ,) — g(ALPX, PZ)),
9([PX,PY),Z) =G(NpxY,PZ + FZ) —G(VNpy X, PZ + FZ)
(3.29) —g(ALPY — ALPX, PZ) —g(h*(PY, X) — h*(PX,Y),FZ),
9([PX,PY),Z) = —g(PY,VpxN) + g(PX,Vpy N)
(3.30) =g(AyPX, PY) — g(AyPY, PX).
From (3.27), (3.28), (3.29) and (3.30), proof is completed. O

Theorem 3.4. Let M be a semi-slant lightlike submanifold of a golden semi Riemann-
ian manifold M. Then Pltr(T M) is integrable if and only if the following conditions
hold:

() (AN1PN27N>_9(AN2PN17N);

( ) (ANleg,le) —g(ANQPNl,le) ~

(iii) (AleNg - An, PNy, PZ) = g~(D5(PN2, N1) — D*(PNy,Ny), FZ);

(iv) g(ANP Ny, PNo) = g(AnPNa, PNy),
for any Ny, No, N € T'(ltr(TM)), Z; € T'(D;) and Z € T'(Dy).

Proof. From the definition of semi-slant lightlike submanifolds, Pltr(TM) is inte-
grable if and only if G([PNy, PNy], PN) = G([PNy, PNy|, Z,) = G([PN,, PN), Z) =
G([PNy, PNy), N) = 0, for any Ny, No, N € T(itr(TM)), Z, € T(D;) and Z € T\(Dy).
Taking V is metric connection and from (2.4), (2.11), (2.12), (2.16) and (3.6), we
obtain

PNy — Vpy, PNy, PN)

PN, N) = g(An, PN1, N),

Vion Noy PZ1) — G(V py, N1, PZy)

An, PNy, PZ)) — G(An, PNy, PZy),

Vin,No, PZ +FZ) —G(Vpy,Ni, PZ + FZ)

An, PN, — Ay, PNy, P2)

(3.33) — g(D*(PNy, Ny) = D*(PNy, N,), FZ),
g([PN1, PNo], N) = — G(PNo, V. N) + G(PNy, Vi, N)

(3.31) =

=g

(3.32) =g
& g

=g
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(3.34) =G(ANPNy, PN,) — G(AyPN,, PNy).
From (3.31), (3.32), (3.33) and (3.34), we derive our theorem. O

Theorem 3.5. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold M. Then D is integrable if and only if the following conditions
hold:
(1) g(VPY VL PX, PZ)+g(h*(X, PY)—h*(Y, PX),FZ) = g(Vs PY VL PX, Z);
(i) g(V5PY — Vi PX, PN) = g(h*(X, PY) — h*(Y, PX), N);
(iii) g(An X, PY) = g(AnY, PX),
for any X,Y € I'(Dy), Z € I'(Ds) and N € I'(ltr(TM)).

Proof. From the definition of semi-slant lightlike submanifolds, D; is integrable if
and only if g([X,Y],Z) = g([X,Y],N) = g([X,Y],PN) = 0 for all X,Y € I'(D,),
Z € T(Dy) and N € T'(itr(T'M)). Since V is metric connection and from (2.4), (2.11),
(2.12), (2.16) and (3.6), we obtain

9([X, Y], 2) =g(P[X, Y], PZ) - §(P[X,Y], )

(VxPY —VyPX,PZ+ FZ) —g(NxPY —VyPX, 7)
(VyPY — Vi PX,PZ)+g(h*(X,PY) — h*(Y,PX),FZ)
(3.35) ~g(VyxPY — V3 PX, Z),

Q| Q\

9([X, Y], N) =g(P[X, Y], PN) = g(P[X,Y],N)
=§(VxPY —VyPX,PN) —g(VxPY —VyPX,N)
(3.36) —g(V%PY — V3 PX,PN) —g(h*(X,PY) — h*(Y, PX),N),
9([X.Y],PN) = —=g(VxN, PY) + 5(Vy N, PX)
(3.37) —g(AnX, PY) — g(ANY, PX).
From (3.35), (3.36) and (3.37), proof is completed. O

Theorem 3.6. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold M. Then D, is integrable if and only if the following conditions
hold:

(i) g(VxPY — Apy X, PZ) + g(VyPX — ApxY,Z) = g(VxPY — Apy X, Z) +
9(VyPX — ApxY,PZ);

(ii)) g(VxPY — Apy X, PN) + G(VyPX — ApxY,N) = g(VxPY — Apy X,N) +
G(VyPX — ApxY,PN);

(ili) g(Vx PY — Apy X, N) = g(Vy PX — ApxY, N),
for any X,Y € I'(Dy), Z € I'(Dy) and N € I'(ltr(TM)).

Proof. From the definition of semi-slant lightlike submanifolds, D, is integrable if
and only if g([X,Y],Z) = g([X,Y],N) = g([X,Y],PN) = 0 for all X,Y € ['(Ds),
Z € '(Dy) and N € I'(itr(TM)). Then from (2.4), (2.11), (2.13) and (3.6), we obtain

g([X,Y],Z) :g(P[X>Y]’pZ) —g(p[X,Y],Z)
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=§(VxPY —VyPX,PZ) - §g(VxPY —VyPX, Z)
—G(VxPY — ApyX,PZ) + G(VyPX — ApxY, Z)

(3.38) —G(VxPY — Apy X, Z) — §(VyPX — ApxY, PZ),
g([X,Y], N) =g(P[X, Y], PN) - g(P[X,Y], N)

=5(VxPY —VyPX,PN) - g(VxPY —VyPX,N)
—G(VxPY — Apy X, PN) +G(Vy PX — ApxY, N)

(3.39) — G(VxPY — Apy X, N) — §(VyPX — ApxY, PN),

9([X,Y],PN) =g(VxPY — VyPX,N)
(3.40) =g(VxPY — Apy X,N) —g(VyPX — ApxY,N).
From (3.38), (3.39) and (3.40), we derive our theorem. O

Theorem 3.7. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold M. Then the induced connection ¥V is a metric connection if and
only if

(i) PVxPY € T'(Rad(TM));

(ii) BR!(X, PY) = PsVxPY and P,VxPY = 0;

(iii) Bh*(X, PY) = P;VxPY and P,VxPY =0,
forall X € I(TM) and Y € T'(Rad(T'M)).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian
manifold M. Then the induced connection V on M is a metric connection if and only
if Rad(T'M) is parallel distribution with respect to V [4]. For any X € I'(T'M) and
Y € T(Rad(TM)), we have VxY = PVxPY — VxPY, using (2.11), (3.2) and (3.9),
we get VxY = PVxPY + FVxPY + Bh'(X,PY) 4+ Bh*(X,PY) + Ch*(X,PY) —

VxPY—h (X, PY)—h*(X, PY). By comparing tangential components of both sides of
above equation, we obtain VxY = PV x PY +Bh!(X, PY)+Bh*(X, PY)—-P,Vx PY —
P,V xPY — P;VxPY — P,V xPY — P;VxPY, which completes the proof. O

4. FOLIATIONS DETERMINED BY DISTRIBUTIONS

In this section, we obtain necessary and sufficient conditions for foliations de-
termined by distributions on a semi-slant lightlike submanifold of a golden semi-
Riemannian manifold to be totally geodesic.

Definition 4.1 ([5]). A semi-slant lightlike submanifold M of a golden semi-Riemanni-
an manifold M is said to be a mixed geodesic if its second fundamental form h satisfies
h(X,Y) =0, for all X € I'(D;) and Y € I'(Dy). Thus M is mixed geodesic semi-
slant lightlike submanifold if 2'(X,Y) = 0 and h*(X,Y) = 0, for all X € I'(D;) and
Y € I(Dy).

Theorem 4.1. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold M. Then Rad(T M) defines a totally geodesic foliation if and only



SEMI-SLANT LIGHTLIKE SUBMANIFOLDS 155

it G(W(X, Ky PPy Z)+h (X, KyPPy Z)+ V' L PPy Z+h (X, LyPPs Z)+h' (X, PP, Z) +
WX, PPsZ)+D"(X,FPs2),Y) = g(Vx K\ PPy Z+V x Ky PP,Z— A} pp s X+Vx Lo P
PyZ +NxPP,Z + VxPPsZ — App,z X, PY) for all X,Y € T(Rad(TM)) and Z
T(S(TM)).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian man-
ifold M. The distribution Rad(T'M) defines a totally geodesic foliation if and only if
VxY € T'(Rad(TM)), for all X,Y € I'(Rad(T'M)). Since V is a metric connection,
using (2.4), (2.11), (2.12), (2.13) and (3.6), for any X,Y € I'(Rad(TM)) and Z €
[(S(T'M)), we get g(VxY, Z) =7g(Y, VXPPQZ +VxPPsZ+NxPP,Z+VxPP;7 +
VxFP;2)—g(PY,N x PPy Z+N x PPs Z+N x PP, Z+N x PP;s Z+N x FP; Z), which im-
plies §(VxY, Z) = g(h!(X, KPP, Z)+h' (X, Ky PP, Z)+ V' L1PP32+hl(X LQPPE}Z)
+ WX, PP,Z) + hl(X PPsZ)+ DYX,FPsZ),Y) — (VXK]_pPQZ +Vx KPP, 7 —
Ap ppz X+ VxLoPPyZ +NxPP,Z +VxPPs7 — App,z X, PY) Thus, the theorem
is completed. O

Theorem 4.2. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian mamfold M. Then D1 deﬁnes a totally geadeszc foliation if and only if

(i) 9V PY, ) = (X, PY). V)

(iit) h*(X, PY) has no components in I'(Rad(TM)),
for all X, Y € I'(Dy), Z € I'(Ds) and N € Tltr(TM).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian
manifold M. The distribution D; defines a totally geodesic foliation if and only
if VxY € I'(Dy), for all X,Y € T'(D;). Since V is metric connection, from (2.4),
(2.11), (2.13) and (3.6), for any X,Y € I'(D;) and Z € I'(Ds), we obtain g(VxY, Z) =
—g(PY,NxPZ + VxFZ) + g(Y,VxPZ + VxFZ), which gives g(VxY,Z) =
~g(PY,VxPZ — ApzX) +g(Y,VxPZ — ApzX). From (2.4), (2.11) and (2.16), for
any X,Y € I'(Dy) and N € ['(Itr(T'M)), we obtain g(VxY, N) = g(VXPY PN) —

7(VxPY, N), which implies g(VxY, N) = g(V%PY, PN) — g(h*(X, PY),N). Now,
from (2.2), (2.11) and (2.16), for any X,Y € I'(D;) and N € I'(ltr(T'M)), we obtain
7(VxY, PN) = g(VxPY, N), which implies §(VxY, PN) = g(h*(X, PY), N). This
proves the theorem. 0]

Theorem 4.3. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold M. Then Dy defines a totally geodesic foliation if and only if

(1) g(Vsza Y) _g(PK vXF)Z> = g(FY> h5<X7 PZ)))

(i) g(Vx PY — Apy X, PN) = g(Vx PY — Apy X, N);

(iii) VxPY — Apy X has no components in I'(Rad(T'M)),
for all X, Y € I'(Ds), Z € I'(Dy) and N € T'(ltr(T'M)).

Proof. Let M be a semi-slant lightlike submanifold of a golden semi-Riemannian man-
ifold M. The distribution Dy defines a totally geodesic foliation if and only if VxY €
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['(Dy), forall X, Y € I'(D,). Since V is metric connection, From (2.4), (2.11) and (3.6),
for any X,Y € I'(D,) and Z € T'(D;), we obtain g(VxY,Z) = —g(PY,VxPZ) —
G(FY,VxPZ) +g(Y,VxPZ), which implies g(VxY, Z) = —g(PY,VxPZ) — g(FY,
h(X,PZ))+3(Y,VxPZ)). In view of (2.4), (2.11), (2.13) and (3.6), for any X,Y €
I'(Ds) and N € D(itr(TM)), we obtain g(VyY,N) = g(VxPY + VxFY, PN) —
G(Vx PY +Vy FY, N), which gives (Vx Y, N) = G(Vx PY —Apy X, PN)—g(V x PY —
ApyX,N). Now, from (2.2), (2.11), (2.13) and (3.6), for any X,Y € I'(Dy) and
N € T(itr(TM)), we obtain g(VxY, PN) = g(VxPY + VxFY,N), which gives
3(VxY,PN) =g(VxPY — Apy X, N). Hence, the proof is completed. O

Theorem 4.4. Let M be a mized geodesic semi-slant lightlike submanifold of a golden
semi-Riemannian manifold M. Then D, defines a totally geodesic foliation if and
only if

(i) g(PY,VxPZ) =g(Y,VxPZ);

(i) g(VxPN,Y) — g(Vx PN, PY) = g(h*(X, PN), FY);

(iii) VxPY — Apy X has no components in I'(Rad(T'M)),
for all XY € I'(Dy), Z € I'(Dy) and N € I'(ltr(T'M)).

Proof. Let M be a mixed geodesic semi-slant lightlike submanifold of a golden semi-
Riemannian manifolds M, we have h*(X, PZ) = 0, for all X € I'(D,) and Z € I'(D).
The distribution Dy defines a totally geodesic foliation if and only if VxY € I'(D»),
for all X,Y € I'(D,). Since V is metric connection, From (2.4), (2.11) and (3.6),
for any X,Y € I'(D,) and Z € T'(D;), we obtain g(VxY,Z) = —g(PY,VxPZ) —
G(FY,VxPZ)+g(Y,VxPZ), which implies §(VxY, Z) = —g(PY,VxPZ) — G(FY,
h(X,PZ)) 4+ g(Y,VxPZ). From (2.4), (2.11) and (3.6), for any X,Y € T'(Ds)
and N € I'(Itr(TM)), we obtain g(VxY, N) = —g(PY,VxPN) — g(FY,VxPN) +
g(Y,VxPN), which gives §(VxY,N) = g(VxPN,Y) — G(VxPN, PY) — g(h*(X,
PN),FY). Now, from (2.2), (2.11), (2.13) and (3.6), for any X,Y € I'(D,) and
N e I(itr(TM)), we obtain §(VxY, PN) = g(VxPY + VxFY,N), which gives
§(VxY,PN) =g(VxPY — Apy X, N). Hence, the proof is completed. O

Theorem 4.5. Let M be a semi-slant lightlike submanifold of a golden semi Rie-
mannian manifold (M, g, P). Then M is mized geodesic if and only if the following
hold:

(i) F(VxPZ — ApzX) = —C(h*(X,PZ) + V5 FZ);

(i) W(X,PZ)+ DNX,FZ) = h*(X, PZ) + V5% FZ,
for any X € I'(Dy) and Z € T'(D,).

Proof. From (2.9), (2.11), (2.13), (3.2), (3.6) and (3.9), we obtain
WX,Z)=P(VxPZ+h(X,PZ)+ h*(X,PZ) — Apz X + V% FZ + DX, FZ))

— (VxPZ+ W (X, PZ)+ 1*(X,PZ) — Apz X + V% FZ + D'(X,F2))
—VxZ.
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Taking transversal part of this equation, we get
hX,Z)=F(VxPZ — ApzX) + C(h*(X,PZ) + V% FZ) — h'(X,PZ) — h*(X,PZ)
~ V& FZ - DNX,FZ).
Hence, h(X, Z) = 0if and only if (i) and (ii) hold. Hence, the proof is completed. O
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