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WEAVING g-FRAMES FOR OPERATORS

A. KHOSRAVI AND J. S. BANYARANI

Abstract. Bemrose et al. introduced weaving frames and later, Deepshikha et al.
generalized them to weaving K-frames. In this note, as a generalization of these
notions, we introduce approximate K-duals and investigate the properties of K-g-
frames and weaving K-g-frames. We show that woven K-g-frames and weakly woven
K-g-frames coincide. We also study perturbation and erasure of woven K-g-frames
and we show that they are stable under small perturbations. Also we generalize
some of the known results in frame theory to K-g-frames and weaving K-g-frames.

1. Introduction and Preliminaries

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [7] in
1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986
by Daubechies, Grossmann and Meyer [5] and popularized from then on. Frames
are generalizations of bases in Hilbert spaces. A frame as well as an orthonormal
basis allows that each element in the underlying Hilbert space to be written as
an unconditionally convergent series in linear combinations of the frame elements;
however, in contrast to the situation for a basis, the coefficients might not be unique.
Frames are very useful in characterization of function spaces and other fields of
applications such as filter bank theory, sigma-delta quantization, signal and image
processing and wireless communications.

Sun in [14] introduced g-frames as another generalization of frames. He showed that
frames, oblique frames, pseudo frames and fusion frames are special cases of g-frames
see also [9] and [10]. Weaving frames were introduced in [1] and investigated in [2,3,12].
In [13] we have generalized weaving frames to the Banach spaces. This concept

Key words and phrases. K-frame, g-frame, weaving K-g-frame, perturbation.
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168 A. KHOSRAVI AND J. S. BANYARANI

is motivated on distributed signal processing, see [1]. A potentional application
of weaving frames together is dealing with wireless sensor networks which may be
subjected to distributed processing under different frames. The theory can be used
in the processing of signals using Gabor frames.

Frames for operators, which are also called K-frames are more general than ordinary
frames, where K is a bounded linear operator in a separable Hilbert space H. K-
frames were introduced by Gǎvruta [8] and investigated in [15]. Because of the
higher generality of K-frames, many properties for ordinary frames may not hold
for K-frames (for example, the corresponding synthesis operator for K-frames is not
surjective). Deepshikha et .al in [6] generalized weaving frames to weaving K-frames.

Throughout this paper H denotes a separable Hilbert space with inner product ⟨·, ·⟩
and I is a finite or countable subset of Z and ¶Hi : i ∈ I♢ is a sequence of separable
Hilbert spaces. Also, for every i ∈ I, L(H,Hi) is the set of all bounded linear operators
from H to Hi, and L(H,H) is denoted by L(H). Also, GL(H) = ¶T ∈ L(H) : T is
invertible ♢. Also throughout this paper we let K ∈ L(H), with closed range.

A family ¶φi♢i∈I ⊆ H is a frame for H, if there exist constants 0 < A ≤ B < ∞
such that

A∥f∥2 ≤
∑

i∈I

♣⟨f, φi⟩♣2 ≤ B∥f∥2,

for each f ∈ H. A family ¶φi♢i∈I ⊆ H is a K-frame for H, if there exist constants
0 < A ≤ B < ∞ such that

A∥K∗f∥2 ≤
∑

i∈I

♣⟨f, φi⟩♣2 ≤ B∥f∥2,

for each f ∈ H. A sequence Λ = ¶Λi ∈ L(H,Hi) : i ∈ I♢ is called a g-frame for H
with respect to ¶Hi : i ∈ I♢ if there exist 0 < A ≤ B < ∞ such that for every f ∈ H

A∥f∥2 ≤
∑

i∈I

∥Λif∥2 ≤ B∥f∥2,

A, B are called g-frame bounds. In this case we say that ¶Λi ∈ L(H,Hi) : i ∈ I♢
is an (A,B) g-frame. We call Λ a tight g-frame if A = B and a Parseval g-frame if
A = B = 1. If only the right hand side inequality is required, Λ is called a g-Bessel

sequence see [4].
For every sequence ¶Hi♢i∈I, the space





∑

i∈I

⊕

Hi





ℓ2

=







(fi)i∈I : fi ∈ Hi, i ∈ I,
∑

i∈I

∥fi∥2 < ∞






,

with pointwise operations and the following inner product is a Hilbert space

⟨(fi)i∈I, (gi)i∈I⟩ =
∑

i∈I

⟨fi, gi⟩.
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If Λ is a g-Bessel sequence, then the synthesis operator for Λ is the linear operator

TΛ :





∑

i∈I

⊕

Hi





ℓ2

7→ H, TΛ(fi)i∈I =
∑

i∈I

Λ∗
i fi.

The adjoint of the synthesis operator is called the analysis operator and is defined by

T ∗
Λ : H 7→





∑

i∈I

⊕

Hi





ℓ2

, T ∗
Λf = (Λif)i∈I.

We call SΛ = TΛT
∗
Λ the g-frame operator of Λ and SΛf =

∑

i∈I Λ∗
i Λif , f ∈ H.

If Λ = (Λi)i∈I is a g-frame with lower and upper g-frame bounds A,B, respectively,
then the g-frame operator of Λ is a bounded, positive and invertible operator on H

and

A⟨f, f⟩ ≤ ⟨SΛf, f⟩ ≤ B⟨f, f⟩, f ∈ H,

so

A · I ≤ SΛ ≤ B · I.
Let K ∈ L(H). A sequence Λ = ¶Λi ∈ L(H,Hi) : i ∈ I♢ is called a K-g-frame, if
there exist constants 0 < A ≤ B < ∞ such that

A∥K∗f∥2 ≤
∑

i∈I

∥Λif∥2 ≤ B∥f∥2, f ∈ H.

Remark 1.1. Plainly, every g-frame is a K-g-frame, K ̸= 0, since

A

∥K∗∥2
∥K∗f∥2 ≤ A∥f∥2 ≤

∑

i∈I

∥Λif∥2 ≤ B∥f∥2.

Conversly, if K∗ is bounded from below (equivalently if K is surjective), then every
K-g-frame is an ordinary g-frame.

Gǎvruta showed that every K-frame in H is a frame for R(K) and so every element
of R(K) can be reconstructed see [8, 15]. We generalize this result to K-g-frames.

Lemma 1.1. Let K ∈ L(H) with closed range R(K). Then

(a) K ♣R(K∗): R(K∗) → R(K) and K∗ ♣R(K): R(K) → R(K∗) are isomorphisms.

(b) If ¶Λi ∈ L(H,Hi) : i ∈ I♢ is a K-g-frame with g-frame operator S, then

S ♣R(K): R(K) → S(R(K)) is an isomorphism, i.e., ¶Λi ∈ L(R(K), Hi) : i ∈ I♢
is a g-frame.

Proof. (a) Since R(K) is closed, then R(K∗) is also closed and (ker(K))⊥ = R(K∗),
(ker(K∗))⊥ = R(K). Hence, K ♣R(K∗): R(K∗) → R(K) is a bounded bijective linear
map. Now, by Banach isomorphism theorem K ♣R(K∗) is an isomorphism and similarly
K∗ ♣R(K): R(K) −→ R(K∗) is an isomorphism. Therefore, there exist A,B > 0 such
that for each y ∈ R(K)

A∥y∥ ≤ ∥K∗y∥ ≤ B∥y∥.
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(b) Since ¶Λi♢i∈I is a K-g-frame, there exist 0 < A′ < B′ < ∞ such that for each
x ∈ H

A′∥K∗(x)∥2 ≤ ⟨Sx, x⟩ ≤ B′∥x∥2,

specially for each x ∈ H, we have

A′A2∥K(x)∥2 ≤ ⟨SKx,Kx⟩ ≤ ∥S(K(x))∥ · ∥Kx∥,
so by (2.1) for each x ∈ H, we have A′A2∥K(x)∥ ≤ ∥S(K(x))∥. Therefore, S ♣R(K) is
one-to-one and S(R(K)) is closed. Now, again by Banach isomorphism theorem, we
have the result. □

A small modification in [14] gains the following result.

Lemma 1.2. Let for each i ∈ I, ¶ei,j : j ∈ Ii♢ be an orthonormal basis for Hi. Then

¶Λi♢i∈I is a K-g-frame if and only if ¶Λ∗
i (ei,j)♢i∈I,j∈Ii

is a K-frame.

In [15] the authors defined the atomic system for K and by using this idea we
introduce the following definition.

Definition 1.1. Let K ∈ L(H). A sequence ¶Λi ∈ L(H,Hi) : i ∈ I♢ is called an
atomic g-system for K, if the following conditions are satisfied:

(a) ¶Λi♢i∈I is a g-Bessel sequence;
(b) for any x ∈ H, there exists gx = (gi)i ∈ (

∑

i∈I

⊕

Hi)ℓ2 such that Kx =
∑

i∈I Λ∗
i (gi), where ∥gx∥ ≤ C∥x∥, C is a positive constant.

We recall some definitions from [12].

Definition 1.2. Let Λ = ¶Λi ∈ L(H,Hi) : i ∈ I♢ and Γ = ¶Γi ∈ L(H,Hi) : i ∈ I♢
be two g-frames for H. We call ¶Λi♢i∈I and ¶Γi♢i∈I woven g-frames if there exist
0 < A ≤ B < ∞ such that for every σ ⊂ I and every f ∈ H

A∥f∥2 ≤
∑

i∈σ

∥Λif∥2 +
∑

i∈σc

∥Γif∥2 ≤ B∥f∥2.

In this case, for convenience we say that ¶Λi♢i∈I, ¶Γi♢i∈I are an (A,B)-woven g-frame.

Proof of the following lemma is similar to [15, Theorem 3.5] which we reaffirm.

Lemma 1.3. Let ¶Λi♢i∈I be a g-Bessel sequence in H. Then ¶Λi♢i∈I is a K-g-frame

for H, if and only if there exists A > 0 such that S ≥ AKK∗, where S is the g-frame

operator for ¶Λi♢i∈I.

Remark 1.2. Since S
1

2S
1

2 = S ≥ AKK∗, by Douglas theorem, there exists C ∈ L(H)

such that K = S
1

2C.

Definition 1.3. Let K ∈ L(H) and ¶Λi ∈ L(H,Hi) : i ∈ I♢ and ¶Γi ∈ L(H,Hi) : i ∈
I♢ be K-g-frames. We say that ¶Λi♢i∈I, ¶Γi♢i∈I are woven K-g-frames if there exist
constants 0 < A ≤ B < ∞ such that for every σ ⊂ I and every f ∈ H

A∥K∗f∥2 ≤
∑

i∈σ

∥Λif∥2 +
∑

i∈σc

∥Γif∥2 ≤ B∥f∥2.

In this case we say that ¶Λi♢i∈I, ¶Γi♢i∈I are (A,B) woven K-g-frames.
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Example 1.1. Let H be a Hilbert space with orthonormal basis ¶en : n ∈ N♢ and let
Λn,Γn, K : H → H be defined by

Λn(x) = ⟨x, e5n⟩e5n + ⟨x, e5n−1⟩e5n−1,

Γn(x) = ⟨x, e5n⟩e5n + ⟨x, e5n+1⟩e5n+1,

and K(x) =
∑

n∈N⟨x, e5n⟩e5n for every x ∈ H.
Then ¶Γn : n ∈ N♢ and ¶Λn : n ∈ N♢ are woven K-g-frames.

Since K is the orthogonal projection of H onto M , the closed subspace of H
generated by ¶e5n : n ∈ N♢, then K = K∗. Now for every x ∈ H and σ ⊆ I we have

∥K∗(x)∥2 =
∑

n∈N

♣⟨x, e5n⟩♣2 ≤
∑

n∈σ

∥Λn(x)∥2 +
∑

n∈σc

∥Γn(x)∥2

=
∑

n∈σ

♣⟨x, e5n⟩♣2 +
∑

n∈σ

♣⟨x, e5n−1⟩♣2 +
∑

n∈σc

♣⟨x, e5n⟩♣2 +
∑

n∈σc

♣⟨x, e5n+1⟩♣2

≤ 3
∑

n∈N

♣⟨x, en⟩♣2 = 3∥x∥2,

and we have the result.
As we have in [12, Remark 3.2] if ¶Λi♢i∈I and ¶Γi♢i∈I are g-Bessel sequences with

bounds B and B′ and g-frame operators S and S ′, respectively, then for every σ ⊂ I,

0 ≤ Sσ ≤ S ≤ B ·I and 0 ≤ S ′
σc ≤ S ′ ≤ B′ ·I . Therefore, 0 ≤ Sσ +S ′

σc ≤ (B+B′) ·I.
Hence, ¶Λi♢i∈σ

⋃¶Γi♢i∈σc is a g-Bessel sequence with bound B + B′ and g-frame
operator Sσ + S ′

σc , where Sσf =
∑

i∈σ Λ∗
i Λif and S ′

σcf =
∑

i∈σc Γ∗
i Γif .

In this paper we try to generalize some of the known results in K-frames, weaving
frames and weaving g-frames to K-g-frames.

2. Weaving K-g-frame

In [1], the authors introduced the concept of weaving frames. In this section we
also study weaving K-g-frames.

Definition 2.1. Let K ∈ L(H). The sequences ¶Λi♢i∈I, ¶Γi♢i∈I are called a woven

atomic g-system for K, if the following conditions are satisfied:

(a) ¶Λi♢i∈I and ¶Γi♢i∈I are g-Bessel sequences;
(b) there exist positive constants C1, C2 such that for any x ∈ H, and any σ ⊂ I

there exist gx = (gi)i, g
′
x = (g′

i)i ∈ (
∑

i∈I

⊕

Hi)ℓ2 such that Kx =
∑

i∈σ Λ∗
i (gi) +

∑

i∈σc Γ∗
i (g

′
i) with ∥gx∥ ≤ C1∥x∥ and ∥g′

x∥ ≤ C2∥x∥.
Theorem 2.1. Let ¶Λi ∈ L(H,Hi) : i ∈ I♢ and ¶Γi ∈ L(H,Hi) : i ∈ I♢ be a woven

atomic g-system for K. Then ¶Λi ∈ L(H,Hi) : i ∈ I♢ and ¶Γi ∈ L(H,Hi) : i ∈ I♢ are

woven K-g-frames.

Proof. Let x ∈ H. For every y ∈ H with ∥y∥ = 1 and every σ ⊂ I, there exist
(gi)i, (g

′
i)i ∈ (

∑

i∈I

⊕

Hi)ℓ2 , such that Ky =
∑

i∈σ Λ∗
i gi +

∑

i∈σc Γ∗
i g

′
i, then

∥K∗x∥ = sup
∥y∥=1

♣⟨K∗x, y⟩♣ = sup
∥y∥=1

∣

∣

∣

∣

∣

〈

x,
∑

i∈σ

Λ∗
i gi +

∑

i∈σc

Γ∗
i g

′
i

〉∣

∣

∣

∣

∣
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≤ sup
∥y∥=1

∣

∣

∣

∣

∣

〈

x,
∑

i∈σ

Λ∗
i gi

〉∣

∣

∣

∣

∣

+ sup
∥y∥=1

∣

∣

∣

∣

∣

〈

x,
∑

i∈σc

Γ∗
i g

′
i

〉∣

∣

∣

∣

∣

= sup
∥y∥=1

∣

∣

∣

∣

∣

∑

i∈σ

⟨Λix, gi⟩
∣

∣

∣

∣

∣

+ sup
∥y∥=1

∣

∣

∣

∣

∣

∑

i∈σc

⟨Γix, g
′
i⟩
∣

∣

∣

∣

∣

≤ sup
∥y∥=1

(

∑

i∈σ

∥Λix∥2


1

2

(

∑

i∈σ

∥gi∥2


1

2

+ sup
∥y∥=1

(

∑

i∈σc

∥Γix∥2


1

2

(

∑

i∈σc

∥g′
i∥2


1

2

≤ sup
∥y∥=1

(

∑

i∈σ

∥Λix∥2 +
∑

i∈σc

∥Γix∥2


1

2











∑

i∈I

∥gi∥2





1

2

+





∑

i∈I

∥g′
i∥2





1

2







≤ (C1 + C2) sup
∥y∥=1

∥y∥
(

∑

i∈σ

∥Λix∥2 +
∑

i∈σc

∥Γix∥2


1

2

.

Therefore,
∑

i∈σ ∥Λix∥2 +
∑

i∈σc ∥Γix∥2 ≥ 1
(C1+C2)2 ∥K∗x∥2. □

Definition 2.2. We call ¶Λi♢i∈I and ¶Γi♢i∈I weakly woven K-g-frames, if for every
σ ⊂ I, ¶Λi♢i∈σ

⋃¶Γi♢i∈σc is a K-g-frame.

Lemma 2.1. Let ¶Λi♢i∈I and ¶Γi♢i∈I be K-g-frames. Suppose that for every ϵ > 0
and every two disjoint finite sets I1, J1 ⊂ I there exists a subset σ ⊂ I\(I1 ∪ J1) such

that for δ = I\(I1 ∪ J1 ∪ σ) the lower K-g-frame bound of ¶Λi♢i∈I1∪σ

⋃¶Γi♢i∈J1∪δ is

less than ϵ. Then there exists Q ⊂ I such that ¶Λi♢i∈Q

⋃¶Γi♢i∈I\Q is not a K-g-frame,

i.e, ¶Λi♢i∈I and ¶Γi♢i∈I are not weakly woven K-g-frames.

Proof. Let ϵ > 0 and for each p ∈ N, Ap = [−p, p] ∩ I where [−p, p] ∩ Z =
¶−p, . . . , 0, 1, . . . , p♢. We prove that there exist an increasing sequence ¶fn♢∞

n=1 ⊂ N, a
sequence ¶hn♢∞

n=1 ⊂ H with ∥hn∥ = 1, and sequences ¶σn♢, ¶δn♢ of subsets I with σn ⊂
Ac

n−1 = I\An−1, δn = Ac
n−1\σn, such that In = In−1 ∪ (σn ∩An), Jn = Jn−1 ∪ (δn ∩An)

satisfy both
∑

i∈In−1∪σn

∥Λi(hn)∥2 +
∑

i∈Jn−1∪δn

∥Γi(hn)∥2 <
ϵ

n
∥K∗∥2,

∑

i∈I,♣i♣≥fn+1

∥Λi(hn)∥2 +
∑

i∈I,♣i♣≥fn+1

∥Γi(hn)∥2 <
ϵ

n
∥K∗∥2.

We proceed by induction. By taking I0 = J0 = ∅, we can choose σ1 ⊂ I such that
for δ1 = σc

1 = I\σ1 the lower K-g-frame bound of ¶Λi♢i∈σ1

⋃¶Γi♢i∈δ1
is less than ϵ.

Therefore there is some h1 ∈ H with ∥h1∥ = 1 such that
∑

i∈σ1

∥Λi(h1)∥2 +
∑

i∈δ1

∥Γi(h1)∥2 < ϵ∥K∗∥2.

Since
∑

i∈I

∥Λi(h1)∥2 +
∑

i∈I

∥Γi(h1)∥2 < +∞,
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there is f1 ∈ N such that
∑

i∈I,♣i♣≥f1+1

∥Λi(h1)∥2 +
∑

i∈I,♣i♣≥f1+1

∥Γi(h1)∥2 < ϵ∥K∗∥2.

Let σi, δi, hi and fi for i = 1, 2, . . . , n− 1 with the above conditions are given. Then
Jn−1 ∩ In−1 = ∅ and In−1 ∪ Jn−1 = An−1. By the hypothesis there is σn ⊂ I\An−1

with δn = I\(An−1 ∪ σn) such that ¶Λi♢i∈In−1∪σn

⋃¶Γi♢i∈Jn−1∪δn
has lower K-g-frame

bound less than ϵ. Hence, there exist hn ∈ H with ∥hn∥ = 1 such that
∑

i∈In−1∪σn

∥Λi(hn)∥2 +
∑

i∈Jn−1∪δn

∥Γi(hn)∥2 <
ϵ

n
∥K∗∥2.

Similar to the above argument there is fn > fn−1 such that
∑

i∈I,♣i♣≥fn+1

∥Λi(hn)∥2 +
∑

i∈I,♣i♣≥fn+1

∥Γi(hn)∥2 <
ϵ

n
∥K∗∥2.

By taking In = In−1 ∪ (σn ∩ An), Jn = Jn−1 ∪ (δn ∩ An) for each n, Jn ∩ In = ∅ and
In ∪ Jn = An. Therefore,

(

∞
⋃

i=1

Ii



⊔




∞
⋃

j=1

Jj



 = I,

where ⊔ denotes a disjoint union. For

Q =
∞
⋃

i=1

Ii and Q
c =

∞
⋃

j=1

Jj,

we have

∑

i∈Q

∥Λi(hn)∥2 +
∑

i∈I\Q

∥Γi(hn)∥2 =





∑

i∈In

∥Λi(hn)∥2 +
∑

j∈Jn

∥Γi(hn)∥2





+





∑

i∈Q∩Ac
n

∥Λi(hn)∥2 +
∑

i∈Qc∩Ac
n

∥Γi(hn)∥2





≤




∑

i∈In−1∪σn

∥Λi(hn)∥2 +
∑

i∈Jn−1∪δn

∥Γi(hn)∥2





+





∑

i∈I,♣i♣≥fn+1

∥Λi(hn)∥2 +
∑

i∈I,♣i♣≥fn+1

∥Γi(hn)∥2





<
ϵ

n
∥K∗∥2 +

ϵ

n
∥K∗∥2.

So that the lower K-g-frame bound of ¶Λi♢i∈Q

⋃¶Γi♢i∈I\Q is zero. Then, it is not a
K-g-frame and the two original K-g-frames are not weakly woven. □

Corollary 2.1. Let ¶Λi♢i∈I and ¶Γi♢i∈I be K-g-frames. If they are weakly woven, then

there exist A > 0 and finite disjoint subsets J,Q ⊂ I such that for each σ ⊂ I\ (J ∪Q)
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and δ = I\(J ∪Q∪ σ) the sequence ¶Λi♢i∈J∪σ

⋃¶Γi♢i∈Q∪δ has lower K-g-frame bound

A.

In the proof of [2, Theorem 4.5 ], Casazza et al. dealt with frames, but their proof
also works for K-g-frames and by a modification in their proof, we can get the following
results.

Theorem 2.2. Let ¶Λi♢i∈I and ¶Γi♢i∈I be K-g-frames. Then the following are equiv-

alent:

(a) ¶Λi♢i∈I and ¶Γi♢i∈I are woven K-g-frames;

(b) ¶Λi♢i∈I and ¶Γi♢i∈I are weakly woven K-g-frames.

Definition 2.3. Let ¶Λi♢i∈I and ¶Γi♢i∈I be g-Bessel sequences, with bounds B,B′,

respectively. Then the operator SΓ,Λ : H → H defined by

SΓ,Λ(f) = TΓT
∗
Λ(f) =

∑

i∈I

Γ∗
i Λi(f), f ∈ H,

is a bounded linear operator with ∥SΓ,Λ∥ ≤
√
BB′. Also, S∗

Γ,Λ = SΛ,Γ and SΓ,Γ = SΓ,

see [11].

The proof of [11, Lemma 2.11] also works for K-g-frames and we have the following
result.

Lemma 2.2. Let ¶Λi♢i∈I and ¶Γi♢i∈I be g-Bessel sequences. If there exists λ > 0
such that ∥SΛ,Γ(f)∥ ≥ λ∥K∗f∥, then ¶Λi♢i∈I and ¶Γi♢i∈I are K-g-frames.

Example 2.1. Let H be a Hilbert space with orthonormal basis ¶en : n ∈ N♢ and
let Λn, Γn and K : H → H be defined by Λn(x) = ⟨x, e2n⟩e2n, Γn(x) = ⟨x, e2n⟩e2n +
⟨x, e2n+1⟩e2n+1, K(x) =

∑

n∈N⟨x, e2n⟩e2n, for every x ∈ H. Then ¶Λn : n ∈ N♢ and
¶Γn : n ∈ N♢ are woven K-g-frames for H with universal bounds 1 and 3. The reason
is similar to Example 1.1.

Proposition 2.1. Let Λ = ¶Λi ∈ L(H,Hi) : i ∈ I♢, Γ = ¶Γi ∈ L(H,Hi) : i ∈ I♢,
Λ′ = ¶Λ′

i ∈ L(H,H ′
i) : i ∈ I♢ and Γ′ = ¶Γ′

i ∈ L(H,H ′
i) : i ∈ I♢ be g-Bessel

sequences with bounds D1, D2, D3, D4, respectively. If there exists λ > 0 such that

∥(Sσ
Λ,Λ′ + Sσc

Γ,Γ′)f∥ ≥ λ∥K∗f∥ for each σ ⊂ I and f ∈ H, then ¶Λ′
i♢i∈I and ¶Γ′

i♢i∈I are

woven K-g-frames and also ¶Λi♢i∈I, ¶Γi♢i∈I are woven K-g-frames.

Proof. As we saw before, they are woven g-Bessel sequences. Suppose that λ > 0 such
that for all σ ⊂ I and f ∈ H

λ∥K∗f∥ ≤ ∥(Sσ
Λ,Λ′ + Sσc

Γ,Γ′)f∥,
then,

∥(Sσ
Λ,Λ′ + Sσc

Γ,Γ′)f∥ ≤ ∥Sσ
Λ,Λ′f∥ + ∥Sσc

Γ,Γ′f∥ = ∥(TΛT
∗
Λ′)σ(f)∥ + ∥(TΓT

∗
Γ′)σc

(f)∥

≤ ∥TΛ∥
(

∑

i∈σ

∥Λ′
if∥2


1

2

+ ∥TΓ∥
(

∑

i∈σc

∥Γ′
if∥2


1

2
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≤
√

D1

(

∑

i∈σ

∥Λ′
if∥2


1

2

+
√

D2

(

∑

i∈σc

∥Γ′
if∥2


1

2

≤
(

√

D1 +
√

D2

)

(

∑

i∈σ

∥Λ′
if∥2 +

∑

i∈σc

∥Γ′
if∥2


1

2

.

Hence,
∑

i∈σ

∥Λ′
if∥2 +

∑

i∈σc

∥Γ′
if∥2 ≥ λ2∥K∗f∥2

(
√
D1 +

√
D2)2

.

On the other hand, since S∗
Γ,Λ = SΛ,Γ, then (Sσ

Λ,Λ′ + Sσc

Γ,Γ′)∗ = Sσ
Λ′,Λ + Sσc

Γ′,Γ and we
have the result. □

Theorem 2.3. Let Λ = ¶Λi ∈ L(H,Hi) : i ∈ I♢ and Γ = ¶Γi ∈ L(H,Hi) : i ∈ I♢
be (A,B) woven K-g-frames and Λ′ = ¶Λ′

i ∈ L(H ′, H ′
i) : i ∈ I♢ and Γ′ = ¶Γ′

i ∈
L(H ′, H ′

i) : i ∈ I♢ be (A′, B′) woven K-g-frames.

(i) Then ¶Λi ⊕ Λ′
i♢i∈I and ¶Γi ⊕ Γ′

i♢i∈I are (min¶A,A′♢,max¶B,B′♢) woven K-g-

frames.

(ii) If H = H ′, Hi = H ′
i for each i ∈ I, and for every σ ⊂ I

Sσ
Λ,Λ′ + Sσ

Λ′,Λ + Sσc

Γ,Γ′ + Sσc

Γ′,Γ ≥ 0,

then ¶Λi + Λ′
i♢i∈I and ¶Γi + Γ′

i♢i∈I are woven K-g-frames, where Sσc

Γ,Γ′ =
∑

i∈σc Γ∗
i Γ

′
i.

Proof. (i) With a proof similar to the proof of [11, Proposition 2.16 ], ¶Λi ⊕ Λ′
i♢i∈I

and ¶Γi ⊕ Γ′
i♢i∈I are K-g-frames. For every σ ⊂ I and every (f, g) ∈ H ⊕H ′

∑

i∈σ

∥(Λi ⊕ Λ′
i)(f, g)∥2 +

∑

i∈σc

∥(Γi ⊕ Γ′
i)(f, g)∥2

=
∑

i∈σ

∥(Λif,Λ
′
ig)∥2 +

∑

i∈σc

∥(Γif,Γ
′
ig)∥2

=
∑

i∈σ

⟨(Λif,Λ
′
ig), (Λif,Λ

′
ig)⟩ +

∑

i∈σc

⟨(Γif,Γ
′
ig), (Γif,Γ

′
ig)⟩

=
∑

i∈σ

(∥Λif∥2 + ∥Λ′
ig∥2) +

∑

i∈σc

(∥Γif∥2 + ∥Γ′
ig∥2)

≤B∥f∥2 +B′∥g∥2 ≤ max¶B,B′♢∥(f, g)∥2,

similarly for the lower bound.
(ii) It is clear that Sσ

Λ,Λ′ + Sσ
Λ′,Λ + Sσc

Γ,Γ′ + Sσc

Γ′,Γ is a self-adjoint operator. For every
σ ⊂ I we have

Sσ
Λ+Λ′ + Sσc

Γ+Γ′ =
∑

i∈σ

(Λi + Λ′
i)

∗(Λi + Λ′
i) +

∑

i∈σc

(Γi + Γ′
i)

∗(Γi + Γ′
i)

=
∑

i∈σ

Λi
∗Λi +

∑

i∈σ

Λ′
i

∗
Λ′

i +
∑

i∈σc

Γi
∗Γi +

∑

i∈σc

Γ′
i

∗
Γ′

i

+
∑

i∈σ

(Λi
∗Λ′

i + Λ′
i

∗
Λi) +

∑

i∈σc

(Γi
∗Γ′

i + Γ′
i

∗
Γi)
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=Sσ
Λ + Sσc

Γ + Sσ
Λ′ + Sσc

Γ′ + Sσ
Λ,Λ′ + Sσ

Λ′,Λ + Sσc

Γ,Γ′ + Sσc

Γ′,Γ

≥AKK∗ + A′KK∗ = (A+ A′)KK∗.

Also, plainly ¶Λi + Λ′
i♢i∈σ ∪ ¶Γi + Γ′

i♢i∈σc is a g-Bessel sequence. □

Definition 2.4. Let Λ = ¶Λi♢i∈I and Γ = ¶Γi♢i∈I be g-Bessel sequences. Then

(a) Γ is a K-dual of Λ if for each f ∈ H, we have Kf = SΓ,Λ(f) =
∑

i∈I Γ∗
i Λi(f);

(b) Γ is an approximate K-dual of Λ if there exists 0 < r < 1 such that for every
f ∈ H,

∥K(f) − SΓ,Λ(f)∥ ≤ r∥K(f)∥.
Plainly, every K-dual is an approximate K-dual, and for the converse we have the

following result.

Proposition 2.2. Let Γ = ¶Γi♢i∈I be an approximate K-dual of Λ. Then Λ has a

K-dual and every element K(f) of R(K) can be reconstructed from ¶Γ∗
i ◦ Λi(f)♢i∈I.

Proof. Since Γ is an approximate K-dual of Λ, there exists 0 < r < 1 such that

(2.1) ∥K(f) − SΓ,Λ(f)∥ ≤ r∥K(f)∥, f ∈ H.

Now, from (2.1) it follows that SΓ,Λ(f) = 0 if and only if K(f) = 0. Therefore, we
can define U : R(K) → R(SΓ,Λ) by U(K(f)) = SΓ,Λ(f) for every f ∈ H. Hence U is
an injective bounded linear map and by using (2.1) we have

(2.2) ∥Kf − U(Kf)∥ ≤ r∥Kf∥, f ∈ H.

So, for every f ∈ H

(1 − r)∥Kf∥ ≤ ∥U(Kf)∥ ≤ (1 + r)∥Kf∥.
Hence, U has a closed range, R(U) = R(SΓ,Λ). Now by Banach isomorphism theorem
U−1 : R(SΓ,Λ) → R(K) is a bounded linear map, which can be extended to V : H →
H, by V = U−1 ◦ πR(K), where πR(K) is the orthogonal projection of H onto R(U). It
is clear that

K(f) = V ◦ SΓ,Λ(f) =
∑

i∈I

(V ◦ Γ∗
i ) ◦ Λi(f), f ∈ H.

Therefore, ¶Γi ◦ V ∗♢i∈I is a K-dual of ¶Λi♢i∈I. □

Remark 2.1. If in the above Proposision R(SΓ,Λ) ⊆ R(K), then we can regard U :
R(K) → R(K) and from (2.2) it follows that

∥g − U(g)∥ ≤ r∥g∥, g ∈ R(K).

Then ∥IR(K) − U∥ ≤ r < 1 and consequently U is invertible and the above inequality
is similar to the inequality for approximate K-dual.

A small modification in the proofs of [3, Proposition 15] and [12, Theorem 3.14]
shows that these properties hold for K-g-frames.
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3. Perturbation

In this section we study the behaviour of K-g-frames under some perturbations.
The following result shows that approximate K-duals are stable under small per-

turbation.

Theorem 3.1. Let Λ = ¶Λi ∈ L(H,Hi) : i ∈ I♢ be a g-Bessel sequence and Ψ =
¶ψi ∈ L(H,Hi) : i ∈ I♢ be an approximate K-dual (resp. K-dual) of Λ with 0 < r < 1
and upper bound C. If Γ = ¶Γi ∈ L(H,Hi) : i ∈ I♢ is a sequence such that





∑

i∈I

∥ (Λi − Γi)(f) ∥2





1

2

≤ F∥K(f)∥, f ∈ H,

and
√
CF < 1 − r (resp. CF < 1), then Ψ is an approximate K-dual of Γ.

Proof. Let B be an upper bound for Λ. Then for any f ∈ H, we have




∑

i∈I

∥Γif∥2





1

2

≤ ∥¶Λif♢i∈I∥2 + ∥¶Γif − Λif♢i∈I∥2 ≤ (
√
B +

√
F∥K∥)∥f∥,

so, Γ is a g-Bessel sequence. For any f ∈ H,

∥SΨ,Λf − SΨ,Γf∥ ≤ sup
∥g∥=1















∑

i∈I

∥(Λi − Γi)f∥2





1

2





∑

i∈I

∥ψig∥2





1

2











≤
√
CF∥Kf∥.

Hence, for every f ∈ H

∥Kf − SΨ,Γf∥ ≤ ∥Kf − SΨ,Λf∥ + ∥SΨ,Λf − SΨ,Γf∥ ≤ (r +
√
CF )∥Kf∥.

Since r +
√
CF < 1 we have the result. If Ψ is a K-dual of Λ, then SΨ,Λf = Kf and

we have ∥K − SΨ,Λ∥ ≤
√
CF < 1. □

Theorem 3.2. Let ¶Λi ∈ L(H,Hi) : i ∈ I♢ and ¶Γi ∈ L(H,Hi) : i ∈ I♢ be (A,B)
woven K-g-frames and let T ∈ L(H) and Ti, T

′
i ∈ L(Hi) for each i ∈ I. If there exist

0 < m < M < ∞ such that for each i ∈ I and fi ∈ Hi, m∥fi∥ ≤ ∥Tif∥, ∥T ′
ifi∥ ≤

M∥fi∥, then ¶Λ′
i = TiΛiT♢i∈I and ¶Γ′

i = T ′
i ΓiT♢i∈I are woven T ∗K-g-frames, with

universal bounds m2A and M2B∥T∥2. Moreover if TK∗ = K∗T , m∥f∥ ≤ ∥Tf∥, then

¶Λ′
i ∈ L(H,Hi) : i ∈ I♢ and ¶Γ′

i ∈ L(H,Hi) : i ∈ I♢ are woven K-g-frames, with

universal bounds m4A and M2B∥T∥2.

Proof. For every σ ⊂ I and every f ∈ H
∑

i∈σ

∥Λ′
if∥2 +

∑

i∈σc

∥Γ′
if∥2 =

∑

i∈σ

∥TiΛiTf∥2 +
∑

i∈σc

∥T ′
i ΓiTf∥2

≤
∑

i∈σ

∥Ti∥2∥ΛiTf∥2 +
∑

i∈σc

∥T ′
i ∥2∥ΓiTf∥2

≤ M2

(

∑

i∈σ

∥ΛiTf∥2 +
∑

i∈σc

∥ΓiTf∥2


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≤ M2B∥T∥2∥f∥2,

and similarly for every σ ⊂ I and every f ∈ H we have,
∑

i∈σ

∥Λ′
if∥2 +

∑

i∈σc

∥Γ′
if∥2 ≥ m2A∥K∗Tf∥2 = m2A∥(T ∗K)∗f∥2.

The rest of the proof is obvious. □

Corollary 3.1. Let ¶Λi ∈ L(H,Hi)♢i∈I be a K-g-frame for H and T ∈ L(H) be

invertible. Then

(i) ¶ΛiT♢i∈I is a K-g-frame, when ΓK∗ = K∗Γ;

(ii) ¶TΛi♢i∈I is a K-g-frame, when Hi ⊆ H for each i ∈ I.

Proof. Let ¶Λi♢i∈I be a K-g-frame with bounds A and B.
(i) For every x ∈ H, we have

A

∥T−1∥2
∥K∗x∥2 ≤ A♣♣TK∗x∥2 = A∥K∗(Tx)∥2

≤
∑

i∈I

∥ΛiTx∥2 ≤ B∥Tx∥2 ≤ B∥T∥2∥x∥2.

For (ii),

A

∥T−1∥2
∥K∗(x)∥2 ≤ 1

∥T−1∥2

∑

∥Λix∥2

≤
∑

∥TΛix∥2 ≤ ∥T∥2
∑

∥Λix∥2 ≤ B∥T∥2∥x∥2. □

For the erasure of K-g-frames, the following result shows that it is possible to
remove some elements of a woven K-g-frame and still have a woven K-g-frame.

Proposition 3.1. Suppose that ¶Λi♢i∈I and ¶Γi♢i∈I are (A,B) woven K-g-frames. If

J ⊂ I and
∑

i∈J

∥Λif∥2 ≤ D∥K∗f∥2,

for some, 0 < D < A, then ¶Λi♢i∈I\J and ¶Γi♢i∈I\J are (A−D,B) woven K-g-frames.

Proof. The proof is similar to the proof of [3, Proposition 16]. □

Corollary 3.2. Let ¶Λi♢i∈I be a K-g-frame with lower frame bound A. If for some

J ⊂ I and 0 < D < A,
∑

i∈J

∥Λif∥2 ≤ D∥K∗f∥2, f ∈ H,

then ¶Λi♢i∈Jc is a K-g-frame with lower bound A−D.

Definition 3.1. Let ¶Λi♢i∈I be a K-g-frame and let 0 ≤ λ1, λ2 < 1. We say that the
family ¶Γi♢i∈I is a (λ1, λ2)-perturbation of ¶Λi♢i∈I if we have

∥Λif − Γif∥ ≤ λ1∥Λif∥ + λ2∥Γif∥, for all f ∈ H.
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Theorem 3.3. Let ¶Λi♢i∈I and ¶Γi♢i∈I be woven K-g-frames and ¶Λ′
i♢i∈I, ¶Γ′

i♢i∈I be

(λ1, λ2), (µ1, µ2)-perturbations of ¶Λi♢i∈I and ¶Γi♢i∈I, respectively. Then ¶Λ′
i♢i∈I and

¶Γ′
i♢i∈I are woven K-g-frames.

Proof. A simple calculation shows that ¶Λ′
i♢i∈I and ¶Γ′

i♢i∈I are K-g-frames. For each
f ∈ H we have

∥Λ′
if∥ − ∥Λif∥ ≤ ∥Λif − Λ′

if∥ ≤ λ1∥Λif∥ + λ2∥Λif∥,
hence

1 − λ1

1 + λ2

∥Λif∥ ≤ ∥Λ′
if∥ ≤ 1 + λ1

1 − λ2

∥Λif∥.

Similarly, we have
1 − µ1

1 + µ2

∥Γif∥ ≤ ∥Γ′
if∥ ≤ 1 + µ1

1 − µ2

∥Γif∥.

Now for every σ ⊂ I and every f ∈ H

min







(

1 − λ1

1 + λ2

2

,

(

1 − µ1

1 + µ2

2






(

∑

i∈σ

∥Λif∥2 +
∑

i∈σc

∥Γif∥2



≤
∑

i∈σ

∥Λ′
if∥2 +

∑

i∈σc

∥Γ′
if∥2

≤ max







(

1 + λ1

1 − λ2

2

,

(

1 + µ1

1 − µ2

2






(

∑

i∈σ

∥Λif∥2 +
∑

i∈σc

∥Γif∥2



,

and we have the result. □

Corollary 3.3. Let ¶Λi♢i∈I and ¶Γi♢i∈I be woven K-g-frames and ¶Λ′
i♢i∈I and ¶Γ′

i♢i∈I

be sequences and 0 ≤ M1,M2 such that for every f ∈ H, and every i ∈ I

∥Λif − Λ′
if∥ ≤ M1 min¶∥Λif∥, ∥Λ′

if∥♢,
∥Γif − Γ′

if∥ ≤ M2 min¶∥Γif∥, ∥Γ′
if∥♢,

then ¶Λ′
i♢i∈I and ¶Γ′

i♢i∈I are woven K-g-frames.

Proof. It is clear that ¶Λ′
i♢i∈I and ¶Γ′

i♢i∈I are K-g-frames. From the hypothesis it
follows that for each i ∈ I, f ∈ H, we have

1

M1 + 1
∥Λif∥ ≤ ∥Λ′

if∥ ≤ (M1 + 1)∥Λif∥,
1

M2 + 1
∥Γif∥ ≤ ∥Γ′

if∥ ≤ (M2 + 1)∥Γif∥.

Now similar to the proof of the above theorem we have the result. □

Example 3.1. Let ¶Λn : n ∈ N♢, ¶Γn : n ∈ N♢, K and H be given as in Example
2.1 and Λ′

n = 1
2
Λn and Γ′

n = 1
3
Γn. Then ¶Λ′

n : n ∈ N♢, ¶Γ′
n : n ∈ N♢ are a woven

K-g-frame. It is enough to use Example 2.1 and Theorem 3.3.
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A TOTALLY RELAXED SELF-ADAPTIVE SUBGRADIENT
EXTRAGRADIENT SCHEME FOR EQUILIBRIUM AND FIXED

POINT PROBLEMS IN A BANACH SPACE

OLAWALE KAZEEM OYEWOLE1,2, HAMMED ANUOLUWAPO ABASS1,2,
AND OLUWATOSIN TEMITOPE MEWOMO1

Abstract. The goal of this paper is to introduce a Totally Relaxed Self adaptive
Subgradient Extragradient Method (TRSSEM) together with an Halpern iterative
method for approximating a common solution of Fixed Point Problem (FPP) and
Equilibrium Problem (EP) in 2-uniformly convex and uniformly smooth Banach
space. We prove the strong convergence of the sequence generated by our proposed
method. The proposed method does not require the computation of a projection
onto a feasible set, it instead requires a projection onto a Ąnite intersection of sub-
level sets of convex functions. Our result generalizes, uniĄes and extends some
related results in the literature.

1. Introduction

Let C be a nonempty, closed and convex subset of a real Banach space E with dual
space E∗. Let E be endowed with the duality pairing ⟨·, ·⟩ of element from E and E∗,

and also the corresponding norm ∥ · ∥. Let f : C × C → R ∪ ¶+∞♢ be a bifunction
such that C ⊂ int(dom(f, ·)), then for every x ∈ C, the Equilibrium Problem (EP)
(see [3, 14]), is to find a point x∗ ∈ C such that

f(x∗, y) ≥ 0, for all y ∈ C.(1.1)

We denote the EP and its solution set by EP (C, f) and Sol(C, f), respectively.

Key words and phrases. Equilibrium problem, strongly pseudomonotone, strong convergence,
Banach space, quasi-φ-nonexpansive mapping, Ąxed point.
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The EP is a generalization of many important optimization problems, such as Varia-
tional Inequality Problem (VIP), Fixed Point Problem (FPP) and so on (see [6, 14]
and the references therein). In particular, if f(x, y) = ⟨Ax, y−x⟩, where A : C → E∗,

is a nonlinear mapping, then EP (C, f) (1.1) reduces to the classical VIP introduced
by Stampacchia [47] (see also [36,38,41,52]), which is to find a point x∗ ∈ C such that

⟨Ax∗, y − x∗⟩ ≥ 0, for all y ∈ C.(1.2)

There are two important directions of research on EP: These are the existence
of solution of EP and other related problems (see [14, 29] for more details) and the
development of iterative algorithms for approximating the solution of EP, its several
generalizations and related optimization problems (see [1,12,13,33,34,42–44] and the
references therein).

In 2018, Hieu [24] introduced some methods for solving strongly pseudomonotone
and Lipschitz type bifunction EPs. We note that a bifunction f satisfies the Lipschitz
type condition, if there exist positive constants c1, c2 ∈ R such that for all x, y, z ∈ C,

the inequality

f(x, y) + f(y, z) ≥ f(x, z) − c1∥x− y∥2 − c2∥y − z∥2

holds.
In general EP, the Lipschitz type condition does not hold and when it does, finding

the constants c1 and c2 is always not an easy task. This does have effect on the
efficiency of the method involved. In addition, in the method of Hieu [24], there is
the need to first solve at least one strongly convex programming problem. Also, if the
bifunction and the feasible sets have complex structures, the computations could be
expensive and time consuming.

Furthermore, the problem of finding a common point in the set of solutions of
different generalizations of EP and the fixed point set of a nonlinear mapping in
Hilbert, Banach and Hadamard spaces have been considered by several authors in
literature (see [25,39,40,46,51,57]) and the references therein for further reading.

In 2013, Anh [9] introduced an extragradient algorithm for finding a common
element of the fixed point set of a nonexpansive mapping and solution set of an EP
involving pseudomonotone and Lipschitz type continuous bifunction in real Hilbert
space. The author proved a strong convergence result of the sequence generated by
his method under some standard conditions, see [8–10] for related results.

However, in Banach spaces, just like the extragradient method employed by Hieu
[24], many existing methods for approximating a common solution FPP and EP
involving a pseudomonotone bifunctions requires that a strongly convex programming
is solved (see [26,27] and the references therein).

To avoid the assumptions of Lipschitz continuity on the bifunction and solving
strongly convex progamming, Vinh and Gibali [53] introduced two gradient-type
iterative algorithms involving a one-step projection method for solving EP (C, f) (1.1)
and proved strong convergence results for both algorithms with an adaptive step-size
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rule which does not require the Lipschitz condition of the associated method. The
method proposed in [53] involves a projection onto a feasible set, and is known to
be computationally expensive, time and memory consuming if the feasible set is not
simple.

In an attempt to overcome this setback, Censor et al. [17] introduced the subgradient
extragradient method which uses a projection onto a halfspace. Also, He et al. [23]
introduced a TRSSEM for solving the VIP (1.2) in a real Hilbert space. Let Ci :=
¶x ∈ H : hi(x) ≤ 0♢, where hi : H → R for i = 1, 2, . . . ,m, are convex functions. In
the TRSSEM, the feasible set is given as

C := ∩m
i=1C

i.

On the other hand, for approximating a fixed point of a nonexpansive mapping T,
Mainge [31] introdued an inertial Krasnoselskij-Mann Algorithm as follows:







wn = xn + θn(xn − xn−1),

xn+1 = (1 − αn)xn + αnTwn, n ≥ 1,
(1.3)

and proved a weak convergence theorem under some mild assumptions on the sequences
¶θn♢ and ¶αn♢. The term θn(xn − xn−1) as given (1.3) is referred to as the inertial
extrapolation term. It is known that the introduction of the inertial term helps to speed
up the convergence rate of the algorithm. Due to its importance, lots of researchers
have adopted the use of the inertial technique in their quest for approximating the
solutions of fixed point and optimization problem (see [4, 5, 31] and the references
therein).

In this paper, motivated by the works of He et al. [23], Vinh and Gibali [53] and other
related results in literature, we introduce a TRSSEM for approximating a common
solution of FPP and EP in 2-uniformly convex and uniformly smooth Banach space.
We prove a strong convergence result for the sequence generated by the proposed
method under some conditions. Finally, we give some applications of our main result.
The rest of the section is organized as follows. In Section 2, we recall some important
results and definitions that will be useful in establishing our main result. In Section
3, we state our proposed method and then discuss its convergence analysis. We give
some theoretical application of our main result in Section 4 and give a concluding
remark Section 5.

2. Preliminaries

We denote the weak and the strong convergence of a sequence ¶xn♢ to a point x by
xn ⇀ x and xn → x, respectively.

Let E be a real Banach space, given a function g : E → R.
• The function g is called Gâteaux differentiable at x ∈ E, if there exists an element

E, denoted by g′(x) or ▽g(x) such that

lim
t→∞

g(x+ ty) − g(x)

t
= ⟨y, g′(x)⟩, y ∈ E,
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where g′ or ▽g(x) is called Gâteaux differential or gradient of g at x. We say g is
Gâteaux on E if for each x ∈ E, g is Gâteaux differentiable at x.

• The function g is called weakly lower semicontinuous at x ∈ E, if xn ⇀ x implies
g(x) ≤ lim inf

n→∞
g(xn). We say that a function g is weakly lower semicontinuous on E,

if for each x ∈ E, g is weakly lower semicontinuous at x.
• If g is a convex function, then it is said to be differentiable at a point x ∈ E if

the following set

∂g(x) = ¶f ∈ E : g(y) − g(x) ≥ ⟨f, y − x⟩, y ∈ E♢(2.1)

is nonempty. Each element ∂g(x) is called a subgradient of g at x or the subdifferential
of g and the inequality (2.1) is said to be the subdifferential inequality of g at x.

The function g is subdifferentiable at x, if g is subdifferntiable at every x ∈ E. It is
well known that if g is Gâteaux differentiable at x, then g is subdifferentiable at x and
∂g(x) = ¶g′(x)♢, that is, ∂g(x) is just a singleton set. For more details on Gâteaux
differentiable functions on Banach space, see [15].

Let C be a nonempty, closed and convex subset of a real Banach space with norm
∥ · ∥ and let J : E → 2E∗

be the normalized duality mapping defined by

J(x) = ¶x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2 for all x ∈ E♢,

where E∗ denotes the dual space of E and ⟨·, ·⟩ the duality pairing between the
elements of E and E∗. Alber [7], introduced a generalized projection operator ΠC an
analogue of the metric projection PC : H → C in the Hilbert space H. He defines
ΠC : E → C by

ΠC(x) = inf
y∈C

¶ϕ(y, x) for all x ∈ E♢.

In Hilbert spaces PC(x) ≡ ΠC(x).
Consider the Lyapunov functional ϕ : E × E → R

+ defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2, for all x, y ∈ E.

In the real Hilbert space, we observe that ϕ(x, y) = ∥x− y∥2. It is easy to see that

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥ + ∥y∥)2.

The functional ϕ also satisfies the following important properties:

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩(2.2)

and

ϕ


x, J−1(λJy + (1 − λ)Jz)


≤ λϕ(x, y) + (1 − λ)ϕ(x, z),(2.3)

for all x, y, z ∈ E and λ ∈ (0, 1).
Note. If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E,

ϕ(x, y) = 0 if and only if x = y, see [18, 48].
We are also concerned with the functional V : E × E∗ → R defined by

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩ + ∥x∗∥2,(2.4)
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for all x ∈ E and x∗ ∈ E∗. That is, V (x, x∗) = ϕ (x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.

It is well known that if E is a reflexive, strictly convex and smooth Banach space,
then

V (x, x∗) ≤ V (x, x∗ + y∗) − 2
〈

J−1x∗ − x, y∗
〉

,

for all x ∈ E and all x∗, y∗ ∈ E∗, see [50].
Let C be a closed and convex subset of E and T : C → C be a mapping, a point

x ∈ C is called a fixed point of T, if x = Tx. We denote the set of fixed points of
T by F (T ). Let T : C → C be a mapping, a point p ∈ C is called an asymptotic
fixed point of T (see [45]) if C contains a sequence ¶xn♢ such that xn ⇀ p and

∥xn − Txn∥ → 0 as n → ∞. We denote by F̂ (T ) the set of asymptotic fixed points

of T. A mapping T : C → C is said to be relatively nonexpansive if F̂ (T ) = F (T )
and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F (T ) (see [16, 48]). T is said to be
ϕ-nonexpansive if ϕ(Tx, Ty) ≤ ϕ(x, y) for all x, y ∈ C and quasi-ϕ-nonexpansive if
F (T ) ̸= ∅ and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F (T ).

The class of quasi-ϕ-nonexpansive mappings is more general than the class of
relatively nonexpansive mapping which requires the strict condition F (T ) = F̂ (T )
(see [16, 45,48]).

Let E be a real Banach space. The modulus of convexity of E is the function
δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf


1 −
1

2
∥x+ y∥ : ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ϵ

}

.

Recall that E is said to be uniformly convex if δE(ϵ) > 0 for any ϵ ∈ (0, 2]. E is said

to be strictly convex if ∥x+y∥
2

< 1 for all x, y ∈ E, with ∥x∥ = ∥y∥ = 1 and x ≠ y.

Also, E is p-uniformly convex if there exists a constant cp > 0 such that δE(ϵ) > cpϵ
p

for any ϵ ∈ (0, 2].
The modulus of smoothness of E is the function ρE : R+ → R

+ defined by

ρE(t) = sup


1

2
(∥x+ ty∥ − ∥x− ty∥) − 1 : ∥x∥ = ∥y∥ = 1

}

.

E is said to be uniformly smooth if limt→0
ρE(t)

t
= 0. Let 1 < q ≤ 2, then E is

q-uniformly smooth if there exists cq > 0 such that ρE(t) ≤ cqt
q for t > 0. It is

known that E is p-uniformly convex if and only if E∗ is q-uniformly smooth, where
p−1 + q−1 = 1. It is also known that every q-uniformly smooth Banach space is
uniformly smooth.

It is widely known that if E is uniformly smooth, then the duality mapping J

is norm-to-norm continuous on each bounded subset of E. The following are some
important and useful properties of J, for further details, see [2, 48].

Let C be a nonempty, closed and convex subset of a real Banach space E and
f : E × E → R ∪ ¶+∞♢ be a bifunction. f is said to be
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(i) strongly monotone on C, if there exists γ ≥ 0 such that for any x, y ∈ C

f(x, y) + f(y, x) ≤ −γ∥x− y∥2;

(ii) monotone on C, if

f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;

(iii) pseudomonotone on C, if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, for all x, y ∈ C;

(iv) strongly γ-pseudomonotone on C, if there exists γ > 0 such that for any
x, y ∈ C

f(x, y) ≥ 0 ⇒ f(y, x) ≤ −γ∥x− y∥2.

From the above, it is clear (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). The converse is generally not
true (see [53]).

We now give the following useful and important lemmas that are needed in estab-
lishing our main results.

Lemma 2.1 ([35]). Let E be a 2-uniformly convex and smooth Banach space. Then

for every x, y ∈ E

ϕ(x, y) ≥ ν∥x− y∥2,

where ν > 0 is the 2-uniformly convexity constant of E.

Lemma 2.2 ([28]). Let E be a smooth and uniformly convex real Banach space and

let ¶xn♢ and ¶yn♢ be two sequences in E. If either ¶xn♢ or ¶yn♢ is bounded and

ϕ(xn, yn) → 0 as n → ∞, then ∥xn − yn∥ → 0 as n → ∞.

Lemma 2.3 ([7]). Let C be a nonempty, closed and convex subset of a reflexive,

strictly convex and smooth Banach space X. If x ∈ E and q ∈ C, then

q = ΠCx ⇐⇒ ⟨y − q, Jx− Jq⟩ ≤ 0, for all y ∈ C,(2.5)

and

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x), for all y ∈ C, x ∈ X.(2.6)

Lemma 2.4 ([55]). Fix a number s > 0. A real Banach space X is uniformly convex

if and only if there exists a continuous strictly increasing function ψ : [0,∞) → [0,∞)
with ψ(0) = 0 such that

∥tx+ (1 − t)y∥2 ≤ t∥x∥2 + (1 − t)∥y∥2 − t(1 − t)ψ(∥x− y∥),

for all x, y ∈ X, λ ∈ [0, 1], with ∥x∥ < s and ∥y∥ < s.

Lemma 2.5 ([54]). Let ¶an♢ be a sequence of nonnegative real numbers satisfying the

following relation

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,

where
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(a) ¶αn♢ ⊂ [0, 1], lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞;

(b) lim sup
n→∞

σ ≤ 0;

(c) γn ≥ 0, n ≥ 1, and
∑∞

n=1 γn < ∞.

Then, lim
n→∞

an = 0.

Lemma 2.6 ([32]). Let ¶an♢ be a sequence of real numbers such that there exists a

subsequence ¶nj♢ of ¶n♢ such that anj
< anj+1 for all j ∈ N. Then, there exists a

nondecreasing subsequence ¶mn♢ ⊂ N such that mn → ∞ and the following properties

are satisfied by all (sufficiently large) numbers n ∈ N: amn
< amn+1 and an < amn+1.

In fact, mn = max¶i ≤ k : ai < ai+1♢.

3. Main Result

In this section, we give a concise and precise statement of our algorithm, discuss
some of its elementary properties and its convergence analysis. The convergence
analysis is given in the next section.

Statement 3.1. Let C be a nonempty, closed and convex subset of a 2-uniformly convex
and uniformly smooth real Banach space E with dual space E∗. For i = 1, 2, . . . ,m,
let hi : E → R be a family of convex, weakly lower semicontinous and Gâteaux
differentiable functions. Let S : E → E be a quasi-ϕ-nonexpansive mapping and
f : C × C → R ∪ ¶+∞♢ be a strongly γ-pseudomonotone bifunction satisfying the
following assumptions.

Assumption 3.2. We require the following assumptions for our operator and the solu-
tion set:

A1. f(x, ·) is convex and lower semi-continuous for every x ∈ E;
A2. f is strongly γ-pseudomonotone on C,

A3. Sol(C, f) ̸= ∅;
A4. if ¶xn♢∞

n=0 ⊂ E is bounded, then the sequence ¶g(xn) ∈ ∂(f(xn, ·))(xn)∞
n=0♢ is

bounded.

Note. The assumption A4. is quite standard assumption and it holds for example
when f(x, ·) is bounded on bounded subsets (see [11]).

Assumption 3.3. To prove a strong convergence result using Algorithm 3.4, the follow-
ing conditions are needed.

B1. The feasible set C is defined by C := ∩m
i=1C

i, where Ci := ¶z ∈ E : hi(z) ≤ 0♢;

B2. lim
n→∞

αn = 0 and
∞
∑

n=0
αn = ∞;

B3. 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1;

B4.
∞
∑

n=1
ϕ(xn, xn−1) < ∞.

B5. lim
n→∞

θn

αn
= 0.
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Algorithm 3.4. (TRSSEM) for EP (C, f)

Step 0. Choose the sequences ¶θn♢, ¶αn♢ and ¶γn♢ ⊂ (0, 1) satisfying Assumption
3.3, let µ ∈ (0, 1) and β0 > 0. For u ∈ C, select initial points x0 and x1 in C. Set
n = 1.

Step 1. For i = 1, 2 . . . ,m, and given the current iterate wn, construct the family
of half spaces

Ci
n := ¶z ∈ E : hi(wn) + ⟨h′

i(wn), z − wn⟩ ≤ 0♢

and set

Cn = ∩m
i=1C

i
n.

Let wn := J−1(Jxn + θn(Jxn−1 − Jxn)). Take g(wn) ∈ ∂(f(wn, ·))(wn), n ≥ 1, and
compute

zn = ΠCn
J−1(Jwn − βng(wn)),(3.1)

where βn is given by

βn+1 =







min
{

βn,
µ∥wn−zn∥

∥g(wn)−g(zn)∥

}

, if g(wn) ̸= g(zn),

βn, otherwise.
(3.2)

Step 2. If wn = zn (wn ∈ Sol(C, f)), then set wn = yn and go to Step 3. Otherwise,
compute the next iterate by

yn = ΠQn
J−1(Jwn − βng(zn)),(3.3)

where

Qn = ¶w ∈ E : ⟨w − zn, Jwn − βng(wn) − Jzn⟩ ≤ 0♢.

Step 3. Compute

(3.4) xn+1 = J−1((1 − αn)Ju+ αn(1 − γn)Jyn + γnJSyn).

Step 4. Set n := n+ 1 and go to Step 1.

Lemma 3.1. If wn = zn, then wn ∈ Sol(C, f).

Proof. Suppose wn = zn, then by (2.5) and (3.1), we have

⟨Jwn − βng(wn) − Jwn, y − zn⟩ ≤ 0, y ∈ C,

or equivalently

(3.5) ⟨g(wn), y − wn⟩ ≥ 0, for all y ∈ C.

Therefore, from (3.5) and the definition of the subdifferential f in the second argument,
we obtain

f(wn, y) = f(wn, y) − f(wn, wn) ≥ ⟨g(wn), y − wn⟩ ≥ 0.

Hence, wn ∈ Sol(C, f). □
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Lemma 3.2 ([56]). The sequence ¶βn♢ generated by (3.2) is a motonically decreasing

sequence and

lim
n→∞

βn = β ≥ min


µ

L
, β0

}

.

Remark 3.1. Note that if wn = zn and wn = Swn we are at a common solution of
the EP (C, f) and fixed point of the mapping S. In our convergence analysis, we will
assume implicitly that this does not occur after finitely many iterations so that our
Algorithm 3.4 generates an infinite sequence satisfying, in particular wn ̸= zn and
wn ̸= Swn for all n ∈ N.

We now prove some lemmas which are required components of the main result.

Lemma 3.3. The sequence ¶xn♢ generated by Algorithm 3.4 is bounded.

Proof. Let x∗ ∈ Sol(C, f), then we have from (2.6), that

ϕ(x∗, yn) =ϕ(x∗,ΠQn
J−1(Jwn − βng(wn)))

≤ϕ(x∗, J−1(Jwn − βng(zn))) − ϕ(yn, J
−1(Jwn − βng(wn)))

=∥x∗∥2 − 2⟨x∗, Jwn − βng(zn)⟩ − ∥yn∥2 + 2⟨yn, Jwn − βng(zn)⟩

=ϕ(x∗, wn) − ϕ(yn, wn) + 2βn⟨x∗ − yn, g(zn)⟩

=ϕ(x∗, wn) − (ϕ(yn, zn) + ϕ(zn, wn)

+ 2⟨yn − zn, Jzn − Jwn⟩) + 2βn⟨x∗ − yn, g(zn)⟩

=ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn)

+ 2⟨yn − zn, Jwn − Jzn⟩ + 2βn⟨x∗ − yn, g(zn)⟩.(3.6)

Now, we have from (3.6) that

2βn⟨x∗ − yn, g(zn)⟩ =2βn⟨x∗ − zn, g(zn)⟩ + 2βn⟨zn − yn, g(zn)⟩

=2βn⟨x∗ − zn, g(zn)⟩ + 2⟨yn − zn,−βng(zn)⟩.(3.7)

Substituting (3.7) into (3.6) and using the strongly pseudomonotonicity of f, we
obtain

ϕ(x∗, yn) =ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn) + 2⟨yn − zn, Jwn − Jzn⟩

+ 2βn⟨x∗ − zn, g(zn)⟩ + 2⟨yn − zn,−βng(zn)⟩

=ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn) + 2⟨yn − zn, Jwn − βng(zn) − Jzn⟩

+ 2βn⟨x∗ − zn, g(zn)⟩

≤ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn)

+ 2βn⟨yn − zn, Jwn − βng(zn) − Jzn⟩ + 2βnf(zn, x
∗)

≤ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn)

− 2βnγϕ(x∗, zn) + 2⟨yn − zn, Jwn − βng(zn) − Jzn⟩

≤ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn) + 2⟨yn − zn, Jwn − βng(zn) − Jzn⟩.(3.8)
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By the definition of Qn and Cauchy-Schwartz inequality, we have

⟨yn − zn, Jwn − βng(zn) − Jzn⟩ =2⟨yn − zn, Jwn − βng(zn) − Jzn⟩

+ 2βn⟨yn − zn, g(wn) − g(zn)⟩

≤2βn∥yn − zn∥∥g(wn) − g(zn)∥.(3.9)

Using (3.2) and Lemma 2.1 in (3.9), we get

⟨yn − zn, Jwn − βng(zn) − Jzn⟩ ≤2
µβn

βn+1

∥yn − zn∥∥wn − zn∥

≤2
µβn

βn+1

√

ϕ(yn, zn)

ν

√

ϕ(zn, wn)

ν

≤
µβn

νβn+1

(ϕ(yn, zn) + ϕ(zn, wn)).(3.10)

Therefore, from (3.8) and (3.10), we have

ϕ(x∗, yn) ≤ ϕ(x∗, wn) −



1 −
µβn

νβn+1



(ϕ(yn, zn) + ϕ(zn, wn)).(3.11)

From (2.3) and (3.4), we have

ϕ(x∗, xn+1) =ϕ(x∗, J−1(αnJu+ (1 − αn)(1 − γn)Jun + γnJSyn))

=ϕ(x∗, J−1(αnJu+ (1 − αn)(1 − γn)Jyn + (1 − αn)γnJSyn)

≤αnϕ(x∗, u) + (1 − αn)(1 − γn)ϕ(x∗, yn) + (1 − αn)γnϕ(x∗, Syn)

≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, yn)

≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn)

−



1 −
µβn

νβn+1



(ϕ(yn, zn) + ϕ(zn, wn))

≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn).(3.12)

From Algorithm 3.4, we have

ϕ(x∗, wn) =ϕ(x∗, J−1(Jxn + θn(Jxn−1 − Jxn)))

≤(1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1),

hence

ϕ(x∗, xn+1) ≤ αnϕ(x∗, u) + (1 − αn)((1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1))

≤ αnϕ(x∗, u) + (1 − αn)(ϕ(x∗, xn) + ϕ(x∗, xn−1))

≤ max¶ϕ(x∗, u), (ϕ(x∗, xn) + ϕ(x∗, xn−1))♢

...

≤ max¶ϕ(x∗, u), (ϕ(x∗, x1) + ϕ(x∗, x0))♢, n ≥ 1.(3.13)
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This implies that ¶ϕ(x∗, xn)♢ is bounded. Therefore, ¶xn♢ is bounded. Consequently,
¶g(yn)♢ is bounded and by the nonexpansiveness of the projection operator and the
mapping S, we have that ¶zn♢, ¶wn♢, ¶yn♢ and ¶Syn♢ are bounded. □

The boundedness of ¶xn♢ implies that there is at least one weak limit point. The
next result provides a condition under which each of such weak limit is in the solution
set of the equilibrium problem.

Lemma 3.4. Let ¶xnk
♢ be a subsequence of ¶xn♢ converging weakly to a point p ∈ C

and suppose that the conditions ∥wni
− zni

∥ → 0 and ∥wni
− xni

∥ → 0 as i → ∞ hold

on this subsequence. Then p ∈ Sol(C, f).

Proof. From Lemma 2.5 and the definition of subdifferential, we have

0 ≤ ⟨x− zni
, Jzni

− (Jwni
− βni

g(wni
))⟩

= ⟨x− zni
, Jzni

− Jwni
⟩ + ⟨x− zni

, βni
g(wni

)⟩

= ⟨x− zni
, Jzni

− Jwni
⟩ + ⟨x− wni

, βni
g(wni

)⟩ + ⟨wni
− zni

, βni
g(wni

)⟩

≤ ⟨x− zni
, Jzni

− Jwni
⟩ + ⟨wni

− zni
, βni

g(wni
)⟩ + f(wni

, x).(3.14)

Passing limit to the inequality in (3.14), we have

f(p, x) ≥ 0, for all x ∈ C. □

In proving the strong convergence of our Algorithm 3.4, the underlying idea relies on
certain estimate and other classical properties of the iterates which are given in the
next lemmas below.

Lemma 3.5. The sequence ¶xn♢ generated by Algorithm 3.4 satisfies the following

estimates:

(i) an+1 ≤ (1 − αn)an + αnbn;

(ii) −1 ≤ lim sup
n→∞

bn < +∞,

where an = ϕ(x∗, xn) and bn = θn

αn
ϕ(x∗, xn−1) + 2⟨Ju− Jx∗, xn+1 − x∗⟩.

Proof. Let pn = (1 − γn)Jyn + γnJSyn, then from (2.4), we have

ϕ(x∗, xn+1) =ϕ(x∗, J−1(αnJu+ (1 − αn)Jpn))

≤V (x∗, αnJu+ (1 − αn)Jpn − αn(Ju− Jx∗))

− 2⟨−αn(Ju− Jx∗), J−1(αnJu+ (1 − αn)Jpn)⟩

≤V (x∗, αnJx
∗ + (1 − αn)Jpn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤αnV (x∗, Jx∗) + (1 − αn)V (x∗, Jpn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤αnϕ(x∗, x∗) + (1 − αn)ϕ(x∗, pn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤(1 − αn)ϕ(x∗, pn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤(1 − αn)(1 − γn)ϕ(x∗, yn) + γn(1 − αn)ϕ(x∗, Syn)

+ 2αn⟨Ju− Jx∗, xn+1 − x∗⟩
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≤(1 − αn)ϕ(x∗, yn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤(1 − αn)ϕ(x∗, wn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

=(1 − αn)((1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤(1 − αn)ϕ(x∗, xn) + αn



θn

αn

ϕ(x∗, xn−1) + 2⟨Ju− Jx∗, xn+1 − x∗⟩



.

This established (i). Next we proof (ii). Since ¶xn♢ is bounded, then we have

sup
n≥0

bn ≤ sup



θn

αn

ϕ(x∗, xn−1) + 2∥Ju− Jx∗∥∥xn+1 − x∗∥



< ∞.

This implies that lim sup
n→∞

bn < ∞. Next we show that lim sup
n→∞

bn ≥ −1. Assume the

contrary, that is lim sup
n→∞

bn ≤ −1. Then there exists n0 ∈ N such that bn < −1 for all

n ≥ n0. Then for all n0 ∈ N, we get from (i), that

an+1 ≤(1 − αn)an + αnbn

<(1 − αn)an − αn

=an − αn(an + 1) ≤ an − αn.

Taking lim sup of both sides in the last inequality, we have

lim sup
n→∞

an ≤ an0
− lim

n→∞

n
∑

i=n0

αi = −∞.

This contradicts the definition of ¶an♢ as a nonnegative integer.
Therefore, lim sup

n→∞
bn ≥ −1. □

We now present our main theorem.

Theorem 3.5. Let C be a nonempty, closed and convex subset of a 2-uniformly convex

and uniformly smooth real Banach space E and hi : E → R be a family of convex,

weakly lower semicontinuous and Gâteaux differentiable functions, for i = 1, 2, . . . ,m.
Let f : E × E → R ∪ ¶+∞♢ be a bifunction satisfying conditions A1-A4, let S :
C → C be a quasi-ϕ-nonexpansive mapping such that Γ = ¶Sol(C, f) ∩ F (S)♢ ̸= ∅.
Let ¶θn♢, ¶βn♢ and ¶αn♢ be sequences in (0, 1) satisfying Assumption 3.3, then the

sequence ¶xn♢ generated by Algorithm 3.4 converges strongly to p = ΠΓu, where ΠΓ is

the projection of C onto Γ.

Proof. Let p ∈ Γ, we divide the proof into two cases.
Case I Suppose that there exists n0 ∈ N such that ¶ϕ(x∗, xn)♢ is monotone non-

increasing. Since ¶ϕ(x∗, xn)♢ is bounded, then it is convergent and

ϕ(x∗, xn) − ϕ(x∗, xn+1) → 0, as n → ∞.(3.15)

Since pn = J−1((1 − γn)Jyn + γnJSy), then from Lemma 2.4, we have

ϕ(x∗, pn) = ϕ(x∗, J−1((1 − γn)Jyn + γnJSy))
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= V (x∗, (1 − γn)Jyn + γnJSy)

= ∥x∗∥2 − 2⟨x∗, (1 − γn)Jyn + γnJSy⟩ + ∥(1 − γn)Jyn + γnJSy∥2

= ∥x∗∥2 − 2(1 − γn)⟨x∗, Jyn⟩ − 2γn⟨x∗, JSyn⟩ + (1 − γn)∥yn∥2 + γn∥Syn∥2

− γn(1 − γn)ψ(∥Jyn − JSyn∥)

= ϕ(x∗, yn) + ϕ(x∗, Syn) − γn(1 − γn)ψ(∥Jyn − JSyn∥)

≤ ϕ(x∗, yn) − γn(1 − γn)ψ(∥Jyn − JSyn∥).(3.16)

Therefore, from (3.4), (3.11) and (3.16), we have

ϕ(x∗, xn+1) = ϕ(x∗, J−1(αnJu+ (1 − αn)Jpn))

≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, pn)

≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, yn) − γn(1 − γn)ψ(∥Jyn − JSyn∥)

≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn) − γn(1 − γn)ψ(∥Jyn − JSyn∥)

= αnϕ(x∗, u) + (1 − αn)((1 − θn)ϕ(x∗, xn)

+ θnϕ(x∗, xn−1)) − γn(1 − γn)ψ(∥Jyn − JSyn∥)

≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, xn) + θnϕ(x∗, xn−1)

− γn(1 − γn)ψ(∥Jyn − JSyn∥).(3.17)

Hence,

γn(1 − γn)ψ(∥Jyn − JSyn∥) ≤αn



θn

αn

ϕ(x∗, xn−1) + ϕ(x∗, u)



+ (1 − αn)ϕ(x∗, xn) − ϕ(x∗, xn−1).

By using αn → 0, we obtain γn(1 − γn)ψ(∥Jyn − JSyn∥) → 0 as n → ∞. Therefore,
by condition B3 and the property of ψ, we get

lim
n→∞

∥Jyn − JSyn∥ = 0.

Since J−1 is norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞

∥yn − Syn∥ = 0.(3.18)

Furthermore, from (3.12), we have

ϕ(x∗, yn) ≤ ϕ(x∗, wn) −



1 −
µβn

νβn+1



(ϕ(yn, zn) + ϕ(zn, wn)).

Therefore, it follows from (3.4) that

ϕ(x∗, xn+1) ≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, pn)

≤αnϕ(x∗, u) + (1 − α)ϕ(x∗, yn)

≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn)

− (1 − αn)



1 −
µβn

νβn+1



(ϕ(yn, zn) + ϕ(zn, wn))
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≤αnϕ(x∗, u) + (1 − αn)((1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1))

− (1 − αn)



1 −
µβn

νβn+1



(ϕ(yn, zn) + ϕ(zn, wn)).

This implies that

(1 − αn)



1 −
µβn

νβn+1



(ϕ(yn, zn) + ϕ(zn, wn)) ≤αn



ϕ(x∗, u) +
θn

αn

ϕ(x∗, xn−1



+ (1 − αn)ϕ(x∗, xn) − ϕ(x∗, xn+1).

By condition B2 and (3.15), we have (ϕ(yn, zn) + ϕ(zn, wn)) → 0, as n → ∞, thus

lim
n→∞

ϕ(yn, zn) = lim
n→∞

ϕ(zn, wn) = 0.

Since the sequences ¶yn♢, ¶zn♢ and ¶wn♢ are bounded, we obtain by Lemma 2.2, that

lim
n→∞

∥yn − zn∥ = lim
n→∞

∥zn − wn∥ = 0.(3.19)

From Algorithm 3.4 and condition B4, we obtain

lim
n→∞

ϕ(wn, xn) = lim
n→∞

θnϕ(xn, xn−1) = 0,

and by Lemma 2.2, we get

lim
n→∞

∥wn − xn∥ = 0.(3.20)

It is easy to see from (3.19) and (3.20), that

lim
n→∞

∥xn − zn∥ = ∥xn − yn∥ = 0.(3.21)

Observe also that

ϕ(yn, pn) = ϕ(yn, J
−1((1 − γn)Jyn + γn)JSyn) → 0, as n → ∞.(3.22)

Hence, by Lemma 2.2, we obtain

lim
n→∞

∥yn − pn∥ = 0.

This and (3.21), imply

lim
n→∞

∥xn − pn∥ = 0.

Furthermore,

∥Jxn+1 − Jpn∥ = αn∥Ju− Jpn∥ = αn∥Ju− Jpn∥ → 0, as n → ∞.

Since J−1 is norm-to-norm continuous on bounded subsets of E, we have ∥xn+1−pn∥ →
0, as n → ∞. Hence,

∥xn+1 − xn∥ ≤ ∥xn+1 − pn∥ + ∥pn − xn∥ → 0, as n → ∞.(3.23)

Now, since the sequence ¶xn♢ is bounded there exists a subsequence ¶xni
♢ of ¶xn♢ such

that xn ⇀ q ∈ E. Then, by (3.19), (3.20) and Lemma 3.4, we obtain q ∈ Sol(C, f).

Also, since ∥yn − Syn∥ → 0 and ∥xn − yn∥ → 0 as n → ∞, then we have q ∈ F̂ (S) =
F (S). Therefore, q ∈ Γ.
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We now show that ¶xn♢ converges strongly to a point x∗ = ΠΓu. Let ¶xni
♢ be a

subsequence of ¶xn♢ such that xni
⇀ q and

lim sup
n→∞

⟨Ju− Jx∗, xn+1 − x∗⟩ = lim
i→∞

⟨Ju− Jx∗, xni+1 − x∗⟩.

Since ∥xn+1 − xn∥ → 0 as n → ∞, we have by (2.5), that

lim sup
n→∞

⟨Ju− Jx∗, xn+1 − x∗⟩ = lim
i→∞

⟨Ju− Jx∗, xni+1 − x∗⟩

=⟨Ju− Jx∗, q − x∗⟩ ≤ 0.(3.24)

It follows from Lemma 2.5, Lemma 3.5 (i) and (3.24), that ϕ(p, xn) → as n → ∞.

Therefore, by Lemma 2.2, we obtain

lim
n→∞

∥xn − x∗∥ = 0.

Case II Suppose there exists a subsequence ¶xnj
♢ of ¶xn♢ such that

ϕ(x∗, xnj+1) > ϕ(x∗, xnj
), for all n ∈ N.

From Lemma 2.6, there exists a non-decreasing sequence ¶mn♢ ⊂ N such thatmn → ∞
and the following inequalities hold for all n ∈ N:

ϕ(x∗, xmn
) ≤ ϕ(x∗, xmn+1) and ϕ(p, xn) ≤ ϕ(x∗, xmn+1).(3.25)

We note from (3.11) and (3.12), that

ϕ(x∗, xmn
) ≤ϕ(x∗, xmn+1) ≤ αmn

ϕ(x∗, u)

+ (1 − αmn
)



ϕ(x∗, wmn
) −



1 −
µβmn

νβmn+1



(ϕ(ymn
, zmn

) + ϕ(zmn
, wmn

))

]

≤αmn
ϕ(x∗, u) + (1 − αmn

) (((1 − θmn
)ϕ(x∗, xmn

) + θmn
ϕ(x∗, xmn−1)))

− (1 − αmn
)



1 −
µβmn

νβmn+1



(ϕ(ymn
, zmn

) + ϕ(zmn
, wmn

))

≤αmn



ϕ(x∗, u) +
θmn

αmn

ϕ(x∗, xmn−1)



− (1 − αmn
)



1 −
µβmn

νβmn+1



(ϕ(ymn
, zmn

) + ϕ(zmn
, wmn

)).

Hence,

(1 − αmn
)



1 −
µβmn

νβmn+1



× (ϕ(ymn
, zmn

) + ϕ(zmn
, wmn

))

≤αmn



ϕ(x∗, u) +
θmn

αmn

ϕ(x∗, xmn−1)



+ (1 − αmn
)ϕ(x∗, xmn

) − ϕ(x∗, xmn
).

Since αmn
→ 0 as n → ∞, it follows that


1 −
µβmn

νβmn+1



(ϕ(ymn
, zmn

) + ϕ(zmn
, wmn

)) → 0, as n → ∞,
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hence

lim
n→∞

ϕ(ymn
, zmn

) = lim
n→∞

ϕ(zmn
, wmn

) = 0.

Since ¶xmn
♢, ¶ymn

♢ and ¶wmn
♢ are bounded, we have

lim
n→∞

∥ymn
− zmn

∥ = lim
n→∞

∥zmn
− wmn

∥ = 0.

Following similar method as in Case I, we obtain

lim
n→∞

∥wmn
− Swmn

∥ = lim
n→∞

∥xmn+1 − xmn
∥ = 0.(3.26)

By Lemma 3.4 and (3.26), we obtain a weak limit q ∈ E of ¶xmn
♢ such that q ∈ Γ.

Again, since ¶xmn
♢ is bounded, we can choose a sequence ¶xmn

♢ of ¶xmn
♢, subse-

quencing if necessary such that xmn
→ q as n → ∞ and

lim sup
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩ = lim
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩.

Hence, from (2.5), we have

lim sup
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩ = lim
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩

≤⟨Ju− Jx∗, q − x∗⟩ ≤ 0.(3.27)

From (3.25), we have

0 ≤ϕ(x∗, xmn+1) − ϕ(x∗, xmn
)

≤(1 − αmn
)ϕ(x∗, xmn

)

+ αmn



θmn

αmn

ϕ(x∗, xmn−1) + 2⟨Ju− Jx∗, xmn+1 − x∗⟩



− ϕ(x∗, xmn
).

That is

ϕ(x∗, xmn
) ≤

θmn

αmn

ϕ(x∗, xmn−1) + 2⟨Ju− Jx∗, xmn+1 − x∗⟩.(3.28)

Hence, by condition (B5) and (3.27), we obtain ϕ(x∗, xmn
) → 0 as n → ∞ and Lemma

2.2 implies ∥xmn
− x∗∥ → 0 as n → ∞. Consequently, ∥xn − x∗∥ → 0 as n → ∞.

Therefore, the sequence ¶xn♢ converges strongly to x∗ = ΠΓu. □

4. Applications

In this section, we present some theoretical applications of our main result.

4.1. Variational Inequalities Problem. Suppose we define the f in EP (C, f) (1.1),
by:

f(x, y) :=







⟨Ax, y − x⟩, if x, y ∈ C,

+∞, otherwise,
(4.1)
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where A : C → E∗ is a strongly γ-pseudomonotone mapping. Then EP (C, f) (1.1)
reduces to V IP (C,A), that is to find x∗ ∈ C such that

(4.2) ⟨Ax∗, y − x∗⟩ ≥ 0, for all y ∈ C.

We denote the set of solution of (4.2) by Sol(C,A). Recall an operator A is said to
be strongly γ-pseudomonotone, if there exists γ > 0 such that for any x, y ∈ C

⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, y − x⟩ ≥ γϕ(y, x).

In this situation, Algorithm 3.4 when modified provides a new method for solving
variational inequality problems and fixed point problem for a quasi-ϕ-nonexpansive
mapping. We give the new method as follows.

Algorithm 4.1. (TRSSEM) for V IP (C,A)

Step 0. Choose the sequences ¶θn♢, ¶αn♢ and ¶γn♢ ⊂ (0, 1) satisfying Assumption
3.3, take η, ρ ∈ (0, 1) and β0 > 0. For u ∈ C, select initial points x0 and x1 in C. Set
n = 1.

Step 1. For i = 1, 2, . . . ,m, and given the current iterate wn, construct the family
of half spaces

Ci
n := ¶z ∈ E : hi(wn) + ⟨h′

i(wn), z − wn⟩ ≤ 0♢

and set

Cn = ∩m
i=1C

i
n.

Let wn := J−1(Jxn + θn(Jxn−1 − Jxn)). Compute

zn = ΠCn
J−1(Jwn − βnAwn),(4.3)

where βn is given by

βn+1 =







min
{

βn,
µ∥wn−zn∥

∥g(wn)−g(zn)∥

}

, if g(wn) ̸= g(zn),

βn, otherwise.
(4.4)

Step 2. If wn = zn (wn ∈ Sol(C,A)), then set wn = yn and go to Step 3. Otherwise,
compute the next iterate by

yn = ΠQn
J−1(Jwn − βnAzn),(4.5)

where

Qn = ¶w ∈ E : ⟨w − zn, Jwn − βnAwn − Jzn⟩ ≤ 0♢.

Step 3. Compute

(4.6) xn+1 = J−1((1 − αn)Ju+ αn(1 − γn)Jyn + γnJSyn).

Step 4. Set n := n+ 1 and go to Step 1.
A convergence result for solving VIP(C,A) (4.2) is given below without proof.
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Theorem 4.2. Let C be a nonempty, closed and convex subset of a 2-uniformly

convex and uniformly smooth real Banach space E and hi : E → R be a family

of convex, weakly lower semicontinuous and Gâteaux differentiable functions, for

i = 1, 2, . . . ,m. Let A : C → E∗ be a strongly γ-pseudomonotone operator that is

bounded on bounded sets, let S : E → E be a quasi-ϕ-nonexpansive mapping such that

Γ = ¶Sol(C,A)∩F (S)♢ ≠ ∅. Let ¶θn♢, ¶βn♢ and ¶αn♢ be sequences in (0, 1) satisfying

Assumption 3.3, then the sequence ¶xn♢ generated by Algorithm 4.1 converges strongly

to p = ΠΓu, where ΠΓ is the projection of C onto Γ.

4.2. Fixed Point Problem (FPP). Given a closed set C ⊂ E, a fixed point of a
mapping T : C → C is any point x∗ ∈ C such that x∗ = Tx∗. Finding a fixed point
amounts to solving EP (C, f) with

f(x, y) = ⟨x− Tx, y − x⟩, for all y ∈ C.

In this case, we define the operator T = I −A, where I is the identity mapping on C
and A is the operator defined in Subsection 4.1. The method and result given in 4.1,
thus apply.

5. Conclusion

We considered an iterative approximation of a common solution of EP and FPP. We
introduced a totally relaxed self adaptive inertial subgradient extragradient method,
Mann and Halpern iterative technique for solving this problem in 2-uniformly convex
Banach space, which is also uniformly smooth. Our method uses a carefully selected
adaptive stepsize which does not depend on any Lipschitz-type condition neither does
it require the knowledge of the Lipschitz constant of the gradient of pseudomonotone
operator.
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CONSTRUCTING SYMMETRIC EQUALITY ALGEBRAS

RAJAB ALI BORZOOEI1, MONA AALY KOLOGANI2, MOHAMMAD ALI HASHEMI3,
AND ELAHE MOHAMMADZADEH3

Abstract. In this paper, we introduce the notion of strong fuzzy filter on hyper
equality algebras and investigate some equivalence definitions of it. Then by using
this notion we constructed a symmetric equality algebra and define a special form of
classes. By using these, we define the concept of a fuzzy hyper congruence relation
on hyper equality algebra and we prove that the quotient is made by it is an equality
algebra. Also, by using a fuzzy equivalence relation on hyper equality, we introduce
a fuzzy hyper congruence relation and prove that this fuzzy hyper congruence is
regular and finally we prove that the quotient structure that is made by it is a
symmetric hyper equality algebra.

1. Introduction

The motivation for introducing equality algebras came from EQ-algebras which are
defined by Novák in [18]. In EQ-algebras, compared to equality algebras, there is
an additional operation ⊗, called product, which is very loosely related to the other
operations. Therefore, there might not exist deep algebraic characterizations of EQ-
algebras, and intention was to define a structure similar to EQ-algebras but without
the product. This new logical algebra, the equality algebra, has two connectives, a
meet operation and an equivalence, and a constant. Equality algebra is introduced by
Jeni [9], and since then many mathematicians have studied this algebraic structure
and it in various fields. For instance, Novák et al. in [18] introduced a closure operator
in the equality algebra class, and investigated that under what condition an equality
algebra is a BCK-algebra. Zebardast et al. in [23] investigated the relation among

Key words and phrases. (Hyper) Equality algebra, symmetric equality algebra, strong fuzzy filter,
congruence relation.
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equality algebras and other logical algebra for instance, hoop, residuated lattice
and etc. Also, Zebardast et al. in [23] studied commutative equality algebras and
considered characterizations of commutative equality algebras. For more study we
suggest [5, 7, 8, 16,22,23].

The hyper structure theory (called also multialgebra) was introduced in 1934 by F.
Marty [14] at the 8th congress of Scandinavian Mathematicians. Nowadays, hyper-
structures have a lot of applications in several domains of mathematics and computer
science. In [15] Mittas et al. applied the hyperstructures to lattices and introduced
the concepts of hyperlattice and superlattice. Many authors studied different aspects
of semihypergroups, Borzooei et al. exerted hyper structuers to logical algebras and
introduced some hyper logical algebras (see [1–4]). Hyper equality algebras are intro-
duced and studied in [6, 12, 19] and authors provided many basic properties of this
class of hyper algebras. Fuzzy type theory was developed by Novák in [17] as a fuzzy
counterpart of the classical higher-order logic. Filters have momentous role in the
perusing logical deductive systems and logical algebraic systems. The notion of filters
on equality algebras is introduced by Jeni in [10]. Then some different kinds of filters
on equality algebras are defined and studied, see [5,22], for more details. Also, Zadeh
[21], the idea of the fuzzy sets have been used to other algebraic structures by many
mathematicians that we refer to [11,13]. Fuzzy filters on equality algebras are defined
recently in [20], where they have defined fuzzy congruences on equality algebras and
have showed that there is one-to-one correspondence between fuzzy filters and fuzzy
congruences.

In Section 2, we give some notions and statements of hyper equality algebras from [6]
and we recall some facts about fuzzy set theories. In Section 3, we defined the notion
of strong fuzzy filters on hyper equality algebras and investigate some properties of
strong fuzzy filters on these algebras. Section 4, we introduce the concept of fuzzy
hyper congruence on hyper equality algebras and we give a relation between strong
fuzzy filters and fuzzy hyper congruence on hyper equality algebras.

2. Preliminaries

In this section, we present some of the main definitions and results of equality
algebras used in this paper.

Let ∅ ≠ L. Then a fuzzy subset of L is ς : L → [0, 1], where for t ∈ [0, 1], the
set ςt = ¶x ∈ L ♣ ς(x) ⋟ t♢ is said to be a level subset of ς. We say ς satisfies the
sup-property if for every ∅ ̸= S ⊆ L there exists i ∈ S, where ς(i) = supx∈S ς(x). The
set of all fuzzy subsets of L, is shown by FS(L). A function ϱ : L × L → [0, 1] is said
to be a fuzzy relation on L. Also, ϱ on L is said to be a fuzzy equivalence relation
if for every x, y ∈ L:

(i) ϱ(x, x) =
∨

(y,z)∈L×Lϱ(y, z) (fuzzy reflexive);
(ii) ϱ(x, y) = ϱ(y, x) (fuzzy symmetric);
(iii) ϱ(x, y) ⋟

∨

z∈L(ϱ(x, z) ⊼ ϱ(z, y)) (fuzzy transitive).
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An equality algebra E = ⟨E,∽,⊼, 1⟩ is an algebra of type (2, 2, 0) such that, for all
x, y, z ∈ E, the following axioms are fulfilled:

(E1) ⟨E,⊼, 1⟩ is a ⊼-semilattice with top element 1;
(E2) x ∽ y = y ∽ x;
(E3) x ∽ x = 1;
(E4) x ∽ 1 = x;
(E5) x ⋞ y ⋞ z implies x ∽ z ⋞ y ∽ z and x ∽ z ⋞ x ∽ y;
(E6) x ∽ y ⋞ (x ⊼ z) ∽ (y ⊼ z);
(E7) x ∽ y ⋞ (x ∽ z) ∽ (y ∽ z).
From now, ⟨E,∽,⊼, 1⟩ or E is an equality algebra.
Now, define two operations ↷ (implication) and ⇆ (equivalence operation) on E

by x ↷ y = x ∽ (x ⊼ y) and x ⇆ y = (x ↷ y) ⊼ (y ↷ x) (see [9]).
Let L be a non-empty set. A function ◦ : L×L → P (L)∗ = P (L) \ ¶∅♢ is a hyper

operation on L.
A hyper equality algebra L = ⟨L;∽,⊼, 1⟩ is a non-empty set L endowed with a

binary operation ⊼, a hyper operation ∽ and a top element 1 where for each x, y, z ∈ L:
(HE1) ⟨L,⊼, 1⟩ is a meet-semilattice with top element 1;
(HE2) x ∽ y ≪ y ∽ x;
(HE3) 1 ∈ x ∽ x;
(HE4) x ∈ 1 ∽ x;
(HE5) x ⋞ y ⋞ z implies x ∽ z ≪ y ∽ z and x ∽ z ≪ x ∽ y;
(HE6) x ∽ y ≪ (x ⊼ z) ∽ (y ⊼ z);
(HE7) x ∽ y ≪ (x ∽ z) ∽ (y ∽ z), where x ⋞ y iff x ⊼ y = x and S ≪ R is defined

by, for all x ∈ S, there is y ∈ R such that x ⋞ y.
Notation. Throughout of this paper, we suppose L = ⟨L;∽,⊼, 1⟩ or L is a hyper
equality algebra, unless otherwise stated (see [6]).

Define two operations, the implication and the equivalence on ⟨L,∽,⊼, 1⟩ [6], such
that for any x, y ∈ L, we have

x ↷ y = x ∽ (x ⊼ y) and x ⇆ y = (x ↷ y) ⊼ (y ↷ x).

Proposition 2.1 ([6]). For all x, y, z ∈ L, the next results are equivalent:

(HE5) x ⋞ y ⋞ z implies x ∽ z ≪ y ∽ z and x ∽ z ≪ x ∽ y;

(HE5a) x ∽ (x ⊼ y ⊼ z) ≪ x ∽ (x ⊼ y);
(HE5b) x ↷ (y ⊼ z) ≪ x ↷ y.

Proposition 2.2 ([6]). For all x, y, z ∈ L and S,R,T ⊆ L, we have:

(P1) x ⋞ y and y ⋞ x imply x = y;

(P2) 1 ∈ x ↷ x, 1 ∈ x ↷ 1, x ≪ x ∽ 1, x ∈ 1 ↷ x and 1 ∈ x ⇆ x;

(P3) x ∽ y ≪ x ↷ y and x ∽ y ≪ y ↷ x;

(P4) x ⋞ y implies 1 ∈ x ↷ y;

(P5) x ⋞ y ⋞ z implies z ∽ x ≪ z ∽ y and z ∽ x ≪ y ∽ x;

(P6) x ≪ y ↷ x and S ≪ R ↷ S;

(P7) x ⋞ y implies z ↷ x ≪ z ↷ y and y ↷ z ≪ x ↷ z;
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(P8) S ≪ R implies T ↷ S ≪ T ↷ R and R ↷ T ≪ S ↷ T;

(P9) x ⋞ y implies x ≪ y ∽ x;

(P10) y ≪ (x ↷ y) ↷ y;

(P11) x ↷ y ≪ (y ↷ z) ↷ (x ↷ z);
(P12) x ↷ (y ⊼ z) ≪ (x ⊼ z) ↷ y.

Consider ∅ ̸= G ⊆ L such that, for all x, y ∈ L, if x ∈ G and x ⋞ y, then y ∈ G.
Thus, for all x, y ∈ G, G is called a

(WF) weak filter of L if x ∈ G and x ∽ y ⊆ G imply y ∈ G;
(F) filter of L if x ∈ G and G ≪ x ∽ y imply y ∈ G;

(SF) strong filter of L if x ∈ G and (x ∽ y) ∩ G ̸= ∅ imply y ∈ G.

Clearly, if G is one of the above stated cases, then 1 ∈ G. Also, any strong filter of L
is a (weak) filter but the converse is not true (see [6, Remark 1, Examples 10, 11]). L
is a symmetric if x ∽ y = y ∽ x, where = denotes the equality between subsets of L.
L is separated if for every x, y ∈ L, 1 ∈ x ∽ y, then x = y. L is good if for each x ∈ L,
x = 1 ∽ x (see [6]).

Assume θ is an equivalence relation on L. For any S,R ⊆ L, SθR means, for any
i ∈ S, there exists h ∈ R such that iθh and for any h ∈ R there exists i ∈ S such

that iθh, and SθR means, for any i ∈ S and any h ∈ R, iθh. Moreover, θ is called a
congruence relation on L if, for all x, y, u, v ∈ L, xθy and uθv imply (x ∽ u) θ (y ∽ v)
and (x⊼u) θ (y⊼v). Also, θ is called a strong congruence relation if for all x, y, u, v ∈ L,

xθy and uθv imply (x ∽ u) θ (y ∽ v) and (x ⊼ u) θ (y ⊼ v) (see [6, Definition 11]).

3. Strong Fuzzy Filters of Hyper Equality Algebras

In this section, we define the notion of strong fuzzy filter on hyper equality algebras
and we characterize it. By using this notion we define a congruence relation on
hyper equality algebra and prove that the quotient that is made by this is an equality
algebra.

Definition 3.1. Let ϑ ∈ FS(L). Then ϑ is a strong fuzzy filter of L if for all x, y ∈ L

(FF1) ϑ(x) ⊼


supi∈x∽yϑ(i)


⋞ ϑ(y);

(FF2) if x ⋞ y, then ϑ(x) ⋞ ϑ(y).
Note. For any S,R ⊆ L, the above relations are equivalent with the following
statements:

(FF1′) (supi∈S ϑ(i)) ⊼ (supo∈S∽Rϑ(o)) ⋞ suph∈R ϑ(h);
(FF2′) If S ≪ R, then supi∈S ϑ(i) ⋞ suph∈R ϑ(h).

Example 3.1. (i) Assume L = [0, 1]. For each x, y ∈ L, we define the operations ∽ and
⊼ on L by x ⊼ y = min¶x, y♢ and x ∽ y = ¶0, 1 − ♣x − y♣♢. Then L = ⟨L;∽,⊼, 1⟩ is a
hyper equality algebra. Define ϑ : L → [0, 1] by ϑ(1) = β and for any x < 1, ϑ(x) = α,
where 0 < α < β < 1. Then ϑ is a strong fuzzy filter of L.

(ii) If L = ¶0, i, 1♢ such that 0 ⋞ i ⋞ 1, then, for any x, y ∈ L, define
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x ⊼ y = min¶x, y♢ and

∽ 0 i 1
0 ¶1♢ ¶0, i♢ ¶0, i♢
i ¶0, i♢ ¶1♢ ¶i♢
1 ¶0, i♢ ¶0, i♢ ¶1♢

.

Then L = ⟨L;∽,⊼, 1⟩ is a hyper equality algebra. Suppose ϑ : L → [0, 1] is defined
by ϑ(1) = β and ϑ(0) = ϑ(i) = α, where 0 < α < β < 1. Then ϑ is a strong fuzzy
filter of L.

Theorem 3.1. Consider ϑ ∈ FS(L). Then ϑ is a strong fuzzy filter of L which

satisfies the sup-property if and only if for all t ∈ [0, 1], ϑt ̸= ∅ is a strong filter of L.

Proof. Suppose ϑ is a strong fuzzy filter of L and t ∈ [0, 1] such that ϑt ≠ ∅. Then
x ∈ ϑt. Assume y ∈ L such that x ⋞ y. Since ϑ is strong, by (FF2) we have
t ⋞ ϑ(x) ⋞ ϑ(y) and so y ∈ ϑt. Now, suppose for any y ∈ L, (x ∽ y) ∩ ϑt ̸= ∅. Thus,
there is z ∈ (x ∽ y) ∩ ϑt where ϑ(z) ⋟ t. By (FF1), since ϑ(z) ⋞ supz∈x∽yϑ(z), we have

t ⋞ ϑ(x) ⊼ ϑ(z) ⋞ ϑ(x) ⊼


supz∈x∽yϑ(z)


⋞ ϑ(y).

Hence, y ∈ ϑt. Therefore, ϑt is a strong filter of L.
Conversely, suppose x ∈ L. Clearly, x ∈ ϑϑ(x) and so ϑϑ(x) ̸= ∅. If for y ∈ L,

x ⋞ y, from ϑϑ(x) is strong, then y ∈ ϑϑ(x). Thus, ϑ(x) ⋞ ϑ(y) and so (FF2) holds.
Consider t1, t2 ∈ [0, 1] and x, y ∈ L such that ϑ(x) = t1 and t2 = supi∈x∽yϑ(i). Suppose
s = min¶t1, t2♢. Since L satisfies the sup-property, there exists z ∈ x ∽ y such that
ϑ(z) = t2 and so s ⋞ ϑ(z). Thus, z ∈ (x ∽ y) ∩ ϑs. Since x ∈ ϑs, (x ∽ y) ∩ ϑs ̸= ∅ and
ϑs is a strong filter of L, we get y ∈ ϑs. Hence,

ϑ(x) ⊼


supi∈x∽yϑ(i)


= ϑ(x) ⊼ ϑ(z) = min¶t1, t2♢ = s ⋞ ϑ(y).

Therefore, ϑ is a strong fuzzy filter of L. □

Example 3.2. Consider Example 3.1 (ii) and let α = 0.3 and β = 0.7. Then ϑ is a
strong fuzzy filter of L and ϑα = ¶0, i, 1♢ and ϑβ = ¶1♢. Obviously, ϑβ and ϑα are
strong filters of L.

Theorem 3.2. Assume ϑ ∈ FS(L). Then, for each x, y ∈ L and S,R,T ⊆ L, the

following statements are equivalent:

(i) ϑ is a strong fuzzy filter of L;

(ii) ϑ(x) ⋞ ϑ(1) and ϑ(x) ⊼


supz∈x↷yϑ(z)


⋞ ϑ(y);

(iii) if S ≪ R ↷ T, then for all x ∈ S, there exists y ∈ R and z ∈ T such that

ϑ(x) ⊼ ϑ(y) ⋞ ϑ(z), (supi∈S ϑ(i)) ⊼


suph∈R ϑ(h)


⋞ supo∈T ϑ(o).

Proof. (i)⇒(ii) By (FF2) for any x ∈ L since x ⋞ 1, we have ϑ(x) ⋞ ϑ(1) and for any
x ∈ S and y ∈ R

ϑ(x) ⊼


supz∈x↷yϑ(z)


= ϑ(x) ⊼


supz∈x∽(x⊼y)ϑ(z)


⋞ ϑ(x ⊼ y) ⋞ ϑ(y).
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(ii)⇒(i) Suppose x, y ∈ L such that x ⋞ y. Then by Proposition 2.2 (P4), 1 ∈ x ↷ y.
Since, for any x ∈ L, ϑ(x) ⋞ ϑ(1), we have supz∈x↷yϑ(z) = ϑ(1). Then by (ii) we have

ϑ(x) = ϑ(x) ⊼ ϑ(1) = ϑ(x) ⊼


supz∈x↷yϑ(z)


⋞ ϑ(y).

By (ii) and Proposition 2.2 (P3), for any x, y ∈ L, we have

ϑ(x) ⊼


supz∈x∽yϑ(z)


⋞ ϑ(x) ⊼


supz∈x↷yϑ(z)


⋞ ϑ(y).

Hence, ϑ is a strong fuzzy filter of L.
(ii)⇒(iii) Consider S ≪ R ↷ T. Then, for any x ∈ S, there exists v ∈ R ↷ T such

that x ⋞ v. Since v ∈ R ↷ T, there are y ∈ R and z ∈ T such that v ∈ y ↷ z and
so x ≪ y ↷ z. From x ≪ y ↷ z, there exists w ∈ y ↷ z such that x ⋞ w. Then
ϑ(x) ⋞ ϑ(w), and so ϑ(x) ⋞ supw∈y↷zϑ(w). Hence,

ϑ(x) ⊼ ϑ(y) ⋞


supw∈y↷zϑ(w)


⊼ ϑ(y) ⋞ ϑ(z).

Moreover,

supi∈S ϑ(i) ⋞ supw∈y↷z ϑ(w) ⋞ supv∈R↷T ϑ(v).

Then, by (FF1′) and (FF2′), we get

(supi∈S ϑ(i)) ⊼


suph∈R ϑ(h)


⋞


supw∈y↷z ϑ(w)


⊼


suph∈R ϑ(h)


(3.1)

⋞ (supv∈R↷T ϑ(v)) ⊼


suph∈R ϑ(h)


=


supv∈R∽(R⊼T) ϑ(v)


⊼


suph∈R ϑ(h)


⋞


supu∈R⊼T ϑ(u)


⋞ supo∈T ϑ(o).

(iii)⇒(ii) Since for any x ∈ L, x ⋞ 1 by Proposition 2.2 (P9), x ≪ 1 ∽ x. Then
by Proposition 2.2 (P3), x ≪ 1 ∽ x ≪ x ↷ 1. Now, by (iii) for all x ∈ L,
ϑ(x) = ϑ(x) ⊼ ϑ(x) ⋞ ϑ(1). Also, since, for any x, y ∈ L, x ↷ y ≪ x ↷ y, by (iii)

(indeed by (3.1)), we have


supz∈x↷y ϑ(z)


⊼ ϑ(x) ⋞ ϑ(y). □

Example 3.3. Consider Example 3.1 (ii) and let α = 0.3 and β = 0.7. Then ϑ is a
strong fuzzy filter of L. Clearly, Theorem 3.2 holds. For instance, ϑ(0) = ϑ(i) ⋞ ϑ(1)
and

ϑ(0) ⊼


supz∈0↷iϑ(z)


= ϑ(0) ⊼


supz∈0∽(0⊼i)=0∼0=¶1♢ϑ(z)


= ϑ(0) ⊼ ϑ(1) ⋞ ϑ(i).

Assume ϑ ∈ FS(L). For any S ⊆ L, we define a map ϖS : L → [0, 1] by ϖS(x) =
supz∈S∽x ϑ(z), for any x ∈ L. In particular, ϖy(x) = supz∈y∽x ϑ(z) and for any S,R ⊆ L,

ϖS(R) = supx∈R ϖS(x) = supz∈S∽R ϑ(z). If for all z ∈ L, ϖx(z) ⋞ ϖy(z), then we denote
it by ϖx ⋞ ϖy.

Proposition 3.1. Suppose ϑ is a strong fuzzy filter of L. If for x, y ∈ L, ϖx = ϖy,

then ϑ(x) = ϑ(y).
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Proof. Let ϖx = ϖy, for x, y ∈ L. Then by Proposition 3.2 (i), supz∈x∽yϑ(z) = ϖx(y) =

ϑ(1). From ϑ is strong, ϑ(x), ϑ(y) ⋞ ϑ(1) and ϑ(x) ⊼


supz∈x∽yϑ(z)


⋞ ϑ(y). Thus,

ϑ(x) = ϑ(x) ⊼ ϑ(1) ⋞ ϑ(y). Similarly, ϑ(y) ⋞ ϑ(x). Hence, ϑ(x) = ϑ(y). □

Example 3.4. Let L = ¶0, i, h, 1♢ be a set. Define the operation ⊼ and ∽ on L as
follows:

∽ 0 i h 1
0 ¶1♢ ¶1♢ ¶1♢ ¶0, i♢
i ¶1♢ ¶1♢ ¶i, 1♢ ¶i♢
h ¶h, 1♢ ¶i, 1♢ ¶1♢ ¶h, 1♢
1 ¶0, i♢ ¶i♢ ¶h♢ ¶1♢

,

⊼ 0 i h 1
0 0 0 0 0
i 0 i 0 i

h 0 0 h h

1 0 i h 1

.

Define ϑ on L by ϑ(0) = ϑ(α) = ϑ(h) = α and ϑ(1) = β, where 0 ≺ α ≺ β ≺ 1.
Clearly, ϖi = ϖ0, then ϑ(i) = ϑ(0). But the converse may not be true, since
ϑ(i) = ϑ(h) but

α = ϑ(i) = ϖi(1) ̸= ϖh(1) = sup¶ϑ(h), ϑ(1)♢ = ϑ(1) = β.

Proposition 3.2. Consider ϑ is a strong fuzzy filter of L. Then for all x, y, u, v ∈ L

and S,R ⊆ L, we have:

(i) ϖx = ϖy if and only if ϖx(y) = ϑ(1);
(ii) ϖS = ϖR if and only if ϖS(R) = ϑ(1);
(iii) if ϖx = ϑ, then ϑ(x) = ϑ(1);
(iv) if x ⋞ y, then ϑ(x) ⋞ ϖy(x);
(v) if ϖx = ϖy and ϖu = ϖv, then ϖx∽u = ϖy∽u, ϖu∽y = ϖv∽y and ϖu⊼y = ϖy⊼v;

(vi) if y ∽ u = u ∽ y and y ∽ v = v ∽ y, then ϖx∽u = ϖy∽v.

Proof. (i) Suppose ϖx = ϖy. Then for all z ∈ L, ϖx(z) = ϖy(z). Consider y = z. Then
ϖx(y) = ϖy(y) = supz∈y∽y ϑ(z). By (HE3), 1 ∈ y ∽ y and so supz∈y∽y ϑ(z) = ϑ(1).
Hence, ϖx(y) = ϑ(1).

Conversely, assume that for each x, y ∈ L, ϖx(y) = ϑ(1). By (HE2) and (HE7),
for all x, y, z ∈ L, x ∽ y ≪ (x ∽ z) ∽ (y ∽ z) ≪ (y ∽ z) ∽ (x ∽ z). Then
for any i ∈ x ∽ y, there exists h ∈ (y ∽ z) ∽ (x ∽ z) such that i ⋞ h. Since
ϑ is a strong fuzzy filter of L, by (FF2), for any i ∈ x ∽ y, ϑ(i) ⋞ ϑ(h) and so
ϖx(y) = supi∈x∽y ϑ(i) ⋞ ϑ(h) ⋞ suph∈(y∽z)∽(x∽z) ϑ(h). Then

ϖy(z) ⊼ ϖx(y) = ϖy(z) ⊼


supi∈x∽y ϑ(i)


⋞


supu∈y∽z ϑ(u)


⊼


suph∈(y∽z)∽(x∽z) ϑ(h)


⋞ supv∈x∽z ϑ(v) = ϖx(z).

Since for all x, y ∈ L, ϖx(y) = ϑ(1), by above relation, we have

ϖy(z) = ϖy(z) ⊼ ϑ(1) = ϖy(z) ⊼ ϖx(y) ⋞ ϖx(z).

This shows that ϖy ⋞ ϖx. By the similar way, we have ϖx ⋞ ϖy. Hence, ϖx = ϖy.
(ii) Similar to (i).
(iii) Suppose ϖx = ϑ. Then for any y ∈ L, ϖx(y) = supz∈x∽y ϑ(z) = ϑ(y). Let x = y.

Since by (HE3), 1 ∈ x ∽ x, we get ϑ(x) = ϖx(x) = supz∈x∽x ϑ(z) = ϑ(1).
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(iv) Assume x, y ∈ L where x ⋞ y. By Proposition 2.2 (P9), x ≪ y ∽ x. Then there
is i ∈ y ∽ x such that x ⋞ i. Since ϑ is strong, by (FF2) we have

ϑ(x) ⋞ ϑ(i) ⋞ supi∈y∽x ϑ(i) = ϖy(x).

(v) If ϖx = ϖy and ϖu = ϖv, then by (i), ϖx(y) = ϑ(1) = ϖu(v). By (HE7),

x ∽ y ≪ (x ∽ u) ∽ (y ∽ u), u ∽ v ≪ (u ∽ y) ∽ (v ∽ y).

Thus, for any i ∈ x ∽ y, there exists h ∈ (x ∽ u) ∽ (y ∽ u) such that i ⋞ h. From ϑ is
strong, by (FF2) we have ϑ(i) ⋞ ϑ(h) and so

ϑ(1) = ϖx(y) = supi∈x∽y ϑ(i) ⋞ ϑ(h) ⋞ suph∈(x∽u)∽(y∽u) ϑ(h).

Hence, ϖx∽u(y ∽ u) = ϑ(1). Now, by (i), we have ϖx∽u = ϖy∽u. Similarly, ϖu∽y =
ϖv∽y. Moreover, by (HE6), x ∽ y ≪ (x ⊼ u) ∽ (y ⊼ u) and u ∽ v ≪ (u ⊼ y) ∽ (v ⊼ y).
Then for any i ∈ x ∽ y there is h ∈ (x⊼ u) ∽ (y⊼ u) such that i ⋞ h. Since ϑ is strong,
by (FF2), we have ϑ(i) ⋞ ϑ(h) and so

ϑ(1) = ϖx(y) = supi∈x∽y ϑ(i) ⋞ ϑ(h) ⋞ suph∈(x⊼u)∽(y⊼u) ϑ(h).

Hence, ϖx⊼u(y ⊼ u) = ϑ(1). Now, by (i), we have ϖx⊼u = ϖy⊼u.
(vi) Similar to (v). □

Corollary 3.1. Let L = ⟨L;∽,⊼, 1⟩ be symmetric and ϑ be a strong fuzzy filter of L.

If for all x, y, u, v ∈ L, ϖx = ϖy and ϖu = ϖv, then ϖx∽u = ϖy∽v and ϖu⊼y = ϖy⊼v.

Note. Consider ϑ is a strong fuzzy filter of L and

L/ϖ = ¶ϖS ♣ S ⊆ L♢.

For any ϖS, ϖR ∈ L/ϖ, we consider the operations ∽ and ⊼ on L/ϖ as follow:

ϖS
∽ϖR = ϖS∽R and ϖS

⊼ϖR = ϖS⊼R,

where S ∽ R =
⋃

i∈S,h∈Ri ∽ h and S ⊼ R = ¶i ⊼ h ♣ i ∈ S, h ∈ R♢. Also, we consider

ϖ1 = ϖL. Now, we prove that these operations are well-defined. Assume ϖS, ϖR, ϖT ∈
L/ϖ such that ϖS = ϖR. Then by Proposition 3.2 (ii), ϖS(R) = ϑ(1), and so
supα∈S∽R ϑ(α) = ϑ(1). At first we prove ϖS∽ϖT = ϖR∽ϖT. For this, by Proposition
3.2 (ii), we show ϖS∽T(R ∽ T) = ω(1). By definition, for any α ∈ S ∽ R, there
exists i ∈ S and h ∈ R such that α ∈ i ∽ h. By (HE7), for any o ∈ T, we get
i ∽ h ≪ (i ∽ o) ∽ (h ∽ o). So, for any α ∈ i ∽ h, there exists β ∈ (i ∽ o) ∽ (h ∽ o)
such that α ⋞ β. Since ϑ is strong, we have ϑ(α) ⋞ ϑ(β), and so supα∈S∽R ϑ(α) ⋞ ϑ(β).
Then

ϖS∽T(R ∽ T) = supz∈(S∽T)∽(R∽T) ϑ(z) ⋟ ϑ(β) ⋟ supα∈S∽R ϑ(α) ⋟ ϑ(1).

Hence, ϖS∽T(R ∽ T) = ϑ(1). By Proposition 3.2 (ii), ϖS∽ϖT = ϖR∽ϖT.
Now, we prove that ϖS⊼ϖT = ϖR⊼ϖT. For this, by Proposition 3.2 (ii), we show

ϖS⊼T(R ⊼ T) = ω(1). By definition, for any α ∈ S ∽ R, there exists i ∈ S and h ∈ R

such that α ∈ i ∽ h. By (HE6), for any o ∈ T, we have i ∽ h ≪ (i ⊼ o) ∽ (h ⊼ o).
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So for any α ∈ i ∽ h, there exists β ∈ (i ⊼ o) ∽ (h ⊼ o) such that α ⋞ β. Since ϑ is
strong, we obtain ϑ(α) ⋞ ϑ(β), and so supα∈S∽R ϑ(α) ⋞ ϑ(β). Then

ϖS⊼T(R ⊼ T) = supz∈(S⊼T)∽(R⊼T) ϑ(z) ⋟ ϑ(β) ⋟ supα∈S∽R ϑ(α) ⋟ ϑ(1).

Hence, ϖS⊼T(R ⊼ T) = ϑ(1). By Proposition 3.2 (ii), ϖS⊼ϖT = ϖR⊼ϖT. Therefore,
these operations are well-defined.

Now, suppose S,R ⊆ L. Then the relation ⋞ϖ on L/ϖ by ϖS ⋞ϖ ϖR if and only if
for any T ⊆ L, ϖS(T) ⋞ ϖR(T), is an order on L/ϖ. By routine calculation, it is easy
to see that ϖS ⋞ϖ ϖR if and only if ϖS⊼ϖR = ϖS if and only if ϖS = ϖS⊼R if and only
if ϖS(S ⊼R) = ϑ(1) (by Proposition 3.2 (ii)) if and only if suph∈S∽(S⊼R) ϑ(h) = ϑ(1) if
and only if suph∈S↷R ϑ(h) = ϑ(1).

Theorem 3.3. Let L = ⟨L;∽,⊼, 1⟩ be symmetric and ϑ be a strong fuzzy filter of L.

Then L/ϖ = ⟨L/ϖ;∽,⊼, ϖ1⟩ is a symmetric equality algebra.

Proof. We prove that ∽ and ⊼ are well-defined. Clearly, (L/ϖ,⋞ϖ) is a poset. Now,
we show that L/ϖ = ⟨L/ϖ;∽,⊼, ϖ1⟩ is an equality algebra.

We have to prove that for any S ⊆ L, ϖS ⋞ϖ ϖL. For this, suppose R ⊆ L. Then
ϖL(R) = supz∈L∽R ϑ(z). Since L ∽ R =

⋃

g∈L,h∈Rg ∽ h and R ⊆ L, we get

1 ∈ h ∽ h ∈
⋃

g∈L,h∈R
g ∽ h = L ∽ R.

Then ϖL(R) = ϑ(1). Moreover, since for any z ∈ S ∽ R, ϑ(z) ⋞ ϑ(1), we obtain
ϖS(R) = supz∈S∽R ϑ(z) ⋞ ϑ(1) = ϖL(R). Hence for any R ⊆ L, ϖS(R) ⋞ ϖL(R), and

so ϖS ⋞ϖ ϖL.
(E2) Since L is symmetric, for all x, y ∈ L, x ∽ y = y ∽ x. Consider S,R ⊆ L. Then

S ∽ R =
⋃

i∈S,h∈R
i ∽ h =

⋃

h∈R,i∈S
h ∽ i = R ∽ S.

Then ϖS∽ϖR = ϖS∽R = ϖR∽S = ϖR∽ϖS.
(E3) Assume S ⊆ L. Then for any i ∈ S we have

1 ∈ 1 ∽ i ∈ (i ∽ i) ∽ i ∈
⋃

g∈L i,h∈S
(i ∽ h) ∽ g = (S ∽ S) ∽ L.

Then ϖS∽S(L) = supi∈(S∽S)∽L ϑ(i) = ϑ(1). Hence, by Proposition 3.2 (ii), ϖS∽S = ϖL.

Therefore, ϖS∽ϖS = ϖL.
(E4) Similar to (E3), suppose S ⊆ L. Then for any i ∈ S we have

1 ∈ 1 ∽ i ∈ (i ∽ i) ∽ i ∈
⋃

g∈L i,h∈S
(g ∽ i) ∽ h = (L ∽ S) ∽ S.

Then ϖL∽S(S) = supi∈(L∽S)∽S ϑ(i) = ϑ(1). Hence, by Proposition 3.2 (ii), ϖL∽S = ϖS.

Therefore, ϖL∽ϖS = ϖS.
(E5) Let S,R,T ⊆ L such that ϖS ⋞ϖ ϖR ⋞ϖ ϖT. Then

ϖS = ϖS
⊼ϖR = ϖS⊼R, ϖR⊼T = ϖR

⊼ϖT = ϖR.
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Suppose x ∈ S ∽ R. Then there exist i ∈ S and h ∈ R where x ∈ i ∽ h. By Proposition
2.2 (P3), i ∽ h ≪ i ↷ h, then there exists y ∈ i ↷ h such that x ⋞ y. Since

i ↷ h ∈
⋃

i∈S,h∈R
i ↷ h = S ↷ R,

we get for any x ∈ S ∽ R, there exists y ∈ S ↷ R such that x ⋞ y. Hence,
S ∽ R ≪ S ↷ R. By using this method, Proposition 3.2 (iv) and Proposition 2.2
(P12), we can prove that

T ↷ (S ⊼ R) ≪ (T ⊼ R) ↷ R = (T ⊼ R) ∽ (S ⊼ R ⊼ T).

Then

ϖS∽T = ϖS
∽ϖT = ϖ(S⊼R)

∽ϖT = ϖ(S⊼R)∽T = ϖT∽(S⊼R)

≪ϖ ϖT↷(S⊼R)
≪ϖ ϖ(T⊼R)↷S = ϖ(T⊼R)∽(S⊼R⊼T)

= ϖ(T⊼R)
∽ϖ(S⊼R⊼T) = ϖR

∽ϖS = ϖR∽S = ϖS∽R.

Hence, ϖS∽ϖT ⋞ϖ ϖS∽ϖR. Again, since ϖS⊼R = ϖS, similar to the above proof, by
Propositions 3.2 (iv), 2.2 (P3) and 2.1 (HE5b), we have

ϖS∽T = ϖS
∽ϖT = ϖ(S⊼R)

∽ϖT = ϖ(S⊼R)∽T = ϖT∽(R⊼S)

≪ϖ ϖT↷(R⊼S)
≪ϖ ϖT↷R

= ϖT∽(T⊼R) = ϖT
∽ϖ(R⊼T) = ϖT

∽ϖR = ϖR∽T.

Hence, ϖS∽ϖT ⋞ϖ ϖR∽ϖT.
(E6) For all S,R,T ⊆ L, we have S ∽ R ≪ (S⊼T) ∽ (R⊼T). Because if x ∈ S ∽ R,

then there exist i ∈ S and h ∈ R such that x ∈ i ∽ h. Thus for any o ∈ T, by
(HE6), y ∈ (i ⊼ o) ∽ (h ⊼ o) such that x ⋞ y. Hence for any x ∈ S ∽ R, there exists
y ∈ (S ⊼ T) ∽ (R ⊼ T) such that x ⋞ y. Then, for any S,R,T ⊆ L, we have

ϖS
∽ϖR = ϖS∽R

⋞ϖ ϖ(S⊼T)∽(R⊼T) = ϖS⊼T
∽ ϖR⊼T =



ϖS
⊼ϖT



∽


ϖR
⊼ϖT



.

(E7) Similar to the proof of (E6), for any S,R,T ⊆ L, by (HE7),

S ∽ R ≪ (S ∽ T) ∽ (R ∽ T).

Then

ϖS
∽ϖR = ϖS∽R

⋞ϖ ϖ(S∽T)∽(R∽T) = ϖ(S∽T)
∽ ϖ(R∽T) =



ϖS
∽ϖT



∽


ϖR
∽ϖT



.

Therefore, L/ϖ is an equality algebra. □

In Theorem 3.3, the condition symmetric is essential, because we need it for (E5)
and in the absence of this assumption the axiom (E5) does not hold.

Example 3.5. Let L = ¶0, o, i, h, 1♢ be a set with the following operations:
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∽ 0 o i h 1
0 ¶1♢ ¶0♢ ¶0♢ ¶0♢ ¶0♢
o ¶0♢ ¶0, 1♢ ¶0, h♢ ¶0, i♢ ¶o♢
i ¶0♢ ¶0, h♢ ¶i, 1♢ ¶0, o♢ ¶i♢
h ¶0♢ ¶0, i♢ ¶0, o♢ ¶1♢ ¶h♢
1 ¶0♢ ¶o♢ ¶i♢ ¶h♢ ¶1♢

,

⊼ 0 o i h 1
0 0 0 0 0 0
o 0 o o o o

i 0 o i o i

h 0 o o h h

1 0 o i h 1

.

Define ϑ on L by ϑ(0) = ϑ(o) ⋞ ϑ(i), ϑ(h) ⋞ ϑ(1). By routine calculation, we have
L/ϖ = ¶ϖ0, ϖo, ϖi, ϖh, ϖ1♢ which is a symmetric equality algebra.

Theorem 3.4. Let L = ⟨L;∽,⊼, 1⟩ be symmetric such that for any x, y, z ∈ L,

(x ∽ y) ∽ z = (x ∽ z) ∽ (y ∽ z) and ϑ be a strong fuzzy filter of L. Then there

exists a strong fuzzy filter ϵ on L/ϖ such that ϵ ◦ π ⋟ ϑ, where π is the canonical

epimorphism.

Proof. Define ϵ : L/ϖ → [0, 1], for any S ⊆ L, by ϵ(ϖS) = supz∈L ϖS(z). First we

prove that ϵ is well defined. Assume S,R ⊆ L such that ϖS = ϖR. Then for any
z ∈ L, ϖS(z) = ϖR(z). Thus,

ϵ(ϖS) = supz∈L ϖS(z) = supz∈L ϖR(z) = ϵ(ϖR).

Since for any i ∈ L, 1 ∈ i ∽ i, we have ϖL(i) = supz∈L∽i ϑ(z) = ϑ(1). Suppose S ⊆ L.
Then

ϵ(ϖL) = supi∈L ϖL(i) = supi∈L supz∈L∽i ϑ(z) = supi∈L ϑ(1) = ϑ(1)(3.2)

⋟ supy∈L suph∈S∽y ϑ(h) = supy∈L ϖS(y) = ϵ(ϖS).(3.3)

Since for any x, y, z ∈ L, (x ∽ y) ∽ z = (x ∽ z) ∽ (y ∽ z), obviously, for any
S,R,T ⊆ L, we have (S ∽ R) ∽ T = (S ∽ T) ∽ (R ∽ T). Moreover, from ϑ is a
strong fuzzy filter of L, by (FF1′) we have

ϵ(ϖR) = supv∈L ϖR(v) = supv∈L



suph∈R∽vϑ(h)


⋟ supv∈L



(supi∈S∽vϑ(i)) ⊼


suph∈(S∽v)∽(R∽v)ϑ(h)


= supv∈L



(supi∈S∽vϑ(i)) ⊼


suph∈(S∽R)∽vϑ(h)


⋟ supv∈L



ϖS(v) ⊼ ϖS∽R(v)


=


supv∈L ϖS(v)


⊼


supv∈L ϖS∽R(v)


= ϵ(ϖS) ⊼ ϵ(ϖS∽R)

= ϵ(ϖS) ⊼ ϵ(ϖS
∽ϖR).

Hence, for any S,R ⊆ L,

(3.4) ϵ(ϖR) ⋟ ϵ(ϖS) ⊼ ϵ(ϖS
∽ϖR).

Thus, by (3.2), (3.4) and Theorem 3.2, we have ϵ is a strong fuzzy filter of L/ϖ.
Consider S ⊆ L. Define ϑ(S) = supz∈S ϑ(z). Since L is symmetric, by Proposition 2.2
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(P6), we get

ϵ ◦ π(S) =ϵ(ϖS) = supz∈L ϖS(z) = supz∈L supy∈S∽z ϑ(y)

=supz∈L supy∈z∽S ϑ(y) ⋟ supi∈S ϑ(i) = ϑ(S). □

4. Fuzzy Hyper Congruence Relation

In this section, we introduce the notion of a fuzzy regular relation on hyper equality
algebras and then we give some results related to quotient hyper equality algebras.

Definition 4.1. Let Ω be an equivalence relation on L. Then Ω is called a regular
relation on L, if (x ∽ y)Ω1 and (y ∽ x)Ω1 imply xΩy.

Example 4.1. According to Example 3.1 (ii), define

Ω = ¶(0, 0), (i, i), (i, 0), (0, i), (1, 1)♢.

Then Ω is a regular relation on L.

Definition 4.2. Consider ϱ is a fuzzy equivalence relation on L. Then we say ϱ is a
fuzzy hyper congruence relation on L if for all x, y, z ∈ L

ϱ(x, y) ⋞
∨

z∈L
ϱ(x ∽ z, y ∽ z) and ϱ(x, y) ⋞

∨

z∈L
ϱ(x ⊼ z, y ⊼ z),

where

ϱ(x ∽ z, y ∽ z) = supi∈x∽z,h∈y∽z ϱ(i, h).(4.1)

The fuzzy hyper congruence relation ϱ on L is called a fuzzy regular relation on L, if
for any x, y ∈ L

(4.2) ϱ(x, y) ⋟ min
{

∨

ϱ(x ∽ y, 1),
∨

ϱ(y ∽ x, 1)
}

.

Proposition 4.1. Assume ϱ is a fuzzy regular relation on L. Then for any t ∈ [0, 1],
ϱt ̸= ∅ is a regular relation on L.

Proof. First, we prove that for any t ∈ [0, 1], ϱt is an equivalence relation on L. Since
ϱt is a non-empty set, there exist y, z ∈ L such that ϱ(y, z) ⋟ t. Then for all x ∈ L

ϱ(x, x) =
∨

(y,z)∈L×L
ϱ(y, z) ⋟ ϱ(y, z) ⋟ t.

Hence, ϱt is a fuzzy reflexive on L. Let xϱty. Then ϱ(x, y) ⋟ t. From ϱ is regular, we
have ϱ(y, x) = ϱ(x, y) ⋟ t, and so yϱtx. Hence, ϱt is symmetric. Now, suppose xϱty and
yϱtz. Then ϱ(x, y) ⋟ t and ϱ(y, z) ⋟ t. Since ϱ is a fuzzy regular relation on L, we
have

ϱ(x, z) ⋟
∨

y∈L
(ϱ(x, y) ⊼ ϱ(y, z)) ⋟ ϱ(x, y) ⊼ ϱ(y, z) ⋟ t.

Hence, ϱ(x, z) ⋟ t and so xϱtz. Thus, ϱt is transitive. Therefore, ϱt is an equivalence
relation on L.
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Now, we prove that ϱt is regular. For this, suppose x, y ∈ L where (x ∽ y)ϱt1 and
(y ∽ x)ϱt1. Then there exists i ∈ x ∽ y and h ∈ y ∽ x such that iϱt1 and hϱt1,
respectively. Thus, ϱ(i, 1) ⋟ t and ϱ(h, 1) ⋟ t. Hence,

ϱ(x, y) ⋟ min
{

∨

ϱ(x ∽ y, 1),
∨

ϱ(y ∽ x, 1)
}

⋟ min ¶ϱ(i, 1), ϱ(h, 1)♢ ⋟ t.

Therefore, ϱt is a regular relation on L. □

Proposition 4.2. Consider ϱ is a fuzzy relation on L which satisfies the sup-property.

If for each t ∈ [0, 1], ϱt ̸= ∅ is a regular relation on L, then ϱ is a fuzzy regular relation

on L.

Proof. Suppose t =
∨

(u,v)∈L×L ϱ(u, v). By assumption ϱ is a fuzzy relation on L which
satisfies the sup-property, then there exists (u, v) ∈ L×L such that t = ϱ(u, v). Since
t ∈ [0, 1], we get uϱtv, and so ϱt ̸= ∅. Reflexivity of ϱt implies that for all x ∈ L,
(x, x) ∈ ϱt. Thus for all x ∈ L, ϱ(x, x) ⋟ t. Then, for any x ∈ L,

ϱ(x, x) ⋞
∨

(y,z)∈L×L

ϱ(y, z) = t ⋞ ϱ(x, x).

Hence, ϱ is a fuzzy reflexive relation on L. Now, since ϱt ̸= ∅, suppose (x, y) ∈ ϱt and
by symmetry property, we have ϱt(x, y) = ϱt(y, x) and so ϱ(x, y) ⋟ t and ϱ(y, x) ⋟ t.
Then for any x, y ∈ L, we get that

ϱ(x, y) ⋞
∨

(u,v)∈L×L

ϱ(u, v) = t ⋞ ϱ(y, x).

Similarly, ϱ(y, x) ⋞ ϱ(x, y). Then ϱ is a fuzzy symmetric relation on L. By a similar
argument, it is easy to see that ϱ is a fuzzy transitive relation on L. Thus ϱ is a fuzzy
equivalent relation on L. Now, we show that ϱ is a fuzzy regular relation on L. Let
x, y ∈ L and

t = min
{

∨

ϱ(x ∽ y, 1),
∨

ϱ(y ∽ x, 1)
}

.

Since ϱ satisfies the sup-property, there exist i ∈ x ∽ y and h ∈ y ∽ x such that
t ⋞

∨

ϱ(x ∽ y, 1) = ϱ(i, 1) and t ⋞
∨

ϱ(y ∽ x, 1) = ϱ(h, 1). Thus, (i, 1), (h, 1) ∈ ϱt.
Moreover, since ϱ satisfies the sup-property, by (4.1) we have

ϱ(x ∽ y, 1) = supm∈x∽y ϱ(m, 1) = ϱ(i, 1) ⋟ t and

ϱ(y ∽ x, 1) = sup¬∈y∽x ϱ(¬, 1) = ϱ(h, 1) ⋟ t.

Hence, (x ∽ y, 1), (y ∽ x, 1) ∈ ϱt. By our assumption, ϱt is a regular relation on L,
then (x, y) ∈ ϱt. Thus for any x, y ∈ L, we get that

ϱ(x, y) ⋟ t = min
{

∨

ϱ(x ∽ y, 1),
∨

ϱ(y ∽ x, 1)
}

.

Therefore, ϱ is a fuzzy regular relation on L. □

Corollary 4.1. Consider ϱ is a fuzzy relation on L such that satisfies the sup-property.

Then ϱ is a fuzzy regular relation on L iff, for all t ∈ [0, 1], ϱt ̸= ∅ is a regular relation

on L.
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Proof. By Propositions 4.1 and 4.2, the proof is clear. □

By the following result, we show a relation between strong fuzzy filters on hyper
equality algebras and fuzzy hyper congruence relation that is made by them.

Theorem 4.1. Assume ϑ is a strong fuzzy filter on L. Then for any x, y ∈ L, relation

ϱ : L × L → [0, 1] which is defined by

ϱ(x, y) =


supu∈x↷y ϑ(u)


⊼


supv∈y↷x ϑ(v)


is a fuzzy hyper congruence relation on L.

Proof. Clearly, ϱ is reflexive and symmetry. We show that ϱ is a fuzzy transitive
relation on L. For this by Proposition 2.2 (P11), for all x, y, z ∈ L, x ↷ y ≪ (y ↷

z) ↷ (x ↷ z). Since ϑ is a strong fuzzy filter of L, by Theorem 3.2 (iii), we have

(4.3)


supu∈x↷y ϑ(u)


⊼


supv∈y↷z ϑ(v)


⋞ supw∈x↷z ϑ(w).

Then for any x, y, z ∈ L, we get
∨

z∈L

(ϱ(x, z) ⊼ ϱ(z, y))

=
∨

z∈L

[

supi∈x↷z ϑ(i)


⊼



suph∈z↷x ϑ(h)


⊼



supu∈z↷y ϑ(u)


⊼



supv∈y↷z ϑ(v)
]

=
∨

z∈L

[

supi∈x↷z ϑ(i)


⊼



supu∈z↷y ϑ(u)


⊼



supv∈y↷z ϑ(v)


⊼



suph∈z↷x ϑ(h)
]

⋞



supo∈x↷y ϑ(o)


⊼



supw∈y↷x ϑ(w)


(by (4.3)),

=ϱ(x, y).

Thus ϱ is a fuzzy transitive relation on L. Hence, ϱ is a fuzzy equivalence relation
on L. Now, we investigate the condition of Definition 3.1. By Proposition 2.2 (P9),
for any x, y ∈ L

x ⊼ y ⋞ y ≪ y ∽ (x ⊼ y) = y ↷ x.

Then there exists z ∈ y ↷ x such that x ⊼ y ⋞ y ⋞ z. By (HE5) we have

(4.4) (x ⊼ y) ∽ z ≪ y ∽ z.

Thus,

x ↷ y = x ∽ (x ⊼ y) (by (HE7))

≪ (x ∽ z) ∽ ((x ⊼ y) ∽ z) (by Proposition 2.2(P3))

≪ (x ∽ z) ↷ ((x ⊼ y) ∽ z) (by (4.4) and Proposition 2.2(P8))

≪ (x ∽ z) ↷ (y ∽ z).

Hence, by (FF2) for any z ∈ y ↷ x, we have

(4.5) supu∈x↷y ϑ(u) ⋞ supv∈(x∽z)↷(y∽z) ϑ(v).



CONSTRUCTING SYMMETRIC EQUALITY ALGEBRAS 217

By the similar way, for any z ∈ x ↷ y, we get

(4.6) supi∈y↷x ϑ(i) ⋞ suph∈(y∽z)↷(x∽z) ϑ(h).

Then by (4.5) and (4.6), for all x, y, z ∈ L, we have

ϱ(x, y) =


supu∈x↷y ϑ(u)


⊼


supi∈y↷x ϑ(i)


⋞


supv∈(x∽z)↷(y∽z) ϑ(v)


⊼


suph∈(y∽z)↷(x∽z) ϑ(h)


⋞
∨

z∈L

[

supv∈(x∽z)↷(y∽z) ϑ(v)


⊼


suph∈(y∽z)↷(x∽z) ϑ(h)
]

=
∨

z∈L

ϱ(x ∽ z, y ∽ z).

Moreover, we have

x ↷ y = x ∽ (x ⊼ y) (by (HE6))

≪ (x ⊼ z) ∽ (x ⊼ y ⊼ z) (by Proposition 2.2 (P3))

≪ (x ⊼ z) ↷ (x ⊼ y ⊼ z) (by Proposition 2.2 (P7))

≪ (x ⊼ z) ↷ (y ⊼ z).(4.7)

Similarly, for all x, y, z ∈ L, we have

(4.8) y ↷ x ≪ (y ⊼ z) ↷ (x ⊼ z).

Then by (4.7), (4.8) and (FF2), for all x, y, z ∈ L, we get that

ϱ(x, y) =


supu∈x↷y ϑ(u)


⊼


supi∈y↷x ϑ(i)


⋞


supv∈(x⊼z)↷(y⊼z) ϑ(v)


⊼


suph∈(y⊼z)↷(x⊼z) ϑ(h)


=ϱ(x ⊼ z, y ⊼ z).

Hence, ϱ is a fuzzy hyper congruence relation on L. □

Let ϱ be a fuzzy hyper congruence relation on L, we define the fuzzy subset ϑϱ
x :

L → [0, 1] by ϑϱ
x (y) = ϱ(y, x) for all y ∈ L.

Lemma 4.1. Consider ϱ is a fuzzy hyper congruence relation on L. Then for all

x, y ∈ L, ϑϱ
x = ϑϱ

y iff ϱ(x, y) =
∨

s,t∈L ϱ(s, t).

Proof. Suppose x, y ∈ L such that ϑϱ
x = ϑϱ

y. Since ϱ is a fuzzy reflexive relation, we
have

ϑϱ
y(x) = ϑϱ

x (x) = ϱ(x, x) =
∨

s,t∈L
ϱ(s, t).
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Conversely, assume x, y ∈ L such that ϱ(x, y) =
∨

s,t∈L ϱ(s, t). Then by fuzzy symmetric
and fuzzy transitive relations defined on ϱ, for all z ∈ L, we get

ϑϱ
x (z) = ϱ(z, x) = ϱ(x, z)

⋟
∨

y∈L
(ϱ(x, y) ⊼ ϱ(y, z)) ⋟ ϱ(x, y) ⊼ ϱ(y, z)

=


∨

s,t∈L
ϱ(s, t)



⊼ ϱ(y, z) = ϱ(y, z) = ϱ(z, y)

= ϑϱ
y(z).

By replacing x by y throughout the above statements, we get ϑϱ
x (z) ⋞ ϑϱ

y(z). Hence,
ϑϱ
x = ϑϱ

y. □

Theorem 4.2. Consider L = ⟨L;∽,⊼, 1⟩ is symmetric and ϱ be a fuzzy hyper con-

gruence relation on L, satisfies the sup-property. Define L

ϱ
= ¶ϑϱ

x ♣ x ∈ L♢. Then

L

ϱ
=

〈

L

ϱ
;∽ϱ,⊼ϱ, ϑϱ

1

〉

is symmetric, where the operations ∽ϱ and ⊼ϱ are defined on L

ϱ

as follows:

ϑϱ
x ∽ϱ ϑϱ

y = ϑϱ
x∽y = ¶ϑϱ

z ♣ z ∈ x ∽ y♢, ϑϱ
x ⊼ϱ ϑϱ

y = ϑϱ
x⊼y,

ϑϱ
x ⋞ϱ ϑϱ

y ⇔ ϑϱ
x ⊼ϱ ϑϱ

y = ϑϱ
x ,

and for any S,R ⊆ L

ϱ
, S ≪ϱ R if and only if for all i ∈ S, there exists h ∈ R such

that ϑϱ
i ⋞ϱ ϑϱ

h.

Proof. Let x, y, s, t ∈ L, ϑϱ
x = ϑϱ

y and ϑϱ
s = ϑϱ

t . Then by Lemma 4.1, ϱ(x, y) = ϱ(s, t) =
∨

u,v∈L ϱ(u, v). Set
∨

u,v∈L ϱ(u, v) = m. Then by Proposition 4.1, ϱm is a regular relation
on L and since ϱ(x, y) = ϱ(s, t) = m, we have xϱmy and sϱmt. Moreover, since ϱ is a
fuzzy regular relation on L such that satisfies the sup-property and for any z ∈ L,
z ⋞ 1, we get ϱ(x, z) ⋞ ϱ(x, 1) and so

ϱ(x, y) = ϱ(x, 1) ⊼ ϱ(1, y) ⋟
∨

z∈L
(ϱ(x, z) ⊼ ϱ(z, y)).

Moreover, since ϱ is a fuzzy relation on L, we have ϱ(t, t) =
∨

u,v∈L ϱ(u, v) = m. Also,
from L is symmetric, by (4.2), Proposition 2.2(P9) and (HE7), we have

ϱ(x ∽ t, y ∽ t) ⋟ min
{

∨

ϱ ((x ∽ t) ∽ (y ∽ t), 1) ,
∨

ϱ ((y ∽ t) ∽ (x ∽ t), 1)
}

⋟ min
{

∨

ϱ (x ∽ y, 1) ,
∨

ϱ (y ∽ x, 1)
}

=
∨

ϱ (x ∽ y, 1)

⋟ ϱ(x, 1) ⊼ ϱ(1, y) = ϱ(x, y) = m.

Then x ∽ tϱmy ∽ t. Similarly, y ∽ tϱmy ∽ s. Since ϱm is a regular relation on L,
we get (x ∽ s)ϱm(y ∽ t). Suppose ϑϱ

z ∈ ϑϱ
x ∽ϱ ϑϱ

s . Then there is x′ ∈ x ∽ s such
that ϑϱ

x′ = ϑϱ
z . Thus, zϱmx

′. On the other hand, (x ∽ s)ϱm(y ∽ t), so there exists
y′ ∈ y ∽ t such that x′ϱmy

′. Also, since ϱm is transitive, and by Proposition 4.1 is an
equivalence relation on L, we have zϱmy

′. Then by Lemma 4.1, we get ϑϱ
z = ϑϱ

y′ . This
shows that ϑϱ

z = ϑϱ
y′ ∈ ϑϱ

y ∽ϱ ϑϱ
t . Thus ϑϱ

x ∽ϱ ϑϱ
s ⊆ ϑϱ

y ∽ϱ ϑϱ
t . Similarly, we obtain

ϑϱ
y ∽ϱ ϑϱ

t ⊆ ϑϱ
x ∽ϱ ϑϱ

s . Hence, ∽ϱ is well-defined. Easily, ⊼ϱ is well-defined, too. Now,

we show that L

ϱ
=

〈

L

ϱ
;∽ϱ,⊼ϱ, ϑϱ

1

〉

is a hyper equality algebra.
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(HE1) Clearly, ϑϱ
1 is the top element and ⟨L

ϱ
;⊼ϱ, ϑϱ

1⟩ is a meet-semilattice.

(HE2) For all x, y ∈ L, since L is symmetric, we have

(4.9) ϑϱ
x ∽ϱ ϑϱ

y = ϑϱ
x∽y ⋞ϱ ϑϱ

y∽x = ϑϱ
y ∽ϱ ϑϱ

x .

(HE3) Assume x ∈ L. Since 1 ∈ x ∽ x, we have

ϑϱ
1 ∈ ¶ϑϱ

z : z ∈ x ∽ x♢ = ϑϱ
x∽x.

Thus, ϑϱ
1 ∈ ϑϱ

x∽x = ϑϱ
x ∽ϱ ϑϱ

x .
(HE4) Simmilar to (HE3), since for any x ∈ 1 ∽ x, we have ϑϱ

x ∈ ϑ1∽x = ϑ1 ∽ϱ ϑx.
(HE5) Suppose x, y, z ∈ L such that ϑϱ

x ⋞ϱ ϑϱ
y ⋞ϱ ϑϱ

z . Since ϑϱ
x ⋞ϱ ϑϱ

y, we have
ϑϱ
x ⊼ϱ ϑϱ

y = ϑϱ
x and so ϑϱ

x⊼y = ϑϱ
x . By Lemma 4.1, ϱ(x ⊼ y, x) =

∨

s,t∈L ϱ(s, t) = m. Thus
(x ⊼ y)ϱmx. Since L is symmetric, by Proposition 2.2(P9), we get x ≪ x ∽ z and
x ⊼ y ⋞ y ≪ y ∽ z. Then m = ϱ(x, x ⊼ y) ⋞ ϱ(x ∽ z, y ∽ z), and so (x ∽ z)ϱm(y ∽ z).
Consider ϑϱ

γ ∈ ϑϱ
x∽z. Then there exists α ∈ x ∽ z such that ϑϱ

γ = ϑϱ
α. Thus γϱmα. Since

(x ∽ z)ϱm(y ∽ z), there exists β ∈ y ∽ z such that βϱmα. From ϱm has transitivity, we
get γϱmβ. Thus, ϱ(β, γ) ⋟ m =

∨

s,t∈L ϱ(s, t). Hence, ϑϱ
γ = ϑϱ

β and so ϑϱ
γ = ϑϱ

β ∈ ϑϱ
y∽z.

So ϑϱ
x∽z ⋞ϱ ϑϱ

y∽z. The proof of other case is similar.
(HE6) For all x, y, z ∈ L, we have x ∽ y ≪ (x⊼z) ∽ (y⊼z). Then, for any x, y, z ∈ L,

we have

ϑϱ
x ∽ϱ ϑϱ

y = ϑϱ
x∽y ⋞ϱ ϑϱ

(x⊼z)∽(y⊼z) = ϑϱ
x⊼z ∽ϱ ϑϱ

y⊼z =


ϑϱ
x ⊼ϱ ϑϱ

z



∽ϱ



ϑϱ
y ⊼ϱ ϑϱ

z



.

(HE7) For all x, y, z ∈ L, we obtain x ∽ y ≪ (x ∽ z) ∽ (y ∽ z). Then

ϑϱ
x ∽ϱ ϑϱ

y = ϑϱ
x∽y ⋞ϱ ϑϱ

(x∽z)∽(y∽z) = ϑϱ
x∽z ∽ϱ ϑϱ

y∽z =


ϑϱ
x ∽ϱ ϑϱ

z



∽ϱ



ϑϱ
y ∽ϱ ϑϱ

z



.

Thus, the above facts and (4.9) show that L

ϱ
is a symmetric hyper equality algebra.

□

5. Conclusions and Future Works

In this paper, the notion of strong fuzzy filter on hyper equality algebras is intro-
duced and some equivalence definitions of it are investigated. Then by using this
notion, a symmetric equality algebra is constructed and defined a special form of
classes. By using these, the concept of a fuzzy hyper congruence relation on hyper
equality algebra is defined and prove that the quotient is made by it is an equality
algebra. Also, by using a fuzzy equivalence relation on hyper equality, a fuzzy hyper
congruence relation is introduced and proved that this fuzzy hyper congruence is regu-
lar. Finally, it is proved that the quotient structure that is made by it is a symmetric
hyper equality algebra.

For future work, we can define different kinds of fuzzy ideal on hyper equality
algebras and investigate properties of them and study about fuzzy hyper congruence
relation on hyper equality algebra and the quotient structure that is made by it.
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ACENTRALIZERS OF SOME FINITE GROUPS

ZAHRA MOZAFAR1 AND BIJAN TAERI1

Abstract. Let G be a finite group. The acentralizer of an automorphism α of G,
is the subgroup of fixed points of α, i.e., CG(α) = ¶g ∈ G ♣ α(g) = g♢. In this paper
we determine the acentralizers of the dihedral group of order 2n, the dicyclic group
of order 4n and the symmetric group on n letters. As a result we see that if n ≥ 3,
then the number of acentralizers of the dihedral group and the dicyclic group of
order 4n are equal. Also we determine the acentralizers of groups of orders pq and
pqr, where p, q and r are distinct primes.

1. Introduction

Throughout this article, the usual notation will be used [17]. For example Zn

denotes the cyclic group of integers modulo n, Z∗
n denotes the group of invertible

elements of Zn. The dihedral group of order 2n and the dicyclic group of order 4n
are denoted by Dn, and Qn, respectively. The symmetric group on a finite set of n
symbols is denoted by Sn, or Sym(X), where ♣X♣ = n. The symbol G = X ⋉ Y (or
G = Y ⋊ X) indicates that G is a split extension (semidirect product) of a normal
subgroup Y of G by a complement X.

Let G be a finite group. We write Cent(G) = ¶CG(g) ♣ g ∈ G♢, where CG(g) is the
centralizer of the element g in G. The group G is called n-centralizer if ♣Cent(G)♣ = n.
There are some results on finite n-centralizers groups (see for instance [1–8, 12, 18]).
Let Aut(G) be the group of automorphisms of G. If α ∈ Aut(G), then the acentralizer
of α in G is defined as

CG(α) = ¶g ∈ G ♣ α(g) = g♢,

Key words and phrases. Automorphism, centralizer, acentralizer, finite groups.
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which is a subgroup of G. In particular if α = τa is an inner automorphisms of G
induced by a ∈ G, then CG(τa) = CG(a) is the centralizer of a in G. Let Acent(G) be
the set of acentralizers of G, that is

Acent(G) = ¶CG(α) ♣ α ∈ Aut(G)♢.

A group G is called n-acentralizer, if ♣Acent(G)♣ = n. It is obvious that G is 1-
acentralizer group if and only if G is a trivial group or Z2. Nasrabadi and Gholamian
[14] proved that G is a 2-acentralizer group if and only if G ∼= Z4, Zp or Z2p, for some
odd prime p. Furthermore, they characterized 3, 4, 5-acentralizer groups. Seifizadeh
et al. [16] characterized n-acentralizer groups, where n ∈ ¶6, 7, 8♢, and obtained a
lower bound on the number of acentralizer subgroups for p-groups, where p is a prime
number. They showed that if p ̸= 2, there is no n-acentralizer p-group for n = 6, 7.
Moreover, if p = 2, then there is no 6-acentralizer p-group. In [13] we showed that
if G is a finite abelian p-group of rank 2, where p is an odd prime, then the number
of acentralizers of G is exactly the number of subgroups of G. Also we obtained
acentralizers of infinite two-generator abelian groups.

Throughout the paper we use the presentations of the dihedral group of order 2n,
Dn, and the dicyclic group of order 4n, Qn, as follows

Dn = ⟨a, b ♣ an = b2 = 1, bab−1 = a−1⟩ = ⟨b⟩ ⋉ ⟨a⟩,

Qn = ⟨a, b ♣ a2n = 1, an = b2, bab−1 = a−1⟩ = ⟨b⟩ ⋉ ⟨a⟩.

We note that if n is a power of 2, then Qn is the generalized quaternion group.
Computing the number of centralizers of finite group have been the object of some
papers. For instance Ashrafi [2, 3] showed that ♣Cent(Qn)♣ = n + 2 and

♣Cent(Dn)♣ =





n + 2, n is odd,
n
2

+ 2, n is even.

In this paper we compute ♣Acent(Dn)♣, ♣Acent(Qn)♣, ♣Acent(Sn)♣ and the number of
acentralizers of groups of order pqr, where p, q and r are distinct primes.

2. Acentralizers of Dihedral and Dicyclic Groups

Recall that the dihedral group Dn have two type subgroups for n > 3, ⟨ad⟩ and
⟨ad, arb⟩, where d ♣ n, 0 ≤ r < d. The total number of these two type subgroups are
τ(n) =

∑
d♣n 1, that is the number of positive divisors of n, and σ(n) =

∑
d♣n d, that

is the sum positive divisors of n, respectively. Recall that if n = pk1
1 pk2

2 · · · pkr
r is the

prime factorization of n > 1, then τ(n) =
∏r

j=1(kj + 1) and σ(n) =
∏r

j=1

p
kj +1

j
−1

pj−1
.

For n > 2, the automorphism group of Dn is isomorphic to Z∗
n ⋉Zn, the semidirect

product of Zn by Z∗
n, with the canonical action of ε : Z∗

n → Aut(Zn) ∼= Z∗
n. Explicitly,

Aut(Dn) = ¶γs,t ♣ s ∈ Z∗
n, t ∈ Zn♢,
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where γs,t is defined by

γs,t(a
i) = ais and γs,t(a

ib) = ais+tb,

for all 0 ≤ i ≤ n − 1. Note that

ai ∈ CDn
(γs,t) ⇔ γs,t(a

i) = ai

⇔ ais = ai

⇔ is ≡ i (mod n)

⇔ i(s − 1) ≡ 0 (mod n)

and

aib ∈ CDn
(γs,t) ⇔ γs,t(a

ib) = aib

⇔ ais+tb = aib

⇔ is + t ≡ i (mod n)

⇔ i(s − 1) + t ≡ 0 (mod n).

We use the following well-known theorem from elementary number theory.

Theorem 2.1. ([15, Page 102]) Let a, b and m be integers such that m > 0 and

let c = gcd(a, m). If c does not divide b, then the congruence ax ≡ b (mod m) has

no solutions. If c ♣ b, then ax ≡ b (mod m) has exactly c incongruent solutions

modulo m.

First we compute Acent(Dn). Clearly, D1
∼= Z2 and D2

∼= Z2×Z2. So ♣Acent(D1)♣ =
1 and ♣Acent(D2)♣ = 5.

Lemma 2.1. The identity subgroup is not an acentralizer for any automorphism of
Dn. Also if n is even, the subgroups ⟨ad⟩, ⟨ad, arb⟩, where d is a divisor of n such that
d ∤ n

2
and 0 ≤ r < d, are not acentralizers of Dn.

Proof. On the contrary, suppose that the identity subgroup ⟨an⟩ = ⟨1⟩ is an acentral-
izer. Then there exists γs,t ∈ Aut(Dn) such that γs,t fixes only the identity element.
If c := gcd(n, s − 1) ̸= 1, then

γs,t(a
n
c ) = a

n
c

s = a
n
c a

s−1
c

n = a
n
c ,

which is a contradiction. Hence gcd(n, s − 1) = 1, and so by Theorem 2.1, there exists
0 < i < n − 1 such that n ♣ i(s − 1) + t. Since γs,t(a

ib) = ais+tb = ai(s−1)+taib ≠ aib,
n ∤ i(s − 1) + t, which is a contradiction. Thus the identity subgroup can not be an
acentralizer.

Now suppose, for a contradiction, that H := ⟨ad⟩, where d is a divisor of n and
d ∤ n/2 is an acentralizer of Dn. Since ad ∈ CDn

(γs,t) we have ad = γs,t(a
d) = asd.

Thus n ♣ (s − 1)d and so s = n
d
k + 1, for some 0 ≤ k < d. Since d ♣ n and d ∤ n

2
, d is
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even. Also k is even, as s is odd. Hence, s = 2n
d

k1 + 1, for some non-negative integer

k1, and so 2n ♣ (s − 1)d. Thus, n ♣ (s − 1)d
2

and

γs,t(a
d
2 ) = as d

2 = a
d
2 a(s−1) d

2 = a
d
2 ,

which is a contradiction, as a
d
2 /∈ H = CDn

(γs,t).
Similarly if K := ⟨ad, arb⟩, where d is a divisor of n, d ∤ n/2, 0 ≤ r < d, and

CDn
(γs,t) = K, for some γs,t ∈ Aut(Dn), we obtain a contradiction. □

Theorem 2.2. If n is an odd integer, then every non-identity subgroups of Dn is an
acentralizer of Dn. If n is even, then ♣Acent(Dn)♣ is equal to the number of subgroups
of Dn

2
, that is

♣Acent(Dn)♣ =





τ(n) + σ(n) − 1, n is odd,

τ(n
2
) + σ(n

2
), n is even.

Proof. First suppose that n is odd. Let d be a divisor of n and put d1 := n/d. If
d = 1, then since γ1,1(a) = a and for 0 ≤ j ≤ n − 1, γ1,1(a

jb) = aj+1b ̸= ajb, we
have CDn

(γ1,1) = ⟨a⟩ = ⟨ad⟩. If d ̸= 1, then γ1+d1,1(a
d) = a(1+d1)d = ad. Since

gcd(n, d1) = d1 ∤ 1, by Theorem 2.1, for every 0 ≤ j ≤ n − 1, n ∤ jd1 + 1, and so
γ1+d1,1(a

jb) = aj(1+d1)+1b = ajd1+1ajb ̸= ajb. It follows that CDn
(γ1+d1,1) = ⟨ad⟩.

Now consider the subgroup H := ⟨ad, arb⟩ of Dn, where 0 ≤ r < d. If d = 1, then
r = 0 and H = G = CDn

(γ1,0). If d = n, then ⟨ad, arb⟩ = ⟨arb⟩. Note that γ2,n−r(a
i) =

a2i ̸= ai, for all 1 ≤ i ≤ n − 1. On the other hand γ2,n−r(a
rb) = a2r+n−rb = arb and

hence CDn
(γ2,n−r) = ⟨arb⟩ = H.

If d ̸∈ ¶1, n♢, then we put s = 1 + d1 and t = n − rd1. Since

γs,t(a
d) = ads = ad(1+d1) = ad+n = ad,

γs,t(a
rb) = ars+tb = ar(1+d1)+n−rd1b = arb,

it follows that CDn
(γs,t) = H. Therefore ♣Acent(Dn)♣ = τ(n) + σ(n) − 1.

Now suppose that n is even. Let d be a divisor of n
2

and put d1 := n/d. Let H := ⟨ad⟩.
If d = 1, then since γ1,1(a) = a and γ1,1(a

jb) = aj+1b ̸= ajb, for all 0 ≤ j ≤ n − 1,
we have CDn

(γ1,1) = ⟨a⟩ = H. If d ̸= 1, then γ1+d1,1(a
d) = a(1+d1)d = ad. Since

gcd(n, d1) = d1 ∤ 1, by Theorem 2.1, for all 0 ≤ j ≤ n − 1, n ∤ jd1 + 1, and so
γ1+d1,1(a

jb) = aj(1+d1)+1b = ajd1+1ajb ̸= ajb. It follows that CDn
(γ1+d1,1) = ⟨ad⟩.

Now we consider the subgroup H := ⟨ad, arb⟩ of Dn, where 0 ≤ r < d. If d = 1, then
H = G = CDn

(γ1,0). If d ̸= 1 and r = 0, then we have γs,0(ad) = ad(1+d1) = ad+n = ad,
γ1+d1,0(b) = b, and so CDn

(γ1+d1,0) = ⟨ad, b⟩ = H. If d ≠ 1 and t ≠ 0, then we put
s = 1 + d1 and t = n − rd1. Since

γs,t(a
d) = ad(1+d1) = ad+n = ad,

γs,t(a
rb) = ar(1+d1)+n−rd1b = arb,

we have CDn
(γs,t) = H. It follows that ♣Acent(Dn)♣ = τ(n

2
) + σ(n

2
). □
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Now we compute Acent(Qn). Recall that if n > 2, then the automorphism group of
Qn is isomorphic to Z∗

2n ⋉Z2n, with the canonical action of ε : Z∗
2n → Aut(Z2n) ∼= Z∗

2n.
In fact

Aut(Qn) = ¶γs,t ♣ s ∈ Z∗
2n, t ∈ Z2n♢,

where

γs,t(a
i) = ais and γs,t(a

ib) = ais+tb,

for all 0 ≤ i ≤ 2n − 1. Hence Aut(Qm) ∼= Aut(D2m), where m > 2. Note that
Aut(Q2) ∼= S4 and Aut(D4) ∼= D4. We have

ai ∈ CQn
(γs,t) ⇔ γs,t(a

i) = ai

⇔ ais = ai

⇔ is ≡ i (mod 2n)

⇔ i(s − 1) ≡ 0 (mod 2n)

and

aib ∈ CQn
(γs,t) ⇔ γs,t(a

ib) = aib

⇔ ais+tb = aib

⇔ is + t ≡ i (mod 2n)

⇔ i(s − 1) + t ≡ 0 (mod 2n).

Lemma 2.2. (1) Every element, x ∈ Qn can be written uniquely as x = aibj, where
0 ≤ i < 2n and j = 0, 1.

(2) Z(Qn) = ⟨an⟩ ∼= Z2.
(3) Qn/Z(Qn) ∼= Dn.
(4) o(ai) = 2n/i for 1 < i ⩽ 2n and o(aib) = 4 for all i.
(5) Every subgroup of Qn is either cyclic or a dicyclic group.

Proof. (1)–(4) are straightforward.
Let H be a subgroup of Qn. Suppose that Z(Qn) ≤ H. Then H/Z(Qn) is a

subgroup of Dn. Since every subgroup of Dn is either cyclic or dihedral, the same is
true for H/Z(Qn). If H/Z(Qn) is cyclic, then H is cyclic (indeed H is a subgroup of
⟨a⟩ or H = ⟨aib⟩). Therefore, we may assume H/Z(Qn) is dihedral. Thus, H/Z(Qn)
has a dihedral presentation ⟨x, y ♣ xm = y2 = 1, yxy = x−1⟩. Hence, H has the same
presentation with H/Z(Qn) and so H is a dicyclic group.

Finally, if H does not contain Z(Qn) then H does not contain an element of the
form aib. Therefore, H ≤ ⟨a⟩ and so it is cyclic. □

In what follows we compute acentralizers of Qn.

Lemma 2.3. Let H be a subgroup of Qn which does not contain Z(Qn). Then H is
not an acentralizer of Qn.
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Proof. By Lemma 2.2, H = ⟨am⟩, where m ♣ 2n, m ∤ n. Now suppose, for a contra-
diction that, H is an acentralizer of Qn. Then there exists γs,t ∈ Aut(Qn) such that
CQn

(γs,t) = H. Thus, am = γs,t(a
m) = asm, and so 2n ♣ (s − 1)m, i.e., s = 2n

m
k + 1,

for some 0 ≤ k < m. Since m ♣ 2n and m ∤ n, m is even. Also k is even, as s is odd.
Therefore, s = 4n

m
k1 + 1, for some non-negative integer k1, and hence 4n ♣ (s − 1)m.

Thus, 2n ♣ (s − 1)m
2

and

γs,t(a
m
2 ) = as m

2 = a
m
2 a(s−1) m

2 = a
m
2 ,

which is a contradiction, as a
m
2 /∈ H = CQn

(γs,t). □

Theorem 2.3. We have ♣Acent(Qn)♣ = τ(n) + σ(n).

Proof. Suppose d is a divisor of n such that 1 ≤ d < n, and d1 := 2n/d. Let H := ⟨ad⟩.
If d = 1, then since γ1,1(a) = a and for 0 ≤ j ≤ 2n − 1, γ1,1(a

jb) = aj+1b ̸= ajb, we
have CQn

(γ1,1) = ⟨a⟩.
If d ̸= 1, then γ1+d1,1(a

d) = a(1+d1)d = ad. Since gcd(2n, d1) = d1 ∤ 1, by Theorem
2.1, 2n ∤ jd1 +1, for all 0 ≤ j ≤ 2n−1, and so γ1+d1,1(ajb) = aj(1+d1)+1b = ajd1+1ajb ̸=
ajb. It follows that CQn

(γ1+d1,1) = ⟨ad⟩.
Now consider the subgroup H := ⟨ad, arb⟩ of Qn, where 0 ≤ r < d. If d = 1, then

r = 0 and H = G = CQn
(γ1,0). If d ̸= 1 and r = 0, then we put s = 1 + d1 and

t = 0, where d1 := 2n
d

. We have γs,0(a
d) = ads = ad(1+d1) = ad+2n = ad, γs,0(b) = b.

Hence, CQn
(γ1+d1,0) = ⟨ad, b⟩ = H. If d ̸= 1 and r ̸= 0, then we put s = 1 + d1 and

t = 2n − rd1, where d1 := 2n
d

. We have

γs,t(a
d) = ads = ad(1+d1) = ad+2n = ad,

γs,t(a
rb) = ars+tb = ar(1+d1)+2n−rd1b = arb.

Hence CQn
(γs,t) = H. It follows that ♣Acent(Qn)♣ = τ(n) + σ(n) − 1. □

Corollary 2.1. For all n ≥ 3 we have ♣Acent(Qn)♣ = ♣Acent(D2n)♣.

3. Acentralizers of Groups of Order pq

It is well-known that the groups of order pq, where p and q are distinct primes,
with p > q, are

Zpq,

Tp,q = ⟨a, b ♣ ap = bq = 1, bab−1 = au⟩, where o(u) = q in Z∗
p and q ♣ p − 1.

Using Theorem 3.1 below, we have ♣Acent(Zpq)♣ = ♣Acent(Zp)♣ ♣Acent(Zq)♣ = 2×2 = 4.

Theorem 3.1. ([14, Lemma 2.1]) Let H and T be finite groups with gcd(♣H♣, ♣T ♣) = 1.
Then

♣Acent(H × T )♣ = ♣Acent(H)♣ · ♣Acent(T )♣.

We compute ♣Acent(Tp,q)♣. The proof of the following lemma is straightforward.

Lemma 3.1. Non-trivial subgroups of Tp,q are ⟨a⟩, ⟨baj⟩, where 0 ≤ j ≤ p − 1.
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A Frobenius group of order pq, where p is prime and q ♣ p − 1 is a group with the
presentation Fp,q = ⟨a, b ♣ ap = bq = 1, bab−1 = au⟩, where o(u) = q in Z∗

p. If q is a
prime number, then Fp,q

∼= Tp,q.

Theorem 3.2 ([10]). Let p be a prime number and q ♣ p−1. Then Aut(Fp,q) ∼= Fp,p−1,

in fact

Aut(Fp,q) = ¶αi,j ♣ 1 ≤ i ≤ p − 1, 0 ≤ j ≤ p − 1♢,

where

αi,j(a
m) = aim and αi,j(b

nam) = bna(un−1+···+u+1)j+im,

for all 0 ≤ m ≤ p − 1 and 1 ≤ n ≤ q − 1.

Note that if G := Fp,q, then

am ∈ CG(αi,j) ⇔ αi,j(a
m) = am

⇔ aim = am

⇔ im ≡ m (mod p)

⇔ (i − 1)m ≡ 0 (mod p)

and

bnam ∈ CG(αi,j) ⇔ αi,j(b
nam) = bnam

⇔ bna(un−1+···+u+1)j+im = bnam

⇔ im + (un−1 + · · · + u + 1)j ≡ m (mod p)

⇔ (i − 1)m + (un−1 + · · · + u + 1)j ≡ 0 (mod p).

We note that if p ♣ un−1 + · · · + u + 1, then p ♣ un − 1 and un ≡ 1 (mod p), which is a
contradiction. Therefore, p ∤ un−1 + · · · + u + 1.

Lemma 3.2. The identity subgroup is not an acentralizer for any automorphism of
Tp,q.

Proof. Suppose, contrary on our claim, that ⟨1⟩ is an acentralizer of Tp,q. Then there
exists αi,j ∈ Aut(Tp,q) such that αi,j fixes only the identity element. If i = 1, then
α1,j(a

m) = am, for all 1 ≤ m ≤ p−1, which is a contradiction. Hence gcd(p, i−1) = 1,
and by Theorem 2.1, there exists 0 < m < p − 1, such that p ♣ (i − 1)m + j. But since
αi,j(ba

m) ̸= bam, we have p ∤ (i − 1)m + j, which is a contradiction. Thus, the identity
subgroup is not an acentralizer. □

Theorem 3.3. Every non-identity subgroup of G := Tp,q is an acentralizer of an
automorphism, and therefore ♣Acent(Tp,q)♣ = p + 2.

Proof. Let H := ⟨a⟩, which is a unique Sylow p-subgroup of G. Note that α1,1(am) =
am. Since p ∤ un−1 + · · · + u + 1,

α1,1(b
nam) = bna(un−1+···+u+1)+m = bnama(un−1+···+u+1) ̸= bnam.
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Hence, CG(α1,1) = H.
Let K := ⟨bam⟩, where 0 ≤ m ≤ p − 1, which is a subgroup of G of order q.

If m = 0, then K = ⟨b⟩, and since α2,0(b) = b, α2,0(a) = a2 ̸= a, it follows that
CG(α2,0) = K. If 1 ≤ m ≤ p − 1, then α2,p−m(bam) = bap−m+2m = bam. Also since
α2,p−m(am) = a2m ̸= am, for all 1 ≤ m ≤ p − 1, we have am /∈ CG(α2,p−m). It follows
that CG(α2,p−m) = K. Hence, ♣Acent(Tp,q)♣ = 1 + 1 + p = p + 2. □

4. Acentralizers of Groups of Order pqr

In this section we compute acentralizers of groups of order pqr, where p, q, and
r are distinct primes. The presentations of groups of order pqr, where p, q and r
are primes such that p > q > r are given in [11]. By [10] all groups of order pqr,
p > q > r, are isomorphic to one of the following groups:

(1) G1 = Zpqr;
(2) G2 = Zr × Tp,q, q ♣ p − 1;
(3) G3 = Zq × Tp,r, r ♣ p − 1;
(4) G4 = Fp,qr, qr ♣ p − 1);
(5) G5 = Zp × Tq,r, r ♣ q − 1;

(6) Gi+5 = ⟨a, b, c ♣ ap = bq = cr = 1, ab = ba, c−1bc = bu, c−1ac = avi

⟩, where
r ♣ p − 1, q − 1, o(u) = r in Z∗

q and o(v) = r in Z∗
p, 1 ≤ i ≤ r − 1.

Using the above result, Theorem 3.3 and Theorem 3.1 it is suffices to compute the
number of acentralizers of Fp,qr and Gi+5. The proof of the following lemma is
straightforward.

Lemma 4.1. Let Fp,qr = ⟨a, b ♣ ap = bqr = 1, bab−1 = au⟩ = ⟨b⟩ ⋉ ⟨a⟩ and o(u) = qr
in Z∗

p where p, q, r are prime and qr ♣ p − 1. Then non-trivial subgroups of Fp,qr are
A := ⟨a⟩, Bx := ⟨bax⟩, Cx := ⟨bqax⟩, Dx := ⟨brax⟩, where 0 ≤ x ≤ p − 1, H := ⟨br, a⟩
and K := ⟨bq, a⟩.

Lemma 4.2. Non-trivial subgroups of Gi+5 are A := ⟨a⟩, B := ⟨b⟩, AB, Hj,t :=
⟨cbtaj⟩, Ht := ⟨a, cbt⟩ and Kj := ⟨b, caj⟩, where 0 ≤ j ≤ p − 1, 0 ≤ t ≤ q − 1. In
particular Gi+5 have pq + p + q + 5 subgroups.

Proof. One can easily see that the order of elements of Gi+5 is as in the Table 1,

Elements aj bt btaj ckbi′

aj′

Orders p q pq r

Table 1. The order of elements Gi+5

where 1 ≤ j ≤ p − 1, 1 ≤ t ≤ q − 1, 0 ≤ i′ ≤ q − 1, 0 ≤ j′ ≤ p − 1, 1 ≤ k ≤ r − 1.
It is clear that A = ⟨a⟩ is a unique Sylow p-subgroup of Gi+5 and B = ⟨b⟩ is a unique

Sylow q-subgroup of Gi+5. Thus AB = ⟨a, b⟩ ⊴ Gi+5 is a unique subgroup of order
pq of Gi+5. It is also clear that Hj,t = ⟨cbtaj⟩, where 0 ≤ j ≤ p − 1, 0 ≤ t ≤ q − 1,
are subgroups of order r. Since A and B are normal in Gi+5, every subgroups of
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order pr should contain A and every subgroups of order qr should contain B. Thus
Kj = ⟨b, caj⟩ and Ht = ⟨a, cbt⟩, where 0 ≤ j ≤ p − 1, 0 ≤ t ≤ q − 1 are subgroups of
order pr and qr of Gi+5, respectively. □

Theorem 4.1 ([10]). Automorphism group of Gi+5 is isomorphic to Fp,p−1 × Fq,q−1,
in fact

Aut(Gi+5) = ¶αj,t,j1,i1 ♣ 1 ≤ j ≤ p − 1, 1 ≤ t ≤ q − 1, 0 ≤ j1 ≤ p − 1, 0 ≤ i1 ≤ q − 1♢,

where

αj,t,j1,i1(am) = ajm,

αj,t,j1,i1(bn) = btn,

αj,t,j1,i1(ckbn1am1) = ckbi1(uk−1+···+u+1)+tn1aj1(v(k−1)i+···+vi+1)+jm1 ,

for 1 ≤ m ≤ p − 1, 1 ≤ n ≤ q − 1, 0 ≤ m1 ≤ p − 1, 0 ≤ n1 ≤ q − 1 and 1 ≤ k ≤ r − 1.

Note that if G := Gi+5, then

am ∈ CG(αj,t,j1,i1) ⇔ αj,t,j1,i1(am) = am

⇔ ajm = am

⇔ jm ≡ m (mod p)

⇔ m(j − 1) ≡ 0 (mod p)

and

bn ∈ CG(αj,t,j1,i1) ⇔ αj,t,j1,i1(bn) = bn

⇔ btn = bn

⇔ tn ≡ n (mod q)

⇔ n(t − 1) ≡ 0 (mod q)

and

ckbn1am1 ∈ CG(αj,t,j1,i1) ⇔ αj,t,j1,i1(ckbn1am1) = ckbn1am1

⇔ ckbi1(uk−1+···+u+1)+tn1aj1(v(k−1)i+···+vi+1)+jm1 = ckbn1am1

⇔ i1(u
k−1 + · · · + u + 1) + tn1 ≡ n1 (mod q),

j1(v
(k−1)i + · · · + vi + 1) + jm1 ≡ m1 (mod p)

⇔ i1(u
k−1 + · · · + u + 1) + (t − 1)n1 ≡ 0 (mod q),

j1(v
(k−1)i + · · · + vi + 1) + (j − 1)m1 ≡ 0 (mod p).

Lemma 4.3. The identity subgroup and the subgroups Cx , Dx, where 0 ≤ x ≤ p−1,
H and K (defined in Lemma 4.1) are not acentralizers for any automorphism of
G := Fp,qr.
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Proof. As in the proof of Lemma 3.2 we can see that the identity subgroup is not an
acentralizer.

Now suppose, for a contradiction that Cx := ⟨bqax⟩, where 0 ≤ x ≤ p − 1 is
an acentralizers of G. Then there exists αi,j ∈ Aut(G) such that CG(αi,j) = Cx,
where 1 ≤ i ≤ p − 1 and 0 ≤ j ≤ p − 1. If i = 1, then α1,j(a

m) = am, for every
1 ≤ m ≤ p − 1, this contradicts am /∈ ⟨bqax⟩. Hence gcd(i − 1, p) = 1, by Theorem 2.1,
there exists 0 < m < p − 1 such that p ♣ j + (i − 1)m. But since bam /∈ Cx = CG(αi,j),
αi,j(ba

m) = baj+im = bamaj+(i−1)m ≠ bam, which implies that p ∤ j + (i − 1)m, which
is a contradiction.

Similarly we have H, Dx, and K are not acentralizers. □

Theorem 4.2. We have ♣Acent(Fp,qr)♣ = p + 2.

Proof. The proof is similar to that of Theorem 3.3. □

Lemma 4.4. The identity subgroup is not an acentralizer for any automorphism of
Gi+5.

Proof. On the contrary, suppose that ⟨1⟩ is an acentralizer of Gi+5. Then there exists
αj,t,j1,i1 ∈ Aut(Gi+5) such that αj,t,j1,i1 fixes only the identity element. If j = 1 or
t = 1, then α1,t,j1,i1(am) = am and αj,1,j1,i1(bn) = bn, for all 1 ≤ m ≤ p − 1 and
1 ≤ n ≤ q − 1, which is a contradiction. Hence gcd(j − 1, p) = 1 and gcd(t − 1, q) = 1.
Hence, by Theorem 2.1, there exist 0 < m1 < p − 1 and 0 < n1 < q − 1 such that
p ♣ j1 + (j − 1)m1 and q ♣ i1 + (t − 1)n1. But since

αj,t,j1,i1(cbn1am1) = cbi1+tn1aj1+jm1 = cbn1am1bi1+(t−1)n1aj1+(j−1)m1 ̸= cbn1am1 ,

either p ∤ j1 + (j − 1)m1 or q ∤ i1 + (t − 1)n1, which is a contradiction. Thus, the
identity subgroup is not an acentralizer. □

Theorem 4.3. Every non-identity subgroup of G := Gi+5 is an acentralizer of an
automorphism, that is ♣Acent(Gi+5)♣ = pq + p + q + 4.

Proof. We use the notation of Theorem 4.1. Note that α1,1,0,0 is the identity automor-
phism of G and so CG(α1,1,0,0) = G.

Now we show that A = ⟨a⟩ is an acentralizer. It is clear that α1,2,1,1(a) = a
and α1,2,1,1(b

n) = b2n = bnbn ̸= bn, for all 1 ≤ n ≤ q − 1. Furthermore since
p ∤ (v(k−1)i + · · · + vi + 1),

α1,2,1,1(c
kbn1am1) = ckb(uk−1+···+u+1)+2n1a(v(k−1)i+···+vi+1)+m1

= ckbn1am1b(uk−1+···+u+1)+n1a(v(k−1)i+···+vi+1) ̸= ckbn1am1 .

It follows that CG(α1,2,1,1) = A.
Let B = ⟨b⟩ be the unique Sylow q-subgroup of G. It is clear that α2,1,1,1(b

n) = bn

and so bn ∈ CG(α2,1,1,1). Since 1 ≤ m ≤ p − 1, α2,1,1,1(am) = a2m = amam ̸= am. Also
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since gcd(uk−1 + · · · + u + 1, q) = 1, so q ∤ (uk−1 + · · · + u + 1). Thus,

α2,1,1,1(c
kbn1am1) = ckb(uk−1+···+u+1)+n1a(v(k−1)i+···+vi+1)+2m1

= ckbn1am1b(uk−1+···+u+1)a(v(k−1)i+···+vi+1)+m1 ̸= ckbn1am1 .

Hence, CG(α2,1,1,1) = B.
Let AB = ⟨a, b⟩ be the unique subgroup of G of the order pq. It is clear that

α1,1,1,1(a
m) = am and α1,1,1,1(b

n) = bn. Thus, am, bn ∈ CG(α1,1,1,1). Since gcd(uk−1 +
· · · + u + 1, q) = 1 and gcd(v(k−1)i + · · · + vi + 1, p) = 1, so q ∤ (uk−1 + · · · + u + 1) and
p ∤ (v(k−1)i + · · · + vi + 1). Thus,

α1,1,1,1(c
kbn1am1) = ckb(uk−1+···+u+1)+n1a(v(k−1)i+···+vi+1)+m1

= ckbn1am1b(uk−1+···+u+1)a(v(k−1)i+···+vi+1) ̸= ckbn1am1 .

Hence, CG(α1,1,1,1) = AB.
Let Hm1,n1 = ⟨cbn1am1⟩ where 0 ≤ m1 ≤ p − 1 and 0 ≤ n1 ≤ q − 1 be the

unique subgroup of G of order pq. First suppose m1 = n1 = 0. Then α2,2,0,0(c) = c.
Since 1 ≤ m ≤ p − 1, 1 ≤ n ≤ q − 1, we have α2,2,0,0(a

m) = a2m ≠ am and
α2,2,0,0(b

n) = b2n ̸= bn. Thus CG(α2,2,0,0) = H0,0 = ⟨c⟩. Now suppose n1 = 0, m1 ̸= 0.
Then α2,2,p−m1,0(cam1) = cap−m1+2m1 = cam1 and α2,2,p−m1,0(a

m) = a2m ≠ am and
α2,2,p−m1,0(b

n) = b2n ≠ bn. So CG(α2,2,p−m1,0) = Hm1,0 = ⟨cam1⟩. Similarly, if m1 = 0,
n1 ≠ 0, then α2,2,0,q−n1(cbn1) = cbq−n1+2n1 = cbn1 , α2,2,0,n1(am) = a2m ̸= am and
α2,2,p−m1,0(b

n) = b2n ≠ bn. Hence, CG(α2,2,0,q−n1) = H0,n1 = ⟨cbn1⟩. Finally suppose
that m1 ̸= 0 and n1 ̸= 0. Then

α2,2,p−m1,q−n1(cbn1am1) = cbq−n1+2n1ap−m1+2m1 = cbq+n1ap+m1 = cbn1am1 ,

and so, cbn1am1 ∈ CG(α2,2,p−m1,q−n1). Since 1 ≤ m ≤ p − 1 and 1 ≤ n ≤ q − 1, we
have α2,2,p−m1,q−n1(am) = a2m = amam ̸= am and α2,2,p−m1,q−n1(bn) = b2n = bnbn ̸= bn.
Hence, CG(α2,2,p−m1,q−n1) = Hm1,n1 .

Now we consider the unique subgroup AHn1 = ⟨a, cbn1⟩, where 0 ≤ n1 ≤ q − 1 of
order rp. First suppose that n1 = 0. Then α1,2,0,0(a

m) = am. Also α1,2,0,0(c
k) = ck.

So am, ck ∈ CG(α1,2,0,0). Since 1 ≤ n ≤ q − 1 we have α1,2,0,0(b
n) = b2n = bnbn ̸= bn.

Hence, CG(α1,2,0,0) = ⟨a, c⟩ = AH0. Now suppose that n1 ≠ 0. Then α1,2,0,q−n1(am) =
am. Also, α1,2,0,q−n1(cbn1) = cbq−n1+2n1 = cbq+n1 = cbn1 . So, am, cbn1 ∈ CG(α1,2,0,q−n1).
Since 1 ≤ n ≤ q−1, we have α1,2,0,q−n1(bn) = b2n = bnbn ≠ bn. Hence, CG(α1,2,0,q−n1) =
AHn1 .

Now consider the unique subgroup BHm1 = ⟨b, cam1⟩, where 0 ≤ m1 ≤ p − 1, of
order rq. First suppose that m1 = 0. Then α2,1,0,0(b

n) = bn. Also α2,1,0,0(c
k) =

ck. So bn, ck ∈ CG(α2,1,0,0). Since 1 ≤ m ≤ p − 1 we have α2,1,j1,0(a
m) = a2m =

amam ≠ am. Hence, CG(α2,1,0,0) = ⟨b, c⟩ = BH0. Now suppose that m1 ≠ 0. Then
α2,1,p−m1,0(b

n) = bn. Also, α2,1,p−m1,0(cam1) = cap−m1+2m1 = cap+m1 = cam1 . So,
bn, cam1 ∈ CG(α2,1,p−m1,0). Since 1 ≤ m ≤ p − 1 we have α2,1,p−m1,0(a

m) = a2m =
amam ̸= am. Hence, CG(α2,1,p−m1,0) = BHm1 .
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Therefore, ♣Acent(Gi+5)♣ = 1 + 1 + 1 + 1 + pq + q + p = pq + p + q + 4. □

5. Acentralizers of Finite Symmetric Groups

In this section we compute ♣Acent(Sn)♣. First we note that S2
∼= Z2 and so

♣Acent(S2)♣ = 1. Also if n = 6, then Aut(S6) = S6 ⋊ Z2 and by GAP [9] we see
that ♣Acent(S6)♣ = 443. Now since for every n ≠ 6, Aut(Sn) = Inn(Sn) = Sn, we have
Acent(Sn) = Cent(Sn). Hence in order to find ♣Acent(Sn)♣ we need to find ♣Cent(Sn)♣.
Recall that the conjugacy class an element g of a group G, is the set of elements its
conjugate, that is

xG := ¶xgx−1 ♣ x ∈ G♢.

Let A and G be groups, and let G act on a set X. Let B be the group of all of
functions from X into A. The product of two elements f and g of B fg(x) = f(x)g(x).
The group G acts on B via f g(x) = f(gxg−1). The semidirect product of B and G
with respect to this action is called the general wreath product.

Theorem 5.1. ([17, Page 297]) Let α be an element of Sn of cycle type (rλ1
1 , . . . , rλk

k ),
then the centralizer of α in Sn is a direct product of k groups of the form Zri

≀ Sλi
,

the general wreath product. The order of CSn
(α) is equal to

∏
λi!r

λi

i .

Every permutation α in Sn can be written as the product of disjoint cycles α =
α1 · · · αk, where αj = αj,1αj,2 · · · αj,λj

, j = 1, . . . k, is a product λj disjoint cycles of
length rj such that r1 < r2 < · · · < rk. The cycle, type of α is

r = (r1, . . . , r1︸ ︷︷ ︸
λ1

, . . . , rk, . . . , rk︸ ︷︷ ︸
λk

) = (rλ1
1 , . . . , rλk

k ).

We will not omit those ri which are 1, so we have λ1r1 + · · · + λkrk = n. The rj’s are
distinct and λj’s describe their multiplicities in the partition r of n. For j = 1, . . . , k
let Yj be the of letters in αj = αj,1αj,2 · · · αj,λj

. In fact

Yj =
{
a

(1)
j,1 , a

(2)
j,1 , . . . , a

(rj)
j,1 , . . . , a

(1)
j,λj

, a
(2)
j,λj

, . . . a
(rj)
j,λj

}
,

where αj,1 = (a
(1)
j,1 a

(2)
j,1 · · · a

(rj)
j,1 ), . . ., αj,λj

= (a
(1)
j,λj

a
(2)
j,λj

· · · a
(rj)
j,λj

). Clearly, Yj is α-

invariant and CG(α)-invariant; and the restriction of α to Yj is αj, A permutation
θ commutes, with α if and only if α = β1 · · · βk, where βj = βj,1βj,2 · · · βj,λj

, βj,1 =

(b
(1)
j,1 b

(2)
j,1 · · · b

(rj)
j,1 ), . . ., βj,λj

= (b
(1)
j,λj

b
(2)
j,λj

· · · b
(rj)
j,λj

), and θ(a
(rj)
j,λj

) = b
(rj)
j,λj

. Now, θ
commutes with α if and only if each Yj is θ-invariant and if the restriction βj of β
on Yj commutes with restriction of αj of α on Yj. Since Yi ∩ Yj = ∅ for i ̸= j, the
permutation β is uniquely determined by giving its restrictions on Yj. Hence we have
CSn

(α) = C1 × · · · × Ck, where Cj is the centralizer of αj in Sym(Yj).
Let σ = σ1σ2 · · · σλ, where σ1 = (a1,0 a1,1 · · · a1,r−1), σ2 = (a2,0 a2,1 · · · a2,r−1), . . .,

σλ = (aλ,0 aλ,1 · · · aλ,r−1) be the product of λ cycles of length r. Let Y be the set of
all letters in σ, that is

Y = ¶a1,0 a1,1 · · · a1,r−1, a2,0 a2,1 · · · a2,r−1, . . . , ai,0, ai,1, . . . ai,r−1♢.
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Let Mr := ¶m ∈ N ♣ m ≤ r, gcd(m, r) = 1♢. Then we have ♣Mr♣ = ϕ(r), where ϕ is
the Euler’s totient function. For every t ∈ Mr, since gcd(r, t) = 1 and the order of
σ is r, we have CG(σ) = CG(σt), where G := Sym(Y ). It follows that the number of
different centralizers of permeations which are product of λ cycles of the same length
r with letters in Y is

♣σSym(Y )♣

ϕ(r)
.

Now suppose that α = α1 · · · αk, where αj = αj,1αj,2 · · · αj,λj
, j = 1, . . . k, is a

product λj disjoint cycles of length rj such that r1 < r2 < · · · < rk. Let Yj, j = 1, . . . , r,
be the set of letters in αj. The cycle α1 in the decomposition α = α1α2 · · · αk in Sn can

be chosen in


n

♣Y1♣


=


n

r1λ1


ways. The cycle α2 can be chosen in


n−♣Y1♣

♣Y2♣


=


n−r1λ1

r2λ2



ways. In general αj can be chosen in


n −
∑j−1

i=1 ♣Yi♣

♣Yj♣


=


n −

∑j−1
i=1 λi

rjλj


=

∑k
i=j riλi

rjλj



ways. If r1 = 1, λ1 = 2, r2 = 2, λ2 = 1, and
∑k

j=3 λjrj = n − 4, then let α̂1 be two
cycles of length 1 with letters in α2 and α̂2 be a cycle of length 2 with letters in α1.
Then α1α2α3 · · · αk and α̂1 α̂2α3 · · · αk have the same centralizers. Hence, in this case
we have

1

2

k∏

j=1

♣αj
Sym(Yj)♣

ϕ(rj)

∑k
i=j riλi

rjλj



different centralizers of permutations whose cycle types are the same with α. Otherwise
there are

k∏

j=1

♣αj
Sym(Yj)♣

ϕ(rj)

∑k
i=j riλi

rjλj



different centralizers of permutations whose cycle types are the same with α in Sn.
In the following tables we denote the number of acentralizers of the same type as a

permutation π by ♯CSn
(π).

π () (∗, ∗) (∗, ∗, ∗)
♣πS3♣ 1 3 2
cycle type (13) (11, 21) (31)
CS3(π) ∼= C1 ≀ S3

∼= S3 (C2 ≀ S1) × (C1 ≀ S1) ∼= C2 C3 ≀ S1
∼= C3

♯CS3(π) 1 3 1

So, ♣Cent(S3)♣ = 5.

π () (∗, ∗) (∗, ∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗, ∗)
♣πS4 ♣ 1 6 8 3 6
cycle type (14) (12, 21) (11, 31) (22) (41)
CS4(π) ∼= S4 C2 × C2 C3 D4 C4

♯CS4(π) 1 3 4 3 3

So, ♣Cent(S4)♣ = 14.
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π () (∗, ∗) (∗, ∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗, ∗) (∗, ∗)(∗, ∗, ∗) (∗, ∗, ∗, ∗, ∗)

♣πS5 ♣ 1 10 20 15 30 20 24
cycle type (15) (13, 21) (12, 31) (11, 22) (11, 41) (21, 31) (51)
CS5(π) ∼= S5 C2 × S3 C3 × C2 D8 C4 C2 × C3 C5

♯CS5(π) 1 10 10 15 15 10 6

So, ♣Cent(S5)♣ = 67.

6. Conclusion

The acentralizer of an automorphism of a group is defined to be the subgroup of
its fixed points. In particular the acentralizer of an inner automorphism is just a
centralizer. In this paper we computed the acentralizers of some classes of groups,
namely dihedral, dicyclic and symmetric groups. As a result we see that if n ≥ 3, then
the numbers of acentralizers of the dihedral group and the dicyclic group of order 4n
are equal. Also we determined the acentralizers of groups of orders pq and pqr, where
p, q and r are distinct primes.
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OPTIMIZING CHANCE CONSTRAINT MULTIPLE-OBJECTIVE

FRACTIONAL MATHEMATICAL PROGRAMMING PROBLEM

INVOLVING DEPENDENT RANDOM VARIABLE

BERHANU BELAY1 AND SRIKUMAR ACHARYA2

Abstract. This manuscript suggests a methodology to solve chance constraint
multiple-objective linear fractional mathematical programming problem in which
the parameters are dependent random variables to each other. The proposed problem
is formulated by taking few of the parameters as continuous dependent random vari-
ables. The proposed model cannot be solved directly by using existing methodology.
Thus in order to solve the proposed model, an equivalent deterministic model is de-
rived. The procedure to solve the proposed model is accomplished in two main steps.
Initially, the proposed multiple-objective chance constraint linear fractional mathe-
matical problem is transformed to deterministic equivalent multiple-objective linear
fractional mathematical programming by the help of chance constrained method. In
the second step, multiple-objective functions, which consist of fractional functions
is solved by using lexicographic programming approach. Finally, an example is
mentioned to illustrate the methodology.

1. Introduction

Nowadays, in real world problems, many decision making problems have multiple
and conflicting objectives. The mathematical programming problem involving more
than one objective functions that are conflicting in nature is known as multiple-
objective programming problem. If the objective functions are ratio of affine functions,
the problem is called multiple-objective linear fractional mathematical programming
problem.

Key words and phrases. Multiple-objective programming problem, chance constraint programming
problem, fractional programming problem, lexicography method, dependent random variables.
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In a multiple-objective linear fractional programming problem, the optimal solution
for one single objective need not be an optimal solution for the other single objective
function. As a result, another solution which is called compromise solution must be
needed to optimize all objective functions. A solution is said to be efficient solution, in
the event that it cannot improve one objective function without degrading their per-
formance in one of the other objective functions. There exist several methodologies to
find efficient solution of multiple-objective fractional programming problem. Some of
the methods seen in the literature are: J. S. Kornbluth and R. E. Steuer [11] proposed
simplex based method to get weakly efficient solutions for multi-objective fractional
programming problem. Luhandjula, [13] solved multi-objective fractional program-
ming problem using a fuzzy programming approach. Dutta et al. [8] solved a special
type of programming problem having identical denominators using variable transfor-
mation method. By applying techniques used in [6] for suitable transformation, M.
Chakraborty and S. Gupta [3] solved multi-objective fractional programming problem
based on set theoretic approach. Jain [9] proposed Gauss elimination method to solve
multi-objective linear fractional programming problem. Porchelvi et al. [14] presented
a method to find efficient solution of multi objective fractional programming problem
with the help of complementary method proposed by Dheyab [7] by transforming
fractional programming problem into equivalent programming problem. Tantawy
[16] presented a feasible direction method for multi-objective fractional programming
problem, where the denominators are identical functions.

In real world problems, the data of mathematical programming problem may not
be known with certainty. If the uncertainty occurs due to randomness, then the
programming problem is called stochastic programming problem. In this case, some
or all of the data of the programming problem can be characterized with random
variables following known distributions. There are two techniques that are used to
solve stochastic mathematical programming problems. Namely, chance constraint and
two stage mathematical programming. Our objective in this manuscript is to study
the chance constraint mathematical programming problem. Chance constraint math-
ematical programming is one of the method used to solve mathematical programming
problem at which the restrictions have fixed probability of violation. In this case the
randomness can be shown either within the coefficient of objective functions, with in
the constraint coefficients, within the right hand side parameters or in combination
of constraint coefficients, objective function, and right hand side parameters.

In this manuscript, the randomness occurs only in the left side of the constraints.
The difficulty of chance constraint programming problem is handling the chance
constraints.

To handle these constraints some researchers obtained the deterministic equivalent
of the problem with the concept of probability distribution function. Charnes and
Cooper [5] presented the deterministic equivalence of chance constraint programming
problem that includes independent normal random variables. Lingaraj and Wolfe [12]
obtained the deterministic equivalence of chance constraint programming problem
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where the random variable follow gamma distribution. Knott [10] presented chance
constraint mathematical programming by considering the parameters within the right
side of limitations as uniform random variables. Biswal et al. [2] solved single ob-
jective probabilistic linear programming problem by considering few parameters as
exponential random variables. Sahoo and Biswal [15] presented chance constraint
programming problem where the random variables within the joint constraint have
both normal and log normal distribution. Charles et al. [4] proposed chance constraint
programming by considering the parameters within the right side of limitations having
generalized continuous distribution. In spite of the fact that a few approaches are
presented to obtain the deterministic equivalence of chance constraint programming
problem including independent random variables, any method is not mentioned to find
the deterministic equivalence of chance constraint programming problem including
dependent random variables. i.e two random variables are called dependent random
variable, if the probability of events associated with one random variable influence
the distribution of probabilities of the other variable.

Chance constraint programming problem can be applied to the programming prob-
lem where the fractional objective functions are multiple, non commensurable and
conflicting each other. In this case, there is no single solution that optimizes all frac-
tional objective functions. The solutions of multiple-objective fractional programming
problem are known as compromise solution or efficient solution. In multiple-objective
fractional programming problem, decision makers need the satisfaction of criteria
instead of optimizing the objective function. However, such type of problems are
more complex when the parameters are uncertain. Recently Acharya et al. [1] solved
multi-objective chance constraint fractional programming problems involving two
parameters independent Cauchy random variables.

In this manuscript, an attempt has been made to get the lexicographic optimal so-
lution of chance constraint multiple-objective linear fractional mathematical program-
ming problem involving dependent normal random variable where the randomness
occurs only in the constraint coefficient.

Multiple-objective chance constraint linear fractional programming is a special class
of multiple-objective stochastic linear fractional programming problem.

This manuscript has been organized within six sections including the references.
The first section states about the brief introduction of programming problem. The
second section states the mathematical model of multiple-objective fractional program-
ming problem. Section 3 presents the transformation strategy of multiple-objective
chance constraint linear fractional programming problem into its deterministic equiv-
alent. Section 4 states the solution procedure of multiple-objective chance constraint
linear fractional programming problem. In Section 5 numerical example is given to
demonstrate the proposed method. The final section presents the conclusion of the
paper followed by references.
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2. Mathematical Model

The general multiple-objective fractional programming problem can be stated as:

(2.1) max / min : Zk =
Nk(X)

Dk(X)

subject to
n
∑

j=1

aijxj(≤, ≥, =)bi, i = 1, 2, . . . , m,(2.2)

xj ≥ 0, j = 1, 2, . . . , n,(2.3)

where the functions Nk(X) and Dk(X) are continuous real valued functions defined
from R

n → R, the constraint functions can be linear or non linear functions, and the
variable X is n-dimensional vector.

If Zk are the objective functions which are defined on a compact set, then the
point x0 is compromise solution for the given problem, if and only if x0 optimizes
each objective function Zk. The compromise solutions exist if the feasible space is
non-empty and compact as well as the functions Nk(X) and Dk(X) are continuous
functions and the denominator is different from zero.

If Nk(X) and Dk(X) are affine functions, the programming problem given by
(2.1)–(2.3) is called multiple-objective linear fractional programming problem. If the
parameters of multiple-objective linear fractional programming problem are uncertain
due to randomness, then the given programming problem is called multiple-objective
chance constraint linear fractional programming problem.

A multiple-objective chance constraint linear fractional programming problem is
expressed as:

(2.4) max : Zk =
Nk(X)

Dk(X)
=

n
∑

j=1
ckjxj + c0k

n
∑

j=1
dkjxj + d0k

, k = 1, 2, . . . , K,

subject to

P





n
∑

j=1

aijxj ≤ bi



 ≥ αi, i = 1, 2, . . . , m,(2.5)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(2.6)

xj ≥ 0, j = 1, 2, . . . , n,(2.7)

where
n
∑

j=1

ckjxj + c0k and
n
∑

j=1

dkjxj + d0k,

are linear functions of xj, ckj, dkj ∈ R
n, aij ∈ R

m×n, c0k and d0k are scalars, P indicates
probability, αi represents aspiration level for i-th constraint.
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3. Transformation Technique

In order to understand the transformation of multiple-objective chance constraints
linear fractional programming problem into its deterministic equivalent, we focus on
the following two cases.

Case 1. Let’s consider the following multiple-objective chance constraint linear
fractional programming problem with two decision variables x1 and x2.

(3.1) min / max : Zk =
Nk(X)

Dk(X)
=

ck1x1 + ck2x2 + ck0

dk1x1 + dk2x2 + dk0

, k = 1, 2, . . . , K,

subject to

P (ai1x1 + ai2x2 ≤ bi) ≥ αi, i = 1, 2, . . . , m,(3.2)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.3)

x1, x2 ≥ 0, j = 1, 2, . . . , n,(3.4)

where ck1x1 + ck2x2 + ck0 and dk1x1 + dk2x2 + dk0 are linear functions of x1 and x2,
ck1, . . . , ck2, . . . , ck0, dk1, . . . , dk2, . . . , dk0 ∈ R.

The mathematical programming problem (3.1)–(3.4) is equivalent to the mathe-
matical programming problem given by:

(3.5) min / max : Zk =
Nk(X)

Dk(X)
=

ck1x1 + ck2x2 + ck0

dk1x1 + dk2x2 + dk0

, k = 1, 2, . . . , K,

subject to

E(ai1x1 + ai2x2) ≤ bi − kβi

√

Var(ai1x1 + ai2x2), i = 1, 2, . . . , m,(3.6)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.7)

x1, x2 ≥ 0, j = 1, 2, . . . , n.(3.8)

The equivalence of the two mathematical programming problems is proven by the
existence of one to one function. In this case, the normal probability density function
is used as a one to one function.

Let x be a normal random variable, then probability density function is expressed
by:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , σ > 0, −∞ < µ < ∞.

In (3.6) assume that the coefficients ai1 and ai2 are dependent random variables having
normal distribution with variance σ2 and mean µ. Let’s assume the i-th constraint in
the chance constraint given in (3.2)

(3.9) P (ai1x1 + ai2x2 ≤ bi) ≥ αi.

Let q be the random variable defined as q = ai1x1 + ai2x2, then (3.9) is expressed by

(3.10) P (q ≤ bi) ≥ αi.
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Since q is a linear combination of normally distributed random variables, then it is
a normal distributed random variable. Consequently the chance constraint given in
(3.10) can be expressed as

(3.11) P





q − E(q)
√

Var(q)
≤

bi − E(q)
√

Var(q)



 ≥ αi,

where E(q) and Var(q) are mean and variance of the random variable q and q−E(q)√
Var(q)

is a standard normal random variable.
The equation (3.11) can be written using cumulative distribution function

1√
2π

∫

bi−E(q)√
Var(q)

−∞
e− z2

2 dz ≥ αi, where z =
q − E(q)
√

Var(q)
,

and

(3.12) φ





bi − E(q)
√

Var(q)



 ≥ αi,

where φ(·) stands to standard normal random variable having µ = 0 and σ = 1.
Assume that kβi

indicates the value of random variable with µ = 0 and σ = 1 fulfilling
φ(kβi

) = αi, at that point the constraint (3.12) is expressed as

(3.13) φ





bi − E(q)
√

Var(q)



 ≥ φ(kβi
),

since φ continuous, the inequality (3.13) is satisfied only if

bi − E(q)
√

Var(q)
≥ kβi

or

(3.14) E(q) ≤ bi − kβi

√

Var(q) ≤ 0.

Substituting q = ai1x1 + ai2x2 in (3.14), we have

(3.15) E(ai1x1 + ai2x2) ≤ bi − kβi

√

Var(ai1x1 + ai2x2).

Substituting (3.15) in (3.2), the deterministic equivalent of the mathematical pro-
gramming problem (3.1)–(3.4) is expressed as

(3.16) max : Zk =
Nk(X)

Dk(X)
=

ck1x1 + ck2x2 + ck0

dk1x1 + dk2x2 + dk0

, k = 1, 2, . . . , K,
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subject to

E(ai1x1 + ai2x2) ≤ bi − kβi

√

Var(ai1x1 + ai2x2), i = 1, 2, . . . , m,(3.17)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.18)

x1, x2 ≥ 0, j = 1, 2, . . . , n(3.19)

because ai1 and ai2 are dependent random variables, then Var(ai1x1 + ai2x2) is calcu-
lated as

(3.20) Var(ai1x1 + ai2x2) = XHtX,

where X = (x1, x2) and H is 2 × 2 covariance matrix which is defined as:

H =

(

Var(ai1) Cov(ai1, ai2)
Cov(ai2, ai1) Var(ai2)

)

.

Case 2. In this case, the multiple-objective chance constraint linear fractional pro-
gramming with n decision variables is expressed as:

(3.21) min / max : Zk =
Nk(X)

Dk(X)
=

n
∑

j=1
ckjxj + c0k

n
∑

j=1
dkjxj + d0k

, k = 1, 2, . . . , K,

subject to

P





n
∑

j=1

aijxj ≤ bi



 ≥ αi, i = 1, 2, . . . , m,(3.22)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.23)

xj ≥ 0, j = 1, 2, . . . , n.(3.24)

Assume that aij are dependent normal random variables having n decision variables,
then the chance constraint (3.22) is given by

(3.25) P

(

n
∑

i=1

aijxj ≤ bi

)

≥ αi.

Let q is a random variable defined as q =
∑n

i=1 aijxj −bi. Following the same procedure
as case 1 above, the deterministic equivalent of the chance constraint programming
problem is given by

(3.26) E





n
∑

j=1

aijxj



 ≤ bi − kβi

√

√

√

√

√Var





n
∑

j=1

aijxj



,
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substituting (3.26) in (3.22), the deterministic equivalent of the mathematical pro-
gramming problem (3.21)–(3.24) is expressed by:

(3.27) min / max : Zk =

n
∑

j=1
ckjxj + c0k

n
∑

j=1
dkjxj + d0k

, k = 1, 2, . . . , K,

subject to

E





n
∑

j=1

aijxj



 ≤ bi − kβi

√

√

√

√

√Var





n
∑

j=1

aijxj



, i = 1, 2, . . . , m,(3.28)

xj ≥ 0, j = 1, 2, . . . , n.(3.29)

Since aij are dependent random variables then Var(q) is calculated as follows

(3.30) Var(q) = Var(ai1x1 + ai2x2 + ai3x3 + · · · + ainxn), i = 1, 2, . . . , m,

using the property of variance for the sum of dependent random variables we have
Var(ai1x1 + ai2x2 + ai3x3 + · · · + ainxn) = XHT X, where H is n × n covariance matrix
which is expressed by

H =













Var(ai1) Cov(ai1, ai2) · · · Cov(ai1, ain)
Cov(ai2, ai1) Var(ai2) · · · Cov(ai2, ain)

...
...

. . .
...

Cov(ain, ai1) Cov(ain, ai2) · · · Var(ain)













.

4. Solution Procedure

Since the mathematical programming problem given in (2.4)–(2.7) involves uncer-
tain parameters and several linear fractional objectives, it is difficult to discover the
lexicographic optimal solution directly. To find the lexicographic optimal solution
of the given multiple-objective chance constraint fractional programming problem,
first convert the multiple-objective chance constraint linear fractional mathematical
programming to deterministic equivalent multiple-objective linear fractional mathe-
matical programming. Then lexicography approach is applied to get the lexicographic
solution of the deterministic multiple-objective linear fractional programming problem.

We use the lexicographic ordering approach instead of general partial ordering
since it is a special case of general partial ordering approach. In this case, when
the lexicographic order has been imposed upon a set of objective functions, then all
elements of the objective function will be comparable to one under the ordering where
as partial orders are generated by a cone. In lexicography preferences are imposed by
ordering the objective functions according to their importance rather than assigning
weights. In this case, to solve single objective fractional programming problem, we
used complementary method which is proposed by A. N. Dheyab [7]. The method
is applied to change fractional mathematical model into equivalent mathematical
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model which is free from fractional functions. The idea is, to maximize fractional
objective function, the numerator must be maximized and the denominator must
be minimized. To do this, the fractional objective functions must be realized by
subtracting the denominator function from the numerator function. The resulting
objective function is maximized subject to given constraint. This shows that the
single objective fractional mathematical programming is changed to single objective
mathematical programming. Finally, the single objective programming problem is
solved by a suitable strategy or existing software.

The basic steps of the methods of multiple-objective chance constraint linear frac-
tional programming problem are given below.

Step 1. Transform the multiple-objective chance constraint linear fractional pro-
gramming problem into deterministic equivalent multiple-objective linear fractional
programming problem as mentioned in Section 3.

Step 2. From the objective function (minimization problem) take k = 1. The first

objective function is expressed as Z1(x) = N1(x)
D1(x)

, then the value of Z1 is taken as the

minimum value of N1(x) and the maximum value of D1(x).
Step 3. Formulate a mathematical programming problem as min z1(x) together

with the original constraints, where z1(x) = N1(x) − D1(x). This is because to
make the linear fractional programming problem minimum, the numerator must be as
minimum as possible, while the denominator must be as greater as possible, i.e., let
the numerator is denoted by min N1(x) and the denominator is denoted by max D1(x).
Then the denominator max D1(x) is converted to min D1(x) by multiplying both sides
by negative sign. Therefore, the new linear programming problem becomes min Z =
min N1(x)−min D1(x) as stated in [7]. This can be written as min Z = N1(x)−D1(x).
This is done by putting the variable of numerator linear on the opposite signal with
code e1, it is added to the simplex method table in the line (m + 1) where as setting
the variable of denominator linear to its opposite signal with code e2, it is add to the
simplex method table in the line m + 2, where the the bounds of the mathematical
model for m is from numbers and the target linear problem is based on the following
code,i.e., Z = N1e1 − D1e2, where N1 is the value of the numerator after compensated
the result of the value of x and D1 is the value of the denominator after compensated
the result of the value of x. Taking e1 = e2, we got Z = N1 − D1. Then the resulting
problem is solved by methods of single objective programming or existing software.

Step 4. Apply the same procedure for the second objective function Z2(x) = N2(x)
D2(x)

.

In this case, the minimization of earlier objective function min z2(x) is considered as
an other constraint in addition to the original constraints.

Step 5. Once more the same strategy is applied for the third objective function and
the resulting single objective programming problem is optimized subject to the previ-
ous objective function min z3(x) as constraint together with the original constraint.

Step 6. The method is continued until all the objective functions could be optimized.
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The algorithm terminates once a unique optimum is determined. This means that
if we have n objective functions, then we do have n! sequence of objective functions.
This shows that n! possible lexicographic optimal solutions can be obtained from
the given problem. Hence the algorithm terminates if all possible sequential ordered
functions are optimized.

The values of the objective functions is obtained by substituting the lexicographic
solution to the original objective functions.

5. Numerical Example

Consider the following multiple-objective chance constrained linear fractional math-
ematical programming where the constraint coefficient of the left hand restrictions
follow dependent normal random variables.

max Z1 =
8x1 + 14x2

2x1 + 4x2

,(5.1)

max Z2 =
−16x1 + 9x2

−6x1 + 5x2 + 3
,(5.2)

subject to

P (a11x1 + a12x2 ≤ 30) ≥ 0.85,(5.3)

P (a21x1 + a22x2 ≤ 40) ≥ 0.95,(5.4)

xj ≥ 0, j = 1, 2,(5.5)

where a11, a12, a21, a22 are random variables that follow dependent normal distribution
with known parameters E(a11) = 2, E(a12) = 4, E(a21) = 1, E(a22) = 2, Var(a11) =
16, Var(a12) = 25, Var(a21) = 49, Var(a22) = 36, Cov(a11, a12) = 10, Cov(a21, a22) =
14.

Now, using equation the problem given in (3.27)–(3.29) the deterministic equivalent
of the problem given in (5.1)–(5.5) is expressed as:

max Z1 =
8x1 + 14x2

2x1 + 4x2

,(5.6)

max Z2 =
−16x1 + 9x2

−6x1 + 5x2 + 3
,(5.7)

subject to

E(a11x1 + a12x2) ≤ b1 − kβ1y1,(5.8)

Var(a11x1 + a12x2) − y2
1 = 0,(5.9)

E(a21x1 + a22x2) ≤ 40 − kβ2y2 ≤ 0,(5.10)

Var(a21x1 + a22x2) − y2
2 = 0,(5.11)

x1, x2, y1, y2 ≥ 0.(5.12)
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Using the property of mean and variance of dependent random variables we have:

(5.13) E(a11x1 + a12x2) = E(a11)x1 + E(a12)x2

and

Var(a11x1 + a12x2) =
[

x1 x2

]

[

Var(a11) Cov(a11, a12)
Cov(a12, a11) Var(a12)

] [

x1

x2

]

,

similarly, the variance of the second constraint is given by

Var(a21x1 + a22x2) =
[

x1 x2

]

[

Var(a21) Cov(a21, a22)
Cov(a22, a21) Var(a22)

] [

x1

x2

]

.

Substituting all the values of the given data in the problem (5.6)–(5.12), we have the
following deterministic multiple-objective linear fractional programming problems.

max Z1 =
8x1 + 14x2

2x1 + 4x2 + 2
,(5.14)

max Z2 =
−16x1 + 9x2

−6x1 + 5x2 − 3
,(5.15)

subject to

2x1 + 4x2 ≤ 30 − 1.034y1,(5.16)

(16x2
1 + 20x1x2 + 25x2

2) − y2
1 = 0,(5.17)

1x1 + 2x2 ≤ 40 − 1.645y2,(5.18)

(49x2
1 + 28x1x2 + 36x2

2) − y2
2 = 0,(5.19)

x1, x2, y1, y2 ≥ 0.(5.20)

The deterministic programming problem given in (5.14)–(5.20) is multiple-objective
nonlinear fractional programming problem. Using the above method, we can get the
lexicographic solution of the given mathematical problem.

Now, consider the first objective function max Z1 = −4x1+3x2

2x1+4x2
and separate this

function into two functions namely, numerator and denominator. Using the procedure
in step 2, we have to formulate single objective programming problem together with
the given constraints which is stated by (5.21)–(5.26) as follows

max Z̄1 = (8x1 + 14x2) − (2x1 + 4x2 + 2) = 6x1 + 10x2 − 2,(5.21)

subject to

2x1 + 4x2 ≤ 30 − 1.034y1,(5.22)

(16x2
1 + 20x1x2 + 25x2

2) − y2
1 = 0,(5.23)

1x1 + 2x2 ≤ 40 − 1.645y2,(5.24)

(49x2
1 + 28x1x2 + 36x2

2) − y2
2 = 0,(5.25)

x1, x2, y1, y2 ≥ 0.(5.26)
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Solving this nonlinear programming problem using LINGO software, we obtain the
following optimal solutions: x1 = 1.113499, x2 = 2.725417, y1 = 16.31657, y2 =
20.32563, with maximum value Z̄1 = 31.93516.

Next, we consider the second objective function Z2 = −16x1+9x2

−6x1+4x2−3
. According to the

above procedure given in step 4, we formulate the non linear programming problem
as:

max Z̄2 =
−16x1 + 9x2

−6x1 + 5x2 − 3
= −10x1 + 4x2 + 3,(5.27)

subject to

2x1 + 4x2 ≤ 30 − 1.034y1,(5.28)

(16x2
1 + 20x1x2 + 25x2

2) − y2
1 = 0,(5.29)

1x1 + 2x2 ≤ 40 − 1.645y2,(5.30)

(49x2
1 + 28x1x2 + 36x2

2) − y2
2 = 0,(5.31)

6x1 + 10x2 = 33.93516,(5.32)

x1, x2, y1, y2 ≥ 0.(5.33)

Here 6x1 + 10x2 ≥ 33.93516 is included in the constraint. Solving the nonlinear
programming problem given in (5.27)–(5.33), we obtain the following lexicographic
optimal solution: x1 = 1.113499, x2 = 2.725417, y1 = 16.31657, y2 = 20.32563, with
maximum value Z̄1 = 2.766681.

Therefore, a lexicographic solution by above multiple-objective chance constraint
fractional programming problem is x1 = 1.113499, x2 = 2.725417, with max Z1 =
47.06383
17.854083

, max Z2 = 6.712769
3.946091

.
In any multiple-objective programming problem, there exist a number of good lexi-

cographic solutions. These lexicographic solutions are equally acceptable. Choosing
the lexicographic solution depends on the situation that decision makers prefer. The
preference of decision maker depends on different conditions like budget, row material,
resource, time limit etc. Therefore, having more lexicographic solution to multiple-
objective programming problem is necessary for decision makers to select the best
solution among the given alternatives which satisfies their need and capacity. Hence,
we need to search more lexicographic solution for the above programming problem.
So, applying the above procedure given in section 4, first choose the second objective
function and optimizing subject to the given constraints, we have an optimal solution
x1 = 0.0000, x2 = 3.271538, y1 = 16.35769, y2 = 19.62923, with maximum value
Z̄2 = 16.08615.

Next, optimizing the first objective function Z1 subject to the original constraint
including Z̄2 = −10x1 − 4x2 ≥ 14.19455, obtain lexicographic optimal solution x1 =
0.2538795, x2 = 3.156236, y1 = 16.31267, y2 = 19.60155, with maximum value
Z̄1 = 31.08564. Substituting these values to the original objective function gives to
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the lexicographic solution which is given by x1 = 0.2538795, x2 = 3.156236, with
max Z1 = 46.2183

18.288939
, max Z2 = 24.2183

11.257903
.

Finally, the two lexicographic solutions are given in Table 1.

Table 1. Lexicographic solutions

x1 x2 Z1 Z2(X)
1.113499 2.725417 47.06383

17.854083
6.712769
3.946091

0.2538795 3.156236 46.2183
18.288939

24.2183
11.257903

6. Conclusion

Multiple-objective chance constraint linear fractional programming are solved by
considering the coefficient of constraints as random variables following dependent
normal distribution. We consider that other data of the model are deterministic.
The formulated programming problem is converted to its deterministic equivalent
programming problem using the concept of cumulative probability distribution for
dependent random variables using the concepts of covariance. The resulting multiple-
objective fractional programming is solved by using lexicography method which is
prior method. Alternative lexicographic solutions are obtained using the proposed
method. The problem can be extended to the same programming problems involving
other dependent random variables.
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POSITIVITY AND PERIODICITY IN NONLINEAR NEUTRAL

MIXED TYPE LEVIN-NOHEL INTEGRO-DIFFERENTIAL

EQUATIONS

KARIMA BESSIOUD1, ABDELOUAHEB ARDJOUNI1, AND AHCENE DJOUDI2

Abstract. In this work, we give sufficient conditions for the existence of periodic
and positive periodic solutions for a nonlinear neutral mixed type Levin-Nohel
integro-differential equation with variable delays by using Krasnoselskii’s fixed point
theorem. Also, we obtain the existence of a unique periodic solution of the posed
equation by means of the contraction mapping principle. As an application, we give
an example to illustrate our results. Previous results are extended and generalized.

1. Introduction

Differential and integro-differential equations with delays have received great atten-
tion and have become an active area of research. This is due to the fact that several
phenomena in life sciences, engineering, chemistry and physics can be described by
means of delay equations. Indeed, problems concerning the positivity, periodicity
and stability of solutions for differential and integro-differential equations with delays
have received the considerable attention of many authors, see [1]–[24], [26,27] and the
references therein.

Key words and phrases. Fixed points, positivity, periodicity, Levin-Nohel integro-differential equa-
tions.
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In this paper, we consider the following nonlinear neutral mixed type Levin-Nohel
integro-differential equation with variable delays

d

dt
x (t) = −

m
∑

j=1

∫ t

t−τj(t)
aj (t, s)x (s) ds−

m
∑

j=1

∫ t+σj(t)

t
bj (t, s)x (s) ds

+
d

dt
g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) ,(1.1)

where aj, bj, τj, σj and g are continuous functions with τj (t) > 0, σj (t) > 0, j =
1, . . . ,m. In this work, we use the idea of integrating factor to convert the equation
(1.1) into an integral equation. Then, we employ Krasnoselskii’s fixed point theorem
to show the existence of periodic and positive periodic solutions of (1.1). Also, we
obtain the existence of a unique periodic solution by using the contraction mapping
principle. An example is given to illustrate our main results.

In [9], we investigated the asymptotic stability of the zero solution for (1.1) by using
the contraction mapping theorem. Also, in the special case aj (t, s) = 0, j = 2, . . . ,m,
bj (t, s) = 0, j = 1, . . . ,m and g (t, x1, x2, . . . , xm) = g1 (t, x1), in [10], we proved the
existence and uniqueness of periodic solutions and the existence of positive solutions
for (1.1) by appealing Krasnoselskii’s fixed point theorem and the contraction mapping
theorem. Then, the results presented in this paper extend and generalize the main
results in [10].

2. Existence and Uniqueness of Periodic Solutions

For T > 0 let PT be the set of all continuous scalar functions x periodic in t of
period T . Then (PT , ∥·∥) is a Banach space with the supremum norm

∥x∥ = sup
t∈R

♣x (t)♣ = sup
t∈[0,T ]

♣x (t)♣ .

Since we are searching for the existence of periodic solutions for (1.1), it is natural to
suppose that

aj (t+ T, s+ T ) =a (t, s) , bj (t+ T, s+ T ) = bj (t, s) ,

τj (t+ T ) =τj (t) , σj (t+ T ) = σj (t) ,(2.1)

with τj and σj being scalar continuous functions, τj (t) ≥ τ ∗

j > 0 and σj (t) ≥ σ∗

j > 0,
j = 1, . . . ,m. Also, we suppose

(2.2)
∫ T

0
A (z) dz > 0, A (t) =

m
∑

j=1

∫ t

t−τj(t)
aj (t, s) ds+

m
∑

j=1

∫ t+σj(t)

t
bj (t, s) ds.

The function g (t, x1, x2, . . . , xm) is periodic in t of period T , it is also globally Lipschitz
continuous in xj, j = 1, . . . ,m. That is

(2.3) g (t+ T, x1, x2, . . . , xm) = g (t, x1, x2, . . . , xm) ,
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and there are positive constants Ej, j = 1, . . . ,m, such that

(2.4) ♣g (t, x1, x2, . . . , xm) − g (t, y1, y2, . . . , ym)♣ ≤
m
∑

j=1

Ej ♣xj − yj♣ .

The next lemma is crucial to our results.

Lemma 2.1. Suppose that (2.1)–(2.3) hold. Then, x ∈ PT is a solution of the equation

(1.1) if and only if x satisfies

x (t) =Gx (t) −
(

1 − e
−

∫ t

t−T
A(z)dz

)

−1

×
∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds,(2.5)

where

(2.6) Gx (t) = g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) ,

and

Lx (t) =
m
∑

j=1

∫ t

t−τj(t)
aj (t, s)

(

∫ t

s

(

m
∑

k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

+
m
∑

k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν



du+Gx (s) −Gx (t)



ds(2.7)

and

Nx (t) =
m
∑

j=1

∫ t+σj(t)

t
bj (t, s)

(

∫ t

s

(

m
∑

k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

+
m
∑

k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν



du+Gx (s) −Gx (t)



ds.(2.8)

Proof. Obviously, we have

x (s) = x (t) −
∫ t

s

∂

∂u
x (u) du.

Inserting this relation into (1.1), we obtain

d

dt
x (t) +

m
∑

j=1

∫ t

t−τj(t)
aj (t, s)

(

x (t) −
∫ t

s

∂

∂u
x (u) du



ds

+
m
∑

j=1

∫ t+σj(t)

t
bj (t, s)

(

x (t) −
∫ t

s

∂

∂u
x (u) du



ds−
d

dt
Gx (t) = 0.
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So,

d

dt
x (t) + x (t)





m
∑

j=1

∫ t

t−τj(t)
aj (t, s) ds+

m
∑

j=1

∫ t+σj(t)

t
bj (t, s) ds





−
m
∑

j=1

∫ t

t−τj(t)
aj (t, s)

(

∫ t

s

∂

∂u
x (u) du



ds

−
m
∑

j=1

∫ t+σj(t)

t
bj (t, s)

(

∫ t

s

∂

∂u
x (u) du



ds−
d

dt
Gx (t) = 0.

Substituting ∂x
∂u

from (1.1), we get

d

dt
x (t) + x (t)





m
∑

j=1

∫ t

t−τj(t)
aj (t, s) ds+

m
∑

j=1

∫ t+σj(t)

t
bj (t, s) ds





−
m
∑

j=1

∫ t

t−τj(t)
aj (t, s)



∫ t

s

(

−
m
∑

k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

−
m
∑

k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν +

∂

∂u
Gx (u)



du

]

ds

−
m
∑

j=1

∫ t+σj(t)

t
bj (t, s)



∫ t

s

(

−
m
∑

k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

−
m
∑

k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν +

∂

∂u
Gx (u)



du

]

ds−
d

dt
Gx (t) = 0.(2.9)

By performing the integration, we obtain

(2.10)
∫ t

s

∂

∂u
Gx (u) du = Gx (t) −Gx (s) .

Substituting (2.10) into (2.9), we get

d

dt
x (t) + A (t)x (t) + Lx (t) +Nx (t) −

d

dt
Gx (t) = 0,

where A and Lx and Nx are given by (2.2), (2.7) and (2.8), respectively. We rewrite
this equation as

(2.11)
d

dt
¶x (t) −Gx (t)♢ = −A (t) (x (t) −Gx (t)) − A (t)Gx (t) − Lx (t) −Nx (t) .

Multiply both sides of (2.11) with e
∫ t

0
A(z)dz and then integrate from t − T to t to

obtain
∫ t

t−T

∂

∂s
[x (s) −Gx (s)] e

∫ s

0
A(z)dzds

= −
∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e

∫ s

0
A(z)dzds.
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As a consequence, we arrive at

(x (t) −Gx (t)) e
∫ t

0
A(z)dz − (x (t− T ) −Gx (t− T )) e

∫ t−T

0
A(z)dz

= −
∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e

∫ s

0
A(z)dzds.

Dividing both sides of the above equation by e
∫ t

0
A(z)dz and using the fact that x (t) =

x (t− T ), we obtain

x (t) −Gx (t)

= −
(

1 − e
−

∫ t

t−T
A(z)dz

)

−1 ∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds.

Since each step is reversible, the converse follows easily. This completes the proof. □

Define the mapping H by

(Hφ) (t) =Gφ (t) −
(

1 − e
−

∫ t

t−T
A(z)dz

)

−1

×
∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds.(2.12)

It is clear form (2.12) that H : PT → PT by the way it was constructed in Lemma 2.1.
Next, we state Krasnoselskii’s fixed point theorem which enables us to prove the

existence of periodic and positive periodic solutions. For the proof of Krasnoselskii’s
fixed point theorem we refer the reader to [25].

Theorem 2.1 (Krasnoselskii). Let M be a closed bounded convex nonempty subset

of a Banach space (B, ∥·∥). Suppose that C and B map M into B such that

(i) x, y ∈ M implies Cx+By ∈ M ;

(ii) C is continuous and CM is contained in a compact set;

(iii) B is a contraction mapping.

Then there exists z ∈ M , with z = Cz +Bz.

We note that to apply the above theorem we need to construct two mappings; one
is contraction and the other is continuous and compact. Therefore, we express (2.12)
as

(Hφ) (t) = (Bφ) (t) + (Cφ) (t) ,

where C,B : PT → PT are given by

(2.13) (Bφ) (t) = Gφ (t) ,

and
(2.14)

(Cφ) (t) = −
(

1 − e
−

∫ t

t−T
A(z)dz

)

−1 ∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds.
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To simplify notations, we introduce the following constants

η =
(

1 − e
−

∫ t

t−T
A(z)dz

)

−1

, ρ = sup
t∈[0,T ]



 sup
s∈[t−T,t]

m
∑

j=1

(

∫ s

s−τj(s)
♣aj (s, w)♣ dw





 ,

ϱ = sup
t∈[0,T ]



 sup
s∈[t−T,t]

m
∑

j=1

(

∫ s+σj(s)

s
♣bj (s, w)♣ dw





 , γ = sup
t∈[0,T ]

(

sup
s∈[t−T,t]

e−

∫ t

s
A(z)dz



,

δ = sup
t∈[0,T ]

(

sup
s∈[t−T,t]

(

sup
w∈[t−T,t]

∫ s

w

(

m
∑

k=1

∫ u

u−τk(u)
♣ak (u, ν)♣ dν

+
m
∑

k=1

∫ u+σk(u)

u
♣bk (u, ν)♣ dν



du



, α = sup
t∈[0,T ]

♣G0 (t)♣ .

(2.15)

Lemma 2.2. Let C be given in (2.14). Suppose that (2.1)–(2.4) hold. Then C : PT →
PT is continuous and the image of C is contained in a compact set.

Proof. To see that C is continuous, let φ, ψ ∈ PT . Given ϵ > 0, take β = ϵ
N

with

N = ηγT

(

ρ + ϱ

)

(

δ + 3
∑m
j=1 Ej

)

where Ej, j = 1, . . . ,m, are given by (2.4). Now,

for ∥φ− ψ∥ < β, we get

∥Cφ− Cψ∥

≤ηγ
∫ t

t−T



ρ



δ + 2
m
∑

j=1

Ej



 ∥φ− ψ∥ + ϱ



δ + 2
m
∑

j=1

Ej



 ∥φ− ψ∥

+ (ρ+ ϱ)





m
∑

j=1

Ej



 ∥φ− ψ∥



 ds

≤ηγ
∫ t

t−T
(ρ+ ϱ)



δ + 3
m
∑

j=1

Ej



 ∥φ− ψ∥ ds

≤N ∥φ− ψ∥ < ϵ.

This proves that C is continuous. To show that the image of C is contained in
a compact set, we consider D = ¶φ ∈ PT : ∥φ∥ ≤ R♢ where R is a fixed positive
constant. Let φ ∈ D. Observe that in view of (2.4) we have

♣Gφ (t)♣ = ♣Gφ (t) −G0 (t) +G0 (t)♣ ≤ ♣Gφ (t) −G0 (t)♣ + ♣G0 (t)♣ ≤
m
∑

j=1

Ej ∥φ∥ + α.
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Consequently,

∥Cφ∥ ≤ηγ
∫ t

t−T



ρ



δR + 2



R
m
∑

j=1

Ej + α









+ϱ



δR + 2



R
m
∑

j=1

Ej + α







+ (ρ+ ϱ)



R
m
∑

j=1

Ej + α







 ds

≤ηγT (ρ+ ϱ)



δR + 3



R
m
∑

j=1

Ej + α







 = L.

So, C (D) is uniformly bounded. Next, we calculate (Cφ)′ (t) and prove that C (D)
is equicontinuous. By making use of (2.1)–(2.3) we get by taking the derivative in
(2.14) that

(Cφ)′ (t) = −A (t) (Cφ) (t) − Lφ (t) −Nφ (t) − A (t)Gφ (t) .

Thus, the above expression yields
∥

∥

∥(Cφ)′
∥

∥

∥ ≤ F , for some positive constant F . So,

C (D) is uniformly bounded and equicontinuous. Hence by Ascoli-Arzela’s theorem
C (D) is relatively compact. Then, C (D) is contained in a compact set. □

Lemma 2.3. Suppose that (2.1), (2.3) and (2.4) hold, and

(2.16)
m
∑

j=1

Ej < 1,

where Ej, j = 1, . . . ,m, are given by (2.4). If B is given by (2.13), then B is a

contraction mapping.

Proof. Let B be defined by (2.13). Then for φ, ψ ∈ PT we obtain

∥Bφ−Bψ∥ = sup
t∈[0,T ]

♣(Bφ) (t) − (Bψ) (t)♣

≤
m
∑

j=1

Ej sup
t∈[0,T ]

♣φ (t− τj (t)) − ψ (t− τj (t))♣

≤





m
∑

j=1

Ej



 ∥φ− ψ∥ .

Hence, B defines a contraction mapping. □

Theorem 2.2. Assume that (2.1)–(2.4) and (2.16) hold. Let J be a positive constant

satisfying the inequality

(2.17) J
m
∑

j=1

Ej + α+ ηγT (ϱ+ ρ)



δJ + 3



J
m
∑

j=1

Ej + α







 ≤ J.

Let M = ¶φ ∈ PT : ∥φ∥ ≤ J♢. Then the equation (1.1) has a solution in M .
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Proof. By Lemma 2.2, C : M → PT is continuous and C (M) is contained in a
compact set. Also, by Lemma 2.3, the mapping B is a contraction and it is clear
that B : M → PT . Next, we prove that if φ, ψ ∈ M , we have ∥Cφ+Bψ∥ ≤ J . Let
φ, ψ ∈ M with ∥φ∥ , ∥ψ∥ ≤ J . Then

∥Cφ+Bψ∥

≤





m
∑

j=1

Ej



 ∥ψ∥ + α+ ηγ

∫ t

t−T



ρ



δ ∥φ∥ + 2





m
∑

j=1

Ej ∥φ∥ + α









+ϱ



δ ∥φ∥ + 2





m
∑

j=1

Ej ∥φ∥ + α







+ (ϱ+ ρ)









m
∑

j=1

Ej



 ∥φ∥ + α







 ds

≤J
m
∑

j=1

Ej + α+ ηγT (ϱ+ ρ)



δJ + 3



J
m
∑

j=1

Ej + α









≤J.

We now see that all the conditions of Krasnoselskii’s theorem are satisfied. Thus there
exists a fixed point z in M such that z = Cz + Bz. By Lemma 2.1, this fixed point
is a solution of (1.1). Hence, (1.1) has a T -periodic solution. □

Theorem 2.3. Suppose that (2.1)–(2.4) hold. If

(2.18)
m
∑

j=1

Ej + ηγT (ϱ+ ρ)



δ + 3
m
∑

j=1

Ej



 < 1,

then the equation (1.1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (2.12). For φ, ψ ∈ PT , in view of (2.12), we
obtain

∥Hφ−Hψ∥ ≤





m
∑

j=1

Ej + ηγT (ϱ+ ρ)



δ + 3
m
∑

j=1

Ej







 ∥φ− ψ∥ .

This completes the proof by invoking the contraction mapping principle. □

Corollary 2.1. Suppose that (2.1)–(2.3) hold. Let J be a positive constant and define

M = ¶φ ∈ PT : ∥φ∥ ≤ J♢. Suppose there are positive constants E∗

j , j = 1, . . . ,m, so

that for x, y ∈ M we have

♣g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) − g (t, y (t− τ1 (t)) , . . . , y (t− τm (t)))♣

≤
m
∑

j=1

E∗

j ♣x (t− τj (t)) − y (t− τj (t))♣ .
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If
m
∑

j=1
E∗

j < 1 and ∥Hφ∥ ≤ J for φ ∈ M , then (1.1) has a T -periodic solution in M .

Moreover, if
m
∑

j=1

E∗

j + ηγT (ϱ+ ρ)



δ + 3
m
∑

j=1

E∗

j



 < 1,

then (1.1) has a unique T -periodic solution in M .

Proof. Let the mapping H be given by (2.12). Then, the results follow immediately
from Theorem 2.2 and Theorem 2.3. □

Example 2.1. For small positive ϵ1, ϵ2 and ϵ3, we consider the nonlinear neutral mixed
type Levin-Nohel integro-differential equation with variable delay

d

dt
x (t) + ϵ1

∫ t

t− 2π
ω

(1 + sinω (t− s))x (s) ds

+ ϵ2

∫ t+ π
ω

t
(2 + cosω (s− t))x (s) ds− ϵ3

d

dt

(

sin (ωt)x2
(

t−
2π

ω

))

= 0,(2.19)

where ω is a positive constant. So, we have

a1 (t, s) =ϵ1 (1 + sinω (t− s)) , b1 (t, s) = ϵ2 (2 + cosω (s− t)) ,

aj (t, s) =bj (t, s) = τj (t) = σj (t) = 0, j = 2, . . . ,m,

τ1 (t) =
2π

ω
, σ1 (t) =

π

ω
,

and

g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) = ϵ3 sin (ωt)x2
(

t−
2π

ω

)

.

Proof. Define M =
{

φ ∈ P 2π
ω

: ∥φ∥ ≤ J
}

, where J is a positive constant. For φ ∈ M ,

we have

∥Hφ∥ ≤ϵ3J
2 +

(

1 − e−(ϵ1+ϵ2)( 2π
ω )

2
)

−1

(8ϵ1 + 6ϵ2)
π2

ω2



8ϵ1
π2

ω2
J + 6ϵ2

π2

ω2
J + 3ϵ3J

2

]

.

Thus, the inequality

(2.20) ϵ3J
2 +

(

1 − e−(ϵ1+ϵ2)( 2π
ω )

2
)

−1

(8ϵ1 + 6ϵ2)
π2

ω2



8ϵ1
π2

ω2
J + 6ϵ2

π2

ω2
J + 3ϵ3J

2

]

≤ J,

which is satisfied for small ϵ1, ϵ2 and ϵ3, implies ∥Hφ∥ ≤ J . Hence, (2.19) has a
2π
ω

-periodic solution, by Corollary 2.1.
For the uniqueness of the periodic solution, we let φ, ψ ∈ M . From (2.19) we see

that

η =
(

1 − e−(ε1+ε2)( 2π
ω )

2
)

−1

, ρ =
2π

ω
ε1, ϱ =

2π

ω
ε2, γ ≤ 1.

Also α = 0, E = 2ε3J
2, where J is given by (2.20). If

2ε3J +
(

1 − e−(ε1+ε2)( 2π
ω )

2
)

−1

(8ε1 + 6ε2)
π2

ω2



8ε1
π2

ω2
+ 6ε2

π2

ω2
+ 6ε3J

]

< 1,
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is satisfied for small ε1, ε2 and ε3, then (2.19) has a unique 2π
ω

-periodic solution, by
Corollary 2.1. □

3. Existence of Positive Periodic Solutions

For a non-negative constant L and a positive constant K, we define the set

M = ¶φ ∈ PT : L ≤ φ ≤ K♢ ,

which is a closed convex and bounded subset of the Banach space PT . To simplify
notation, we let

θ = max
t∈[0,T ]

(

max
s∈[t−T,t]

e−

∫ t

s
A(z)dz



, λ = min
t∈[0,T ]

(

min
s∈[t−T,t]

e−

∫ t

s
A(z)dz



.

In this section we obtain the existence of a positive periodic solution of (1.1) by
considering the two cases; Gx (t) ≥ 0 and Gx (t) ≤ 0 for all t ∈ R, x ∈ M.

In the case Gx (t) ≥ 0, we assume that there exist non-negative constants k1j and
positive constants k2j, j = 1, . . . ,m, such that

m
∑

j=1

k1jx (t− τj (t)) ≤Gx (t) ≤
m
∑

j=1

k2jx (t− τj (t)) ,(3.1)

m
∑

j=1

k2j <1,(3.2)

and for all t ∈ [0, T ], x ∈ M

(3.3)

L

(

1 −
m
∑

j=1
k1j



ηλT
≤ Fx (t) ≤

K

(

1 −
m
∑

j=1
k2j



ηθT
,

where Fx (t) = −Lx (t) −Nx (t) − A (t)Gx (t) .

Theorem 3.1. Assume that (2.1)–(2.4), (2.16) and (3.1)–(3.3) hold. Then the equa-

tion (1.1) has a positive T -periodic solution x in the subset M.

Proof. By Lemma 2.1 x is a solution of (1.1) if x = Cx + Bx, where C and B are
given by (2.14) and (2.13), respectively. By Lemma 2.2, C is continuous and compact.
Moreover, by Lemma 2.3, B is a contraction. We just need to prove that condition
(i) of Theorem 2.1 is satisfied. Toward this, let φ, ψ ∈ M, then

(Bψ) (t) + (Cφ) (t)

=Gψ (t) − η

∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds

≤K
m
∑

j=1

k2j + ηθT

K

(

1 −
m
∑

j=1
k2j



ηθT
= K.
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On the other hand, we have

(Bψ) (t) + (Cφ) (t)

=Gψ (t) − η

∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds

≥L
m
∑

j=1

k1j + ηλT

L

(

1 −
m
∑

j=1
k1j



ηλT
= L.

Clearly, all the hypotheses of Krasnoselskii’s theorem are satisfied. Thus there exists
a fixed point x ∈ M such that x = Bx + Cx. By Lemma 2.1 this fixed point is a
solution of (1.1) and the proof is complete. □

In the case Gx (t) ≤ 0, we substitute conditions (3.1)–(3.3) with the following
conditions respectively. We suppose that there exist negative constants k3j and non-
positive constants k4j, j = 1, . . . ,m, such that

m
∑

j=1

k3jx (t− τj (t)) ≤Gx (t) ≤
m
∑

j=1

k4jx (t− τj (t)) ,(3.4)

−
m
∑

j=1

k3j <1,(3.5)

and for all t ∈ [0, T ], x ∈ M

(3.6)

L−K
m
∑

j=1
k3j

ηλT
≤ Fx (t) ≤

K − L
m
∑

j=1
k4j

ηθT
.

Theorem 3.2. Suppose that (2.1)–(2.4), (2.16) and (3.4)–(3.6) hold. Then the equa-

tion (1.1) has a positive T -periodic solution x in the subset M.

The proof follows along the lines of Theorem 3.1, and hence we omit it.
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ESSENTIAL APPROXIMATE PSEUDOSPECTRA OF

MULTIVALUED LINEAR RELATIONS

AREF JERIBI1 AND KAMEL MAHFOUDHI1

Abstract. One of the fundamental ideas investigated in A. Ammar, A. Jeribi
and K. Mahfoudhi in [5] is that of providing conditions under which the essential
approximate pseudospectrum of closed, densely defined linear operators have a
relationship with Fredholm theory and perturbation theory. In this paper the
approximate pseudospectrum and the essential approximate pseudospectrum of
closed, densely defined multivalued linear relations are introduced and studied, and
work done in the aforementioned papers are extended to general multivalued linear
relations

1. Introduction

A vast number of the problems that have been investigated in the Banach algebra
setting originated in the context of bounded linear operators or multivalued linear
relations on a Banach space. Let X denote a linear vector space over K = R or C. T
multivalued linear operator on X is a mapping from a subspace D(T ) of X, called the
domain of T , into the collection of non empty subsets of X such that

T (αx1 + βx2) = αT (x1) + βT (x2),

for all non zero scalars α, β ∈ K and x1, x2 ∈ D(T ). If T maps the points of its
domain to singletons, then T is said to be a single valued linear operator or simply
an operator, which is equivalent to T (0) = ¶0♢.

Key words and phrases. Pseudospectrum, approximate pseudospectra, essential approximate pseu-
dospectra, multivalued linear relations.
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We denote by LR(X) the class of linear relations everywhere defined. T ∈ LR(X)
is uniquely determined by its graph G(T ), which is defined by

G(T ) := ¶(x, y) ∈ X × X : x ∈ D(T ), y ∈ Tx♢,

so that we can identify T with G(T ). The closure and completion of T , denoted by T

and T̃ , respectively, is the linear relation defined by

G(T ) :=G(T ),

G(T̃ ) :=G̃(T ).

We denote by CR(X) the class of all closed linear relations from X into X. The
inverse of T is a linear relation T −1 given by

G(T −1) := ¶(y, x) : (x, y) ∈ G(T )♢.

If G(T ) is closed, then T is said to be closed,

N(T ) :=¶x ∈ D(T ) : (x, 0) ∈ G(T )♢ and R(T ) := T (D(T ))

denote kernel structure and the range of the relation T , respectively. The linear
relation T + S is defined by

G(T + S) := ¶(x, y) ∈ X × X : y = u + v with (x, u) ∈ G(T ), (x, v) ∈ G(S)♢.

Let T ∈ LR(X) and S ∈ LR(X) where R(T ) ∩ D(S) ̸= ∅. The product of ST is
defined by

G(ST ) := ¶(x, z) ∈ X × X : (x, u) ∈ G(T ) and (u, z) ∈ G(S) for some u ∈ X♢.

Let QT denote the quotient map from X onto X/T (0). We shall denote Q
T (0) by QT .

Clearly, QT T is a single valued operator and the norm of T is defined by

∥T∥ := ∥QT T∥.

We say that T is continuous if for each neighborhood V in R(T ), T −1(V ) is a
neighborhood in D(T ) ( ∥T∥ < ∞), bounded if it is continuous with D(T ) = X, open
if T −1 is continuous, equivalently γ(T ) > 0 where γ(T ) is the minimum modulus of
T defined by

γ(T ) := sup


λ ≥ 0 : λd(x,N(T )) ≤ ∥Tx∥ for x ∈ D(T )
}

,

where d(x,N(T )) is the distance between x and N(T ). If D(T ) and if ∥T∥ < ∞, then
we shall say that T is bounded.

The class of such relations is denoted by LR(X) and we denote by L(X) the set of
all bounded linear operators from X. For T ∈ LR(X), we write

α(T ) := dimN(T ), β(T ) := dim X/R(T ), β(T ) := dim X/R(T ),

and the index of T is the quantity i(T ) := α(T ) − β(T ) provided that α(T ) and
β(T ) are not both infinite. We say T is upper semi-Fredholm, if there exists a finite
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codimensional subspace M of D(T ) for which T♣M is injective and open. If M and N

are subspaces of X and of the dual space X
′

respectively, then

M⊥ :=


x
′

∈ X
′

: x
′

(x) = 0 for all x ∈ M
}

and

N⊤ :=


x ∈ X : x
′

(x) = 0 for all x
′

∈ N
}

.

The conjugate of T ∈ LR(X) is the linear relation T
′

defined by

G(T
′

) := G(−T −1)⊥ ⊂ Y
′

× X
′

,

so that (y
′
, x

′
) ∈ G(T

′
) if, and only if, y

′
(y) = x

′
(x) for all (x, y) ∈ G(T ).

A closed linear relation T acts from X into X.

Definition 1.1. Let T ∈ LR(X).
(i) T is said to be upper semi-Fredholm, if there exists a closed, finite, codimensional

subspace M of X, such that the restriction T ♣M has a single valued continuous inverse.
(ii) T is said to be lower semi-Fredholm linear relation if its conjugate T

′
is

uppersemi-Fredholm linear relation.

We denote by F+(X), the set of upper semi-Fredholm linear relations and by F−(X)
the set of lower semi-Fredholm linear relations.

In the case when X is Banach space, we extend the classes of closed single-valued
Fredholm type operators given earlier to include closed multivalued operators, and
note that the definitions of the classes F+(X) and F−(X) are consistent, respectively,
with

Φ+(X) =
{
T ∈ CR(X) : α(T ) < ∞ and R(T ) is closed in X

}
,

Φ−(X) =
{
T ∈ CR(X) : β(T ) < ∞ and R(T ) is closed in X

}
.

Φ(X) := Φ+(X)∩Φ−(X) denotes the set of Fredholm relations from X and Φ±(X) :=
Φ+(X) ∪ Φ−(X) denotes the set of semi-Fredholm relations from X.

We say that T is strictly singular, if there is no infinite dimensional subspace M of
D(T ) for which the restriction T ♣M has a single valued continuous inverse.

The families of all compact and strictly singular linear relations will be denoted by
KR(X) and SSR(X), respectively.

Let T ∈ LR(X), the set

ρ(T ) :=
{
λ ∈ C : λ − T is injective, open with dense range on X

}
.

Referring back to the closed theorem of linear relations (see [16,17]), when T is closed
and X is a Banach space, this coincides with the set

{
λ ∈ C : (λ − T̃ )−1 is everywhere defined and single valued

}
.

Therefore, our definition of a resolvent set coincides with the standard definition for
bounded or closed operators in Banach spaces.
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The spectrum of T is the set σ(T ) := C\ρ(T ). The set ρ(T ) is open, whereas the
spectrum σ(T ) of a closed linear relation T is closed. The approximate point spectrum
of T is the set defined by

σap(T ) :=
{
λ ∈ C : λ − T is not bounded below

}
.

The defect spectrum of T is the set defined by

σδ(T ) :=
{
λ ∈ C : λ − T is not surjective

}
.

Let T ∈ LR(X) and ε > 0. We define the pseudospectra of a linear relation T by

σε(T ) := σ(T ) ∪


λ ∈ C : ∥(λ − T )−1∥ >
1

ε

}
.

The approximate pseudospectrum of a linear relation T by the set

σap,ε(T ) := σap(T ) ∪


λ ∈ C : inf
x∈D(T )\N(T ),

∥x∥=1

∥(λ − T )x∥ ≤ ε
}

,

and the defect pseudospectrum of a linear relation T by

σδ,ε(T ) = σap,ε(T
′

).

Our concern in this paper is mainly the following essential pseudospectra

σe1,ε(T ) =C \ ¶λ ∈ C : λ − T + S ∈ Φ+(X) for all S ∈ IT (X)♢,

σe2,ε(T ) =C \ ¶λ ∈ C : λ − T + S ∈ Φ−(X) for all S ∈ IT (X)♢,

σe3,ε(T ) =C \ ¶λ ∈ C : λ − T + S ∈ Φ±(X) for all S ∈ IT (X)♢,

σe4,ε(T ) =C \ ¶λ ∈ C : λ − T + S ∈ Φ(X) for all S ∈ IT (X)♢,

where

IT (X) :=¶S ∈ LR(X) is continuous : ∥S∥ < ε,D(S) ⊃ D(T ) and S(0) ⊂ T (0)♢,

σw,ε(T ) =
⋂

K∈KT (X)

σε(T + K),

σeap,ε(T ) =
⋂

K∈KT (X)

σap,ε(T + K),

σeδ,ε(T ) =
⋂

K∈KT (X)

σδ,ε(T + K)

and

KT (X) := ¶K ∈ KR(X) : D(K) ⊃ D(T ) and K(0) ⊂ T (0)♢.

We turn our attention to the following inclusions

σe1,ε(T ) ∩ σe2,ε(T ) =σe3,ε(T ) ⊂ σe4,ε(T ) ⊂ σw,ε(T ) ⊂ σε(T ),

σe1,ε(T ) ⊂σeap,ε(T ) and σe2,ε(T ) ⊂ σeδ,ε(T ),

σw,ε(T ) =σeap,ε(T ) ∪ σeδ,ε(T ).
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If ε tends to 0, we recover the usual definition of the essential spectra of a closed
operator T . The subsets σe1(.) and σe2(·) are the Gustafson and Weidmann essential
spectra, σe3(·) is the Kato essential spectrum, σe4(·) is the Wolf essential spectrum,
σw(·) is the Schechter essential spectrum, σeap(·) is the essential approximate point
spectrum and σeδ(·) is the essential defect spectrum.

Remark 1.1. Let T ∈ LR(T ).
(i) If ε1 < ε2, then σj,ε1

(T ) ⊂ σj,ε2
(T ) with j = 1, 2, 3, 4, w, eap, δ.

(ii) It is clear that σj,ε(T ), with j = w, eap, δ has a remarkable stability, any
compact perturbation K ∈ KT (X) leaves the essential pseudospectrum invariant,
then we have σj,ε(T + K) = σj,ε(T ), with j = w, eap, δ.

This paper is a continuation of the research which was undertaken by A. Ammar and
A. Jeribi in works [3,5,6,13] and was devoted to special subsets of the pseudospectrum
and the essential pseudospectrum of closed, densely defined multivalued linear relations

σw,ε(T ) :=
⋂

K∈KT (X)

σε(T + K) :=
⋃

∥D∥<ε

σw(T + D),

where
σw(T ) :=

⋂

K∈KT (X)

σ(T + K).

Also, for the benefit of the reader we review an important result about pseudospectrum
from [7–10] and [11,12].

After compressing or depressing them, certain parts of pseudospectrum of an linear
relations acting between Banach space may be distinguished. Among these parts, we
are interested in two: one is the approximate pseudospectrum and the other is the
essential approximate pseudospectrum. Motivated by the approximate pseudospec-
trum versions introduced by M. P. H. Wolf [22] in the case of linear operator, it
becomes possible to extend this definition to the case of multivalued linear relations
of closed, densely defined multivalued linear relations. Recently, J. M. Varah [21], has
introduced the first idea of pseudospectra. L. N. Trefethen [18,19], not only initiated
the study of pseudospectrum for matrices and operators, but he also talked of ap-
proximate eigenvalues and pseudospectrum and used this notion to study interesting
problems in mathematical physics. In the same vein, several authors have worked on
this field. For example, we may refer to E. B. Davies [15].

The main aims of this work are the following: we introduce and study the ap-
proximate pseudospectrum and the essential approximate pseudospectrum of closed,
densely defined multivalued linear relations. We begin by the definition and we investi-
gate the characterization, the stability and some properties of these pseudospectrum.

We organize our paper in the following way. In Section 2 contains preliminary and
auxiliary properties that will be necessary in order to prove the main results of the
other sections. Some results concerning approximate pseudospectrum and essential
approximate pseudospectrum are established in Sections 3 and 4. The main focus
of this section are Theorems 3.4, 3.5 and 4.1. Subsequently, we apply the obtained



272 A. JERIBI AND K. MAHFOUDHI

results to study the invariance and the characterization of the essential approximate
pseudospectrum of a closed multivalued linear operator.

2. Preliminary Results

In this section we collect some results of the theory of multivalued linear operators
which will be needed in the following sections.

Definition 2.1. Let S ∈ LR(X) be continuous where, X is normed spaces.
(i) S is called a Fredholm perturbation if T + S ∈ Φ(X), whenever T ∈ Φ(X).
(ii) S is called an upper semi-Fredholm perturbation if T + S ∈ Φ+(X), whenever

T ∈ Φ+(X).
(iii) S is called a lower semi-Fredholm perturbation if T + S ∈ Φ−(X), whenever

T ∈ Φ−(X).

The sets of Fredholm, upper and lower semi-Fredholm perturbations are denoted
by P(Φ(X)), P(Φ+(X)), and P(Φ−(X)), respectively.

We denote also the set

PT (Φ(X)) := ¶S ∈ P(Φ(X)) : S(0) ⊂ T (0) and D(S) ⊃ D(T )♢,

PT (Φ+(X)) := ¶S ∈ P(Φ+(X)) : S(0) ⊂ T (0) and D(S) ⊃ D(T )♢

and
PT (Φ−(X)) := ¶S ∈ P(Φ−(X)) : S(0) ⊂ T (0) and D(S) ⊃ D(T )♢.

In general by [2] we have

KT (X) ⊂ PT (Φ+(X)) ⊂ PT (Φ(X)) and KT (X) ⊂ PT (Φ−(X)) ⊂ PT (Φ(X)).

Lemma 2.1 ([2]). Let T ∈ CR(X), where X is Banach spaces. Then the following

hold.

(i) If T ∈ Φ+(X) and S ∈ PT (Φ+(X)), then T + S ∈ Φ+(X) and i(T + S) = i(T ).
(ii) If T ∈ Φ−(X, Y ) and S ∈ PT (Φ−(X)), then T +S ∈ Φ−(X) and i(T +S) = i(T ).

Lemma 2.2 ([16]). Let T ∈ LR(X). Then for x ∈ D(T ), we have the following

equivalence:

(i) y ∈ Tx ⇔ Tx = y + T (0).
In particular,

(ii) 0 ∈ Tx ⇔ Tx = T (0).

Lemma 2.3 ([16, Corollary I.2.11]). Let T ∈ LR(X). Then

(i) T −1Tx = x + T −1(0) for all x ∈ D(T );
(ii) TT −1y = y + T (0) for all y ∈ R(T ).

Lemma 2.4 ([16, Proposition II.1.4 and II.1.6]). Let X is normed spaces and T ∈
LR(X). Then

(i) ∥Tx∥ = d(y, T (0)) for any y ∈ Tx;

(ii) ∥Tx∥ = d(Tx, T (0)) = d(Tx, 0) (x ∈ D(T ));
(iii) ∥T∥ = supx∈BX

∥Tx∥ with BX := ¶x ∈ X : ∥x∥ ≤ 1♢.
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Lemma 2.5 ([12, Proposition 3.1]). Let S, T ∈ LR(X) such that S(0) ⊂ T (0),
D(T ) ⊂ D(S). If T ∈ CR(X) and S is continuous, then S + T ∈ CR(X).

Theorem 2.1 ([16, Theorem III.4.2]). Let T ∈ CR(X), then

(i) T is continuous if and only if D(T ) is closed;

(ii) T is open if and only if R(T ) is closed.

Lemma 2.6 ([16, Proposition II.3.20]). Let T be open and injective and let S ∈ LR(X)
be a linear operator satisfying ∥S∥ < γ(T ). Then T + S is open and injective.

Proposition 2.1 ([16, Proposition I.4.2], [14, Lemma 2.4]). Let R, S, T ∈ LR(X).
Then

(i) (R + S)T ⊂ RT + ST with equality if T is single valued.

(ii) Let T ∈ LR(X) and S, R ∈ LR(Y, Z). If T (0) ⊂ N(S) or T (0) ⊂ N(R), then

(R + S)T = RT + ST.

Theorem 2.2 ([16, Theorem III.5.3]). Let X, Y be Banach spaces and let T ∈ CR(X).
Then T is open if and only if R(T ) is closed.

Theorem 2.3 ([12, Theorem 2.2]). Let S, T ∈ LR(X) be closed. We have the follow-

ing.

(i) If S, T ∈ Φ+(X), then ST ∈ Φ+(X) and TS ∈ Φ+(X).
(ii) If S, T ∈ Φ−(X), with TS (resp. ST ) closed, then TS ∈ Φ−(X) (resp. ST ∈

Φ−(X)).

(iii) If S, T ∈ Φ(X), then TS ∈ Φ(X) and i(TS) = i(T ) + i(S) + dim X
/

(R(S) +

D(T )) − dim[S(0) ∩ N(T )].
(iv) If S and T are everywhere defined and TS ∈ Φ+(X), then S ∈ Φ+(X).
(v) If S and T are everywhere defined such that TS ∈ Φ(X) and ST ∈ Φ(X), then

S ∈ Φ(X) and T ∈ Φ(X).

3. The Approximate Pseudospectrum of Linear Relations

The goal of this section is to study the approximate of pseudospectrum of closed,
densely defined multivalued linear relations.

Proposition 3.1. Let T ∈ LR(X) where X is a normed space. Then

σap,ε(T ) ⊂ σε(T ).

Proof. Let λ /∈ σε(T ), then ∥(λ − T )−1∥ ≤ 1
ε
. Moreover,

1

inf
x∈D(T )\N(T ),

∥x∥=1

∥(λ − T )x∥
= sup

x∈D(T )\N(T ),
∥x∥=1

∥x∥

∥(λ − T̃ )x∥

= sup
0 ̸=x∈D(T )\N(T )

∥x∥

∥(λ − T̃ )x∥
.(3.1)



274 A. JERIBI AND K. MAHFOUDHI

Putting x := (λ − T )−1y we have

(λ − T )x = (λ − T )(λ − T )−1y (by Lemma 2.3)
= y + (λ − T )(0).

Using Lemma 2.2, we obtain that y ∈ (λ − T )x. On the other hand, (λ − T )(0) =
λ(0) − T (0) = 0 − T (0) = T (0). Also by Lemma 2.2, 0 ∈ T (0) and from Lemma 2.4
we have

(3.2) ∥(λ − T )x∥ = d(y, (λ − T )(0)) = d(y, T (0)) ≤ d(y, 0) = ∥y∥.

Combining (3.1) and (3.2) that

sup
y∈X\¶0♢

∥(λ − T̃ )−1y∥

∥y∥
= ∥(λ − T̃ )−1∥ ≤

1

ε
.

Consequently,

inf
x∈D(T )\N(T ),

∥x∥=1

∥(λ − T )x∥ > ε.

Hence,

λ /∈ σap,ε(T ). □

Example 3.1. Let X = Cn and let T be the single-valued linear operator on L(Cn)
given for all n ≥ 2 with the infinity norm by

{
T : Cn → Cn,
ei 7→ Tei, where Tei = e(n+1)−i.

It is easily checked that 



T = T −1,
∥T∥ = 1,
σ(T ) ∪ ¶∞♢ = ¶−1, 1♢.

Therefore, T is everywhere defined closed linear relation. We will check that if

∥(λ − T )ei∥ = λei − e(n+1)−i,

then

inf
ei∈D(T )\N(T ),

∥ei∥=1

∥(λ − T )ei∥ = ♣λ♣ + 1,

and if

∥(λ − T )−1ei∥ =
λei − e(n+1)−i

λ2 − 1
,

then

∥(λ − T )−1∥ =
♣λ♣ + 1

♣λ2 − 1♣
.
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Moreover, for ε > 1 we obtain

σap,ε(T ) =¶λ ∈ C : ♣λ♣ ≤ ε − 1♢,

σε(T ) =

{
λ ∈ C :

♣λ♣ + 1

♣λ2 − 1♣
>

1

ε

}
.

It is easy to verify that, for all λ with 0 ≤ ♣λ♣ ≤ 1 we have

σε(T ) ̸= σap,ε(T ).

Proposition 3.2. Let T ∈ LR(X), where X is a normed space. Then
⋂

ε>0

σap,ε(T ) = σap(T ).

Proof. It is clear that σap(T ) ⊂ σap,ε(T ) for all ε > 0, then

σap(T ) ⊂
⋂

ε>0

σap,ε(T ).

Conversely, let λ /∈ σap(T ). Then λ − T is bounded below, hence λ − T is injective,
open with dense range on X and (λ − T̃ )−1 is a bounded linear operator, so there
exists ε > 0 such that

∥(λ − T̃ )−1∥ ≤
1

ε
.

Therefore,

λ /∈ σε(T ),

and we conclude from Proposition 3.1 that λ /∈ σap,ε(T ). So, λ /∈
⋂

ε>0 σap,ε(T ). □

Theorem 3.1. Let T ∈ LR(X) and ε > 0. Then, for any α, β ∈ C with β ≠ 0 we

have the following.

(i) If α ∈ C and ε > 0, then σap,ε(T + αI) = α + σap,ε(T ).
(ii) If β ∈ C\¶0♢ and ε > 0, then σap,♣β♣ε(βT ) = βσap,ε(T ).

Proof. (i) Let λ ∈ σap,ε(T + αI), then

λ ∈ σap(T + αI) or inf
x∈D(T )\N(T ),

∥x∥=1

∥(λ − αI − T )x∥ ≤ ε.

Hence, (λ − α)I − T is not bounded below (not injective) or

inf
x∈D(T )\N(T ),

∥x∥=1

∥((λ − α)I − T )x∥ ≤ ε.

This yields to λ ∈ α + σap,ε(T ). For the second inclusion it is the same reasoning.
(ii) Let λ ∈ σap,♣α♣ε(αT ), then λ ∈ σap(αT ) or

inf
x∈D(T )\N(T ),

∥x∥=1

∥(λ − αT )x∥ ≤ ♣α♣ε.
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It follows that λ − αT is not bounded below (not injective) or

inf
x∈D(T )\N(T ),

∥x∥=1

∥∥∥∥∥α


λ

α
− T


x

∥∥∥∥∥ ≤ ♣α♣ε.

Hence, α( λ
α

− T ) is not bounded below (not injective) or

inf
x∈D(T )\N(T ),

∥x∥=1

∥∥∥∥∥α


λ

α
− T


x

∥∥∥∥∥ = ♣α♣ inf
x∈D(T )\N(T ),

∥x∥=1

∥∥∥∥∥


λ

α
− T


x

∥∥∥∥∥ ≤ ♣α♣ε.

Thus, λ
α

∈ σap(T ) or

inf
x∈D(T )\N(T ),

∥x∥=1

∥∥∥∥∥


λ

α
− T


x

∥∥∥∥∥ ≤ ε.

So, σap,♣α♣ε(αT ) ⊆ ασap,ε(T ). However, the reverse inclusion is similar. □

Corollary 3.1. Let T ∈ LR(X) and ε > 0. Then, for any α, β ∈ C with β ≠ 0 we

have

σap,ε(αI + βT ) = α + βσap,ε♣β♣(T ).

Definition 3.1. Given a polynomial P (z) =
∑n

k=0 αkzk with coefficients αk ∈ C, we
define the polynomial in T by P (T ) =

∑n
k=0 αkT k.

Theorem 3.2. Let T be closed relation and assume that V is closed single valued

bounded relation such that 0 ∈ ρ(V ). Let S = V TV −1. Then, for all polynomial P (T )
of degree n we have P (S) is closed and

P (S) = V P (T )V −1.

Proof. We need to show that P (S) is closed. Let T is closed relation, then from [1,
Lemma 2.7] we obtain that P (T ) is closed. On the other hand, V is closed single
valued bounded relation such that 0 ∈ ρ(V ), then V has a closed range (R(V ) = X).
By the fact that V injective and open we have

α(V ) = 0 < ∞ and γ(V ) > 0.

By using [16, Proposition II.5.17], we deduce that V P (T ) is closed. Moreover,
since V −1 is single valued and bounded, then from [16, Exercise II.5.18] we obtain
V P (T )V −1 is closed. Hence, P (S) is closed. Now, let

P (S) =
n∑

k=0

αkSk =
n∑

k=0

αk(V TV −1)k.

Since, V is single valued injective we infer that

P (S) =
n∑

k=0

αk(V TV −1)k = V


n∑

k=0

αkT k


V −1 = V P (T ))V −1. □
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Theorem 3.3. Let T ∈ CR(X) where X is a complete space and assume that V as

in Theorem 3.2. Let k = ∥V ∥∥V −1∥ and P (S) = V P (T )V −1. Then

σap(P (S)) = σap(P (T )).

Proof. We have

λ − P (S) =λ − V P (T )V −1,

(λ − P (S))V =(λ − V P (T )V −1)V

=(λV − V P (T )V −1V ) (using [16, Proposition I.4.2 ])

=(λV − V P (T )) (as V is injective)

and

V −1(λ − P (S))V =V −1(λV − V P (T )),

V −1(λ − P (S))V =(λV −1V − V −1V P (T )) (using [16, Proposition I.4.2 ])

V −1(λ − P (S))V =(λ − P (T )) (as V is injective)

(λ − P (S)) =V (λ − P (T ))V −1 (as V is single valued).

Now, if λ /∈ σap(P (T )) then the closed relation λ−P (T ) is bounded below (injective,
open). By [16, Proposition VI.5.2])

V (λ − P (T ))V −1 = λ − P (S)

is closed, bounded below (injective, open). Hence, λ ∈/∈ σap(P (S)).
Conversely, if λ /∈ σap(P (S)) then the closed relation λ − P (S) is bounded below

(injective, open). By [16, Proposition VI.5.2])

V −1(λ − P (S))V = λ − P (T )

is also closed, bounded below (injective, open). Hence, λ /∈ σap(P (T )), which implies
the result. □

Now, we are ready to give our first main result of this section.

Theorem 3.4. Let T ∈ CR(X), λ ∈ C, and ε > 0. If λ ∈ σap,ε(T ), then there is

S ∈ LR(X) satisfying D(T ) ⊂ D(S), S(0) ⊂ T (0), ∥S∥ < ε such that λ ∈ σap(T +S).

Proof. Let λ ∈ σap,ε(T ). We will discuss these two cases.
1. case. If λ ∈ σap(T ), we may put S = 0.
2. case. If λ /∈ σap(T ), then there exists x0 ∈ X, ∥x0∥ = 1 such that

∥(λ − T )x0∥ < ε,

and by the Hahn Banach Theorem (see [20]), there exists x′ ∈ X ′ such that ∥x′∥ = 1
and x′(x0) = ∥x0∥. We define the relation S : X → X by

S(x) := x′(x)(λ − T )x0.
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It is clear that S is everywhere defined and single valued (as S(0) = 0).

∥Sx∥ = ∥x′(x)(λ − T )x0)∥ ≤ ∥x′∥∥x∥∥(λ − T )x0∥,

for x ̸= 0, we have
∥Sx∥

∥x∥
≤ ∥(λ − T )x0∥,

so,
∥S∥ ≤ ∥(λ − T )x0∥ < ε.

We can rewrite

inf
x∈D(T )\N(T ),

∥x∥=1

∥(λ − T − S)x∥ ≤∥(λ − T − S)x0∥

≤∥(λ − T )x0 − Sx0∥

≤∥(λ − T )x0 − x′(x0)(λ − T )x0∥

≤∥(λ − T )(0)∥

≤∥λ(0) − T (0)∥

≤∥T (0)∥ = d(T (0), T (0)) = 0.

Then, λ ∈ σap(T + S). □

Theorem 3.5. Let T ∈ CR(X), λ ∈ C, and ε > 0. If there is S ∈ LR(X) satisfying

D(T ) ⊂ D(S), S(0) ⊂ T (0), ∥S∥ < ε such that λ ∈ σap(T + S). Then λ ∈ σap,ε(T ).

Proof. Suppose that there exists a continuous linear relation D ∈ LR(X) satisfying
D(T ) ⊂ D(S), S(0) ⊂ T (0) and ∥S∥ < ε such that

λ ∈ σap(T + S),

which means that
inf

x∈D(T )\N(T ),
∥x∥=1

∥(λ − T − S)x∥ = 0.

In order to prove that
inf

x∈D(T )\N(T ),
∥x∥=1

∥(λ − T )x∥ < ε,

we can write

∥(λ − T )x0∥ = ∥(λ − T − S + S)x0∥ ≤∥(λ − T − S)x0∥ + ∥Sx0∥

≤∥T (0)∥ + ε

≤ε.

Then
inf

x∈D(T )\N(T ),
∥x∥=1

∥(λ − T )x∥ < ε. □
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Corollary 3.2. In summary, at the present moment we have shown that from Theo-

rems 3.5 and 3.4, that for T ∈ CR(X) and ε > 0

σap,ε(T ) =
⋃

JT (X)

σap(T + S),

where

JT (X) :=
{
S ∈ LR(X) is continuous : ∥S∥ < ε,D(T ) ⊂ D(S) and S(0) ⊂ T (0)

}
.

Theorem 3.6. Let T ∈ CR(X) where X is a complete space, then for any ε > 0 and

E ∈ LR(X) such that E(0) ⊂ T (0) and D(E) ⊃ D(T )

σap,ε−∥E∥(T ) ⊆ σap,ε(T + E) ⊆ σap,ε+∥E∥(T ).

Proof. Let λ ∈ σap,ε−∥E∥(T ). Then, by Theorem 3.4 there is S ∈ LR(X) satisfying
D(T ) ⊂ D(S), S(0) ⊂ T (0), ∥S∥ < ε − ∥E∥ such that

λ ∈ σap(T + S) = σap


(T + E) + (S − E)


.

Using [16, Proposition II.1.7 ] we get

∥S − E∥ ≤∥S∥ + ∥ − E∥

=∥S∥ + ∥E∥ < ε (using [16, Proposition II.1.7]).

Then, from Theorem 3.5, we deduce that λ ∈ σap,ε(T + E). Using a similar reasoning
to the first inclusion, we deduce that λ ∈ σap,ε+∥E∥(T ). □

4. Essential Approximate Pseudospectra of Linear Relations

We begin this section by showing that the essential approximate pseudospectra of
linear relations are closed, and then illustrate some characteristic properties.

Theorem 4.1. Let T ∈ CR(X) and ε > 0. Then the following statements are

equivalent:

(i) λ /∈ σeap,ε(T ).
(ii) For all continuous linear relations S ∈ LR(X) such that D(T ) ⊂ D(S), S(0) ⊂

T (0) and ∥S∥ < ε, we have

λ − T − S ∈ Φ+(X) and i(λ − T − S) ≤ 0.

(iii) For all continuous single valued relations D ∈ LR(X) such that D(T ) ⊂ D(D)
and ∥D∥ < ε, we have

λ − T − D ∈ Φ+(X) and i(λ − T − D) ≤ 0.

Proof. (i) ⇒ (ii) Let λ /∈ σeap,ε(T ). Then there exists K ∈ KT (X) such that

λ /∈ σap,ε(T + K).



280 A. JERIBI AND K. MAHFOUDHI

Using Theorems 3.5 and 3.4, for all continuous linear relations S ∈ LR(X) such that

D(T + K) =D(T ) ∩ D(K)

=D(T ) ⊂ D(S) (as D( T ) ⊂ D(K))

(T + K)(0) =T (0) ⊃ S(0) (as K(0) ⊂ T (0)),

and ∥S∥ < ε, we have λ /∈ σap(T +S +K). Then, λ−T −S −K is open, injective with
dense range. On the other hand, T is closed and K is compact then K is continuous
hence λ − S − K is continuous, furthermore (λ − S − K)(0) ⊂ T (0) , then using
Lemma 2.5, we obtain that λ − T − S − K is closed. Hence, from Theorem 2.1,
R(λ − T − S − K) is closed. We conclude that, R(λ − T − S − K) = X. Therefore

λ − T − S − K ∈ Φ+(X) and i(λ − T − S − K) ≤ 0,

for all continuous linear relations S ∈ LR(X) such that D(T ) ⊂ D(S), S(0) ⊂ T (0)
and ∥S∥ < ε. It is obvious from [1, Lemma 2.3] that for all continuous linear relations
S ∈ LR(X) such that D(T ) ⊂ D(S), S(0) ⊂ T (0) and ∥S∥ < ε we have

λ − T − S ∈ Φ+(X) and i(λ − T − S) ≤ 0.

(ii) ⇒ (iii) Is trivial.
(iii) ⇒ (i) We assume that for all D ∈ LR(X) a continuous single valued relations

such that D(T ) ⊂ D(D) and ∥D∥ < ε, then we have

λ − T − D ∈ Φ+(X) and i(λ − T − D) ≤ 0.

By virtue of [2, Theorem 3.5 (i)], λ − T − D can be expressed in the form

λ − T − D = S + K,

where K ∈ Kλ−T −D(X) = KT (X) since

K(0) ⊂T (0) = (λ − T − D)(0),

D(λ − T − D) =D(T ) ⊂ D(K),

and S is a linear relation with closed range and S is injective linear relation (i.e.,
α(S) = 0). So,

λ − T − D − K = S and α(λ − T − D − K) = 0.

Since λ − T − D − K is injective linear relation (bounded below), then there exists a
constant M > 0 such that

∥(λ − T − D − K)x∥ ≥ M∥x∥, for all x ∈ D(T ).

This proves that

inf
x∈D(T )\N(T ),

∥x∥=1

∥(λ − T − D − K)x∥ ≥ M > 0.

This is equivalent to say that

λ /∈ σap(T + D + K),
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and therefore, λ /∈ σeap,ε(T ). □

Remark 4.1. In summary, we have shown that from Theorem 4.1, that for T ∈ CR(X)
and ε > 0

σeap,ε(T ) =
⋃

∥D∥<ε

D(T )⊂D(D)

σeap(T + D) =
⋃

∥S∥<ε

S(0)⊂T (0)

D(S)⊃D(T )

σeap(T + S).

Theorem 4.2. Let T ∈ CR(X) and ε > 0. Then σeap,ε(T ) is a closed set.

Proof. Let λ /∈ σeap,ε(T ) and D be a single valued continuous linear relation such that
D(D) ⊃ D(T ) and ∥D∥ < ε. Hence, by Theorem 4.1, we have

λ − T − D ∈ Φ+(X) and i(λ − T − D) ≤ 0.

So, R(λ − T − D) is closed and from Lemma 2.5, we have λ − T − D is closed. Then
by using Theorem 2.1, λ − T − D is open and hence γ(λ − T − D) > 0. Let r > 0 such
that r < γ(λ − T − D), let µ ∈ Bf (λ, r) then ♣µ − λ♣ ≤ r < γ(λ − T − D). According
to Lemma 2.6, it is clear that

µ − T − D = λ − T − D + µ − λ

is open and injective. Since µ − T − D is closed and open, then from Theorem 2.1
we deduce R(µ − T − D) is closed. Then, µ − T − D ∈ Φ+(X). On the other hand,
using [16, Corollary V.15.7], we have

i(µ − T − D) = i(λ − T − D) ≤ 0.

Consequently, µ /∈ σeap,ε(T ) and we infer that σeap,ε(T ) is a closed. □

Observe that as a direct consequence of Theorem 4.1, we infer the following result.

Proposition 4.1. Let T ∈ CR(X).
(i) If 0 < ε1 < ε2, then σeap(T ) ⊂ σeap,ε1

(T ) ⊂ σeap,ε2
(T ).

(ii) If ε > 0, then σeap,ε(T ) ⊂ σap,ε(T ).

(iii)
⋂

ε>0

σeap,ε(T ) = σeap(T ).

Theorem 4.3. Let T ∈ LR(X) where X is a complete space, then the following hold.

(i) For any ε > 0 and S ∈ LR(X) such that S(0) ⊂ T (0), D(S) ⊃ D(T ) and

∥S∥ < ε we have

σeap,ε−∥S∥(T ) ⊆ σeap,ε(T + S) ⊆ σeap,ε+∥S∥(T ).

(ii) For every α, β ∈ C, with β ̸= 0

σeap,ε(αI + βT ) = α + βσeap,ε♣β♣(T ).

Proof. The proof of this theorem is inspired from the proof of Corollary 3.1 and
Theorem 3.6 and [4, Propositions 4.2 and 4.4]. □
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Theorem 4.4. Let T ∈ CR(X) and ε > 0. Then

(i) σeap,ε(T ) =
⋂

P ∈PT (Φ+(X))

σap,ε(T + P );

(ii) σeap,ε(T ) =
⋂

S∈SSR(X)

σap,ε(T + S).

Proof. (i) Because, KT (X) ⊂ PT (Φ+(X)), we have that
⋂

P ∈PT (Φ+(X))

σap,ε(T + P ) ⊂ σeap,ε(T ).

Conversely, let λ /∈
⋂

P ∈PT (Φ+(X))

σap,ε(T + P ) then there exists P ∈ PT (Φ+(X)) such

that
λ /∈ σap,ε(T + P ).

Since, P is continuous and the use of Lemma 2.5 we infer that T + P is closed. Now,
by using of Corollary 3.2 we see that λ /∈ σap(T + S + P ) for all continuous linear
relations S ∈ LR(X) such that ∥S∥ < ε and

D(T + P ) =D(T ) ∩ D(P ) = D(T ) ⊂ D(S),

(T + P )(0) =T (0) (as P (0) ⊂ T (0))

⊃S(0).

On the other hand, (λ − S − P )(0) ⊂ T (0), D(λ − S − P ) = D(S) ∩ D(P ) ⊃ D(T )
and T is closed, by using of Lemma 2.5, λ − T − S − P is closed, and λ − T − S − P
is open as λ /∈ σap(T + P + S), then from Theorem 2.1, R(λ − T − S − P ) is closed.
Hence λ − T − S − P is injective and open. Therefore

λ − T − S − P ∈ Φ+(X) and i(λ − T − S − P ) ≤ 0.

Since

P ∈ PT (Φ+(X)), P (0) ⊂(λ − T − S − P )(0),

D(P ) ⊃ D(λ − T − S − P ) =D(T ) ∩ D(S) ∩ D(P ), P ∈ Pλ−T −D−P (Φ+(X))

Using Lemma 2.1, we obtain that for all continuous linear relations S ∈ LR(X) such
that S(0) ⊂ T (0), D(T ) ⊂ D(S), ∥S∥ < ε

λ − T − S ∈ Φ+(X) and i(λ − T − S) ≤ 0.

Finally, it follows from Theorem 4.1 that λ /∈ σeap,ε(T ).
(ii) From [2, Theorem 3.3], we have the inclusion KT (X) ⊂ SSR(X) ⊂ PT (Φ+(X)).

Then

σeap,ε(T ) =
⋂

K∈KT (X)

σap,ε(T + K) ⊂
⋂

S∈SSR(X)

σap,ε(T + S)

⊂
⋂

P ∈PT (Φ+(X))

σap,ε(T + P ) = σeap,ε(T ). □

We finally close this paper with the following theorem.
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Theorem 4.5. Let T, S ∈ LR(X) such that S(0) ⊂ T (0) and ε > 0. If D ∈ LR(X)
such that D(0) ⊂ S(0) ⊂ N(T ), ∥D∥ < ε and T (S + D) ∈ F+(X), then

σeap,ε(T + S) ⊂ σeap,ε(S) ∪ σeap(T ).

If, further, (S + D)T ∈ F+(X) and T (0) ⊂ N(S) or T (0) ⊂ N(D) we have

σeap,ε(T + S) = σeap,ε(S) ∪ σeap(T ).

Proof. Since D(T ) = X, then using Proposition 2.1, we obtain that

(λ − T )(λ − S − D) = λ(λ − S − D) − T (λ − S − D).

Also, by Proposition 2.1, we have

(λ − T )(λ − S − D) =λ2 − λS − λD − λT + TS + TD

=λ(λ − S − D − T ) + T (S + D)

Let λ ̸∈ σeap,ε(S) ∪ σeap(T ), then λ ̸∈ σeap,ε(S) and λ ̸∈ σeap(T ). Using [12, Corollary
4.1] we have

(λ − T ) ∈ Φ+(X) and i(λ − T ) ≤ 0.

According to Theorem 4.1 we obtain

λ − S − D ∈ Φ+(X) and i(λ − S − D) ≤ 0,

for all continuous linear relations D ∈ LR(X) such that D(0) ⊂ S(0) and ∥D∥ < ε.
We infer that

(λ − T )(λ − S − D) ∈ Φ+(X).

Since

T (S + D)(0) = TS(0) ⊂ TT −1(0) = T (0) = (λ − S − D − T )(0) = T (0),

and T (S + D) ∈ F+(X), then λ − S − D − T ∈ Φ+(X) for all D ∈ LR(X) such that
D(0) ⊂ S(0) and ∥D∥ < ε

i(λ − S − D − T ) =i(λ − T ) + i(λ − S − D) − dim

T (0) ∩ N(λ − S − D)



=i(λ − T ) + i(λ − S − D) ≤ 0.

Hence, from Theorem 4.1, we have λ ̸∈ σeap,ε(T +S). The second inclusion is analogous
to the previous one. □
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MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF

PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES

ELHOUSSINE AZROUL1, ABDELMOUJIB BENKIRANE1, MOHAMMED SRATI1,
AND MINGQI XIANG2

Abstract. In this paper, using the three critical points theorem we obtain the
existence of three weak solutions for a Kirchhoff type problem driven by a nonlocal
operator of the elliptic type in a fractional Orlicz-Sobolev space, with homogeneous
Dirichlet boundary conditions.

1. Introduction

In the last decade, great attention has been devoted to the study of nonlinear
problems involving non-local operators. These types of operator come up in a quite
natural way in several applications such as phase transition phenomena, crystal dis-
location, soft thin Ąlms, minimal surfaces and Ąnance; see for instance [2, 18] and
references therein. We also refer the interested reader to [33], where a more extensive
bibliography and an introduction to the subject are given.

In this paper, we are concerned with a class of nonlocal problems in fractional
Orlicz-Sobolev spaces of the form

(Pa)





M

(∫

Ω

∫

Ω
A

(
♣u(x) − u(y)♣

♣x − y♣s
)

dxdy

♣x − y♣N
)

(−∆)s
a(·)u

= λf(x, u) + βg(x, u), in Ω,

u = 0, in R
N \ Ω,
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where Ω is an open bounded subset in R
N , N ≥ 1, with Lipschitz boundary ∂Ω,

0 < s < 1, A is an N -function, M : [0, ∞) → (0, ∞) is a nondecreasing continuous
function, f, g : Ω × R → R are two Carathéodory functions, λ and β are two real
parameters and (−∆)s

a(·) is a nonlocal integro-differential operator of elliptic type
deĄned as follows

(−∆)s
a(·)u(x) = 2 lim

ε↘0

∫

RN \Bε(x)
a

(
♣u(x) − u(y)♣

♣x − y♣s
)

u(x) − u(y)

♣x − y♣s · dy

♣x − y♣N+s
,

for all x ∈ R
N , where a : R → R which will be speciĄed later.

This problem (Pa) is related to the stationary version of the Kirchhoff equation

(1.1) ρ
∂2u

∂t2
−




P0

h
+

E

2L

∫ L

0

∣∣∣∣∣∣
∂u

∂x

∣∣∣∣∣∣

2

dx




∂2u

∂x2
= h(u, x),

presented by Kirchhoff [29] in 1883 which is an extension of the classical dŠAlembertŠs
wave equation by considering the changes in the length of the string during vibrations.
In (1.1), L is the length of string, h is the area of the cross section, E is the Young
modulus of the material, ρ is the mass density, and P0 is the initial tension. KirchhoffŠs
model takes into account the length changes of the string produced by transverse
vibrations. Some interesting results can be found, for example in [23]. On the other
hand, Kirchhoff-type boundary value problems model several physical and biological
systems where u describes a process which depend on the average of itself, as for
example, the population density. We refer the reader to [35] for some related works.
In [7], the authors obtained the existence of three weak solutions for a Kirchhoff
type elliptic system involving nonlocal fractional p-Laplacian by using the three
point critique theorem. In [10], by means of mountain pass theorem of Ambrosetti
and Rabinowitz, direct variational approach and EkelandŠs variational principle, the
authors showed the existence of nontrivial weak solutions to a class of p(x)-Kirchhoff
type problem. For the problems involving fractional Kirchhoff type, we refer the
reader to the works [11,13]. They use different methods to establish the existence of
solutions.

Problems of this type have been intensively studied in the last few years, due to
numerous and relevant applications in many Ąelds of mathematics, such as approxi-
mation theory, mathematical physics (electrorheological Ćuids), calculus of variations,
nonlinear potential theory, the theory of quasiconformalmappings, differential geom-
etry, geometric function theory, probability theory and image processing (see, for
instance [22]).

The problem (Pa) involves the fractional a(·)-Laplacian operator, the most appro-
priate functional framework for dealing with this problem is the fractional Orlicz
Sobolev space [8, 16], namely a fractional Sobolev space constructed from an Orlicz
space at the place of Lp(Ω). As we know, the Orlicz spaces represent a generalization
of classical Lebesgue spaces in which the role usually played by the convex function tp

is assumed by a more general convex function A(t); they have been extensively studied
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in the monograph of Krasnoselśkii and Rutickii [28] as well as in LuxemburgŠs doctoral
thesis [31]. If the role played by Lp(Ω) in the deĄnition of fractional Sobolev spaces
W s,p(Ω) is assigned to an Orlicz LA(Ω) space, the resulting space W sLA(Ω) is exactly
a fractional Orlicz-Sobolev space . Many properties of fractional Sobolev spaces have
been extended to fractional Orlicz-Sobolev spaces (see [4, 5, 8, 9, 12,16,17]). For this,
many researchers have studied the existence of solutions for the eigenvalue problems
involving nonhomogeneous operators in the divergence form through Orlicz-Sobolev
spaces by using variational methods and critical point theory, monotone operator
methods, Ąxed point theory and degree theory (see for instance [14,15,20,32]).

The problem (Pa) is motivated by the class of problems on the form

(P )

{
Au = λf(x, u) + βg(x, u), in Ω,

u = 0, in ∂Ω,

where Ω is an open subset of R
N , f, g : R

N × R → R are two Carathéodory
functions and λ, β are two real parameters. For Au = −∆p = −div (♣∇u♣p−2∇u),
the problem (P ) has been studied in many papers, we refer to [35, 36], in which
the authors have used different methods to get the existence of solutions for (P ).

In the case when Au = −∆p(·) = −div
(
♣∇u♣p(·)−2∇u


, where p(·) is a continu-

ous function, problem (P ) has also been studied by many authors, see for exam-
ples [19, 24, 25]. On the other hand, Chung in [26], studied the problem (P ) with

Au = −M

∫

Ω
ϕ(♣∇u♣)dx


div(a(♣∇u♣∇u)). That is, the following problem in Orlicz-

Soblev spaces:

(Pφ)





−M

∫

Ω
ϕ(♣∇u♣)dx


div(a(♣∇u♣)∇u) = λf(x, u) + βg(x, u), in Ω,

u = 0, in ∂Ω,

where ϕ is an N -function, defend as

ϕ(t) =
∫ t

0
a(τ)τdτ,

and M : [0, ∞) → (0, ∞) is a nondecreasing continuous Kirchhoff function. Under
some suitable conditions, the author obtained the existence of three weak solutions
of (PΦ), by using the three critical point theorem. For M ≡ 1 in the problem (PΦ),
Cammaroto and Vilasti in [20], by the same theorem, they showed the existence of
three weak solutions.

In the fractional case, i.e., when we take Au = M
(
[u]ps,p


(−∆)s

pu. That is, we

consider the following problem

(Ps)





M

(∫

Ω

∫

Ω

♣u(x) − u(y)♣p
♣x − y♣sp+N

dxdy

)
(−∆)s

pu = λf(x, u) + βg(x, u), in Ω,

u = 0, in R
N \ Ω,
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where Ω is an open bounded subset in R
N and (−∆)s

p is the fractional p-Laplace
operator. In [6], by using the three critical point theorem, the authors obtained the
existence of three weak solutions of (Ps).

To our knowledge, this is the Ąrst contribution to studying of non-local problems
in this class of functional spaces. More precisely, using the ideas Ąrst presented in
articles [6, 20, 26]. Our result in this article generalizes special cases, in which we will
consider the problem (Pa) with M(t) = 1 or M(t) ̸= 1 and A(t) = 1

p
tp (the problem

(Ps)).
This paper is organized as follows. In the second section, we recall some properties

of fractional Sobolev spaces. In the third section, using the three critical points
theorem which introduced by Ricceri [34], we obtain the existence of a three weak
solutions of problem (Pa). Finally, the fourth section is devoted to giving an example
which illustrates the mains abstracts results.

2. Some Preliminaries Results

To deal with this situation we introduce the fractional Orlicz-Sobolev space to
investigate problem (Pa). Let us recall the deĄnitions and some elementary properties
of this spaces. We refer the reader to [1,3,8,16,33] for further reference and for some
of the proofs of the results in this section.

Let Ω be an open subset of RN , N ≥ 1. We assume that a : R → R in (Pa) is such
that : φ : R → R deĄned by:

φ(t) =

{
a(♣t♣)t, for t ̸= 0,

0, for t = 0,

is increasing homeomorphism from R onto itself. Let

A(t) =
∫ t

0
φ(τ)dτ.

Then, A, is N -function, see [1], i.e., A : R+ → R
+ is continuous, convex, increasing

function, with A(t)
t

→ 0 as t → 0 and A(t)
t

→ ∞ as t → ∞.

For the function A introduced above we deĄne the Orlicz space:

LA(Ω) =
{

u : Ω → R mesurable
∫

Ω
A(λ♣u(x)♣)dx < ∞ for some λ > 0

}
.

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm

∥u∥A = inf

{
λ > 0 :

∫

Ω
A

(
♣u(x)♣

λ

)
dx ≤ 1

}
.

The conjugate N -function of A is deĄned by A(t) =
∫ t

0 φ(τ)dτ , where φ : R → R is
given by φ(t) = sup ¶s : φ(s) ≤ t♢ . Furthermore, it is possible to prove a Hölder type
inequality, that is

∣∣∣∣
∫

Ω
uvdx

∣∣∣∣ ≤ 2∥u∥A∥v∥A, for all u ∈ LA(Ω) and v ∈ LA(Ω).
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Throughout this paper, we assume that

(2.1) 1 < p− := inf
t≥0

tφ(t)

A(t)
≤ p+ := sup

t≥0

tφ(t)

A(t)
< +∞.

The above relation implies that A ∈ ∆2, i.e., A satisĄes the global ∆2-condition (see
[32]):

A(2t) ≤ KA(t), for all t ≥ 0,

where K is a positive constant.
Furthermore, we assume that A satisĄes the following condition

(2.2) the function [0, ∞) ∋ t 7→ A(
√

t) is convex.

The above relation assures that LA(Ω) is an uniformly convex space (see [32]).

Lemma 2.1 ([16]). Assume that A ∈ ∆2. Then we have

A(φ(t)) ≤ cA(t), for all t ≥ 0,

where c > 0.

Now, we deĄned the fractional Orlicz-Sobolev space W sLA(Ω) as follows

W sLA(Ω)=

{
u ∈ LA(Ω) :

∫

Ω

∫

Ω
A

(
λ♣u(x) − u(y)♣

♣x − y♣s
)

dxdy

♣x − y♣N < ∞ for some λ > 0

}
.

This space is equipped with the norm

∥u∥s,A = ∥u∥A + [u]s,A,

where [·]s,A is the Gagliardo seminorm, deĄned by

[u]s,A = inf



λ > 0 :

∫

Ω

∫

Ω
A

(
♣u(x) − u(y)♣

λ♣x − y♣s
)

dxdy

♣x − y♣N ≤ 1



.

We work in the closed linear subspace

W s
0 LA(Ω) =

{
u ∈ W sLA(RN) : u = 0 a.e. R

N \ Ω
}

,

which can be equivalently renormed by setting ∥ · ∥ := [·]s,A. By [16], W sLA(Ω) and

is Banach space, also separable (resp. reĆexive) space if and only if A ∈ ∆2 (resp.
A ∈ ∆2 and A ∈ ∆2). Furthermore, if A ∈ ∆2 and A(

√
t) is convex, then the space

W sLA(Ω) is uniformly convex.
To simplify the notation, we set

Φ(u) =
∫

Ω

∫

Ω
A

(
♣u(x) − u(y)♣

♣x − y♣s
)

dxdy

♣x − y♣N , Dsu =
u(x) − u(y)

♣x − y♣s , dµ =
dxdy

♣x − y♣s ,

and the dual space of (W sLA(Ω), ∥ · ∥) is denoted by ((W sLA(Ω))∗, ∥ · ∥∗) . Note that
dµ is a regular Borel measure on the set Ω × Ω.

Theorem 2.1 ([8]). Let Ω be a bounded open subset of RN . Then

C2
0(Ω) ⊂ W sLA(Ω).
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Remark 2.1. A trivial consequence of Theorem 2.1, C∞
0 (Ω) ⊂ W sLA(Ω) and W sLA(Ω)

is non-empty.

Proposition 2.1 ([8]). Let Ω be an open subset of RN and let A be an N-function.

Assume condition (2.1) is satisfied, then the following relations hold true

[u]p
−

s,A ≤ Φ(u) ≤ [u]p
+

s,A, for all u ∈ W sLA(Ω), with [u]s,A > 1,

[u]p
+

s,A ≤ Φ(u) ≤ [u]p
−

s,A, for all u ∈ W sLA(Ω), with [u]s,A < 1.

Theorem 2.2 ([8]). Let Ω be a bounded open subset of RN , with C0,1-regularity and

bounded boundary, let 0 < s′ < s < 1. Let A be an N -function, assume condition (2.1)
is satisfied and we define

p∗
s′ =

{
Np−

N−s′p−
, if N > s′p−,

∞, if N ≤ s′p−.

• If s′p− < N , then W sLA(Ω) →֒ Lq(Ω), for all q ∈ [1, p∗
s′ ] and the embedding

W sLA(Ω) →֒ Lq(Ω), is compact for all q ∈ [1, p∗
s′).

• If s′p− = N , then W sLA(Ω) →֒ Lq(Ω), for all q ∈ [1, ∞] and the embedding

W sLA(Ω) →֒ Lq(Ω), is compact for all q ∈ [1, ∞).
• If sp− > N , then the embedding W sLA(Ω) →֒ L∞(Ω), is compact.

Definition 2.1. Let X be a real Banach space. We denote by WA the class of all
functionals A : X → R possessing the following propositionerty: if ¶un♢ is a sequence
in X weakly converging to u ∈ X and lim infn→∞ A(un) ≤ A(u), then ¶un♢ has a
subsequence strongly converging to u.

Definition 2.2. Let 0 < s′ < s < 1, if N > s′p−, we denote by A the class of all
Carathéodory functions f : Ω × R → R such that

sup
(x,t)∈Ω×R

♣f(x, t)♣
1 + ♣t♣q−1

< ∞,

where q ∈ [1, p∗
s′).

While when N < s′p−, we denote by A the class of all Carathéodory functions
f : Ω × R → R such that for each C > 0, the function x 7→ sup♣t♣≤C ♣f(x, t)♣ belongs

to L1(Ω).

Theorem 2.3 ([34]). Let X be a separable and reflexive real Banach space with

norm ∥ · ∥, let Ψ : X → R be a coercive, sequentially weakly lower semicontinuous

C1 functional, belonging to WA, bounded on each bounded subset of X and whose

derivative admits a continuous inverse on X∗, and let J : X → R be a C1 functional

with compact derivative. Assume that Ψ has a strict local minimum x0, with Ψ(x0) =
J(x0) = 0. Finally, assume that

max

{
lim sup
∥x∥→+∞

J(x)

Ψ(x)
, lim sup

x→x0

J(x)

Ψ(x)

}
≤ 0
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and that

sup
x∈X

min ¶Ψ(x), J(x)♢ > 0.

Let

θ∗ := inf

{
Ψ(x)

J(x)
: x ∈ X, min ¶Ψ(x), J(x)♢ > 0

}
.

Then, for each compact interval Λ ⊂ (θ∗, +∞), there exists a number δ > 0 with the

following propositionerty: for every λ ∈ Λ and every C1 functional Γ : X → R with

compact derivative, there exists β∗ > 0 such that for each β ∈ [0, β∗], the equation

Ψ′(x) = λJ ′(x) + βΓ′(x),

has at least three solutions whose norms are less than δ.

3. Mains Results

In this section, we prove the existence of three weak solutions in fractional Orlicz-
Sobolev spaces applying Theorem 2.3. For this, we suppose that the Kirchhoff function
M : [0, ∞) → (0, ∞) is a continuous and nondecreasing function satisfying the
following condition:

(M0) there exists m0 > 0 such that M(t) ≥ m0, for all t ≥ 0.

For f ∈ A, we assume that

sup
u∈W s

0
LA(Ω)

∫

Ω
F (x, u)dx >0,(F1)

lim sup
t→0

supx∈Ω F (x, t)

♣t♣p+
≤0,(F2)

lim sup
♣t♣→∞

supx∈Ω F (x, t)

♣t♣p−
≤0,(F3)

where F (x, t) =
∫ t

0 f(x, τ)dτ .
Under such hypothesis, we set

θ∗ = inf





M̂(Φ(u))∫

Ω
F (x, u)dx

: u ∈ W s
0 LA(Ω),

∫

Ω
F (x, u)dx > 0





.

Definition 3.1. We say that u ∈ W s
0 LA(Ω) is a weak solution of problem (Pa) if

M(Φ(u))
∫

RN ×RN
a(♣Dsu♣)DsuDsvdµ = λ

∫

Ω
f(x, u)vdx + β

∫

Ω
g(x, u)vdx,

for all v ∈ W s
0 LA(Ω).

Theorem 3.1. Let A be an N -function. Suppose that M satisfy (M1) and for f ∈ A,

we suppose that (F1), (F2) and (F3) hold true. If p+ < p∗
s′, then for each compact

interval Λ ⊂ (θ∗, ∞), there exists a number δ > 0 with the following propositionerty:
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for every λ ∈ Λ and every g ∈ A there exists β∗ > 0 such that, for each β ∈ [0, β∗],
problem (Pa) has at least three weak solutions whose norms are less than δ.

We Ąrst prove the following useful result, which helps us to apply Theorem 2.3. For
this, we deĄne the functionals Ψ, J : W s

0 LA(Ω) → R by

J(u) =
∫

Ω
F (x, u)dx, Ψ(u) = M̂

(∫

Ω

∫

Ω
A

(
♣u(x) − u(y)♣

♣x − y♣s
)

dxdy

♣x − y♣N
)

,

where M̂(t) =
∫ t

0 M(τ)dτ.

Lemma 3.1. Let f ∈ A. Then the functional J ∈ C1(W s
0 LA(Ω),R) with derivative

given by

⟨J ′(u), v⟩ =
∫

Ω
f(x, u)vdx,

for all u, v ∈ W s
0 LA(Ω). Moreover J ′ : W s

0 LA(Ω) → (W s
0 LA(Ω))∗ is compact.

By using Theorem 2.2, the proof of this Lemma is seminary to Lemma 3.3 in [6].

Lemma 3.2. Let (M1) and (2.1) hold true. Then Ψ ∈ C1(W s
0 LA(Ω),R) and

⟨Ψ′(u), v⟩ = M(Φ(u))
∫

Ω×Ω
a(♣Dsu♣)DsuDsvdµ,

for all u, v ∈ W s
0 LA(Ω). Moreover, for each u ∈ W s

0 LA(Ω), Ψ′(u) ∈ (W s
0 LA(Ω))∗.

Proof. First, it is easy to see that

(3.1) ⟨Ψ′(u), v⟩ = M(Φ(u))
∫

Ω×Ω
a(♣Dsu♣)DsuDsvdµ,

for all u, v ∈ W s
0 LA(Ω). It follows from (3.1) that Ψ′(u) ∈ (W s

0 LA(Ω))∗ for each
u ∈ W s

0 LA(Ω).
Next, we prove that Ψ ∈ C1(W s

0 LA(Ω),R). Let ¶un♢ ⊂ W s
0 LA(Ω) with un →

u strongly in W s
0 LA(Ω), then Dsun → Dsu in LA(Ω × Ω, dµ). So by dominated

convergence theorem, there exist a subsequence ¶Dsunk
♢ and a function h in LA(Ω ×

Ω, dµ) such that

a(♣Dsunk
♣)Dsunk

→ a(♣Dsu♣)Dsu

and

♣a(♣Dsunk
♣)Dsunk

♣ ≤ ♣a(♣h♣)h♣,
for almost every (x, y) in Ω × Ω, by Lemma 2.1, we have ♣a(♣h♣)h♣ ∈ LA(Ω × Ω, dµ).
So, for v ∈ W s

0 LA(Ω), Dsv ∈ LA(Ω × Ω, dµ) and by HölderŠs inequality
∣∣∣∣
∫

Ω×Ω
[a(♣Dsunk

♣)Dsunk
− a(♣Dsu♣)Dsu] Dsvdµ

∣∣∣∣

≤2 ∥a(♣Dsunk
♣)Dsunk

− a(♣Dsu♣)Dsu∥L
A

∥Dsv∥LA

≤2 ∥a(♣Dsunk
♣)Dsunk

− a(♣Dsu♣)Dsu∥L
A

∥v∥ .
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Then by dominated convergence theorem we obtain that

(3.2) sup
∥v∥≤1

∣∣∣∣∣∣

∫

Ω×Ω
[a(♣Dsunk

♣)Dsunk
− a(♣Dsu♣)Dsu] Dsvdµ

∣∣∣∣∣∣
→ 0.

On the other hand, the continuity of M and Proposition 2.1, we have

(3.3) M (Φ(un)) → M (Φ(u)) .

Combining (3.2)Ű(3.3) with the Hölder inequality, we have

∥Ψ′(un) − Ψ′(u)∥∗ = sup
v∈W s

0
LA(Ω),∥v∥≤1

♣ ⟨Ψ′(un) − Ψ′(u), v⟩ ♣ → 0. □

Lemma 3.3. The following properties hold true:

(i) the functional Ψ is sequentially weakly lower semi continuous;

(ii) the functional Ψ belongs to the class WW s
0

LA(Ω).

Proof. (i) First, note that the map

u 7→
∫

Ω

∫

Ω
A

(
♣u(x) − u(y)♣

♣x − y♣s
)

dxdy

♣x − y♣N ,

is lower semi-continuous in the weak topology of W s
0 LA(Ω). Indeed, similar to Lemma

3.1, we obtain Φ ∈ C1(W s
0 LA(Ω),R) and

⟨Φ′(u), v⟩ =
∫

Ω

∫

Ω
a(♣Dsu♣)DsuDsvdµ,

for all u, v ∈ W s
0 LA(Ω). On the other hand, since A is a convex function so Φ is also

convex.
Now, let ¶un♢ ⊂ W s

0 LA(Ω) with un ⇀ u weakly in W s
0 LA(Ω), then by convexity of

Φ we have

Φ(un) − Φ(u) ≥ ⟨Φ′(u), un − u⟩ ,

and hence, we obtain Φ(u) ≤ lim inf Φ(un), that is, the map

u 7→
∫

Ω

∫

Ω
A

(
♣u(x) − u(y)♣

♣x − y♣s
)

dxdy

♣x − y♣N
is lower semi-continuous. On the other hand by the continuity and monotonicity of
the function t 7→ M̂(t), we get

lim inf
n→∞

Ψ(un) = lim inf
n→∞

M̂(Φ(un)) ≥ M̂(lim inf
n→∞

Φ(un)) ≥ M̂(Φ(u)).

Thus, the functional Ψ is sequentially weakly lower semicontinuous.
(ii) Since M̂ is continuous and strictly increasing, it suffices to show that Φ ∈

WW s
0

LA(Ω). Then, let ¶un♢ be a sequence weakly converging to in W s
0 LA(Ω) and let

lim inf
n→∞

Φ(un) ≤ Φ(u). Since the functional Φ is sequentially weakly lower semicontinu-

ous, there exists a subsequence of ¶un♢ , still denoted by ¶un♢ such that

lim
n→∞

Φ(un) = Φ(u).
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On the other hand, since
{

un+u
2

}
converges weakly to u in W s

0 LA(Ω), from (i), we

have

(3.4) lim inf
n→∞

Φ


un + u

2


≥ Φ(u).

We assume by contradiction that ¶un♢ does not converge to u in W s
0 LA(Ω). Hence,

there exists a subsequence of ¶un♢, still denoted by ¶un♢ and there exits ε0 > 0 such
that ∥∥∥∥

un − u

2

∥∥∥∥ ≥ ε0

2
,

by Proposition 2.1, we have

Φ


un − u

2


≥ max

{
ε

p−

0 , ε
p+

0

}
.

On the other hand, by the conditions (2.1) and (2.2), we can apply [30, Lemma 2.1]
in order to obtain

(3.5)
1

2
Φ(un) +

1

2
Φ(u) − Φ


un + u

2


≥ Φ


un − u

2


≥ max

{
ε

p−

0 , ε
p+

0

}
.

It follows from (3.5) that

(3.6) Φ(u) − max
{
ε

p−

0 , ε
p+

0

}
≥ lim sup

n→∞
Φ


un + u

2


,

from (3.4) and (3.6) we obtain a contradiction. This shows that ¶un♢ converges
strongly to u and the functional Ψ belongs to the class WW s

0
LA(Ω). □

Lemma 3.4. Assume that the sequence ¶un♢ converges weakly to u in W s
0 LA(Ω) and

(3.7) lim sup
n→∞

∫

Ω

∫

Ω
a(♣Dsun♣)Dsun (Dsun − Dsu) dµ ≤ 0.

Then the sequence ¶un♢ converges strongly to u in W s
0 LA(Ω).

Proof. Since un converges weakly to u in W s
0 LA(Ω), then ¶∥un∥♢ is a bounded sequence

of real numbers, that fact and Proposition 2.1, implies that the ¶Φ(un)♢ is bounded,
then for a subsequence, we deduce that Φ(un) → c. Or since Φ is weak lower semi
continuous, we get Φ(u) ≤ lim infn→∞ Φ(un) = c. On the other hand, by the convexity
of Φ, we have

Φ(u) ≥ Φ(un) + ⟨Φ′(un), un − u⟩ .

Next, by the hypothesis (3.7), we conclude that Φ(u) = c. Since
{

un+u
2

}
converges

weakly to u in W s
0 LA(Ω), so since Φ is sequentially weakly lower semicontinuous:

c = Φ(u) ≤ lim inf
n→∞

Φ


un + u

2


.

Seminary to proof of Lemma 3.3, we assume by contradiction that un converges
strongly to u in W s

0 LA(Ω). □

Lemma 3.5. Let (M1) hold, then the operator Ψ′ : W s
0 LA(Ω) → (W s

0 LA(Ω))∗ is

invertible and Ψ′−1 is continuous.
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Proof. First, we assume that the operator Ψ′ : W s
0 LA(Ω) → (W s

0 LA(Ω))∗ is invertible
on W s

0 LA(Ω). By the Minty-Browder theorem (see [37]), it suffices to prove that Ψ′ is
strictly monotone, hemicontinuous and coercive in the sense of monotone operators.

So, let u, v ∈ W s
0 LA(Ω), with u ̸= v and let λ, µ ∈ [0, 1] with λ + µ = 1. Since

a(♣t♣)t is increasing, then

〈
Φ′(u) − Φ′(v), u − v

〉
=

∫

Ω

∫

Ω
(a(♣Dsu♣)Dsu − a(♣Dsu♣)Dsv) (Dsu − Dsv) dµ > 0.

So, Ψ′ : W s
0 LA(Ω) → (W s

0 LA(Ω))∗ is strictly monotone, so by [37, Proposition 25.10],

Φ is strictly convex. Moreover, since M is nondecreasing the function M̂ is convex in
R

+. Thus,

M̂(Φ(λu + µv)) < M̂(λΦ(u) + µΦ(v)) ≤ λM̂(Φ(u)) + µM̂(Φ(v)).

This shows that Ψ is strictly convex and already said, that Ψ′ is strictly monotone.
Let u ∈ W s

0 LA(Ω), with ∥u∥ > 1, by (M1) and Proposition 2.1, we have

⟨Ψ′(u), u⟩
∥u∥ =

M(Φ(u)) ⟨Φ′(u), u⟩
∥u∥ ≥ m0p

−Φ(u)

∥u∥ ≥ m0p
−∥u∥p−−1.

Thus,

lim
∥u∥→∞

⟨Φ′(u), u⟩
∥u∥ = ∞,

that is, Ψ′ is coercive.
Now, by Lemma 3.1, we have Ψ ∈ C1(W s

0 LA(Ω),R), then Ψ is hemicontinuous.
Thus, in view of the Minty-Browder theorem, there exists Ψ′−1 : (W s

0 LA(Ω))∗ →
W s

0 LA(Ω) and it is bounded.
Let us prove that Ψ′−1 is continuous by showing that its is sequentially continuous.

Let ¶un♢ ⊂ (W s
0 LA(Ω))∗ be a sequence strongly is converging to u ∈ (W s

0 LA(Ω))∗

and let vn = Ψ′−1(un) and v = Ψ′−1(u). Then, ¶vn♢ bounded in W s
0 LA(Ω), then, we

can assume that it converges weakly to a certain v0 ∈ W s
0 LA(Ω). Since un converges

strongly to u, we have

lim
n→∞

⟨Ψ′(vn), vn − v0⟩ = lim
n→∞

⟨un, vn − v0⟩ = 0,

i.e.,

(3.8) lim
n→∞

M(Φ(vn))
∫

Ω

∫

Ω
a(♣Dsvn♣)Dsvn (Dsvn − Dsv0) dµ = 0.

Since ¶vn♢ is bounded in W s
0 LA(Ω), then by Proposition 2.1, Φ(vn) is also bounded,

then

Φ(vn) → t0 ≥ 0, as n → ∞.

If t0 = 0, then using Proposition 2.1, we get ¶vn♢ that strongly converges to v0 in
W s

0 LA(Ω), by the continuity and injectivity of Ψ′−1 we obtain the desired result.
If t0 > 0, it follows from the continuity of the function M that

M(Φ(vn)) → M(t0), as n → ∞.
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Thus, by (M1), for sufficiently large n, we get

(3.9) M(Φ(vn)) ≥ C0 > 0.

By (3.8) and (3.9), we have

(3.10)
∫

Ω

∫

Ω
a(♣Dsvn♣)Dsvn (Dsvn − Dsv0) dµ = 0.

From (3.10) and since vn converges weakly to v0 in W s
0 LA(Ω), we can apply Lemma

3.4, in order to deduce that vn converge strongly to v0 in W s
0 LA(Ω). □

Proof of Theorem 3.1. We wish to apply Theorem 2.3 taking X = W s
0 LA(Ω), Ψ and J

are as before, by Lemma 3.1 J is C1-functional with compact derivative. Moreover by
Lemma 3.3, Ψ is a sequentially weakly lower continuous and C1-functional belongs to
the class WW s

0
LA(Ω), also by Lemma 3.5, the operator Ψ′ admits a continuous inverse

on (W s
0 LA(Ω))∗.

On the other hand, we show that Φ is coercive. In fact, if ∥u∥ > 1, by (M1) and
Proposition 2.1, we have

Ψ(u) = M̂(Φ(u)) ≥ m0Φ(u) ≥ m0∥u∥p−

,

from which we have the coercivety of Ψ.
It is evident that u0 = 0 is the global minimum of Ψ and that Ψ(u0) = J(u0) = 0.

Moreover, Ψ is bounded on each bounded subset of W s
0 LA(Ω). Indeed, if ∥u∥ ≤ C,

then

Ψ(u) = M̂(Φ(u)) ≤
{

M̂(Cp−

), if ∥u∥ > 1,

M̂(1), if ∥u∥ ≤ 1.

So, Ψ(u) ≤ max
{
M̂(1), M̂(Cp−

)
}
.

Now, by the assumption (F2) for all ε > 0, there exits η1 > 0 such that

♣F (x, t)♣ ≤ ε♣t♣p+

,

for each x ∈ Ω and ♣t♣ ≤ η1. Since p+ < p∗
s′ , so by Theorem 2.2, the embedding

W s
0 LA(Ω) in Lp+

(Ω) is compact. Then for some positive constant C2, one has for all
u ∈ W s

0 LA(Ω) with ♣u♣ ≤ η1 and ∥u∥ < 1

J(u) ≤ ε∥u∥p+

Lp+ ≤ εC2∥u∥p+ ≤ εC2Φ(u).

Or by (M1), we have Φ(u) ≤ 1
m0

Ψ(u), then

J(u) ≤ εC2
1

m0

Ψ(u).

Consequently, we have

(3.11) lim sup
u→0

J(u)

Ψ(u)
≤ εC2

1

m0

.

By (F3), for all ε > 0, there exists η2 > 0 such that

(3.12) ♣F (x, t)♣ ≤ ε♣t♣p−

,
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for all x ∈ Ω and ♣t♣ > η2.

For ∥u∥ > 1 large enough, from (3.12), Proposition 2.1 and Theorem 2.2, we have

J(u)

Ψ(u)
=

J(u)

M̂(Φ(u))

≤

∫

¶x∈Ω:♣u♣≤η2♢
F (x, u)dx

m0∥u∥p−
+

∫

¶x∈Ω:♣u♣>η2♢
F (x, u)dx

m0∥u∥p−
,

≤
♣Ω♣ sup

Ω×[−η2,η2]

F

m0∥u∥p−
+

ε∥u∥p−

Lp− (Ω)

m0∥u∥p−
,

≤
♣Ω♣ sup

Ω×[−η2,η2]
F

m0∥u∥p−
+ C3ε.

So,

(3.13) lim sup
∥u∥→∞

J(u)

Ψ(u)
≤ εC3.

Since ε > 0 is arbitrary, relations (3.11) and (3.13) imply that

max

{
lim sup
∥x∥→+∞

J(x)

Ψ(x)
, lim sup

x→x0

J(x)

Ψ(x)

}
≤ 0.

Hence, all assumptions of Theorem 2.3 are satisĄed. So, for each compact interval
Λ ⊂ (θ∗, +∞), there exists a number δ > 0 with the propositionerty described in the
conclusion of Theorem 2.3. Fix λ ∈ Λ and g ∈ A. Put

Γ(u) =
∫

Ω
G(x, u)dx and G(x, t) =

∫ t

0
g(x, s)ds,

for all u ∈ W s
0 LA(Ω). Then Γ is a C1 functional on W s

0 LA(Ω) with compact derivative.
So, there exists β∗ > 0 such that, for each β ∈ [0, β∗], the equation

Ψ′(x) = λJ ′(x) + βΓ′(x),

has at least three solutions whose norms are less than δ. But the solutions in W s
0 LA(Ω)

of the above equation are exactly the weak solutions of problem (Pa) and thus, the
proof of Theorem 3.1 is completed. □

4. Example

We present in this section an example of functions that satisĄes the conditions of
Theorem 3.1. Let

(4.1) φ(t) = log(1 + ♣t♣)♣t♣p−2t,
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where p ∈ [2, N). Let b > max ¶2, p+♢, a > 0, b ≥ 0 and α ≥ 1 we consider

f(t) =b cos(t) sin(t)♣ sin(t)♣b−2, for all t ∈ R,(4.2)

M(t) =a + btα−1, for all t ≥ 0.(4.3)

So, from (4.1), (4.2) and (4.3), we have

A(t) =
1

p
log(1 + ♣t♣)♣t♣p − 1

p

∫ ♣t♣

0

tp

1 + t
dt, M̂(t) = at +

b

α
tα,(4.4)

F (x, t) =F (t) = ♣ sin(t)♣b.(4.5)

We will next show that all the hypotheses of Theorem 3.1 are satisĄed.
By Example 2 in [21, page 243], it follows that

p+ = p + 1 and p− = p.

On the other hand, we point out that trivial computations imply that

d2A(
√

t)

dt2
=

1

4

[
1

1 + ♣
√

t♣
+ (p − 2) log(1 + ♣

√
t♣)
]

≥ 0,

for all t ∈ R and thus, relations (2.1)Ű(2.2) are satisĄed.
• For each t ∈ R, we claim that f ∈ A. Actually, the inequality

sup
t∈R

♣f(t)♣
1 + ♣t♣q−1

< b < ∞,

holds for any 1 < q < p∗
s and on the other hand, we have

lim
♣t♣→0

♣ sin(t)♣b
♣t♣p+

= 0 and lim
♣t♣→∞

♣ sin(t)♣b
♣t♣p−

= 0.

Select a compact set V ⊂ Ω of positive measure and v ∈ W s
0 LA(Ω) such that v(x) = π

2

in V and 0 ≤ v(x) ≤ π
2

in Ω \ V . We obtain
∫

Ω
♣ sin(v(x)♣bdx = ♣V ♣ +

∫

Ω\V
♣ sin(v(x)♣bdx > 0,

which means that (F1), (F2) and (F3) are veriĄed. Also, for m0 = a the condition
(M1) is satisĄed, we set

θ∗ = inf





aΦ(u) +
b

α
(Φ(u))α

∫

Ω
♣ sin(u(x))♣bdx

: u ∈ W s
0 LA(Ω),

∫

Ω
♣ sin(u(x))♣bdx > 0





.

Then, for a bounded domain Ω in R
N of class C0,1, it follows from Theorem 3.1, that

for each compact interval Λ ⊂ (θ∗, +∞), there exist a number δ > 0 and β∗ > 0 such
that, for every λ ∈ Λ such that for all β ∈ [0, β∗], and all g ∈ A the following problem
{

(a + b(Φ(u))α−1) (−∆)s
logu = λb cos(u) sin(u)♣ sin(u)♣b−2 + βg(x, u), in Ω,

u = 0, in R
N \ Ω,
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where

(−∆)s
logu = 2 p.v

∫

RN
log(1 + ♣Dsu♣)♣Dsu♣p−2Dsudµ

has at least three weak solutions whose norms are less than δ.
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GROWTH ESTIMATE FOR RATIONAL FUNCTIONS WITH

PRESCRIBED POLES AND RESTRICTED ZEROS

N. A. RATHER1, M. SHAFI2, AND ISHFAQ DAR3∗

Abstract. Let Rn be the set of all rational functions of the type r(z) = f(z)/w(z),
where f(z) is a polynomial of degree at most n and w(z) =

∏n

j=1
(z − aj), ♣aj ♣ > 1

for 1 ≤ j ≤ n. In this paper, we extend some famous results concerning to the
growth of polynomials by T. J. Rivlin, A. Aziz and others to the rational functions
with prescribed poles and thereby obtain the analogous results for such rational
functions with restricted zeros.

1. Introduction

Let Pn be the set of all complex polynomials f(z) =
∑n

j=1 ajz
j of degree at most n

and let Dk−
= ¶z : ♣z♣ < k♢, Dk+ = ¶z : ♣z♣ > k♢ and Tk = ¶z : ♣z♣ = k♢.

For aj ∈ C with j = 1, 2, . . . , n, we set

w(z) =
n
∏

j=1

(z − aj), B(z) =
n
∏

j=1

(

1 − ājz

z − aj



and

Rn = Rn(a1, a2, . . . , an) =

{

f(z)

w(z)
: f ∈ Pn

}

.

Then clearly Rn is the space of all rational functions with at most n poles a1, a2, . . . , an

with finite limit at infinity. We note that B(z) ∈ Rn. Throughout this paper, we shall
assume that all the poles a1, a2, . . . , an lie in D1+.

Key words and phrases. Rational functions, polynomial inequalities, growth, zeros.
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For a polynomial f(z) of degree n having no zeros in D1−
, T. J. Rivlin [8] proved

that, for ρ < 1 and z ∈ T1,

♣f(ρz)♣ ≥


ρ + 1

2

n

♣f(z)♣.(1.1)

The result is best possible and equality holds for f(z) = α(z − β)n, ♣β♣ = 1.
A. Aziz [2] generalizes inequality (1.1) and proved that, if f(z) is a polynomial of

degree n having no zeros in Dk−
, then for z ∈ T1,

♣f(ρz)♣ ≥

(

ρ + k

1 + k

n

♣f(z)♣, k ≥ 1 and ρ < 1,(1.2)

and

♣f(ρz)♣ ≥

(

ρ + k

1 + k

n

♣f(z)♣, k ≤ 1 and 0 ≤ ρ ≤ k2.(1.3)

The result is sharp and equality holds for f(z) = (z + k)n.

Analogous to the above inequality, we have a result when 1 < R ≤ k2, k > 1, which
can be found in [7, page 432], which states that if f(z) is a polynomial of degree n

having all its zeros in Dk+ ∪ Tk, where k > 1, then for z ∈ T1 and 1 < R ≤ k2

♣f(Rz)♣ ≤

(

R + k

1 + k

n

♣f(z)♣.(1.4)

The result is sharp and equality holds if and only if f(z) = c(z − keiγ)n for some c ̸= 0
and γ ∈ R.

In literature there exist various results in this direction related to the growth of
polynomials for reference see [1, 3–6].

The main aim of this paper is to obtain certain growth estimates for rational
functions r(z) ∈ Rn having no zero in Dk−

. In this direction we first present an
extension of inequality (1.2) to the rational functions. More precisely, we prove the
following.

Theorem 1.1. Let r ∈ Rn with no zero in Dk−
, where k ≥ 1, then for ρ < 1 and

z ∈ T1,

♣r(ρz)♣ ≥

(

ρ + k

1 + k

n n
∏

j=1

(

♣aj♣ − 1

♣aj♣ + ρ



♣r(z)♣.(1.5)

Remark 1.1. If we take k = 1 in Theorem 1.1, we get the following extension of
inequality (1.1) to the rational functions.

Corollary 1.1. Let r ∈ Rn with no zeros in D1−
, then for ρ < 1 and z ∈ T1,

♣r(ρz)♣ ≥


ρ + 1

2

n n
∏

j=1

(

♣aj♣ − 1

♣aj♣ + ρ



♣r(z)♣.
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Remark 1.2. Taking w(z) = (z − α)n, ♣α♣ > 1, in Theorem 1.1, then inequality (1.5)
reduces to the following inequality

♣f(ρz)♣ ≥

(

ρ + k

1 + k

n (
♣α♣ − 1

♣α♣ + ρ

n ∣
∣

∣

∣

ρz − α

z − α

∣

∣

∣

∣

n

♣f(z)♣.(1.6)

Letting ♣α♣ → ∞ in inequality (1.6), we get inequality (1.2).

Theorem 1.2. Let r ∈ Rn with no zeros in Dk−
, where k ≤ 1, then for 0 ≤ ρ ≤ k2

and z ∈ T1,

♣r(ρz)♣ ≥

(

ρ + k

1 + k

n n
∏

j=1

(

♣aj♣ − 1

♣aj♣ + ρ



♣r(z)♣.(1.7)

Remark 1.3. By taking w(z) = (z − α)n, ♣α♣ > 1, in Theorem 1.2, inequality (1.7)
reduces to the following inequality

♣f(ρz)♣ ≥

(

ρ + k

1 + k

n (
♣α♣ − 1

♣α♣ + ρ

n ∣
∣

∣

∣

ρz − α

z − α

∣

∣

∣

∣

n

♣f(z)♣.(1.8)

Letting ♣α♣ → ∞ in inequality (1.8), we get inequality (1.3).

Theorem 1.3. Let r ∈ Rn with no zeros in Dk−
, where k > 1, then for 1 < R ≤ k2

and z ∈ T1,

♣r(Rz)♣ ≤

(

R + k

1 + k

n n
∏

j=1





♣aj♣ + 1
∣

∣

∣♣aj♣ − R
∣

∣

∣



 ♣r(z)♣.(1.9)

Remark 1.4. Taking w(z) = (z −α)n, ♣α♣ > 1, in Theorem 1.3, inequality (1.9) reduces
to the following inequality

♣f(Rz)♣ ≤

(

R + k

1 + k

n




♣α♣ + 1
∣

∣

∣♣α♣ − R
∣

∣

∣





n
∣

∣

∣

∣

Rz − α

z − α

∣

∣

∣

∣

n

♣f(z)♣.(1.10)

Letting ♣α♣ → ∞ in inequality (1.10), we obtain inequality (1.4).

2. Proofs of the Theorems

Proof of Theorem 1.1. By hypothesis r ∈ Rn, therefore we have r(z) = f(z)
w(z)

, where

w(z) =
∏n

j=1(z − aj), ♣aj♣ > 1. Since all the zeros of f(z) lie in Dk+ ∪ Tk, k ≥ 1,

therefore if zj = ρje
iθj , 0 ≤ θ < 2π, 1 ≤ j ≤ n, are the zeros of f(z), then we write

f(z) = c
∏n

j=1(z − ρje
iθj ), where ρj ≥ k ≥ 1, j = 1, 2, . . . , n. Hence, for ρ < 1 and
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0 ≤ θ < 2π, we have
∣

∣

∣

∣

∣

r(ρeiθ)

r(eiθ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f(ρeiθ)

w(ρeiθ)

∣

∣

∣

∣

∣

/∣

∣

∣

∣

∣

f(eiθ)

w(eiθ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f(ρeiθ)

f(eiθ)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

w(eiθ)

w(ρeiθ)

∣

∣

∣

∣

∣

=
n
∏

j=1

∣

∣

∣

∣

∣

ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣

∣

∣

∣

∣

n
∏

j=1

∣

∣

∣

∣

∣

eiθ − aj

ρeiθ − aj

∣

∣

∣

∣

∣

.(2.1)

Now,

n
∏

j=1

∣

∣

∣

∣

∣

ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣

∣

∣

∣

∣

=
n
∏

j=1

∣

∣

∣

∣

∣

ρei(θ−θj) − ρj

ei(θ−θj) − ρj

∣

∣

∣

∣

∣

=
n
∏

j=1

(

ρ2 + ρ2
j − 2ρρj cos(θ − θj)

1 + ρ2
j − 2ρj cos(θ − θj)

1/2

≥
n
∏

j=1

ρ + ρj

1 + ρj

(as ρ < 1)

≥
n
∏

j=1

ρ + k

1 + k
(as ρj ≥ k)

=

(

ρ + k

1 + k

n

.(2.2)

Also for ♣aj♣ > 1, j = 1, 2, . . . , n, we have

n
∏

j=1

∣

∣

∣

∣

∣

eiθ − aj

ρeiθ − aj

∣

∣

∣

∣

∣

≥
n
∏

j=1

♣aj♣ − 1

♣aj♣ + ρ
.(2.3)

Using inequalities (2.2) and (2.3) in equation (2.1), we obtain for 0 ≤ θ < 2π
∣

∣

∣

∣

∣

r(ρeiθ)

r(eiθ)

∣

∣

∣

∣

∣

≥

(

ρ + k

1 + k

n n
∏

j=1

(

♣aj♣ − 1

♣aj♣ + ρ



.

That is, for z ∈ T1 and ρ < 1, we have

♣r(ρz)♣ ≥

(

ρ + k

1 + k

n n
∏

j=1

(

♣aj♣ − 1

♣aj♣ + ρ

]

♣r(z)♣.

This completes the proof of Theorem 1.1. □

Proof of Theorem 1.2. By hypothesis r ∈ Rn, therefore we have r(z) = f(z)
w(z)

, where

w(z) =
∏n

j=1(z − aj), ♣aj♣ > 1. Since all the zeros of f(z) lie in Dk+ ∪ Tk, k ≤ 1,

therefore if zj = ρje
iθj , 0 ≤ θ < 2π, 1 ≤ j ≤ n, are the zeros of f(z), then we write
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f(z) = c
∏n

j=1(z − ρje
iθj ), where ρj ≥ k, k ≤ 1, j = 1, 2, . . . , n. Hence, for 0 ≤ ρ ≤ k2

and 0 ≤ θ < 2π, we have

∣

∣

∣

∣

∣

r(ρeiθ)

r(eiθ)

∣

∣

∣

∣

∣

=
n
∏

j=1

∣

∣

∣

∣

∣

ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣

∣

∣

∣

∣

n
∏

j=1

∣

∣

∣

∣

∣

eiθ − aj

ρeiθ − aj

∣

∣

∣

∣

∣

.(2.4)

Now,

n
∏

j=1

∣

∣

∣

∣

∣

ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣

∣

∣

∣

∣

=
n
∏

j=1

∣

∣

∣

∣

∣

ρei(θ−θj) − ρj

ei(θ−θj) − ρj

∣

∣

∣

∣

∣

=
n
∏

j=1

(

ρ2 + ρ2
j − 2ρρj cos(θ − θj)

1 + ρ2
j − 2ρj cos(θ − θj)

1/2

≥
n
∏

j=1

ρ + ρj

1 + ρj

(as 0 ≤ ρ ≤ k2)

≥
n
∏

j=1

ρ + k

1 + k
(as ρj ≥ k)

=

(

ρ + k

1 + k

n

.(2.5)

Again as before, for ♣aj♣ > 1, we have

n
∏

j=1

∣

∣

∣

∣

∣

eiθ − aj

ρeiθ − aj

∣

∣

∣

∣

∣

≥
n
∏

j=1

♣aj♣ − 1

♣aj♣ + ρ
.(2.6)

Using inequalities (2.5) and (2.6) in equation (2.4), we have for z ∈ T1 and 0 ≤ ρ ≤ k2,

♣r(ρz)♣ ≥

(

ρ + k

1 + k

n n
∏

j=1

(

♣aj♣ − 1

♣aj♣ + ρ

]

♣r(z)♣,

which is the desired result. □

Proof of Theorem 1.3. Since all the zeros of r(z) lie in Dk+ ∪ Tk, where k > 1,

therefore it follows that all the zeros of polynomial f(z) lie in Dk+∪Tk, k > 1, therefore
if zj = ρje

iθj , 1 ≤ j ≤ n, are the zeros of f(z), then we write f(z) = c
∏n

j=1(z −ρje
iθj ),

where ρj ≥ k > 1, j = 1, 2, . . . , n. Hence, for 1 < R ≤ k2 and 0 ≤ θ < 2π, we have

∣

∣

∣

∣

∣

r(Reiθ)

r(eiθ)

∣

∣

∣

∣

∣

=
n
∏

j=1

∣

∣

∣

∣

∣

Reiθ − ρje
iθj

eiθ − ρjeiθj

∣

∣

∣

∣

∣

n
∏

j=1

∣

∣

∣

∣

∣

eiθ − aj

Reiθ − aj

∣

∣

∣

∣

∣

.(2.7)
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Now,

n
∏

j=1

∣

∣

∣

∣

∣

Reiθ − ρje
iθj

eiθ − ρjeiθj

∣

∣

∣

∣

∣

=
n
∏

j=1

∣

∣

∣

∣

∣

Rei(θ−θj) − ρj

ei(θ−θj) − ρj

∣

∣

∣

∣

∣

=
n
∏

j=1

(

R2 + ρ2
j − 2Rρj cos(θ − θj)

1 + ρ2
j − 2ρj cos(θ − θj)

1/2

≤
n
∏

j=1

R + ρj

1 + ρj

(as 1 < R ≤ k2)

≤
n
∏

j=1

R + k

1 + k
(as ρj ≥ k)

=

(

R + k

1 + k

n

.(2.8)

Also for ♣aj♣ > 1, j = 1, 2, . . . , n, we have

n
∏

j=1

∣

∣

∣

∣

∣

eiθ − aj

Reiθ − aj

∣

∣

∣

∣

∣

≤
n
∏

j=1

1 + ♣aj♣

♣R − ♣aj♣♣
.(2.9)

Using inequalities (2.8) and (2.9) in equation (2.7), we obtain for 0 ≤ θ < 2π,
∣

∣

∣

∣

∣

r(Reiθ)

r(eiθ)

∣

∣

∣

∣

∣

≤

(

R + k

1 + k

n n
∏

j=1

(

♣aj♣ + 1

♣R − ♣aj♣♣



.

That is, for z ∈ T1 and 1 < R ≤ k2, we have

♣r(Rz)♣ ≤

(

R + k

1 + k

n n
∏

j=1

(

♣aj♣ + 1

♣R − ♣aj♣♣

]

♣r(z)♣.

That completes the proof of Theorem 1.3. □
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RELATION BETWEEN CONVERGENCE AND ALMOST

CONVERGENCE OF COMPLEX UNCERTAIN SEQUENCES

BIROJIT DAS1, BABY BHATTACHARYA1, AND BINOD CHANDRA TRIPATHY2

Abstract. In this paper, we introduce a new type of almost convergent complex
uncertain sequence with respect to uniformly almost surely. We characterize the
notion of almost convergence of sequences of complex uncertain variables further.
We establish the interconnection between convergent complex uncertain sequence,
bounded complex uncertain sequence and almost convergent complex uncertain
sequence in all five aspects of uncertainty.

1. Introduction and Preliminaries

In the real world, often we face various types of indeterminacy. Frequency gener-
ated by samples plays important role in the study to deal with those indeterminate
situations. Probability theory is an efficient tool to study the frequency. However,
sometimes it is difficult to collect observed data when some unexpected events occur.
In this case, decision maker have to invite experts to estimate the belief degree of each
events occurrence. For dealing with belief degree legitimately, an axiomatic system
named uncertainty theory satisfied normality, duality, and subadditivity was proposed
by Liu [9]. As a fundamental concept in uncertainty theory, the uncertain variable was
presented by Liu [9]. In order to describe an uncertain variable, Liu [9] introduced the
concepts of uncertain measure, uncertain distribution and expected value of uncertain
variable. The uncertain measure follows the axioms of normality, duality, subadditiv-
ity and product. In the year 2007, the notion of uncertain sequences and their four

Key words and phrases. uncertainty space, complex uncertain sequence, almost convergence,
convergence.
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types of convergences, namely convergence in mean, measure, distribution, almost
surely was introduced by Liu [9]. Then the same was extended by You [12] while he
introduced a new type of convergent uncertain sequence with respect to uniformly
almost surely. Thereafter, to describe the complex uncertain quantities, the notions
of uncertain variable and uncertain distribution are presented by Peng [10] in that
direction. Chen et al. [1] explored the work considering the sequence of complex un-
certain variables due to Peng [10]. They reported five types of convergence concepts of
uncertain sequences in complex environment by establishing interrelationships among
them. Since its initiation, the study of complex uncertain sequences got the full at-
tention of the researchers. These convergence concept of complex uncertain sequence
has also been generalised by Datta and Tripathy [8], Das et al. [2–7]. Recently, Saha
et al. [11] introduced the concept almost convergent complex uncertain sequence in
a given uncertainty space. They have initiated almost convergence in four directions
of uncertainty, namely almost convergence in mean, in measure, in distribution and
in almost surely. Also, they established the interrelationships between each types of
almost convergences upto some extent. In this article, at first we extend the study by
introducing the fifth direction of uncertainty, i.e., almost convergent complex uncer-
tain sequence with respect to uniformly almost surely. We show that every almost
convergent complex uncertain sequence with respect to uniformly almost surely is
almost convergent in almost surely. We further establish the interconnection between
almost convergent, bounded and convergent sequences of complex uncertain variable.

We now present few concepts and related results in the following, which will be
playing an important role in the whole study.

Definition 1.1 ([12]). Let us consider an uncertainty space (Γ,L,M). Then a
function ζ from Γ to the set of complex numbers which is measurable in the aspect
of uncertainty is called a complex uncertain variable.

Definition 1.2 ([10]). Let us consider a sequence (ζn) of complex uncertain variables.
Then (ζn) is said to be almost convergent to ζ in almost surely if there is such an
uncertain event Λ with unit uncertain measure that

lim
m→∞

♣♣un,m(γ) − ζ(γ)♣♣ = 0,

uniformly in n and for all γ ∈ Λ, where un,m = 1
m

∑m
i=1 ζn+i−1.

Definition 1.3 ([10]). A sequence (ζn) of complex uncertain variables is called almost
convergent in respect of measure to some finite limit ζ if the following condition is
satisfied: for all positive integer n and a positive real ε

lim
m→∞

M¶♣♣un,m − ζ♣♣ ≥ ε♢ = 0, where un,m =
1

m

m
∑

i=1

ζn+i−1.
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Definition 1.4 ([10]). Let us consider a sequence (ζn) of complex uncertain variables.
The sequence is said to be almost convergent in respect of mean to a finite ζ if

lim
l→∞

E[♣♣tn,l − ζ♣♣] = 0, where tn,l =
1

l

l
∑

i=1

ζn+i−1.

Here n runs uniformly over N.

Definition 1.5 ([10]). Let us consider infinite numbers of complex uncertain variables
given by ξ, ξ1, ξ2, . . . , and suppose Φ, Φ1,m, Φ2,m, . . . , are the distribution functions

in respect of the complex uncertain variables ξ, ξ1+ξ2+···+ξm

m
, ξ2+ξ3+···+ξm+1

m
, . . . , respec-

tively. Then the sequence (ξn) is said to be almost convergent to ξ in respect of
distribution if

lim
m→∞

Φn,m(c) = Φ(c),

for all n ∈ N, c being the complex point of continuity of the function Φ.

Theorem 1.1 ([10]). If the real and imaginary part (ξn) and (ηn) of a sequence (ζn)
almost converges to the finite limits ξ and η respectively with respect to measure, then

(ζn) = (ξn + iηn) almost converges in distribution to ξ + iη.

Theorem 1.2 ([10]). If (ζn) is an almost convergent sequence of complex uncertain

variables in mean to some finite limit ζ, then it almost converges in respect of measure

by preserving the limit.

2. Main Results

At first our intend is to define almost convergent sequence of complex uncertain
variables with respect to uniformly almost surely. We show existence of such sequence
and establish the interrelationship with the almost convergent complex uncertain
sequence in almost surely. Then, we initiate boundedness property of sequences
of complex uncertain variables and prove the interconnection between convergent,
bounded and almost convergent sequences of complex uncertain variables in all five
aspects of uncertainty.

Definition 2.1. A complex uncertain sequence (ζn) is called almost convergent to a
finite limit ζ in uniformly almost surely if there exists events ¶Ex♢ with M¶Ex♢ → 0
such that (ζn) almost converges to the same ζ uniformly in the domain Γ − Ex, where
x ∈ N, i.e.,

lim
p→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

for all γ ∈ Γ − Ex and uniformly for all n.

Example 2.1. Let Γ = ¶γ1, γ2, . . . ♢ be an infinite set of uncertain events and L be the
power set of Γ. Then L becomes σ-algebra on Γ.
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Let the measurable set function M be defined as follows

M¶β♢ =
∑

γj∈β

1

2j
.

Obviously,
∑

γj∈β

1
2j is unity and M holds the other axioms of uncertain measure. So M

becomes uncertain measure and thus, (Γ,L,M) is an uncertainty space.
Now, for a given ε > 0 (however small) exists p ∈ N such that 1

2p < ε.
Let (ζn) be a complex uncertain sequence, where the complex uncertain variable ζn

is given by

ζn(γ) =

{

1
2
i, if n ≥ p,

0, otherwise,

for all γ ∈ Γ. Also, let ζ be the complex uncertain variable such that ζ(γ) = 0 for all

γ ∈ Γ. We have, ♣♣ζn(γ)−ζ(γ)♣♣ =
∣

∣

∣

∣

∣

∣

1
2
i
∣

∣

∣

∣

∣

∣ = 1
2
, whenever n > N and ♣♣ζn(γ)−ζ(γ)♣♣ = 0,

for the remaining cases. Moreover, M¶γj♢ → 0, as j > p. Then, from the above, one
can see that (ζn(γ)) almost converges uniformly to ζ(γ) = 0, for all γ ∈ Γ − γj, j > p.
Hence, (ζn) is almost convergent to ζ in uniformly almost surely.

The following theorem is due to Saha et al. [10].

Theorem 2.1 ([10]). Suppose (ζn) = (ξn + iηn) be a complex uncertain sequence. If

the real uncertain sequences (ξn) and (ηn) almost converges to ξ and η respectively in

respect of measure, then (ζn) is almost convergent to ξ + iη in the same direction.

We now establish the converse part of the same in the same context. This one result
produces few more interrelationships between the other almost convergence concepts.

Theorem 2.2. If a complex uncertain sequence (ζn), which is given by ζn = ξn + iηn,

almost converges in measure to the finite limit ξ + iη, then the real part (ξn) and

imaginary part (ηn) also almost converges to ξ and η in measure.

Proof. Let (ζn), where ζn = ξn + iηn is almost convergent to ζ = ξ + iη in measure.
Then, for any δ > 0, we have

M







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ







→ 0, as n → ∞

⇒M







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

(ξn+k + iηn+k) − (ξ + iη)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ







→ 0, as n → ∞

⇒M







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

(ξn+k − ξ) + i
1

p

p−1
∑

k=0

(ηn+k − η)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ







→ 0, as n → ∞.

This implies that there exists 0 < δ
′

< δ
2

such that

M







γ :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ξn+k(γ) − ξ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ
′







→ 0, as n → ∞,
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and

M







γ :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ηn+k(γ) − η(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ
′







→ 0, as n → ∞.

Evidently, the uncertain sequences (ξn) and (ηn) are almost convergent in measure
to ξ and η. □

In view of the above Theorem 2.2 and Theorem 1.1, we can deduce the following
result.

Corollary 2.1. Almost convergence in measure implies almost convergence in distri-

bution.

From Theorem 1.2 and Corollary 2.1, we can give the following.

Corollary 2.2. An almost convergent sequence in mean almost converges with respect

of distribution therein.

Remark 2.1. The notion of almost convergence in almost surely and almost convergence
in measure are the concepts no way related.

In the following two examples, we demonstrates the validity of the statement.

Example 2.2. We consider the space (Γ,L,M), with Γ = ¶γ1, γ2, γ3, γ4♢ and L = P (Γ).
Define M as follows:

M¶∆♢ =



























0, if ∆ = ϕ,

1, if ∆ = Γ,

0.6, if γ1 ∈ ∆,

0.4, if γ1 /∈ ∆.

We define ζn and ζ as follows:

ζn(α) =







































i, if α = γ1,

2i, if α = γ2,

3i, if α = γ3,

4i, if α = γ4,

0, otherwise,

for n ∈ N and ζ(γ) = 0 for all γ ∈ Γ.
Observe that ζn → ζ, except only for γ = γ1, γ2, γ3, γ4 and so (ζn) is almost

convergent to ζ in almost surely. However, for some δ > 0, we have

M¶♣♣ζn − ζ♣♣ ≥ δ♢ = M¶γ : ♣♣ζn(γ) − ζ(γ)♣♣ ≥ δ♢ = M¶γ1, γ2, γ3, γ4♢ = M¶Γ♢ = 1.

Consequently, the complex uncertain sequence (ζn) is not almost convergent in mea-
sure.
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Example 2.3. Let us consider the space (Γ,L,M), with Γ = [0, 1], L = P [0, 1]. Here
the uncertain measure is the Lebesgue measure.

Suppose ζn and ζ be given by

ζn(α) =

{

i, if p

2t ≤ α ≤ 1+p

2t ,
0, elsewhere,

and ζ(α) = 0 for all γ ∈ Γ, n = 2t + p ∈ N, where p, t are integers. Then,

M







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ







=M







γ :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ







=
1 + p

2t
−

p

2t
=

1

2t

and hence,

lim
n→∞

M

{

γ :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
p

p−1
∑

k=0
ζn+k(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ

}

= lim
t→∞

1
2t = 0.

Thus, the complex uncertain sequence (ζn) almost converges to ζ in measure.
On the other hand, let γ ∈ [0, 1]. Then, there are intervals of the form [ p

2t ,
p+1
2t ]

containing γ, for different values of p. Therefore, (ζn) does not converges to ζ in
almost surely and hence (ζn) is not almost convergent to ζ in almost surely.

Remark 2.2. An almost convergent complex uncertain sequence in almost surely may
not be almost convergent in distribution. The following example satisfies the same.

Example 2.4. Consider the uncertainty space and sequence taken in example 2.2.
Let Φn(z) and Φ(z) be the uncertainty distribution functions of ζn and ζ, respectively.
Then

Φn(z) = Φn(p + iq) =















































0, if p < 0, q ∈ (−∞, ∞),

0, if p ≥ 0, q < 1,

0.6, if p ≥ 0, 1 ≤ q < 2,

0.6, if p ≥ 0, 2 ≤ q < 3,

0.6, if p ≥ 0, 3 ≤ q < 4,

1, if p ≥ 0, q ≥ 4,

and

Φ(z = p + iq) =















0, if p < 0, q ∈ (−∞, ∞),

0, if p ≥ 0, q < 0,

1, if p ≥ 0, q ≥ 0.

Thus, (ζn) is not almost convergent in distribution to ζ.

Remark 2.3. An almost convergent complex uncertain sequence in mean may not be
almost convergent in almost surely.
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Example 2.5. From the Example 2.3,

E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



 =
1

2t
,

which tends to 0, as n → ∞. Then, the sequence almost converges to ζ in mean also.
But it was already proved that (ζn) is not almost convergent in almost surely.

Remark 2.4. A sequence (ζn) which is almost convergent in almost surely may not be
almost convergent in mean. Explanation is provided in the following example.

Example 2.6. Consider the space (Γ,L,M) with Γ = ¶γ1, γ2, γ3, . . . ♢, L = P (Γ) and

M¶Λ♢ =
∑

γj∈Λ

2

3
·

1

3(j−1)
.

Define ζn and ζ respectively by

ζn(α) =

{

3ni, if α = γn,
0, elsewhere,

for n ∈ N and ζ ≡ 0.
One can easily observe that the sequence (ζn) almost converges to ζ in almost

surely.
Now, for the uncertain variable ♣♣ζn♣♣, its uncertainty distribution function is given

by

Φn(p) =











0, if p < 0,
1 − 1

3n , if 0 ≤ p < 3n,
1, elsewhere,

for n ∈ N.

Now, integration to the above distribution function for expected value gives us

E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



 = 1.

Therefore, the complex uncertain sequence (ζn) is not almost convergent in mean to ζ.

Theorem 2.3. The sequence (ζn) is almost convergent in almost surely to ζ if and

only if for any ε > 0 exists N ∈ N in such a way that

M







∞
⋂

N=1

∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ ε













= 0.

Proof. The definition of almost convergence in almost surely leads us to the existence
of such uncertain event ∆ with M¶∆♢ = 1, such that

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

r=0

ζn+r(α) − ζ(α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, for all α ∈ ∆.
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Let ε be a preassigned positive number. Then, there exists N ∈ N such that for any
α ∈ ∆, we have

M







∞
⋂

N=1

∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x(α) − ζ(α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ε













= 1,

where n > N.
Applying the duality axiom of uncertain measure to the above, we get

M







∞
⋂

N=1

∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x(α) − ζ(α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ ε













= 0, for all α ∈ ∆.

Hence, the theorem is proved. □

Theorem 2.4. The necessary and sufficient condition for a complex uncertain se-

quence (ζn) to almost converges in uniformly almost surely to ζ is that for any ε > 0,

there exist δ > 0 and N ∈ N such that

M







∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ













< ε.

Proof. Let the sequence (ζn) of complex uncertain variable almost converges to ζ in
uniformly almost surely. Then for ε > 0, there exists δ > 0 and an event B with
measure less than ν, ν → 0+, such that the sequence (ζn) converges uniformly to ζ
on Γ − B. That means, there exists n0 ∈ N so that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ε, for all n ≥ n0 and all γ ∈ Γ − B.

Also, ν < ε. Thus, we have

∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ







⊆ B.

Applying the subadditivity axiom of uncertain measure, we get

M







∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ













≤ M¶B♢ < ν < ε.

Conversely, let

M







∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ













< ε.

We take δ > 0. Then for any ν > 0, a ≥ 1, there exists a positive integer as such that

M







∞
⋃

n=as







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥
1

a













<
ν

2a
.
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Consider B =
∞
⋃

a=1

∞
⋃

n=as

{∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
p

p−1
∑

x=0
ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ 1
a

}

. Then

M¶B♢ ≤
∞

∑

a=1

M







∞
⋃

n=as







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥
1

a













≤
∞

∑

a=1

ν

2a
= ν.

Moreover, supγ∈Γ−B
1
p

p−1
∑

x=0
♣♣ζn+x(γ) − ζ(γ)♣♣ < 1

n
, where m = 1, 2, 3, . . . , and n > as.

Therefore, the result is established. □

Theorem 2.5. Let the sequence (ζn) be almost convergent in uniformly almost surely

to ζ. Then, the sequence (ζn) is almost convergent in almost surely to ζ.

Proof. Taking Theorem 2.3 into consideration, we have if the complex uncertain
sequence (ζn) almost converges to ζ in uniformly almost surely, then

M

{

∞
⋃

n=N

{
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
p

p−1
∑

x=0
ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ

}}

< ε.

Now, since

M







∞
⋂

N=1

∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ













≤ M







∞
⋃

n=N







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ













< ε,

hence, (ζn) almost converges in almost surely to ζ. □

Theorem 2.6. A complex uncertain sequence (ζn), which almost converges with respect

to uniformly almost surely to ζ is also almost convergent in measure therein.

Proof. Let (ζn) be almost convergent in uniformly almost surely to ζ. Then, for ε > 0
and δ > 0 there exists n0 ∈ N so that

M







∞
⋃

n=n0







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ













< ε, for all n ≥ n0.

Then

M







γ :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

pq

p−1
∑

x=0

q−1
∑

y=0

ζm+x,n+y(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ







≤M







∞
⋃

n=n0







γ :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ













< ε.

Hence, the sequence (ζn) almost converges in measure to ζ. □

Theorem 2.7. Almost convergence in uniformly almost surely of a complex uncertain

sequence implies its almost convergence in distribution with preservation of limit.

Proof. It is straightforward from the Theorem 2.6 and Corollary 2.1. □
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Remark 2.5. From the above discussion, a more complete version of interrelationships
between different almost convergence in an uncertainty space can be depicted in the
Figure 1 given in the top of the following page.

Figure 1. Interrelationships among five types of almost convergence

Saha et al. in [10] stated that in a given uncertainty space every convergent complex
uncertain sequence is almost convergent to the same limit therein. The statement
holds true for all the four aspects (in mean, measure, almost surely, distribution)
introduced in [10] and in the fifth direction of uncertainty in uniformly almost surely,
also. In this context, we give the detailed proof of the same below.

Theorem 2.8. A convergent complex uncertain sequence which converges in uniformly

almost surely to a finite limit, is also almost convergent to the same limit therein.

Proof. Let (Γ,L,M) be an uncertainty space and (ζn) be a complex uncertain sequence
which converges to ζ in uniformly almost surely. That means for any given ε > 0
there exist n0 ∈ N and a sequence (Ex) of uncertain events with uncertain measure
of each of the events tending to zero such that

♣♣ζn(γ) − ζ(γ)♣♣ < ε, for all n ≥ n0.

Now, for every positive integer p, n ≥ n0, γ ∈ Γ − Ex and any ε > 0, we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn(γ) + ζn+1(γ) + · · · + ζn+p−1(γ)

p
− ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn(γ) + ζn+1(γ) + · · · + ζn+p−1(γ) − pζ(γ)

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

¶ζn(γ) − ζ(γ)♢ + ¶ζn+1(γ) − ζ(γ)♢ + · · · + ¶ζn+p−1(γ) − ζ(γ)♢

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

{

♣♣ζn(γ) − ζ(γ)♣♣

p
+

♣♣ζn+1(γ) − ζ(γ)♣♣

p
+ · · · +

♣♣ζn+p−1(γ) − ζ(γ)♣♣

p

}

<
ε

p
+

ε

p
+ · · · +

ε

p
=

pε

p
= ε,

uniformly for all n.
Since ε is chosen arbitrary, the obvious conclusion is that

lim
p→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k(γ) − ζ(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Hence, (ζn) is an almost convergent complex uncertain sequence in uniformly almost
surely to ζ. □

Remark 2.6. In the above theorem if we replace the sub-collection Γ−Ex, by Λ, which
is a subset of Γ with M¶Λ♢ = 1, then we can easily prove that every convergent almost
surely complex uncertain sequence is almost convergent in the same direction.

Theorem 2.9. A convergent complex uncertain sequence in mean almost converges

in the same aspect. Also, limits of the both cases are identical.

Proof. Suppose (ζn) converges to ζ in mean. Then limn→∞ E[♣♣ζn − ζ♣♣] = 0. This
implies, for a preassigned ε > 0 there exists n0 ∈ N such that

(2.1) E[♣♣ζn − ζ♣♣] < ε, for all n ≥ n0.

Suppose p ∈ N be given. Then
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn + ζn+1 + · · · + ζn+p−1

p
− ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn + ζn+1 + · · · + ζn+p−1 − pζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

¶ζn − ζ♢ + ¶ζn+1 − ζ♢ + · · · + ¶ζn+p−1 − ζ♢

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn − ζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn+1 − ζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn+p−1 − ζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Applying the expected value operator to both sides, we get for any n ≥ n0

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

¶ζn − ζ♢ + ¶ζn+1 − ζ♢ + · · · + ¶ζn+p−1 − ζ♢

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

]
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≤
1

p
E [♣♣ζn − ζ♣♣ + ♣♣ζn+1 − ζ♣♣ + · · · + ♣♣ζn+p−1 − ζ♣♣]

=
1

p
¶E[♣♣ζn − ζ♣♣] + E[♣♣ζn+1 − ζ♣♣] + · · · + E[♣♣ζn+p−1 − ζ♣♣]♢

<
1

p
(ε + ε + · · · + ε) =

pε

p
= ε.

Consequently, (ζn) is an almost convergent complex uncertain sequence in mean
to ζ. □

Remark 2.7. Using the complex uncertainty distribution operator, instead of expected
value operator in the above Theorem 2.9, one can verify that convergence in distribu-
tion of a complex uncertain sequence implies its almost convergence.

Theorem 2.10. For a complex uncertain sequence

convergence in measure ⇒ almost convergence in measure.

Proof. Let (ζn) converges to ζ in measure. Then for any given ε > 0

lim
n→∞

M¶♣♣ζn − ζ♣♣ > ε♢ = 0.

Then for any p ∈ N

M







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε







=M

{
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn + ζn+1 + · · · + ζn+p−1

p
− ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε

}

=M

{∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn + ζn+1 + · · · + ζn+p−1 − pζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε

}

=M

{∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

¶ζn − ζ♢ + ¶ζn+1 − ζ♢ + · · · + ¶ζn+p−1 − ζ♢

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε

}

≤M

{
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn − ζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε′

}

+ M

{
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn+1 − ζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε′

}

+ · · · + M

{
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζn+p−1 − ζ

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε′

}

=M¶♣♣ζn − ζ♣♣ > pε′♢ + M¶♣♣ζn+1 − ζ♣♣ > pε′♢ + · · · + M¶∥ζn+p−1 − ζ♣♣ > pε′♢,

for some ε′ < ε
p
. Taking limiting case of n ≥ n0 to infinity, we get

lim
n→∞

M







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

ζn+k − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ε







= 0.

Consequently, (ζn) is an almost convergent complex uncertain sequence in measure to
ζ. □

Theorem 2.11. If a complex uncertain sequence (ζn) is almost convergent in mean

then (ζn) is bounded in mean also.
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Proof. Since (ζn) converges to ζ in mean for every ε > 0, there exists n0 ∈ N such
that

E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

p−1
∑

x=0

ζn+x − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



 < ε, for all p > n0 and uniformly for all n ∈ N

⇒E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p

n+p−1
∑

k=n

ζk − ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



 < ε, for all p > n0 and uniformly for all n ∈ N.

This holds valid for p = p + 1 and so E
[∣

∣

∣

∣

∣

∣

∑n+p−1
k=n ζk

∣

∣

∣

∣

∣

∣

]

is finite. Thus, there exists a

finite real number M such that

E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+p−1
∑

k=n

ζk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



 ≤
M

2
.

The above inequality can be established if we take p = p + 1 and q = q + 1. Now,

E[♣♣ζn♣♣] = E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+p
∑

k=n

ζk −
n+p
∑

k=n+1

ζk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



 ≤ E


∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+p
∑

k=n

ζk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

]

+E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+p
∑

k=n+1

ζk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



 ≤
M

2
+

M

2
= M.

Therefore, supn E[♣♣ζn♣♣] ≤ M and hence the complex uncertain sequence is bounded
in mean. □

Remark 2.8. The above theorem holds good for the remaining cases of uncertainty.
That is, almost convergence of complex uncertain sequences implies its boundedness
in measure, distribution, almost surely and uniformly almost surely too.
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