Kragujevac Journal of Mathematics Volume 49(1) (2025), Pages 43–60.

NOTE ON THE MULTIFRACTAL FORMALISM OF COVERING NUMBER ON THE GALTON-WATSON TREE

NAJMEDINE ATTIA 1,2 AND MERIEM BEN HADJ KHALIFA 3

ABSTRACT. We consider, for t in the boundary of Galton-Watson tree (∂T) , the covering number $N_n(t)$ by cylinder of generation n. For a suitable set I and a sequence $(s_{n,\gamma})$, we establish almost surely, and uniformly on γ , the Hausdorff and packing dimensions of the set $\{t \in \partial T : N_n(t) - nb \sim s_{n,\gamma}\}$ for $b \in I$.

1. Introduction and main results

Let (N, X) be a random vector with independent components taking values in \mathbb{N}^2 , where \mathbb{N} denotes the set of non-negative integers. Then let $\{(N_u, X_u)\}_{u \in \bigcup_{n \geq 0} \mathbb{N}_+^n}$ be a family of independent copies of the vector (N, X) indexed by the set of finite words over the alphabet \mathbb{N}_+ : the set of positive integers $(n = 0 \text{ corresponds to the empty sequence denoted }\emptyset)$. Let \mathbb{T} be the Galton-Watson tree with defining elements $\{N_u\}$: we have $\emptyset \in \mathbb{T}$, if $u \in \mathbb{T}$ and $i \in \mathbb{N}_+$ then ui, the concatenation of u and i, belongs to \mathbb{T} if and only if $1 \leq i \leq N_u$ and if $ui \in \mathbb{T}$, then $u \in \mathbb{T}$. Similarly, for each $u \in \bigcup_{n \geq 0} \mathbb{N}_+^n$, denote by $\mathbb{T}(u)$ the Galton-Watson tree rooted at u and defined by the $\{N_{uv}\}$, $v \in \bigcup_{n \geq 0} \mathbb{N}_+^n$.

We assume that $\mathbb{E}(N) > 1$ so that the Galton-Watson tree is supercritical. We also assume that the probability of extinction is equal to 0, so that $\mathbb{P}(N \ge 1) = 1$.

For each infinite word $t = t_1 t_2 \cdots \in \mathbb{N}_+^{\mathbb{N}_+}$ and $n \geq 0$, we set $t_{|n} = t_1 \cdots t_n \in \mathbb{N}_+^n$ $(t_{|0} = \emptyset)$. If $u \in \mathbb{N}_+^n$ for some $n \geq 0$, then n is the length of u and it is denoted by |u|. We denote by [u] the set of infinite words $t \in \mathbb{N}_+^{\mathbb{N}_+}$ such that $t_{||u|} = u$.

 $[\]it Key\ words\ and\ phrases.$ Random covering, Hausdorff dimension, indexed martingale, Galton-Watson tree.

²⁰²⁰ Mathematics Subject Classification. Primary: 60G50. Secondary: 28A78.

DOI 10.46793/KgJMat2501.043A

Received: April 05, 2021.

Accepted: October 28, 2021.

The set $\mathbb{N}_{+}^{\mathbb{N}_{+}}$ is endowed with the standard ultrametric distance

$$d: (u, v) \mapsto e^{-\sup\{|w|: u \in [w], v \in [w]\}}$$

with the convention $\exp(-\infty) = 0$. The boundary of the Galton-Watson tree T is defined as the compact set

$$\partial \mathsf{T} = \bigcap_{n>1} \bigcup_{u \in \mathsf{T}_n} [u],$$

where $\mathsf{T}_n = \mathsf{T} \cap \mathbb{N}^n_+$.

We consider X_u as the covering number of the cylinder [u], that is to say, the cylinder [u] is cut off with probability $p_0 = \mathbb{P}(X = 0)$ and is covered m times with probability $p_m = \mathbb{P}(X = m), m = 1, 2, ...$

For $t \in \partial \mathsf{T}$, set

$$\mathsf{N}_n(t) = \sum_{k=1}^n X_{t_1 \cdots t_k}.$$

Since this quantity depends on $t_1 \cdots t_n$ only, we also denote by $N_n(u)$ the constant value of $N_n(\cdot)$ over [u] whenever $u \in T_n$. The quantity $N_n(t)$ is called the covered number (or more precisely the *n*-covered number) of the point t by cylinder of generation k, $k = 1, 2, \ldots, n$.

Consider an individual infinite branch $t_1 \cdots t_n \cdots$ in ∂T . When $\mathbb{E}(X)$ is defined, the strong law of large number yields $\lim_{n\to\infty} n^{-1} \mathsf{N}_n(t) = \mathbb{E}(X)$. It is also well known, in the theory of the birth process, (see [15]) that almost surely (a.s.) $\lim_{n\to\infty} \mathsf{N}_n(t) = +\infty$ for every $t \in \mathcal{D} = \{0,1\}^{\mathbb{N}}$ if and only if

$$p_0 = \mathbb{P}(X=0) < \frac{1}{2}.$$

If this condition is satisfied, then a.s. every point is infinitely covered.

We consider, for $b \in \mathbb{R}$, the set

$$E_b = \Big\{ t \in \partial \mathsf{T} : \lim_{n \to \infty} \frac{\mathsf{N}_n(t)}{n} = b \Big\}.$$

These level sets can be described geometrically through their Hausdorff dimensions. They have been studied by many authors, see [3,8,11,14,16,21] and [4,7] for a general case. All these papers also deal with the multifractal analysis of associated Mandelbrot measures (see also [1,2,19] for the study of Mandelbrot measures dimension).

We will assume that the free energy of X defined as

$$\tau(q) = \log \mathbb{E}\left(\sum_{i=1}^{N} e^{qX_i}\right)$$

is finite over \mathbb{R} . We will assume, without loss of generality, that X is not constant so that the function τ is strictly convex. Let τ^* stand for the Legendre transform of the function τ , defined as

$$\tau^*(b) := \inf_{q \in \mathbb{R}} \Big(\tau(q) - qb \Big), \quad b \in \mathbb{R}.$$

We say that the multifractal formalism holds at $b \in \mathbb{R}$ if

$$\dim E_b = \operatorname{Dim} E_b = \tau^*(b),$$

where dim E_b is the Hausdorff dimension of E_b and Dim E_b is the packing dimension of E_b (see Section A for the definition). In the following, we define the sets

$$J = \left\{ q \in \mathbb{R}; \tau(q) - q\tau'(q) > 0 \right\},$$

$$\Omega_{\alpha}^{1} = \operatorname{int} \left\{ q : \mathbb{E} \left[\left| \sum_{i=1}^{N} e^{qX_{i}} \right|^{\alpha} \right] < \infty \right\},$$

$$\Omega^{1} = \bigcup_{\alpha \in (1,2]} \Omega_{\alpha}^{1},$$

$$\mathcal{J} = J \cap \Omega^{1} \quad \text{and} \quad I = \left\{ \tau'(q); q \in \mathcal{J} \right\}.$$

Remark 1.1. It is well known, see [6, Proposition 3.1], that $L = \{\alpha \in \mathbb{R}, \ \tau^*(\alpha) \geq 0\}$, is a convex, compact and non-empty set. In addition, if we assume that $J = \mathcal{J}$ then $I = \operatorname{int}(L)$, where $\operatorname{int}(L)$ is the interior of L (see also [6, Proposition 3.1.]) In particular, I is an interval.

Next, we define for $b, \gamma \in \mathbb{R}$ and for any positive sequence $s^{\gamma} = \{s_{n,\gamma}\}_n$ such that $s_{n,\gamma} = o(n)$ and $\gamma \mapsto s_{n,\gamma}$ is analytic function, the set

$$E_{b,s^{\gamma}} = \Big\{ t \in \partial \mathsf{T} : \mathsf{N}_n(t) - nb \sim s_{n,\gamma} \text{ as } n \to +\infty \Big\},$$

where $N_n(t) - nb \sim s_{n,\gamma}$ means that $(N_n(t) - nb)_n$ and $(s_{n,\gamma})_n$ are two equivalent sequences. It is clear that $E_{b,s^{\gamma}} \subset E_b$. So, we can get with a simple covering argument, with probability 1, for all $b \in \mathbb{R}$ and $\gamma \in \mathbb{R}$,

(1.1)
$$\dim E_{b,s^{\gamma}} \le \dim E_b \le \dim E_b \le \tau^*(b),$$

(see Proposition 1 in [5] and Proposition 2.7 in [4]). Let us mention that the methods used to compute Hausdorff dimension of the sets E_b in, for example, [4,7,17,18]) do not give results on dim $E_{b,s^{\gamma}}$. These sets were considered by Kahane and Fan in [15]. The authors considered the space $\{0,1\}^{\mathbb{N}}$ and they compute, for each b, almost surely (a.s.), the Hausdorff dimension of $E_{b,s^{\gamma}}$ under the hypothesis:

$$s_{n,\gamma} = o(n), \quad \eta_n(\gamma) = s_{n,\gamma} - s_{n-1,\gamma} = o(1) \quad \text{and} \quad \sqrt{n \ln \ln n} = o(s_{n,\gamma}).$$

A special case of a sequence satisfying the above hypothesis is $s_{n,\gamma} = n^{\gamma}$ with $\gamma \in (1/2, 1)$. Later, Attia in [5], gives a stronger result in the sense that, a.s. for all $b \in I$, he computed the Hausdorff dimensions of the sets $E_{b,s^{\gamma}}$ under the hypothesis

(1.2)
$$s_{n,\gamma} = o(n), \quad \eta_n(\gamma) = s_{n,\gamma} - s_{n-1,\gamma} = o(1)$$

and there exists $\epsilon_n \to 0$ such that

(1.3)
$$\sum_{n\geq 1} \exp\left(-\epsilon \sum_{k=1}^{n} \epsilon_k \, \eta_k(\gamma)^2\right) < +\infty, \quad \text{for all } \epsilon > 0.$$

In particular, we can choose

$$s_{n,\gamma} = \sum_{k=1}^{n} \frac{1}{k^{\gamma}}$$
 with $\gamma \in (0, 1/2)$.

Theorem 1.1 ([5]). Let s^{γ} be a positive sequence satisfying (1.2) and (1.3). Then, a.s. for all $b \in I$

$$\dim E_{b,s^{\gamma}} = \dim E_b = \tau^*(b).$$

This requires, for a given sequence s^{γ} , a simultaneous building of an inhomogeneous Mandelbrot measure and a computing of their dimensions. In particular, for

$$s_{n,\gamma} = \sum_{k=1}^{n} \frac{1}{k^{\gamma}},$$

we have for all $\gamma \in (0, 1/2)$, a.s. dim $E_{b,s^{\gamma}} = \tau^*(b)$. To state our main result, let $s^{\gamma} = (s_{n,\gamma})_n$ be a positive sequence and we define the set Λ_s to be any set of \mathbb{R} such that

(1.4)
$$\Lambda_s \subseteq \left\{ \gamma \in \mathbb{R}, \text{ such that } (s_{n,\gamma}) \text{ satisfies } (1.2) \text{ and } (1.3) \right\}$$

and, for $k \geq 1$

(1.5)
$$\widetilde{\eta}_k = \inf_{\gamma \in \Lambda_s} \eta_k(\gamma) > 0.$$

We suppose the following hypothesis.

Hypothesis 1.2. There exists a sequence $\epsilon_n \to 0$ such that

$$\sum_{n\geq 1} \exp\left(-\epsilon \sum_{k=1}^n \epsilon_k \widetilde{\eta}_k^2\right) < +\infty, \quad \text{for all } \epsilon > 0.$$

Clearly this hypothesis is satisfied, for $s_{n,\gamma} = \sum_{k=1}^{n} \frac{1}{k^{\gamma}}$, with $\Lambda_s = [\epsilon, 1/2)$, $\epsilon > 0$. Applying the previous theorem we get the conclusion for each $\gamma \in \Lambda_s$ a.s. The goal of this note is to give a uniform result on γ . In addition, we determine the packing dimensions of the sets $E_{b,s^{\gamma}}$. More precisely we have the following result.

Theorem 1.3. Let $s^{\gamma} = (s_{n,\gamma})_{n\geq 1}$ be a positive sequence and consider a set Λ_s satisfying (1.4) and (1.5). Under Hypothesis 1.2, we have, a.s., for all $b \in I$ and for all $\gamma \in \Lambda_s$

$$\dim E_{b,s^{\gamma}} = \dim E_b = \operatorname{Dim} E_b = \operatorname{Dim} E_{b,s^{\gamma}} = \tau^*(b).$$

2. Construction of Inhomogeneous Mandelbrot Measures

We define, for $(q, p) \in \mathcal{J} \times [1, \infty)$, the function

$$\varphi(p,q) = \exp(\tau(pq) - p\tau(q)).$$

From [5], for all nontrivial compact sets $K \subset \mathcal{J}$ there exist $1 < p_K < 2$ and $\tilde{p}_K > 1$ such that we have

(2.1)
$$\sup_{q \in K} \varphi(p_K, q) < 1, \quad \text{for all } 1 < p \le p_K,$$

and

(2.2)
$$\sup_{q \in K} \mathbb{E}\left(\left(\sum_{i=1}^{N} e^{qX_i}\right)^{\widetilde{p}_K}\right) < \infty.$$

Now, we will construct the inhomogeneous Mandelbrot measure. For $q \in \mathcal{J}$ and $k \geq 1$, we define $\psi_k(q, \gamma)$ as the unique t, such that

$$\tau'(t) = \tau'(q) + \eta_k(\gamma).$$

For $u \in \bigcup_{n \geq 0} \mathbb{N}_+^n$ and $q \in \mathcal{J}$ we define, for $1 \leq i \leq N_u$

$$V(ui, q) = \frac{\exp(qX_{ui})}{\mathbb{E}\left(\sum_{i=1}^{N} \exp(qX_{i})\right)} = \exp(qX_{ui} - \tau(q))$$

and, for all $n \ge 0$

$$Y_n(q,\gamma,u) = \sum_{v_1 \cdots v_n \in \mathsf{T}_n(u)} \prod_{k=1}^n V(u \cdot v_1 \cdots v_k, \psi_{|u|+k}(q,\gamma)).$$

When $u = \emptyset$, this quantity will be denoted by $Y_n(q, \gamma)$ and when n = 0, their values equals 1.

The sequence $(Y_n(q, \gamma, u))_{n\geq 1}$ is a positive martingale with expectation 1, which converges almost surely and in L^1 norm to a positive random variable $Y(q, \gamma, u)$ (see [9] or [10, Theorem 1]). However, our study will need the almost sure simultaneous convergence of these martingales to positive limits.

Proposition 2.1. (a) Let $K = K \times K_{\gamma}$ be a compact subset of $\mathfrak{J} \times \Lambda_s$. There exists $p_{K} \in (1,2]$ such that for all $u \in \bigcup_{n \geq 0} \mathbb{N}^n_+$ the continuous functions $(q,\gamma) \in K \mapsto Y_n(q,\gamma,u)$ converge uniformly, almost surely and in $L_{p_{K}}$ norm, to a limit $(q,\gamma) \in K \mapsto Y(q,\gamma,u)$. In particular, $\mathbb{E}(\sup_{(q,\gamma)\in K} Y(q,\gamma,u)^{p_{K}}) < \infty$. Moreover, $Y(\cdot,\cdot,u)$ is positive almost surely.

In addition, for all $n \geq 0$, $\sigma(\{(X_{u1}, \ldots, X_{uN_u}), u \in \mathsf{T}_n\})$ and $\sigma(\{Y(\cdot, \cdot, u), u \in \mathsf{T}_{n+1}\})$ are independent, and the random functions $Y(\cdot, \cdot, u), u \in \mathsf{T}_{n+1}$, are independent copies of $Y(\cdot, \cdot) := Y(\cdot, \cdot, \emptyset)$.

(b) With probability 1, for all $q \in \mathcal{J}$ and $\gamma \in \Lambda_s$, the weights

$$\mu_q^{\gamma}\Big([u]\Big) = \Big[\prod_{k=1}^n \exp\Big(\psi_k(q,\gamma)X_{u_1...u_k} - \tau(\psi_k(q,\gamma))\Big)\Big]Y(q,\gamma,u)$$

define a measure on ∂T , where n = |u|.

The measure μ_q^{γ} will be used to approximate from below the Hausdorff dimension of the set $E_{b,s^{\gamma}}$.

Proof. (a) Fix a compact $K \subset \mathcal{J}$ and a compact $K_{\delta} \subset \Lambda_s$. Since $\eta_k(\gamma) = \circ(1)$, we can fix, without loss of generality, a compact neighborhood $K' \subset \mathcal{J}$ of K and suppose that,

$$\forall (q, \gamma) \in \mathsf{K} = K \times K_{\gamma}, \text{ for all } k \ge 1, \psi_k(q, \gamma) \in K'.$$

Fix a compact neighborhood $K'' = K'' \times K''_{\gamma}$ of $K' \times K_{\gamma}$. By (2.2), we can find $\widetilde{p}_{K''} > 1$, such that

$$\sup_{q\in \mathsf{K}''}\mathbb{E}\Big(\Big(\sum_{i=1}^N e^{qX_i}\Big)^{\widetilde{p}_{\mathsf{K}''}}\Big)<\infty.$$

By (2.1), we can fix $1 < p_{\mathsf{K}} \leq \min(2, \widetilde{p}_{\mathsf{K}''})$ such that $\sup_{q \in K''} \varphi(p_{\mathsf{K}}, q) < 1$. Then for each $(q, \gamma) \in K' \times K$, there exists a neighborhood $V_q \times V_\gamma \subset \mathbb{C}^2$ of (q, γ) , whose projection to \mathbb{R}^2 is contained in K'' , and such that for all $u \in \mathsf{T}$, $(z, z') \in V_q \times V_\gamma$ and $k \geq 1$, the random variable

$$V(u,z) = \frac{\exp(zX_u)}{\mathbb{E}\left(\sum_{i=1}^{N} \exp(zX_i)\right)}, \quad \Gamma(z) = \frac{\mathbb{E}\left(\sum_{i=1}^{N} X_i \exp(zX_i)\right)}{\mathbb{E}\left(\sum_{i=1}^{N} \exp(zX_i)\right)}$$

and the analytic extension of η_k , denoted also by η_k , are well defined. For $(z, z') \in V_q \times V_{\gamma}$ and $k \geq 1$, we define $\psi_k(z, z')$ as the unique t such that

$$\Gamma(t) = \Gamma(z) + |\eta_k(z')|.$$

Moreover, we have

$$\sup_{z \in V_q} \varphi(p_{\mathsf{K}}, z) < 1, \quad \text{where } \varphi(p_{\mathsf{K}}, z) = \frac{\mathbb{E}\left(\sum_{i=1}^N |e^{zX_i}|^{p_{\mathsf{K}}}\right)}{\left|\mathbb{E}\left(\sum_{i=1}^N e^{zX_i}\right)\right|^{p_{\mathsf{K}}}}.$$

By extracting a finite covering of $K' \times K_{\gamma}$ from $\bigcup_{q,\gamma} V_q \times V_{\gamma}$, we find a neighborhood $V = V_K \times V_{K\gamma} \subset \mathbb{C}^2$ of $K' \times K_{\gamma}$ such that

$$\sup_{z \in V_K} \varphi(p_{\mathsf{K}}, z) < 1$$

and for all $(z, z') \in V$, $\psi_k(z, z')$ is defined and belongs to V_K . Since the projection of V_K to \mathbb{R} is included in K'' and the mapping $z \mapsto \mathbb{E}\left(\sum_{i=1}^N e^{zX_i}\right)$ is continuous and does not vanish on V_K , by considering a smaller neighborhood of K' included in V_K if necessary, we can assume that

$$C_{V_K} = \sup_{z \in V_K} \mathbb{E}\left(\left|\sum_{i=1}^N e^{zX_i}\right|^{p_K}\right) \left|\mathbb{E}\left(\sum_{i=1}^N e^{zX_i}\right)\right|^{-p_K} < \infty.$$

Now, for $u \in T$, we define the analytic extension to V of $Y_n(q, \gamma, u)$ given by

$$Y_n(z, z', u) = \sum_{v \in \mathsf{T}_n(u)} \prod_{k=1}^n V(u \cdot v_1 \cdots v_k, \psi_{|u|+k}(z, z'))$$

$$= \left[\prod_{k=1}^n \mathbb{E} \left(\sum_{i=1}^N e^{\psi_k(z, z') X_i} \right) \right]^{-1} \sum_{v \in \mathsf{T}_n(u)} \prod_{k=1}^n e^{\psi_{|u|+k}(z, z') X(u v_{|k})}.$$

We denote also $Y_n(z, z', \emptyset)$ by $Y_n(z, z')$. By Lemma 3 in [5], there exists a constant C_{p_K} such that for all $(z, z') \in V$

$$\mathbb{E}\left(\left|Y_n(z,z') - Y_{n-1}(z,z')\right|^{p_{\mathsf{K}}}\right)$$

$$\leq C_{p_{\mathsf{K}}} \mathbb{E}\left(\left|\sum_{i=1}^{N} V(i,\psi_n(z,z'))\right|^{p_{\mathsf{K}}}\right) \prod_{k=1}^{n-1} \mathbb{E}\left(\sum_{i=1}^{N} |V(i,\psi_k(z,z'))|^{p_{\mathsf{K}}}\right).$$

Notice that $\mathbb{E}\Big(\sum_{i=1}^N |V(i,\psi_k(z,z'))|^{p_{\mathsf{K}}}\Big) = \varphi(p_{\mathsf{K}},\psi_k(z,z'))$. Then

$$\mathbb{E}\Big(\left|Y_{n}(z,z') - Y_{n-1}(z,z')\right|^{p_{\mathsf{K}}}\Big) \leq C_{p_{\mathsf{K}}}\mathbb{E}\Big(\left|\sum_{i=1}^{N} V(i,\psi_{n}(z,z'))\right|^{p_{\mathsf{K}}}\Big) \prod_{k=1}^{n-1} \varphi\Big(p_{\mathsf{K}},\psi_{k}(z,z')\Big).$$

$$\leq C_{p_{\mathsf{K}}}C_{V_{K}} \prod_{k=1}^{n-1} \sup_{z \in V_{K}} \varphi(p_{\mathsf{K}},z),$$

where we have used the fact that $\psi_k(z,z') \in V_K$ for all $k \geq 1$. With probability 1, the functions $(z,z') \in V \mapsto Y_n(z,z')$, $n \geq 0$, are analytic. Fix a closed polydisc $D(z_0,2\rho) \subset V$ with $z_0 = (z_1,z_1')$ and $\rho = (\rho_1,\rho_2)$. Theorem B.1 gives

$$\sup_{(z,z')\in D(z_0,\rho)} |Y_n(z,z') - Y_{n-1}(z,z')| \le 4 \int_{[0,1]^2} |Y_n(\zeta(t)) - Y_{n-1}(\zeta(t))| dt,$$

where, for $t = (t_1, t_2) \in [0, 1]^2$

$$\zeta(t) = (\zeta_1(t_1), \zeta_2(t_2)) = (z_1 + \rho_1 e^{i2\pi t_1}, z_1' + \rho_2 e^{i2\pi t_2}).$$

Furthermore Jensen's inequality and Fubini's Theorem give

$$\mathbb{E}\left(\sup_{z\in D(z_{0},\rho)}|Y_{n}(z,z')-Y_{n-1}(z,z')|^{p_{\mathsf{K}}}\right) \leq \mathbb{E}\left(\left(4\int_{[0,1]^{2}}|Y_{n}(\zeta(t))-Y_{n-1}(\zeta(t))|\,dt\right)^{p_{\mathsf{K}}}\right)$$

$$\leq 4^{p_{\mathsf{K}}}\mathbb{E}\left(\int_{[0,1]^{2}}|Y_{n}(\zeta(t))-Y_{n-1}(\zeta(t))|^{p_{\mathsf{K}}}\,dt\right)$$

$$= 4^{p_{\mathsf{K}}}\int_{[0,1]^{2}}\mathbb{E}\left|Y_{n}(\zeta(t))-Y_{n-1}(\zeta(t))\right|^{p_{\mathsf{K}}}\,dt$$

$$\leq 4^{p_{\mathsf{K}}}C_{V_{K}}C_{p_{K}}\prod_{k=1}^{n-1}\sup_{z\in V_{K}}\varphi(p_{\mathsf{K}},z).$$

Since $\sup_{z \in V_K} \varphi(p_K, z) < 1$, it follows that

$$\sum_{n\geq 1} \left\| \sup_{(z,z')\in D(z_0,\rho)} |Y_n(z,z') - Y_{n-1}(z,z')| \right\|_{p_{\mathsf{K}}} < \infty.$$

This implies, $(z, z') \mapsto Y_n(z, z')$ converges uniformly, almost surely and in $L^{p_{\mathsf{K}}}$ norm over the compact $D(z_0, \rho)$ to a limit $(z, z') \mapsto Y(z, z')$. This also implies that

$$\left\| \sup_{z \in D(z_0, \rho)} Y(z, z') \right\|_{p_{\mathsf{K}}} < \infty.$$

Since K can be covered by finitely many such discs $D(z_0, \rho)$ we get the uniform convergence, almost surely and in $L^{p_{\mathsf{K}}}$ norm, of the sequence $((q, \gamma) \in \mathsf{K} \mapsto Y_n(q, \gamma))_{n \geq 1}$ to $(q, \gamma) \in \mathsf{K} \mapsto Y(q, \gamma)$. Moreover, since $\mathcal{J} \times \Lambda_s$ can be covered by a countable union of such compact K we get the simultaneous convergence for all $(q, \gamma) \in \mathcal{J} \times \Lambda_s$. The same holds simultaneously for all the functions $(q, \gamma) \in \mathcal{J} \times \Lambda_s \mapsto Y_n(q, \gamma, u), u \in \bigcup_{n \geq 0} \mathbb{N}^n_+$, because $\bigcup_{n \geq 0} \mathbb{N}^n_+$ is countable.

To finish the proof of Proposition 2.1 (1), we must show that with probability 1, $(q, \gamma) \in \mathsf{K} \mapsto Y(q, \gamma)$ does not vanish. Without loss of generality we can suppose that $\mathsf{K} = [0, 1]^2$. If I is a dyadic closed subcube of $[0, 1]^2$, we denote by E_I the event $\{\exists \ (q, \gamma) \in I : Y(q, \gamma) = 0\}$. Let I_0, I_1, I_2, I_3 stand for the 2^2 dyadic intervals of I in the next generation. The event E_I being a tail event of probability 0 or 1. If we suppose that $\mathbb{P}(E_I) = 1$, then there exists $j \in \{0, 1, 2, 3\}$ such that $\mathbb{P}(E_{I_j}) = 1$. Suppose now that $\mathbb{P}(E_{\mathsf{K}}) = 1$. The previous remark allows to construct a decreasing sequence $(I(n))_{n\geq 0}$ of dyadic subcubes of K such that $\mathbb{P}(E_{I(n)}) = 1$. Let (q_0, γ_0) be the unique element of $\cap_{n\geq 0} I(n)$. Since $(q, \gamma) \mapsto Y(q, \gamma)$ is continuous we have $\mathbb{P}(Y(q_0, \gamma_0) = 0) = 1$, which contradicts the fact that $(Y_n(q_0, \gamma_0))_{n\geq 1}$ converges to $Y(q_0, \gamma_0)$ in L^1 .

(b) It is a consequence of the branching property

$$Y_{n+1}(q,\gamma,u) = \sum_{i=1}^{N} \exp\left(\psi_{n+1}(q,\gamma)X_{ui} - \tau(\psi_{n+1}(q,\gamma))\right) Y_n(q,\gamma,ui). \quad \Box$$

3. Proof of Theorem 1.3

The proof of Theorem 1.3 can be deduced from the two following propositions. Their proof are developed in the next section.

Proposition 3.1. Suppose Hypothesis 1.2, with probability 1, for all $q \in \mathcal{J}$ and $\gamma \in \Lambda_s$,

$$N_n(t) - nb \sim s_{n,\gamma}, \quad \text{for } \mu_q^{\gamma} \text{-almost every } t \in \partial T,$$

where $b = \tau'(q)$.

Proposition 3.2. With probability 1, for all $(q, \gamma) \in \mathcal{J} \times \Lambda_s$, for μ_q^{γ} -almost every $t \in \partial \mathsf{T}$

$$\lim_{n \to \infty} \frac{\log Y(q, \gamma, t_{|n})}{n} = 0.$$

From Proposition 3.1, we have with probability 1, for all $q \in \mathcal{J}$ and $\gamma \in \Lambda_s$, that $\mu_q^{\gamma}(E_{b,s^{\gamma}}) = 1$, $(b = \tau'(q))$. In addition, with probability 1, for all $(q, \gamma) \in \mathcal{J} \times \Lambda_s$, for μ_q^{γ} -almost every $t \in E_{b,s^{\gamma}}$, from the same Proposition and proposition 3.2, we have

$$\lim_{n \to \infty} \frac{\log(\mu_q^{\gamma}[t_{|n}])}{\log(\dim([t_{|n}]))}$$

$$= \lim_{n \to \infty} -\frac{1}{n} \log \left(\prod_{k=1}^{n} \exp\left(\psi_k(q, \gamma) X_{t_1 \dots t_k} - \tau(\psi_k(q, \gamma))\right) Y(q, \gamma, t_{|n}) \right)$$

$$= \lim_{n \to \infty} -\frac{1}{n} \sum_{k=1}^{n} \psi_k(q, \gamma) X_{t_1 \dots t_k} + \frac{1}{n} \sum_{k=1}^{n} \tau(\psi_k(q, \gamma)) - \frac{\log Y(q, \gamma, t_{|n})}{n}$$

$$= \lim_{n \to \infty} -\frac{1}{n} \sum_{k=1}^{n} \psi_k(q, \gamma) X_{t_1 \dots t_k} + \frac{1}{n} \sum_{k=1}^{n} \tau(\psi_k(q, \gamma)).$$

Since $\eta_k(\gamma) = o(1)$ and then $\psi_k(q, \gamma) \to q$, we get

$$\lim_{n \to \infty} \frac{\log(\mu_q^{\gamma}[t_{\mid n}])}{\log(\operatorname{diam}([t_{\mid n}]))} = -q\tau'(q) + \tau(q) = \tau^*(\tau'(q)).$$

We deduce the result from the mass distribution principle (Theorem A.1) and (1.1).

4. Proof of Propositions 3.1 and 3.2

4.1. **Proof of Proposition** 3.1. Let $K = K \times K_{\gamma}$ be a compact subset of $\mathcal{J} \times \Lambda_s$. For $b = \tau'(q), \ q \in \mathcal{J}, \ \gamma \in \Lambda_s, \ n \geq 1, \ \epsilon > 0$ and $s^{\gamma} = (s_{n,\gamma})_{n \geq 1}$ we set

$$E_{b,n,\gamma,\epsilon}^{1} = \left\{ t \in \partial \mathsf{T} : \sum_{k=1}^{n} \left(X_{t_{1}\cdots t_{k}}(t) - b - \eta_{k}(\gamma) \right) \ge \epsilon \sum_{k=1}^{n} \eta_{k}(\gamma) \right\},$$

$$E_{b,n,\gamma,\epsilon}^{-1} = \left\{ t \in \partial \mathsf{T} : \sum_{k=1}^{n} \left(X_{t_{1}\cdots t_{k}}(t) - b - \eta_{k}(\gamma) \right) \le -\epsilon \sum_{k=1}^{n} \eta_{k}(\gamma) \right\}.$$

Suppose that we have shown that for, $\lambda \in \{-1, 1\}$, we have:

(4.1)
$$\mathbb{E}\left(\sup_{(q,\gamma)\in\mathsf{K}}\sum_{n>1}\mu_q^{\gamma}(E_{b,n,\gamma,\epsilon}^{\lambda})\right)<\infty.$$

Then, with probability 1, for all $(q, \gamma) \in \mathcal{J} \times \Lambda_s$, $\lambda \in \{-1, 1\}$, and $\epsilon \in \mathbb{Q}_+^*$,

$$\sum_{n\geq 1} \mu_q^{\gamma}(E_{b,n,\gamma,\epsilon}^{\lambda}) < \infty,$$

consequently, by the Borel-Cantelli lemma, for μ_q^{γ} -almost every t, we have

$$\sum_{k=1}^{n} X_{t_1 \cdots t_k}(t) - b - \eta_k(\gamma) = o\left(\sum_{k=1}^{n} \eta_k(\gamma)\right), \quad \text{so } \mathsf{N}_n(t) - nb \sim s_{n,\gamma},$$

which yields the desired result.

Let us prove (4.1) when $\lambda = 1$ (the case $\lambda = -1$ is similar). Let $\theta = (\theta_n)$ be a positive sequence and $(q, \gamma) \in K$. One has

$$\sup_{(q,\gamma)\in\mathsf{K}}\mu_q^{\gamma}\bigg(E^1_{b,n,\gamma,\epsilon}\bigg)\leq \sup_{(q,\gamma)\in\mathsf{K}}\sum_{u\in\mathsf{T}_n}\mu_q^{\gamma}([u])\;\mathbf{1}_{\left\{E^1_{b,n,\gamma,\epsilon}\right\}}(t_u),$$

where t_u is any point in [u]. Denote t_u simply by t, then

$$\begin{split} \sup_{(q,\gamma)\in\mathsf{K}} \mu_q^{\gamma} \Big(E_{b,n,\gamma,\epsilon}^1 \Big) \\ &\leq \sup_{(q,\gamma)\in\mathsf{K}} \sum_{u\in\mathsf{T}_n} \mu_q^{\gamma}[u] \prod_{k=1}^n \exp\Big(\theta_k X_{t_1\cdots t_k} - \theta_k b - \theta_k \eta_k(\gamma)(1+\epsilon)\Big) \\ &\leq \sup_{(q,\gamma)\in\mathsf{K}} \sum_{u\in\mathsf{T}_n} \prod_{k=1}^n \exp\Big((\psi_k(q,\gamma) + \theta_k) X_{t_1\cdots t_k} - \tau(\psi_k(q,\gamma)) - \theta_k b - \theta_k \eta_k(\gamma)(1+\epsilon)\Big) \\ &\times Y(q,\gamma,u). \end{split}$$

For $(q, \gamma) \in K$, $\theta = (\theta_n)$ and $n \ge 1$, we set

$$H_n(q,\gamma,\theta)$$

$$= \sum_{u \in \mathsf{T}_n} \prod_{k=1}^n \exp\left((\psi_k(q, \gamma) + \theta_k) X_{t_1 \cdots t_k} - \tau(\psi_k(q, \gamma)) - \theta_k b - \theta_k \eta_k(\gamma) (1 + \epsilon) \right) M(u),$$

where

$$M(u) = \sup_{(q,\gamma) \in \mathsf{K}} Y(q,\gamma,u).$$

Recall the proof of Proposition 2.1, there exists a neighborhood $V = V_K \times V_{K_{\gamma}} \subset \mathbb{C}^2$ of $K = K \times K_{\gamma}$ such that

$$\Gamma(z) = \frac{\mathbb{E}\left(\sum_{i=1}^{N} X_i \exp(zX_i)\right)}{\mathbb{E}\left(\sum_{i=1}^{N} \exp(zX_i)\right)}$$

is well defined for $z \in V_K$, for $k \ge 1$, $\eta_k(z')$ is defined for $z' \in V_{K_{\gamma}}$ and $\forall (z, z') \in V$, $\psi_k(z, z')$ is defined and belongs to V_K .

For $\epsilon > 0$, $(z, z') \in V$ and $n \ge 1$, we define

$$H_n(z, z', \theta) = \sum_{u \in \mathsf{T}_n} \prod_{k=1}^n \exp\left((\psi_k(z, z') + \theta_k) X_{u_{|k}} - \theta_k \Gamma(z) - \theta_k \eta_k(z') (1 + \epsilon) \right)$$
$$\times \mathbb{E}\left(\sum_{i=1}^N \exp\left(\psi_k(z, z') X_i \right) \right)^{-1} M(u).$$

Proposition 4.1. There exist a neighborhood $V' \subset V$ of K, a positive constant C_K and a positive sequence θ such that for all $(z, z') \in V'$, for all $n \in \mathbb{N}^*$

$$\mathbb{E}(|H_n(z, z', \theta)|) \le \mathfrak{C}_{\mathsf{K}} \exp\left(-\frac{\epsilon}{4} \sum_{k=1}^n \epsilon_k \widetilde{\eta}_k^2\right),$$

where the sequences $(\epsilon_n)_n$ and $(\tilde{\eta}_n)_n$ are the sequences used in Hypothesis 1.2.

Lemma 4.1. There exist a positive sequence $\theta = (\theta_n)$ and a positive constant \mathcal{C}_{K} such that for all $(q, \gamma) \in \mathsf{K}$ we have

$$\mathbb{E}(H_n(q,\gamma,\theta)) \le \mathfrak{C}_{\mathsf{K}} \exp\left(-\frac{\epsilon}{2} \sum_{k=1}^n \epsilon_k \widetilde{\eta}_k^2\right).$$

Proof of Lemma 4.1. Let $\theta = (\theta_n)$ be a positive sequence, clearly we have

$$\mathbb{E}\Big(H_n(q,\gamma,\theta)\Big) = \prod_{k=1}^n \mathbb{E}\Big(\sum_{i=1}^N \exp\Big((\psi_k(q,\gamma) + \theta_k)X_i\Big) \\ \times \exp\Big(-\tau(\psi_k(q,\gamma)) - \theta_k b - \theta_k \eta_k(\gamma)(1+\epsilon)\Big)\mathbb{E}(M(u)) \\ \leq \mathcal{C}'_{\mathsf{K}} \prod_{k=1}^n \exp\Big(\tau(\psi_k(q,\gamma) + \theta_k) - \tau(\psi_k(q,\gamma)) - \theta_k b - \theta_k \eta_k(\gamma)(1+\epsilon)\Big),$$

where, by Proposition 2.1, $\mathcal{C}'_{\mathsf{K}} = \mathbb{E}(M(u)) = \mathbb{E}(M(\emptyset)) < \infty$ for all $u \in \bigcup_{n \geq 0} \mathbb{N}^n_+$.

Since $\eta_k(\gamma) = o(1)$, we can fix a compact neighborhood K' of K and suppose that for all $k \geq 1$ and $(q, \gamma) \in K$, we have $\psi_k(q, \gamma) \in K'$. For $(q, \gamma) \in K$ and $k \geq 1$, writing the Taylor expansion with integral rest of order 2 of the function $g: \theta \mapsto \tau(\psi_k(q, \gamma) + \theta)$ at 0, we get

$$g(\theta) = g(0) + \theta g'(0) + \theta^2 \int_0^1 (1 - t)g''(t\theta)dt,$$

with $g''(t\theta) \leq m_{\mathsf{K}} = \sup_{t \in [0,1]} \sup_{q \in K'} \sup_{\gamma \in K_{\gamma}} g''(t\theta)$. It follows that for all $k \geq 1$

$$\tau(\psi_k(q,\gamma) + \theta_k) - \tau((\psi_k(q,\gamma)) - \theta_k \tau'((\psi_k(q,\gamma))) \le \theta_k^2 m_{\mathsf{K}}.$$

Recall that $\tau'(\psi_k(q,\gamma)) = \tau'(q) + \eta_k(\gamma)$. Then

$$\mathbb{E}\Big(H_n(q,\gamma,\theta)\Big) \le \mathcal{C}'_{\mathsf{K}} \prod_{k=1}^n \exp\Big(\tau(\psi_k(q,\gamma) + \theta_k) - \tau(\psi_k(q,\gamma)) - \theta_k b - \theta_k \eta_k(\gamma)(1+\epsilon)\Big),$$

$$\le \mathcal{C}'_{\mathsf{K}} \prod_{k=1}^n \exp\Big(-\theta_k \eta_k(\gamma)\epsilon + \theta_k^2 m_{\mathsf{K}}\Big).$$

Choose the sequence θ such that $\theta_k = \epsilon_k \tilde{\eta}_k$. Then

$$\mathbb{E}(H_n(q,\gamma,\theta)) \leq \mathcal{C}'_{\mathsf{K}} \prod_{k=1}^n \exp\left(-\epsilon_k \widetilde{\eta}_k^2 (\epsilon - \epsilon_k m_{\mathsf{K}})\right).$$

Since $\epsilon_k \to 0$ then for k large enough we have $\epsilon - \epsilon_k m_{\mathsf{K}} > \frac{\epsilon}{2}$. Then, there exists a constant \mathcal{C}_{K} such that

$$\mathbb{E}\left(H_n(q,\gamma,\theta)\right) \le \mathcal{C}_{\mathsf{K}} \exp\left(-\frac{\epsilon}{2} \sum_{k=1}^n \epsilon_k \tilde{\eta}_k^2\right). \quad \Box$$

Proof of Proposition 4.1. Since $\mathbb{E}(|H_n(q,\gamma,\theta)|) \leq \mathfrak{C}_{\mathsf{K}} \exp\left(-\frac{\epsilon}{2} \sum_{k=1}^n \epsilon_k \widetilde{\eta}_k^2\right)$ for $q \in K$, there exists a neighborhood $\mathsf{V}_{q,\gamma} \subset \mathsf{V}$ of (q,γ) such that for all $(z,z') \in \mathsf{V}_{q,\gamma}$ we have

$$\mathbb{E}(|H_n(z,z',\theta)|) \le \mathfrak{C}_{\mathsf{K}} \exp\left(-\frac{\epsilon}{4} \sum_{k=1}^n \epsilon_k \widetilde{\eta}_k^2\right).$$

By extracting a finite covering of K from $\bigcup_{(q,\gamma)\in K} V_{q,\gamma}$, we find a neighborhood $V'\subset V$ of K such that

$$\mathbb{E}(|H_n(z, z', \theta)|) \le \mathcal{C}_{\mathsf{K}} \exp\left(-\frac{\epsilon}{4} \sum_{k=1}^n \epsilon_k \widetilde{\eta}_k^2\right). \quad \Box$$

With probability 1, the functions $(z, z') \in V' \mapsto H_n(z, z', \theta)$ are analytic. Fix a closed polydisc $D(z_0, 2\rho) \subset V$, with $z_0 = (z_1, z'_1)$ and $\rho = (\rho_1, \rho_2)$. Theorem B.1 gives

$$\sup_{(z,z')\in D(z_0,\rho)} |H_n(z,z',\theta)| \le 2 \int_{[0,1]^2} |H_n(\zeta(t),\theta)| dt,$$

where for $t = (t_1, t_2) \in [0, 1]^2$

$$\zeta(t) = (\zeta_1(t_1), \zeta_2(t_2)) = (z_1 + \rho_1 e^{i2\pi t_1}, z_1' + \rho_2 e^{i2\pi t_2}).$$

Furthermore Fubini's Theorem gives

$$\mathbb{E}\left(\sup_{z\in D(z_0,\rho)} |H_n^s(z,z',\theta)|\right) \le \mathbb{E}\left(2\int_{[0,1]^2} |H_n(\zeta(t),\theta)| dt\right)$$
$$\le 4\int_{[0,1]^2} \mathbb{E}|H_n(\zeta(t),\theta)| dt$$
$$\le 4\exp\left(-\frac{\epsilon}{4}\sum_{k=1}^n \epsilon_k \tilde{\eta}_k^2\right).$$

Finally, we get

$$\mathbb{E}\left(\sup_{(q,\gamma)\in\mathsf{K}}\mu_q^{\gamma}\left(E_{b,n,\gamma,\epsilon}^1\right)\right)\leq 4\exp\bigg(-\frac{\epsilon}{4}\sum_{k=1}^n\epsilon_k\widetilde{\eta}_k^2\bigg)$$

and, then, under Hypothesis 1.2, we get (4.1), which finish the proof of Proposition 3.1.

4.2. **Proof of Propostion** 3.2. Let $K = K \times K_{\gamma}$ be a compact subset of $\mathcal{J} \times \Lambda_s$. For a > 1, $(q, \gamma) \in K$ and $n \ge 1$, we set

$$E_{n,a}^+ = \left\{ t \in \partial \mathsf{T} : Y(q, \gamma, t_{|n}) > a^n \right\}$$

and

$$E_{n,a}^- = \{ t \in \partial \mathsf{T} : Y(q, \gamma, t_{|n}) < a^{-n} \}.$$

It is sufficient to show that for $E \in \{E_{n,a}^+, E_{n,a}^-\}$

$$\mathbb{E}\Big(\sup_{(q,\gamma)\in\mathsf{K}}\sum_{n\geq 1}\mu_q^\gamma(E)\Big)<\infty.$$

Indeed, if this holds, then with probability 1, for each $(q, \gamma) \in \mathsf{K}$ and $E \in \{E_{n,a}^+, E_{n,a}^-\}$, $\sum_{n \geq 1} \mu_q^{\gamma}(E) < \infty$, hence by the Borel-Cantelli lemma, for μ_q^{γ} -almost every $t \in \partial \mathsf{T}$, if n is big enough we have

$$-\log a \leq \liminf_{n \to \infty} \frac{1}{n} \log Y(q, \gamma, t_{|n}) \leq \limsup_{n \to \infty} \frac{1}{n} \log Y(q, \gamma, t_{|n}) \leq \log a.$$

Letting a tend to 1 along a countable sequence yields the result.

Let us prove (4.2) for $E = E_{n,a}^+$ (the case $E = E_{n,a}^-$ is similar). At first we have,

$$\begin{split} &\sup_{(q,\gamma)\in\mathsf{K}}\mu_q^{\gamma}(E_{n,a}^+) = \sup_{(q,\gamma)\in\mathsf{K}}\sum_{u\in\mathsf{T}_n}\mu_q^{\gamma}([u])\mathbf{1}_{\left\{Y(q,\gamma,u)>a^n\right\}} \\ &= \sup_{(q,\gamma)\in\mathsf{K}}\sum_{u\in\mathsf{T}_n}Y(q,\gamma,u)\prod_{k=1}^n\exp\left(\psi_k(q,\gamma)X(u) - \tau\left(\psi_k(q,\gamma)\right)\right)\mathbf{1}_{\left\{Y(q,\gamma,u)>a^n\right\}} \\ &\leq \sup_{(q,\gamma)\in\mathsf{K}}\sum_{u\in\mathsf{T}_n}(Y(q,\gamma,u))^{1+\nu}\prod_{k=1}^n\exp\left(\psi_k(q,\gamma)X_u - \tau\left((\psi_k(q,\gamma)\right)\right)a^{-\nu}, \\ &\leq \sup_{(q,\gamma)\in\mathsf{K}}\sum_{u\in\mathsf{T}_n}M(u)^{1+\nu}\prod_{k=1}^n\exp\left(\psi_k(q,\gamma)X_u - \tau\left(\psi_k(q,\gamma)\right)\right)a^{-\nu}, \end{split}$$

where $M(u) = \sup_{(q,\gamma) \in \mathsf{K}} Y(q,\gamma,u)$ and $\nu > 0$ is an arbitrary parameter. For $q \in K$, $\gamma \in K_{\gamma}$ and $\nu > 0$ we set

$$L_n(q,\gamma,\nu) = \sum_{u \in T_n} M(u)^{1+\nu} \prod_{k=1}^n \exp\left(\psi_k(q,\gamma)X_u - \tau(\psi_k(q,\gamma))\right) a^{-\nu}.$$

Recall the proof of Proposition 2.1, there exists a neighborhood $V \subset \mathbb{C}^2$ of K such that for all $(z, z') \in V$ and $k \geq 1$ $\psi_k(z, z')$ is well defined and $\mathbb{E}\left(\sum_{i=1}^N e^{\psi_k(z, z')X_i}\right) \neq 0$.

Lemma 4.2. Fix a > 1. For $(z, z') \in V$ and $\nu > 0$, let

$$L_n(z, z', \nu) = \left[\prod_{k=1}^n \mathbb{E} \left(\sum_{i=1}^N \exp\left(\psi_k(z, z') X_i\right) \right)^{-1} \right]$$

$$\times \sum_{u \in T_n} M(u)^{1+\nu} \prod_{k=1}^n \exp\left(\psi_k(z, z') X_{u_{|k}}\right) a^{-\nu}.$$

There exist a neighborhood $V' \subset \mathbb{C}^2$ of K and a positive constant C_K such that, for all $(z, z') \in V'$, for all integer $n \geq 1$

$$(4.3) \mathbb{E}\left(\left|L_n(z,z',p_{\mathsf{K}}-1)\right|\right) \le C_{\mathsf{K}}a^{-n(p_{\mathsf{K}}-1)/4},$$

where p_{K} provided by Proposition 2.1.

Proof. Write $V = V_K \times V_{K_{\gamma}}$. For $z \in V_K$ and $\nu > 0$, let

$$\widetilde{L}_1(z,\nu) = \left| \mathbb{E} \left(\sum_{i=1}^N \exp\left(z X_i \right) \right) \right|^{-1} \mathbb{E} \left(\sum_{i=1}^N \left| \exp\left(z X_i \right) \right| \right) a^{-\nu}.$$

Let $q \in K$. Since $\mathbb{E}(\tilde{L}_1(q,\nu)) = a^{-\nu}$, there exists a neighborhood $V_q \subset V_K$ of q such that for all $z \in V_q$ we have $\mathbb{E}\left(\left|\tilde{L}_1(z,\nu)\right|\right) \leq a^{-\nu/2}$. Let $\gamma \in K_{\gamma}$. Recall the proof of Proposition 2.1 and since $\eta_k(\gamma) = \circ(1)$, we can find a neighborhood $V_{\gamma} \subset V_{K_{\gamma}}$ of K_{γ} such that, for all $k \geq 1$, $(z,z') \in V_q \times V_{\gamma}$, we have

$$\mathbb{E}\Big(\Big|\widetilde{L}_1(\psi_k(z,z'),\nu)\Big|\Big) \le a^{-\nu/3}.$$

By extracting a finite covering of K from $\bigcup_{(q,\gamma)} V_q \times V_\gamma$, we find a neighborhood $V' \subset V$ of K such that for all $(z,z') \in V'$ and $k \geq 1$

$$\mathbb{E}\Big(\Big|\widetilde{L}_1(\psi_k(z,z'),\nu)\Big|\Big) \le a^{-\nu/4}.$$

Therefore,

$$\mathbb{E}\left(\left|L_{n}(z,z',\nu)\right|\right) \\
= \left[\prod_{k=1}^{n} \left|\mathbb{E}\left(\sum_{i=1}^{N} \exp\left(\psi_{k}(z,z')X_{i}\right)\right)\right|^{-1}\right] \mathbb{E}\left(\left|\sum_{u\in\mathsf{T}_{n}} M(u)^{1+\nu} \prod_{k=1}^{n} \exp\left(\psi_{k}(z,z')X_{u}\right)\right|\right) a^{-n\nu} \\
\leq \left[\prod_{k=1}^{n} \left|\mathbb{E}\left(\sum_{i=1}^{N} \exp\left(\psi_{k}(z,z')X_{i}\right)\right)\right|^{-1}\right] \mathbb{E}\left(\sum_{u\in\mathsf{T}_{n}} M(u)^{1+\nu} \prod_{k=1}^{n} \left|\exp\left(\psi_{k}(z,z')X_{u}\right)\right|\right) a^{-n\nu}.$$

By Proposition 2.1, there exists $p_{\mathsf{K}} \in (1,2]$ such that for all $u \in \bigcup_{n>0} \mathbb{N}^n_+$,

$$\mathbb{E}\big(M(u)^{p_{\mathsf{K}}}\big) = \mathbb{E}\big(M(\emptyset)^{p_{\mathsf{K}}}\big) = C_{\mathsf{K}} < \infty.$$

Now take $\nu = p_{\mathsf{K}} - 1$ in the last calculation, it follows, from the independence of $\sigma(\{Y(\cdot,\cdot,u),\,u\in\mathsf{T}_n\})$ and $\sigma(\{(X_{u1},\ldots,X_{uN_u}),\,u\in\mathsf{T}_{n-1}\})$ for all $n\geq 1$, that

$$\begin{split} & \mathbb{E}\Big(\Big|L_n(z,z',p_\mathsf{K}-1)\Big|\Big) \\ & \leq \left[\prod_{k=1}^n \left|\mathbb{E}\Big(\sum_{i=1}^N \exp\Big(\psi_k(z,z')X_i\Big)\Big)\right|^{-1}\right] \prod_{k=1}^n \mathbb{E}\Big(\sum_{i=1}^N \left|\exp\Big(\psi_k(z,z')X_i\Big)\right|\Big)^n \; C_\mathsf{K} a^{-n(p_\mathsf{K}-1)} \\ & = C_\mathsf{K} \prod_{k=1}^n \mathbb{E}\Big(\Big|\tilde{L}_1(\psi_k(z,z'),p_\mathsf{K}-1)\Big|\Big) \\ & \leq C_\mathsf{K} a^{-n(p_\mathsf{K}-1)/4}, \end{split}$$

then lemma is now proved.

With probability 1, the functions $(z, z') \in V' \mapsto L_n(z, z', \nu)$ are analytic. Fix a closed polydisc $D(z_0, 2\rho) \subset V'$, with $z_0 = (z_1, z_1')$ and $\rho = (\rho_1, \rho_2)$. Theorem B.1 gives

$$\sup_{z \in D(z_0, \rho)} \left| L_n(z, p_{\mathsf{K}} - 1) \right| \le 4 \int_{[0, 1]^2} \left| L_n(\zeta(t), p_{\mathsf{K}} - 1) \right| dt,$$

where, for $t = (t_1, t_2) \in [0, 1]^2$

$$\zeta(t) = (\zeta_1(t_1), \zeta_2(t_2)) = (z_1 + \rho_1 e^{i2\pi t_1}, z_1' + \rho_2 e^{i2\pi t_2}).$$

Furthermore Fubini's Theorem gives

$$\mathbb{E}\left(\sup_{z \in D(z_0, \rho)} |L_n(z, p_{\mathsf{K}} - 1)|\right) \le \mathbb{E}\left(4 \int_{[0, 1]^2} |L_n(\zeta(t), p_{\mathsf{K}} - 1)| dt\right)$$

$$\le 4 \int_{[0, 1]^2} \mathbb{E} |L_n(\zeta(t), p_{\mathsf{K}} - 1)| dt$$

$$\le 4 C_{\mathsf{K}} a^{-n(p_{\mathsf{K}} - 1)/4}.$$

Since a > 1 and $p_{K} - 1 > 0$, we get (4.2).

APPENDIX A. HAUSDORFF AND PACKING DIMENSIONS

Given a subset K of $\mathbb{N}_+^{\mathbb{N}_+}$ endowed with a metric d making it σ -compact, s > 0 and E a subset of K, the s-dimensional Hausdorff measure of E is defined as

$$\mathcal{H}^s(E) = \lim_{\delta \to 0^+} \inf \left\{ \sum_{i \in \mathbb{N}} (\operatorname{diam}(U_i)^s) \right\},$$

the infimum being taken over all the countable coverings $(U_i)_{i\in\mathbb{N}}$ of E by subsets of K of diameters less than or equal to δ . Then, the Hausdorff dimension of E is defined as

$$\dim E = \sup\{s > 0 : \mathcal{H}^s(E) = \infty\} = \inf\{s > 0 : \mathcal{H}^s(E) = 0\},\$$

with the convention $\sup \emptyset = 0$ and $\inf \emptyset = \infty$.

Packing measures and dimensions are defined as follows. Given s > 0 and $E \subset K$ as above, one first defines

$$\overline{P}^{s}(E) = \lim_{\delta \to 0^{+}} \sup \left\{ \sum_{i \in \mathbb{N}} (\operatorname{diam}(B_{i})^{s}) \right\},$$

the supremum being taken over all the packings $\{B_i\}_{i\in\mathbb{N}}$ of E by balls centered on E and with diameter smaller than or equal to δ . Then, the s-dimensional packing measure of E is defined as

$$P^{s}(E) = \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{i \in \mathbb{N}} \overline{P}^{s}(E_{i}) \right\},$$

the infimum being taken over all the countable coverings $(E_i)_{i\in\mathbb{N}}$ of E by subsets of K of diameters less than or equal to δ . Then, the packing dimension of E is defined as

$$\operatorname{Dim} E = \sup\{s > 0 : P^s(E) = \infty\} = \inf\{s > 0 : P^s(E) = 0\},\$$

with the convention $\sup \emptyset = 0$ and $\inf \emptyset = \infty$. For more details the reader is referred to [13, 20].

If μ is a positive and finite Borel measure supported on K, then its lower Hausdorff and packing dimensions is defined as

$$\underline{\dim}(\mu) = \inf \Big\{ \dim F : F \text{ Borel}, \, \mu(F) > 0 \Big\}$$

$$\underline{\mathrm{Dim}}(\mu) = \inf \Big\{ \mathrm{Dim}\, F : F \text{ Borel}, \, \mu(F) > 0 \Big\}$$

and its upper Hausdorff and packing dimensions are defined as

$$\overline{\dim}(\mu) = \inf \left\{ \dim F : F \text{ Borel}, \ \mu(F) = \|\mu\| \right\}$$

$$\overline{\dim}(\mu) = \inf \left\{ \dim F : F \text{ Borel}, \ \mu(F) = \|\mu\| \right\}.$$

We have (see [12])

$$\underline{\dim}(\mu) = \operatorname{ess\,inf}_{\mu} \liminf_{r \to 0^{+}} \frac{\log \mu(B(t,r))}{\log(r)},$$

$$\underline{\operatorname{Dim}}(\mu) = \operatorname{ess\,inf}_{\mu} \limsup_{r \to 0^{+}} \frac{\log \mu(B(t,r))}{\log(r)}$$

and

$$\overline{\dim}(\mu) = \operatorname{ess\,sup}_{\mu} \liminf_{r \to 0^{+}} \frac{\log \mu(B(t,r))}{\log(r)},$$

$$\overline{\operatorname{Dim}}(\mu) = \operatorname{ess\,sup}_{\mu} \limsup_{r \to 0^{+}} \frac{\log \mu(B(t,r))}{\log(r)},$$

where B(t,r) stands for the closed ball of radius r centered at t. If $\underline{\dim}(\mu) = \overline{\dim}(\mu)$ (resp. $\underline{\operatorname{Dim}}(\mu) = \overline{\operatorname{Dim}}(\mu)$), this common value is denoted $\dim \mu$ (resp. $\overline{\operatorname{Dim}}(\mu)$), and if $\dim \mu = \overline{\operatorname{Dim}}(\mu)$, one says that μ is exact dimensional.

Recall the mass distribution principle.

Theorem A.1. ([13, Theorem 4.2]). Let ν be a positive and finite Borel probability measure on a compact metric space (X, d). Assume that $M \subseteq X$ is a Borel set such that $\nu(M) > 0$ and

$$M \subseteq \left\{ t \in X : \liminf_{r \to 0^+} \frac{\log \nu(B(t,r))}{\log r} \geq \delta \right\}.$$

Then the Hausdorff dimension of M is bounded from below by δ .

APPENDIX B. CAUCHY FORMULA IN SEVERAL VARIABLES

Let us recall the Cauchy formula for holomorphic functions in several variables.

Definition B.1. Let $d \geq 1$, a subset D of \mathbb{C}^d is an open polydisc if there exist open discs D_1, \ldots, D_d of \mathbb{C} such that $D = D_1 \times \cdots \times D_d$. If we denote by ζ_j the centre of D_j , then $\zeta = (\zeta_1, \ldots, \zeta_d)$ is the centre of D and if r_j is the radius of D_j then $r = (r_1, \ldots, r_d)$ is the multiradius of D. The set $\partial D = \partial D_1 \times \cdots \times \partial D_d$ is the distinguished boundary of D. We denote by $D(\zeta, r)$ the polydisc with center ζ and radius r.

Let $D = D(\zeta, r)$ be a polydisc of \mathbb{C}^d and $g \in C(\partial D)$ a continuous function on ∂D . We define the integral of g on ∂D as

$$\int_{\partial D} g(\zeta) d\zeta_1 \cdots d\zeta_d = (2i\pi)^d r_1 \cdots r_d \int_{[0,1]^d} g(\zeta(\theta)) e^{i2\pi\theta_1} \cdots e^{i2\pi\theta_d} d\theta_1 \cdots d\theta_d,$$

where
$$\zeta(\theta) = (\zeta_1(\theta), \dots, \zeta_d(\theta))$$
 and $\zeta_j(\theta) = \zeta_j + r_j e^{i2\pi\theta_j}$ for $j = 1, \dots, d$.

Theorem B.1. Let D = D(a,r) be polydisc in \mathbb{C}^d with a multiradius whose components are positive, and f be a holomorphic function in a neiborhood of D. Then, for all $z \in D$

$$f(z) = \frac{1}{(2i\pi)^d} \int_{\partial D} \frac{f(\zeta)d\zeta_1 \cdots d\zeta_d}{(\zeta_1 - z_1) \cdots (\zeta_d - z_d)}.$$

It follows that

$$\sup_{z \in D(a,r/2)} |f(z)| \le 2^d \int_{[0,1]^d} |f(\zeta(\theta))| d\theta_1 \cdots d\theta_d.$$

Acknowledgements. The first author would like to thank the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia.

References

- [1] N. Attia, On the exact dimension of Mandelbrot measure, Probab. Math. Statist. **39**(2) (2019), 299–314. https://doi.org/10.19195/0208-4147.39.2.4
- [2] N. Attia, Hausdorff and packing dimensions of Mandelbrot measure, Internat. J. Math. 31(9) (2020), Article ID 2050068. https://doi.org/10.1142/S0129167X20500688
- [3] N. Attia, On the multifractal analysis of branching random walk on Galton-Watson tree with random metric, J. Theoret. Probab. **34**(1) (2020), 90–102. https://doi.org/10.1007/s10959-019-00984-z
- [4] N. Attia and J. Barral, Hausdorff and packing spectra, large deviations and free energy for branching random walks in R^d, Comm. Math. Phys. 331 (2014), 139–187. https://doi.org/10. 1007/s00220-014-2087-9
- [5] N. Attia, On the multifractal analysis of covering number on the Galton Watson tree, J. Appl. Probab. **56**(1) (2019), 265–281. https://doi.org/10.1017/jpr.2019.17
- [6] N. Attia, Comportement asymptotique de marches aléatoires de branchement dans \mathbb{R}^d et dimension de Hausdorff, SISYPHE Signals and Systems in Physiology & Engineering Thèse de doctorat, tel-00841496, (2012).
- [7] N. Attia, On the Multifractal Analysis of the Branching Random Walk in \mathbb{R}^d , J. Theoret. Probab. 27 (2014), 1329–1349. https://doi.org/10.1007/s10959-013-0488-x
- [8] J. Barral, Continuity of the multifractal spectrum of a statistically self-similar measure, J. Theoret. Probab. 13 (2000), 1027–1060. https://doi.org/10.1023/A:1007866024819
- [9] J. D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probab. 14 (1977), 25–37. https://doi.org/10.2307/3213258
- [10] J. D. Biggins, Uniform convergence of martingales in the branching random walk, Ann. Probab. 20 (1992), 137–151. https://doi.org/10.1214/aop/1176989921
- [11] J. D. Biggins, B. M. Hambly and O. D. Jones, Multifractal spectra for random self-similar measures via branching processes, Adv. in Appl. Probab. 43(1) (2011), 1-39. https://doi.org/ 10.1239/aap/1300198510

- [12] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems 10 (1990), 451-462. https://doi.org/10.1017/S014338570000568X
- [13] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd Edition, Wiley, Chichester, 2003. https://doi.org/10.1002/0470013850
- [14] K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7(3) (1994), 681–702. https://doi.org/10.1007/BF02213576
- [15] A. H. Fan and J. P. Kahane, How many intervals cover a point in random dyadic covering? Port. Math. **58**(1) (2001), 59–75.
- [16] R. Holley and E. C. Waymire, Multifractal dimensions and scaling exponents for strongly bounded random fractals, Ann. Appl. Probab. 2 (1992), 819–845. https://doi.org/10.1214/ aoap/1177005577
- [17] R. Lyons, Random walks and percolation on trees, Ann. Probab. 18 (1990), 931-958. https://doi.org/10.1214/aop/1176990730
- [18] R. Lyons and R. Pemantle, Random walks in a random environment and first passage percolation on trees, Ann. Probab. 20 (1992), 125–136. https://doi.org/10.1214/aop/1176989920
- [19] Q. Liu and A. Rouault, On two measures defined on the boundary of a branching tree, IMA Vol. Math. Appl. 84 (1997), 187–201. https://doi.org/10.1007/978-1-4612-1862-3_15
- [20] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridges Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/cbo9780511623813
- [21] G. M. Molchan, Scaling exponents and multifractal dimensions for independent random cascades, Comm. Math. Phys. 179 (1996), 681–702.

 $^1\mathrm{Analysis},$ Probability and Fractals Laboratory LR18ES17, Faculty of Scienes of Monastir

 $^2\mathrm{Department}$ of Mathematics and Statistics, College of Science, King Faisal University, PO. Box : 400 Al-Ahsa 31982, Saudi Arabia

Email address: najmeddine.attia@gmail.com

 $Email\ address:$ nattia@kfu.edu.sa

³ESPRIT School of Engineering, Tunis, Tunisia *Email address*: meriem.benhadjkhlifa@esprit.tn