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EXISTENCE RESULTS FOR KIRCHHOFF NONLOCAL
FRACTIONAL EQUATIONS

FANG-FANG LIAO1, SHAPOUR HEIDARKHANI2, AND AMJAD SALARI3

Abstract. Fractional and nonlocal operators of elliptic type arise in a quite natural
way in many different contexts. In this paper, we study the existence of solutions for
a class of fractional equations, while the nonlinear part of the problem admits some
perturbation property. We obtain some new criteria for existence of two and infinitely
many solutions, using critical point theory. Some recent results are extended and
improved. Several examples are presented to demonstrate the applications of our
main results.

1. Introduction

In this paper we investigate the existence of multiple nontrivial weak solutions for
Kirchhoff fractional problem

(Lλ
f )

{
−LKu = λf(u), in Ω,
u = 0, inRn\Ω,

where Ω is a bounded domain in (Rn, | · |) with n > 2s, s ∈ (0, 1) and | · | is the usual
Euclidean norm in Rn, with smooth (Lipschitz) boundary ∂Ω and Lebesgue measure
|Ω|, λ > 0, and f : R → R is a continuous function. Moreover, LK is the nonlocal
operator defined as follows:

LKu(x) =M
(∫

Q
|u(x) − u(y)|2K(x− y)dxdy

)
×
∫
Rn

(
u(x+ y) + u(x− y) − 2u(x)

)
K(y)dy,
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where M : R+ → R is a continuous function, Q := (Rn × Rn)\O with O := (CΩ) ×
(CΩ) ⊂ Rn × Rn and CΩ := Rn\{0}, K : Rn\{0} → (0,+∞) is a function with the
properties that:

(κ1) γK ∈ L1(Rn) where γ(x) = min{|x|2, 1};
(κ2) there exists θ > 0 such that K(x) ≥ θ|x|−(n+2s) for any x ∈ Rn\{0};
(κ3) K(x) = K(−x) for any x ∈ Rn\{0}.

A special case of LK is the fractional Laplace operator defined as

−(−∆)su(x) :=
∫
Rn

u(x+ y) + u(x− y) − 2u(x)
|y|n+2s

dy, x ∈ Rn,

which corresponds to the case M ≡ 1 and K(x) = |x|−(n+2s). One typical feature of
problem (Lλ

f ) is the nonlocality, in the sense that the value of (−∆)su at any point
x ∈ Ω depends not only on Ω, but actually on the entire space Rn. In the special
case, fractional Laplacian operator −(−∆)s (up to normalization constants) may be
defined as

−(−∆)su(x) := P.V.
∫
Rn

|u(x) − u(y)|
|x− y|n+2s

dy, x ∈ Rn,

where P.V. is a particular value. It may be seen as the infinitesimal small generators of
a Lévy motion stable diffusion operations [1]. This operator has been used in modelling
various applied phenomena, like phase transitions, materials science, conservation
laws, minimal surfaces, water waves, optimization, plasma physics, etc. On the
other hand, and more importantly, fractional and non-fractional operators find many
specific applications also in bio-mathematics and physics, which nowadays is a rather
fashionable field of research; we, for instance, refer to [15,20,21]. To see more features,
you can see [30, 34] and references therein. Recently, a lot of research work has
been done to the study of semiclassical standing waves for the non-linear fractional
Schrödinger equation of the form

(1.1) iε
∂ψ

∂t
= ε2s (−∆)s ψ + P (x)ψ − f(x, |ψ|), x ∈ Rn,

where ε is a small positive constant, which corresponds to the Planck constant, (−∆)s,
0 < s < 1, is the fractional Laplacian, P (x) is a potential function. Problem (1.1)
models naturally many physical problems, such as phase transition, conservation
laws, especially in fractional quantum mechanics, etc. (see [16]). It was introduced
by Laskin [19] as a fundamental equation of fractional quantum mechanics in the
study of particles on stochastic fields modelled by Lévy process. We refer to [12]
for more physical background. To obtain standing waves of the fractional non-linear
Schrödinger equation (1.1), we set ψ(x, t) = e

−iEt
ε u(x) for some function u ∈ Hs(Rn),

and let V (x) = P (x) − E. Then problem (1.1) is reduced to the following equation:
(1.2) ε2s (−∆)s u+ V (x)u = f(x, u), x ∈ Rn.

In quantum mechanics, when ε tends to 0, the existence and multiplicity of solutions
to (1.2) is of particular importance.
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In the nonlocal case, that is, when s ∈ (0, 1), the nonlocal model has attracted
much attentions recently. For the case of a bounded domain, Ricceri [33] established
a theorem tailor-made for a class of nonlocal problems involving nonlinearities with
bounded primitive. In [8], Molica Bisci and Repovš studied a class of nonlocal
fractional Laplacian equations depending on two real parameters. More precisely, by
using an appropriate analytical context on fractional Sobolev spaces due to Servadei
and Valdinoci, they established the existence of three weak solutions for nonlocal
fractional problems exploiting an abstract critical point result for smooth functionals.
They emphasized that the dependence of the underlying equation from one of the
real parameters is not necessarily of affine type. For more related results, we refer the
reader to [24–26] and the references therein.

The interest in studying problems like problem (Lλ
f ) relies not only on mathematical

purposes but also on their significance in real models. For example, in the Appendix
of paper [17], the authors constructed a stationary Kirchhoff variational problem,
which models, as a special significant case, the nonlocal aspect of the tension arising
from nonlocal measurements of the fractional length of the string.

Kirchhoff models take into consideration the length changes of the string produced
by transverse vibrations (see [18]). Fractional and nonlocal operators of elliptic type
which is modeled by the singularity at infinity is an emerging research field. From the
physical viewpoint, nonlocal operators play a considerable role in characterizing a set
of phenomena. A general reference for this issue is [39], where the author explained
two models of flow in porous media, including nonlocal diffusion effects, providing
a long list of references related to physical phenomena and nonlocal operators. The
first model is based on Darcy’s law, and the pressure is associated with the density by
an inverse fractional Laplacian operator. The second model mostly follows fractional
Laplacian flows but it is nonlinear. In contrast to the usual porous medium flows, it
has infinite speed of propagation. On the other hand, fractional nonlocal operators
arise in a quite natural way in many different contexts. See for instance the references
[5–7] and [2,4,8,13,25,28,38]. For example, Molica Bisci in [25] studied the existence
of infinitely many weak solutions to the problem (Lλ

f ) where f(x, u) replaced by f(u)
with x ∈ Ω in the case λ = 1 and M ≡ 1. We have shown in Remark 4.1 that our
results in Theorem 1.2 are different from [25, Theorem 1.1].

Recently, some researchers have studied the existence and multiplicity of solutions
for fractional equations of Kirchhoff type; we refer the reader to [3, 10, 11, 14, 23, 29,
40, 42] and the references therein. For example Chen and Deng in [10] based on
Ekeland’s variational principle investigated the existence of solutions to a Kirchhoff
type problem involving the fractional p-Laplacian operator. It established in [23] the
multiplicity of weak solutions for a Kirchhoff-type problem driven by a fractional
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p-Laplacian operator with homogeneous Dirichlet boundary conditions: M

(∫∫
R2N

|u(x) − u(y)|p
|x− y|N+ps

dxdy
)

(−∆)s
pu(x) = f(x, u), in Ω,

u = 0, inRn\Ω,

where Ω is an open bounded subset of RN with Lipshcitz boundary ∂Ω, (−∆)s
p is the

fractional p-Laplacian operator with 0 < s < 1 < p < N such that sp < N , M is
a continuous function and f is a Carathéodory function satisfying the Ambrosetti-
Rabinowitz condition. When f satisfies the suplinear growth condition, they obtained
the existence of a sequence of nontrivial solutions by using the symmetric mountain
pass theorem, and when f satisfies the sub-linear growth condition, they obtained
infinitely many pairs of nontrivial solutions by applying the Krasnoselskii genus theory.
By using an appropriate analytical context on fractional Sobolev spaces, Molica Bisci
and Tulone in [29] obtained the existence of one non-trivial weak solution for nonlocal
fractional problem (Lλ

f ) in the case M(x) = a+ bx where a, b are positive numbers.
Xiang et al. in [40] studied the problem{

M
(
x, [u]ps,p

)
(−∆)s

pu(x) = f(x, u, [u]ps,p), in Ω,
u = 0, inRn\Ω,

where [u]ps,p =
∫∫

R2N
|u(x)−u(y)|p
|x−y|N+ps dxdy, (−∆)s

p is a fractional p-Laplace operator, Ω is
an open bounded subset of RN with Lipschitz boundary, M : Ω × R+

0 → R+ is a
continuous function and f : Ω × R × R+

0 → R is a continuous function satisfying
the Ambrosetti-Rabinowitz condition. They obtained the existence of nonnegative
solutions by using the Mountain Pass Theorem and an iterative scheme.

The present paper focuses on this issue since it is clear that in problem (Lλ
f ) there

is a singularity in the term Lk(u), which causes difficulties in the proof. In this paper,
we are concerned with the existence results for the problem (Lλ

f ), and prove at least
two weak solutions and infinitely many weak solutions for the problem (Lλ

f ). Several
special cases of the main results and two illustrating examples are also presented. We
use the following assumptions throughout this paper:

(M) M : R+ → R+ is a continuous function that satisfies m0t
α−1 ≤ M(t) ≤ m1t

α−1

for all t ∈ R+, where m1 > m0 > 0 and 1 < α < 2n
n−2s

;
(F1) there exists a constant β > 2m1α

m0
with 0 < βF (t) ≤ ξf(t) for all t ∈ R\{0};

(F2) lim|t|→+∞
f(t)

|t|α−1 = 0, i.e., f is (α− 1)-sublinear at infinity.
The main results of this paper are presented as follows.

Theorem 1.1. Assume that the assumptions (M), (F1) and (F2) hold. Then, if
f(t) ≥ 0 for all t ∈ R, the problem (Lλ

f ) has at least two weak solutions.

Theorem 1.2. Assume that the assumptions (M), (F1) and (F2) hold. Then, if f(t)
is odd, the problem (Lλ

f ) has infinitely many weak solutions.
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2. Preliminaries

In this part, we discuss some preliminary results which can be found in [34]. The
functional space E denotes the linear space of Lebesgue measurable functions from
Rn to R such that the restriction to Ω of any function u in E belongs to L2(Ω) and(

(x, y) 7→ (u(x) − u(y))
√
K(x− y)

)
∈ L2

(
(Rn × Rn)\(CΩ × CΩ), dxdy

)
.

We denote by E0 the following linear subspace of E

E0 := {u ∈ E : u = 0 a.e. in Rn\Ω}.

We remark that E and E0 are nonempty, since C2
0(Ω) ⊆ E0 by [34, Lemma 11].

Moreover, the space E is endowed with the norm defined as

∥u∥E := ∥u∥L2(Ω) +
(∫

Q
|u(x) − u(y)|2K(x− y)dxdy

)1/2
.

It is easily seen that ∥ · ∥E is a norm on E (see [35]). By [35, Lemmas 6 and 7] in the
sequel we can take the function

(2.1) E0 ∋ u 7→ ∥u∥E0 :=
(∫

Q
|u(x) − u(y)|2K(x− y)dxdy

)1/2

as norm on E0. Also (E0, ∥ · ∥E0) is a Hilbert space with scalar product

⟨u, v⟩X0 :=
∫

Q
(u(x) − u(y))(v(x) − v(y))K(x− y)dxdy.

See [35, Lemma 7]. Note that in (2.1) (and in the related scalar product) the integral
can be extended to all Rn × Rn, since v ∈ E0 (and so v = 0 a.e. in Rn\Ω). While
for a general kernel K satisfying conditions from (κ1)-(κ3) we have that E0 ⊂ Hs(Rn),
in the model case K(x) := |x|−(n+2s) the space E0 consists of all the functions of the
usual fractional Sobolev space Hs(Rn) which vanish a.e. outside Ω (see [37, Lemma
7]). Here Hs(Rn) denotes the usual fractional Sobolev space endowed with the norm
(the so-called Gagliardo norm)

∥u∥E := ∥u∥Hs(Rn) = ∥u∥L2(Rn) +
(∫

Rn×Rn

|u(x) − u(y)|2
|x− y|n+2s

dxdy
)1/2

.

Remark 2.1. By [34, Lemma 8], the embedding j : E0 ↪→ Lν(Rn) is continuous for
any ν ∈ [1, 2∗], while it is compact whenever ν ∈ [1, 2∗), where 2∗ := 2n

n−2s
denotes

the fractional critical Sobolev exponent. For further details on the fractional Sobolev
spaces we refer to [12] and to the references therein, while for other details on E and
E0 we refer to [12], where these functional spaces were introduced, and also to [35–37],
where various properties of these spaces were proved.
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Definition 2.1 ([24]). We say that u ∈ E0 is a weak solution of (Lλ
f ) if for all v ∈ E0

M
(∫

Q
|u(x) − u(y)|2K(x− y)dxdy

) ∫
Q

(u(x) − u(y))(v(x) − v(y))K(x− y)dxdy

− λ
∫

Ω
f(u(x))v(x)dx = 0.

We refer the reader to [22,32] for the following notations and results.

Theorem 2.1 ([22, Theorem 4.4]). Let X be a Banach space, ϕ : X → R a function
bounded from below and differentiable on X. If ϕ satisfies the (PS)c-condition with
c = infX ϕ, then ϕ has a minimum on X.

It is clear that the (PS)-condition implies the (PS)c-condition for each c ∈ R.

Theorem 2.2 ([22, Theorem 4.10]). Let φ ∈ C1(X,R), and φ satisfy the Palais-Smale
condition. Assume that there exist u0, u1 ∈ X and a bounded neighborhood Ω of u0
satisfying u1 /∈ Ω and infv∈∂Ω φ(v) > max{φ(u0), φ(u1)}, then there exists a critical
point u of φ, i.e., φ′(u) = 0, with φ(u) > max{φ(u0), φ(u1)}.

Theorem 2.3 ([32, Theorem 9.12]). Let X be an infinite dimensional real Banach
space. Let φ ∈ C1(X,R) be an even functional which satisfies the (PS)-condition and
φ(0) = 0. Suppose that X = V

⊕E, where V is infinite dimensional, and φ satisfies
that

(i) there exist α > 0 and ρ > 0 such that φ(u) ≥ α for all u ∈ E with ∥u∥ = ρ;
(ii) for any finite dimensional subspace W ⊂ X, there is R = R(W ) such that

φ(u) ≥ 0 on W \BR(W ).

Then φ possesses an unbounded sequence of critical values.

We refer the reader to the paper [9, 41] in which Theorems 2.2 and 2.3 were suc-
cessfully employed to ensure the multiple solutions of degenerate nonlocal problems
and nonlinear impulsive differential equations with Dirichlet boundary conditions,
respectively.

Corresponding to the functions f and M we introduce the functions F : R → R
and M̂ : [0,+∞) → R, respectively, as F (t) :=

∫ t
0 f(ξ)dξ for all t ∈ R and M̂(t) :=∫ t

0 M(ξ)dξ for all t ∈ [0,+∞), and consider the functionals Φ,Ψ : E0 → R defined by

(2.2) Φ(u) = 1
2M̂

(
∥u∥2

E0

)
and Ψ(u) =

∫
Ω
F (u(x))dx,

for all u ∈ E0. Thus, by the assumption (M) we have

m0

2α ∥u∥2α
E0 ≤ Φ(u) ≤ m1

2α ∥u∥2α
E0 ,
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which means that the functional Φ : E0 → R is coercive. On the other hand, Φ and
Ψ are continuously Gâteaux differentiable. More precisely, we have

Φ′(u)(v) =M
(∫

Q
|u(x) − u(y)|2K(x− y)dxdy

)
×
∫

Q
(u(x) − u(y))(v(x) − v(y))K(x− y)dxdy

and
Ψ′(u)(v) =

∫
Ω
f(u(x))v(x)dx,

for every u, v ∈ E0. Fix λ > 0. A critical point of the functional Jλ := Φ − λΨ is
a function u ∈ E0 such that Φ′(u)(v) − λΨ′(u)(v) = 0 for every v ∈ E0. Hence, the
critical points of the functional Jλ are weak solutions of problem (Lλ

f ).

3. Proofs of Main Results

We prove Theorems 1.1 and 1.2 in this section. For this we need the following
remark and lemma.

Remark 3.1. If the assumption (F1) holds and m = min|t|=1 F (t), then by the same
argument as in [9, Remark 3.1], there exists a constant C2 such that F (t) ≥ m|t|β −C2
for all t ∈ R.

Lemma 3.1. Assume that (F1) holds and λ > 0. Then Jλ(u) satisfies the (PS)-
condition.

Proof. Let {un}n∈N ⊂ X0 such that {Jλ(un)}n∈N is bounded and J ′
λ(un) → 0 as n →

+∞. Then, there exists a positive constant c0 such that |Jλ(un)| ≤ c0, |J ′
λ(un)| ≤ c0 for

all n ∈ N. Therefore, we infer to deduce from the definition of J ′
λ and the assumption

(F1) that

c0 + c1∥un∥E0 ≥βJλ(un) − J ′
λ(un)(un)

≥
(

2β
α
m0 −m1

)
∥un∥α

E0 − λ
∫

Ω
(βF (un(t)) − f(un(t))(un(t))) dt

≥
(

2β
α
m0 −m1

)
∥un∥α

E0 ,

for some c1 > 0. Since β > 2m1α
m0

, this implies that (un) is bounded. Now, as the same
argument in [10, Lemma 2.2 (i)], we can prove that {un} converges strongly to u in
E0. Consequently, Jλ satisfies (PS)-condition. □

3.1. Proof of Theorem 1.1.

Proof. In our case it is clear that Jλ(0) = 0. Lemma 3.1 has shown that Jλ satisfies
the (PS)-condition.
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Step 1. Since 1 ≤ α < 2n
n−2s

, by Remark 2.1 the embedding E0 ↪→ Lα(Rn) is compact
and there exists C1 > 0 such that for all u ∈ E0, C1∥u∥Lα(Rn) ≤ ∥u∥E0 or

C2α
1

∫
Ω

|u(x)|αdx ≤
(∫

Q
|u(x) − u(y)|2K(x− y)dxdy

)α

,

which implies that

λα := inf
u∈E0\{0}

∫
Q |u(x) − u(y)|2K(x− y)dxdy∫

Ω |u(x)|2αdx > 0.

By the assumptions (M) and (F2), and since f(t) ≥ 0 for all t ∈ R, we can take ε < 2α
sufficiently small such that for sufficiently great σ > 0, |f(t)| ≤ εm0

α
|t|2α−1 for all |t| ≥

σ and |F (t)| ≤ εm0
2α2 |t|2α + (max|t|≤σ f(t))|t|. Thus, for every u ∈ E0

Ψ(u) ≤ εm0

2α2

∫
Ω

|u(x)|αdx+ max
|t|≤σ

f(t)
∫

Ω
|u(x)|dx.(3.1)

By Hölder inequality, we have∫
Ω

|u(x)|dx ≤
√

|Ω|
(∫

Ω
|u(x)|2dx

) 1
2
.

Then, by (3.1)

Ψ(u) ≤ εm0

2α2 ∥u∥2α
Lα(Ω) +

√
|Ω| max

|t|≤σ
f(t)

(∫
Ω

|u(x)|2dx
) 1

2

≤ εm0

2α2 ∥u∥2α
Lα(Ω) +

√
|Ω| max

|t|≤σ
f(t)λ− 1

2
1 ∥u∥E0

≤ εm0

2α2 ∥u∥2α
E0 +

√
|Ω| max

|t|≤σ
f(t)λ− 1

2
1 ∥u∥E0 .

Then, for any u ∈ X by (2.2)

(3.2) Jλ(u) ≥ m0

2α

(
1 − ε

α

)
∥u∥2α

E0 − C2 max
|t|≤σ

f(t) ∥u∥E0 ,

where C2 =
√

|Ω|
λ1

. Now, by means of α > ε
2 , p > 1 and (3.2), it follows that Jλ is a

coercive functional and is bounded from below. Since Jλ satisfies (PS)-condition by
Lemma 3.1, Theorem 2.1 follows that there exists a minimum point u0 of Jλ on E0
and 0 = Jλ(0) ≥ Jλ(u0) and J ′

λ(u0) = 0.
Step 2. Since u0 is a minimum point of Jλ on E0 we can consider L > 0 sufficiently

large such that Jλ(u0) ≤ 0 < infu∈∂BL
Jλ(u) where BL = {u ∈ E0 : ∥u∥E0 < L}. Now

we will show that there exists u1 with ∥u1∥E0 > L such that Jλ(u1) < inf∂BL
Jλ(u).

For this, let ℓ1(t) ∈ E0 and u1 = rℓ1, r > 0 where ℓ1 corresponding to λ1 is the first
eigenfunction of (Lλ

f ) and ∥ℓ1∥E0 = 1. By Remark 3.1, there exist constants a1, a2 > 0
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such that F (t) ≥ a1|t|β − a2 for all t ∈ R. Thus,

Jλ(u1) = (Φ − λΨ)(rℓ1) ≤ m1

2α ∥rℓ1∥2α
E0 − λ

∫
Ω
F (rℓ1(x))dx

≤ m1r
2α

2α − λrβa1

∫
Ω

|ℓ1(x)|βdx+ λa2|Ω|.

So by β ≥ 2m1α
m0

, there exists sufficiently large r > L > 0 such that Jλ(rℓ1) < 0.
Therefore, max{Jλ(u0), Jλ(u1)} < infu∈∂BL

Jλ(u). Then, Theorem 2.2 by X := E0 and
φ := Jλ gives the critical point u∗. Therefore, u0 and u∗ are two critical points of Jλ,
which are two solutions of (Lλ

f ). □

3.2. Proof of Theorem 1.2.

Proof. Put X := E0. It is clear that, Jλ is continuously Gâteaux differentiable. In
view of (2.2) it is obvious that Jλ(u) is even and Jλ(0) = 0.

Step 1. We will show that Jλ satisfies condition (i) in Theorem 2.3. The inequality
(3.2) shows the coercivity of Jλ and together with (PS)-condition, by minimization
theorem [22, Theorem 4.4] the functional Jλ has a minimum critical point u with
Jλ(u) ≥ α > 0 and ∥u∥E0 = ρ for ρ > 0 small enough.

Step 2. We will show that Jλ satisfies condition (ii) in Theorem 2.3. Let W ⊂ E0
be a finite dimensional subspace. By Remark 3.1, there exist constants a1, a2 > 0
such that F (t) ≥ a1|t|β − a2 for all t ∈ R. Now, For every r > 0 and u ∈ W \ {0}
with ∥u∥E0 = 1, one has

Jλ(ru) = (Φ − λΨ)(ru) ≤ m1

2α ∥ru∥2α
E0 − λ

∫
Ω
F (ru(x))dx

≤ m1r
2α

2α ∥u∥2α
E0 − λrβa1

∫
Ω

|u(x)|βdx+ λa2|Ω| → −∞, r → +∞.

The above inequality implies that there exists r0 such that ∥ru∥E0 > ρ and Jλ(ru) < 0
for every r ≥ r0 > 0. Since W is a finite dimensional subspace, there exists R =
R(W ) > 0 such that Jλ(u) ≤ 0 on W \ BR(W ). According to Theorem 2.3, the
functional Jλ(u) possesses infinitely many critical points, i.e., the problem (Lλ

f ) has
infinitely many weak solutions. □

4. Examples and Remarks

In this section we present two examples and some remarks of our main results.

Example 4.1. Let n = 2, s = 1
2 , Ω = {(x1, x2) ∈ R2 : x2

1 +x2
2 ≤ 4} ⊂ R2, M(t) = tK(t)

for all t ∈ R+ where K(t) is 2-periodic extension of the function k(t) = 2 − |t − 1|,
0 ≤ t ≤ 2, f(t) = 1 + t8 for all t ∈ R. We observe that 2n

n−2s
= 4, thus M satisfies

the condition (M) by m0 = 1, m1 = 2 and α = 2. Also, M and f are two continuous
functions, f(t) ≥ 0 for all t ∈ R, limξ→0+

f(ξ)
ξα−1 = limξ→0+

1+ξ8

ξ
= +∞, thus the

assumption (F2) is satisfied. Moreover, taking into account that lim|ξ|→+∞
ξf(ξ)
F (ξ) =
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lim|ξ|→+∞
ξ+ξ9

ξ+ 1
9 ξ9 = 9 > 8 = 2m1α

m0
, by choosing β = 9 > 8 = 2m1α

m0
, there exists ϱ > 1

such that the assumption (F1) is fulfilled for all |ξ| > ϱ. Hence, by applying Theorem
1.1, for every λ > 0, the problem

−M
(∫

(R2×R2)\(Ω×Ω)

|u(x) − u(y)|2
|x− y|3

dxdy
)

×
∫
R2

u(x+ y) + u(x− y) − 2u(x)
|y|3

dy = λ(1 + u8), in Ω,

u = 0, on ∂Ω,
possesses at least two nontrivial weak solutions in the space

H1/2
0 :=

{
u ∈ H1/2(R2) : u = 0 a.e. in R2\Ω

}
.

Example 4.2. Let n = 2, s = 1
2 , Ω = {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 4} ⊂ R2, M(t) =

(3
2 + 1

2 sin t)t for all t ∈ R+, f(t) = 1 + t9 for all t ∈ R. We observe that 2n
n−2s

= 4,
thus M satisfies the condition (M) by m0 = 1, m1 = 2 and α = 2. Also, M and f

are two continuous functions, f is odd and limξ→0+
f(ξ)
ξα−1 = limξ→0+

1+ξ9

ξ
= +∞, thus

the assumption (F2) is satisfied. Moreover, taking into account that lim|ξ|→+∞
ξf(ξ)
F (ξ) =

lim|ξ|→+∞
ξ+ξ10

1
2 ξ+ 1

10 ξ10 = 10 > 8 = 2m1α
m0

, by choosing β = 10 > 8 = 2m1α
m0

, the assumption
(F1) is fulfilled. Hence, by choosing σ = 1

2 and applying Theorem 1.2, for every λ > 0,
the problem

−M
(∫

(R2×R2)\(Ω×Ω)

|u(x) − u(y)|2
|x− y|3

dxdy
)

×
∫
R2

u(x+ y) + u(x− y) − 2u(x)
|y|3

dy = λ(1 + u9), in Ω,

u = 0, on ∂Ω,

has infinitely many weak solutions in the space H1/2
0 .

Remark 4.1. Example 4.2 shows that our existence results to establish infinitely many
solutions for the problem (Lλ

f ) in Theorem 1.2 is different from the existence results
of Molica Bicsi in [25, Theorem 1.1]. Because, firstly in Example 4.2 we have M ̸= 1,
while in [25, Theorem 1.1], M ≡ 1, and the second the function f in [25, Theorem
1.1] should satisfy in

(4.1) |f(t)| ≤ a1 + a2|t|q−1, a1, a2 > 0, q ∈
(

2, 2n
n− 2s

)
, t ∈ R,

while in Example 4.2, 2n
n−2s

= 4 and f(t) = 1 + t9, and so f does not apply to (4.1).

Remark 4.2. By [28, Subsection 1.1], if f(0) ̸= 0, then Theorem 1.1 ensures the
existence of two nontrivial weak solutions for the problem (Lλ

f ). If the condition
f(0) ̸= 0 does not hold, the second solution u2 of the problem (Lλ

f ) may be trivial, but
the problem has at least a nontrivial solution. Moreover, by the same argument as
[28, Corollary 3] we can prove that, under the condition that f(0) = 0, the solutions
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given by Theorem 1.1 has constant sign, i.e., Theorem 1.1 provides non-negative
(non-positive) solutions.

Remark 4.3. By the similar arguments as given in the proof of [28, Subsection 4.1] the
non-triviality of the second weak solution ensured by Theorem 1.1 can be achieved
also in the case f(0) = 0 requiring the extra condition at zero in the form of

(4.2) lim sup
ξ→0+

f(ξ)
|ξ|

= ∞ and lim inf
ξ→0+

f(ξ)
|ξ|

> −∞.

Indeed, let λ > 0 and let Φ and Ψ be as given in Section 3. Due to Theorem 2.1 and
Lemma 3.1, Jλ = Φ − λΨ has a critical point uλ that is a global minimum of Jλ. We
will prove that the function uλ cannot be trivial. Let us show that

(4.3) lim sup
∥u∥→0+

Ψ(u)
Φ(u) = +∞.

Owing to the assumptions (4.2), we can consider a sequence {ξn} ⊂ R+ converging
to zero and two constants σ, κ (with 0 < σ < 1) such that limn→+∞

f(ξn)
|ξn| = +∞ and

F (ξ) ≥ κ|ξ|2 for every ξ ∈ [0, σ]. We consider a set G ⊂ B of positive measure and a
function v ∈ X such that v(t) ∈ [0, 1] for every t ∈ Ω, v(t) = 1 for every t ∈ G and
v(t) = 0 for every x ∈ Ω \D. Hence, fix N > 0 and consider a real positive number η
with

N <
2αη|G| + 2ακ

∫
D\G |v(t)|2dt

m1∥v∥2α
E0

.

Then, there is n0 ∈ N such that ξn < σ and F (ξn) ≥ η|ξn|2 for every n > n0. Now, for
every n > n0, by considering the properties of the function v (that is 0 ≤ ξnv(t) < σ
for n large enough), one has

Ψ(ξnv)
Φ(ξnv) ≥

F (ξn)|G| +
∫

D\G F (ξnv(t))dt
Φ(ξnv) >

2αη|G| + 2ακ
∫

D\G |v(t)|2dt
m1∥v∥2α

E0

> N.

Since N could be arbitrarily large, we get limn→∞
Ψ(ξnv)
Φ(ξnv) = +∞, from which (4.3)

clearly follows. So, there exists a sequence {ζn} ⊂ X strongly converging to zero such
that, for n large enough, Jλ(ζn) = Φ(ζn) − λΨ(ζn) < 0. Since uλ is a global minimum
of Jλ, we obtain Jλ(uλ) < 0, so that uλ is not trivial.

Remark 4.4. We observe that if f is non-negative, Theorem 1.1 is a bifurcation result
in the sense that the pair (0, 0) ∈ Eλ

f ⊂ E0 × R with

Eλ
f :=

{
(uλ, λ) ∈ E0 × (0,∞) : uλ is a non-trivial weak solution of (Lλ

f )
}
.

Practically, by the proof of Theorem 1.1, ∥uλ∥E0 → 0 as λ → 0. Hence, there exist
two sequences {uj} in E0 and {λj} in R+ (here uj = uλj

) such that λj → 0+ and
∥uj∥ → 0, as j → ∞. Moreover, since f is nonnegative, Ψ(u) < 0 for all u ∈ R
and thus the mapping (0, λ∗) ∋ λ 7→ Iλ(uλ) is strictly decreasing. Hence, for every
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λ1, λ2 ∈ (0, λ∗), with λ1 ̸= λ2, the weak solutions uλ1 and uλ2 ensured by Theorem 1.1
are different.

Remark 4.5. If f(u) is an odd function we can give the same result as Theorem 1.2
by setting the following assumptions on nonlinear term:

(F3) there exist constants R > 0 and 0 < λL1 <
1
2 min{1,m0} such that F (u) ≤

L1|u|2 for all u ∈ R with |u| ≤ R;
(F4) there exist constants R1 > 0, δ1 > 0 and α1 > β such that F (u) ≥ δ1|u|α1 , for

all u ∈ R with |u| ≥ R;
(F5) there exist constants β > m1α

m0
, δ1 ≥ 0 and 0 < α2 < 2 such that νF (ξ)−ξf(ξ) ≤

δ2|u|α2 .
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