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UNIFORM ULTIMATE BOUNDEDNESS RESULTS FOR SOME
SYSTEM OF THIRD ORDER NONLINEAR DELAY

DIFFERENTIAL EQUATIONS

M. O. OMEIKE1

Abstract. The paper is concerned with the study of the uniform ultimate bound-
edness of solutions of the third-order system of nonlinear delay differential equation

...

X +AẌ + BẊ + H(X(t − r)) = P (t, X, Ẋ, Ẍ),
where A, B are real n × n constant symmetric matrices, r is a positive real constant
and X ∈ Rn, using the Lyapunov-Krasovskii functional method and following the
arguments used in [1] and [10], we obtained results which give an n−dimensional
analogue of an earlier result of [13] and extend other earlier results for the case in
which we do not necessarily require that H(X(t − r)) be differentiable.

1. Introduction

Let R denote the real line, −∞ < t < ∞ and Rn denote the real n-dimensional
Euclidean space R × R × · · · × R (in n places) with the usual norm which will be
represented throughout by ∥ · ∥.

Consider the delay differential equation of the form

(1.1)
...

X +AẌ + BẊ + H(X(t − r)) = P (t, X, Ẋ, Ẍ),

where X ∈ Rn, H : Rn → Rn, P : R × Rn × Rn × Rn → Rn, A and B are real
n × n constant symmetric matrices, r is a positive real constant and the dots indicate
differentiation with respect to t. We shall assume that H and P are continuous in
their respective arguments.
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Equation (1.1) is the vector version for systems of real third-order nonlinear delay
differential equations of the form

...
xi +

n∑
k=1

aikẍk +
n∑

k=1
bikẋk + hi(x1(t − r), x2(t − r), . . . , xn(t − r))

=pi(t, x1, . . . , xn, ẋ1, . . . , ẋn, ẍ1, . . . , ẍn),
i = 1, 2, . . . , n, in which aik and bik are real constants, r is a positive real constant
and hi, pi are continuous in their respective arguments. The case when n = 1 and
r = 0 which give rise to the nonlinear differential equations of the form
(1.2) ...

x +aẍ + bẋ + h(x) = p(t, x, ẋ, ẍ)
have been greatly studied by several authors for stability, boundedness, convergence
and periodicity of solutions (see [5, 8, 14]). Similarly, equations of the form (1.2) for
which a, b are not necessarily constants have been studied by several authors in the
literature (see [14]). For the case n = 1 and r > 0, delay differential equations of the
form
(1.3) ...

x +aẍ + bẋ + h(x(t − r)) = p(t, x, ẋ, ẍ)
have been studied for stability, boundedness and periodicity of solutions by several
authors in the literature. In [18], sufficient conditions which ensure the stability (for
p(t, x, ẋ, ẍ) = 0) and boundedness (for p(t, x, ẋ, ẍ) ̸= 0) of solutions of equation (1.3)
were obtained. In [13], equation (1.3) (in which h is not necessarily differentiable) was
studied, and the author obtained conditions which ensure that solutions are bounded.
Similarly, equations of the form (1.3) for which a, b are not necessarily constants have
been studied by several authors in the literature. It is worth mentioning that equation
(1.1), when r = 0, gives rise to the nonlinear vector differential equations of the form
(1.4)

...

X +AẌ + BẊ + H(X) = P (t, X, Ẋ, Ẍ),
where A, B, H and P are as defined above. Equations of the form (1.4) have been
studied by several authors for boundedness and periodicity of solutions ([1,6,10]). In [6]
the authors studied equation (1.4) when H(X) is continuous and differentiable, while
in [1] and [10] the authors studied (1.4) when H(X) is not necessarily differentiable.
Similarly, qualitative properties of solutions of (1.4) for which A, B are not necessarily
constants have been investigated by several authors (see [2,7,9,15]). However, there are
few papers in connection with the qualitative properties of solutions of systems of third
order nonlinear delay differential equations in literature. Recently, in [12], equation
(1.1) in which r = r(t), H ∈ C′(Rn) and P (t, X, Ẋ, Ẍ) = P (t) was investigated
for the boundedness of solutions, while in [17], the author studied the stability and
boundedness of solutions of the equation

...

X +H(Ẋ)Ẍ + G(Ẋ(t − r)) + cX(t − r) = P (t, X, Ẋ, Ẍ),
where H, G are continuous and differentiable in their arguments and P is continuous
in its arguments. To the best of our knowledge the extension of the results in [1]
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and [13] to equation (1.1) does not exist in literature. Throughout all the foregoing
papers, the Lyapunov’s second (or direct) method has been used as a main tool to
carry out the proofs of the main results for scalar and vector ordinary differential
equations, while the Lyapunov-Krasovskii functional method has been used for scalar
and vector delay differential equations ([1] - [19]). In the present paper, we shall
use the Lyapunov-Krasovskii functional method as a basic tool in our proofs. In the
present paper, we also used the same method as a basic tool in our proofs. The
motivation for the present work is derived from the papers mentioned above, and
the object of this paper is to prove the uniform boundedness results under specified
conditions on H and P. Specifically, unlike in [12], we shall only assume that H is not
necessarily differentiable, and that for any X, Y ∈ Rn (following [1] and [10]), there
exists an n × n operator C(X, Y ) such that
(1.5) H(X) = H(Y ) + C(X, Y )(X − Y )
for which the eigenvalues λi(C(X, Y )), i = 1, 2, . . . , n, are continuous and satisfy

0 < δh ≤ λi(C(X, Y )) ≤ ∆h

for fixed constants δh and ∆h. Moreover, we shall assume that
∆h ≤ kδaδb, k < 1,

where

(1.6) k = min
{

α(1 − β)δb

δa(α + ∆a)2 ,
α(1 − β)δa

(δa + 2α)2

}
and
(1.7) 0 < δa ≤ λi(A) ≤ ∆a,

(1.8) 0 < δb ≤ λi(B) ≤ ∆b,

with λi(A) and λi(B) as the eigenvalues of A and B, respectively.
The result in this paper is the n-dimensional analog of a result in [13]. Moreover, we

shall improve on the results in [12] when H(X(t − r)) is not necessarily differentiable
and r(t) = r > 0.

1.1. Notation and definitions. Given any X, Y in Rn the symbol ⟨X, Y ⟩ will be
used to denote the usual scalar product in Rn, that is ⟨X, Y ⟩ = ∑n

i=1 xiyi. Thus
∥X∥2 = ⟨X, X⟩. The matrix A is said to be positive definite when ⟨AX, X⟩ > 0 for
all nonzero X in Rn.

The following notations (see [12, 13]) will be useful in subsequent sections. For
x ∈ Rn, |x| is the norm of x. For a given r > 0, t1 ∈ R, C(t1) = {ϕ : [t1 − r, t1] →
Rn/ϕ is continuous}. In particular, C = C(0) denotes the space of continuous func-
tions mapping the interval [−r, 0] into Rn and for ϕ ∈ C, ∥ϕ∥ = sup−r≤θ≤0 |ϕ(0)|. CH
will denote the set of ϕ such that ∥ϕ∥ ≤ H. For any continuous function x(u) defined
on −h ≤ u < A, A > 0, and any fixed t, 0 ≤ t < A, the symbol xt will denote the
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restriction of x(u) to the interval [t − r, t], that is, xt is an element of C defined by
xt(θ) = x(t + θ), −r ≤ θ ≤ 0.

2. Some Preliminary Results

In this section, we shall state the algebraic results required in the proofs of our
main results. The proofs are not given since they are found in [1, 2, 6, 7, 9–11,15,16].
Lemma 2.1 ([1,2,6,7,9–11,15,16]). Let D be a real symmetric positive definite n × n
matrix, then for any X in Rn, we have

δd∥X∥2 ≤ ⟨DX, X⟩ ≤ ∆d∥X∥2,

where δd, ∆d are the least and the greatest eigenvalues of D, respectively.
Lemma 2.2 ([1, 2, 6, 7, 9–11, 15, 16]). Let Q, D be any two real n × n commuting
symmetric matrices. Then

(i) the eigenvalues λi(QD), i = 1, 2, . . . , n, of the product matrix QD are all real
and satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D);

(ii) the eigenvalues λi(Q + D), i = 1, 2, . . . , n, of the sum of matrices Q and D are
real and satisfy{
min

1≤j≤n
λj(Q) + min

1≤k≤n
λk(D)

}
≤ λi(Q + D) ≤

{
max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)
}

.

Lemma 2.3. Let H ∈ C(Rn) be a continuous vector function and that H(0) = 0.
Then

H(U) = C(U, 0)X(t) − C(U, 0)
∫ t

t−r
Y (s)ds,

where U = X(t − r).
Proof of Lemma 2.3. From (1.5), we have that
(2.1) H(X(t − r)) = H(Y (t − r)) + C(X(t − r), Y (t − r))(X(t − r) − Y (t − r)).
If we set Y (t − r) = 0 in (2.1), we obtain
(2.2) H(X(t − r)) = C(X(t − r), 0)X(t − r).
Since

X(t − r) = X(t) −
∫ t

t−r
Y (s)ds,

where
Ẋ(t) = dX(t)

dt
= Y (t),

it follows from (2.2) that

H(X(t − r)) = C(X(t − r), 0)X(t) − C(X(t − r), 0)
∫ t

t−r
Y (s)ds.

Let U = X(t − r), hence the result follows. □
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Corollary 2.1. If r = 0, then (2.2) reduces to H(X) = C(X, 0)X.

3. Boundedness

First, consider a system of delay differential equations

(3.1) ẋ = F (t, xt), xt(θ) = x(t + θ), −r ≤ θ ≤ 0,

where F : R×CH → Rn is a continuous mapping and takes bounded set into bounded
sets. The following lemma is a well-known result obtained in [4].

Lemma 3.1 ([4]). Let V (t, ϕ) : R × CH → R be continuous and locally Lipschitz in
ϕ. If

(i) W (|x(t)|) ≤ V (t, xt) ≤ W1(|x(t)|) + W2
(∫ t

t−r(t) W3(|x(s)|)ds
)

, and
(ii) V̇(3.1) ≤ −W3(|x(s)|) + M,

for some M > 0, where W (r), Wi, i = 1, 2, 3, are wedges, then the solutions of (3.1)
are uniformly bounded and uniformly ultimately bounded for bound B.

To study the boundedness of solutions of (1.1) for which P (t, X, Ẋ, Ẍ) ̸= 0, we
would need to write (1.1) in the form

Ẋ = Y,(3.2)
Ẏ = Z,

Ż = −AZ − BY − H(X(t − r)) + P (t, X, Y, Z).

Our main theorem in this paper stated with respect to (3.2), which is an n-dimensional
analogue of a result in [13] is the following.

Theorem 3.1. Consider (3.2), let H(0) = 0 and suppose that
(i) there exists an n × n real continuous operator C(X, Y ) for any vectors X, Y ∈

Rn such that
H(X) = H(Y ) + C(X, Y )(X − Y )

whose eigenvalues λi(C(X, Y )), i = 1, 2, . . . , n, satisfy

(3.3) 0 < δh ≤ λi(C(X, Y )) ≤ ∆h;

(ii) the constant symmetric matrices A and B have positive eigenvalues, commute
with themselves as well with the operator C(X, Y ) for any X, Y ∈ Rn and that

∆h ≤ kδaδb,

where k (< 1) is the constant defined in (1.6);
(iii) there exist finite constants ∆0 ≥ 0, ∆1 ≥ 0, such that the vector P satisfies

(3.4) ∥P (t, X, Y, Z)∥ ≤ ∆0 + ∆1(∥X∥ + ∥Y ∥ + ∥Z∥)
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uniformly in t, for all arbitrary X, Y, Z ∈ Rn. Then, if ∆1 is sufficiently small, the
solutions to the system (3.2) are uniformly bounded and uniformly ultimately bounded
provided

r < min
{

δbδh

∆b∆h

,
2βδaδb

∆h[1 + (1 − β)∆b + 2(∆a + α + αδ−1
a )] ,

α

∆h(1 + 2αδ−1
a )

}
.

Proof. The main tool in the proof of Theorem 3.1 is the Lyapunov functional

2V (Xt, Yt, Zt) =β(1 − β)⟨BX, BX⟩ + β⟨BY, Y ⟩ + 2α⟨BY, A−1Y ⟩(3.5)
+ α⟨A−1Z, Z⟩ + α⟨A−1(AY + Z), AY + Z⟩
+ ⟨Z + AY + (1 − β)BX, Z + AY + (1 − β)BX⟩

+ λ
∫ 0

−r

∫ t

t+s
⟨Y (θ), Y (θ)⟩dθds,

where 0 < β < 1 and α, λ > 0 are constants.
Obviously, the function V (Xt, Yt, Zt) is positive definite since each term of (3.5) is

positive. Hence the condition (i) of Lemma 3.1 is satisfied. Now, let us compute the
time derivative of the functional V (Xt, Yt, Zt) for the solution (Xt, Yt, Zt) of system
(3.2). By V̇ , we denote the time derivative of the function V = V (Xt, Yt, Zt) for the
solution (Xt, Yt, Zt) of the system (3.2). Then

dV

dt
= − ⟨(1 − β)BX, H(X(t − r))⟩ − ⟨αBY, Y ⟩ − ⟨βAY, BY ⟩

− ⟨(I + 2αA−1)Z, H(X(t − r))⟩ − ⟨(αI + A)Y, H(X(t − r))⟩

− ⟨αZ, Z⟩ + ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ

+ ⟨(1 − β)BX + (αI + A)Y + (I + 2αA−1)Z, P (t, X, Y, Z)⟩.

Upon using (2.2), we obtain

dV

dt
= − ⟨(1 − β)BX, C(U, 0))X⟩ − ⟨αBY, Y ⟩ − ⟨βAY, BY ⟩

− ⟨αZ, Z⟩ − ⟨(I + 2αA−1)Z, C(U, 0)X⟩ − ⟨(αI + A)Y, C(U, 0)X⟩

+
∫ t

t−r
⟨(1 − β)BX(s) + (αI + A)Y (s)

+ (I + 2αA−1)Z(s), C(U, 0)Y (s)⟩ds

+ ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ

+ ⟨(1 − β)BX + (αI + A)Y + (I + 2αA−1)Z, P (t, X, Y, Z)⟩
= − U1 − U2 − U3 + U4 + U5,
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where

U1 =1
2⟨X, (1 − β)BC(U, 0)X⟩ + ⟨Y, βABY ⟩ + 1

2⟨αZ, Z⟩,

U2 =1
4⟨X, (1 − β)BC(U, 0)X⟩ + ⟨(αI + A)Y, C(U, 0)X⟩ + ⟨αBY, Y ⟩,

U3 =1
4⟨X, (1 − β)BC(U, 0)X⟩ + ⟨(I + 2αA−1)Z, C(U, 0)X⟩ + 1

2⟨αZ, Z⟩,

U4 =
∫ t

t−r
⟨(1 − β)BX(s) + (αI + A)Y (s)

+ (I + 2αA−1)Z(s), C(U, 0)Y (s)⟩ds + ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ

and
U5 = ⟨(1 − β)BX + (αI + A)Y + (I + 2αA−1)Z, P (t, X, Y, Z)⟩.

From (1.7), (1.8) and (3.3), we have

U1 ≥1 − β

2 δbδh∥X∥2 + βδaδb∥Y ∥2 + α

2 ∥Z∥2(3.6)

≥δ1(∥X∥2 + ∥Y ∥2 + ∥Z∥2),

where δ1 = min
{

(1−β)
2 δbδh, βδaδb,

α
2

}
.

Next, we give estimates for ⟨(αI + A)Y, C(U, 0)X⟩ and ⟨(I + 2αA−1)Z, C(U, 0)X⟩.
For some k1 > 0, k2 > 0, conveniently chosen later, we obtain

⟨(αI + A)Y, C(U, 0)X⟩ =
∥∥∥∥k1(αI + A) 1

2 Y + 1
2k−1

1 (αI + A) 1
2 C(U, 0)X

∥∥∥∥2

− ⟨k2
1(αI + A)Y, Y ⟩

− 1
4k−2

1 ⟨(αI + A)C(U, 0)X, C(U, 0)X⟩

and

⟨(I + 2αA−1)Z, C(U, 0)X⟩ =
∥∥∥∥k2(I + 2αA−1) 1

2 Z + 1
2k−1

2 (I + 2αA−1) 1
2 C(U, 0)X

∥∥∥∥2

− ⟨k2
2(I + 2αA−1)Z, Z⟩

− 1
4k−2

2 ⟨(I + 2αA−1)C(U, 0)X, C(U, 0)X⟩,

thus

U2 =
∥∥∥∥k1(αI + A) 1

2 Y + 1
2k−1

1 (αI + A) 1
2 C(U, 0)X

∥∥∥∥2

+
〈{

αB − k2
1(αI + A)

}
Y, Y

〉
+

〈1
4

{
(1 − β)B − k−2

1 (αI + A)C(U, 0)
}

C(U, 0)X, X
〉
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and

U3 =
∥∥∥∥k2(I + 2αA−1) 1

2 Z + 1
2k−1

2 (I + 2αA−1) 1
2 C(U, 0)X

∥∥∥∥2

+
〈{

αI − k2
2(I + 2αA−1)

}
Z, Z

〉
+

〈1
4

{
(1 − β)B − k−2

2 (I + 2αA−1)C(U, 0)
}

C(U, 0)X, X
〉

.

By Lemma 2.1 and Lemma 2.2, we have

U2 ≥
{

αδb − k2
1(α + ∆a)}∥Y ∥2 + 1

4δh{(1 − β)δb − 1
k2

1
(α + ∆a)∆h

}
∥X∥2 ≥ 0,(3.7)

provided
(α + ∆a)∆h

(1 − β)δb

≤ k2
1 ≤ αδb

α + ∆a

and

(3.8) ∆h ≤ αδ2
b (1 − β)

(α + ∆a)2 .

In a similar manner,
(3.9) U3 ≥ 0,

provided
(2α + δa)∆h

(1 − β)δaδb

≤ k2
2 ≤ αδa

2α + δa

and

(3.10) ∆h ≤ αδbδ
2
a(1 − β)

(2α + δa)2 .

Combining (3.8) and (3.10), we have
∆h ≤ kδaδb,

where
k = min

{
α(1 − β)δb

δa(α + ∆a)2 ,
α(1 − β)δa

(δa + 2α)2

}
< 1.

For U4, using the identity 2|⟨u, v⟩| ≤ ∥u∥2 + ∥v∥2, we obtain

|U4| ≤1
2(1 − β)∆b∆hr∥X∥2 + 1

2(α + ∆a)∆hr∥Y ∥2(3.11)

+ 1
2(1 + 2αδ−1

a )∆hr∥Z∥2 +
{1

2(1 − β)∆b∆h

+1
2(α + ∆a)∆h + 1

2(1 + 2αδ−1
a )∆h

} ∫ t

t−r
⟨Y (s), Y (s)⟩ds

+ ⟨λrY, Y ⟩ − λ
∫ t

t−r
⟨Y (θ), Y (θ)⟩dθ.
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If we choose
λ = 1

2∆h

[
(1 − β)∆b + (α + ∆a) + (1 + 2αδ−1

a )
]

in (3.11), we obtain

|U4| ≤1
2(1 − β)∆b∆hr∥X∥2 + 1

2(1 + 2αδ−1
a )∆hr∥Z∥2(3.12)

+ 1
2∆hr

[
1 + (1 − β)∆b + 2(∆a + α + αδ−1

a )
]

∥Y ∥2.

Finally, we are left with U5. Since P (t, X, Y, Z) satisfies (3.4), by Schwarz’s inequality
we obtain

|U5| ≤
[
(1 − β)∆b∥X∥ + (α + ∆a)∥Y ∥ + (1 + 2αδ−1

a )∥Z∥
]

∥P (t, X, Y, Z)∥(3.13)
≤δ2(∥X∥ + ∥Y ∥ + ∥Z∥) [∆0 + ∆1(∥X∥ + ∥Y ∥ + ∥Z∥)] ,

where δ2 = max {(1 − β)∆b, (α + ∆a), (1 + 2αδ−1
a )} .

Combining inequalities (3.6), (3.7), (3.9), (3.12) and (3.13), we obtain
dV

dt
≤ − 1

2(1 − β)[δbδh − r∆b∆h]∥X∥2

−
(

βδaδb − 1
2∆hr

[
1 + (1 − β)∆b + 2(∆a + α + αδ−1

a )
])

∥Y ∥2

− 1
2

[
α − ∆hr(1 + 2αδ−1

a )
]

∥Z∥2

+ δ2(∥X∥ + ∥Y ∥ + ∥Z∥) [∆0 + ∆1(∥X∥ + ∥Y ∥ + ∥Z∥)] .

Now if we choose

r < min
{

δbδh

∆b∆h

,
2βδaδb

∆h [1 + (1 − β)∆b + 2(∆a + α + αδ−1
a )] ,

α

∆h(1 + 2αδ−1
a )

}
,

we get
dV

dt
≤ − γ(∥X∥2 + ∥Y ∥2 + ∥Z∥2) + 3δ2∆1(∥X∥2 + ∥Y ∥2 + ∥Z∥2)

+ δ2∆0(∥X∥ + ∥Y ∥ + ∥Z∥)
= − (γ − 3δ2∆1)(∥X∥2 + ∥Y ∥2 + ∥Z∥2) + δ2∆0(∥X∥ + ∥Y ∥ + ∥Z∥).

If we choose ∆1 < γ
3δ2

, then there is some θ > 0, such that
d

dt
V (Xt, Yt, Zt) ≤ − θ(∥X∥2 + ∥Y ∥2 + ∥Z∥2) + nθ(∥X∥ + ∥Y ∥ + ∥Z∥)

= − θ

2(∥X∥2 + ∥Y ∥2 + ∥Z∥2)

− θ

2
{
(∥X∥ − n)2 + (∥Y ∥ − n)2 + (∥Z∥ − n)2

}
+ 3θ

2 n2

≤ − θ

2
(
∥X∥2 + ∥Y ∥2 + ∥Z∥2

)
+ 3θ

2 n2,
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for some n, θ > 0.
This completes the proof. □
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