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HIGHER CODERIVATIONS ON COALGEBRAS AND
CHARACTERIZATION

E. TAFAZOLI1 AND M. MIRZAVAZIRI2

Abstract. In this paper we define higher coderivations on a coalgebra C and then
we characterize them in terms of the coderivations on C. Indeed, we show that each
higher coderivation is a combination of compositions of coderivations. Finally we
prove a one to one correspondence between the set of all higher coderivations on C
and all sequences of coderivations on C.

1. Introduction

A coalgebra (C, ∆, ε) over a field κ is a κ-vector space C together with the κ-
linear maps ∆ : C → C ⊗ C and ε : C → κ, such that (I

C
⊗ ∆)∆ = (∆ ⊗ I

C
)∆,

(coassociativity) and (I
C

⊗ ε)∆ = (ε ⊗ I
C
)∆, (counitary). The maps ∆ and ε are

called, respectively, coproduct and counit of the coalgebra C. Given an element c of
the coalgebra (C, ∆, ε), we know that there exist elements c1,i

and c2,i
in C such that

∆(c) = ∑
i c1,i

⊗ c2,i
. In Sweedlers notation, this is abbreviated to ∑ c(1) ⊗ c(2) . Here,

the subscripts “(1)” and “(2)” indicate the order of the factors in the tensor product.
For more about basic definitions in coalgebras notion, you can see [1] and [3].

A κ-linear map f : C → C on a κ-coalgebra (C, ∆, ε) is called a coderivation if
∆f = (I

C
⊗f +f ⊗ I

C
)∆. One can see examples and a general definition of coalgebras

and coderivations in the sense of comodules in [2, 4, 6]. In this paper we define
higher coderivations on a coalgebra C and then characterize them in terms of the
coderivations on C. Indeed, we show that each higher coderivation is a combination of
compositions of coderivations. As a corollary we characterize all higher coderivations
which are ordinary. We have some nearly same properties for higher derivations, you
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can see in [5] and [7]. Throughout the paper, all coalgebras are assumed over a field
of characteristic zero.

2. The Results

Throughout the paper, C denotes a coalgebra over a field of characteristic zero
and I is the identity mapping on C. A coalgebra (C, ∆, ε) over a field κ is a κ-vector
space C together with the κ-linear maps ∆ : C → C ⊗ C and ε : C → κ, such that
(I

C
⊗ ∆)∆ = (∆ ⊗ I

C
)∆, (coassociativity), and (I

C
⊗ ε)∆ = (ε ⊗ I

C
)∆, (counitary).

The maps ∆ and ε are called, respectively, coproduct and counit of the coalgebra
C. A κ-linear map f : C → C on a κ-coalgebra (C, ∆, ε) is called a coderivation if
∆f = (I

C
⊗ f + f ⊗ I

C
)∆.

Now we define a new concept, named higher coderivation and then characterize
this, but at first we prove some properties, following.

Proposition 2.1. If f is a coderivation on coalgebra (C, ∆, ε), then we have

(2.1) ∆fn =
n∑

k=0

(
n

k

)
(fk ⊗ fn−k)∆,

for each nonnegative integer n.

Proof. We use induction on n. For n = 1 and a ∈ C we have
∆f(a) =

∑
a(1) ⊗ f(a(2)) + f(a(1)) ⊗ a(2),

and its true, since f is a coderivation on C. Now suppose that the equality is true for
n, then for n + 1, in the left side of equality, we have

∆fn+1(a) = ∆fn(f(a)) =
n∑

k=0

(
n

k

)
(fk ⊗ fn−k)∆(f(a)),

because of f being a coderivation, we have

∆fn+1(a) =
n∑

k=0

(
n

k

)
(fk ⊗ fn−k)(I ⊗ f + f ⊗ I)∆(a)

=
n∑

k=0

∑(
n

k

)
fk(a(1)) ⊗ fn+1−k(a(2)) + fk+1(a(1)) ⊗ fn−k(a(2)).

On the other side we have
n+1∑
k=0

(
n + 1

k

)
(fk ⊗ fn+1−k)∆(a)

=
n+1∑
k=0

∑(
n + 1

k

)
fk(a(1)) ⊗ fn+1−k(a(2))

=
[

n∑
k=0

∑((
n

k

)
+
(

n

k − 1

))(
fk(a(1)) ⊗ fn+1−k(a(2))

)]
+ fn+1(a(1)) ⊗ a(2)
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=
[

n∑
k=0

∑(
n

k

)
fk(a(1)) ⊗ fn+1−k(a(2))

+
n−1∑

k=−1

∑(
n

k

)(
fk+1(a(1)) ⊗ fn+1−(k+1)(a(2))

) ]
+ fn+1(a(1)) ⊗ a(2)

=
n∑

k=0

∑(
n

k

)
fk(a(1)) ⊗ fn+1−k(a(2)) +

n∑
k=−1

∑(
n

k

)
fk+1(a(1)) ⊗ fn−k(a(2)),

and we have the result. □

We name the relation (2.1) general coLiebnitz rule for coderivations.
If we define a sequence {fn} of linear mappings on C by f0 = I and fn = λn

n! , where I
is the identity mapping on C, then general coLeibniz rule ensures us that fn’s satisfy
the condition

(2.2) ∆fn =
n∑

k=0
(fk ⊗ fn−k)∆,

for each nonnegative integer n. This motivates us to consider the sequences {fn} of
linear mappings on a coalgebra C satisfying (2.2). We call such a sequence a higher
coderivation.

Definition 2.1. Let C be a coalgebra. We define a sequence {fn} of linear mappings
on C a higher coderivation if ∆fn(a) = ∑n

k=0(fk ⊗ fn−k)∆(a) for each a ∈ C and each
nonnegative integer n.

Though, if λ : C → C is a coderivation then fn = λn

n! is a higher coderivation. We
name this kind of higher coderivation an ordinary higher coderivation.

Proposition 2.2. Let {fn} be a higher coderivation on a coalgebra C with f0 = I.
Then there is a sequence {λn} of coderivations on C such that

(n + 1)fn+1 =
n∑

k=0
fn−kλk+1,

for each nonnegative integer n.

Proof. We use induction on n. Because of {fn} being a higher coderivation, for n = 0
we have

∆f1(a) = [(f0 ⊗ f1) + (f1 ⊗ f0)]∆(a)
=
∑

f0(a(1)) ⊗ f1(a(2)) + f1(a(1)) ⊗ f0(a(2))
=
∑

a(1) ⊗ f1(a(2)) + f1(a(1)) ⊗ a(2).

Thus, if λ0 = I and λ1 = f1, then λ1 is a coderivation on A and

∆(f0λ1)(a) = ∆(λ1(a)) =
∑

λ0(a(1)) ⊗ λ1(a(2)) + λ1(a(1)) ⊗ λ0(a(2)).
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Now suppose that λk it is defined and is a coderivation for k ≤ n. Putting λn+1 =
(n+1)fn+1−∑n−1

k=0 fn−kλk+1, we show that the well-defined mapping λn+1 is a coderiva-
tion on C. For a ∈ C, since {fn} is a higher coderivation and λ1, . . . , λn are coderiva-
tions, we have

∆λn+1(a) = (n + 1)∆fn+1(a) −
n−1∑
k=0

∆(fn−kλk+1)(a)

=(n + 1)∆fn+1(a)

−
n−1∑
k=0

n−k∑
l=0

∑
(fl ⊗ fn−k−l)

(
a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)

)

=(n + 1)
n+1∑
k=0

(fk ⊗ fn+1−k)∆(a)

−
n−1∑
k=0

n−k∑
l=0

∑
(fl ⊗ fn−k−l)

(
a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)

)

=(n + 1)
n+1∑
k=0

∑
fk(a(1)) ⊗ fn+1−k(a(2))

−
n−1∑
k=0

n−k∑
l=0

∑
(fl ⊗ fn−k−l)

(
a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)

)

=(n + 1)
n+1∑
k=0

∑
fk(a(1)) ⊗ fn+1−k(a(2))

−
n−1∑
k=0

n−k∑
l=0

∑
fl(a(1)) ⊗ fn−k−l(λk+1(a(2))) + fl(λk+1(a(1))) ⊗ fn−k−l(a(2)).

Now, by properties of tensor product, we have

∆λn+1(a) =
n+1∑
k=0

∑
(k + n + 1 − k)

(
fk(a(1)) ⊗ fn+1−k(a(2))

)

−
n−1∑
k=0

n−k∑
l=0

∑
(fl ⊗ fn−k−l)

(
a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)

)

=
n+1∑
k=0

∑
kfk(a(1)) ⊗ fn+1−k(a(2)) + fk(a(1)) ⊗ (n + 1 − k)fn+1−k(a(2))

−
n−1∑
k=0

n−k∑
l=0

∑
(fl ⊗ fn−k−l)

(
a(1) ⊗ λk+1(a(2)) + λk+1(a(1)) ⊗ a(2)

)
.

Writing

K =
n+1∑
k=0

∑
kfk(a(1)) ⊗ fn+1−k(a(2)) −

n−1∑
k=0

n−k∑
ℓ=0

∑
fℓλk+1(a(1)) ⊗ fn−k−ℓ(a(2)),
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L =
n+1∑
k=0

∑
fk(a(1)) ⊗ (n + 1 − k)fn+1−k(a(2))

−
n−1∑
k=0

n−k∑
ℓ=0

∑
fℓ(a(1)) ⊗ fn−k−ℓλk+1(a(2)),

we have ∆λn+1(a) = K + L. Let us compute K and L. In the summation ∑n−1
k=0

∑n−k
ℓ=0 ,

we have 0 ≤ k + ℓ ≤ n and k ≠ n. Thus, if we put r = k + ℓ then we can write it as
the form ∑n

r=0
∑

k+ℓ=r,k ̸=n. Putting ℓ = r − k we indeed have

K =
n+1∑
k=0

∑
kfk(a(1)) ⊗ fn+1−k(a(2))

−
n∑

r=0

∑
0≤k≤r,k ̸=n

∑
fr−kλk+1(a(1)) ⊗ fn−r(a(2))

=
n+1∑
k=0

∑
kfk(a(1)) ⊗ fn+1−k(a(2))

−
∑(

n−1∑
r=0

r∑
k=0

fr−kλk+1(a(1)) ⊗ fn−r(a(2)

)
−

n−1∑
k=0

fn−kλk+1(a(1)) ⊗ a(2).

Putting r + 1 instead of k in the first summation we have

K +
n−1∑
k=0

∑
fn−kλk+1(a(1)) ⊗ a(2)

=
n∑

r=0

∑
(r + 1)fr+1(a(1)) ⊗ fn−r(a(2)) −

n−1∑
r=0

r∑
k=0

∑
fr−kλk+1(a(1)) ⊗ fn−r(a(2))

=
∑(

n−1∑
r=0

[
(r + 1)fr+1(a(1)) −

r∑
k=0

fr−kλk+1(a(1))
]

⊗ fn−r(a(2)

)
+ (n + 1)fn+1(a(1)) ⊗ a(2)).

By our assumption

(r + 1)fr+1(a) =
r∑

k=0
(fr−kλk+1)(a),

for r = 0, . . . , n − 1. We can therefore deduce that

K =
∑[

(n + 1)fn+1(a(1)) −
n−1∑
k=0

fn−kλk+1(a(1))
]

⊗ a(2) =
∑

λn+1(a(1)) ⊗ a(2).

By a similar argument we have

L =
∑

a(1) ⊗
[
(n + 1)fn+1(a(2)) −

n−1∑
k=0

fn−kλk+1(a(2))
]

=
∑

a(1) ⊗ λn+1(a(2)).

Thus,
∆λn+1(a) = K + L = (I ⊗ λn+1 + λn+1 ⊗ I)∆(a),
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whence λn+1 is a coderivation on C. □

To illustrate the recursive relation mentioned in Proposition 2.2, let us compute
some terms of {dn}.
Example 2.1. Using Proposition 2.2, the first five terms of {fn} are

f0 = I,

f1(a) = f0(λ1(a)) = λ1(a) → f1 = λ1,

2f2(a) = f1(λ1(a)) + f0(λ2(a)) = λ1
2(a) + λ2(a) → 2f2 = λ2

1 + λ2,

f2 = 1
2λ2

1 + 1
2λ2,

3f3 = f2λ1 + f1λ2 + f0λ3 =
(1

2λ2
1 + 1

2λ2

)
λ1 + λ1λ2 + λ3,

f3 = 1
6λ3

1 + 1
6λ2λ1 + 1

3λ1λ2 + 1
3λ3,

4f4 = f3λ1 + f2λ2 + f1λ3 + f0λ4

=
(1

6λ3
1 + 1

6λ2λ1 + 1
3λ1λ2 + 1

3λ3

)
λ1 +

(1
2λ2

1 + 1
2λ2

)
λ2 + λ1λ3 + λ4,

f4 = 1
24λ4

1 + 1
24λ2λ

2
1 + 1

12λ1λ2λ1 + 1
12λ3λ1 + 1

8λ2
1λ2 + 1

8λ2
2 + 1

4λ1λ3 + 1
4λ4.

Theorem 2.1. Let {fn} be a higher coderivation on a coalgebra C with f0 = I. Then
there is a sequence {λn} of coderivations on C such that

(n + 1)fn+1 =
n+1∑
i=2

 ∑∑i

j=1 rj=n

 i∏
j=1

1
ri + · · · + rj

λri
· · · λr1

 ,

where the inner summation is taken over all positive integers rj, with ∑i
j=1 rj = n.

Proof. We show that if fn is of the above form then it satisfies the recursive relation
of Proposition 2.2. Since the solution of the recursive relation is unique, this proves
the theorem. Simplifying the notation we put ari,...,r1 = ∏i

j=1
1

ri+···+rj
. Note that if

r1 + · · · + ri = n + 1 then (n + 1)ari,...,r1 = ari,...,r2 . Moreover, an+1 = 1
n+1 . Now we

have

(n + 1)fn+1 =
n+1∑
i=2

 ∑∑i

j=1 rj=n+1

ari,...,r1(n + 1)λri
· · · λr1

+ λn+1

=
n+1∑
i=2

 n+2−i∑
r1=1

∑∑i

j=2 rj=n+1−r1

ari,...,r2λri
· · · λr2

λr1 + λn+1

=
n∑

r1=1

n−(r1−1)∑
i=2

 ∑∑i

j=2 rj=n−(r1−1)

ari,...,r2λri
· · · λr2

λr1 + λn+1
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=
n∑

r1=1
fn−(r1−1)λr1 + λn+1

=
n∑

k=0
fn−kλk+1. □

Example 2.2. We evaluate the coefficients ari,...,r1 for the case n = 4.
For n = 4 we can write
4 = 1 + 3 = 3 + 1 = 2 + 2 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

By the definition of ari,...,r1 we have

a4 = 1
4 ,

a1,3 = 1
1 + 3 · 1

3 = 1
12 ,

a3,1 = 1
3 + 1 · 1

1 = 1
4 ,

a2,2 = 1
2 + 2 · 1

2 = 1
8 ,

a1,1,2 = 1
1 + 1 + 2 · 1

1 + 2 · 1
2 = 1

24 ,

a1,2,1 = 1
1 + 2 + 1 · 1

2 + 1 · 1
1 = 1

12 ,

a2,1,1 = 1
2 + 1 + 1 · 1

1 + 1 · 1
1 = 1

8 ,

a1,1,1,1 = 1
1 + 1 + 1 + 1 · 1

1 + 1 + 1 · 1
1 + 1 · 1

1 = 1
24 .

We can therefore deduce that

f4 = 1
4λ4 + 1

12λ3λ1 + 1
4λ1λ3 + 1

8λ2λ2 + 1
24λ2λ1λ1 + 1

12λ1λ2λ1 + 1
8λ1λ1λ2 + 1

24λ1λ1λ1λ1.

Theorem 2.2. Let C be a coalgebra, F be the set of all higher coderivations
{fn}n=0,1,... on C with f0 = I and Λ be the set of all sequences {λn}n=0,1,... of coderiva-
tions on C with λ0 = 0. Then there is a one to one correspondence between F and
Λ.
Proof. Let {λn} ∈ Λ. Define fn : C → C by f0 = I and

fn =
n∑

i=1

 ∑∑i

j=1 rj=n

 i∏
j=1

1
ri + · · · + rj

λri
· · · λr1

.

We show that {fn} ∈ F . By Theorem 2.1, {fn} satisfies the recursive relation

(n + 1)fn+1 =
n∑

k=0
fn−kλk+1.
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To show that {fn} is a higher coderivation, we use induction on n. For n = 0 we have

∆f0(a) = ∆(a) =
∑

a(1) ⊗ a(2) =
∑

f0(a(1)) ⊗ f0(a(2)) =
∑

(f0(a))(1) ⊗ (f0(a))(2).

Let us assume that ∆fk(a) = ∑k
i=0(fi ⊗ fk−i)∆(a) for k ≤ n. Thus, we have

(n + 1)∆fn+1(a) =
n∑

k=0
∆fn−kλk+1(a)

=
n∑

k=0

n−k∑
i=0

(fi ⊗ fn−k−i)∆λk+1(a)

=
n∑

k=0

n−k∑
i=0

(fi ⊗ fn−k−i)(I ⊗ λk+1 + λk+1 ⊗ I)∆(a)

=
n∑

k=0

n−k∑
i=0

∑
(fi ⊗ fn−k−i)

(∑
a(1) ⊗ λk+1(a(2)) ⊗ λk+1(a(1)) ⊗ a(2)

)

=
n∑

k=0

n−k∑
i=0

∑
fi(a(1)) ⊗ fn−k−i(λk+1(a(2)))

+ fi(λk+1(a(1)) ⊗ fn−k−i(a(2)).

Using our assumption, we can write

(n + 1)∆fn+1(a) =
n∑

i=0

∑
fi(a(1)) ⊗ (n − i + 1)fn−i+1(a(2))

+
n∑

i=0

∑
(n − i + 1)

(
fn−i+1(a(1)) ⊗ fi(a(2))

)
=

n∑
i=0

∑
(n + 1 − i)fi(a(1)) ⊗ fn+1−i(a(2))

+
n+1∑
i=1

∑
i(fi(a(1)) ⊗ fn+1−i(a(2))

=(n + 1)
n+1∑
k=0

∑
fk(a(1)) ⊗ fn+1−k(a(2))

=(n + 1)
n+1∑
k=0

(fk ⊗ fn+1−k)∆(a).

Thus, {fn} ∈ F .
Conversely, suppose that {fn} ∈ F . Define λn : C → C by λ0 = 0 and

λn = nfn −
n−2∑
k=0

fn−1−kλk+1.
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Then Proposition 2.2 ensures us that {λn} ∈ Λ. Now define φ : Λ → F by φ({λn}) =
{fn}, where

fn =
n∑

i=1

 ∑∑i

j=1 rj=n

 i∏
j=1

1
ri + · · · + rj

λri
· · · λr1

.

Now φ is clearly a one to one correspondence. □

Recall that a higher coderivation {fn} is called ordinary if there is a coderivation
λ such that fn = λn

n! for all n.

Corollary 2.1. A higher coderivation {fn} = φ({λn}) on a coalgebra C is ordinary
if and only if λn = 0 for n ≥ 2. In this case fn = fn

1
n! .

3. Conclusion

In this paper proving an equality for a coderivation on a coalgebra C, named general
coLiebnitz rule for coderivations, we defined higher coderivations on a coalgebra C and
then we characterized them in terms of the coderivations on C. Indeed, we showed that
each higher coderivation is a combination of compositions of coderivations. Finally we
proved there is a one to one correspondence between the set of all higher coderivations
on C and all sequences of coderivations on C. As a corollary we characterize all higher
coderivations which are ordinary.

References
[1] G. Bohm, Hopf algebroids, in: M. Hazewinkel, Handbook of Algebra, Elsevier, 2009, 173–235.

https://doi.org/10.1016/S1570-7954(08)00205-2
[2] T. Brzezinski and R. Wisbauer, Corings and Comodules, Cambridge University Press, London,

2003. https://doi.org/10.1017/CBO9780511546495.005
[3] M. Hazewinkel and N. Gubareni, Algebras, Rings and Modules, CRC Press, Boca Raton, 2004.

https://doi.org/10.1201/b22015
[4] B. Jacobs, Introduction to Coalgebra, Cambridge University Press, London, 2016. https://doi.

org/10.1017/CBO9781316823187
[5] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. Algebra 38 (2010),

981–987. https://doi.org/10.1080/00927870902828751
[6] M. Mirzavaziri and E. Tafazoli, Coderivations and ∗-coderivations on matrix coalgebra, In-

ternational Journal of Open Problems in Computer Science and Mathematics 5(4) (2012).
https://doi.org/10.12816/0006150

[7] E. Tafazoli and M. Mirzavaziri, Inner higher derivations on algebras, Kragujevac J. Math. (2)
(2019), 267–273.

https://doi.org/10.1016/S1570-7954(08)00205-2
https://doi.org/10.1017/CBO9780511546495.005
https://doi.org/10.1201/b22015
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1080/00927870902828751
https://doi.org/10.12816/0006150


16 E. TAFAZOLI AND M. MIRZAVAZIRI

1Department of Mathematics,
Bojnourd Branch, Islamic Azad University,
Bojnourd, Iran
Email address: tafazoli.elham@gmail.com

2Department of Pure Mathematics,
Ferdowsi University of Mashhad,
P.O. Box 1159, Mashhad 91775, Iran.
Centre of Excellence in Analysis on Algebraic Structures (CEAAS),
Ferdowsi University of Mashhad, Iran.
Email address: mirzavaziri@um.ac.ir
Email address: mirzavaziri@gmail.com


	1. Introduction
	2. The Results
	3. Conclusion
	References

