ACENTRALIZERS OF SOME FINITE GROUPS

ZAHRA MOZAFAR ${ }^{1}$ AND BIJAN TAERI ${ }^{1}$

Abstract

Let G be a finite group. The acentralizer of an automorphism α of G, is the subgroup of fixed points of α, i.e., $C_{G}(\alpha)=\{g \in G \mid \alpha(g)=g\}$. In this paper we determine the acentralizers of the dihedral group of order $2 n$, the dicyclic group of order $4 n$ and the symmetric group on n letters. As a result we see that if $n \geq 3$, then the number of acentralizers of the dihedral group and the dicyclic group of order $4 n$ are equal. Also we determine the acentralizers of groups of orders $p q$ and $p q r$, where p, q and r are distinct primes.

1. Introduction

Throughout this article, the usual notation will be used [17]. For example \mathbb{Z}_{n} denotes the cyclic group of integers modulo n, \mathbb{Z}_{n}^{*} denotes the group of invertible elements of \mathbb{Z}_{n}. The dihedral group of order $2 n$ and the dicyclic group of order $4 n$ are denoted by D_{n}, and Q_{n}, respectively. The symmetric group on a finite set of n symbols is denoted by S_{n}, or $\operatorname{Sym}(X)$, where $|X|=n$. The symbol $G=X \ltimes Y$ (or $G=Y \rtimes X$) indicates that G is a split extension (semidirect product) of a normal subgroup Y of G by a complement X.

Let G be a finite group. We write $\operatorname{Cent}(G)=\left\{C_{G}(g) \mid g \in G\right\}$, where $C_{G}(g)$ is the centralizer of the element g in G. The group G is called n-centralizer if $|\operatorname{Cent}(G)|=n$. There are some results on finite n-centralizers groups (see for instance $[1-8,12,18]$). Let $\operatorname{Aut}(G)$ be the group of automorphisms of G. If $\alpha \in \operatorname{Aut}(G)$, then the acentralizer of α in G is defined as

$$
C_{G}(\alpha)=\{g \in G \mid \alpha(g)=g\},
$$

[^0]which is a subgroup of G. In particular if $\alpha=\tau_{a}$ is an inner automorphisms of G induced by $a \in G$, then $C_{G}\left(\tau_{a}\right)=C_{G}(a)$ is the centralizer of a in G. Let Acent (G) be the set of acentralizers of G, that is
$$
\operatorname{Acent}(G)=\left\{C_{G}(\alpha) \mid \alpha \in \operatorname{Aut}(G)\right\}
$$

A group G is called n-acentralizer, if $|\operatorname{Acent}(G)|=n$. It is obvious that G is 1 acentralizer group if and only if G is a trivial group or \mathbb{Z}_{2}. Nasrabadi and Gholamian [14] proved that G is a 2-acentralizer group if and only if $G \cong \mathbb{Z}_{4}, \mathbb{Z}_{p}$ or $\mathbb{Z}_{2 p}$, for some odd prime p. Furthermore, they characterized $3,4,5$-acentralizer groups. Seifizadeh et al. [16] characterized n-acentralizer groups, where $n \in\{6,7,8\}$, and obtained a lower bound on the number of acentralizer subgroups for p-groups, where p is a prime number. They showed that if $p \neq 2$, there is no n-acentralizer p-group for $n=6,7$. Moreover, if $p=2$, then there is no 6 -acentralizer p-group. In [13] we showed that if G is a finite abelian p-group of rank 2 , where p is an odd prime, then the number of acentralizers of G is exactly the number of subgroups of G. Also we obtained acentralizers of infinite two-generator abelian groups.

Throughout the paper we use the presentations of the dihedral group of order $2 n$, D_{n}, and the dicyclic group of order $4 n, Q_{n}$, as follows

$$
\begin{aligned}
& D_{n}=\left\langle a, b \mid a^{n}=b^{2}=1, b a b^{-1}=a^{-1}\right\rangle=\langle b\rangle \ltimes\langle a\rangle, \\
& Q_{n}=\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b a b^{-1}=a^{-1}\right\rangle=\langle b\rangle \ltimes\langle a\rangle .
\end{aligned}
$$

We note that if n is a power of 2 , then Q_{n} is the generalized quaternion group. Computing the number of centralizers of finite group have been the object of some papers. For instance Ashrafi $[2,3]$ showed that $\left|\operatorname{Cent}\left(Q_{n}\right)\right|=n+2$ and

$$
\left|\operatorname{Cent}\left(D_{n}\right)\right|= \begin{cases}n+2, & n \text { is odd } \\ \frac{n}{2}+2, & n \text { is even }\end{cases}
$$

In this paper we compute $\left|\operatorname{Acent}\left(D_{n}\right)\right|,\left|\operatorname{Acent}\left(Q_{n}\right)\right|,\left|\operatorname{Acent}\left(S_{n}\right)\right|$ and the number of acentralizers of groups of order $p q r$, where p, q and r are distinct primes.

2. Acentralizers of Dihedral and Dicyclic Groups

Recall that the dihedral group D_{n} have two type subgroups for $n>3,\left\langle a^{d}\right\rangle$ and $\left\langle a^{d}, a^{r} b\right\rangle$, where $d \mid n, 0 \leq r<d$. The total number of these two type subgroups are $\tau(n)=\sum_{d \mid n} 1$, that is the number of positive divisors of n, and $\sigma(n)=\sum_{d \mid n} d$, that is the sum positive divisors of n, respectively. Recall that if $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ is the prime factorization of $n>1$, then $\tau(n)=\prod_{j=1}^{r}\left(k_{j}+1\right)$ and $\sigma(n)=\prod_{j=1}^{r} \frac{p_{j}^{k_{j}+1}-1}{p_{j}-1}$.

For $n>2$, the automorphism group of D_{n} is isomorphic to $\mathbb{Z}_{n}^{*} \ltimes \mathbb{Z}_{n}$, the semidirect product of \mathbb{Z}_{n} by \mathbb{Z}_{n}^{*}, with the canonical action of $\varepsilon: \mathbb{Z}_{n}^{*} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{*}$. Explicitly,

$$
\operatorname{Aut}\left(D_{n}\right)=\left\{\gamma_{s, t} \mid s \in \mathbb{Z}_{n}^{*}, t \in \mathbb{Z}_{n}\right\}
$$

where $\gamma_{s, t}$ is defined by

$$
\gamma_{s, t}\left(a^{i}\right)=a^{i s} \quad \text { and } \quad \gamma_{s, t}\left(a^{i} b\right)=a^{i s+t} b
$$

for all $0 \leq i \leq n-1$. Note that

$$
\begin{aligned}
a^{i} \in C_{D_{n}}\left(\gamma_{s, t}\right) & \Leftrightarrow \gamma_{s, t}\left(a^{i}\right)=a^{i} \\
& \Leftrightarrow a^{i s}=a^{i} \\
& \Leftrightarrow i s \equiv i \quad(\bmod n) \\
& \Leftrightarrow i(s-1) \equiv 0 \quad(\bmod n)
\end{aligned}
$$

and

$$
\begin{aligned}
a^{i} b \in C_{D_{n}}\left(\gamma_{s, t}\right) & \Leftrightarrow \gamma_{s, t}\left(a^{i} b\right)=a^{i} b \\
& \Leftrightarrow a^{i s+t} b=a^{i} b \\
& \Leftrightarrow i s+t \equiv i \quad(\bmod n) \\
& \Leftrightarrow i(s-1)+t \equiv 0 \quad(\bmod n)
\end{aligned}
$$

We use the following well-known theorem from elementary number theory.
Theorem 2.1. ([15, Page 102]) Let a, b and m be integers such that $m>0$ and let $c=\operatorname{gcd}(a, m)$. If c does not divide b, then the congruence $a x \equiv b(\bmod m)$ has no solutions. If $c \mid b$, then $a x \equiv b(\bmod m)$ has exactly c incongruent solutions modulo m.

First we compute $\operatorname{Acent}\left(D_{n}\right)$. Clearly, $D_{1} \cong \mathbb{Z}_{2}$ and $D_{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. So $\left|\operatorname{Acent}\left(D_{1}\right)\right|=$ 1 and $\left|\operatorname{Acent}\left(D_{2}\right)\right|=5$.

Lemma 2.1. The identity subgroup is not an acentralizer for any automorphism of D_{n}. Also if n is even, the subgroups $\left\langle a^{d}\right\rangle,\left\langle a^{d}, a^{r} b\right\rangle$, where d is a divisor of n such that $d \nmid \frac{n}{2}$ and $0 \leq r<d$, are not acentralizers of D_{n}.

Proof. On the contrary, suppose that the identity subgroup $\left\langle a^{n}\right\rangle=\langle 1\rangle$ is an acentralizer. Then there exists $\gamma_{s, t} \in \operatorname{Aut}\left(D_{n}\right)$ such that $\gamma_{s, t}$ fixes only the identity element. If $c:=\operatorname{gcd}(n, s-1) \neq 1$, then

$$
\gamma_{s, t}\left(a^{\frac{n}{c}}\right)=a^{\frac{n}{c} s}=a^{\frac{n}{c}} a^{\frac{s-1}{c} n}=a^{\frac{n}{c}}
$$

which is a contradiction. Hence $\operatorname{gcd}(n, s-1)=1$, and so by Theorem 2.1, there exists $0<i<n-1$ such that $n \mid i(s-1)+t$. Since $\gamma_{s, t}\left(a^{i} b\right)=a^{i s+t} b=a^{i(s-1)+t} a^{i} b \neq a^{i} b$, $n \nmid i(s-1)+t$, which is a contradiction. Thus the identity subgroup can not be an acentralizer.

Now suppose, for a contradiction, that $H:=\left\langle a^{d}\right\rangle$, where d is a divisor of n and $d \nmid n / 2$ is an acentralizer of D_{n}. Since $a^{d} \in C_{D_{n}}\left(\gamma_{s, t}\right)$ we have $a^{d}=\gamma_{s, t}\left(a^{d}\right)=a^{s d}$. Thus $n \mid(s-1) d$ and so $s=\frac{n}{d} k+1$, for some $0 \leq k<d$. Since $d \mid n$ and $d \nmid \frac{n}{2}, d$ is
even. Also k is even, as s is odd. Hence, $s=\frac{2 n}{d} k_{1}+1$, for some non-negative integer k_{1}, and so $2 n \mid(s-1) d$. Thus, $n \left\lvert\,(s-1) \frac{d}{2}\right.$ and

$$
\gamma_{s, t}\left(a^{\frac{d}{2}}\right)=a^{s \frac{d}{2}}=a^{\frac{d}{2}} a^{(s-1) \frac{d}{2}}=a^{\frac{d}{2}}
$$

which is a contradiction, as $a^{\frac{d}{2}} \notin H=C_{D_{n}}\left(\gamma_{s, t}\right)$.
Similarly if $K:=\left\langle a^{d}, a^{r} b\right\rangle$, where d is a divisor of $n, d \nmid n / 2,0 \leq r<d$, and $C_{D_{n}}\left(\gamma_{s, t}\right)=K$, for some $\gamma_{s, t} \in \operatorname{Aut}\left(D_{n}\right)$, we obtain a contradiction.

Theorem 2.2. If n is an odd integer, then every non-identity subgroups of D_{n} is an acentralizer of D_{n}. If n is even, then $\left|\operatorname{Acent}\left(D_{n}\right)\right|$ is equal to the number of subgroups of $D_{\frac{n}{2}}$, that is

$$
\mid \text { Acent }\left(D_{n}\right) \left\lvert\,= \begin{cases}\tau(n)+\sigma(n)-1, & n \text { is odd } \\ \tau\left(\frac{n}{2}\right)+\sigma\left(\frac{n}{2}\right), & n \text { is even. }\end{cases}\right.
$$

Proof. First suppose that n is odd. Let d be a divisor of n and put $d_{1}:=n / d$. If $d=1$, then since $\gamma_{1,1}(a)=a$ and for $0 \leq j \leq n-1, \gamma_{1,1}\left(a^{j} b\right)=a^{j+1} b \neq a^{j} b$, we have $C_{D_{n}}\left(\gamma_{1,1}\right)=\langle a\rangle=\left\langle a^{d}\right\rangle$. If $d \neq 1$, then $\gamma_{1+d_{1}, 1}\left(a^{d}\right)=a^{\left(1+d_{1}\right) d}=a^{d}$. Since $\operatorname{gcd}\left(n, d_{1}\right)=d_{1} \nmid 1$, by Theorem 2.1, for every $0 \leq j \leq n-1, n \nmid j d_{1}+1$, and so $\gamma_{1+d_{1}, 1}\left(a^{j} b\right)=a^{j\left(1+d_{1}\right)+1} b=a^{j d_{1}+1} a^{j} b \neq a^{j} b$. It follows that $C_{D_{n}}\left(\gamma_{1+d_{1}, 1}\right)=\left\langle a^{d}\right\rangle$.

Now consider the subgroup $H:=\left\langle a^{d}, a^{r} b\right\rangle$ of D_{n}, where $0 \leq r<d$. If $d=1$, then $r=0$ and $H=G=C_{D_{n}}\left(\gamma_{1,0}\right)$. If $d=n$, then $\left\langle a^{d}, a^{r} b\right\rangle=\left\langle a^{r} b\right\rangle$. Note that $\gamma_{2, n-r}\left(a^{i}\right)=$ $a^{2 i} \neq a^{i}$, for all $1 \leq i \leq n-1$. On the other hand $\gamma_{2, n-r}\left(a^{r} b\right)=a^{2 r+n-r} b=a^{r} b$ and hence $C_{D_{n}}\left(\gamma_{2, n-r}\right)=\left\langle a^{r} b\right\rangle=H$.

If $d \notin\{1, n\}$, then we put $s=1+d_{1}$ and $t=n-r d_{1}$. Since

$$
\begin{aligned}
& \gamma_{s, t}\left(a^{d}\right)=a^{d s}=a^{d\left(1+d_{1}\right)}=a^{d+n}=a^{d}, \\
& \gamma_{s, t}\left(a^{r} b\right)=a^{r s+t} b=a^{r\left(1+d_{1}\right)+n-r d_{1}} b=a^{r} b,
\end{aligned}
$$

it follows that $C_{D_{n}}\left(\gamma_{s, t}\right)=H$. Therefore $\left|\operatorname{Acent}\left(D_{n}\right)\right|=\tau(n)+\sigma(n)-1$.
Now suppose that n is even. Let d be a divisor of $\frac{n}{2}$ and put $d_{1}:=n / d$. Let $H:=\left\langle a^{d}\right\rangle$. If $d=1$, then since $\gamma_{1,1}(a)=a$ and $\gamma_{1,1}\left(a^{j} b\right)=a^{j+1} b \neq a^{j} b$, for all $0 \leq j \leq n-1$, we have $C_{D_{n}}\left(\gamma_{1,1}\right)=\langle a\rangle=H$. If $d \neq 1$, then $\gamma_{1+d_{1}, 1}\left(a^{d}\right)=a^{\left(1+d_{1}\right) d}=a^{d}$. Since $\operatorname{gcd}\left(n, d_{1}\right)=d_{1} \nmid 1$, by Theorem 2.1, for all $0 \leq j \leq n-1, n \nmid j d_{1}+1$, and so $\gamma_{1+d_{1}, 1}\left(a^{j} b\right)=a^{j\left(1+d_{1}\right)+1} b=a^{j d_{1}+1} a^{j} b \neq a^{j} b$. It follows that $C_{D_{n}}\left(\gamma_{1+d_{1}, 1}\right)=\left\langle a^{d}\right\rangle$.

Now we consider the subgroup $H:=\left\langle a^{d}, a^{r} b\right\rangle$ of D_{n}, where $0 \leq r<d$. If $d=1$, then $H=G=C_{D_{n}}\left(\gamma_{1,0}\right)$. If $d \neq 1$ and $r=0$, then we have $\gamma_{s, 0}\left(a^{d}\right)=a^{d\left(1+d_{1}\right)}=a^{d+n}=a^{d}$, $\gamma_{1+d_{1}, 0}(b)=b$, and so $C_{D_{n}}\left(\gamma_{1+d_{1}, 0}\right)=\left\langle a^{d}, b\right\rangle=H$. If $d \neq 1$ and $t \neq 0$, then we put $s=1+d_{1}$ and $t=n-r d_{1}$. Since

$$
\begin{aligned}
& \gamma_{s, t}\left(a^{d}\right)=a^{d\left(1+d_{1}\right)}=a^{d+n}=a^{d} \\
& \gamma_{s, t}\left(a^{r} b\right)=a^{r\left(1+d_{1}\right)+n-r d_{1}} b=a^{r} b
\end{aligned}
$$

we have $C_{D_{n}}\left(\gamma_{s, t}\right)=H$. It follows that $\left|\operatorname{Acent}\left(D_{n}\right)\right|=\tau\left(\frac{n}{2}\right)+\sigma\left(\frac{n}{2}\right)$.

Now we compute $\operatorname{Acent}\left(Q_{n}\right)$. Recall that if $n>2$, then the automorphism group of Q_{n} is isomorphic to $\mathbb{Z}_{2 n}^{*} \ltimes \mathbb{Z}_{2 n}$, with the canonical action of $\varepsilon: \mathbb{Z}_{2 n}^{*} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{2 n}\right) \cong \mathbb{Z}_{2 n}^{*}$. In fact

$$
\operatorname{Aut}\left(Q_{n}\right)=\left\{\gamma_{s, t} \mid s \in \mathbb{Z}_{2 n}^{*}, t \in \mathbb{Z}_{2 n}\right\}
$$

where

$$
\gamma_{s, t}\left(a^{i}\right)=a^{i s} \quad \text { and } \quad \gamma_{s, t}\left(a^{i} b\right)=a^{i s+t} b
$$

for all $0 \leq i \leq 2 n-1$. Hence $\operatorname{Aut}\left(Q_{m}\right) \cong \operatorname{Aut}\left(D_{2 m}\right)$, where $m>2$. Note that $\operatorname{Aut}\left(Q_{2}\right) \cong S_{4}$ and $\operatorname{Aut}\left(D_{4}\right) \cong D_{4}$. We have

$$
\begin{aligned}
a^{i} \in C_{Q_{n}}\left(\gamma_{s, t}\right) & \Leftrightarrow \gamma_{s, t}\left(a^{i}\right)=a^{i} \\
& \Leftrightarrow a^{i s}=a^{i} \\
& \Leftrightarrow i s \equiv i \quad(\bmod 2 n) \\
& \Leftrightarrow i(s-1) \equiv 0 \quad(\bmod 2 n)
\end{aligned}
$$

and

$$
\begin{aligned}
a^{i} b \in C_{Q_{n}}\left(\gamma_{s, t}\right) & \Leftrightarrow \gamma_{s, t}\left(a^{i} b\right)=a^{i} b \\
& \Leftrightarrow a^{i s+t} b=a^{i} b \\
& \Leftrightarrow i s+t \equiv i \quad(\bmod 2 n) \\
& \Leftrightarrow i(s-1)+t \equiv 0 \quad(\bmod 2 n) .
\end{aligned}
$$

Lemma 2.2. (1) Every element, $x \in Q_{n}$ can be written uniquely as $x=a^{i} b^{j}$, where $0 \leq i<2 n$ and $j=0,1$.
(2) $Z\left(Q_{n}\right)=\left\langle a^{n}\right\rangle \cong \mathbb{Z}_{2}$.
(3) $Q_{n} / Z\left(Q_{n}\right) \cong D_{n}$.
(4) $o\left(a^{i}\right)=2 n / i$ for $1<i \leqslant 2 n$ and $o\left(a^{i} b\right)=4$ for all i.
(5) Every subgroup of Q_{n} is either cyclic or a dicyclic group.

Proof. (1)-(4) are straightforward.
Let H be a subgroup of Q_{n}. Suppose that $Z\left(Q_{n}\right) \leq H$. Then $H / Z\left(Q_{n}\right)$ is a subgroup of D_{n}. Since every subgroup of D_{n} is either cyclic or dihedral, the same is true for $H / Z\left(Q_{n}\right)$. If $H / Z\left(Q_{n}\right)$ is cyclic, then H is cyclic (indeed H is a subgroup of $\langle a\rangle$ or $H=\left\langle a^{i} b\right\rangle$). Therefore, we may assume $H / Z\left(Q_{n}\right)$ is dihedral. Thus, $H / Z\left(Q_{n}\right)$ has a dihedral presentation $\left\langle x, y \mid x^{m}=y^{2}=1, y x y=x^{-1}\right\rangle$. Hence, H has the same presentation with $H / Z\left(Q_{n}\right)$ and so H is a dicyclic group.

Finally, if H does not contain $Z\left(Q_{n}\right)$ then H does not contain an element of the form $a^{i} b$. Therefore, $H \leq\langle a\rangle$ and so it is cyclic.

In what follows we compute acentralizers of Q_{n}.
Lemma 2.3. Let H be a subgroup of Q_{n} which does not contain $Z\left(Q_{n}\right)$. Then H is not an acentralizer of Q_{n}.

Proof. By Lemma 2.2, $H=\left\langle a^{m}\right\rangle$, where $m \mid 2 n, m \nmid n$. Now suppose, for a contradiction that, H is an acentralizer of Q_{n}. Then there exists $\gamma_{s, t} \in \operatorname{Aut}\left(Q_{n}\right)$ such that $C_{Q_{n}}\left(\gamma_{s, t}\right)=H$. Thus, $a^{m}=\gamma_{s, t}\left(a^{m}\right)=a^{s m}$, and so $2 n \mid(s-1) m$, i.e., $s=\frac{2 n}{m} k+1$, for some $0 \leq k<m$. Since $m \mid 2 n$ and $m \nmid n, m$ is even. Also k is even, as s is odd. Therefore, $s=\frac{4 n}{m} k_{1}+1$, for some non-negative integer k_{1}, and hence $4 n \mid(s-1) m$. Thus, $2 n \left\lvert\,(s-1) \frac{m}{2}\right.$ and

$$
\gamma_{s, t}\left(a^{\frac{m}{2}}\right)=a^{s \frac{m}{2}}=a^{\frac{m}{2}} a^{(s-1) \frac{m}{2}}=a^{\frac{m}{2}}
$$

which is a contradiction, as $a^{\frac{m}{2}} \notin H=C_{Q_{n}}\left(\gamma_{s, t}\right)$.
Theorem 2.3. We have $\left|\operatorname{Acent}\left(Q_{n}\right)\right|=\tau(n)+\sigma(n)$.
Proof. Suppose d is a divisor of n such that $1 \leq d<n$, and $d_{1}:=2 n / d$. Let $H:=\left\langle a^{d}\right\rangle$. If $d=1$, then since $\gamma_{1,1}(a)=a$ and for $0 \leq j \leq 2 n-1, \gamma_{1,1}\left(a^{j} b\right)=a^{j+1} b \neq a^{j} b$, we have $C_{Q_{n}}\left(\gamma_{1,1}\right)=\langle a\rangle$.

If $d \neq 1$, then $\gamma_{1+d_{1}, 1}\left(a^{d}\right)=a^{\left(1+d_{1}\right) d}=a^{d}$. Since $\operatorname{gcd}\left(2 n, d_{1}\right)=d_{1} \nmid 1$, by Theorem 2.1, $2 n \nmid j d_{1}+1$, for all $0 \leq j \leq 2 n-1$, and so $\gamma_{1+d_{1}, 1}\left(a^{j} b\right)=a^{j\left(1+d_{1}\right)+1} b=a^{j d_{1}+1} a^{j} b \neq$ $a^{j} b$. It follows that $C_{Q_{n}}\left(\gamma_{1+d_{1}, 1}\right)=\left\langle a^{d}\right\rangle$.

Now consider the subgroup $H:=\left\langle a^{d}, a^{r} b\right\rangle$ of Q_{n}, where $0 \leq r<d$. If $d=1$, then $r=0$ and $H=G=C_{Q_{n}}\left(\gamma_{1,0}\right)$. If $d \neq 1$ and $r=0$, then we put $s=1+d_{1}$ and $t=0$, where $d_{1}:=\frac{2 n}{d}$. We have $\gamma_{s, 0}\left(a^{d}\right)=a^{d s}=a^{d\left(1+d_{1}\right)}=a^{d+2 n}=a^{d}, \gamma_{s, 0}(b)=b$. Hence, $C_{Q_{n}}\left(\gamma_{1+d_{1}, 0}\right)=\left\langle a^{d}, b\right\rangle=H$. If $d \neq 1$ and $r \neq 0$, then we put $s=1+d_{1}$ and $t=2 n-r d_{1}$, where $d_{1}:=\frac{2 n}{d}$. We have

$$
\begin{aligned}
& \gamma_{s, t}\left(a^{d}\right)=a^{d s}=a^{d\left(1+d_{1}\right)}=a^{d+2 n}=a^{d} \\
& \gamma_{s, t}\left(a^{r} b\right)=a^{r s+t} b=a^{r\left(1+d_{1}\right)+2 n-r d_{1}} b=a^{r} b .
\end{aligned}
$$

Hence $C_{Q_{n}}\left(\gamma_{s, t}\right)=H$. It follows that $\left|\operatorname{Acent}\left(Q_{n}\right)\right|=\tau(n)+\sigma(n)-1$.
Corollary 2.1. For all $n \geq 3$ we have $\left|\operatorname{Acent}\left(Q_{n}\right)\right|=\left|\operatorname{Acent}\left(D_{2 n}\right)\right|$.

3. Acentralizers of Groups of Order $p q$

It is well-known that the groups of order $p q$, where p and q are distinct primes, with $p>q$, are

$$
\begin{aligned}
& \mathbb{Z}_{p q}, \\
& T_{p, q}=\left\langle a, b \mid a^{p}=b^{q}=1, b a b^{-1}=a^{u}\right\rangle, \quad \text { where } o(u)=q \text { in } \mathbb{Z}_{p}^{*} \text { and } q \mid p-1 .
\end{aligned}
$$

Using Theorem 3.1 below, we have $\left|\operatorname{Acent}\left(\mathbb{Z}_{p q}\right)\right|=\left|\operatorname{Acent}\left(\mathbb{Z}_{p}\right)\right|\left|\operatorname{Acent}\left(\mathbb{Z}_{q}\right)\right|=2 \times 2=4$.
Theorem 3.1. ([14, Lemma 2.1]) Let H and T be finite groups with $\operatorname{gcd}(|H|,|T|)=1$. Then

$$
|\operatorname{Acent}(H \times T)|=|\operatorname{Acent}(H)| \cdot|\operatorname{Acent}(T)| .
$$

We compute $\left|\operatorname{Acent}\left(T_{p, q}\right)\right|$. The proof of the following lemma is straightforward.
Lemma 3.1. Non-trivial subgroups of $T_{p, q}$ are $\langle a\rangle,\left\langle b a^{j}\right\rangle$, where $0 \leq j \leq p-1$.

A Frobenius group of order $p q$, where p is prime and $q \mid p-1$ is a group with the presentation $F_{p, q}=\left\langle a, b \mid a^{p}=b^{q}=1, b a b^{-1}=a^{u}\right\rangle$, where $o(u)=q$ in \mathbb{Z}_{p}^{*}. If q is a prime number, then $F_{p, q} \cong T_{p, q}$.
Theorem 3.2 ([10]). Let p be a prime number and $q \mid p-1$. Then $\operatorname{Aut}\left(F_{p, q}\right) \cong F_{p, p-1}$, in fact

$$
\operatorname{Aut}\left(F_{p, q}\right)=\left\{\alpha_{i, j} \mid 1 \leq i \leq p-1,0 \leq j \leq p-1\right\},
$$

where

$$
\alpha_{i, j}\left(a^{m}\right)=a^{i m} \quad \text { and } \quad \alpha_{i, j}\left(b^{n} a^{m}\right)=b^{n} a^{\left(u^{n-1}+\cdots+u+1\right) j+i m},
$$

for all $0 \leq m \leq p-1$ and $1 \leq n \leq q-1$.
Note that if $G:=F_{p, q}$, then

$$
\begin{aligned}
a^{m} \in C_{G}\left(\alpha_{i, j}\right) & \Leftrightarrow \alpha_{i, j}\left(a^{m}\right)=a^{m} \\
& \Leftrightarrow a^{i m}=a^{m} \\
& \Leftrightarrow i m \equiv m \quad(\bmod p) \\
& \Leftrightarrow(i-1) m \equiv 0 \quad(\bmod p)
\end{aligned}
$$

and

$$
\begin{aligned}
b^{n} a^{m} \in C_{G}\left(\alpha_{i, j}\right) & \Leftrightarrow \alpha_{i, j}\left(b^{n} a^{m}\right)=b^{n} a^{m} \\
& \Leftrightarrow b^{n} a^{\left(u^{n-1}+\cdots+u+1\right) j+i m}=b^{n} a^{m} \\
& \Leftrightarrow i m+\left(u^{n-1}+\cdots+u+1\right) j \equiv m \quad(\bmod p) \\
& \Leftrightarrow(i-1) m+\left(u^{n-1}+\cdots+u+1\right) j \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

We note that if $p \mid u^{n-1}+\cdots+u+1$, then $p \mid u^{n}-1$ and $u^{n} \equiv 1(\bmod p)$, which is a contradiction. Therefore, $p \nmid u^{n-1}+\cdots+u+1$.

Lemma 3.2. The identity subgroup is not an acentralizer for any automorphism of $T_{p, q}$.

Proof. Suppose, contrary on our claim, that $\langle 1\rangle$ is an acentralizer of $T_{p, q}$. Then there exists $\alpha_{i, j} \in \operatorname{Aut}\left(T_{p, q}\right)$ such that $\alpha_{i, j}$ fixes only the identity element. If $i=1$, then $\alpha_{1, j}\left(a^{m}\right)=a^{m}$, for all $1 \leq m \leq p-1$, which is a contradiction. Hence $\operatorname{gcd}(p, i-1)=1$, and by Theorem 2.1, there exists $0<m<p-1$, such that $p \mid(i-1) m+j$. But since $\alpha_{i, j}\left(b a^{m}\right) \neq b a^{m}$, we have $p \nmid(i-1) m+j$, which is a contradiction. Thus, the identity subgroup is not an acentralizer.

Theorem 3.3. Every non-identity subgroup of $G:=T_{p, q}$ is an acentralizer of an automorphism, and therefore $\left|\operatorname{Acent}\left(T_{p, q}\right)\right|=p+2$.
Proof. Let $H:=\langle a\rangle$, which is a unique Sylow p-subgroup of G. Note that $\alpha_{1,1}\left(a^{m}\right)=$ a^{m}. Since $p \nmid u^{n-1}+\cdots+u+1$,

$$
\alpha_{1,1}\left(b^{n} a^{m}\right)=b^{n} a^{\left(u^{n-1}+\cdots+u+1\right)+m}=b^{n} a^{m} a^{\left(u^{n-1}+\cdots+u+1\right)} \neq b^{n} a^{m} .
$$

Hence, $C_{G}\left(\alpha_{1,1}\right)=H$.
Let $K:=\left\langle b a^{m}\right\rangle$, where $0 \leq m \leq p-1$, which is a subgroup of G of order q. If $m=0$, then $K=\langle b\rangle$, and since $\alpha_{2,0}(b)=b, \alpha_{2,0}(a)=a^{2} \neq a$, it follows that $C_{G}\left(\alpha_{2,0}\right)=K$. If $1 \leq m \leq p-1$, then $\alpha_{2, p-m}\left(b a^{m}\right)=b a^{p-m+2 m}=b a^{m}$. Also since $\alpha_{2, p-m}\left(a^{m}\right)=a^{2 m} \neq a^{m}$, for all $1 \leq m \leq p-1$, we have $a^{m} \notin C_{G}\left(\alpha_{2, p-m}\right)$. It follows that $C_{G}\left(\alpha_{2, p-m}\right)=K$. Hence, $\left|\operatorname{Acent}\left(T_{p, q}\right)\right|=1+1+p=p+2$.

4. Acentralizers of Groups of Order pqr

In this section we compute acentralizers of groups of order $p q r$, where p, q, and r are distinct primes. The presentations of groups of order $p q r$, where p, q and r are primes such that $p>q>r$ are given in [11]. By [10] all groups of order $p q r$, $p>q>r$, are isomorphic to one of the following groups:
(1) $G_{1}=\mathbb{Z}_{p q r}$;
(2) $G_{2}=\mathbb{Z}_{r} \times T_{p, q}, q \mid p-1$;
(3) $G_{3}=\mathbb{Z}_{q} \times T_{p, r}, r \mid p-1$;
(4) $\left.G_{4}=F_{p, q r}, q r \mid p-1\right)$;
(5) $G_{5}=\mathbb{Z}_{p} \times T_{q, r}, r \mid q-1$;
(6) $G_{i+5}=\left\langle a, b, c \mid a^{p}=b^{q}=c^{r}=1, a b=b a, c^{-1} b c=b^{u}, c^{-1} a c=a^{v^{i}}\right\rangle$, where $r \mid p-1, q-1, o(u)=r$ in \mathbb{Z}_{q}^{*} and $o(v)=r$ in $\mathbb{Z}_{p}^{*}, 1 \leq i \leq r-1$.
Using the above result, Theorem 3.3 and Theorem 3.1 it is suffices to compute the number of acentralizers of $F_{p, q r}$ and G_{i+5}. The proof of the following lemma is straightforward.

Lemma 4.1. Let $F_{p, q r}=\left\langle a, b \mid a^{p}=b^{q r}=1, b a b^{-1}=a^{u}\right\rangle=\langle b\rangle \ltimes\langle a\rangle$ and $o(u)=q r$ in \mathbb{Z}_{p}^{*} where p, q, r are prime and $q r \mid p-1$. Then non-trivial subgroups of $F_{p, q r}$ are $A:=\langle a\rangle, B_{x}:=\left\langle b a^{x}\right\rangle, C_{x}:=\left\langle b^{q} a^{x}\right\rangle, D_{x}:=\left\langle b^{r} a^{x}\right\rangle$, where $0 \leq x \leq p-1, H:=\left\langle b^{r}, a\right\rangle$ and $K:=\left\langle b^{q}, a\right\rangle$.

Lemma 4.2. Non-trivial subgroups of G_{i+5} are $A:=\langle a\rangle, B:=\langle b\rangle, A B, H_{j, t}:=$ $\left\langle c b^{t} a^{j}\right\rangle, H_{t}:=\left\langle a, c b^{t}\right\rangle$ and $K_{j}:=\left\langle b, c a^{j}\right\rangle$, where $0 \leq j \leq p-1,0 \leq t \leq q-1$. In particular G_{i+5} have $p q+p+q+5$ subgroups.

Proof. One can easily see that the order of elements of G_{i+5} is as in the Table 1,

$$
\begin{array}{c|cccc}
\text { Elements } & a^{j} & b^{t} & b^{t} a^{j} & c^{k} b^{i^{\prime}} a^{j^{\prime}} \\
\hline \text { Orders } & p & q & p q & r
\end{array}
$$

Table 1. The order of elements G_{i+5}
where $1 \leq j \leq p-1,1 \leq t \leq q-1,0 \leq i^{\prime} \leq q-1,0 \leq j^{\prime} \leq p-1,1 \leq k \leq r-1$.
It is clear that $A=\langle a\rangle$ is a unique Sylow p-subgroup of G_{i+5} and $B=\langle b\rangle$ is a unique Sylow q-subgroup of G_{i+5}. Thus $A B=\langle a, b\rangle \unlhd G_{i+5}$ is a unique subgroup of order $p q$ of G_{i+5}. It is also clear that $H_{j, t}=\left\langle c b^{t} a^{j}\right\rangle$, where $0 \leq j \leq p-1,0 \leq t \leq q-1$, are subgroups of order r. Since A and B are normal in G_{i+5}, every subgroups of
order $p r$ should contain A and every subgroups of order $q r$ should contain B. Thus $K_{j}=\left\langle b, c a^{j}\right\rangle$ and $H_{t}=\left\langle a, c b^{t}\right\rangle$, where $0 \leq j \leq p-1,0 \leq t \leq q-1$ are subgroups of order $p r$ and $q r$ of G_{i+5}, respectively.

Theorem 4.1 ([10]). Automorphism group of G_{i+5} is isomorphic to $F_{p, p-1} \times F_{q, q-1}$, in fact

$$
\operatorname{Aut}\left(G_{i+5}\right)=\left\{\alpha_{j, t, j_{1}, i_{1}} \mid 1 \leq j \leq p-1,1 \leq t \leq q-1,0 \leq j_{1} \leq p-1,0 \leq i_{1} \leq q-1\right\}
$$ where

$$
\begin{aligned}
& \alpha_{j, t, j_{1}, i_{1}}\left(a^{m}\right)=a^{j m}, \\
& \alpha_{j, t, j_{1}, i_{1}}\left(b^{n}\right)=b^{t n}, \\
& \alpha_{j, t, j_{1}, i_{1}}\left(c^{k} b^{n_{1}} a^{m_{1}}\right)=c^{k} b^{i_{1}\left(u^{k-1}+\cdots+u+1\right)+t n_{1}} a^{j_{1}\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+j m_{1}},
\end{aligned}
$$

for $1 \leq m \leq p-1,1 \leq n \leq q-1,0 \leq m_{1} \leq p-1,0 \leq n_{1} \leq q-1$ and $1 \leq k \leq r-1$.
Note that if $G:=G_{i+5}$, then

$$
\begin{aligned}
a^{m} \in C_{G}\left(\alpha_{j, t, j_{1}, i_{1}}\right) & \Leftrightarrow \alpha_{j, t, j_{1}, i_{1}}\left(a^{m}\right)=a^{m} \\
& \Leftrightarrow a^{j m}=a^{m} \\
& \Leftrightarrow j m \equiv m \quad(\bmod p) \\
& \Leftrightarrow m(j-1) \equiv 0 \quad(\bmod p)
\end{aligned}
$$

and

$$
\begin{aligned}
b^{n} \in C_{G}\left(\alpha_{j, t, j_{1}, i_{1}}\right) & \Leftrightarrow \alpha_{j, t, j_{1}, i_{1}}\left(b^{n}\right)=b^{n} \\
& \Leftrightarrow b^{t n}=b^{n} \\
& \Leftrightarrow t n \equiv n \quad(\bmod q) \\
& \Leftrightarrow n(t-1) \equiv 0 \quad(\bmod q)
\end{aligned}
$$

and

$$
\begin{aligned}
c^{k} b^{n_{1}} a^{m_{1}} \in C_{G}\left(\alpha_{j, t, j_{1}, i_{1}}\right) \Leftrightarrow & \alpha_{j, t, j_{1}, i_{1}}\left(c^{k} b^{n_{1}} a^{m_{1}}\right)=c^{k} b^{n_{1}} a^{m_{1}} \\
\Leftrightarrow & c^{k} b^{i_{1}\left(u^{k-1}+\cdots+u+1\right)+t n_{1}} a^{j_{1}\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+j m_{1}}=c^{k} b^{n_{1}} a^{m_{1}} \\
\Leftrightarrow & i_{1}\left(u^{k-1}+\cdots+u+1\right)+t n_{1} \equiv n_{1} \quad(\bmod q), \\
& j_{1}\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+j m_{1} \equiv m_{1} \quad(\bmod p) \\
\Leftrightarrow & i_{1}\left(u^{k-1}+\cdots+u+1\right)+(t-1) n_{1} \equiv 0 \quad(\bmod q), \\
& j_{1}\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+(j-1) m_{1} \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

Lemma 4.3. The identity subgroup and the subgroups C_{x}, D_{x}, where $0 \leq x \leq p-1$, H and K (defined in Lemma 4.1) are not acentralizers for any automorphism of $G:=F_{p, q r}$.

Proof. As in the proof of Lemma 3.2 we can see that the identity subgroup is not an acentralizer.
Now suppose, for a contradiction that $C_{x}:=\left\langle b^{q} a^{x}\right\rangle$, where $0 \leq x \leq p-1$ is an acentralizers of G. Then there exists $\alpha_{i, j} \in \operatorname{Aut}(G)$ such that $C_{G}\left(\alpha_{i, j}\right)=C_{x}$, where $1 \leq i \leq p-1$ and $0 \leq j \leq p-1$. If $i=1$, then $\alpha_{1, j}\left(a^{m}\right)=a^{m}$, for every $1 \leq m \leq p-1$, this contradicts $a^{m} \notin\left\langle b^{q} a^{x}\right\rangle$. Hence $\operatorname{gcd}(i-1, p)=1$, by Theorem 2.1, there exists $0<m<p-1$ such that $p \mid j+(i-1) m$. But since $b a^{m} \notin C_{x}=C_{G}\left(\alpha_{i, j}\right)$, $\alpha_{i, j}\left(b a^{m}\right)=b a^{j+i m}=b a^{m} a^{j+(i-1) m} \neq b a^{m}$, which implies that $p \nmid j+(i-1) m$, which is a contradiction.

Similarly we have H, D_{x}, and K are not acentralizers.
Theorem 4.2. We have $\left|\operatorname{Acent}\left(F_{p, q r}\right)\right|=p+2$.
Proof. The proof is similar to that of Theorem 3.3.
Lemma 4.4. The identity subgroup is not an acentralizer for any automorphism of G_{i+5}.

Proof. On the contrary, suppose that $\langle 1\rangle$ is an acentralizer of G_{i+5}. Then there exists $\alpha_{j, t, j_{1}, i_{1}} \in \operatorname{Aut}\left(G_{i+5}\right)$ such that $\alpha_{j, t, j_{1}, i_{1}}$ fixes only the identity element. If $j=1$ or $t=1$, then $\alpha_{1, t, j_{1}, i_{1}}\left(a^{m}\right)=a^{m}$ and $\alpha_{j, 1, j_{1}, i_{1}}\left(b^{n}\right)=b^{n}$, for all $1 \leq m \leq p-1$ and $1 \leq n \leq q-1$, which is a contradiction. Hence $\operatorname{gcd}(j-1, p)=1$ and $\operatorname{gcd}(t-1, q)=1$. Hence, by Theorem 2.1, there exist $0<m_{1}<p-1$ and $0<n_{1}<q-1$ such that $p \mid j_{1}+(j-1) m_{1}$ and $q \mid i_{1}+(t-1) n_{1}$. But since

$$
\alpha_{j, t, j_{1}, i_{1}}\left(c b^{n_{1}} a^{m_{1}}\right)=c b^{i_{1}+t n_{1}} a^{j_{1}+j m_{1}}=c b^{n_{1}} a^{m_{1}} b^{i_{1}+(t-1) n_{1}} a^{j_{1}+(j-1) m_{1}} \neq c b^{n_{1}} a^{m_{1}}
$$

either $p \nmid j_{1}+(j-1) m_{1}$ or $q \nmid i_{1}+(t-1) n_{1}$, which is a contradiction. Thus, the identity subgroup is not an acentralizer.

Theorem 4.3. Every non-identity subgroup of $G:=G_{i+5}$ is an acentralizer of an automorphism, that is $\left|\operatorname{Acent}\left(G_{i+5}\right)\right|=p q+p+q+4$.

Proof. We use the notation of Theorem 4.1. Note that $\alpha_{1,1,0,0}$ is the identity automorphism of G and so $C_{G}\left(\alpha_{1,1,0,0}\right)=G$.

Now we show that $A=\langle a\rangle$ is an acentralizer. It is clear that $\alpha_{1,2,1,1}(a)=a$ and $\alpha_{1,2,1,1}\left(b^{n}\right)=b^{2 n}=b^{n} b^{n} \neq b^{n}$, for all $1 \leq n \leq q-1$. Furthermore since $p \nmid\left(v^{(k-1) i}+\cdots+v^{i}+1\right)$,

$$
\begin{aligned}
\alpha_{1,2,1,1}\left(c^{k} b^{n_{1}} a^{m_{1}}\right) & =c^{k} b^{\left(u^{k-1}+\cdots+u+1\right)+2 n_{1}} a^{\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+m_{1}} \\
& =c^{k} b^{n_{1}} a^{m_{1}} b^{\left(u^{k-1}+\cdots+u+1\right)+n_{1}} a^{\left(v^{(k-1) i}+\cdots+v^{i}+1\right)} \neq c^{k} b^{n_{1}} a^{m_{1}} .
\end{aligned}
$$

It follows that $C_{G}\left(\alpha_{1,2,1,1}\right)=A$.
Let $B=\langle b\rangle$ be the unique Sylow q-subgroup of G. It is clear that $\alpha_{2,1,1,1}\left(b^{n}\right)=b^{n}$ and so $b^{n} \in C_{G}\left(\alpha_{2,1,1,1}\right)$. Since $1 \leq m \leq p-1, \alpha_{2,1,1,1}\left(a^{m}\right)=a^{2 m}=a^{m} a^{m} \neq a^{m}$. Also
since $\operatorname{gcd}\left(u^{k-1}+\cdots+u+1, q\right)=1$, so $q \nmid\left(u^{k-1}+\cdots+u+1\right)$. Thus,

$$
\begin{aligned}
\alpha_{2,1,1,1}\left(c^{k} b^{n_{1}} a^{m_{1}}\right) & =c^{k} b^{\left(u^{k-1}+\cdots+u+1\right)+n_{1}} a^{\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+2 m_{1}} \\
& =c^{k} b^{n_{1}} a^{m_{1}} b^{\left(u^{k-1}+\cdots+u+1\right)} a^{\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+m_{1}} \neq c^{k} b^{n_{1}} a^{m_{1}} .
\end{aligned}
$$

Hence, $C_{G}\left(\alpha_{2,1,1,1}\right)=B$.
Let $A B=\langle a, b\rangle$ be the unique subgroup of G of the order $p q$. It is clear that $\alpha_{1,1,1,1}\left(a^{m}\right)=a^{m}$ and $\alpha_{1,1,1,1}\left(b^{n}\right)=b^{n}$. Thus, $a^{m}, b^{n} \in C_{G}\left(\alpha_{1,1,1,1}\right)$. Since $\operatorname{gcd}\left(u^{k-1}+\right.$ $\cdots+u+1, q)=1$ and $\operatorname{gcd}\left(v^{(k-1) i}+\cdots+v^{i}+1, p\right)=1$, so $q \nmid\left(u^{k-1}+\cdots+u+1\right)$ and $p \nmid\left(v^{(k-1) i}+\cdots+v^{i}+1\right)$. Thus,

$$
\begin{aligned}
\alpha_{1,1,1,1}\left(c^{k} b^{n_{1}} a^{m_{1}}\right) & =c^{k} b^{\left(u^{k-1}+\cdots+u+1\right)+n_{1}} a^{\left(v^{(k-1) i}+\cdots+v^{i}+1\right)+m_{1}} \\
& =c^{k} b^{n_{1}} a^{m_{1}} b^{\left(u^{k-1}+\cdots+u+1\right)} a^{\left(v^{(k-1) i}+\cdots+v^{i}+1\right)} \neq c^{k} b^{n_{1}} a^{m_{1}} .
\end{aligned}
$$

Hence, $C_{G}\left(\alpha_{1,1,1,1}\right)=A B$.
Let $H_{m_{1}, n_{1}}=\left\langle c b^{n_{1}} a^{m_{1}}\right\rangle$ where $0 \leq m_{1} \leq p-1$ and $0 \leq n_{1} \leq q-1$ be the unique subgroup of G of order $p q$. First suppose $m_{1}=n_{1}=0$. Then $\alpha_{2,2,0,0}(c)=c$. Since $1 \leq m \leq p-1,1 \leq n \leq q-1$, we have $\alpha_{2,2,0,0}\left(a^{m}\right)=a^{2 m} \neq a^{m}$ and $\alpha_{2,2,0,0}\left(b^{n}\right)=b^{2 n} \neq b^{n}$. Thus $C_{G}\left(\alpha_{2,2,0,0}\right)=H_{0,0}=\langle c\rangle$. Now suppose $n_{1}=0, m_{1} \neq 0$. Then $\alpha_{2,2, p-m_{1}, 0}\left(c a^{m_{1}}\right)=c a^{p-m_{1}+2 m_{1}}=c a^{m_{1}}$ and $\alpha_{2,2, p-m_{1}, 0}\left(a^{m}\right)=a^{2 m} \neq a^{m}$ and $\alpha_{2,2, p-m_{1}, 0}\left(b^{n}\right)=b^{2 n} \neq b^{n}$. So $C_{G}\left(\alpha_{2,2, p-m_{1}, 0}\right)=H_{m_{1}, 0}=\left\langle c a^{m_{1}}\right\rangle$. Similarly, if $m_{1}=0$, $n_{1} \neq 0$, then $\alpha_{2,2,0, q-n_{1}}\left(c b^{n_{1}}\right)=c b^{q-n_{1}+2 n_{1}}=c b^{n_{1}}, \alpha_{2,2,0, n_{1}}\left(a^{m}\right)=a^{2 m} \neq a^{m}$ and $\alpha_{2,2, p-m_{1}, 0}\left(b^{n}\right)=b^{2 n} \neq b^{n}$. Hence, $C_{G}\left(\alpha_{2,2,0, q-n_{1}}\right)=H_{0, n_{1}}=\left\langle c b^{n_{1}}\right\rangle$. Finally suppose that $m_{1} \neq 0$ and $n_{1} \neq 0$. Then

$$
\alpha_{2,2, p-m_{1}, q-n_{1}}\left(c b^{n_{1}} a^{m_{1}}\right)=c b^{q-n_{1}+2 n_{1}} a^{p-m_{1}+2 m_{1}}=c b^{q+n_{1}} a^{p+m_{1}}=c b^{n_{1}} a^{m_{1}},
$$

and so, $c b^{n_{1}} a^{m_{1}} \in C_{G}\left(\alpha_{2,2, p-m_{1}, q-n_{1}}\right)$. Since $1 \leq m \leq p-1$ and $1 \leq n \leq q-1$, we have $\alpha_{2,2, p-m_{1}, q-n_{1}}\left(a^{m}\right)=a^{2 m}=a^{m} a^{m} \neq a^{m}$ and $\alpha_{2,2, p-m_{1}, q-n_{1}}\left(b^{n}\right)=b^{2 n}=b^{n} b^{n} \neq b^{n}$. Hence, $C_{G}\left(\alpha_{2,2, p-m_{1}, q-n_{1}}\right)=H_{m_{1}, n_{1}}$.

Now we consider the unique subgroup $A H_{n_{1}}=\left\langle a, c b^{n_{1}}\right\rangle$, where $0 \leq n_{1} \leq q-1$ of order $r p$. First suppose that $n_{1}=0$. Then $\alpha_{1,2,0,0}\left(a^{m}\right)=a^{m}$. Also $\alpha_{1,2,0,0}\left(c^{k}\right)=c^{k}$. So $a^{m}, c^{k} \in C_{G}\left(\alpha_{1,2,0,0}\right)$. Since $1 \leq n \leq q-1$ we have $\alpha_{1,2,0,0}\left(b^{n}\right)=b^{2 n}=b^{n} b^{n} \neq b^{n}$. Hence, $C_{G}\left(\alpha_{1,2,0,0}\right)=\langle a, c\rangle=A H_{0}$. Now suppose that $n_{1} \neq 0$. Then $\alpha_{1,2,0, q-n_{1}}\left(a^{m}\right)=$ a^{m}. Also, $\alpha_{1,2,0, q-n_{1}}\left(c b^{n_{1}}\right)=c b^{q-n_{1}+2 n_{1}}=c b^{q+n_{1}}=c b^{n_{1}}$. So, $a^{m}, c b^{n_{1}} \in C_{G}\left(\alpha_{1,2,0, q-n_{1}}\right)$. Since $1 \leq n \leq q-1$, we have $\alpha_{1,2,0, q-n_{1}}\left(b^{n}\right)=b^{2 n}=b^{n} b^{n} \neq b^{n}$. Hence, $C_{G}\left(\alpha_{1,2,0, q-n_{1}}\right)=$ $A H_{n_{1}}$.

Now consider the unique subgroup $B H_{m_{1}}=\left\langle b, c a^{m_{1}}\right\rangle$, where $0 \leq m_{1} \leq p-1$, of order $r q$. First suppose that $m_{1}=0$. Then $\alpha_{2,1,0,0}\left(b^{n}\right)=b^{n}$. Also $\alpha_{2,1,0,0}\left(c^{k}\right)=$ c^{k}. So $b^{n}, c^{k} \in C_{G}\left(\alpha_{2,1,0,0}\right)$. Since $1 \leq m \leq p-1$ we have $\alpha_{2,1, j_{1}, 0}\left(a^{m}\right)=a^{2 m}=$ $a^{m} a^{m} \neq a^{m}$. Hence, $C_{G}\left(\alpha_{2,1,0,0}\right)=\langle b, c\rangle=B H_{0}$. Now suppose that $m_{1} \neq 0$. Then $\alpha_{2,1, p-m_{1}, 0}\left(b^{n}\right)=b^{n}$. Also, $\alpha_{2,1, p-m_{1}, 0}\left(c a^{m_{1}}\right)=c a^{p-m_{1}+2 m_{1}}=c a^{p+m_{1}}=c a^{m_{1}}$. So, $b^{n}, c a^{m_{1}} \in C_{G}\left(\alpha_{2,1, p-m_{1}, 0}\right)$. Since $1 \leq m \leq p-1$ we have $\alpha_{2,1, p-m_{1}, 0}\left(a^{m}\right)=a^{2 m}=$ $a^{m} a^{m} \neq a^{m}$. Hence, $C_{G}\left(\alpha_{2,1, p-m_{1}, 0}\right)=B H_{m_{1}}$.

Therefore, $\left|\operatorname{Acent}\left(G_{i+5}\right)\right|=1+1+1+1+p q+q+p=p q+p+q+4$.

5. Acentralizers of Finite Symmetric Groups

In this section we compute $\left|\operatorname{Acent}\left(S_{n}\right)\right|$. First we note that $S_{2} \cong \mathbb{Z}_{2}$ and so $\left|\operatorname{Acent}\left(S_{2}\right)\right|=1$. Also if $n=6$, then $\operatorname{Aut}\left(S_{6}\right)=S_{6} \rtimes \mathbb{Z}_{2}$ and by GAP [9] we see that $\left|\operatorname{Acent}\left(S_{6}\right)\right|=443$. Now since for every $n \neq 6, \operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right)=S_{n}$, we have $\operatorname{Acent}\left(S_{n}\right)=\operatorname{Cent}\left(S_{n}\right)$. Hence in order to find $\left|\operatorname{Acent}\left(S_{n}\right)\right|$ we need to find $\left|\operatorname{Cent}\left(S_{n}\right)\right|$. Recall that the conjugacy class an element g of a group G, is the set of elements its conjugate, that is

$$
x^{G}:=\left\{x g x^{-1} \mid x \in G\right\} .
$$

Let A and G be groups, and let G act on a set X. Let B be the group of all of functions from X into A. The product of two elements f and g of $B f(x)=f(x) g(x)$. The group G acts on B via $f^{g}(x)=f\left(g x g^{-1}\right)$. The semidirect product of B and G with respect to this action is called the general wreath product.
Theorem 5.1. ([17, Page 297]) Let α be an element of S_{n} of cycle type ($r_{1}^{\lambda_{1}}, \ldots, r_{k}^{\lambda_{k}}$), then the centralizer of α in S_{n} is a direct product of k groups of the form $\mathbb{Z}_{r_{i}} \backslash S_{\lambda_{i}}$, the general wreath product. The order of $C_{S_{n}}(\alpha)$ is equal to $\Pi \lambda_{i}!r_{i}^{\lambda_{i}}$.

Every permutation α in S_{n} can be written as the product of disjoint cycles $\alpha=$ $\alpha_{1} \cdots \alpha_{k}$, where $\alpha_{j}=\alpha_{j, 1} \alpha_{j, 2} \cdots \alpha_{j, \lambda_{j}}, j=1, \ldots k$, is a product λ_{j} disjoint cycles of length r_{j} such that $r_{1}<r_{2}<\cdots<r_{k}$. The cycle, type of α is

$$
r=(\underbrace{r_{1}, \ldots, r_{1}}_{\lambda_{1}}, \ldots, \underbrace{r_{k}, \ldots, r_{k}}_{\lambda_{k}})=\left(r_{1}^{\lambda_{1}}, \ldots, r_{k}^{\lambda_{k}}\right) .
$$

We will not omit those r_{i} which are 1 , so we have $\lambda_{1} r_{1}+\cdots+\lambda_{k} r_{k}=n$. The r_{j} 's are distinct and λ_{j} 's describe their multiplicities in the partition r of n. For $j=1, \ldots, k$ let Y_{j} be the of letters in $\alpha_{j}=\alpha_{j, 1} \alpha_{j, 2} \cdots \alpha_{j, \lambda_{j}}$. In fact

$$
Y_{j}=\left\{a_{j, 1}^{(1)}, a_{j, 1}^{(2)}, \ldots, a_{j, 1}^{\left(r_{j}\right)}, \ldots, a_{j, \lambda_{j}}^{(1)}, a_{j, \lambda_{j}}^{(2)}, \ldots a_{j, \lambda_{j}}^{\left(r_{j}\right)}\right\},
$$

where $\alpha_{j, 1}=\left(a_{j, 1}^{(1)} a_{j, 1}^{(2)} \cdots a_{j, 1}^{\left(r_{j}\right)}\right), \ldots, \alpha_{j, \lambda_{j}}=\left(a_{j, \lambda_{j}}^{(1)} a_{j, \lambda_{j}}^{(2)} \cdots a_{j, \lambda_{j}}^{\left(r_{j}\right)}\right)$. Clearly, Y_{j} is $\alpha-$ invariant and $C_{G}(\alpha)$-invariant; and the restriction of α to Y_{j} is α_{j}, A permutation θ commutes, with α if and only if $\alpha=\beta_{1} \cdots \beta_{k}$, where $\beta_{j}=\beta_{j, 1} \beta_{j, 2} \cdots \beta_{j, \lambda_{j}}, \beta_{j, 1}=$ $\left(b_{j, 1}^{(1)} b_{j, 1}^{(2)} \cdots b_{j, 1}^{\left(r_{j}\right)}\right), \ldots, \beta_{j, \lambda_{j}}=\left(b_{j, \lambda_{j}}^{(1)} b_{j, \lambda_{j}}^{(2)} \cdots b_{j, \lambda_{j}}^{\left(r_{j}\right)}\right)$, and $\theta\left(a_{j, \lambda_{j}}^{\left(r_{j}\right)}\right)=b_{j, \lambda_{j}}^{\left(r_{j}\right)}$. Now, θ commutes with α if and only if each Y_{j} is θ-invariant and if the restriction β_{j} of β on Y_{j} commutes with restriction of α_{j} of α on Y_{j}. Since $Y_{i} \cap Y_{j}=\emptyset$ for $i \neq j$, the permutation β is uniquely determined by giving its restrictions on Y_{j}. Hence we have $C_{S_{n}}(\alpha)=C_{1} \times \cdots \times C_{k}$, where C_{j} is the centralizer of α_{j} in $\operatorname{Sym}\left(Y_{j}\right)$.

Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{\lambda}$, where $\sigma_{1}=\left(a_{1,0} a_{1,1} \cdots a_{1, r-1}\right), \sigma_{2}=\left(a_{2,0} a_{2,1} \cdots a_{2, r-1}\right), \ldots$, $\sigma_{\lambda}=\left(a_{\lambda, 0} a_{\lambda, 1} \cdots a_{\lambda, r-1}\right)$ be the product of λ cycles of length r. Let Y be the set of all letters in σ, that is

$$
Y=\left\{a_{1,0} a_{1,1} \cdots a_{1, r-1}, a_{2,0} a_{2,1} \cdots a_{2, r-1}, \ldots, a_{i, 0}, a_{i, 1}, \ldots a_{i, r-1}\right\} .
$$

Let $M_{r}:=\{m \in \mathbb{N} \mid m \leq r, \operatorname{gcd}(m, r)=1\}$. Then we have $\left|M_{r}\right|=\phi(r)$, where ϕ is the Euler's totient function. For every $t \in M_{r}$, since $\operatorname{gcd}(r, t)=1$ and the order of σ is r, we have $C_{G}(\sigma)=C_{G}\left(\sigma^{t}\right)$, where $G:=\operatorname{Sym}(Y)$. It follows that the number of different centralizers of permeations which are product of λ cycles of the same length r with letters in Y is

$$
\frac{\left|\sigma^{\operatorname{Sym}(Y)}\right|}{\phi(r)}
$$

Now suppose that $\alpha=\alpha_{1} \cdots \alpha_{k}$, where $\alpha_{j}=\alpha_{j, 1} \alpha_{j, 2} \cdots \alpha_{j, \lambda_{j}}, j=1, \ldots k$, is a product λ_{j} disjoint cycles of length r_{j} such that $r_{1}<r_{2}<\cdots<r_{k}$. Let $Y_{j}, j=1, \ldots, r$, be the set of letters in α_{j}. The cycle α_{1} in the decomposition $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ in S_{n} can be chosen in $\binom{n}{\left|Y_{1}\right|}=\binom{n}{r_{1} \lambda_{1}}$ ways. The cycle α_{2} can be chosen in $\binom{n-\left|Y_{1}\right|}{\left|Y_{2}\right|}=\binom{n-r_{1} \lambda_{1}}{r_{2} \lambda_{2}}$ ways. In general α_{j} can be chosen in

$$
\binom{n-\sum_{i=1}^{j-1}\left|Y_{i}\right|}{\left|Y_{j}\right|}=\binom{n-\sum_{i=1}^{j-1} \lambda_{i}}{r_{j} \lambda_{j}}=\binom{\sum_{i=j}^{k} r_{i} \lambda_{i}}{r_{j} \lambda_{j}}
$$

ways. If $r_{1}=1, \lambda_{1}=2, r_{2}=2, \lambda_{2}=1$, and $\sum_{j=3}^{k} \lambda_{j} r_{j}=n-4$, then let $\widehat{\alpha_{1}}$ be two cycles of length 1 with letters in α_{2} and $\widehat{\alpha_{2}}$ be a cycle of length 2 with letters in α_{1}. Then $\alpha_{1} \alpha_{2} \alpha_{3} \cdots \alpha_{k}$ and $\widehat{\alpha_{1}} \widehat{\alpha_{2}} \alpha_{3} \cdots \alpha_{k}$ have the same centralizers. Hence, in this case we have

$$
\frac{1}{2} \prod_{j=1}^{k} \frac{\left|\alpha_{j}^{\operatorname{Sym}\left(Y_{j}\right)}\right|}{\phi\left(r_{j}\right)}\binom{\sum_{i=j}^{k} r_{i} \lambda_{i}}{r_{j} \lambda_{j}}
$$

different centralizers of permutations whose cycle types are the same with α. Otherwise there are

$$
\prod_{j=1}^{k} \frac{\left|\alpha_{j}^{\operatorname{Sym}\left(Y_{j}\right)}\right|}{\phi\left(r_{j}\right)}\binom{\sum_{i=j}^{k} r_{i} \lambda_{i}}{r_{j} \lambda_{j}}
$$

different centralizers of permutations whose cycle types are the same with α in S_{n}.
In the following tables we denote the number of acentralizers of the same type as a permutation π by $\sharp C_{S_{n}}(\pi)$.

π	()	$(*, *)$	$(*, *, *)$
$\left\|\pi^{S_{3}}\right\|$	1	3	2
cycle type	$\left(1^{3}\right)$	$\left(1^{1}, 2^{1}\right)$	$\left(3^{1}\right)$
$C_{S_{3}}(\pi) \cong$	$C_{1} \imath S_{3} \cong S_{3}$	$\left(C_{2} \backslash S_{1}\right) \times\left(C_{1} \imath S_{1}\right) \cong C_{2}$	$C_{3} \imath S_{1} \cong C_{3}$
$\sharp C_{S_{3}}(\pi)$	1	3	1

So, $\left|\operatorname{Cent}\left(S_{3}\right)\right|=5$.

π	()	$(*, *)$	$(*, *, *)$	$(*, *)(*, *)$	$(*, *, *, *)$
$\left\|\pi^{S_{4}}\right\|$	1	6	8	3	6
cycle type	$\left(1^{4}\right)$	$\left(1^{2}, 2^{1}\right)$	$\left(1^{1}, 3^{1}\right)$	$\left(2^{2}\right)$	$\left(4^{1}\right)$
$C_{S_{4}}(\pi) \cong$	S_{4}	$C_{2} \times C_{2}$	C_{3}	D_{4}	C_{4}
$\sharp C_{S_{4}}(\pi)$	1	3	4	3	3

So, $\left|\operatorname{Cent}\left(S_{4}\right)\right|=14$.

π	()	$(*, *)$	$(*, *, *)$	$(*, *)(*, *)$	$(*, *, *, *)$	$(*, *)(*, *, *)$	$(*, *, *, *, *)$
$\left\|\pi^{S_{5}}\right\|$	1	10	20	15	30	20	24
cycle type	$\left(1^{5}\right)$	$\left(1^{3}, 2^{1}\right)$	$\left(1^{2}, 3^{1}\right)$	$\left(1^{1}, 2^{2}\right)$	$\left(1^{1}, 4^{1}\right)$	$\left(2^{1}, 3^{1}\right)$	$\left(5^{1}\right)$
$C_{S_{5}}(\pi) \cong$	S_{5}	$C_{2} \times S_{3}$	$C_{3} \times C_{2}$	D_{8}	C_{4}	$C_{2} \times C_{3}$	C_{5}
$\sharp C_{S_{5}}(\pi)$	1	10	10	15	15	10	6

So, $\left|\operatorname{Cent}\left(S_{5}\right)\right|=67$.

6. Conclusion

The acentralizer of an automorphism of a group is defined to be the subgroup of its fixed points. In particular the acentralizer of an inner automorphism is just a centralizer. In this paper we computed the acentralizers of some classes of groups, namely dihedral, dicyclic and symmetric groups. As a result we see that if $n \geq 3$, then the numbers of acentralizers of the dihedral group and the dicyclic group of order $4 n$ are equal. Also we determined the acentralizers of groups of orders $p q$ and $p q r$, where p, q and r are distinct primes.

References

[1] A. Abdollahi, S. M. J. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33(1) (2007), 43-57. https://doi.org/10.1.1.640.5229
[2] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7(1) (2000), 139-146. https://doi.org/10.1007/s10011-000-0139-5
[3] A. R. Ashrafi, Counting the centralizers of some finite groups, The Korean Journal of Computational \& Applied Mathematics 7(1) (2000), 115-124. https://doi.org/10.1007/BF03009931
[4] A. R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, The Korean Journal of Computational \& Applied Mathematics 17(1-2) (2005), 217-227. https://doi.org/ 10.1007/BF02936050
[5] A. R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, The Korean Journal of Computational \& Applied Mathematics 22(1-2) (2006), 403-410. https://doi.org/ 10.1007/BF02896488
[6] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 67(5) (1994), 366-374. https://doi.org/10.1080/0025570X.1994.11996252
[7] S. J. Baishya Counting centralizers and z-classes of some F-groups, Comm. Algebra (2021) (to appear). https://doi.org/10.1080/00927872.2021.2008413
[8] Z. Foruzanfar, Z. Mostaghim and M. Rezaei, Classification of finite simple groups according to the number of centralizers, Malays. J. Math. Sci. 12(2) (2018), 211-222.
[9] The GAP Group. Groups, Algorithms and Programing, Version 4.4, 2005. http://www. gap-system.org
[10] M. Ghorbani and F. Nowroozi Larki, Automorphism group of groups of order pqr, Algebraic Structures and their Applications 1(1) (2014), 49-56.
[11] H. Hölder, Die Gruppen der Ordnungen p^{3}, pq², pqr, p^{4}, Math. Ann. 43 (1893), 371-410. https://doi.org/10.1007/BF01443651
[12] M. A. Iranmanesh and M. H. Zareian, On n-centralizer CA-groups, Comm. Algebra 49(10) (2021), 4186-4195. https://doi.org/10.1080/00927872.2021.1916513
[13] Z. Mozafar and B. Taeri, Acentralizers of abelian groups of rank 2, Hacet. J. Math. Stat. 49(1) (2020), 273-281. https://doi.org/10.15672/hujms. 546988
[14] M. M. Nasrabadi and A. Gholamian, On finite n-Acentralizers groups, Comm. Algebra 43(2) (2015), 378-383. https://doi.org/10.1080/00927872.2013.842244
[15] K. H. Rosen, Elementary Number Theory and its Applications, Addison-Wesley, Reading, Massachusetts Menlo Park, California, 1983.
[16] P. Seifizadeh, A. Gholamian, A. Farokhianee and M. A. Nasrabadi, On the autocentralizer subgroups of finite p-groups, Turkish J. Math. 44 (2020), 1802-1812. https://doi.org/10.3906/ mat-1911-89
[17] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[18] M. Zarrin, On element-centralizers in finite groups, Arch. Math. 93 (2009), 497-503. https: //doi.org/10.1007/s00013-009-0060-1
${ }^{1}$ Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran
Email address: z.mozafar@math.iut.ac.ir
Email address: b.taeri@iut.ac.ir

[^0]: Key words and phrases. Automorphism, centralizer, acentralizer, finite groups. 2020 Mathematics Subject Classification. Primary: 20D45. Secondary: 20D25.
 DOI 10.46793/KgJMat2502.223M
 Received: August 16, 2021.
 Accepted: March 09, 2022.

