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LOCAL EXISTENCE AND BLOW UP FOR A NONLINEAR

VISCOELASTIC KIRCHHOFF-TYPE EQUATION WITH

LOGARITHMIC NONLINEARITY

ERHAN PIŞKIN1, SALAH BOULAARAS2, AND NAZLI IRKIL3

Abstract. The aim of this paper is to consider the initial boundary value prob-
lem of nonlinear viscoelastic Kirchhoff-type equation with logarithmic source term.
Firstly, we prove the local existence of weak solution by applying Banach Ąxed the-
orem. Later, we derive the blow-up results by the combination of the perturbation
energy method, concavity method and differential-integral inequality technique.

1. Introduction

In this article, we study the following viscolelastic Kirchhoff type problem

(1.1)























utt − M
(

∥∇u∥2
)

∆u +
t
∫

0
g (t − s) △ u (s) ds = u ln ♣u♣ , (x, t) ∈ Ω × R

+,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = 0, x ∈ ∂Ω × R
+,

where Ω is a bounded domain in R
3 with smooth boundary ∂Ω, M (s) = β1 + β2s

γ,
γ, s ≥ 0. Specially, we take β1 = β2 = 1. We impose some conditions to be speciĄed
on the kernel function g (t) .

The equation with the logarithmic source term is related with many branches of
physics. Cause of this is interest in it occures naturally in inĆation cosmology, nuclear
physics, supersymmetric Ąeld theories and quantum mechanics (see [3, 5, 10]). Later,

Key words and phrases. Existence, blow up, viscoelastic equation, Kirchhoff-type equation, loga-
rithmic nonlinearity.
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336 E. PIŞKIN, S. BOULAARAS, AND N. IRKIL

by the motivation of this work, some authors gave necessary and sufficient conditions
for the hyperbolic equation with logarithmic source term (see [6, 12,15,16]).

The Kirchhoff-type problem without the viscoelastic term has been extensively
studied and many results for the existence, blow up and asymptotic behaviour of
solutions have been established. For example, the following equation

utt − M
(

∥∇u∥2
)

∆u + ♣ut♣p−1 ut − ∆ut = uk−1 ln ♣u♣ ,

has been considered by Yang et al. [19], where M (s) = α + βsγ , γ > 0, α ≥ 1, β > 0.
They studied the local existence, asymptotic behavior and Ąnite time blow up of
solutions in cases subcritical energy and critical energy. And also, they proved the
Ąnite time blow up solutions in case arbitrary high energy.

In 2019, Pişkin and Irkıl [9] considered the global existence for the following equation

utt + M
(

∥∆u∥2
)

△2 u + g (ut) ut = ♣u♣p−1 ln ♣u♣k .

In recent years, when by g ̸= 0 and M is a constant function, problem have been
offered by many authors. Al-Gharabli et al. [2] considered the following equation

(1.2) ♣ut♣ρ utt + ∆2utt + ∆2u −
t
∫

0

g (t − s) ∆2uds + u = u ln ♣u♣k .

They investigated the local existence, global existence and stability for the problem
(1.2). Later, they [11] proved the existence and decay results of problem (1.2) for
ρ = 0 and absence ∆2utt term. Pişkin and Irkıl [18] studied the exponential growth
of solutions of problem (1.2) for ρ = 0 and higher order viscoelastic term. In [17], the
same authors studied the following equation

utt + [Putt + Put] + Pu + u −
t
∫

0

g (t − s) Puds + ut = u ln ♣u♣k ,

where P = (−△)m, m ≥ 1, and m ∈ N. They obtained local existence by using Faedo-
Galerkin method and a logaritmic Sobolev inequality. Later, they proved general
decay results of solutions.

In [13], Peyravi considered

(1.3) utt − ∆u + u +

t
∫

0

g (t − s) ∆u ds + h (ut) ut + ♣u♣2 u = u ln ♣u♣k ,

in Ω ⊂ R
3 with h (s) = k0 + k1 ♣s♣m−1 . He studied the decay estimate and exponential

growth of solutions for the problem (1.3).
In [20], Ye studied the logarithmic viscoelastic wave equation

utt − ∆u +

t
∫

0

g (t − s) △ u (s) ds = u ln ♣u♣ ,
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in three-dimensional space. The local and global existence for this problem are proved
and the blow up of solutions is obtained.

In 2019, Boulaaras et al. [4] studied viscoleastic Kirchhoff equation with Balakris-
hnan-Taylor damping and logarithmic nonlinearity. They obtained an arbitrary rate
of decay, which is not necessarily of polynomial or exponential decay.

In wiev of the articles mentioned above, much less effort has been devoted to initial
boundary value problem for viscoelastic Kirchhoff type equation with logarithmic
nonlinearity to our knowledge. Our purposes of this paper are to prove the local
existence and blow up result by combining of Banach Ąxed point theorem, potential
well theory and Logarithmic Sobolev inequality.

The structure of the work is as follows. To facilitate the description, Ąrstly we give
some deĄnitions, notations, energy functional and some lemmas which will be used in
our proof in Section 1. In Section 2 and in Section 3, respectively, we pove the local
existence and blow up results for the solution of problem (1.1).

2. Preliminaries

In this part, we will present some notations and lemmas which will be used through-
out this paper. We will write ∥·∥2 and ∥·∥p for the usual L2 (Ω) norm and Lp (Ω)

norm, respectively. We will use the Standart Lebesque Space L2 (Ω) with the inner
product and the norm. The inner product can take as

⟨u, v⟩ =
∫

u(x)v(x)dx,

and the norm is deĄned as

∥u∥2 = ⟨u, u⟩
1

2 .

Let us begin with deĄning the following total energy functional

E(t) =
1

2
∥ut∥2 +

1

2



1 −
t
∫

0

g (s) ds



 ∥∇u∥2 +
1

4
∥u∥2

+
1

2 (γ + 1)
∥∇u∥2(γ+1) +

1

2
(g ◦ ∇u) (t) − 1

2

∫

Ω

u2 ln ♣u♣ dx.(2.1)

The potential energy functional

J(u) =
1

2



1 −
t
∫

0

g (s) ds



 ∥∇u∥2 +
1

4
∥u∥2

+
1

2 (γ + 1)
∥∇u∥2(γ+1) +

1

2
(g ◦ ∇u) (t) − 1

2

∫

Ω

u2 ln ♣u♣ dx,

and the Nehari functional

(2.2) I(u) =



1 −
t
∫

0

g (s) ds



 ∥∇u∥2 + ∥∇u∥2(γ+1) + (g ◦ ∇u) (t) −
∫

Ω

u2 ln ♣u♣ dx,
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for u ∈ H1
0 (Ω) , where

(g ◦ ∇u) (t) =

t
∫

0

g (t − s) ∥∇u (s) − ∇u (t)∥2 ds.

Then, it is easy to show that for u ∈ H1
0 (Ω) ,

J(u) =
1

2
I(u) +

1

4
∥u∥2 − γ

γ + 1
∥∇u∥2(γ+1) ,(2.3)

E(t) =
1

2
∥ut∥2 + J(u).(2.4)

The potential well depth is deĄned as

W =
{

u ∈ H1
0 (Ω) ♣ J (u) < d, I (u) > 0

}

∪ ¶0♢ ,

and the outer space of the potential well

V =
{

u ∈ H1
0 (Ω) ♣ J (u) < d, I (u) < 0

}

.

The depth of potential well is deĄned as

(2.5) d = inf
u∈N

J (u) .

Now, we present following assumptions and some useful lemmas.
(A1) g : R+ → R

+ is a C1 nonincreasing function satisfying

g (0) ≥ 0,1 −
∞
∫

0

g (s) ds = l0 > 0,

where
∞
∫

0

g (s) ds >

∥∇u∥2 + (g ◦ ∇u) (t) − ∫

Ω
u2 ln ♣u♣ dx

∥∇u∥2 .

(A2) There exists positive constant ϑ such that

g′ (t) ≤ ϑg (t) , t ≥ 0.

Lemma 2.1 ([7,8] Logarithmic Sobolev Inequality). Let u be any function u ∈ H1
0 (Ω),

Ω ⊂ R
3 be a bounded smooth domain and a > 0 be any number. Then

∫

Ω

ln ♣u♣ u2dx <
α2

2π
∥∇u∥2 + ln ∥u∥ ∥u∥2 − 3

2
(1 + ln α) ∥u∥2

2 .

Lemma 2.2 ([1, 14]). Let n = 3. Then H1
0 (Ω) →֒ L6 (Ω) and there exists a constant

cp, the smallest positive number, satisfying

∥u∥6 ≤ cp ∥∇u∥2 , for all u ∈ H1
0 (Ω).
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Lemma 2.3. Suppose that (A1) and (A2) hold. Then the energy functional E (t) is

decresing with respect to t and

E ′ (t) =
1

2

[

(g′ ◦ ∇u) (t) − g (t) ∥∇u (t)∥2
]

≤ 0,

where

(2.6) (g′ ◦ ∇u) (t) =

t
∫

0

g′ (t − s)
∫

Ω

♣∇u (s) − ∇u (t)♣2 dxdt.

Proof. Multiplyingboth sides of (1.1) by ut and then integrating from 0 to t, we have

E (t) =

t
∫

0

1

2

[

(g′ ◦ ∇u) (t) − g (t) ∥∇u (t)∥2
]

+ E (0) ,

which yields (2.6) by a simple calculation. □

Lemma 2.4. For any u ∈ H1
0 (Ω), ∥u∥ ≠ 0, we have

i) lim
λ→0

J (λu) = 0, lim
λ→∞

J (λu) = −∞;

ii) for 0 < λ < ∞ there exists a unique λ1 such that

d

dλ
J (λu) ♣λ=λ1

= 0,

where λ1 is the unique root of equation

l0 ∥∇u∥2 + (g ◦ ∇u) (t) −
∫

Ω

u2 ln ♣u♣ dx = ln λ
∫

Ω

u2dx − λ2γ ∥∇u∥2γ+2 ;

iii) J (λu) is strictly decreasing on λ1 < λ < ∞, strictly increasing on 0 < λ < λ1

and attains the maximum at λ = λ1;

iv) I (λu) > 0 for 0 < λ < λ1, I (λu) > 0 for λ1 < λ < ∞, and I (λ1u) = 0

I (λu) = λ
d

dλ
J (λu)















> 0, 0 ≤ λ ≤ λ1,

= 0, λ = λ1,

< 0, λ1 ≤ λ.

Proof. i) By the deĄnition of J (u) , we get

J (λu) =
λ2

2



1 −
t
∫

0

g (s) ds



 ∥∇u∥2 +
λ2

2
(g ◦ ∇u) (t)

+
λ2γ+2

2 (γ + 1)
∥∇u∥2(γ+1) +

λ2

4

∫

Ω

u2dx

− λ2

2

∫

Ω

u2 ln ♣u♣ dx − λ2 ln λ

2

∫

Ω

u2dx.(2.7)

Considering ∥u∥ ≠ 0, so lim
λ→0

J (λu) = 0 and lim
λ→∞

J (λu) = −∞ hold.
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ii) Taking derivative of J (λu) with respect to λ, (2.7) yields

d

dλ
J (λu) =λ



1 −
t
∫

0

g (s) ds



 ∥∇u∥2 + λ (g ◦ ∇u) (t)

+ λ2γ+1 ∥∇u∥2(γ+1) − λ
∫

Ω

u2 ln ♣u♣ dx − λ ln λ
∫

Ω

u2dx

=λ



l0 ∥∇u∥2 + (g ◦ ∇u) (t) + λ2γ ∥∇u∥2(γ+1) −
∫

Ω

u2 ln ♣u♣ dx

−ln λ
∫

Ω

u2dx



 ,

which means that there is a unique λ1 such that d
dλ

J (λu) ♣λ=λ1
= 0, where λ1 is the

unique root of equation

l0 ∥∇u∥2 + (g ◦ ∇u) (t) −
∫

Ω

u2 ln ♣u♣ dx = ln λ
∫

Ω

u2dx − λ2γ ∥∇u∥2(γ+1) ,

where l0 ∥∇u∥2 + (g ◦ ∇u) (t) − ∫

Ω
u2 ln ♣u♣ dx < 0.

iii) A simple corollary of the ii) we get

d

dλ
J (λu) > 0, for 0 < λ < λ1,

and
d

dλ
J (λu) < 0, for λ1 < λ < ∞.

iv) From (2.2), we get

I (λu) =λ2



1 −
t
∫

0

g (s) ds



 ∥∇u∥2 + ∥∇u∥2(γ+1) + λ2 (g ◦ ∇u) (t)

−
∫

Ω

(λu)2 ln ♣λu♣ dx

=λ2



l0 ∥∇u∥2 + (g ◦ ∇u) (t) + λ2γ ∥∇u∥2(γ+1) −
∫

Ω

u2 ln ♣u♣ dx − ln λ
∫

Ω

u2dx





=λ2 d

dλ
J (λu) ,

which implies I (λ1u) = 0, then I (λu) > 0 for 0 < λ < λ1, I (λu) > 0 for λ1 < λ <
∞. □

Lemma 2.5. Assume that u ∈ H1
0 (Ω). Then d = 1

4
(2πl0)

3

2 e3.
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Proof. Combining Logarithmic Sobolev inequality and (A1) yields that

I(u) =



1 −
t
∫

0

g (s) ds



 ∥∇u∥2 + ∥∇u∥2(γ+1) + (g ◦ ∇u) (t) −
∫

Ω

u2 ln ♣u♣ dx

≥
(

l0 − α2

2π



∥∇u∥2 + ∥∇u∥2(γ+1) + (g ◦ ∇u) (t) +
[

3

2
(1 + ln α) − ln ∥u∥



∥u∥2 ,

(2.8)

for any α > 0. Taking α =
√

2πl0, by (2.8) and (A1), we arrive that

(2.9) I(u) >
[

3

2
(1 + ln α) − ln ∥u∥



∥u∥2 .

From Lemma 2.4 and (2.3), we conclude that

sup
λ≥0

J (λu) = J(λ1u) =
1

2
I(λ1u) +

1

4
∥λ1u∥2 − γ

γ + 1
∥λ1∇u∥2(γ+1)

≥ 1

2
I(λ1u) +

1

4
∥λ1u∥2 .(2.10)

It follows from (2.9) and Lemma 2.4 that

0 = I(λ1u) ≥
[

3

2
(1 + ln α) − ln ∥λ1u∥



∥λ1u∥2 ,

which implies that

(2.11) ∥λ1u∥2 ≥ (2πl0)
3

2 e3.

We gain from (2.10) and (2.11) that

(2.12) sup
λ≥0

J (λu) ≥ 1

4
(2πl0)

3

2 e3.

By (2.5) and (2.12), d = 1
4

(2πl0)
3

2 e3 > 0. □

3. Local Existence

In this part, we state and prove the local existence result for the problem (1.1).
Firstly, we consider linear problem
(3.1)






















utt − M
(

∥∇u∥2
)

∆u +
t
∫

0
g (t − s) △ u (s) ds + u = v ln ♣v♣ , (x, t) ∈ Ω × (0, T ),

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = 0, x ∈ ∂Ω × R
+,

in which T > 0.
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Lemma 3.1. Assume that (A1) and (A2) hold. Then for every (u0, u1) ∈ H1
0 (Ω) ×

L2 (Ω) and v ∈ C ([0, T ] ; H1
0 (Ω)) , problem (3.1) has a unique local solution for some

T > 0
u ∈ C

(

[0, T ) ; H1
0 (Ω)

)

, ut ∈ C
(

[0, T ) ; L2 (Ω)
)

.

Proof. Suppose that ¶wj♢∞
j=1 be the eigenfunctions of the Laplace operator with the

Dirichlet boundary condition

−∆wj = λjwj, wj ♣∂Ω= 0.

Then, we choose an orthogonal basis ¶wj♢∞
j=1 in H1

0 (Ω) which is orthonormal in

L2 (Ω) . Let Vm be the subspace of H1
0 (Ω) generated by ¶w1, w2, . . . , wm♢ , m ∈ N. We

search for an approximate solution

um (x, t) =
m
∑

j=1

hm
j (t) wj (x) ,

which satisĄes the following Cauchy problem in Vm

(3.2)















































(um
tt (t) , wj) − M

(

∥∇mu∥2
)

(∆mu (t) , wj) +
t
∫

0
g (t − s) (△mu (s) , wj) ds

= (v ln ♣v♣ , wj) , j = 1, 2, . . . , m ∈ Vm,

um (0) = um
0 =

m
∑

j=1
(u0,wj) wj, in H1

0 (Ω) , m → ∞,

um
t (0) = um

1 =
m
∑

j=1
(u1,wj) wj, in L2 (Ω) , m → ∞.

This leads to the initial value problem for a system second-order differantial equations
for unknown functions hm

j (t)

(3.3)











hm
jtt (t) + M

(

∥∇mu∥2
)

λjh
m
j (t) = Gj

(

hm
j (t)

)

, j = 1, 2, . . . , m,

hm
j (0) =

∫

Ω
u0wjdx, hm

jt (0) =
∫

Ω
u1wjdx, j = 1, 2, . . . , m,

where

Gj

(

hm
j (t)

)

=

t
∫

0

g (t − s) λjh
m
j (s) ds +

∫

Ω

v ln ♣v♣ wj, j = 1, 2, . . . , m.

Multiplying (3.3) by hm
jt (t) and sum over j from 1 to m, and later integrating over

[0, t] , we obtain

∥um
t (t)∥2 +



1 −
t
∫

0

g (s) ds



 ∥∇um∥2 +
1

γ + 1
∥∇um∥2(γ+1) + (g ◦ ∇um) (t)

= ∥um
1 (t)∥2 + ∥∇um

0 ∥2 +
1

γ + 1
∥∇um

0 ∥2(γ+1)

+ 2

t
∫

0

∫

Ω

v(s) ln ♣v(s)♣ um
t (s) dxds +

t
∫

0

[

(g′ ◦ ∇u) (s) − g (s) ∥∇u (s)∥2
]

ds
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≤ ∥um
1 (t)∥2 + ∥∇um

0 ∥2 +
1

γ + 1
∥∇um

0 ∥2(γ+1) + 2

t
∫

0

∫

Ω

v(s) ln ♣v(s)♣ um
t (s) dxds.(3.4)

We estimate the last term in the right-hand side as follows. By Hölder’s and Young’s
inequalities, we have

2

t
∫

0

∫

Ω

v(s) ln ♣v(s)♣ um
t (s) dxds ≤2

t
∫

0

∫

Ω

♣v(s) ln ♣v(s)♣♣2 dxds

t
∫

0

∫

Ω

♣um
t (s)♣2 dxds

≤
t
∫

0

∫

Ω

♣v(s) ln ♣v(s)♣♣2 dxds +

t
∫

0

∥♣um
t (s)♣∥2 ds.(3.5)

For v ∈ H1
0 (Ω) , by direct calculation and using of Lemma 2.2, we obtain

∫

Ω

♣v ln ♣v♣♣2 dx =
∫

¶x∈Ω;♣v(x)♣≤1♢

v2 (ln ♣v♣)2 dx +
∫

¶x∈Ω;♣v(x)♣>1♢

v2 (ln ♣v♣)2 dx

≤ e−2 ♣Ω♣ +
1

4

∫

¶x∈Ω;♣v(x)♣>1♢

♣v♣6 dx ≤ e−2 ♣Ω♣ +
1

4
∥v∥6

6

≤ e−2 ♣Ω♣ +
1

4
cp ∥∇v∥6 = C,(3.6)

since






ln ♣u♣ < u2

2
, ♣u (x)♣ > 1,

u ln ♣u♣ < e−1, ♣u (x)♣ ≤ 1.

It follows from (A1), (3.4), (3.5) and (3.6) that

∥um
t (t)∥2 + l0 ∥∇um∥2 +

1

γ + 1
∥∇um

0 ∥2(γ+1)

≤ ∥um
1 (t)∥2 + ∥∇um

0 ∥2 +
1

γ + 1
∥∇um

0 ∥2(γ+1) + CT +

t
∫

0

∥♣um
t (s)♣∥2 ds

≤C∗ +

t
∫

0



∥um
t (s)∥2 + l0 ∥∇um∥2 +

1

γ + 1
∥∇um∥2(γ+1)

]

ds,(3.7)

where C∗ = ∥um
1 (t)∥2 + l0 ∥∇um

0 ∥2 + 1
γ+1

∥∇um
0 ∥2γ+2 + CT. By using of Gronwall

inequality and (3.7), we get

(3.8) ∥um
t (t)∥2 + l0 ∥∇um∥2 +

1

γ + 1
∥∇um∥2(γ+1) ≤ C2e

T .

We obtain from (3.8) that






um is a bounded sequence in L∞ ([0, T ] ; H1
0 (Ω)) ,

um
t is a bounded sequence in L∞ ([0, T ] ; L2 (Ω)) .
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Hence, there exists a subsequence of ¶um♢ , still denoted by ¶um♢ , such that

(3.9)















um → u, weakly star in L∞ (0, T ; H1
0 (Ω)) ,

umt → ut, weakly star in L∞ (0, T ; L2 (Ω)) ,

umtt → utt, weakly in L2
(

0, T ; H−1
0 (Ω)

)

.

Setting up m → ∞ and passing to the limit in (3.2), and combining by (3.9), we
obtain

(utt (t) , wj) − M
(

∥∇u∥2
)

(∆u (t) , wj) +

t
∫

0

g (t − s) (△u (s) , wj) ds = (v ln ♣v♣ , wj) ,

for j = 1, 2, . . . Since ¶wj♢∞
j=1 is a base in the corresponding space, we deduce that u

satisĄes the equation in (3.1). We Ąnished this section by proving a local existence
result of the problem (1.1). □

Theorem 3.1. Suppose that (A1) holds. Assume further that u0 ∈ H1
0 (Ω) and

u1 ∈ L2 (Ω) . Then problem (1.1) has a unique local solution

u ∈ C
(

[0, T ] ; H1
0 (Ω)

)

, ut ∈ C
(

[0, T ] ; L2 (Ω)
)

.

Proof. We deĄne the following set

Xr0,T =
{

u ∈ Π ♣ ∥u (t)∥Π ≤ r2
0, t ∈ [0, T ]

}

,

here the space

Π =
{

u ♣ u ∈ C
(

[0, T ] ; H1
0 (Ω)

)

, ut ∈ C
(

[0, T ] ; L2 (Ω)
)}

,

equipped with the norm

∥u (t)∥Π = sup
0≤t≤T

(

∥um
t (t)∥2 + l0 ∥∇um∥2 +

1

γ + 1
∥∇um∥2(γ+1)



.

Then Xr0,T is a complete metric space with the distance

d (u1, u2) = ∥u1 − u2∥Π .

By Lemma 3.1, we deĄne the nonlinear mapping Ψ : v → u = Ψv in the following
way. For v ∈ Xr0,T , u = Ψv is the unique solution of problem (3.1). We claim that Ψ
is a contraction mapping from Xr0,T into itself for r0 > 0 and T > 0.

Let v ∈ Xr0,T , for t ∈ [0, T ] , we get from (A1) and (3.4) that

∥ut∥2 + l0 ∥∇u∥2 +
1

γ + 1
∥∇u∥2(γ+1)

≤ ∥u1∥2 + ∥∇u0∥2 +
1

γ + 1
∥∇u0∥2(γ+1) + 2

t
∫

0

∫

Ω

v(s) ln ♣v(s)♣ ut (s) dxds
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≤ ∥u1∥2 + ∥∇u0∥2 +
1

γ + 1
∥∇u0∥2(γ+1) +

t
∫

0

∥v(s) ln ♣v(s)♣∥2 ds +

t
∫

0

∥♣ut (s)♣∥2 ds.

(3.10)

Next we estimate the
t
∫

0
∥v(s) ln ♣v(s)♣∥2 ds term in (3.10), by using of Hölder ineqality,

Lemma 2.2, the deĄnition of ∥u (t)∥Π and the inequality ln x < x as x > 1 such that
we obtain

∥v(s) ln ♣v(s)♣∥2 =
∫

¶x∈Ω;♣v(x)♣≤1♢

v2 (ln ♣v♣)2 dx +
∫

¶x∈Ω;♣v(x)♣>1♢

v2 (ln ♣v♣)2 dx

≤
∫

¶x∈Ω;♣v(x)♣>1♢

♣v♣4 dx

≤ 3
√

Ω ∥v∥4
6 ≤ 3

√
Ωc4

p ∥∇v∥4 ≤
3
√

Ωc4
pr4

0

l2
0

.(3.11)

By combining of (3.10) and (3.11) and using of the deĄnition of ∥u (t)∥Π , we have

∥ut∥2 + l0 ∥∇u∥2 +
1

γ + 1
∥∇u∥2(γ+1) ≤ Ξ (u0, u1, r0, T ) +

t
∫

0

∥♣ut (s)♣∥2 ds

≤ Ξ (u0, u1, r0, T ) +

t
∫

0

∥u (s)∥Π ds,(3.12)

where Ξ (u0, u1, r0, T ) = ∥u1∥2 + ∥∇u0∥2 + 1
γ+1

∥∇u0∥2(γ+1) +
3
√

Ωc4
pr4

0

l2
0

T.

We get from (3.12) and Gronwall’s inequality that

(3.13) ∥u∥Π ≤ Ξ (u0, u1, r0, T ) eT .

Choosing

r0 >

√

∥u1∥2 + ∥∇u0∥2 +
1

γ + 1
∥∇u0∥2(γ+1)

and

T <





r2
0 −

(

∥u1∥2 + ∥∇u0∥2 + 1
γ+1

∥∇u0∥2(γ+1)
)

l2
0

3
√

Ωc4
pr4

0



 ,

such that Ξ (u0, u1, r0, T ) ≤ r2
0, we see that u ∈ Xr0,T by (3.13). This shows that Ψ

maps Xr0,T into itself.
Next, we shall show that Ψ is a contraction mapping. Let v1, v2 ∈ Xr0,T and u1 =

Ψv1, u2 = Ψv2, be the corresponding solution for problem (3.1). Taking U = u1 − u2,
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V = v1 − v2, then U satisĄes the following problem

(3.14)



































Utt − M
(

∥∇U∥2
)

∆U +
t
∫

0
g (t − s) △ U (s) ds

= v1 ln ♣v1♣ − v2 ln ♣v2♣ , (x, t) ∈ Ω × (0, T ) ,

U (x, 0) = Ut (x, 0) = 0, x ∈ Ω,
∂jU(x,t)

∂vj = 0, j = 0, 1, 2, . . . , m − 1, (x, t) ∈ ∂Ω × (0, T ) .

Multiplying (3.14) by Ut and then integrate it over Ω × (0, T ) , we obtain

∥Ut∥2 +



1 −
t
∫

0

g (s) ds



 ∥∇U (t)∥2 +
1

γ + 1
∥∇U (t)∥2(γ+1)

+ (g ◦ ∇U) (t) −
t
∫

0

[

(g′ ◦ ∇U) (s) − g (s) ∥∇U (s)∥2
]

ds

=2

t
∫

0

∫

Ω

(v1 ln ♣v1♣ − v2 ln ♣v2♣) Ut (x, s) dxds.(3.15)

Thanks to Lagrange mean value Theorem, we get v1 ln ♣v1♣−v2 ln ♣v2♣ = V (1 + ln ♣β♣) ,
where ♣β♣ = ♣v1 + θ (v2 − v1)♣ = ♣(1 − θ) v1 + θv2♣ , 0 < θ < 1. Thus, by applying the
same process as (3.11), we estimate the last term in (3.15) as follows

t
∫

0

∫

Ω

(v1 ln ♣v1♣ − v2 ln ♣v2♣) Ut (x, s) dxds

≤
t
∫

0

∫

Ω

V Ut (x, s) dxds +

t
∫

0

∫

Ω

V (♣v1♣ + ♣v2♣) Ut (x, s) dxds

≤
t
∫

0

∥V ∥ ∥Ut∥ ds +

t
∫

0

∥V ∥6 ∥♣v1♣ + ♣v2♣∥3 ∥Ut∥ ds

≤cp

t
∫

0

∥∇V ∥ ∥Ut∥ ds + c2
p

t
∫

0

∥∇V ∥ (♣∇v1♣ + ♣∇v2♣) ∥Ut∥ ds

≤
t
∫

0

cp

(

1 + 2l
− 1

2

0 cpr0

)

∥∇V ∥ ∥Ut∥ ds

≤1

2

[

cp

(

1 + 2l
− 1

2

0 cpr0

)2
t
∫

0

∥∇V ∥2 +
1

2

t
∫

0

∥Ut (s)∥2 ds.(3.16)

We have from (A1) , (3.15) and (3.16) that

∥Ut∥2 + l0 ∥∇U (t)∥2 +
1

γ + 1
∥∇U (t)∥2(γ+1)
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≤
[

cp

(

1 + 2l
− 1

2

0 cpr0

)2
t
∫

0

∥∇V ∥2 +

t
∫

0

∥Ut (s)∥2 ds,

which implies that

(3.17) ∥U∥Π ≤ l−1
0

[

cp

(

1 + 2l
− 1

2

0 cpr0

)2

T ∥V ∥Π +

t
∫

0

∥U∥Π ds.

By the Gronwall inequality and (3.17), we have

∥U∥Π ≤ l−1
0

[

cp

(

1 + 2l
− 1

2

0 cpr0

)2

T ∥V ∥Π eT .

By choosing

T < l0

[

cp

(

1 + 2l
− 1

2

0 cpr0

)−2

e−T ,

such that

l−1
0

[

cp

(

1 + 2l
− 1

2

0 cpr0

)2

T ∥V ∥Π eT < 1,

then Ψ is a contraction mapping.
In summary, when we choose

r0 >

√

∥u1∥2 + ∥∇u0∥2 +
1

γ + 1
∥∇u0∥2(γ+1),

and

T < min







r2
0 −

(

∥u1∥2 + ∥∇u0∥2 + 1
γ+1

∥∇u0∥2(γ+1)
)

l2
0

3
√

Ωc4
pr4

0

,

l0

[

cp

(

1 + 2l
− 1

2

0 cpr0

)−2

e−T







,

Ψ is a contraction mapping from Xr0,T to itself. According to Banach Ąxed point
theorem, we have the local existence result. The proof is completed. □

4. Blow Up

In this part, we prove the blow up result of solution for the problem (1.1). We give
some lemmas which will e used in our proof.

Lemma 4.1. If a solution u of the problem (1.1) meets u ∈ V, then

I(u (t)) < 2 (J (u) − d) .

Proof. By u ∈ V and Lemma 2.4, there exists a λ1 such that 0 < λ1 < 1 and
I(λ1u) = 0. By taking of I(λ1u) = 0, deĄnition of d in (2.5) and (2.3), we get

d < J(λ1u) =
1

2
I(λ1u) +

1

4
∥λ1u∥2 − γ

γ + 1
∥λ1∇u∥2(γ+1)
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< λ2
1

(

1

4
∥u∥2 − γ

γ + 1
∥∇u∥2(γ+1)



<
1

4
∥u∥2 − γ

γ + 1
∥∇u∥2(γ+1) .(4.1)

Combining (4.1) and (2.3) yields that

d < J(u) − 1

2
I(u),

which implies that

□(4.2) I(u) < 2 (J(u) − d) .

Lemma 4.2. Assume that u (t) is a solution of the problem (1.1). If u0 ∈ V and

E (0) < d, then E (t) < d for all t ≥ 0.

Proof. By Lemma 2.3 and (2.1), we get

J(u) ≤ E (t) ≤ E (0) < d, for all t ≥ 0.

Suppose that there exists t∗ ∈ [0, ∞) such that u (t∗) /∈ V, then by continuity of
I(u (t)), we obtain I(u (t∗)) = 0. This means that u (t∗) ∈ N. Thus, from deĄnition
of d, we get that J(u (t∗)) ≥ d, which is a contradiction with (4.2). Consequently,
Lemma 4.1 is valid. □

Theorem 4.1. Assume that u0 ∈ V, u1 ∈ L2 (Ω),
∫

Ω
u0u1dx > 0 and E (0) < d. Then

the solution u (t) in Theorem 3.1 of the problem (1.1) blows up as time t goes to

infinity.

Proof. We set

(4.3) G (t) =
∫

Ω

u2dx,

for all t ∈ [0, ∞) . It is obvious that G (t) > 0. Moreover, by using of (4.3) and (1.1),
we get

(4.4) G′ (t) = 2
∫

Ω

utudx

and

G′′ (t) =2 ∥ut∥2 + 2
∫

Ω

uttudx

=2 ∥ut∥2 − 2
∫

Ω

M
(

∥∇u∥2
)

∥∇u∥2 dx

+ 2

t
∫

0

g (t − s) ∇u (s) ∇u (t) dsdx + 2
∫

Ω

u2 ln ♣u♣
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=2 ∥ut∥2 − 2 ∥∇u∥2 − 2 ∥∇u∥2(γ+1) + 2

t
∫

0

g (t − s) ds ∥∇u∥2

+ 2

t
∫

0

g (t − s)
∫

Ω

∇u (t) (∇u (s) − ∇u (t)) dxds + 2
∫

Ω

u2 ln ♣u♣ .(4.5)

By using Young inequality, we have
(4.6)

t
∫

0

g (t − s)
∫

Ω

♣∇u (t)♣ ♣∇u (s) − ∇u (t)♣ dxds ≤
t
∫

0

g (s) ds ∥∇u∥2 +
1

4
(g ◦ ∇u) (t) .

Combining (4.5) and (4.6) yields that

G′′ (t) ≥2 ∥ut∥2 − 2 ∥∇u∥2 − 2 ∥∇u∥2(γ+1)

− 2

t
∫

0

g (s) ds ∥∇u∥2 + 2
∫

Ω

u2 ln ♣u♣ − 1

2
(g ◦ ∇u) (t)

≥2 ∥ut∥2 − 2I(u).(4.7)

From (4.4) and (4.3) and using of the Cauchy inequality, we have

♣G′ (t)♣2 ≤ 4
∫

Ω

♣ut♣2 dx
∫

Ω

♣u♣2 dx = 4G (t) ∥ut∥2 .(4.8)

Combining (4.7), (4.8) and (2.4), we arrive at

G′′ (t) G (t) − (G′ (t))
2 ≥ G (t)

(

2 ∥ut∥2 − 2I(u)
)

− 4G (t) ∥ut∥2

= −2G (t)
(

∥ut∥2 + I(u (t))
)

≥ −2G (t) (2E (t) − 2J (u (t)) + I(u (t))) .(4.9)

Combining u0 ∈ V , E (0) < d with Lemma 4.2 obtain u ∈ V , E (t) < d. By Lemma
4.1, we have

2E (t) − 2J (u (t)) + I(u) ≤ 2d − 2J (u (t)) + 2 (J(u (t)) − d) = 0.(4.10)

It follows from (4.9) and (4.10) that

G′′ (t) G (t) − (G′ (t))
2

> 0.

By directly calculation, we have

(ln ♣G (t)♣)′ =
G′ (t)

G (t)

and

(4.11) (ln ♣G (t)♣)′′ =
G′′ (t) G (t) − (G′ (t))2

(G (t))2 > 0.
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By (4.11), we know that (ln ♣G (t)♣)′ is increasing with respect to t. Integrating both
sides of (4.11) over [0, t] , we get

ln ♣G (t)♣ − ln ♣G (0)♣ =

t
∫

0

(ln ♣G (τ)♣)′ dτ =

t
∫

0

G′ (τ)

G (τ)
dτ ≥ G′ (0)

G (0)
t,

which implies that

G (t) ≥ G (0) exp

(

G′ (0)

G (0)
t



.

G (t) tends to inĄnity as time goes to inĄnity. This completed our proof. □
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PERMUTING TRI-DERIVATIONS ON POSETS

AHMED Y. ABDELWANIS1 AND ABDUL RAUF KHAN2

Abstract. Let P be a partially ordered set (poset). The main objective of the
present paper is to introduce and study the idea of permuting tri-derivations of
posets. Several characterization theorems involving permuting tri-derivations are
given. In particular, we prove that if d1 and d2 are two permuting tri-derivations
of P with traces φ1 and φ2, then φ1 ≤ φ2 if and only if φ2(φ1(x)) = φ1(x) for all
x ∈ P .

1. Introduction

Motivated by the ideas of derivations and related maps in rings and algebras (see
[1,2,7,9] and references therein), the notions of derivation on lattices were introduced
and studied in [10] and [11], respectively. Recently, several authors have studied and
verified a lot of meaningful conclusions by applying derivations and its generalized
forms to lattices (see [3] for more details). In see of over mentioned development, it
is very common to exchange the idea of derivations to partially ordered sets. In this
direction some progress have already been made (see [14]). In the year 2009, Öztürk et
al. [8] brought about the idea of permuting tri-derivations to lattices and investigated
some related properties (for more information see also [4] and [13]).

In the present paper, the notion of permuting tri-derivation of a partially ordered
sets is introduced and some related properties are investigated. Precisely, in Section
2, the notion of permuting tri-derivations of partially ordered sets is presented and
concentrate their essential properties. Further, the fixed sets (for more information
about fixed sets see [12]) are examined in light of the permuting tri-derivations. Finally,

Key words and phrases. Derivation, fixed points, partially ordered set (poset), permuting tri-
derivation.
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Section 3 is devoted to the study of the properties of ideals and the operations related
with the permuting tri-derivations.

Throughout this paper, (P, ≤) always denotes a partially ordered set (poset). We
additionally utilize the shorthand P to indicate a poset. According to [14], for
z ∈ P, we write, ↓ z = ¶p ∈ P : p ≤ z♢ and ↑ z = ¶p ∈ P : z ≤ p♢. For
W ⊆ P, we denote l(W ) = ¶p ∈ P : p ≤ w, for all w ∈ W♢ the lower cone of W and
u(W ) = ¶p ∈ P : w ≤ p, for all w ∈ W♢ the upper cone of W dually. It is quickly clear
that both are antitone and their compositions l(u(·)) and u(l(·)) are monotone. Also,
we have l(u(l(·))) = l(·), u(l(u(·))) = u(·) from [5]. If W = ¶w1, w2, . . . , wn♢ is a finite
subset, then we write l(W ) = l(w1, w2, . . . , wn) and u(W ) = u(w1, w2, . . . , wn) simply.
Moreover, for W1 ⊆ P and W2 ⊆ P, we will denote l(W1, W2) for l(W1 ∪ W2) and
u(W1, W2) for u(W1∪W2). For A ⊆ P , we write ↓ A = ¶p ∈ P : p ≤ a for some a ∈ A♢.

From [6], we find that if A =↓ A, then A is said to be a lower set. A is directed if it is
nonempty and every finite subset of A has an upper bound in A. From nonemptiness,
it is ample to expect each combine of components in A has an upper bound in A. A
subset J of P is called an ideal if it is a directed lower set.

2. Permuting Tri-Derivations on Posets

The following notions are essential in our discussions.

Definition 2.1. ([14, Definition 2.1]) Let (P, ≤) be a poset and d : P → P be a
function. We call d a derivation on P if it satisfies the following conditions:

(i) d(l(x, y)) = l(u(l(d(x), y), l(x, d(y)))) for all x, y ∈ P ;
(ii) l(d(u(x, y))) = l(u(d(x), d(y))) for all x, y ∈ P .

Let (P, ≤) be a poset. A mapping f : P × P × P → P is called permuting
if f(x, y, z) = f(x, z, y) = f(y, x, z) = f(y, z, x) = f(z, x, y) = f(z, y, x) for all
x, y, z ∈ P. A mapping d : P → P defined by d(x) = f(x, x, x) for all x ∈ P, is called
the trace of f where f is a permuting mapping.

Inspired by the notion permuting tri-derivations on rings [2, 7] and lattices [8, 13]
the following notion on posets is introduced.

Definition 2.2. Let (P, ≤) be a poset and d : P × P × P → P be a permuting
mapping. Nextly, d is called a permuting tri-derivation on P if for all x, y, z, w ∈ P

the following conditions hold:

(i) d(l((x, w), y, z) = l(u(l(d(x, y, z), w), l(x, d(w, y, z)))) for all x, y, z, w ∈ P ;
(ii) l(d(u(x, w), y, z))) = l(u(d(x, y, z), d(w, y, z)) for all x, y, z, w ∈ P.

Remark 2.1. Note that, a permuting tri-derivation on P satisfies the following condi-
tions:

(i) d(x, l(y, w), z) = l(u(l(d(x, y, z), w), l(y, d(x, w, z)))) for all x, y, z, w ∈ P ;
(ii) l(d(x, u(y, w), z))) = l(u(d(x, y, z)), d(x, w, z))) for all x, y, z, w ∈ P ;
(iii) d(x, y, l(z, w)) = l(u(l(d(x, y, z), w), l(z, d(x, y, w)))) for all x, y, z, w ∈ P ;
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(iv) l(d(x, y, u(z, w)))) = l(u(d(x, y, z)), d(x, y, w))) for all x, y, z, w ∈ P.

Example 2.1. Let (P, ≤) = (N, ≤). Define the function d : N × N × N → N by
d(x, y, z) = min¶x, y, z♢ for all x, y, z ∈ P. It is straightforward to check that d is a
permuting tri-derivation on P.

Proposition 2.1. Let P be a poset and d be a permuting tri-derivation on P with

trace ϕ. Then the followings hold:

(1) d(x, y, z) ≤ x, d(x, y, z) ≤ y and d(x, y, z) ≤ z for all x, y, z ∈ P ;
(2) d(x, y, z) ∈ l(x, y, z), for all x, y, z ∈ P ;
(3) if x1 ≤ x2 and y, z ∈ P , then d(x1, y, z) ≤ d(x2, y, z);
(4) if y1 ≤ y2 and x, z ∈ P , then d(x, y1, z) ≤ d(x, y2, z);
(5) if z1 ≤ z2 and x, y ∈ P , then d(x, y, z1) ≤ d(x, y, z2);
(6) ϕ(x) ≤ x, for all x ∈ P ;
(7) ϕ(l(x)) ⊆ l(ϕ(x)), for all x ∈ P ;
(8) if x ≤ y, then ϕ(x) ≤ ϕ(y);
(9) ϕ2(x) = ϕ(x), for all x ∈ P.

Proof. (1) Let d be a permuting tri-derivation on P. Then

d(l(x, x), y, z) = l(u(l(d(x, y, z), x), l(x, d(x, y, z))))

= l(u(l(x, d(x, y, z))))

= l(x, d(x, y, z)),

for all x, y, z ∈ P . Since d(x, y, z) ∈ d(l(x, x), y, z), the above relation gives d(x, y, z) ∈
l(x, d(x, y, z)) for all x, y, z ∈ P. In this way, we conclude that d(x, y, z) ≤ x for
all x, y, z ∈ P. Similarly, we can prove d(x, y, z) ≤ y and d(x, y, z) ≤ z. Hence,
d(x, y, z) ≤ x, d(x, y, z) ≤ y and d(x, y, z) ≤ z for all x, y, z ∈ P.

(2) It is obvious from (1).
(3) Let x1 ≤ x2 and y, z ∈ P. Then

l(d(u(x1, x2)), y, z) = l(d(u(x2), y, z)) = l(u(d(x1, y, z), d(x2, y, z))),

for all x1, x2, y, z ∈ P. Since d(x1, y, z) ∈ l(u(d(x1, y, z), d(x2, y, z))), we find that
d(x1, y, z) ∈ l(d(u(x2), y, z)) for all x1, x2, y, z ∈ P. Hence, d(x1, y, z) ≤ d(x2, y, z) for
all x1, x2, y, z ∈ P.

(4), (5) Proofs run on comparable lines as in (3).
(6) By the definition,

d(l(x, x), x, x) = l(u(l(d(x, x, x), x), l(x, d(x, x, x))))

= l(u(l(x, d(x, x, x))))

= l(x, d(x, x, x)),

for all x ∈ P . Since d(x, x, x) ∈ d(x, l(x, x), x)), the last relation gives

ϕ(x) = d(x, x, x) ∈ l(x, d(x, x, x)), for all x ∈ P.

Consequently, we get ϕ(x) = d(x, x, x) ≤ x for all x ∈ P.
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(7) Let x ∈ P. Then

ϕ(l(x)) = ¶d(y, y, y) : y ∈ P and y ≤ x♢,

⊆ d(l(y, y), y, y)

= l(u(l(d(y, y, y), y), l(y, d(y, y, y))))

= l(u(l(d(y, y, y), y)))

= l(u(l(d(y, y, y))))

= l(d(y, y, y))

= l(ϕ(y)), for all y ∈ P and y ≤ x.

This implies that ϕ(l(x)) ⊆ l(ϕ((x))) for all x ∈ P.

(8) Let x, y ∈ P such that x ≤ y. Then, applications of part (7) we get ϕ(l(y)) ⊆
l(ϕ(y)). Since ϕ(x) ∈ ϕ(l(y)), we find that ϕ(x) ∈ l(ϕ(y)) for all x, y ∈ P. Hence, we
conclude that ϕ(x) ≤ ϕ(y) for all x, y ∈ P.

(9) In view of part (5), we get ϕ2(x) = ϕ(ϕ(x)) ≤ ϕ(x) ≤ x for all x ∈ P. Then for
all x ∈ P

ϕ(l(x)) ⊆ l(ϕ(x)),

⊆ d(l(x), y, y)

= d(l(x, x), y, y)

= l(u(l(d(x, y, y), x), l(d(x, y, y)), x))

= l(u(l(d(x, y, y)), l(d(x, y, y))))

= l(u(l(d(x, y, y)))

= l(d(x, y, y))

⊆ l(x, y)

= l(y), for all y ∈ P and y ≤ x.

Then for all x ∈ P we have ϕ(l(x)) ⊆ l(y) for all y ∈ P such that y ≤ x. Since
ϕ2(x) ≤ x for all x ∈ P, we observe that ϕ(l(x)) ⊆ l(ϕ2(x)) for all x ∈ P. Since
ϕ(x) ∈ ϕ(l(x)) for all x ∈ P, so ϕ(x) ∈ l(ϕ2(x)) for all x ∈ P. This implies that
ϕ(x) ≤ ϕ2(x) for all x ∈ P. Hence, finally, ϕ2(x) = ϕ(x) for all x ∈ P. □

Example 2.2. Let (P, ≤) = (N, ≤). Define the function d : N × N × N → N by
d(x, y, z) = max¶x, y, z♢ for all x, y, z ∈ P. Then, d is not a permuting tri-derivation
on P.

Corollary 2.1. Let P be a poset with the least element 0 and let d be a permuting

tri-derivation on P. Then d(0, y, z) = 0 for all y, z ∈ P.

Lemma 2.1. Let P be a poset and I be an ideal of P. Next, let d be a permuting

tri-derivation on P . Then d(x, y, z) ∈ I for all x, y, z ∈ I.
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Proof. Let x, y, z ∈ I. Then in view of Proposition 2.1 (1), we get d(x, y, z) ≤ x for
all x, y, z ∈ I. The last expression yields d(x, y, z) ∈ I, since x ∈ I. Hence, the result
holds. □

Lemma 2.2. Let d be a permuting tri-derivation on P with trace ϕ. Then the following

statements hold:

(1) If d(l(x), x, x) = l(y), then ϕ(x) = y for all x, y ∈ P ;

(2) If d(u(x), x, x) = u(y), then ϕ(x) = y for all x, y ∈ P.

Proof. (1) Let x, y ∈ P such that d(l(x), x, x) = l(y). Then, by the definition of l(·),
we get y ∈ l(y) for all y ∈ P. This gives y ∈ d(l(x), x, x). Hence, there exists z ∈ l(x)
such that d(z, x, x) = y. Application of Proposition 2.1(3) yields y = d(z, x, x) ≤
d(x, x, x) = ϕ(x) for x ∈ P. Therefore, the above relation forces that y ≤ ϕ(x) for all
x, y ∈ P. On the other hand if ϕ(x) ∈ d(l(x), x, x) = l(y), then we obtain ϕ(x) ≤ y.

Hence ϕ(x) = y for all x, y ∈ P.

(2) By using comparable approach with fundamental variety, we can prove (2). □

Theorem 2.1. Let P be a poset with a greatest element 1 and d be a permuting

tri-derivation on P with trace ϕ. Then ϕ(1) = 1 if and only if d(x, 1, 1) = x for all

x ∈ P.

Proof. By the assumption, ϕ(1) = d(1, 1, 1) = 1. In view of Proposition 2.1(1), it is
easy to see that d(x, 1, 1) ≤ x for all x ∈ P. Secondly, to prove that x ≤ d(x, 1, 1) for
all x ∈ P. Let x ∈ P. Then, we have

d(l(x), 1, 1) = d(l(x, 1), 1, 1)

= l(u(l(d(x, 1, 1), 1), l(x, d(1, 1, 1)))

= l(u(l(d(x, 1, 1), 1), l(x, 1))

= l(u(l(d(x, 1, 1)), l(x))

= l(u(l(x))) (since d(x, 1, 1) ≤ x)

= l(x).

By another way, observe that

d(l(x), 1, 1) = d(l(x, x), 1, 1)

= l(u(l(d(x, 1, 1), x), l(x, d(x, 1, 1)))

= l(u(l(d(x, 1, 1))), l(d(x, 1, 1)))

= l(u(l(d(x, 1, 1))))

= l(d(x, 1, 1).

On comparing the above two expressions, we get l(x) = l(d(x, 1, 1)) for all x ∈ P.

Hence d(x, 1, 1) = x for all x ∈ P . The converse part is clear. □

Theorem 2.2. Let P be a poset with a least element 0 and a greatest element 1.

Next, let d be a permuting tri-derivation on P . Then d(1, 0, 0) = 0 if and only if

d(x, 0, 0) = 0 for all x ∈ P.
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Proof. Suppose that d(1, 0, 0) = 0 and x ∈ P. Then

d(l(1), 0, 0) = d(l(1, 1), 0, 0)

= l(u(l(d(1, 0, 0), 1), l(1, d(1, 0, 0))))

= l(u(l(0, 1), l(1, 0))

= l(u(l(0), l(0)) = l(u(l(0)))

= l(0) = ¶0♢.

But l(1) = P and x ∈ P, the above relation gives d(x, 0, 0) ∈ d(l(1), 0) = l(0) = ¶0♢.

Hence, d(x, 0, 0) = 0 for all x ∈ P . For the converse part, proof is obvious. □

Theorem 2.3. Let P be a poset with a greatest element 1 and d be a permuting

tri-derivation on P with trace ϕ. If x ≤ ϕ(1), then d(x, 1, 1) = x for all x ∈ P.

Proof. Let x ≤ ϕ(1) = d(1, 1, 1) for all x ∈ P. Then for all x ∈ P, we have

d(l(x), 1, 1) = d(l(x, 1), 1, 1)

= l(u(l(d(x, 1, 1), 1), l(x, d(1, 1, 1))))

= l(u(l(d(x, 1, 1)), l(x)))

= l(u(l(x))) (since d(x, 1, 1) ≤ x)

= l(x).

On the other hand,

d(l(x), 1, 1) = d(l(x, x), 1, 1)

= l(u(l(d(x, 1, 1), x), l(x, d(x, 1, 1))))

= l(u(l(d(x, 1, 1)), l(d(x, 1, 1))))

= l(u(l(d(x, 1, 1))))

= l(d(x, 1, 1)).

By comparing the above two expressions, we infer that l(d(x, 1, 1)) = l(x). Hence,
d(x, 1, 1) = x for all x ∈ P. This proves the theorem completely. □

Corollary 2.2. Let P be a poset with a greatest element 1 and d be a permuting

tri-derivation on P with trace ϕ. Then ϕ(1) = 1 if and only if ϕ = idP (identity map

on P ).

Proof. Assume that ϕ(1) = d(1, 1, 1) = 1. Now we prove that x = ϕ(x) = d(x, x, x)
for all x ∈ P. Let x ∈ P. Then, we have

d(l(x), x, x) = d(l(x, 1), x, x)

= l(u(l(d(x, x, x), 1), l(x, d(1, x, x)))

= l(u(l(d(x, x, x)), l(d(1, x, x))

= l(u(l(d(1, x, x))) (since d(x, x, x) ≤ d(1, x, x))

= l(d(1, x, x)).
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By another way, observe that

d(l(x), x, x) = d(l(x, x), x, x)

= l(u(l(d(x, x, x), x), l(x, d(x, x, x)))

= l(u(l(d(x, x, x))), l(d(x, x, x)))

= l(u(l(d(x, x, x))))

= l(d(x, x, x).

On comparing the above two expressions, we get l(d(x, x, x)) = l(d(1, x, x)) for all
x ∈ P. Hence d(x, x, x) = d(1, x, x) for all x ∈ P . Again

d(l(x), x, 1) = d(l(x, 1), x, 1)

= l(u(l(d(x, x, 1), 1), l(x, d(1, x, 1)))

= l(u(l(d(x, x, 1)), l(d(1, x, 1))

= l(u(l(d(1, x, 1))) (since d(x, x, 1) ≤ d(1, x, 1))

= l(d(1, x, 1)).

Similarly we observe that

d(l(x), x, 1) = d(l(x, x), x, 1)

= l(u(l(d(x, x, 1), x), l(x, d(x, x, 1)))

= l(u(l(d(x, x, 1))), l(d(x, x, 1)))

= l(u(l(d(x, x, 1))))

= l(d(x, x, 1).

From the above two expressions, we get l(d(1, x, 1)) = l(d(x, x, 1)) for all x ∈ P.

So d(1, x, 1) = d(x, x, 1) for all x ∈ P . Since d is permuting map then d(1, x, 1) =
d(x, 1, 1) = d(1, x, x) = d(x, x, 1) for all x ∈ P. Hence, ϕ(x) = d(x, x, x) = d(x, 1, 1)
for all x ∈ P. Applications of Theorem 2.3 gives ϕ(x) = x for all x ∈ P , i.e., ϕ = idP .

The converse part is obvious. □

Theorem 2.4. Let P be a poset and d : P × P × P → P be a permuting map. Then,

d is a permuting tri-derivation on P if and only if

(1) d(l(x, y), z, w)) = l(d(x, z, w), y)) = l(x, d(y, z, w)) for all x, y, z, w ∈ P ;
(2) l(d(u(x, y), z, w))) = l(u(d(x, z, w), d(y, z, w))) for all x, y, z, w ∈ P .

Proof. Essentially ought to appear that the condition (1) in Definition 2.1 is identical
to the one (1) in this hypothesis. First, we suppose that the condition in this hypothesis
holds. Then

d(l(x, y), z, w) = l(d(x, z, w), y)

= l(u(l(d(x, z, w), y)))

= l(u(l(d(x, z, w), y), l(x, d(y, z, w)))),
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for all x, y, z, w ∈ P . Secondly, suppose that d is a permuting tri-derivation on P.

Then

l(d(x, y, z), w) = l(u(l(d(x, y, z), w)))

⊆ l(u(l(d(x, y, z), w), l(x, d(y, z, w))))

= d(l(x, w), y, z)),

for all x, y, z, w ∈ P . On the other hand, suppose that v ∈ d(l(x, y), z, w)), then there
exists t ∈ l(x, y) satisfying the relation d(t, z, w) = v. By using Proposition 2.1 (1) and
(3), it is easy to see that d(t, z, w) ≤ d(x, z, w), d(t, z, w) ≤ d(y, z, w) ≤ y. This shows
that v = d(t, z, w) ∈ l(d(x, z, w), y). Thus d(l(x, y), z, w)) ⊆ l(d(x, z, w), y). Hence,

d(l(x, y), z, w)) = l(d(x, z, w), y), for all x, y, z, w ∈ P.

Similarly, the case d(l(x, y), z, w)) = l(x, d(y, z, w)) for all x, y, z, w ∈ P . This proves
the theorem. □

Let P be a poset and d be a permuting tri-derivation on P with trace ϕ. Put
Fixφ(P ) = ¶x ∈ P : ϕ(x) = x♢. If P has a least element 0, then 0 ∈ Fixφ(P ). In view
of Proposition 2.1, it is easy to get Fixφ(P ) ̸= ∅.

Proposition 2.2. Let d, t be two permuting tri-derivations on P with traces ϕ1, ϕ2,

respectively. Then ϕ1 = ϕ2 if and only if Fixφ1
(P ) = Fixφ2

(P ).

Proof. It is clear that if ϕ1 = ϕ2, then Fixφ1
(P ) = Fixφ2

(P ). Conversely, assume
that Fixφ1

(P ) = Fixφ2
(P ), and x ∈ P. Then by Proposition 2.1 (9), obtain ϕ1(x) ∈

Fixφ1
(P ) = Fixφ2

(P ). This implies that ϕ2(ϕ1(x)) = ϕ1(x). By a similar way we get
ϕ1(ϕ2(x)) = ϕ2(x) for all x ∈ P . Application of Proposition 2.1 (6), (8) yields that
ϕ1(x) ≤ ϕ2(x) and ϕ2(x) ≤ ϕ1(x) for all x ∈ P. Consequently, ϕ1 = ϕ2. □

Proposition 2.3. Let P be a poset with a least element 0 and d be a permuting

tri-derivation on P with trace ϕ. Then the followings hold.

(1) Fixφ(P ) ̸= ∅.

(2) If x ∈ Fixφ(P ), and y ≤ x then y ∈ Fixφ(P ).
(3) If P is directed, then, for any x, y ∈ Fixφ(P ), there exists z ∈ Fixφ(P )

satisfying x ≤ z, y ≤ z.

Proof. (1) Since ϕ(0) = d(0, 0, 0) = 0, then 0 ∈ Fixφ(P ). Thus, Fixφ(P ) ̸= ∅.

(2) Assume that x ∈ Fixφ(P ), and y ≤ x then ϕ(x) = d(x, x, x) = x. Then using
Proposition 2.1 (6) implies that ϕ(y) ≤ y. Now prove that y ≤ ϕ(y). Using Theorem
2.4 (1), to get d(l(y), x, x) = d(l(x, y), x, x) = l(d(x, x, x), y) = l(x, y) = l(y). Since
y ∈ l(y), so y ∈ d(l(y), x, x) and this leads to y ≤ d(y, x, x). Hence d(y, x, x) = y.

Again by using Theorem 2.4 (1) get d(l(y), y, y) = d(l(x, y), y, y) = l(d(x, y, y), y) =
l(d(x, y, y))). Application of Lemma 2.2 (1) yields that ϕ(y) = d(x, y, y). Thus, using
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Theorem 2.4 (2) implies that

l(d(u(y), y, x)) = l(d(u(y, y), y, x))

= l(u(d(y, y, x), d(y, y, x)))

= l(u(d(y, y, x))).

Since d(y, y, x) = d(x, y, y), d(y, x, x) = d(x, y, x) ∈ l(d(u(y), y, x)), and this leads
to d(y, x, x) ∈ l(u(d(x, y, y))). Thus, y = d(y, x, x) ≤ d(x, y, y) = ϕ(y). Hence, y ∈
Fixφ(P ).

(3) Assume that P is directed. Then for any x, y ∈ P, there exists v ∈ P such
that x ≤ v and y ≤ v. Since x, y ∈ Fixφ(P ), then ϕ(x) = x and ϕ(y) = y. Since
ϕ(x) = x ≤ ϕ(v) and ϕ(y) = y ≤ ϕ(v). Put z = ϕ(v), hence by Proposition 2.1 (7) we
get z ∈ Fixφ(P ). □

Corollary 2.3. Let P be a directed poset with the least element 0. Then Fixφ(P ) is

an ideal of P .

3. Structural Properties of Posets Including Permuting
Tri-Derivations

In this section, P is a poset with the least element 0.

Theorem 3.1. Let P be a poset with the least element 0 and d be a permuting tri-

derivation on P with trace ϕ. Then ker ϕ = ¶x ∈ P : ϕ(x) = 0♢ is a nonempty lower

set of P .

Proof. In view of Proposition 2.1, ϕ(0) = d(0, 0, 0) = 0. Thus, 0 ∈ ker ϕ, and hence
ker ϕ ̸= ∅. Suppose that x ∈ ker ϕ and y ∈ P such that y ≤ x. Then ϕ(x) = 0 and
y ≤ x. Using Proposition 2.1 (8) to get ϕ(y) ≤ ϕ(x) = 0. Thus, ϕ(y) = 0 for all y ∈ P.

This shows that y ∈ ker ϕ. Hence, ker ϕ = ¶x ∈ P : ϕ(x) = 0♢ is a nonempty lower set
of P . □

Proposition 3.1. Let P be a poset with the least element 0. Next, let d be a permuting

tri-derivation on P with trace ϕ and I be an ideal of P . Then, ϕ−1(I) is an ideal of

P such that ker ϕ ⊆ ϕ−1(I).

Proof. Since ϕ(0) = 0, 0 ∈ ϕ−1(I). Then, ϕ−1(I) ̸= ∅. Suppose x ∈ ϕ−1(I) and y ≤ x.

Then ϕ(x) ∈ I. Thus, using Proposition 2.1 (8), to obtain ϕ(y) ≤ ϕ(x) ∈ I. Since I is
an ideal, hence ϕ(y) ∈ I, and this leads to y ∈ ϕ−1(I). Hence, ϕ−1(I) is an ideal of P.

On the other hand, note that ker ϕ = ϕ−1(¶0♢) ⊆ ϕ−1(I). □

Proposition 3.2. Let P be a poset and d be a permuting tri-derivation on P with

trace ϕ. If I, J are two ideals of P such that I ⊆ J, then ϕ(I) ⊆ ϕ(J).

Proof. Assume that x ∈ ϕ(I), then there exists y ∈ I ⊆ J such that x = ϕ(y). Hence,
x ∈ ϕ(J). This implies that ϕ(I) ⊆ ϕ(J). □
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Theorem 3.2. Let P be a poset and d1, d2 be two permuting tri-derivations on P

with traces ϕ1, ϕ2, respectively. Then ϕ1(x) ≤ ϕ2(x) for all x ∈ P if and only if

ϕ2(ϕ1(x)) = ϕ1(x) for all x ∈ P.

Proof. Let d1, d2 be two permuting tri-derivations on P, with traces ϕ1, ϕ2, respectively,
such that ϕ1 ≤ ϕ2. Then, for any x ∈ P, ϕ1(x) ∈ Fixφ1

(P ), i.e., ϕ1(x) = ϕ1(ϕ1(x)) ≤
ϕ2(ϕ1(x)). Proposition 2.1 (6) gives that ϕ2(ϕ1(x)) ≤ ϕ1(x). Thus, ϕ2(ϕ1(x)) = ϕ1(x)
for all x ∈ P. This shows that ϕ2(ϕ1(x)) = ϕ1(x) for all x ∈ P. On the other hand
we find that ϕ1(x) = ϕ2(ϕ1(x)) ≤ ϕ2(x), for any x ∈ P, from Proposition 2.1 (6),
(8). This implies that ϕ1(x) ≤ ϕ2(x) for all x ∈ P. This completes the proof of the
theorem. □
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POLYNOMIAL WEIGHTED APPROXIMATION BY
SZÁSZ-MIRAKYAN OPERATORS OF MAX-PRODUCT TYPE

ECEM ACAR1, ADRIAN HOLHOŞ2, AND SEVILAY KIRCI SERENBAY3

Abstract. In this paper, we study approximation of Szász-Mirakyan operators of
max-product type in polynomial weighted spaces. We reckon the rate of approx-
imation in terms of some exponential weighted spaces for obtain a better rate of
approximation than the corresponding positive linear operators.

1. Introduction

In [9], the Szász-Mirakjan operators were deĄned as below

(1.1) Sn(f ; x) = e−nx
∞
∑

k=0

(nx)k

k!
f



k

n



, x ∈ [0, ∞), n ≥ 1.

Many studies have been done about the approximation results for this operators and
estimates of the rate of convergence. These studies are mainly using positive linear
operators. However, nonlinear operators of max-product type were studied in the
papers [2Ű4] and the conclusion is that they have the same order of approximation as
in the case of positive linear operators and even better for some subclasses of functions.
In [3], the authors investigated the nonlinear operators of Favard-Szász-Mirakjan of
max-product type deĄned by

(1.2) Fn(f, x) =

∨∞
k=0

(nx)k

k!
f


k
n



∨∞
k=0

(nx)k

k!

, x ∈ [0, ∞),

Key words and phrases. Szász-Mirakyan operators, weighted modulus of continuity, weighted
approximation
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where
∨

indicates the supremum. Moreover, they studied these operators for con-
tinuous and bounded functions deĄned on x ≥ 0 in [3, 4]. In [5], A. Holhoş studied
the approximation properties of Fn in weighted spaces with the weight w(x) = eαϕ(x),
where φ(x) =

√
x and α > 0 is constant independent of x (see [1]). In [8], he

introduced a new modulus of continuity. In [5], the author estimated the rate of
convergence of these operators to the identity operator . Firstly, he introduce some
general notations to obtain the results.

The function φ : I → J is deĄned on a noncompact interval I ⊆ R. The interval
J ⊆ R is just φ(I). The space of continuous functions is deĄned as

(1.3) Cϕ,α =

{

f ∈ C(I) there is M > 0 such that
♣f(x)♣
eαϕ(x)

≤ M for every x ∈ I

}

.

This space can be endowed with the norm

(1.4) ∥f∥ϕ,α = sup
x∈I

e−αϕ(x)♣f(x)♣.

The modulus of continuity ωϕ,α (f ; ·) is given for every f ∈ Cϕ,α and δ ≥ 0 as follows

(1.5) ωϕ,α (f ; δ) =
♣f(t) − f(x)♣

max (eαϕ(t), eαϕ(x))
,

which the supremum is taken for all x, t ∈ I such that φ(t) ∈ (φ(x) − δ, φ(x) + δ) ∩
φ(I). For α = 0 and φ(x) = x, we obtain the usual modulus of continuity ω(f ; δ).

In this paper, our main problem is that the operators Fn can be used for approxi-
mation with polynomial weight w(x) = (1 + x)α by taking φ(x) = ln(1 + x) and we
estimate the rate of convergence of these operators to the identity operator. Hence, we
show approximation of Szász-Mirakyan operators of max-product type in polynomial
weighted spaces.

2. Polynomial Weighted by Szász-Mirakyan operators

In this section, we prove some auxiliary results to obtain some estimates of the rate
of approximation of functions given by (1.1) and (1.2).

Remark 2.1. For n ∈ N take the intervals

(2.1) I0 =


0,



n

n + 1

α

, Ik =



k



n + k − 1

n + k

α

, (k + 1)



n + k

n + k + 1

α]

.

The intervals are nonempty, disjoint and their union is the positive half line. Indeed,

lk = (k + 1)



n + k

n + k + 1

α

− k



n + k − 1

n + k

α

≥ 0.

Lemma 2.1. If nx ∈ Ij, then
∨∞

k=0
(nx)k

k!



n+k
n

α
= (nx)j

j!



n+j

n

α
.
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Proof. Let us denote ak = (nx)k

k!



n+k
n

α
. We get

0 ≤ ak+1 ≤ ak if and only if nx ∈


0, (k + 1)



n + k

n + k + 1

α

.

Let us take k = 0, 1, . . . We obtain

a1 ≤ a0 if and only if nx ∈


0,



n

n + 1

α

,

a2 ≤ a1 if and only if nx ∈


0, 2


n + 1

n + 2

α

,

a3 ≤ a2 if and only if nx ∈


0, 3


n + 2

n + 3

α

,

and so on. From all these inequalities, we get

if nx ∈ I0, then ak ≤ a0, for all k = 0, 1, . . . ,

if nx ∈ I1, then ak ≤ a1, for all k = 0, 1, . . . ,

if nx ∈ I2, then ak ≤ a2, for all k = 0, 1, . . . ,

and so on. Generally, if nx ∈ Ij, then ak ≤ aj, for all k = 0, 1, . . . , that proves the
lemma. □

Lemma 2.2. For every x ≥ 0 we obtain Fn ((1 + t)α, x) ≤ (1 + x)α


1 + α
n

α
.

Proof. Let us take nx ∈ Ij. By using Lemma 2.1, we obtain

Fn ((1 + t)α, x) =

∨∞
k=0

(nx)k

k!



n+k
n

α

∨∞
k=0

(nx)k

k!

=

(nx)j

j!



n+j

n

α

(nx)m

m!

.

Let us take m = ⌊nx⌋. So, we have m ≤ nx < (j + 1)


n+k
n+k+1

α
< j + 1 and we

can say that nx ≤ ⌊nx⌋ + 1 = m + 1, hence we obtain nx
m+1

≤ 1. By using Bernoulli
inequality, we have

j − nx ≤j − j



n + j − 1

n + j

α

= j



1 −


1 − 1

n + j

α

≤ jα
1

n + j
≤ α.

Hence, we get

e−α ln(1+x)Fn ((1 + t)α, x) =
1

(1 + t)α

(nx)j

j!



n+j

n

α

(nx)m

m!

≤


nx

m + 1

j−m


n + j

n(1 + x)

α

≤


n + j

n + nx

α

=


n + j + nx − nx

n + nx

α

=


1 +
j − nx

n + nx

α

≤


1 +
α

n

α

. □
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Remark 2.2. For every x ≥ 0, we have

Fn (max ¶(1 + t)α, (1 + x)α♢ , x) ≤ (1 + x)α



1 +
α

n

α

.

Indeed,

Fn (max ¶(1 + t)α, (1 + x)α♢ , x) = max ¶Fn ((1 + t)α, x) , Fn ((1 + x)α, x)♢

≤ max


(1 + x)α



1 +
α

n

α

, (1 + x)α



=(1 + x)α



1 +
α

n

α

.

Remark 2.3. For φ(x) = ln(1+x), for every function f belonging to Cϕ,α the functions
Fnf also belonging to Cϕ,α. Indeed,

♣Fn (f, x)♣ ≤ Fn (♣f ♣, x) ≤Fn



∥f∥ϕ,α (1 + x)α, x


= ∥f∥ϕ,α Fn ((1 + x)α, x) = ∥f∥ϕ,α



1 +
α

n

α

(1 + x)α.

Lemma 2.3. For every x ≥ 0 and n ∈ N, the following inequality is obtained

∨

k≤nx
(nx)k

k!
(ln(1 + (nx)) − ln(1 + k))
∨∞

k=0
(nx)k

k!

≤ 1

2
.

Proof. For x = 0, we obtain equality. By taking m = ⌊nx⌋, we proved that
∨∞

k=0
(nx)k

k!
= (nx)m

m!
. Let us consider the inequality ln(1 + x) ≤ x, then we get

ln(1 + (nx)) − ln(1 + k) = ln



1 + (nx)

1 + k



≤ (nx) − k

1 + k
.

Let us take bk = (nx)k

k!
· (nx)−k

1+k
. Firstly, to evaluate the maximum of bk, we observe

that

bk

bk−1

=
nx

k + 1
· nx − k

nx − k + 1
≤ 1

if and only if (nx)2 − (2k + 1)(nx) + (k2 − 1) ≤ 0. This inequalityŠs solution is
equivalent to nx ∈ [pk, qk] which is

pk =
(2k + 1) −

√
4k + 5

2
, qk =

(2k + 1) +
√

4k + 5

2
.

We can write the following inequality

0 ≤ pk < pk+1 <
2k + 1

2
<

2k + 3

2
< qk < qk+1 ≤ 1, for all k ≥ 0.
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After some computations, we get nx ∈
[

2m−1
2

, 2m+1
2



. We deduce that if nx ∈ Ij, then

bk ≤ bj for every k ≥ 1. We obtain
∨

1≤k≤nx bk

(nx)m

m!

≤


2j + 1

2
− j



=
1

2
. □

Lemma 2.4. For x ≥ 0, the following inequality holds true
∨

k>nx
(nx)k

k!



n+k
n

α
(ln(1 + k) − ln(1 + nx))

∨∞
k=0

(nx)k

k!

≤


1 +
2α

n

α

(1 + x)α
.

Proof. For x = 0 we have equality. Let us take x > 0. Consider m ≥ 0 the integer

with the property that nx ∈
[

2m−1
2

, 2m+1
2



. Using the inequality we get

ln(1 + k) − ln(1 + nx) ≤ k − nx

1 + nx
,

and denoting

ck =
(nx)k

k!
(nx)m

m!



n + k

n(1 + x)

α
k − nx

1 + nx
,

it remains to prove that
∞
∨

k=m+1

ck ≤


1 +
2α

n

α

.

Let us take the inequality

ck+1

ck

=
nx

k + 1



n + k + 1

n + k

α
k + 1 − nx

k − nx
≥ 1

if and only if

αk(nx)2 − (αk(k + 1) + k + 1) (nx) + k(k + 1) ≤ 0,

where αk =


n+k+1
n+k

α
. Hence, ck+1 ≥ ck is true if and only if nx ∈ [rk, sk], where

rk =
k + 1

2
+

k + 1

2αk

−
√

Ek, sk =
k + 1

2
+

k + 1

2αk

+
√

Ek

and

Ek =
(αk(k + 1) + k + 1)2 − 4αkk(k + 1)

4α2
k

.

Now, we prove below that

(2.2) 0 < rk < rk+1 <
k + 2

2
< sk.

By using (2.2) we deduce that rm < m
2

≤ nx. Let us take the unique j ≥ m such that
x ∈ [rj, rj+1). For every k ≥ j + 1, we get nx ∈ [rk, sk], so ck+1 ≤ ck. We obtain that
ck ≤ cj+1 for every k ≥ j + 1. Now consider k ∈ ¶m, . . . , j♢ . Using (2.2) again, we
get rk ≤ rj ≤ nx < m+2

2
< k+2

2
< sk. Since nx ∈ [rk, sk], we obtain ck+1 ≥ ck and so

cj+1 ≥ ck for every k ∈ ¶m, . . . , j♢ .
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Now, we need some estimates to evaluate the maximum of ck for k ≥ m + 1. We
have

j + 1 − rj =j + 1 − j + 1

2
− j

2αj

+
√

Ek

=
αj(j + 1) − j

2αj

+

√

√

√

√

(αk(k + 1) + k)2 − 4αkk2

4α2
k

≤n2 + 1

2n
,

because

αj(j + 1) = (j + 1)


e
α ln(1+ 1

n+j )


≤ (j + 1)α
1

n + j
≤ α.

Consequently,
∞
∨

k=m+1

ck =cj+1

=

(nx)j+1

(j+1)!

(nx)m

m!



n + j + 1

n + nx

α (j + 1 − nx)

1 + nx

≤


n + j + 1

n + rj

α
j + 1 − rj

1 + rj

≤


1 +
2α

n

α

.

Let us consider the inequality (2.2). The most difficult to prove is the inequality
rk+1 > rk, other statuses as in [6]. We have

rk+1 − rk =
k + 2

2
+

k + 2

2αk+1

−
√

Ek+1 − k + 1

2
+

k + 1

2αk

−
√

Ek

=
1

2
· (k + 2)αk − (k + 1)(αk+1)

2αkαk+1

+
Ek − Ek+1√
Ek − √

Ek+1

=
αk(k + 2)

√
Ek +

√
Ek+1



− (k + 1)αk+1

√
Ek +

√
Ek+1



4αkαk+1

+
(Ek − Ek+1) 4αkαk+1

4αkαk+1

√
Ek +

√
Ek+1

 .

This equalityŠs Ąrst half is positive, it is clear. For positivity of the second part of the
equality, let us take k+2

2
< sk and rk+1 < k+2

2
from (2.2), then we get

√

Ek >
αk − k

2αk

,
√

Ek+1 >
k + 1

2αk+1

.

Hence, we proved the lemma. □

Lemma 2.5. For every x ≥ 0 and n ∈ N, we get

Fn (max ¶(1 + t)α, (1 + x)α♢ ♣ln(1 + t) − ln(1 + x)♣ , x) ≤ max


1 +
2α

n

α

,
1

2



(1 + x)α
.
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Proof. We have

Fn (max ¶(1 + t)α, (1 + x)α♢ ♣ln(1 + t) − ln(1 + x)♣ , x) = max ¶An, Bn♢ ,

where

An =

∨

k>nx
(nx)k

k!



n+k
n

α
(ln(1 + k) − ln(1 + nx))

∨∞
k=0

(nx)k

k!

,

Bn =

∨

k≤nx
(nx)k

k!
(1 + x)α (ln(1 + nx) − ln(1 + k))

∨∞
k=0

(nx)k

k!

.

By Lemma 2.4 we have


1 + 2α
n

α
and by Lemma 2.3, 1

2
(1 + x)α. □

Theorem 2.1. For φ(x), for every f ∈ Cϕ,α the estimation of the error of uniform

approximation by Fn is bounded by

∥Fnf − f∥ϕ,α ≤


1 +
2α

n

α

(1 + x)α +
1

2
(1 + x)α



ωϕ,α



f,
1√
n



,

for every n ∈ N.

Proof. Because Fn(1, x) = 1, using ([3], Lemma 2.1) we get

♣Fn(f ; x) − f(x)♣ ≤Fn (♣f(t) − f(x)♣, x)

≤Fn



max ¶(1 + t)α, (1 + x)α♢


1 +
♣φ(t) − φ(x)♣

δn



, x



ωϕ,α(f, δn)

≤


Cn +
Dn(x)

δn



ωϕ,α(f, δn),

which

Cn(x) =Fn (max ¶(1 + t)α, (1 + x)α♢ , x) ,

Dn(x) =Fn (max ¶(1 + t)α, (1 + x)α♢ ♣φ(t) − φ(x)♣, x) .

Using Remark 2.2 and Lemma 2.5 and choosing δn = 1√
n
, we have

1

(1 + x)α
♣Fn(f ; x) − f(x)♣ ≤



1 +
2α

n

α

+
1

2



ωϕ,α



f,
1√
n



,

which proves the theorem. □

Remark 2.4. Let us take consideration that for polynomial weighted of the operator
given in (1.2) the order of approximation is better that 1√

n
. From [3], we deduce that

the estimate

♣Fn(f, x) − f(x)♣ ≤ M

n
, n ≥ 1,

is true for a positive, increasing, concave and Lipschitz function f , which is not
necessarily bounded.
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Theorem 2.2. For f ∈ Cϕ,α we have

∥Snf − f∥ϕ,α ≤ Cα · ωϕ,α



f,
1√
n



,

for every n ∈ N, where C > 0 is a constant.

Proof. We know that Sn(eα
√

t, x) ≤ Mα · eα
√

x, which Mα > 0 is a constant depending
only on α in [1], Lemma 3.1 and in [7], similar inequality given for α = 0. We get

♣Sn(f, x) − f(x)♣ ≤Sn (♣f(t) − f(x)♣, x)

≤Sn



((1 + t)α + (1 + x)α)



1 +
φ(t) − φ(x)

δn



, x



ωϕ,α(f, δn)

≤


Cn(x) +
Dn(x)

δn



ωϕ,α(f, δn),

where

Cn(x) =Sn ((1 + t)α + (1 + x)α, x) ≤ (M + 1)(1 + x)α,

Dn(x) =Sn (((1 + t)α + (1 + x)α) ♣φ(t) − φ(x)♣ , x)

=Sn ((1 + t)α ♣φ(t) − φ(x)♣ , x) + (1 + x)αSn (♣φ(t) − φ(x)♣ , x) .

Using the Cauchy-Schwarz inequality ♣Sn(fg, x)♣ ≤
√

Sn(f 2, x) ·
√

Sn(g2, x) and the

estimation Sn



♣φ(t) − φ(x)♣2 , x


≤ 1
n

(see the proof of Corollary 3.2 and Remark 3.3

from [1]) we get

Dn(x) ≤
√

Sn ((1 + t)2α, x)

√

Sn



♣φ(t) − φ(x)♣2 , x


+ (1 + x)αSn (♣φ(t) − φ(x)♣ , x)

≤
√

(M2α(1 + t))2α
1√
n

+ (1 + x)α 1√
n

=


√

M2α + 1


(1 + x)α 1√
n

.

Choosing δn = 1√
n

1

(1 + x)α
♣Sn(f, x) − f(x)♣ ≤ Cαωϕ,α



f,
1√
n



,

which proves the theorem. □
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CRITICAL EXPONENTS CURVE FOR SEMILINEAR SYSTEM OF

WEAKLY COUPLED EFFECTIVELY DAMPED WAVES WITH

DIFFERENT POWER NONLINEARITIES

A. MOHAMMED DJAOUTI

Abstract. In this paper we prove a blow-up result for the semi linear system of
weakly coupled effectively damped waves with different power nonlinearities

utt − ∆u + b(t)ut = ♣v♣p, vtt − ∆v + b(t)vt = ♣u♣q,

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),

where b(t) will be explained in detail in the next sections. We apply the so called
“test function method” to determine the range for the exponents p, q > 0 in the
nonlinear terms in which local in time existence may not globally prolonged with
respect to the t variable under suitable integral sign assumptions for the Cauchy
data u0, u1, v0, v1. Since we prove the blow-up in a complementary range for powers
of the nonlinear terms to that for the global existence of small data solutions (see
[7]), the main blow-up of this paper is optimal.

1. Introduction

The sharpness of the results for the global (in time) existence of small data solutions
or the notion of “blow-up of local (in time) solutions” means that if the pivotal
condition for the global (in time) existence is not satisfied, then the solution does, in
general, not exist globally (in time) regardless of the size of the data. Among several
methods to prove blow-up results, the test function method is an important method
which was introduced in the paper [19] and applied by Zhang for damped waves in
[28].

Key words and phrases. Weakly coupled hyperbolic systems, damped wave equations, Cauchy
problem, blow up, effective dissipation.
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A fundamental step to use this method consists in the modification of the choice of
a suitable scaling for the test function with respect to the time and space variables.
In particular, the scaling with respect to t is given by the function F (R), introduced
in [3, Definition 2.2] which is strongly related to the coefficient b(t).

Let us consider the Cauchy problem for the classical damped wave equation with
power nonlinearity

(1.1) utt − ∆u+ ut = ♣u♣p, u(0, x) = u0(x), ut(0, x) = u1(x),

where (t, x) ∈ [0,∞) × Rn.
The nonexistence result for p = pF uj(n) has been established in [28]. Todorova and

Yordanov proved in [26] that pF uj(n) = 1 + 2
n

is critical.
In the following we recall an important result which the reader can find in the

book of Ebert and Reissig [8]. The proof of Theorem 1.1 explains the basics and the
philosophy of the test function method.

Theorem 1.1. Let (u0, u1) ∈ A1,1 = (H1 ∩ L1) × (L2 ∩ L1) satisfy the assumption

(1.2)
∫

Rn



u0(x) + u1(x)


dx > 0,

with n ≥ 1 and p ∈ (1, 1 + 2
n
]. Then there exists a unique locally (in time) defined

energy solution u to (1.1) in C([0, T ), H1) ∩ C
1([0, T ), L2) for some T > 0. This

solution cannot be continued to the interval [0,∞) in time.

The Cauchy problem (1.1) has also been investigated by many authors [9–17, 20–
23,28,29].

Let us now consider the weakly coupled system of semilinear classical damped waves

utt − ∆u+ ut = ♣v♣p, vtt − ∆v + vt = ♣u♣q,

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),
(1.3)

where (t, x) ∈ [0,∞) × Rn, p, q ≥ 1 and pq > 1. Motivated by some previous papers
concerned with the case of the Cauchy problem for a semilinear single equation, the
authors in [24] and [25] studied the blow-up behavior of solutions of the system (1.3).
In the following theorem we will recall the result of F. Sun and M. Wang published
in [25].

Theorem 1.2. Let n ≥ 1. Assume that q ≥ p ≥ 1 and n
2

≤ q+1
pq−1

. If the data satisfy

(ui, vi) ∈ [W 1−i,1(Rn) ∩W 1−i,∞(Rn)]2, for i = 0, 1,

and
∫

Rn
ui(x)dx > 0,

∫

Rn
vi(x)dx > 0, for i = 0, 1,

then the Sobolev solution (u, v) of the Cauchy problem (1.3) does not exist globally (in
time).
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2. Blow-up Result for Weakly Coupled Systems of Semilinear Damped
Waves with Different Coefficients in the Dissipation Terms

Firstly, let us consider the Cauchy problem for a semilinear classical damped wave
equation, namely

(2.1) utt − ∆u+ b(t)ut = ♣u♣p, u(0, x) = u0(x), ut(0, x) = u1(x),

where the dissipation term b(t)ut is supposed to be effective in the sense of Wirth [27].
The damping term b(t)ut is called effective in the model (2.1) if b = b(t) satisfies the
following properties:

• b is a positive and monotonic function with tb(t) → ∞ as t → ∞;
• ((1 + t)2b(t))−1 ∈ L1(0,∞);

• b ∈ C
3[0,∞) and ♣b(k)(t)♣ ≲ b(t)

(1+t)k for k = 1, 2, 3;

• 1
b
/∈ L1(0,∞) and there exists a constant a ∈ [0, 1) such that tb′(t) ≤ ab(t).

Typical examples are

b(t) =
µ

(1 + t)r
, b(t) =

µ

(1 + t)r
(log(e+ t))γ, b(t) =

µ

(1 + t)r(log(e+ t))γ
,

for some µ > 0, γ > 0 and r ∈ (−1, 1).
We introduce for m ∈ [1, 2) the function space

Am,1 := (H1 ∩ Lm) × (L2 ∩ Lm),

with the norm

∥(u, v)∥Am,1 := ∥u∥H1 + ∥u∥Lm + ∥v∥L2 + ∥v∥Lm .

We denote by B(t, 0) the primitive of 1/b(t) which vanishes at t = 0, that is,

B(t, 0) :=
∫ t

0

1

b(r)
dr.

In [2] the authors determined the critical exponent p = pF uj(n) := 1 + 2
n
. That means

after proving the global existence for some admissible range p > pF uj(n), the authors
proved also that, in general, the solution cannot be globally defined for 1 < p ≤ pF uj(n)
under suitable sign assumptions for the Cauchy data. In other words, we have, in
general, only local solutions (in time). The case b(t) = µ

(1+t)r with µ > 0 and r > 0

was studied in [18].
Let us consider now the Cauchy problem for the following system:

utt − ∆u+ b(t)ut = ♣v♣p, vtt − ∆v + b(t)vt = ♣u♣q,

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),
(2.2)

where (t, x) ∈ [0,∞) × Rn. As we already remarked during the treatment of the
models (1.3) and (1.1) the test function method is not influenced by higher regularity
of the data. We restrict ourselves to prove the sharpness of our results for the
Cauchy problem (2.2), where the data are supposed to belong to the energy space
A1,1 := (H1 ∩ L1) × (L2 ∩ L1).
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In [7] the authors proved the global (in time) existence of small data solution to
(2.2), which means that the solution exists globally for

n

2
>

max¶p; q♢ + 1

pq − 1
.

Theorem 2.1 ([7]). Let n ≤ 2m2

2−m
and n < 2m

m−1
. The data (u0, u1), (v0, v1) are

supposed to belong to Am,1 × Am,1 with m ∈ [1, 2). Finally, the exponents p and q
satisfy the assumptions

2

m
≤ min¶p; q♢ < pF uj,m(n) < max¶p; q♢, if n ≤ 2,(2.3)

2

m
≤ min¶p; q♢ < pF uj,m(n) < max¶p; q♢ ≤ pGN(n), if n > 2,(2.4)

and

m


max¶p; q♢ + 1

pq − 1



<
n

2
.

Then there exists a small constant ϵ0 such that if

∥(u0, u1)∥Am,1 + ∥(v0, v1)∥Am,1 ≤ ϵ0,

then there exists a uniquely determined globally (in time) energy solution to (2.2) in


C([0,∞), H1) ∩ C
1([0,∞), L2)

2
.

In the following we will prove the optimality of our results from Theorem 2.1. That
means, if

n

2
≤

max¶p; q♢ + 1

pq − 1
,

then, under suitable integral sign assumptions on the initial data, the local (in time)
energy solution cannot be extended globally. The ideas of the proof of the following
theorem are based on the paper [3] which is devoted to study a general case of model
(2.1).

Theorem 2.2. Let b = b(t) such that b(t)ut, b(t)vt are effective dissipation terms.

Moreover, let

lim inf
t−→∞

b′(t)

b(t)2
> −1, lim sup

t−→∞

tb′(t)

b(t)
< 1,

and let p, q such that
n

2
≤

max¶p, q♢ + 1

pq − 1
,

where pq > 1. Then there exists no global classical solution (u, v) ∈ (C2([0,∞) × Rn))
2

to (2.2) with initial data ((u0, u1), (v0, v1)) ∈ A1,1 × A1,1 such that
∫

Rn
u0(x) + b̂−1

1 u1(x)dx >0,(2.5)
∫

Rn
v0(x) + b̂−1

1 v1(x)dx >0,
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where b̂1 is defined in (2.6).

Before proving this theorem we show the following lemma which will be used later
in the proof.

Lemma 2.1. Let g = g(t) ∈ C([0,∞)) be a solution of the following initial value

problem for an ordinary differential equation

(2.6) −g′(t) + g(t)b(t) = 1, g(0) =
1

b̂1

.

If b = b(t) satisfies the assumptions of Theorem 2.2, then it holds g(t) ≈ 1
b(t)

and

(2.7) ♣g′(t) − 1♣ ≤ C.

The proof of Lemma 2.1 can be concluded from [3] and [18].

Proof. For the sake of brevity we assume that q > p. We multiply (2.2) by the positive
function g = g(t) which is defined in Lemma 2.1. In this way we obtain

(g(t)u)tt − ∆(g(t)u) − (g′(t)u)t + (−g′(t) + g(t)b(t))ut =g(t)♣v♣p,

(g(t)v)tt − ∆(g(t)v) − (g′(t)v)t + (−g′(t) + g(t)b(t))vt =g(t)♣u♣q.

From the definition of g = g(t) we may conclude

(g(t)u)tt − ∆(g(t)u) − (g′(t)u)t + ut = g(t)♣v♣p,

(g(t)v)tt − ∆(g(t)v) − (g′(t)v)t + vt = g(t)♣u♣q.

We introduce the test functions η ∈ C
∞

0 [0,∞) with 0 ≤ η(t) ≤ 1, where

η(t) =

{

1, for 0 ≤ t ≤ 1
2
,

0, for t ≥ 1,

ϕ ∈ C
∞

0 (Rn) with 0 ≤ ϕ(x) ≤ 1, where

ϕ(x) =

{

1, for 0 ≤ ♣x♣ ≤ 1
2
,

0, for ♣x♣ ≥ 1.

Moreover, one can choose test functions η, ϕ and 1 < α, β, α′, β′ < p such that

max

{

♣η′(t)♣β

η(t)
;
♣η′′(t)♣α

η(t)

}

≤ C, for
1

2
≤ t ≤ 1,

and

max

{

♣ ▽ ϕ(x)♣β
′

ϕ(x)
;
♣∆ϕ(x)♣α

′

ϕ(x)

}

≤ C, for
1

2
< ♣x♣ < 1,

where we choose 1 < α, β, α′, β′ < min¶p; q♢. Let R be a large parameter in [0,∞)
and

QR := [0, F (R)] ×BR, BR := ¶x ∈ Rn : ♣x♣ ≤ R♢.

We define the test function

ψR(t, x) := ηR(t)ϕR(x) = η


t

F (R)



ϕ


x

R



,
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where F (R) = B−1(R2, 0) and B−1(t, 0) is the inverse function of B(t, 0). It fol-
lows that F : [0,∞) → [0,∞) is a strictly increasing function with F (0) = 0 and
lim

R→∞

F (R) = ∞. Moreover, we have R ≲ F (R) as a result of b(t) ≳ (1 + t)−1.

We have after integrating by parts
∫

QR

g(t)♣v♣pψRd(t, x) = −
∫

BR

(u0 + b̂−1
1 u1)ψRdx

+
∫

QR



g(t)u∂2
t ψR + (g′(t) − 1)u∂tψR + g(t)u∆ψR



d(t, x)

and
∫

QR

g(t)♣u♣qψRd(t, x) = −
∫

BR

(v0 + b̂−1
1 v1)ψRdx

+
∫

QR



g(t)v∂2
t ψR + (g′(t) − 1)v∂tψR + g(t)v∆ψR



d(t, x).

For sufficiently large R, thanks to (2.5), this implies
∫

QR

g(t)♣v♣pψRd(t, x) ≲
∫

QR

∣

∣

∣g(t)u∂2
t ψR + (g′(t) − 1)u∂tψR + g(t)u∆ψR

∣

∣

∣ d(t, x)

and
∫

QR

g(t)♣u♣qψRd(t, x) ≲
∫

QR

∣

∣

∣g(t)v∂2
t ψR + (g′(t) − 1)v∂tψR + g(t)v∆ψR

∣

∣

∣ d(t, x).

Using Lemma 2.1, Hölder’s inequality with 1
q

+ 1
q′

= 1 and (2.7) we get
∫

QR

♣ug(t)∂2
t ψR♣d(t, x)(2.8)

≤


∫

QR

♣u♣qg(t)ψRd(t, x)


1
q


∫

QR

ψ
−

q′

q

R g(t)♣∂2
t ψR♣q

′

d(t, x)


1
q′

,
∫

QR

♣u(g′(t) − 1)∂tψR♣d(t, x)(2.9)

≤


∫

QR

♣u♣qg(t)ψRd(t, x)


1
q


∫

QR

g(t)b(t)q′

ψ
−

q′

q

R ♣∂tψR♣q
′

d(t, x)


1
q′

,
∫

QR

♣ug(t)∆ψR♣d(t, x)(2.10)

≤


∫

QR

♣u♣qg(t)ψRd(t, x)


1
q


∫

QR

ψ
−

q′

q

R g(t)♣∆ψR♣q
′

d(t, x)


1
q′

.

We apply a change of variables t = F (R)τ and x = Ry. Then we have

d(t, x) = F (R)Rnd(τ, y), ∂tψR = F (R)−1∂τψR, ∂2
t ψR = F (R)−2∂2

τψR,

and

∆xψR = R−2∆yψR,
F (R)

2
≤ t ≤ F (R),

R

2
≤ ♣x♣ ≤ R ⇔

1

2
≤ τ, ♣y♣ ≤ 1.
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With this change of variables we get for (2.8) the chain of inequalities


∫

QR

ψ
−

q′

q

R g(t)♣∂2
t ψR♣q

′

d(t, x)


1
q′

=


∫ 1

1
2

∫ 1

1
2

ψ
−

q′

q

R g(t)(F (R)τ)F (R)−2q′

♣ψR♣
q′

α F (R)Rndτdy


1
q′

≲



F (R)−2q′

Rn
∫ F (R)

F (R)
2

g(t)dt


1
q′

≲



F (R)−2q′

Rn
∫ F (R)

F (R)
2

1

b(t)
dt


1
q′

≲


F (R)−2q′

RnB(F (R), 0)


1
q′

≲F (R)
n+2−2q′

q′ .

Consequently, we arrive at

(2.11)


∫

QR

ψ
−

q′

q

R g(t)♣∂2
t ψR♣q

′

d(t, x)


1
q′

≲ F (R)
n+2−2q′

q′ .

In the same way we can prove for (2.10) the estimate

(2.12)


∫

QR

ψ
−

q′

q

R g(t)♣∆ψR♣q
′

d(t, x)


1
q′

≲ F (R)
n+2−2q′

q′ .

Finally, let us turn to (2.9). We have


∫

QR

g(t)b(t)q′

ψ
−

q′

q

R ♣∂tψR♣q
′

d(t, x)


1
q′

≲



F (R)−q′

∫

QR

b(t)q′
−1ψ

−
q′

q

R ♣ψR♣
q′

β d(t, x)


1
q′

≲



F (R)−q′

Rn
∫ F (R)

F (R)
2

b(t)q′
−1dt


1
q′

.

Since F (0) = 0 and

F ′(R) = (B−1(R2, 0))′ =
2R

B′(F (R))
= 2Rb(F (R)),

using b(t) ≈ b( t
2
) and B(t, 0) −B( t

2
, 0) ≈ B(t, 0) from [2, Remark 4.1], we get

∫ F (R)

F (R)
2

b(t)q′
−1dt ≈ (b(F (R)))q′

∫ F (R)

F (R)
2

b(t)−1dt ≈ (b(F (R)))q′

R2.

Moreover, we have
b(F (R))

F (R)
≈

1

B(F (R), 0)
= R−2.

Finally, we obtain

(2.13)


∫

QR

g(t)b(t)q′

ψ
−

q′

q

R ♣∂tψR♣q
′

d(t, x)


1
q′

≲ F (R)
n+2−2q′

q′ .
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Consequently, from (2.11) to (2.13) we get

(2.14)
∫

QR

g(t)♣v♣pψRd(t, x) ≲ F (R)
n+2−2q′

q′


∫

QR

♣u♣qgψRd(t, x)


1
q

.

Analogously, one can get also
(2.15)

∫

QR

g(t)♣u♣qψRd(t, x) ≲ F (R)
n+2−2p′

p′


∫

QR

♣v♣pgψRd(t, x)


1
p

, where
1

p
+

1

p′
= 1.

From (2.14) and (2.15) we obtain


∫

QR

g(t)♣v♣pψRd(t, x)


pq−1
pq

≤ F (R)s1 ,


∫

QR

g(t)♣u♣qψRd(t, x)


pq−1
pq

≤ F (R)s2 ,(2.16)

where

s1 =
n+ 2

q′
− 2 +



n+ 2

p′
− 2



1

q
and s2 =

n+ 2

p′
− 2 +



n+ 2

q′
− 2



1

p
.

The assumption n
2

≤ q+1
pq−1

implies that s2 ≤ 0. We consider two cases.

• If s2 < 0, then letting R → ∞ in the inequality (2.16) we obtain
∫

∞

0

∫

Rn
g(t)♣u♣qd(t, x) = 0.

This implies u ≡ 0. This is a contradiction to the assumptions.
• If s2 = 0, then there exists a positive number R0 such that

∫

Ω
g(t)♣u♣qψRd(t, x) ≤ R0,

where Ω = ¶(t, x) ∈ [0,∞) × Rn : F (R)
2

≤ t ≤ F (R), R
2

≤ ♣x♣ ≤ R♢. From
∂tψR = ∂ttψR = ∆ψR = 0 for (t, x) ∈ QR⧹Ω, one can prove similarly to (2.14)
and (2.15) the following estimates:

∫

∞

0

∫

Rn
g(t)♣v♣pψRd(t, x) +

∫

BR

(u0 + b̂−1
1 u1)ψRdx ≲ F (R)

n+2−2q′

q′


∫

Ω
♣u♣qgψRd(t, x)


1
q

,

∫

∞

0

∫

Rn
g(t)♣u♣qψRd(t, x) +

∫

BR

(v0 + b̂−1
1 v1)ψRdx ≲ F (R)

n+2−2p′

p′


∫

Ω
♣v♣pgψRd(t, x)


1
p

.

Last estimates for s2 = 0 leads to
∫

∞

0

∫

Rn
g(t)♣u♣qd(t, x) +

∫

BR

(v0 + b̂−1
1 v1)ψRdx ≲ 0,

for R → ∞. This is also a contradiction. The proof is completed. □
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3. Concluding Remarks

Recently, in [1] the author proved the blow-up of solutions for a model with constant
coefficients considering the additional regularity Lm by taking a lower bound for the
initial data u0(x) ∈ L1

loc and u0(x) ≥ ϵ♣x♣−
n
m log ♣x♣. Assuming a similar condition in

our case by mixing additional regularities, we get from
∫

BR
(u0 + b̂−1

1 u1)ψR(0, x)dx

and
∫

BR
(v0 + b̂−1

1 v1)ψR(0, x)dx a lower bound with respect to R ≲ F (R) after using
ψR(0, x) = ϕR(x). This generated R cannot leads to the requested contraction. Finally,
this means that the mentioned approach is not suitable for our model.

Assuming the weakly coupled system of semilinear damped waves (2.2) with different
coefficients in the dissipation terms b1(t)ut and b2(t)ut.

(3.1)
utt − ∆u+ b1(t)ut = ♣v♣p, vtt − ∆v + b2(t)vt = ♣u♣q,
u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),

The global existence (in time) of solutions of this Cauchy problem was treated in [4–7],
where the data are defined in different classes of regularity which are the followings:
low regular data, data from energy space, data from Sobolev spaces with suitable
regularity and, finally, large regular data. The blow-up of (3.1) where b1(t) = µ

(1+t)r1
,

b2(t) = µ

(1+t)r2
, r1, r2 ∈ (−1, 1), with data from energy space can be treated in a

separated forthcoming project.
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INVESTIGATIONS ON A RIEMANNIAN MANIFOLD WITH A

SEMI-SYMMETRIC NON-METRIC CONNECTION AND

GRADIENT SOLITONS

KRISHNENDU DE1, UDAY CHAND DE2, AND AYDIN GEZER3

Abstract. This article carries out the investigation of a three-dimensional Rie-
mannian manifold N3 endowed with a semi-symmetric type non-metric connection.
Firstly, we construct a non-trivial example to prove the existence of a semi-symmetric
type non-metric connection on N3. It is established that a N3 with the semi-
symmetric type non-metric connection, whose metric is a gradient Ricci soliton, is
a manifold of constant sectional curvature with respect to the semi-symmetric type
non-metric connection. Moreover, we prove that if the Riemannian metric of N3

with the semi-symmetric type non-metric connection is a gradient Yamabe soliton,
then either N3 is a manifold of constant scalar curvature or the gradient Yamabe
soliton is trivial with respect to the semi-symmetric type non-metric connection. We
also characterize the manifold N3 with a semi-symmetric type non-metric connec-
tion whose metrics are Einstein solitons and m-quasi Einstein solitons of gradient
type, respectively.

1. Introduction

In this paper, on a Riemannian manifold N3, we carry out an investigation of gra-
dient solitons with a semi-symmetric type non-metric connection (briefly, SSNMC).
Many years ago, on a differentiable manifold, Friedman and Schouten [11] presented
the concept of semi-symmetric linear connection. After that in 1932, on a Riemannian
manifold, Hayden [15] introduced the notion of metric connection with torsion. In
1970, a systematic investigation of semi-symmetric metric connection which plays a

Key words and phrases. Riemannian manifolds, gradient Ricci solitons, gradient Yamabe solitons,
gradient Einstein solitons, m-quasi Einstein solitons.
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significant role in the study of Riemannian manifolds, was conducted by Yano [23].
In this connection, we may mention the work of Zengin et al. [24, 25].

On N3, a linear connection ∇̂ is named semi-symmetric if T̂ , the torsion tensor
defined by

(1.1) T̂ (U, V ) = ∇̂UV − ∇̂VU − [U, V ]

obeys

(1.2) T̂ (U, V ) = ψ(V )U − ψ(U)V,

where ψ is a 1-form defined by ψ(U) = g(U, ξ), for a fixed vector field ξ (the associated

vector field of ∇̂). If in the right side of the equation (1.2) we substitute the inde-
pendent vector fields U and V , respectively, by ϕU and ϕV , where ϕ is a (1, 1)-tensor

field [12], then the connection ∇̂ transforms into a quarter-symmetric connection.

Again, if a semi-symmetric connection ∇̂ on N3 obeys

(1.3) (∇̂Ug)(V, Y ) = 0,

then ∇̂ is called metric [23]. If ∇̂g ≠ 0, then it is called non-metric [15]. Here, we

choose the SSNMC, that is, ∇̂g ̸= 0 and the connection ∇̂ obeys the equation (1.2).
The concept of the SSNMC on a Riemannian manifold was investigated in [1]. After
that, several researchers investigated the properties of SSNMC on manifolds with
different structures (see [6, 10,18,19]).

Hamilton [14] introduced the concept of Ricci flow as a solution to the challenge of
obtaining a canonical metric on a smooth manifold. Ricci flow occurs when the metric
of a Riemannian manifold N3 is fulfilled by the evolution equation ∂

∂t
gij(t) = −2Sij,

where Sij and gij are the components of the Ricci tensor and the metric tensor,
respectively. Ricci solitons were created via self-similar solutions to the Ricci flow.

A metric of N3 is named a Ricci soliton [13] if it fulfills

(1.4) LWg + 2λg + 2Ŝ = 0,

for some λ ∈ R, the set of real numbers. Here, L being the Lie derivative operator and
Ŝ is the Ricci tensor with respect to the non-metric connection ∇̂. W is a complete
vector field known as a potential vector field. The Ricci soliton is considered to be
shrinking, expanding or steady depending on whether λ is negative, positive, or zero.
If W is Killing or zero, the Ricci soliton is trivial and N3 is Einstein. Also, if W = Df

for some smooth function f , then equation (1.4) turns into

(1.5) ∇̂2 f + Ŝ + λg = 0,

where ∇̂2 and D indicate the Hessian and the gradient operator of g, respectively.
The metric obeying the equation (1.5) is called a gradient Ricci soliton. Here, f is
said to be the potential function of the gradient Ricci soliton.

On a complete Riemannian manifoldN3, Hamilton [14] proposed the idea of Yamabe
flow, which was inspired by Yamabe’s conjecture (“metric of a complete Riemannian
manifold is conformally connected to a metric with constant scalar curvature”). A
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Riemannian manifold N3 equipped with a Riemannian metric g is called a Yamabe
flow if it obeys:

(1.6)
∂

∂t
g(t) + rg(t) = 0, g0 = g(t),

where t indicates the time and r being the scalar curvature of N3. A Riemannian
manifold N3 equipped with a Riemannian metric g is named a Yamabe soliton if it
fulfills

(1.7) LWg − 2(r̂ − λ)g = 0,

for real constant λ : M → R and r̂ is the scalar curvature with respect to the non-
metric connection ∇̂. Here, W is called the potential vector field. In N3, with the
condition W = Df , the Yamabe soliton reduces to the gradient Yamabe soliton. Thus,
(1.7) takes the form

(1.8) ∇̂2f − (r̂ − λ)g = 0.

If f is constant (or, W is Killing) on M , then the soliton becomes trivial. The 3-
Kenmotsu manifolds and almost co-Kähler manifolds with Yamabe solitons have been
characterized by Wang [21] and Suh and De [20], respectively. Chen and Deshmukh [5,
9] studied the Yamabe solitons on Riemannian manifolds. Some interesting outcomes
on this solitons have been investigated in [2, 3, 7, 8, 17] and also by others.

The notion of gradient Einstein soliton was presented in [4] and obeys

(1.9) Ŝ −
1

2
r̂g + ∇̂2f + λg = 0,

where λ ∈ R is a constant and f indicates a smooth function.
A Riemannian manifold N3 endowed with the Riemannian metric g is named a

gradient m-quasi Einstein metric [4] if there exists a constant λ, a smooth function
f : N3 → R and obeys

(1.10) Ŝ − λg + ∇̂2 f −
1

m
df ⊗ df = 0,

where ⊗ indicate the tensor product and m is an integer. In this case f being the
m-quasi Einstein potential function [4]. Here, the gradient m-quasi Einstein soliton
is expanding for λ > 0, steady for λ = 0 and shrinking when λ < 0. If m = ∞, the
foregoing equation represents a gradient Ricci soliton and the metric represents almost
gradient Ricci soliton if it obeys the condition m = ∞ and λ is a smooth function.
Few characterizations of the above metrics were characterized by He et al. [16].

The foregoing investigations motivate us to study the Riemannian manifold N3

endowed with a SSNMC.
The content of the paper is laid out as: In Section 2, we produce the preliminary

ideas of SSNMC. The existence of a SSNMC on a Riemannian manifold are
established in Section 3. The gradient Ricci soliton on N3 equipped with a SSNMC

is investigated in Section 4. Section 5 concerns with gradient Yamabe soliton on N3

with a SSNMC. We study the properties of N3 with a SSNMC whose metrics are



390 K. DE, U. C. DE, AND A. GEZER

gradient Einstein solitons and gradient m-quasi Einstein solitons, in Section 6 and
Section 7, respectively.

2. Semi-Symmetric Non-Metric Connection

A linear connection ∇̂ on N , defined by

(2.1) ∇̂UV = ∇UV + ψ(V )U,

∇ being the Levi-Civita connection, is a SSNMC. It also obeys

(2.2) (∇̂Ug)(V, Y ) = −ψ(V )g(U, Y ) − ψ(Y )g(U, V ).

Then R̂, the curvature tensor with respect to the SSNMC, ∇̂, and R, the Riemannian
curvature tensor are related by [1]

(2.3) R̂(U, V )Y = R(U, V )Y − α∗(V, Y )U + α∗(U, Y )V,

for all U, V, Y on N3, where α∗ is a (0, 2)-tensor field defined by

(2.4) α∗(U, V ) = (∇Uψ)(V ) − ψ(U)ψ(V ).

Throughout this article, we choose that the vector field ξ is a unit parallel vector field
with respect to the Levi-Civita connection ∇. Then ∇Uξ = 0, which immediately
implies

(2.5) R(U, V )ξ = 0

and

(2.6) S(U, ξ) = 0.

Also, using ∇Uξ = 0, we obtain

(2.7) (∇Uψ)V = 0.

Hence, by the preceding equation, we get from (2.3)

(2.8) R̂(U, V )Y = R(U, V )Y + ψ(Y )[ψ(V )U − ψ(U)V ].

From the foregoing equation, we can easily have

(2.9) Ŝ(U, V ) = S(U, V ) + 2ψ(U)ψ(V ).

Contracting the above equation, we lead

(2.10) r̂ = r − 2,

since ψ(ξ) = g(ξ, ξ) = 1. Making use of (2.5), we infer from (2.8)

(2.11) R̂(U, V )ξ = ψ(V )U − ψ(U)V.

Therefore, we obtain the subsequent relations

ψ(R̂(U, V )Y ) =0,(2.12)

Ŝ(U, ξ) =2ψ(U), Q̂ξ = 2ξ.(2.13)

We first establish the subsequent lemma.
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Lemma 2.1. Let N3 be a Riemannian manifold with a SSNMC, ∇̂. Then we have

(2.14) ξr̂ = 0.

Proof. In N3, the Riemannian curvature tensor is expressed by

R(U, V )Y =g(V, Y )QU − g(U, Y )QV + S(V, Y )U − S(U, Y )V(2.15)

−
r

2
[g(V, Y )U − g(U, Y )V ].

Making use of (2.8) and (2.9), we acquire

R̂(U, V )Y − ψ(Y )[ψ(V )U − ψ(U)V ](2.16)

=g(V, Y )[Q̂U − 2ξψ(U)] − g(U, Y )[Q̂V − 2ξψ(V )] + [Ŝ(V, Y ) − 2ψ(V )ψ(Y )]U

− [Ŝ(U, Y ) − 2ψ(U)ψ(Y )]V −
r

2
[g(V, Y )U − g(U, Y )V ].

Putting V = Y = ξ, the foregoing equation yields

(2.17) Q̂U =

r̂

2
+ 1


U −


r̂

2
− 1


ψ(U)ξ.

Taking covariant derivative along V , we write

(2.18) (∇V Q̂)U =
(V r̂)

2
[U − ψ(U)ξ].

Contracting the foregoing equation we acquire the desired result. □

The projective curvature tensor P̂ of N3 with respect to ∇̂ is defined by

(2.19) P̂ (U, V )Y = R̂(U, V )Y −
1

2
[Ŝ(V, Y )U − Ŝ(U, Y )V ].

Making use of (2.8) and (2.9), (2.19) reduces to

(2.20) P̂ (U, V )Y = P (U, V )Y,

where P represents the projective curvature tensor with respect to the Levi-Civita
connection ∇ defined by

(2.21) P (U, V )Y = R(U, V )Y −
1

2
[S(V, Y )U − S(U, Y )V ].

Theorem 2.1. If N3 is endowed with a SSNMC ∇̂, then the projective curvature

tensor with respect to ∇̂ and ∇, respectively, coincide on N3.

In differential geometry, the investigation of conformal curvature tensor performs
a significant role. Also, it has various applications in applied physics and the other
branches of modern sciences. Motivated by the above facts we investigate the proper-
ties of the conformal curvature tensor C. With respect to ∇̂, the conformal curvature
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tensor Ĉ is defined by

Ĉ(U, V )Y =R̂(U, V )Y − [Ŝ(V, Y )U − Ŝ(U, Y )V + g(V, Y )Q̂U

− g(U, Y )Q̂V ] +
r̂

2
[g(V, Y )U − g(U, Y )V ],(2.22)

for all U , V and Y on N3 [22]. Utilizing (2.8) and (2.9) in (2.22), we obtain

Ĉ(U, V )Y =C(U, V )Y − ψ̂(V )ψ̂(Y )U + ψ̂(U)ψ̂(Y )V

+ 2ξg(V, Y )ψ̂(U) − 2ξg(U, Y )ψ̂(V ) + g(V, Y )U − g(U, Y )V,(2.23)

where C represents the conformal curvature tensor with respect to the Levi-Civita
connection ∇ defined by

C(U, V )Y =R(U, V )Y − [S(V, Y )U − S(U, Y )V + g(V, Y )QU − g(U, Y )QV ]

+
r

2
[g(V, Y )U − g(U, Y )V ].(2.24)

Putting Y = ξ in (2.23), we get

(2.25) Ĉ(U, V )ξ = C(U, V )ξ.

Hence, we have the subsequent theorem.

Theorem 2.2. If N3 is equipped with a SSNMC ∇̂, then the the conformal curvature

tensor with respect to ∇̂ and ∇, satisfy the relation (2.25).

3. Existence of a Semi-Symmetric Type Non-Metric Connection

Here we construct a non-trivial example of semi-symmetric type non-metric con-
nection on a Riemannian manifold.

Example 3.1. Let us consider a three-dimensional differentiable manifold N3 =
¶(u, v, w) ∈ R

3, w ≠ 0♢, where (u, v, w) indicates the standard coordinate of R
3.

Let us choose

(3.1) k1 = ew ∂

∂u
, k2 = ew ∂

∂v
, k3 =

∂

∂w
.

At each point of N3 the preceding vector fields are linearly independent. Here we
define the Riemannian metric g as

g(k1, k3) =g(k1, k2) = g(k2, k3) = 0,

g(k1, k1) =g(k2, k2) = g(k3, k3) = 1,
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ψ indicates a 1-form defined by ψ(U) = g(U, ξ), where ξ = k3. Hence, (N3, g) is a
three-dimensional Riemannian manifold. The Lie brackets are calculated as

[k1, k3] = k1k3 − k3k1

= ew ∂

∂u


∂

∂w


−


∂

∂w


ew ∂

∂u



= ew ∂2

∂u∂w
− ew ∂2

∂w∂u
− ew ∂

∂u
= −k1.(3.2)

Similarly,

(3.3) [k1, k2] = 0 and [k2, k3] = −k2.

∇, the Levi-Civita connection with respect to g, is obtained by

2g(∇UV, Y ) =Ug(V, Y ) + V g(Y, U) − Y g(U, V )

− g(U, [V, Y ]) − g(V, [U, Y ]) + g(Y, [U, V ]),(3.4)

which is termed as Koszul’s formula.
Making use of (3.4) we have

2g(∇k1
k3, k1) = −2g(k1, k1).(3.5)

Again by (3.4)

(3.6) 2g(∇k1
k3, k2) = 0 = −2g(k1, k2)

and

(3.7) 2g(∇k1
k3, k3) = 0 = −2g(k1, k3).

From (3.5), (3.6) and (3.7) we get

2g(∇k1
k3, U) = −2g(k1, U),

for all U ∈ X(N).
Thus, ∇k1

k3 = −k1. Therefore, (3.4) further gives

∇k1
k2 = 0, ∇k1

k1 = k3,

∇k2
k3 = −k2, ∇k2

k2 = k3, ∇k2
k1 = 0,

(3.8) ∇k3
k3 = 0, ∇k3

k2 = 0, ∇k3
k1 = 0.

We know that

(3.9) R(U, V )Y = ∇U∇V Y − ∇V ∇UY − ∇[U,V ]Y,

where R is the Riemann curvature tensor. Utilizing the foregoing results and with
the help of (3.9), we acquire

R(k1, k2)k3 = 0, R(k1, k3)k3 = −k1,

R(k1, k2)k2 = −k1, R(k2, k3)k2 = k3, R(k1, k3)k2 = 0,
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R(k1, k2)k1 = k2, R(k2, k3)k1 = 0, R(k1, k3)k1 = k3.

Using the above expressions, the Ricci tensor can be obtained as

S(k1, k1) = g(R(k1, k2)k2, k1) + g(R(k1, k3)k3, k1) = −2.(3.10)

Similarly, we get

(3.11) S(k2, k2) = S(k3, k3) = −2.

Therefore, the scalar curvature r is calculated as

(3.12) r = S(k1, k1) + S(k2, k2) + S(k3, k3) = −6.

Making use of the above expressions and using the equation (2.1), we have

∇̂k1
k3 = 0, ∇̂k1

k2 = 0, ∇̂k1
k1 = k3,

∇̂k2
k3 = 0, ∇̂k2

k2 = k3, ∇̂k2
k1 = 0,

(3.13) ∇̂k3
k3 = k3, ∇̂k3

k2 = 0, ∇̂k3
k1 = 0.

From the last equation and using (1.2), we obtain T̂ (k1, k3) = k1 and ψ(k3)k1 −
ψ(k1)k3 = k1. Similarly, other components can be verified. Therefore, the linear

connection ∇̂ defined on (N3, g) as (2.1), is a semi-symmetric connection. Also, we
have

(3.14) (∇̂k1
g)(k1, k3) = −1 ̸= 0.

Thus, the linear connection ∇̂ is non-metric on (N3, g).

4. Gradient Ricci Solitons on N3 with a SSNMC

This section carries out the study of gradient Ricci solitons in N3 with a SSNMC.
Let us choose that the soliton vector W of the Ricci soliton (g,W, λ) in N3 with a

SSNMC is a gradient of some smooth function f . Then using (1.5), we infer

(4.1) ∇̂UDf = −Q̂U − λU,

for all U ∈ X(N). Making use of the above equation, the subsequent relation

(4.2) R̂(U, V )Df = ∇̂U∇̂VDf − ∇̂V ∇̂UDf − ∇̂[U,V ]Df

yields

(4.3) R̂(U, V )Df = (∇̂UQ̂)(V ) − (∇̂V Q̂)(U).

The contraction of the preceding equation gives

(4.4) Ŝ(U,Df) = −
1

2
(Ur̂).

Again, from (2.17) we obtain

(4.5) Ŝ(U,Df) =

r̂

2
+ 1


(Uf) −


r̂

2
− 1


ψ(U)(ξf).
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Comparing the equations (4.4) and (4.5)

(4.6) −
1

2
(Ur̂) =


r̂

2
+ 1


(Uf) −


r̂

2
− 1


ψ(U)(ξf).

Now, putting U = ξ in (4.6), we find

(4.7) ξf = 0,

since ξr̂ = 0.
Equation (4.3) gives

(4.8) g(R̂(U, V )ξ,Df) = 0.

Again, from equation (2.11) we infer that

(4.9) g(R̂(U, V )ξ,Df) = ψ(V )(Uf) − ψ(U)(V f).

Comparing last two equations and putting V = ξ and using ξf = 0, we lead

(4.10) Uf = 0,

which shows that f = constant. Making use of the fact that f is constant, equation
(4.1) infers that the manifold is an Einstein manifold. Hence, the Riemannian manifold
N3 is of constant sectional curvature.

Theorem 4.1. Let the soliton vector field W of the Ricci soliton (g,W, λ) in N3 with

a SSNMC be a gradient Ricci soliton. Then N3 is a manifold of constant sectional

curvature with respect to the SSNMC.

5. Gradient Yamabe Solitons on N3 with a SSNMC

From equation (1.8), we find

(5.1) ∇̂VDf = (r̂ − λ)V.

Differentiating (5.1) covariantly along the vector field U , we obtain

(5.2) ∇̂U∇̂VDf = (Ur̂)V + (r̂ − λ)∇̂UV.

Interchanging U and V in the above equation and then utilizing the preceding equation
in R̂(U, V )Df = ∇̂U∇̂VDf − ∇̂V ∇̂UDf − ∇̂[U,V ]Df , we lead

(5.3) R̂(U, V )Df = (Ur̂)V − (V r̂)U.

Contracting the previous equation over U , we get

(5.4) Ŝ(V,Df) = −2(V r̂).

Combining the last equation and (4.5), we infer

(5.5) −2(Ur̂) =

r̂

2
+ 1


(Uf) −


r̂

2
− 1


ψ(U)(ξf).

Putting U = ξ in the foregoing equation, we have

(5.6) ξf = 0,
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since ξr̂ = 0. Thus, from (5.5), we obtain

(5.7) −2(Ur̂) =

r̂

2
+ 1


(Uf).

Now, from equation (5.3) we find that

(5.8) g(R̂(U, V )ξ,Df) = ψ(U)(V r̂) − ψ(V )(Ur̂).

Combining equation (4.9) and (5.8), we have

(5.9) ψ(V )(Uf) − ψ(U)(V f) = ψ(U)(V r̂) − ψ(V )(Ur̂).

Setting V = ξ in the previous equation gives

(5.10) (Ur̂) = −(Uf).

Utilizing (5.10) in (5.7) we infer that

(5.11)

r̂

2
− 1


(Uf) = 0,

which entails that either r̂ = 2 or r̂ ̸= 2.
If r̂ = 2, then from (2.10) we infer that r = 4. Therefore, N3 is of constant scalar

curvature.
Next, we suppose that r̂ ̸= 2, that is, (Uf) = 0, which implies f is a constant.

Therefore, the gradient Yamabe soliton is trivial.
Hence, we state the result.

Theorem 5.1. Let the Riemannian metric of N3 with a SSNMC be the gradient

Yamabe soliton. Then, either N3 is a manifold of constant scalar curvature or the

gradient Yamabe soliton is trivial with respect to the SSNMC.

Also, if r̂ = 2, then using the equation (2.17) we acquires that the manifold is
an Einstein manifold. Hence, the Riemannian manifold N3 is of constant sectional
curvature.

Corollary 5.1. Let the Riemannian metric of N3 with a SSNMC be the gradient

Yamabe soliton. Then, either N3 is a manifold of constant sectional curvature or the

gradient Yamabe soliton is trivial with respect to the SSNMC.

6. Gradient Einstein Solitons on N3 with a SSNMC

Making use of (1.9), we have

(6.1) ∇̂VDf = −Q̂V +
r̂

2
V − λV.

Differentiating (6.1) covariantly along U , we find

(6.2) ∇̂U∇̂VDf = −∇̂UQ̂V +
1

2
(Ur̂)V +


r̂

2
− λ


∇̂UV.
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Interchanging U and V and then making use of the above equation in R̂(U, V )Df =

∇̂U∇̂VDf − ∇̂V ∇̂UDf − ∇̂[U,V ]Df , we infer

R̂(U, V )Df =
1

2
[(Ur̂)V − (V r̂)U ] − (∇̂UQ̂)(V ) + (∇̂V Q̂)(U).(6.3)

Contracting the foregoing equation over U , we obtain

(6.4) Ŝ(V,Df) = −
1

2
(V r̂).

Combining the last equation and (4.5), we get

(6.5) −
1

2
(Ur̂) =


r̂

2
+ 1


(Uf) −


r̂

2
− 1


ψ(U)(ξf).

Setting U = ξ in (6.5), we have

(6.6) (ξf) = 0,

since ξr̂ = 0. Thus, from (6.5), we acquire

(6.7) −
1

2
(Ur̂) =


r̂

2
+ 1


(Uf).

Now, from equation (6.3) we obtain that

(6.8) g(R̂(U, V )ξ,Df) = −
1

2
[ψ(U)(V r̂) − ψ(V )(Ur̂)].

Combining equation (4.9) and (6.8), we lead

(6.9) ψ(V )(Uf) − ψ(U)(V f) = −
1

2
[ψ(U)(V r̂) − ψ(V )(Ur̂)].

Putting V = ξ in the last equation yields

(6.10) (Uf) = −
1

2
(Ur̂).

Using (6.10) in (6.7) we find that

(6.11)
r̂

2
(Uf) = 0.

Hence, either r̂ = 0 or r̂ ̸= 0.
If r̂ = 0, then from (2.10) we acquire that r = 2. Therefore, N3 is of constant scalar

curvature.
Next, we suppose that r̂ ̸= 0, that is, (Uf) = 0, which implies f is a constant.

Then, equation (6.1) reveals that N3 is an Einstein manifold. Hence, N3 is of constant
sectional curvature, since the manifold is of dimension 3.

Thus, we state the subsequent.

Theorem 6.1. If the Riemannian metric of N3 with a SSNMC is a gradient Einstein

soliton, then N3 is either a manifold of constant scalar curvature or a manifold of

constant sectional curvature with respect to the SSNMC.
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7. Gradient m-Quasi Einstein Solitons on N3 with a SSNMC

Here, we investigate the m-quasi Einstein metric on N3 with a SSNMC. Initially,
we prove the following lemma.

Lemma 7.1. In N3, we have the following:

R̂(U, V )Df =(∇̂V Q̂)U − (∇̂UQ̂)V +
λ

m
¶(V f)U − (Uf)V ♢

+
1

m
¶(Uf)Q̂V − (V f)Q̂U♢,(7.1)

for all U, V ∈ X(M).

Proof. Let the Riemannian metric of N3 with a SSNMC be a m-quasi Einstein
metric. Therefore, the equation (1.10) can be represented as

(7.2) ∇̂UDf = −Q̂U +
1

m
g(U,Df)Df + λU.

Covariant derivative of (7.2) along V yields

∇̂V ∇̂UDf = − ∇̂V Q̂U +
1

m
∇̂V g(U,Df)Df +

1

m
g(U,Df)∇̂VDf + λ∇̂VU.(7.3)

Exchanging U and V in (7.3), we obtain

∇̂U∇̂VDf = −∇̂UQ̂V +
1

m
∇̂Ug(V,Df)Df +

1

m
g(V,Df)∇̂UDf + λ∇̂UV(7.4)

and

(7.5) ∇̂[U,V ]Df = −Q̂[U, V ] +
1

m
g([U, V ], Df)Df + λ[U, V ].

Utilizing (7.2)–(7.5) and the relation R̂(U, V )Df = ∇̂U∇̂VDf−∇̂V ∇̂UDf−∇̂[U,V ]Df ,
we have

R̂(U, V )Df =(∇̂V Q̂)U − (∇̂UQ̂)V +
λ

m
¶(V f)U − (Uf)V ♢

+
1

m
¶(Uf)Q̂V − (V f)Q̂U♢. □

Now contracting the equation (7.1) over U , we obtain

(7.6) Ŝ(V,Df) =
1

2
(V r̂) +

2λ

m
(V f) −

1

m


r̂

2
+ 3


(V f) +


r̂

2
− 1


(ξf)ψ(V )


.

Combining (7.6) and (4.5), we have

1

2
(V r̂) +

2λ

m
(V f) −

1

m


r̂

2
+ 3


(V f) +


r̂

2
− 1


(ξf)ψ(V )



=

r̂

2
+ 1


(V f) −


r̂

2
− 1


ψ(V )(ξf).(7.7)

Setting V = ξ in (7.7), we obtain

(7.8) (2m+ r̂ − 2λ+ 2)(ξf) = 0,
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since ξr̂ = 0.
Now, from equation (7.1) we have

(7.9) g(R̂(U, V )ξ,Df) =


λ

m
−

2

m


[ψ(V )(Uf) − ψ(U)(V f)].

Combining equations (4.9) and (7.9), we find that

(7.10) ψ(V )(Uf) − ψ(U)(V f) =


λ

m
−

2

m


[ψ(V )(Uf) − ψ(U)(V f)].

Putting V = ξ in the foregoing equation yields

(7.11) (λ−m− 2)(Uf) = 0,

where we have used ξf = 0.
Hence, either (λ−m− 2) = 0 or (λ−m− 2) ̸= 0.
If (λ−m− 2) = 0, then we get λ = m+ 2 = positive integer. Hence, the gradient

m-quasi Einstein soliton is expanding.
If we suppose that (λ−m− 2) ̸= 0, then (Uf) = 0, which implies f is a constant.

Then, equation (7.1) reveals that N3 is an Einstein manifold. Hence, N3 is of constant
sectional curvature, since the manifold is of dimension 3,.

Hence, we state the following.

Theorem 7.1. If the Riemannian metric of N3 with a SSNMC is a gradient m-quasi

Einstein soliton, then either the soliton is expanding or it is a manifold of constant

sectional curvature with respect to the SSNMC, provided (2m+ r̂ − 2λ+ 2) ̸= 0.
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NOTE ON HAMILTONIAN GRAPHS IN ABELIAN 2-GROUPS

KRISTIJAN TABAK1

Abstract. We analyze a graph G whose vertices are subgroups of Zk
2

isomorphic
to Z2 × Z2. Two vertices are joined if their respective subgroups have nontrivial
intersection. We prove that such a graph is 6(2k−2 − 1)-regular. If a graph is
regular, a classical theorem by Ore claims that a graph is Hamiltonian if the degree
of any vertex is at least one half of the number of vertices. Using Ore’s theorem, we
show that G is Hamiltonian for k ∈ ¶3, 4♢. Ore’s theorem cannot be applied when
k ≥ 5. Nevertheless, we manage to construct a Hamiltonian cycle for k = 5. Our
construction uses orbits of one Z

4

2
group under an action of an automorphism of

order 31. It is highly likely that this approach could be generalized for k > 5.

1. Introduction and notation

Many algebraic structures, including groups, have nice interpretations in graph
theory (see for example [1,3] and [4]). Readers can find more on groups and graphs in
[5]. If there is a cycle in a graph that visits every vertex, then the graph is Hamiltonian.
In this paper we are interested in Hamiltonian graphs defined on Abelian groups of
exponent 2. For some classical results on Hamiltonian graphs see [5]. The main
tool in our analysis will be the application of various group rings, for example see
[2]. An elementary Abelian group of order 2k is denoted by E2k . If x1, x2, . . . , xk are
generators, then we can write E2k = ⟨x1⟩ × ⟨x2⟩ × · · · × ⟨xk⟩. Additionally, x2

i = 1
for all i ∈ [k] = ¶1, 2, . . . , k♢. With E2l [H] we denote a collection of all subgroups of
order 2l that are contained in H ≤ E2k .

We introduce a set E2s [T, H]−1 = ¶S ♣ T ≤ S ≤ H, S ∼= E2s♢ of all E2s-subgroups
that contain T and that are also contained in H. One can see that if t ≤ s ≤ m,

Key words and phrases. Hamiltonian graph, graph, elementary Abelian group, subgroup, group
ring.
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H ∼= E2m , and T ∼= E2t , then ♣E2s [T, H]−1♣ = ♣E2s−t [H/T ]♣ = ♣E2s−t [E2m−t ]♣ =
[

m−t

s−t

]

2
,

where H/T is a quotient group isomorphic to E2m−t and
[

a

b

]

2
is a Gaussian coefficient.

Let (E22 [E2k ],Ek) be a graph with vertices T ≤ E2k , where T ∼= E22 = Z2 × Z2.
Edges Ek are defined as follows:

¶T1, T2♢ ∈ Ek ⇔ T1 ∩ T2
∼= Z2.

This means that two E22 groups are joined if and only if they have a common in-
volution (nontrivial intersection). Our main goal is to see when such graphs are
Hamiltonian. We will show that Ore’s Theorem immediately yields that (E22 [E23 ],E3)
and (E22 [E24 ],E4) are Hamiltonian.

We will use deg(u) to denote the degree of a vertex.

Theorem 1.1 (Ore). Let G be a connected graph with n > 3 vertices. If deg(x) +
deg(y) > n for all non-adjacent vertices x and y, then G is Hamiltonian.

A graph G = (V, E) is a r-regular graph if deg(x) = r for all vertices x ∈ V . As an
immediate consequence of Theorem 1.1 we have the following.

Corollary 1.1. If G = (V, E) is r-regular graph and if deg(x) > 1
2
♣V ♣, then G is

Hamiltonian.

2. Regularity

In this section we will prove that (E22 [E2k ],Ek) is a regular graph. This means that
we need to show that for any T ∈ E22 [E2k ] there is a constant number of S ∈ E22 [E2k ]
such that ♣T ∩ S♣ = 2.

From this point on, we will assume that k > 2. Furthermore, we will show that if
k ∈ ¶3, 4♢, then a graph (E22 [E2k ],Ek) is Hamiltonian.

Theorem 2.1. A graph (E22 [E2k ],Ek) is 6(2k−2 − 1)-regular. The inequality

1

2
♣E22 [E2k ]♣ − deg(V ) < 0

holds for all V ∈ E22 [E2k ] if any only if k < 5.

Proof. Let V be a vertex of (E22 [E2k ],Ek). Put V ∗ = V \ ¶1♢. Let us denote with
n(V ) the collection of all vertices adjacent to V . If P ∈ n(V ), then P ∼= E22 and
P ∩ V = ⟨g⟩ for some g ∈ E∗

2k . Also, P ∈ E22 [⟨g⟩, E2k ]−1. Hence,

n(V ) =



⋃

g∈V ∗

E22 [⟨g⟩, E2k ]−1


 \ ¶V ♢.

On the other hand, we have

♣E22 [⟨g⟩, E2k ]−1♣ = ♣E2[E2k/⟨g⟩]♣ = ♣E2[E2k−1 ]♣ = 2k−1 − 1.

If g, h ∈ V ∗ and g ̸= h, then

♣E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1♣ = ♣E22 [E2k ] ∩ ¶V ♢♣ = 1.
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Also, for three mutually different g, h, k ∈ T ∗ we get

♣E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1 ∩ E22 [⟨k⟩, E2k ]−1♣ = 1.

Using the inclusion-exclusion formula, the following holds

deg(V ) =
∑

g∈V ∗

♣E22 [⟨g⟩, E2k ]−1♣ −
∑

g ̸=h, g,h∈V ∗

∣∣∣E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1
∣∣∣

+
∑

g ̸=h ̸=k ̸=g, g,h,k∈V ∗

∣∣∣E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1 ∩ E22 [⟨k⟩, E2k ]−1
∣∣∣− 1

=

(
3

1

)
(2k−1 − 1) −

(
3

2

)
· 1 + 1 − 1

=6(2k−2 − 1).

Notice that ♣E22 [E2k ]♣ =
[

k

2

]

2
= 1

3
(2k − 1)(2k−1 − 1). Put t = 2k−2. Therefore,

1

2
♣E22 [E2k ]♣ − deg(V ) =

1

6
(4t − 1)(2t − 1) − 6(t − 1) =

1

6
(8t2 − 42t + 37).

For k = 3 and k = 4 we get 8t2 − 42t + 37 < 0. For k ≥ 5 we have 8t2 − 42t + 37 > 0.
This proves our claim. □

Now, using Corollary 1.1, we see that the following holds.

Corollary 2.1. Graphs (E22 [E23 ],E3) and (E22 [E24 ],E4) are Hamiltonian. Further-

more, necessary conditions for application of Ore’s theorem are not satisfied for k ≥ 5.

3. Hamiltonian Cycle in (E22 [E25 ],E5)

Let E25 = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ × ⟨d⟩ × ⟨e⟩ = ⟨a, b, c, d, e⟩, where a, b, c, d, e are generators
of E25 . Any automorphism α ∈ Aut(E25) is represented by its action on generators.
We can denote any α ∈ Aut(E25) by

α =

(
a b c d e
g1 g2 g3 g4 g5

)
,

for some gi ∈ E∗
25 . This means α(a) = g1, α(b) = g2 and so on. The order of an

automorphism o(α) is the smallest nonnegative integer n such that αn is an identity
map. If X ⊆ E25 and α ∈ Aut(E25), then with X⟨α⟩ we will denote one α-orbit of X.
If α is of order n, then an orbit X⟨α⟩ can be represented in a group ring Z[E25 ] like
this:

X⟨α⟩ = X + Xα + · · · + Xαn−1

.

The following lemma will be crucial for a construction of a Hamiltonian cycle in
(E22 [E25 ],E5).

Lemma 3.1. Let E25 = ⟨a, b, c, d, e⟩ and let α ∈ Aut(E25) be given by

α =

(
a b c d e
bc cd bcd de a

)
,
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then o(α) = 31 and H⟨α⟩ = E24 [E25 ], where H = ⟨a, b, c, d⟩. If T = ⟨a, b, c⟩ and

∆i = T ∩ T αi

for i ∈ Z31, then

∆i =





⟨b, c⟩, if i = 1, 14,

⟨a, bc⟩, if i = 13, 30,

⟨ab, c⟩, if i = 17, 18,
∼= Z2, otherwise.

Proof. We can rewrite an automorphism α in a simplified form like this: α =
(bc, cd, bcd, de, a). For the purpose of finding αi we represent α in a matrix form
over Z2

α =




0 0 0 0 1
1 0 1 0 0
1 1 1 0 0
0 1 1 1 0
0 0 0 1 0




.

Rows and columns are indexed by a, b, c, d, e. After calculating powers of α over
Z2, we get that α31 is an identity matrix. Furthermore, αi is not an identity
matrix for all i < 31. Therefore, o(α) = 31. For example, using the same ap-
proach, we get α13 = (de, abcde, bc, abde, d) and α14 = (ade, acde, b, abe, de). Hence,

T α13

= ⟨de, abcde, bc⟩ = ⟨de, abc, bc⟩ = ⟨de, a, bc⟩ and ∆13 = T ∩ T α13

= ⟨a, bc⟩.

Furthermore, T α14

= ⟨ade, acde, b⟩ = ⟨ade, c, b⟩ and ∆14 = ⟨b, c⟩. Also, α17 =
(ae, c, ab, acd, acde), α18 = (abc, bcd, bd, e, ae) and α30 = (e, bc, abc, ac, acd). For all
other cases ∆i is a group of order 2. In the Appendix, one can find all powers αi

together with the images T αi

.
Assume that Hαi

= H for some power i < 31. Then ∆i = T ∼= E23 . This is a
contradiction with ♣∆i♣ ≤ 4, hence Hαi

̸= H. Since the number of all E24 subgroups

of E25 is ♣E24 [E25 ]♣ =
[

5
4

]

2
= 25 − 1 = 31, this means that an α-orbit of H contains all

E24 subgroups of E25 . Therefore, H⟨α⟩ = E24 [E25 ]. □

Throughout the rest of the paper the subgroup ⟨a, b, c⟩ ≤ E25 = ⟨a, b, c, d, e⟩ shall
be denoted by T and α shall be the automorphism defined in the Lemma 3.1. We
are now ready to sketch the main idea for a construction of a Hamiltonian cycle in
(E22 [E25 ],E5). A main building block will be an α-orbit of T. There are 7 vertices

or subgroups of order 4 in T αi

, i ∈ Z31. We will show, in Theorem 3.4, that a
collection of all vertices from

⋃31
i=0 E22 [T αi

] is in fact the set of all vertices E22 [E25 ].

Also T ∩ T α ∼= E22 is a vertex. The same holds for all other T αi

∩ T αi+1

. As we will
see from Theorem 3.5, vertices T αi

∩ T αi+1

are all mutually different. As a final step,
we will introduce a recursive procedure that will enable us to choose vertices from
each E22 [T αi

] so that they all together form a Hamiltonian cycle.
Motivated by the previous lemma we introduce slightly different notation:

∆Ω1
=⟨b, c⟩, Ω1 = ¶1, 14♢,
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∆Ω2
=⟨a, bc⟩, Ω2 = ¶13, 30♢,

∆Ω3
=⟨ab, c⟩, Ω3 = ¶17, 18♢.

Lemma 3.2. Groups ∆αk

Ωi
and ∆Ωi

are distinct for all i ∈ [3] and k ∈ [30].

Proof. Assume the opposite. Let i ∈ [3] and k ∈ [30] such that ∆αk

Ωi
= ∆Ωi

. Since

o(α) = 31 is a prime, then αk generate entire ⟨α⟩. Hence ⟨α⟩ = ⟨αk⟩. Let H =

⟨a, b, c, d⟩. Lemma 3.1 implies that H⟨αk⟩ = E24 [E25 ]. There is s ∈ Z31 such that

∆Ωi
≤ H(αk)s

. Since ∆αk

Ωi
= ∆Ωi

, then ∆Ωi
= ∆

(αk)t

Ωi
≤ (H(αk)s

)(αk)t

= H(αk)s+t

for all
t ∈ Z31. A mapping t 7→ s + t is one-to-one map on Z31. Hence, we can write in a
group ring Z[E24 [E25 ]] the following:

30∑

t=0

H(αk)s+t

=
∑

t∈Z31

((H)αk

)t = E24 [E25 ].

From ∆Ωi
≤ H(αk)s+t

for all t ∈ Z31 it follows ♣E24 [∆Ωi
, E25 ]−1♣ ≥ 31. This is a

contradiction with

♣E24 [∆Ωi
, E25 ]−1♣ = ♣E22 [E25/∆Ωi

]♣ = ♣E22 [E23 ]♣ =

[
3

2

]

2

= 23 − 1 = 7. □

Corollary 3.1. If ∆αk

Ωi
= ∆Ωj

, then αk is a unique element from ⟨α⟩.

Proof. Suppose that k1 and k2 are integers such that ∆αk1

Ωi
= ∆αk2

Ωi
= ∆Ωj

. It follows

that ∆αk1−k2

Ωi
= ∆Ωi

. By Lemma 3.2, a map αk1−k2 is an identity map. Thus k1 =
k2. □

Lemma 3.3. Subgroups ∆Ωi
, i ∈ [3], satisfy the following: ∆α30

Ω1
= ∆Ω2

, ∆α18

Ω2
=

∆Ω3
, ∆α14

Ω3
= ∆Ω1

.

Proof. From Lemma 3.1 we have ∆α30

Ω1
= (T ∩ T α)α30

= T α30

∩ T = ∆Ω2
. Hence

∆α30

Ω1
= ∆Ω2

. Furthermore, ∆α17

Ω1
= (T ∩ T α14

)α17

= T α17

∩ T = ∆Ω3
. Now we have

∆α14

Ω3
= ∆Ω1

. Moreover ∆α13

Ω3
= ∆Ω2

and ∆α18

Ω2
= ∆Ω3

. This proves our claim. □

Theorem 3.1. For T and α the following holds
∑

0≤i<j≤30

♣E22 [T αi

] ∩ E22 [T αj

]♣ = 31 · 3.

Proof. Take some i and j such that T αi

∩ T αj ∼= E22 . Then

T αi

∩ T αj

= (T ∩ T αj−i

)αi

= (∆j−i)
αi

= (∆i−j)
αj ∼= E22 .

This means that ∆j−i = ∆i−j
∼= E22 . Thus, by Lemma 3.1, we get ¶i − j, j − i♢ ∈

¶¶1, 30♢, ¶13, 18♢, ¶14, 17♢♢. Since i ∈ Z31, each ¶i, j♢ contributes 31 to the sum∑
0≤i<j≤30 ♣E22 [T αi

] ∩ E22 [T αj

]♣. Therefore, the final number is 31 · 3. This proves our
assertion. □
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Theorem 3.2. For T and α the following holds
∑

0≤i<j<k≤30

♣E22 [T αi

] ∩ E22 [T αj

] ∩ E22 [T αk

]♣ = 31.

Proof. Let A = T αi

∩ T αj

∩ T αk ∼= E22 for some 0 ≤ i < j < k ≤ 31. Then A =
(T αi

∩T αj

)∩(T αi

∩T αk

). This means A = (T ∩T αj−i

)αi

∩(T ∩T αk−i

)αi

= (∆j−i∩∆k−i)
αi

.
Hence ∆j−i∩∆k−i

∼= E22 . Since ♣∆t♣ ≤ 4 we get ∆j−i = ∆k−i
∼= E22 . Since j−i ̸= k−i,

we get ¶j − i, k − i♢ = Ωs for some s ∈ [3].
If s = 1, then ¶j − i, k − i♢ = ¶1, 14♢. This implies that ¶i, j, k♢ can be represented

as ¶i, i + 1, i + 14♢ where i ∈ Z31.
The case s = 2 gives us ¶j − i, k − i♢ = ¶13, 30♢. Hence, ¶i, j, k♢ can be represented

as ¶i, i + 13, i + 30♢ where i ∈ Z31. However, we get

¶¶i, i+13, i+30♢ ♣ i ∈ Z31♢ = ¶¶(i−1)+1, (i−1)+1+13, (i−1)+1+30♢ ♣ i ∈ Z31♢,

and this set is equal to = ¶¶j, j +1, j +14♢ ♣ j ∈ Z31♢ where j = i−1 in Z31. Therefore,
the previous two cases are in fact the same.

If s = 3, then ¶j − i, k − i♢ = ¶17, 18♢. Now we get ¶i, j, k♢ is of the form ¶i, i +
17, i + 18♢ where i ∈ Z31. Notice that

¶¶i, i + 17, i + 18♢ ♣ i ∈ Z31♢ = ¶¶(i + 17) − 17, i + 17, (i + 17) + 1♢ ♣ i ∈ Z31♢.

It follows

¶¶j − 17, j, j + 1♢ ♣ j ∈ Z31♢ = ¶¶j + 14, j, j + 1♢ ♣ j ∈ Z31♢,

where j = i + 17 in Z31. Thus, all the three cases are the same and so we have one
representative.

This means that we have one representative of a triple ¶i, j, k♢ such that T αi

∩

T αj

∩ T αk ∼= E22 where i ∈ Z31. This proves the claim of the theorem. □

Theorem 3.3. For T and α the following holds
∑

0≤i<j<k<s≤30

♣E22 [T αi

] ∩ E22 [T αj

] ∩ E22 [T αk

] ∩ E22 [T αs

]♣ = 0.

Proof. Assume that A = T αi

∩T αj

∩T αk

∩T αs ∼= E22 for some 0 ≤ i < j < k < s ≤ 30.
It implies that

A =(T ∩ T αj−i

)αi

∩ (T ∩ T αk−i

)αi

∩ (T ∩ T αs−i

)αi

= (∆j−i ∩ ∆k−i ∩ ∆s−i)
αi

.

This means that ∆j−i = ∆k−i = ∆s−i
∼= E22 . Since T αi

, T αj

, T αk

, T αs

are mutually
different, we get ♣¶j − i, k − i, s − i♢♣ = 3. Also, ∆j−i = ∆k−i = ∆s−i

∼= E22 implies
¶j − i, k − i, s − i♢ ⊆ Ωi for some i. That is a contradiction since ♣Ωi♣ = 2. □

The next result finally shows that orbit T ⟨α⟩ contains all E22 subgroups of E25 .

Theorem 3.4. For T and α the following holds

30⋃

i=0

E22 [T αi

] = E22 [E25 ].
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Proof. The total number of all E22 subgroups of E25 is ♣E22 [E25 ]♣ =
[

5
2

]

2
= 31 ·5. Using

the inclusion-exclusion formula and Theorems 3.1, 3.2 and 3.3 we get
∣∣∣∣∣

30⋃

i=0

E22 [T αi

]

∣∣∣∣∣ =
30∑

i=0

∣∣∣E22 [T αi

]
∣∣∣−

∑

0≤i<j≤30

∣∣∣E22 [T αi

] ∩ E22 [T αj

]
∣∣∣

+
∑

0≤i<j<k≤30

∣∣∣E22 [T αi

] ∩ E22 [T αj

] ∩ E22 [T αk

]♣ + · · · +

=31 · 7 − 31 · 3 + 31 − 0 + 0 − · · ·

=31 · 5.

Therefore, every group from E22 [E25 ] is contained in
⋃30

i=0 E22 [T αi

]. □

Theorem 3.5. A graph (E22 [E25 ],E5) is Hamiltonian.

Proof. Since T ∼= E23 and AB = T , where A, B ∈ E22 [T αi

], it follows that ♣A ∩ B♣ =
♣A♣·♣B♣
♣E

23 ♣
= 2. Hence, A and B are adjacent. Therefore, the vertices in E22 [T αi

] ∼= K7

induce a complete graph on 7 vertices denoted by K7. Thus, if we delete some vertices
together with the edges incident to them from E22 [T αi

], there will be a path in a
remaining graph that visits each remaining vertex.

The subgraphs E22 [T αi−1

], E22 [T αi

] and E22 [T αi+1

] have common vertices T αi

∩T αi−1

and T αi

∩ T αi+1

. Let L(T αi

) = ¶T αi

∩ T αi−1

, T αi

∩ T αi+1

♢. Notice that L(T αi

) =

¶∆αi−1

1 , ∆αi

1 ♢ (since T ∩ T α = ∆1). We may look at vertices L(T αi

) as links between

neighboring graphs E22 [T αi−1

], E22 [T αi

] and E22 [T αi+1

].

Suppose that there are at least two equal vertices in
⋃30

i=0 L(T αi

). Let T αi

∩ T αi+1

=

T αs

∩ T αs+1

for some i ≠ s. Thus, (T ∩ T α)αi

= (T ∩ T α)αs

. Hence, ∆αi

1 = ∆αs

1 and

∆αi−s

1 = ∆1 for αi−s ≠ id. This is a contradiction with Lemma 3.2. Therefore, all

vertices in
⋃30

i=0 L(T αi

) are mutually different.
As the initial step of a recursive construction of a Hamiltonian cycle, we define

E22 [T αi

]0 = E22 [T αi

] for all i ∈ Z31. Assume that we have formed a sequence(
E22 [T αi

]mi

)

i∈Z31

, where mi is a sequence of integers that count number of steps

(deletions) that we have done in the recursive procedure within E22 [T αi

].

If there is a vertex A and j ≠ i such that A ∈
(
E22 [T αi

]mi
\L(T αi

)
)
∩E22 [T αj

]mj
, then

A is not a link, but it is a vertex in graphs E22 [T αi

]mi
and E22 [T αj

]mj
. Then, we delete a

vertex A and the edges incident to it. In this case let E22 [T αi

]mi+1 = E22 [T αi

]mi
\¶A♢.

If such a vertex A does not exist, we leave E22 [T αi

]mi
unchanged and denote that

by Ẽ22 [T αi

]mi
. Now, continue the same procedure with E22 [T αi+1

]mi+1
. Following this

process, after finite number of steps, we will construct a sequence
(
Ẽ22 [T αi

]mi

)

i∈Z31

.

Using a notation in a group ring Z[E22 [E25 ]], we have the following:
⋃

i∈Z31

⋃

A∈Ẽ
22 [T αi

]mi

A = E22 [E25 ].



408 K. TABAK

Note that by Theorem 3.4,
⋃30

i=0 E22 [T αi

] contains all edges in E25 . From ♣E22 [T αi

]♣ = 7
and the fact that we do not delete links in this procedure, we get mi ≤ 5 and
Ẽ22 [T αi

]mi
∼= K7−mi

.

Therefore, there is always a path through each vertex of Ẽ22 [T αi

]mi
, where endver-

tices belong to L(T αi

). Since all links are preserved, the mentioned paths, after being
joined together, make a Hamiltonian cycle in (E22 [E25 ],E5). □

4. Appendix

We list here all the powers αi together with the images T αi

:

α =(bc, cd, bcd, de, a), T α = ⟨bc, cd, bcd⟩,

α2 =(b, bce, bde, ade, bc), T α2

= ⟨b, bce, bde⟩,

α3 =(bc, ab, ace, abcde, b), T α3

= ⟨bc, ab, ace⟩,

α4 =(bce, bd, ad, acde, cd), T α4

= ⟨bce, bd, ad⟩,

α5 =(ab, ce, bcde, ae, bce), T α5

= ⟨ab, ce, bcde, ae, bce⟩,

α6 =(bd, abcd, abde, abc, ab), T α6

= ⟨bd, abcd, abde⟩,

α7 =(ce, cde, abe, c, bd), T α7

= ⟨ce, cde, abe⟩,

α8 =(abcd, abce, abd, abc, ce), T α8

= ⟨abcd, abce, abd⟩,

α9 =(cde, ac, be, bde, abcd), T α9

= ⟨cde, ac, be⟩,

α10 =(abce, d, acd, ace, cde), T α10

= ⟨abce, d, acd⟩,

α11 =(ac, de, e, ad, abce), T α11

= ⟨ac, de, e⟩,

α12 =(d, ade, a, bcde, ad), T α12

= ⟨d, ade, a⟩,

α13 =(de, abcde, bc, abde, d), T α13

= ⟨de, abcde, bc⟩,

α14 =(ade, acde, b, abe, de), T α14

= ⟨ade, acde, b⟩,

α15 =(abcde, ae, cd, abd, ade), T α15

= ⟨abcde, ae, cd⟩,

α16 =(acde, abc, bce, be, abcde), T α16

= ⟨acde, abc, bce⟩,

α17 =(ae, c, ab, acd, acde), T α17

= ⟨ae, c, ab⟩,

α18 =(abc, bcd, bd, e, ae), T α18

= ⟨abc, bcd, bd⟩,

α19 =(c, bde, ce, a, abc), T α19

= ⟨c, bde, ce⟩,

α20 =(bcd, ace, abcd, bc, c), T α20

= ⟨bcd, ace, abcd⟩,

α21 =(bde, ad, cde, b, bcd), T α21

= ⟨bde, ad, cde⟩,

α22 =(ace, bcde, abce, cd, bde), T α22

= ⟨ace, bcde, abce⟩,
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α23 =(ad, abde, ac, bc, ace), T α23

= ⟨ad, abde, ac⟩,

α24 =(bcde, abe, d, ab, ad), T α24

= ⟨bcde, abe, d⟩,

α25 =(abde, abd, de, bd, bcde), T α25

= ⟨abde, abd, de⟩,

α26 =(abe, be, ade, ce, abde), T α26

= ⟨abe, be, ade⟩,

α27 =(abd, acd, abcde, abcd, abe), T α27

= ⟨abd, acd, abcde⟩,

α28 =(be, e, acde, cde, abd), T α28

= ⟨be, e, acde⟩,

α29 =(ace, a, ae, abce, be), T α29

= ⟨ace, a, ae⟩,

α30 =(e, bc, abc, ac, acd), T α30

= ⟨e, bc, abc⟩,

α31 =(bc, cd, bcd, de, a), T α31

= ⟨bc, cd, bcd⟩.
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NEW RESULTS PARAMETRIC APOSTOL-TYPE

FROBENIUS-EULER POLYNOMIALS AND THEIR MATRIX

APPROACH

WILLIAM RAMÍREZ1, MARÍA JOSÉ ORTEGA1, DANIEL BEDOYA2,
AND ALEJANDRO URIELES3

Abstract. The new algebraic properties of the parametric Apostol-type Frobenius-
Euler polynomials and parametric type Frobenius-Euler polynomial have been ex-
plained in this research. The researchers have studied the series of the Taylor
type and established the relation between the classic Apostol Frobenius-Euler and
Frobenius-Euler polynomials. This work has also addressed the generalized para-
metric Apostol-type Frobenius-Euler polynomials matrices and has shown some of
their properties. Finally, this research provided some factorizations of Apostol-type
Frobenius-Euler matrix that involves the generalized Pascal matrix, Fibonacci and
Lucas matrices, respectively.

1. Introduction

The Apostol type polynomials and numbers, have been used extensively in mathe-
matical analysis and practical applications. For this reason, they have been studied
as reported in [1–4,6, 7, 9, 11, 13–15,17,18].
Let P be the vector space of the polynomials with coefficients in C. Let ¶An(x)♢n≥0 be
the sequence of polynomials known in the literature as the sequence Appell polynomials
if the polynomials An(x) are defined by the following generating function: (see, [9, p.
1, (1)]):

(1.1) f(z)exz =
∞
∑

n=0

An(x)
zn

n!
,

Key words and phrases. Appell polynomials, Frobenius-Euler polynomials, Apostol Frobenius-
Euler polynomials, Apostol Frobenius-Euler numbers, parametric generalization.
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where f is a formal power series in z, these polynomials have found remarkable
applications in different branches of mathematics, theoretical physics, and chemistry
[1,14]. On the other hand, for a particular case, we have the Apostol Frobenius-Euler
polynomials that are generated by choosing in (1.1) the following value of f(z) (see,
[5, p. 1, (1)]):

f(z) =
1 − u

λez − u
,

from which you get the Apostol Frobenius-Euler polynomials Hn(x; λ; u) in variable
x, is defined through the generating function (see, [2, p. 2, Definition 2]):

1 − u

λez − u
exz =

∞
∑

n=0

Hn(x; λ; u)
zn

n!
, ♣z♣ <

∣

∣

∣

∣

∣

log



λ

u

∣

∣

∣

∣

∣

,

where Hn(λ; u) denotes the Apostol Frobenius-Euler number. Thus, the Apostol
Frobenius-Euler polynomials fulfill the following identities respectively (see, [2, p. 4,
Proposition 1 and Proposition 2]):

λHn(x + 1; λ; u) − uHn(x; λ; u) = (1 − u)xn

and
d

dx
[Hn(x; λ; u)] = nHn−1(x; λ; u).

Furthermore, if n ∈ N, then (see, [2, p. 4, Proposition 3]):

∫ 1

0
Hn(x; λ; u) =

u − λ

λ
·

Hn+1(λ; u)

n + 1
.

In this paper, the authors will study new properties of the polynomials that are
introduced in [10]. The author will also define the generalized parametric Apostol-type
Frobenius-Euler polynomials matrices and will show some of their properties. This
paper is organized as follows. In Section 2, will be giving some definitions of previ-
ous results of parametric type Apostol Frobenius-Euler Hc

n(x; λ; u) and Hs
n(x; λ; u)

polynomials. Section 3, will be obtaining several properties of the parametric Apos-
tol Frobenius-Euler and Frobenius-Euler polynomials. Section 4, will be presenting
some new series of the Taylor type involving the Apostol Frobenius-Euler numbers
Hn(λ; u) and Frobenius-Euler numbers Hn(u). Finally, Section 5 will be addressing
the generalized parametric Apostol-type Frobenius-Euler polynomials matrices and
show some of their properties.

2. Background an Previous Results

The following standard notions will be used: N = ¶1, 2, . . .♢, N0 = N ∪ ¶0♢, Z

denotes the set of integers, R denotes the set of real numbers and C denotes the set
of complex numbers.
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For real parameters, p and q in [8] was obtained that the Taylor series representation
of the following functions epz cos(qz) and epz sin(qz) is given by

epz cos(qz) =
∞
∑

k=0

Ck(p, q)
zk

k!
,

epz sin(qz) =
∞
∑

k=0

Sk(p, q)
zk

k!
,

where Ck(p, q) and Sk(p, q) is given by

Ck(p, q) =

[ k

2
]

∑

j=0

(−1)j



k

2j



pk−2jq2j,(2.1)

Sk(p, q) =

[ k−1

2
]

∑

j=0

(−1)j



k

2j + 1



pk−2j−1q2j+1.(2.2)

Also it is fulfilled (see, [13, p. 944]):

Ck(p, p) =2
k

2 pk cos
kπ

4
,

Sk(p, p) =2
k

2 pk sin
kπ

4
,

Ck(0, q) =qk cos
kπ

2
,(2.3)

Sk(0, q) =qk sin
kπ

2
,(2.4)

Ck(p, 0) =pk and Sk(p, 0) = 0.

Using the definitions of Cn(p; q), Sn(p; q) and the Apostol Frobenius-Euler numbers
Hn(λ; u) we have, two parametric of Apostol-type Frobenius-Euler polynomials

Hn,c(p, q; λ, u) = Hn(λ, u)Cn(p, q),

Hn,s(p, q; λ, u) = Hn(λ, u)Sn(p, q),

which exponential generating of Hn,c(p; q; λ; u) and Hn,s(p; q; λ; u) functions are given
respectively, by (see, [10, p. 5, (14) and (15)]):

[

1 − u

λez − u

](α)

epz cos(qz) =
∞
∑

n=0

H [α]
n,c(p, q; λ; u)

zn

n!
,(2.5)

[

1 − u

λez − u

](α)

epz sin(qz) =
∞
∑

n=0

H [α]
n,s(p, q; λ; u)

zn

n!
.(2.6)

Thus, according to the Cauchy series product, we obtain

Hn,c(p, q; λ; u) =
n
∑

k=0



n

k



Hn−k(λ; u)Ck(p, q),(2.7)
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Hn,s(p, q; λ; u) =
n
∑

k=0



n

k



Hn−k(λ; u)Sk(p, q).(2.8)

Therefore, from equation (2.5) it is observed that when the parameter q takes the value
0 one has Hn,c(p; q; λ; u) = Hn(p; λ; u) and the Apostol Frobenius-Euler polynomials
are obtained. On the other hand from (2.5) and (2.6) it is easy to obtain the following
statement

H [α+β]
n,c (p + q, q; λ; u) =

n
∑

k=0



n

k



H
[α]
k,c(p, q, λ; u)H

[β]
n−k,c(q, 0, λ; u),(2.9)

H [α+β]
n,s (p + q, q; λ; u) =

n
∑

k=0



n

k



H
[α]
k,s(p, q, λ; u)H

[β]
n−k,s

(

q,
π

2z
, λ; u

)

.

Below, a list of the first parametric Apostol Frobenius-Euler polynomials for Hn,c(p, q;
λ; u) and Hn,s(p, q; λ; u) are shown:

H0,c(p, q; λ; u) =
1 − u

λ − u
,

H1,c(p, q; λ; u) =
1 − u

λ − u
p −

λ(1 − u)

(λ − u)2
,

H2,c(p, q; λ; u) =



2λ2

(λ − u)3
−

λ

(λ − u)2

]

(1 − u) −
1 − u

λ − u
q2 +

1 − u

(λ − u)2
p2

+



2(1 − u)λ

(λ − u)2

]

p,

H3,c(p, q; λ; u) =



2λ2

(λ − u)3
−

λ

(λ − u)2

]

p − 3
1 − u

λ − u
pq2 + 3λ

1 − u

(λ − u)2
q2

+ (1 − u)



−
6λ3

(λ − u)4
+

6λ2

(λ − u)3
−

λ

(λ − u)2

]

,

H4,c(p, q; λ; u) =
1 − u

λ − u
p4 −

4λ(1 − u)

(λ − u)2
p3 + 6(1 − u)



2λ2

(λ − u)3
−

λ

(λ − u)2

]

p2

+ 4(1 − u)



−6λ3

(λ − u)4
+

6λ2

(λ − u)3
+

λ

(λ − u)2

]

p −
6(1 − u)

λ − u
p2q2

+ 12λ
1 − u

(λ − u)2
pq2

− 6λ(1 − u)



2λ2

(λ − u)3
−

λ

(λ − u)2

]

q2 +
1 − u

λ − u
q4

+ (1 − u)



24λ4

(λ − u)4
−

36λ3

(λ − u)4
+

14λ2

(λ − u)3
−

λ

(λ − u)2

]

,

H0,s(p, q; λ; u) =0,
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H1,s(p, q; λ; u) =
1 − u

λ − u
q,

H2,s(p, q; λ; u) = − 2λ
1 − u

(λ − u)2
q + 2

1 − u

λ − u
pq,

H3,s(p, q; λ; u) = − λ
1 − u

λ − u
q3 + 2

1 − u

λ − u
p2q − 6λ

1 − u

λ − u
pq

+ 3(1 − u)λ



2λ

(λ − u)3
−

1

(λ − u)2

]

q.

Let p be any nonzero real number. The generalized Pascal matrix of first kind P [x],
is an (n + 1) × (n + 1) matrix whose entries are given by (see, [16, Definition 1]):

pi,j(p) :=













i

j



(p)i−j, i ≥ j,

0, otherwise.

Let ¶Fn♢n≥1 be the Fibonacci sequence, i.e., Fn = Fn−1 +Fn−2 for n ≥ 2 with initial
conditions F0 = 0 and F1 = 1. The Fibonacci matrix F ∈ Mn+1(R) is the matrix
whose entries are given by (see, [19]):

fi,j :=

{

Fi−j+1, if i − j + 1 ≥ 0,

0, if i − j + 1 < 0.

Let ¶Ln♢n≥1 be the Lucas numbers sequence, i.e., Ln+2 = Ln+1 + Ln for n ≥ 1 with
initial conditions L1 = 1 and L2 = 3. The Lucas matrix L ∈ Mn+1(R) is the matrix
whose entries are given by (see, [20]):

li,j :=

{

Li−j+1, if i − j ≥ 0,

0, if i − j < 0.

3. The Parametric of Apostol-type Frobenius-Euler Polynomials and
their Properties of Hc

n(p, q; λ; u) and Hs
n(p, q; λ; u)

In this section, some properties of the parametric Apostol-type Frobenius-Euler
polynomials Hn,c(p, q; λ; u) and Hn,s(p, q; λ; u), will be presented.

Proposition 3.1. For every n ∈ N, the parametric Apostol-type Frobenius-Euler

Hn,c(p; q; λ; u) and Hn,s(p; q; λ; u) polynomials meet the following identity

λHn,c(1 + p, q; λ; u) − uHn,c(p; q; λ; u) =(1 − u)Cn(p, q),(3.1)

λHn,s(1 + p, q; λ; u) − uHn,s(p; q; λ; u) =(1 − u)Sn(p, q).(3.2)

Proof.

(λ + u + 1)
∞
∑

n=0

Hn,c(1 + p, q; λ; u)
zn

n!
=

1 − u

λez − u
e(1+p)z cos(qz)(λ + u + 1)

=epz (λez + uez + ez − u + u) cos(qz)
1 − u

λez − u
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=(1 − u)epz cos(qz) + uepz cos(qz)
1 − u

λez − u

+ (1 + u)e(p+1)z cos(qz)
1 − u

λez − u

=(1 + u)
∞
∑

n=0

Hn,c(1 + p, q; λ; u)
zn

n!

+ (1 − u)
∞
∑

n=0

Cn(p, q)
zn

n!

+ u
∞
∑

n=0

Hn,c(p, q; λ; u)
zn

n!
. □

So, the first statement given in (3.1) was demonstrated. The proof of (3.2) is obtained
analogously.

Corollary 3.1. If in Proposition 3.1 the relationships (3.1) and (3.2) take a value of

p = 0, then it is true

λH2n,c(1, q; λ; u) − uH2n,c(q; λ; u) = (1 − u)(−1)nq2n

and

λH2n+1,s(1, q; λ; u) − uH2n+1,s(q; λ; u) = (1 − u)(−1)nq2n+1.

Proposition 3.2. For every n ∈ Z
+, the parametric Apostol-type Frobenius-Euler

Hn,c(p; q; λ; u) and Hn,s(p; q; λ; u) polynomials meet the following identity

Hn,c(p + l, q; λ; u) =
n
∑

k=0



n

k



Hk,c(p, q; λ; u)ln−k,(3.3)

Hn,s(p + l, q; λ; u) =
n
∑

k=0



n

k



Hk,s(p, q; λ; u)ln−k.(3.4)

Proof. Using (2.5) one obtained
∞
∑

n=0

Hn,c(p + l, q; λ; u)
zn

n!
=
(

1 − u

λez − u
epz cos(qz)

)

elz

=



∞
∑

n=0

Hn,c(p, q; λ; u)
zn

n!



∞
∑

n=0

ln zn

n!



=
∞
∑

n=0

n
∑

k=0



n

k



Hk,c(p, q; λ; u)ln−k.

The first affirmation obtained in (3.3) has been proven. The other result (3.4) can be
demonstrated similarly. □

Corollary 3.2. The following statements are valid

Hn,c(p + 1, q; λ; u) − Hn,c(p, q; λ; u) =
n−1
∑

k=0



n

k



Hk,c(p, q; λ; u)
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and

Hn,s(p + 1, q; λ; u) − Hn,s(p, q; λ; u) =
n−1
∑

k=0



n

k



Hk,s(p, q; λ; u).

Using the Corollary 3.2 and the Proposition 3.1, the following recurrence formulas
are obtained:

Hn,c(p, q; λ; u) =
1

λ − u



(1 − u)Cn(p, q) − λ
n−1
∑

k=0



n

k



Hk,c(p, q; λ; u)

]

,(3.5)

Hn,s(p, q; λ; u) =
1

λ − u



(1 − u)Sn−1(p, q) − λ
n−1
∑

k=0



n

k



Hk,s(p, q; λ; u)

]

,

where H0,c(p, q; λ; u) =
1 − u

λ − u
and H0,s(p, q; λ; u) = 0.

Proposition 3.3. For every n ∈ N, the following partial derivative identities are

correct

∂

∂p
[Hn,c(p, q; λ; u)] =nHn−1,c(p, q; λ; u),(3.6)

∂

∂p
[Hn,s(p, q; λ; u)] =nHn−1,s(p, q; λ; u),(3.7)

∂

∂q
[Hn,c(p, q; λ; u)] = − nHn−1,s(p, q; λ; u),(3.8)

∂

∂q
[Hn,s(p, q; λ; u)] =nHn−1,c(p, q; λ; u).(3.9)

It will be shown (3.6), the proof of (3.7), (3.8) and (3.9) are similar.

Proof.

∂

∂p



∞
∑

n=0

Hn,c(p, q; λ; u)
zn

n!

]

=
∞
∑

k=0

∂

∂p
[Hn,c(p, q; λ; u)]

zn

n!

=
1 − u

λez − u
zepz cos(qz)

=
∞
∑

n=0

Hn,c(p, q; λ; u)
zn+1

n!

=
∞
∑

n=1

Hn−1,c(p, q; λ; u)
zn

(n − 1)!

=
∞
∑

n=1

nHn−1,c(p, q; λ; u)
zn

(n)!
,

by comparing the coefficients of the series, one has the result. □



418 W. RAMÍREZ, M. J. ORTEGA, D. BEDOYA, AND A. URIELES

Proposition 3.4. The polynomials Hn,c(p, q; λ; u) and Hn,s(p, q; λ; u) are, respectively,

of degrees n and n − 1 in the variable p, it is also asserted that

Hn,c(p; q; λ; u) =
1 − u

λ − u
pn − n

1 − u

(λ − u)2
pn−1 + · · · ,(3.10)

Hn,s(p; q; λ; u) =
n(1 − u)q

λ − u
pn−1 −

n(n − 1)(1 − u)λq

(λ − u)2
pn−2 + · · · .(3.11)

Proof. First, the result given in (3.10) is shown using the method of mathematical
induction on n. On the other hand of (3.5) it has

H0,c(p, q; λ; u) =
1 − u

λ − u
,

H1,c(p, q; λ; u) =
(1 − u)p

λ − u
−

λ(1 − u)

(λ − u)2

and

H2,c(p, q; λ; u) =
(1 − u)p2

(λ − u)3
− 2

(1 − u)λp

(λ − u)2
−

1 − u

λ − u
q2 +

2λ2(1 − u) − λ(λ − u)

(λ − u)3
.

Therefore, the statement given in (3.10) is valid for n = 0, 1, 2. It will be assumed
that it is correct for n − 1. Using (3.6), we get

∂

∂p
[Hn,c(p, q; λ; u)] = n

1 − u

λ + 1
pn−1 − n(n − 1)

1 − u

(λ − u)2
pn−2 + · · · .

To obtain the final result given in (3.10) it is necessary to integrate with respect to
variable p. The results (3.9) and (3.11) are obtained analogously. □

Proposition 3.5. If n ∈ N, λ > 0, u ̸= λ and m is an odd positive integer, then

(3.12) Hn,c(mp, q; λ
1

m ; u
1

m ) = mn
m−1
∑

k=0

u
m−1

m



λ

u


k

m

Hn,c



p +
k

m
,

q

m
; λ; u



and

(3.13) Hn,s(mp, q; λ
1

m ; u
1

m ) = mn
m−1
∑

k=0

u
m−1

m



λ

u


k

m

Hn,s



p +
k

m
,

q

m
; λ; u



.

Proof. To prove (3.12), it avails to consider the following relation:

∞
∑

k=0



λ

u


k

m

Hn,c



p +
k

m
,

q

m
; λ; u



=
1 − u

λez − u



λ

u


k

m

e(p+ k

m
)z cos

(

qz

m

)

,

take a sum over k from 0 to m − 1, one has

m−1
∑

k=0

∞
∑

n=0



λ

u


k

m

Hn,c



p +
k

m
,

q

m
; λ; u



=
1 − u

λez − u



λ

u


k

m

epz cos
(

qz

m

)

=
(1 − u)emp z

m cos


qz

m

)

u
1−m

m

λ
1

m e
z

m − u
1

m
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=
∞
∑

n=0

m−nu
1−m

m Hn,c



mp, q; λ
1

m ; u
1

m

) zn

n!
.

To the test (3.13) the proof is similarly. □

New results are presented below for parametric Frobenius-Euler polynomials.

Proposition 3.6. For every n ∈ N, the parametric Frobenius-Euler Hc
n(p; q; u) and

Hn,s(p; q; u) polynomials meet the following identity

Hn,c(1 + p, q; u) − uHn,c =(1 − u)Cn(p, q),(3.14)

Hn,s(1 + p, q; u) − uHn,s =(1 − u)Sn(p, q).(3.15)

Proof.

(1 + u + 1)
∞
∑

n=0

Hn,c(1 + p, q; u) =
1 − u

ez − u
e(1+p)z cos(qz)(1 + u + 1)

=epz (ez + uez + ez − u + u) cos(qz)
1 − u

ez − u

=(1 − u)epz cos(qz) + (1 + u)e(p+1)z cos(qz)
1 − u

ez − u

+ uepz cos(qz)
1 − u

ez − u

=(1 − u)
∞
∑

n=0

Cn(p, q)
zn

n!

+ (1 + u)
∞
∑

n=0

Hn,c(1 + p, q; u)
zn

n!

+ u
∞
∑

n=0

Hn,c(p, q; u)
zn

n!
,

which proves the first assertion (3.14). The proof of the second assertion (3.15) is
similar. □

Corollary 3.3. For every n ∈ N, the following identities hold true

Hn,c(1 + p, q; u) − uHn,c(p, q, u) =(1 − u)Cn(p, q),

Hn,s(1 + p, q; u) − uHn,s(p; q; u) =(1 − u)Sn(p, q).

Corollary 3.4. If in Proposition 3.6 the relationships (3.14) and (3.15) take a value

of p = 0, then it is true

H2n,c(1, q; u) − uH2n,c(q; u) = (1 − u)(−1)nq2n

and

H2n+1,s(1, q; λ; u) − uH2n+1,s(q; u) = (1 − u)(−1)nq2n+1.
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Proposition 3.7. For every n ∈ Z
+, the following identities hold true

Hn,c(p + l, q; u) =
n
∑

k=0



n

k



Hk,c(p, q; u)ln−k

and

Hn,s(p + l, q; u) =
n
∑

k=0



n

k



Hk,s(p, q; u)ln−k.

Corollary 3.5. The following statements are valid

Hn,c(p + 1, q; u) − Hn,c(p, q; u) =
n−1
∑

k=0



n

k



Hk,c(p, q; u)

and

Hn,s(p + 1, q; u) − Hn,s(p, q; λ; u) =
n−1
∑

k=0



n

k



Hk,s(p, q; λ; u).

Using Corollary 3.5 and Proposition 3.6, the following recurrences are obtained:

Hn,c(p, q; u) =
1

1 − u



(1 − u)Cn(p, q) −
n−1
∑

k=0



n

k



Hk,c(p, q; u)

]

and

Hn,s(p, q; u) =
1

1 − u



(1 − u)Sn−1(p, q) −
n−1
∑

k=0



n

k



Hk,s(p, q; u)

]

,

where H0,c(p, q; u) = 1 and H0,s(p, q; u) = 0.

Proposition 3.8. For every n ∈ N, the following identities hold true

∂

∂p
[Hn,c(p, q; u)] =nHn−1,c(p, q; u),(3.16)

∂

∂p
[Hn,s(p, q; u)] =nHn−1,s(p, q; u)(3.17)

and

∂

∂q
[Hn,c(p, q; u)] = − nHn−1,s(p, q; u),(3.18)

∂

∂q
[Hn,s(p, q; u)] =nHn−1,c(p, q; u).(3.19)

It will be shown (3.16), the demonstrations of (3.17), (3.18) and (3.19) are similar.

Proof.

∂

∂p



∞
∑

n=0

Hn,c(p, q; u)
zn

n!

]

=
∞
∑

k=0

∂

∂p
[Hn,c(p, q; u)]

zn

n!

=
1 − u

ez − u
zepz cos(qz)
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=
∞
∑

n=0

Hn,c(p, q; u)
zn+1

n!

=
∞
∑

n=1

Hn−1,c(p, q; u)
zn

(n − 1)!

=
∞
∑

n=1

nHn−1,c(p, q; u)
zn

(n)!
. □

Proposition 3.9. The polynomials Hn,c(p, q; u) and Hn,s(p, q; u) are, respectively, of

degrees n and n − 1 in the variable p it is also asserted that

Hn,c(p; q; u) =pn −
1

1 − u
pn−1 + · · · ,

Hn,s(p; q; u) =nqpn−1 −
n(n − 1)q

1 − u
pn−2 + · · · .

4. Taylor Type Series Involving the Apostol-type Frobenius-Euler
Numbers and Frobenius-Euler Numbers Hn(λ; u) and Hn(u)

An important fact of relationships (2.5) and (2.6) is that one can trace them as
the expansion in Taylor series of some functions on the point z = 0 and relate it to
Apostol-Frobenius-Euler and Frobenius-Euler numbers. So, replacing (2.7) and (2.8)
in (2.5) and (2.6), one has

f c
H,λ;u(z; p, q) =

1 − u

λez − u
epz cos(qz) =

∞
∑

n=0



n
∑

k=0



n

k



Hn−k(λ; u)Ck(p, q)

]

zn

n!
,(4.1)

f s
H,λ;u(z; p, q) =

1 − u

λez − u
epz sin(qz) =

∞
∑

n=0



n
∑

k=0



n

k



Hn−k(λ; u)Sk(p, q)

]

zn

n!
,

f c
H,u(z; p, q) =

1 − u

ez − u
epz cos(qz) =

∞
∑

n=0



n
∑

k=0



n

k



Hn−k(u)Ck(p, q)

]

zn

n!
,

f s
H,u(z; p, q) =

1 − u

ez − u
epz sin(qz) =

∞
∑

n=0



n
∑

k=0



n

k



Hn−k(u)Sk(p, q)

]

zn

n!
,

where Ck(p, q) and Sk(p, q) are defined in (2.1) and (2.2). Some particular cases will
be shown using result previously known in Section 6 of [13].

Example 4.1. In (4.1), taking p = 0 and q = 1, and using (2.3) and (2.4), one obtain

f c
H,λ;u(z; 0, 1) =

1

λez − u
cos(z)

=
∞
∑

n=0



n
∑

k=0

1

1 − u



n

k



Hn−k(λ; u) cos
kπ

2

]

zn

n!

=
∞
∑

n=0







[ n

2
]

∑

k=0

(−1)k 1

1 − u



n

k



Hn−k(λ; u)







zn

n!
.
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Therefore, one has

1

λez − u
cos(z) =

∞
∑

n=0







[ n

2
]

∑

k=0

(−1)k 1

1 − u



n

2k



Hn−2k(λ; u)







zn

n!
,

as well as

1

λez − u
sin(z) =

∞
∑

n=0







[ n−1

2
]

∑

k=0

(−1)k 1

1 − u



n

2k + 1



Hn−2k−1(λ; u)







zn

n!
,

1

ez − u
cos(z) =

∞
∑

n=0







[ n

2
]

∑

k=0

(−1)k 1

1 − u



n

2k



Hn−2k(u)







zn

n!

and

1

ez − u
sin(z) =

∞
∑

n=0







[ n−1

2
]

∑

k=0

(−1)k 1

1 − u



n

2k + 1



Hn−2k−1(u)







zn

n!
.

Example 4.2. Putting p = q = 1 in (4.1), one gets

ez

λez − u
cos(z) =

∞
∑

n=0





n
∑

k=0

2
k

2

1 − u



n

k



Hn−k(λ; u) cos
kπ

4





zn

n!
,

ez

λez − u
sin(z) =

∞
∑

n=0





n
∑

k=0

2
k

2

1 − u



n

k



Hn−k(λ; u) sin
kπ

4





zn

n!
,

ez

ez − u
cos(z) =

∞
∑

n=0





n
∑

k=0

2
k

2

1 − u



n

k



Hn−k(u) cos
kπ

4





zn

n!

and

ez

ez − u
sin(z) =

∞
∑

n=0





n
∑

k=0

2
k

2

1 − u



n

k



Hn−k(u) sin
kπ

4





zn

n!
.

5. Parametric Apostol-type Frobenius-Euler Polynomials Matrix

Inspired by [11,12,16], this section will address the generalized parametric Apostol-
type Frobenius-Euler polynomials matrices and will show some of their properties.

Definition 5.1. The generalized (n+1)× (n+1) parametric Apostol-type Frobenius-
Euler polynomials matrices H (α)

c (p, q; λ; u) and H (α)
s (p, q; λ; u) are defined by

H (α)
i,j,c (p, q; λ; u) =













i

j



H
(α)
i−j,c(p, q; λ; u), i ≥ j,

0, otherwise,
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and

H (α)
i,j,s(p, q; λ; u) =













i

j



H
(α)
i−j,s(p, q; λ; u), i ≥ j,

0, otherwise.

Since, H(0)
n,c(p; 0; λ; u) = pn and H(0)

n,s

(

p;
π

2z
; λ; u

)

= pn, we obtain

H (0)
c (p; 0; λ; u) = P [p], H (0)

s

(

p;
π

2z
; λ; u

)

= P [p].

Theorem 5.1. The generalized parametric Apostol-type Frobenius-Euler polynomials

matrices H (α)
c (p, q; λ; u) and H (α)

s (p, q; λ; u) satisfies the following product formulae

H (α+β)
c (p + q; q; λ; u) = H (α)

c (p; q; λ; u) H (β)
c (q; 0; λ; u)(5.1)

= H (β)
c (p; q; λ; u) H (α)

c (q; 0; λ; u)

= H (α)
c (q; 0; λ; u) H (β)

c (p; q; λ; u),

H (α+β)
s (p + q; q; λ; u) = H (α)

s (p; q; λ; u) H (β)
s

(

q;
π

2z
; λ; u

)

(5.2)

= H (β)
s (p; q; λ; u) H (β)

s

(

q;
π

2z
; λ; u

)

= H (α)
s

(

q;
π

2z
; λ; u

)

H (β)
s (p; q; λ; u) .

Proof. Let D
[α,β]
i,j,c (λ; u)(p, q) be the (i, j)-th entry of the matrix product

H (α)
c (p; q; λ; u) H (β)

c (q; 0; λ; u), then by the addition formula (2.9) we have

D
[α,β]
i,j,c (λ; u)(p, q) =

n
∑

k=0



i

k



H
[α]
i−k,c(p; q; λ; u)



k

j



H
[β]
k−j,c(q; 0; λ; u)

=
i
∑

k=j



i

k



H
[α]
i−k,c(p; q; λ; u)



k

j



H
[β]
k−j,c(q; 0; λ; u)

=
i
∑

k=j



i

j



i − j

i − k



H
[α]
i−k,c(p; q; λ; u)H

[β]
k−j,c(q; 0; λ; u)

=



i

j



i−j
∑

k=0



i − j

k



H
[α]
i−j−k,c(p; q, λ; u)H

[β]
k,c(q; 0; λ; u)

=



i

j



H
[α+β]
i−j,c (p + q; q; λ; u),

which implies (5.1). The second and third equalities of the theorem and (5.2), can be
derived in a similar way. □
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Corollary 5.1. The generalized parametric Apostol-type Frobenius-Euler polynomials

matrices H (α)
c (p, q; λ; u) and H (α)

s (p, q; λ; u) satisfy the following relations

H [α]
c (p + q; q; λ; u) = H [α]

c (p; q; λ; u)P [q] = P [p]H [α]
c (q; q; λ; u)

= H [α]
c (q; q; λ; u)P [p],

H [α]
s (p + q; q; λ; u) = H [α]

s (p; q; λ; u)P [q] = P [p]D [α]
s (q; q; λ; u)

= D [α]
s (q; q; λ; u)P [p].

In particular,

Hc(p + q; q; λ; u) = P [p]Hc(q; q; λ; u) = P [q]Hc(p; q, λ; u).

Example 5.1. For α = 1 the first three polynomials H [α]
k,c (p; q; λ; u), k = 0, 1, 2, are

Hc
0(p, q; λ; u) =

1 − u

λ − u
,

Hc
1(p, q; λ; u) =

1 − u

λ − u
p −

λ(1 − u)

(λ − u)2
,

Hc
2(p, q; λ; u) =



2λ2

(λ − u)3
−

λ

(λ − u)2

]

(1 − u) −
1 − u

λ − u
q2 +

1 − u

(λ − u)2
p2

+



2(1 − u)λ

(λ − u)2

]

p.

Hence, for n = 2 we have

H [1]
c (p; q, λ, u) =







Hc
0(p, q; λ; u) 0 0

Hc
1(p, q; λ; u) Hc

0(p, q; λ; u) 0
Hc

2(p, q; λ; u) 2Hc
1(p, q; λ; u) Hc

0(p, q; λ; u)





 .

For α, u, λ ∈ C, 0 ≤ i, j ≤ n, let K
[α]
c (p; q; λ, u) and K

[α]
s (p; q; λ, u) be the matrices

whose entries are defined by

r̃
[α]
i,j,c(p; q; λ; u) =



i

j



H
[α]
i−j,c(p; q; λ; u) −



i − 1

j



H
[α]
i−j−1,c(p; q; λ; u)

−



i − 2

j



H
[α]
i−j−2,c(p; q; λ; u),

r̃
[α]
i,j,s(p; q; λ; u) =



i

j



H
[α]
i−j,s(p; q; λ; u) −



i − 1

j



H
[α]
i−j−1,s(p; q; λ; u)

−



i − 2

j



H
[α]
i−j−2,s(p; q; λ; u).

On the other hand, J [α]
c (p; q; λ; u) and J [α]

s (p; q; λ; u) are the matrices whose entries
are given by

s̃
[α]
i,j,c(p; q; λ; u) =



i

j



H
[α]
i−j,c(p; q; λ; u) −



i

j + 1



H
[α]
i−j−1,c(p; q; λ; u)
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−



i

j + 2



H
[α]
i−j−2,c(p; q; λ; u),

s̃
[α]
i,j,s(p; q; λ; u) =



i

j



H
[α]
i−j,s(p; q; λ; u) −



i

j + 1



H
[α]
i−j−1,s(p; q; λ; u)

−



i

j + 2



H
[α]
i−j−2,s(p; q; λ; u).

Using the definitions of K
[α]
c (p; q; λ; u), K

[α]
s (p; q; λ; u), J [α]

c (p; q; λ; u) and
J [α]

s (p; q; λ; u), it is observed that

r̃
[α]
0,0,c(p; q; λ; u) =r̃

[α]
1,1,c(p; q; λ; u) = s̃

[α]
0,0,c(p; q; λ; u) = s̃

[α]
1,1,c(p; q; λ; u) = H

[α]
0,c(p, q, λ; u),

r̃
[α]
0,j,c(p; q; λ; u) =s̃

[α]
0,j,c(p; q; λ; u) = 0, j ≥ 1,

r̃
[α]
1,0,c(p; q; λ; u) =s̃

[α]
1,0,c(p; q; λ; u) = H

[α]
1,c(p; q; λ; u) − H

[α]
0,c(p; q; λ; u),

r̃
[α]
1,j,c(p; q; λ; u) =s̃

[α]
1,j,c(p; q; λ; u) = 0, j ≥ 2,

r̃
[α]
i,0,c(p; q; λ; u) =H

[α]
i,c (p; q; λ; u) − H

[α]
i−1,c(p; q; λ; u) − H

[α]
i−2,c(p; q; λ; u), i ≥ 2,

s̃
[α]
i,0,c(p; q; λ; u) =H

[α]
i,c (p; q; λ; u) − 2H

[α]
i−1,c(p; q; λ; u) − H

[α]
i−2,c(p; q; λ; u), i ≥ 2,

r̃
[α]
0,0,s(p; q; λ; u) =r̃

[α]
1,1,s(p; q; λ; u) = s̃

[α]
0,0,s(p; q; λ; u) = s̃

[α]
1,1,s(p; q; λ; u) = H

[α]
0,s(p, q, λ; u),

r̃
[α]
0,j,s(p; q; λ; u) =s̃

[α]
0,j,s(p; q; λ; u) = 0, j ≥ 1,

r̃
[α]
1,0,s(p; q; λ; u) =s̃

[α]
1,0,s(p; q; λ; u) = H

[α]
1,s(p; q; λ; u) − H

[α]
0,s(p; q; λ; u),

r̃
[α]
1,j,s(p; q; λ; u) =s̃

[α]
1,j,s(p; q, λ; u) = 0, j ≥ 2,

r̃
[α]
i,0,s(p; q; λ; u) =H

[α]
i,s (p; q; λ; u) − H

[α]
i−1,s(p; q; λ; u) − H

[α]
i−2,s(p; q; λ; u), i ≥ 2,

s̃
[α]
i,0,s(p; q; λ; u) =H

[α]
i,s (p; q; λ; u) − 2H

[α]
i−1,s(p; q; λ; u) − H

[α]
i−2,s(p; q; λ; u), i ≥ 2.

For α, λ, u ∈ C, 0 ≤ i, j ≤ n, let L [α]
1,c (p; q; λ; u) and L [α]

1,s (p; q; λ; u) be the matrices
whose entries are given by

l̂
[α]
i,j,1,c(p; q; λ; u) =



i

j



H
[α]
i−j,c(p; q; λ; u) − 3



i − j

j



H
[α]
i−j−1,c(p; q; λ; u)

+ 5
i−2
∑

k=j

(−1)i−k2i−k−2



k

j



H
[α]
k−j,c(p; q; λ; u),

l̂
[α]
i,j,1,s(p; q; λ; u) =



i

j



H
[α]
i−j,s(p; q; λ; u) − 3



i − j

j



H
[α]
i−j−1,s(p; q; λ; u)

+ 5
i−2
∑

k=j

(−1)i−k2i−k−2



k

j



H
[α]
k−j,s(p; q; λ; u).
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Similarly, let L [α]
2,c (p; q; λ; u) and L [α]

2,s (p; q; λ; u), (n + 1) × (n + 1) be the matrices
whose entries are given by

l̂
[α]
i,j,2,c(p; q; λ; u) =



i

j



H
[α]
i−j,c(p; q; λ; u) − 3



i

j + 1



H
[α]
i−j−1,c(p; q; λ; u)

+ 5
i
∑

k=j+1

(−1)k−j2k−j−2



i

k



H
[α]
i−k,c(p; q; λ; u),

l̂
[α]
i,j,2,s(p; q; λ; u) =



i

j



H
[α]
i−j,s(p; q; λ; u) − 3



i

j + 1



H
[α]
i−j−1,s(p; q; λ; u)

+ 5
i
∑

k=j+1

(−1)k−j2k−j−2



i

k



Hα
i−k,s(p; q; λ; u).

Next we will show factorizations of the matrices H [,α]
c (p; q; λ; u) and H [α]

s (p; q; λ; u)
involving the Fibonacci and Lucas matrices, respectively.

Theorem 5.2. The parametric Apostol-type Frobenius-Euler polynomials matrix

H [α]
c (p; q; λ; u) and H [α]

s (p; q; λ; u) can be factored in terms of the Fibonacci matrix

F as follows

H [α]
c (p; q; λ; u) =FK

[α]
c (p; q; λ; u),(5.3)

H [α]
s (p; q; λ; u) =FK

[α]
s (p; q; λ; u),(5.4)

H [α]
c (p; q; λ; u) =J [α]

c (p; q; λ; u)F ,(5.5)

H [α]
s (p; q; λ; u) =J [α]

s (p; q; λ; u)F .(5.6)

Proof. The relation (5.3) is equivalent to

F −1H [α]
c (p; q; λ; u) = K

[α]
c (p; q; λ; u),

following the ideas of [11] or [19, Theorem 4.1], and making the corresponding modi-
fications, (5.3) is obtained. □

In addition, the relations (5.3), (5.4), (5.5) and (5.6) allow us to deduce the following
identities:

K
[α]
c (p; q; λ; u) =F −1J [α]

c (p; q, λ; u) F ,

K
[α]
s (p; q; λ; u) =F −1J [α]

s (p; q, λ; u) F .

An analogous reasoning used in the proof of Theorem 5.2, allows us to prove the
results below.

Example 5.2. For α = 1, the matrices, for n = 2, K [1]
c (p; q, λ; u) and F are

K
[1]
c (p; q, λ; u) =



a 0 0
b − a a 0

c − b − a 2b − a a

]

,
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where a = H0,c(p, q; λ; u), b = H1,c(p, q; λ; u) and c = H2,c(p, q; λ; u),

F =







1 0 0
1 1 0
2 1 1





 .

Hence,

FK
[1]
c =







a 0 0
b a 0
c 2b a





 and H [1]
c (p, q, λ; u) =







a 0 0
b a 0
c 2b a





 .

This is a particular case of Theorem 5.2 affirmation (5.3).

Example 5.3. For α = 1, the matrices, for n = 2, J [1](p; q; λ; u) and F are

J [1](p; qλ; u) =







a 0 0
b − a a 0

c − 2b − a 2b − a a






, F =







1 0 0
1 1 0
2 1 1






.

Then

J [1](p; q; λ; u)F =







a 0 0
b a 0
c 2b a






and H [1]

c (p; q; λ; u) =







a 0 0
b a 0
c 2b a






.

This is a particular case of Theorem 5.2 affirmation (5.5).

Theorem 5.3. The parametric Apostol-type Frobenius-Euler polynomials matrix

H [α]
c (p; q; λ; u) and H [α]

s (p; q; λ; u) can be factored in terms of the Lucas matrix L
of the following form

(5.7) H [α]
c (p; q; λ; u) = L L [α]

1,c (x; y; a)

or

H [α]
c (p; q; λ, u)) =L [α]

2,c (p; q; λ, u))L ,

H [α]
s (p; q; λ, u) =L L [α]

1,s (p; q; λ, u)

or

H [α]
s (p; q; λ, u) = L [m−1,α]

2,s (p; q; λ, u))L .

Proof. The relation (5.7) is equivalent to

L −1H [α]
c (p; q; λ; u) = L [α]

1,c (x; y; a),

following the ideas of [11, Theorem 9], and making the corresponding modifications,
(5.7) is obtained. □

Example 5.4. For α = 1, the matrices, for n = 2, L [1]
1,c (p; q; λ, u) and L are

L [1]
1,c (p; q, λ, u) =







a 0 0
b − 3a a 0

c − 3b + 5a 2b − 3a a





 , L =







1 0 0
3 1 0
4 3 1





 ,
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L L [1]
1,c (x; y; a) =







a 0 0
b a 0
c 2b a






and H [1]

c (p, q, λ, u) =







a 0 0
b a 0
c 2b a






.

This is a particular case of Theorem 5.3 affirmation (5.7).

6. Conclusions

The paper aims to present the study of new properties of the polynomials that are
introduced in [10]. Certain expressions, representations, and summations of these
polynomials are derived in terms of well-known classical special functions. The results
we have considered in this paper indicate the usefulness of the series rearrangement
technique used to deal with the theory of special functions. we have obtained new series
of the Taylor type involving the Apostol Frobenius-Euler numbers and Frobenius-Euler
numbers. Finally, they addressed the generalized parametric Apostol-type Frobenius-
Euler polynomials matrices and show some of their properties.
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GIELIS TRANSFORMATION OF THE ARCHIMEDEAN SPIRAL

LUDĚK SPÍCHAL

Abstract. The article shows that the Archimedean spiral, usually described as
a smooth spiral, can be transformed in many different shapes. The main part of
the article concentrates on the curvature of the transformed spirals. It will also be
shown that the shape some of them is an approximation of spiral antennas.

1. Introduction

Gielis transformations of curves were originally introduced in connection with the
modelling of shapes of various biological objects, e.g., flowers, fruits, an arrangement of
leaves, shapes of shells, and so on [1–4]. Gradually, studies have appeared pointing to
the possibility of using transformed curves also in technical applications, e.g., [7–12].

This article aims to continue in theoretical studies in the area of the so-called Gielis’
superformula and Gielis curves. In the early 19th century, a French mathematician
Gabriel Lamé introduced a generalized equation of the ellipse

(1.1)
∣
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∣
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x
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∣

∣
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n

+
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∣
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y

b

∣

∣

∣

∣

n

= 1,

where a, b, n ∈ Q+. The equation (1.1) can generate different types of curves, such as
asteroids (n = 2/3), parallelograms (n = 1), circles and ellipses (n = 2), squares and
rectangles (n → ∞). All these curves are called Lamé curves or superellipses (Figure
1), e.g., [1–4].

Key words and phrases. Gielis transformation, Archimedean spiral, Gielis curves, curvature, an-
tennas.
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Figure 1. Lamé curves for n = 1
2
, 2

3
, 1, 2, 6, 50, whereas a = b (curves

for other cases are obtained by changing the scale on the axes)

The curve (1.1) can also be expressed in polar coordinates (ρ, θ)

(1.2) ρ =
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In the late 20th century, Belgium botanist Johan Gielis generalized (1.2) to the form

(1.3) ρ =
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,

where a, b, m, n1, n2, q ∈ R+. As can be seen from the equation (1.3), Gielis replaced
the exponent n by three independent exponents n1, n2, q and inserted an extra param-
eter m

4
into the argument of both trigonometric functions. The Gielis transformation

consists in replacing the plane curve expressed in polar coordinates (ρ, θ) with a curve

(1.4) ρ = f(θ)
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Gielis called the transformation (1.3) and (1.4) as a superformula. Without loss of
generality, in (1.3), we focus on the case a = b = 1 and n1 = n2 = p and put [13]

(1.5) gm,p,q(θ) =
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.

The curve defined by the equation ρ = gm,p,q(θ) can be interpreted as the Gielis trans-
formation of a unit circle centered at the origin for various choices of the parameters
m, p, q. Figure 2 shows that Gielis curves can provide far more complicated shapes
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than Lamé curves. There are plenty of examples of natural shapes similar to Gielis
curves [2, 3, 15,16].

In this article, the properties of the curves generated by the Gielis transformation
of the Archimedean spirals will be investigated. There are two available approaches
to what the Archimedean spirals are. The first one considers the general equation in
polar coordinates (ρ, θ) of the form

(1.6) ρ = aθ1/n + b,

where a, b and n are real constants. Several special cases can be described, depending
on the value of n: the arithmetic spiral (n = 1), the hyperbolic spiral (n = −1),
the Fermat spiral (n = 2), and lituus (n = −2) [4, 5, 14]. The second approach
considers the terms the arithmetic spiral and the Archimedean spiral as synonyms
(Archimedean spiral, Wikipedia, The Free Encyclopedia, Available from: https://en.

wikipedia.org/w/index.php?title=Archimedean_spiral&oldid=949421005). In
the next parts of this article, the second approach will be followed, and the equation
(1.6) will be of the form

(1.7) ρ = aθ + b.

The equation (1.7) describes the trajectory of a point moving at a constant speed
along a ray spinning around the origin at a constant angular velocity. Changing the
parameter b moves the center of the spiral outward from the origin (for the option
b > 0 toward θ = 0 and for the option b < 0 toward θ = π). The parameter a changes
the distance between loops of the spiral.

Without loss of generality, in the equation (1.7), we focus on the case b = 0 and
put

(1.8) ρ = aθ.

The Archimedean spirals have a variety of real-world applications. Scroll compres-
sors, made from two members (one of them fixed and the other rotating), each
of them in the shape of an Archimedean spiral, are used for compressing gases (H.
Sakata, O. Masayuki, Fluid compressing device having coaxial spiral members, United
States Patent 5603614. http://www.freepatentsonline.com/5603614.html). The
Archimedean spirals have a constant distance between successive coils and they ap-
pear naturally in such systems as a roll of paper, the grooves of a gramophone record,
and so on [4, 5]. In food microbiology, the Archimedean spirals are used to quantify
bacterial concentration through a spiral platter [6].

There are also plenty of types of Archimedean spiral shaped antennas. Some of
them are in the shape of the smooth Archimedean spiral [11] and the others, as it will
be shown latter, are in the shape of transformed Archimedean spirals, e.g., [7–10].

In the article [13], Matsuura discusses the mathematical structure of the curves
given by the equation ρ = gm,p,q(θ). Matsuura also introduces the concept of Gielis
regular polygons, which he further compares with regular polygons. The substantial
part of the article deals with the curvature of Gielis curves. In the article [15], the

https://en.wikipedia.org/w/index.php?title=Archimedean_spiral&oldid=949421005
https://en.wikipedia.org/w/index.php?title=Archimedean_spiral&oldid=949421005
http://www.freepatentsonline.com/5603614.html
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Figure 2. Gielis curves defined by the equation ρ = gm,p,q(θ) (m = 5):
first row q = 0,5 (p = 0,5, p = 1,5, p = 2,5); second row q = 5 (p = 0,5,
p = 2, p = 10); third row q = 50 (p = 5, p = 20, p = 100); fourth row
q = 500 (p = 100, p = 300, p = 500)
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properties of the transformed logarithmic spirals were investigated and compared with
similarly shaped objects.

The rest of this paper is organized as follows. Firstly, we summarize the known facts
about the transformations of Gielis curves [13] and the logarithmic spirals [15] and
compare them with the Gielis transformation of the Archimedean spiral. Subsequently,
we investigate the curvature of the subspiral (p < 2) and superspiral (p > 2) at the
anchor points and the vertices of the curves. We also discuss the influence of the value
of the parameter m (integer or non-integer) on the shape of spirals. Finally, we point
out objects and shapes, which could be modelled with transformed spirals.

2. Gielis Transformation of the Archimedean Spiral

Using equations (1.5) and (1.8) we obtain the equation

(2.1) ga,m,p,q(θ) = aθ


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which determines Gielis transformation of the Archimedean spiral. Throughout the
rest of this paper we will be using the following notation and terms.

(i) We denote the planar curves obtain according to the equation (2.1) by the symbol
Ga,m,p,q, i.e. Ga,m,p,q(θ) = ga,m,p,q(θ)(cos θ, sin θ), the Archimedean spiral by the
symbol Ga, i.e., Ga(θ) = aθ(cos θ, sin θ). Figures 3, 5 and 6 show some examples
of transformations of the Archimedean spiral. In Figure 3 one can see that the
coils of the spiral intersect only for rational values of m.

(ii) The pole of the spiral is the point which spiral approaches for θ → −∞. In
the case of the non-shifted spiral, this point lies at the origin of the Cartesian
coordinate system.

(iii) The anchor point of Ga,m,p,q means such a point of Ga, whose position does not
change during the transformation, i.e., Ga,m,p,q(θ) = Ga(θ).

(iv) The vertex of Ga,m,p,q means the point of Ga,m,p,q corresponding to the value of
θ (Fig. 4), where gm,p,q has a local maximum (later we will show that for p < 2
the vertices are identical with anchor points).

(v) The coil of the spiral means the part of the curve where θ ∈ [2kπ, 2(k + 1)π) for
given k ∈ Z.

The following statements summarize some properties of transformed spirals, the proofs
are routine.

Lemma 2.1. The parameter m determines the number of anchor points in one spiral

coil of Ga,m,p,q as follows.

(i) For m ∈ N , the spiral has exactly m anchor points in one coil.

(ii) For m /∈ N , the number of anchor points in one coil corresponds to ⌈m⌉, i.e.,

the next higher integer.

Lemma 2.2. The function gm,p,q satisfies the following properties (k ∈ Z).
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Figure 3. Gielis transformation of the Archimedean spiral (θ ∈
[0, 6π]): first row m = 2,5, q = 3 (p = 0,5, p = 4, p = 10); second row
m = 4, q = 10 (p = 2, p = 10, p = 20); third row m = 6, q = 20 (p = 30,
p = 50, p = 100)

(i) For p < 2 it is increasing on
[

(2k−1)π
m

, 2kπ
m

]

and decreasing on
[

2kπ
m

, (2k+1)π
m

]

.

(ii) For p = 2 it is constant on the whole real axis.

(iii) For p > 2 it is increasing on
[

2kπ
m

, (2k+1)π
m

]

and decreasing on
[

(2k+1)π
m

, 2(k+1)π
m

]

.

(iv) For all θ = 2kπ
m

(k ∈ Z) it is gm,p,q(θ) = θ.



GIELIS TRANSFORMATION OF THE ARCHIMEDEAN SPIRAL 437

Figure 4. Gielis transformation of the Archimedean spiral (θ ≥ 0, left
p < 2, right p > 2)

Corollary 2.1. (i) If p = 2, then Ga,m,p,q is the Archimedean spiral Ga.
Let the points X, Y lie on the same coils of Ga,m,p,q and Ga, and at the same time on
the same half-line starting from the pole P of the spiral. If

• p < 2, then ♣PX♣ ≤ ♣PY ♣;
• p > 2, then ♣PX♣ ≥ ♣PY ♣.

(ii) If p < 2, then the anchor points and vertices of Ga,m,p,q correspond to the choice
θ = 2kπ

m
(k ∈ Z). If p > 2, then the anchor points of Ga,m,p,q correspond to the choice

θ = 2kπ
m

(k ∈ Z), and the vertices to the choice θ = (2k+1)π
m

(k ∈ Z).

Theorem 2.2. The function ga,m,p,q satisfies the following properties

(i) ga,m,p,q(θ + 2π
m

) = 2πa
m

ga,m,p,q(θ);
(ii) limq→∞ ga,m,p,q(θ) = aθ.

Proof. The claims (i) and (ii) follow directly from the definition of the function
ga,m,p,q. □

Remark 2.1. For p < 2 we call the curve Ga,m,p,q a subspiral of the Archimedean spiral,
for p > 2 is the curve Ga,m,p,q a superspiral of the Archimedean spiral.

3. Curvature of Subspiral and Superspiral

The aim of this section is to examine the curvature of subspiral and superspiral.
The curvature can generally be characterized as an amount by which a curve deviates
from being a straight line whose curvature is zero. If we consider, that spirals are
given with (2.1), and we use the relation for the curvature of the curve given in polar
coordinates, then we obtain

(3.1) κa,m,p,q(θ) =
ga,m,p,q(θ)2 + 2g′

a,m,p,q(θ)2 − ga,m,p,q(θ)g′′

a,m,p,q(θ)
{

ga,m,p,q(θ)2 + g′

a,m,p,q(θ)2
}

3

2

,
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Figure 5. Curvature at the anchor points (vertices) of the subspiral
(upper row: p = 1 and successively q = 1, q = (m/4)2p, q = 8), and at
the vertices of the superspiral (lower row: p = q = 8), m = 8

where κa,m,p,q(θ) denotes the curvatute of Ga,m,p,q. For p < 2 the function x 7→ ♣x♣p

does not have the second derivative in zero, therefore g(θ) does not have the second
derivative at the points 2kπ

m
(k ∈ Z) and the curvature is not defined there. If we

substitute in (3.1) the formula aθgm,p,q(θ) for ga,m,p,q(θ), then after simplifying we
obtain

(3.2) κa,m,p,q(θ) =
1

a
·

θ2g(θ)2 + 2


g(θ) + θg′(θ)
2

− θg(θ)


2g′(θ) + θg′′(θ)




θ2g(θ)2 +


g(θ) + θg′(θ)
2


3

2

,

where g(θ) is a shortcut for gm,p,q(θ).
Since the second fraction in formula (3.2) represents 2π

m
-periodic function is sufficient

to examine the curvature on the interval [0, 2π
m

). When investigating the curvature of
transformed spirals we focus on the anchor points, i.e., we determine the curvature for
θ = (2k+1)π

m
(k ∈ Z), and the vertices of the spirals, i.e., we determine the curvature

for θ = 2kπ
m

(k ∈ Z). Because of the above, it will be sufficient to do the calculations
in case of anchor points for θ = π

m
, and in the case of vertices for θ = 0.

Theorem 3.1. The curvature κa,m,p,q(
π
m

) satisfies the following properties.

(i) κa,m,p,q(
π
m

) = 1
agm,p,q( π

m
)

· 1

¶1+( π

m
)2♢

3

2

{

2 + ( π
m

)2 + π2p(p−2)
16q

}

(ii) Let p < 2. Then

• κa,m,p,q(
π
m

) < 0 if q < π2(m/4)2p(2−p)
2m2+π2 ,
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Figure 6. Curvature at the anchor points of the superspiral (p = 10
and successively q = 15, q = (m/4)2p, q = 75), m = 8

• κa,m,p,q(
π
m

) = 0 if q = π2(m/4)2p(2−p)
2m2+π2 ,

• κa,m,p,q(
π
m

) > 0 if q > π2(m/4)2p(2−p)
2m2+π2 .

(iii) If p ≥ 2, then κa,m,p,q(
π
m

) > 0.

Proof. To prove (i), it is sufficient to substitute into formula (3.2)

g


π

m



= 2
p−2

2q , g′



π

m



= 0, g′′



π

m



=
(m/4)2p(2 − p)

q
2

p−2

2q .

The claims (ii) and (iii) follow directly from (i). □

In the claim (ii) of the previous theorem is for the choice p < 2 mentioned the
dependence of curvature on the value of the parameter q. Examples of the curves
with the negative, zero and positive curvature at points that are “halfway” between
the anchor points are shown in Figure 5.

Theorem 3.2. Let p > 2. The curvature κa,m,p,q(0) satisfies the following properties.

(i) κa,m,p,q(0) = 1
a

· 1

¶1+( π

m
)2♢

3

2

{

2 + ( π
m

)2 − π2p
16q

}

.

(ii) If

• q < π2(m/4)2p
2m2+π2 , then κa,m,p,q(0) < 0,
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• q = π2(m/4)2p
2m2+π2 , then κa,m,p,q(0) = 0,

• q > π2(m/4)2p
2m2+π2 , then κa,m,p,q(0) > 0.

Proof. To prove (i), it is sufficient to substitute into formula (3.2)

g(0) = 1, g′(0) = 0, g′′(0) =
(m/4)2p

q
.

The claim (ii) follows directly from (i). □

Examples of the curves with the negative, zero and positive curvature at the anchor
points of the superspirals are shown in Figure 6.

Remark 3.1. For p = 0 or p = 2 is

κa,m,p,q(θ) =
1

ga(θ)
·

2 + θ2

(1 + θ2)3/2

the curvature of the Archimedean spiral Ga.

4. Transformed Archimedean Spirals as Approximations of Spiral
Antennas

The requirement for miniaturizing the antennas led to looking for specific trans-
formed shapes. There are many types of planar spiral antennas whose design is based
mainly on the use of the Archimedean or logarithmic geometry. The antennas operate
in different configurations, e.g., the circular, the rectangular, the polygonal, sinuous
meander or log-periodic. The mentioned configurations have their advantages and
disadvantages but generally allow to reach frequency independent antennas.

Although there are different types of antennas with a different configuration, it
can be shown that it is possible to approximate many of them in terms of Gielis
transformation (Figure 7).

On the other hand, relative simplicity and flexibility of transformation might be
used when looking for an advance or novel construction of the antennas.

5. Conclusion

In this paper, some properties of the Gielis transformation of the Archimedean
spiral were analyzed. We focused in particular on the curvature in anchor points
and the vertices of the transformed curves. In the end, we showed that the Gielis
transformation might be handy when one looks for the appropriate shape of the
Archimedean spiral-like antennas.
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Figure 7. Models of spiral antennas with different configuration ap-
proximated via Gielis transformation of the Archimedean and logarith-
mic spiral
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GRÖBNER LATTICE-POINT ENUMERATORS AND SIGNED
TILING BY k-IN-LINE POLYOMINOES

MANUELA MUZIKA DIZDAREVIĆ1, MARINKO TIMOTIJEVIĆ2,
AND RADE T. ŽIVALJEVIĆ3

Abstract. Conway and Lagarias observed that a triangular region T2(n) in a
hexagonal lattice admits a signed tiling by 3-in-line polyominoes (tribones) if and
only if n ∈ ¶32d−1, 32d♢d∈N. We apply the theory of Gröbner bases over integers to
show that T3(n), a three dimensional lattice tetrahedron of edge-length n, admits a
signed tiling by tribones if and only if n ∈ ¶33d−2, 33d−1, 33d♢d∈N. More generally
we study Gröbner lattice-point enumerators of lattice polytopes and show that they
are (modular) quasipolynomials in the case of k-in-line polyominoes. As an example
of the Şunusual cancelation phenomenonŤ, arising only in signed tilings, we exhibit
a conĄguration of 15 tribones in the 3-space such that exactly one lattice point is
covered by an odd number of tiles.

1. Introduction

Following Conway and Lagarias [6], Reid [12], and other authors, we say that a
Ąnite region (polyomino) R, in a (hexagonal) lattice tiling of the plane, has a signed

tiling (Z-tiling), by prototiles from a given set Σ, if there exists a (possibly overlapping)
placement of a Ąnite number of copies of prototiles in the plane such that:

• the total covering multiplicity of elementary cells (hexagons) in R is +1;
• the total covering multiplicity of elementary cells outside of R is 0.

Figures 1 and 2 nicely illustrate these concepts. The set R, depicted in Figure 1 on
the left, is a triangular region in the hexagonal tiling of the plane. The prototiles,
also exhibited in Figure 1 on the left, are 3-in-line polyominoes, called 3-bones. The
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objective is to cover or more precisely to distribute copies of these prototiles over R,
so that they (counted with positive or negative multiplicity) form a covering of R.

Figure 1

Figure 2

Figure 3. A signed tiling of a triangular region by 3-bones

We see (Figure 1) how 3-bones are initially added in an attempt to cover R without
overlaps. We continue (Figure 2) by allowing overlaps, until R is completely covered
with 3-bones. In the rightmost image depicted in Figure 2 we see that each cell
(hexagon) has multiplicity +1 or +2, where precisely three hexagons have multiplicity
+2. Finally, these three cells can be subtracted by adding a 3-bone of multiplicity −1
(the shaded region depicted in Figure 3).

1.1. Algebraic method. In an algebraic reformulation of the problem each cell
(lattice point) is associated a monomial (p, q) = pe1 +qe2 7→ xpyq and the signed tiling
can be interpreted as an algebraic identity in the ring Z[x, y].

More explicitly the basic 3-bones are interpreted as quadratic polynomials b1 =
x2 + x + 1, b2 = y2 + y + 1, b3 = x2 + xy + y2, the region R is represented by the
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polynomial T2(8), where

(1.1) T2(n) =
∑

0≤i,j≤n−1

i+j≤n−1

xiyj ,

the shaded region in Figure 3 is recorded as the polynomial x2y2b1 and the algebraic
equivalent of the signed tiling described in Figures 1, 2, 3 is the identity

T2(8) = (1+y +x5 −x2y2)b1 +(x3 +x4 +y2 +x2y2 +xy3 +y5)b2 +(x5y +x6y +x3y4)b3 .

1.2. Ideal membership problem and Gröbner bases. As demonstrated in the
previous section, the existence of a signed tiling in general can be reduced to the Ideal

membership problem [7, Chapter 2], which can be often successfully treated by the
method of Gröbner basis [7, 8].

The approach to signed polyomino tilings via Gröbner bases was originally proposed
by Bodini and Nouvel [5]. We independently discovered this idea and, inspired by
[12], applied it in [10] to the calculation of tile homology groups (originally introduced
in [12]) and in [9] for the study of Z-tilings with symmetries [9].

Since we apply the general theory to polynomials with integer coefficients, we work
with strong Gröbner bases [1,11] (called a D-Gröbner base in [4]), see also [10, Section
5] or our Section 6 for a brief introduction.

1.3. Summary of new results. Conway and Lagarias proved [6, Theorem 1.4] that
a triangular region T2(n) in a hexagonal lattice admits a signed tiling by 3-in-line
polyominoes (called tribones in [15]) if and only if n ∈ ¶9d − 1, 9d♢d∈N. In particular
the Z-tiling exhibited in Figure 3 is discovered by these authors.

By applying the theory of Gröbner bases over integers, we extended in [10] this
result to k-bones (k-in-line polyominoes) for all k ≥ 2. More explicitly we showed that
the triangular region in the hexagonal tiling of the plane associated to the polynomial
T2(n) admits a signed tiling by k-bones if and only if

n ∈ ¶k2d − 1, k2d♢d∈N .

In this paper we address the general problem of Z-tiling by k-bones in d-dimensional
lattices, with the emphasis on the tiling of three dimensional polytopes with 3-bones.

We proved (Theorem 2.1) that the lattice tetrahedron associated to the polynomial
T3(n) admits a Z-tiling by all six tribones in the 3-dimensional lattice if and only if

n ∈ ¶33d − 2, 33d − 1, 33d♢d∈N .

A new phenomenon, characteristic for Z-tiling with tribones in dimension 3, is the
appearance of a constant polynomial 9 in the associated Gröbner basis. As a conse-
quence we construct in Section 3 a Ştribone starŤ, that is a conĄguration of tribones
with integer weights such that the total weight is non-zero only at the center of the
star.
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We call this a Şcancelation phenomenonŤ and, as another consequence, we exhibit
(Corollary 3.1) a conĄguration of 15 tribones in the 3-space where exactly one lattice
point (the center of the star) is covered by an odd number of tiles.

Motivated by the ideas used in the proof of Theorem 2.1, we introduce Gröbner

lattice-point enumerators in Section 4.1, as a proper setting for studying general d-
dimensional, Z-polyomino tilings. We demonstrate how the general theory can be
considerably simpliĄed in the case of k-in-line prototiles (k-bones) by introducing
cyclotomic ideals (Section 4.4).

As a Ąrst step in developing the associated ŞEhrhart theoryŤ, we show in Section
5 (Theorem 5.2) that Gröbner lattice-point enumerators for k-bones are (modular)
quasipolynomials. In other words they behave similarly as the classical lattice-point
enumerators of rational polytopes, a fact that considerably simpliĄes their calculation.

2. Signed Tiling of the Lattice Tetrahedron T3(n)

2.1. The tribone ideal I3
3 in variables x, y, z. A three-in-line polyomino or a

tribone, in a cubical integer lattice, is a translate of one of the six types of trominoes,
associated with the following quadratic polynomials:

b1 = x2 + x + 1, b2 = y2 + y + 1, b3 = x2 + xy + y2,

b4 = x2 + xz + z2, b5 = y2 + yz + z2, b6 = z2 + z + 1.

Figure 4. Tribones b1, b2, b3, b4, b5, b6.

Let I3
3 = ⟨b1, b2, b3, b4, b5, b6⟩ be the ideal generated by tribones and GBI the strong

Gröbner bases of the ideal I with respect to the lexicographical term order,

GBI =¶x2 + x + 1, xy − y − x − 2, xz − x − z − 2, 3x − 3,

y2 + y + 1, yz − y − z − 2, 3y − y, z2 + z + 1, 3z − 3, 9♢.
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Figure 5. The tribone ideal and its Gröbner basis (Wolfram Mathe-

matica 12.3.1).

Denote the polynomials of the Gröbner bases GBI by:

g1 = x2 + x + 1, g2 = xy − x − y − 2,
g3 = xz − x − z − 2, g4 = 3x − 3,
g5 = y2 + y + 1, g6 = yz − y − z − 2,
g7 = 3y − 3, g8 = z2 + z + 1,
g9 = 3z − 3, g10 = 9.

2.2. Signed tiling of the tetrahedron T3(n). The 3-dimensional analogue of (1.1)
is the tetrahedron T3(n) in the 3-dimensional integer lattice, associated with the
polynomial:

T3(n) =
∑

0≤i,j,k≤n−1

i+j+k≤n−1

xiyjzk.

Figure 6. The tetrahedron T3(5).

The goal is to determine for which values of n the tetrahedron T3(n) admits a Z-tiling
by tribones. Following [5] and [10] (see also Section 4) we need to determine when
the remainder, obtained by dividing the polynomial T3(n) by GBI, is equal to zero.
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The polynomials T3(1) = 1 and T3(2) = 1 + x + y + z are already reduced (cannot
be further divided by the basis GBI). It follows that they do not admit a Z-tiling
with tribones.

Figure 7. Tetrahedron T3(n) for n = 1 and n = 2

The remainder on division of the polynomial T (3) by the set GBI is equal to the
remainder on division of the region described by the grey cubes (see Figure 8). It
follows,

T3(3) ≡GBI (1 + z)(x + y).

Indeed, the region determined by grey cubes is formed by subtracting 1 + z + z2

(z-tribone) and x2 + xy + y2 (xy-tribone) from the region T3(3).
If n = 4, then the remainder on division of the polynomial T3(4) is congruent with

y3 + z3. Here, y3 + z3 is a polynomial described by the region of grey cubes formed
after subtracting the region determined by the polynomial

(z2 + z + 1)(1 + x + y) + (x + y)(x2 + xy + y2).
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As a consequence we obtain
T3(4) ≡GBI y3 + z3.

Figure 8. Tetrahedron T3(n) for n = 3 and n = 4.

The same reasoning applies to the cases n = 5 and n = 6, which leads to T3(5) ≡GBI

(1 + x + y + z)(y3 + z3) (Figure 9), T3(6) ≡GBI (x + y)(1 + z)(y3 + z3).
If we proceed with the decomposition of the region T3(n) in the same manner, we

Ąnally conclude

(2.1) T3(n) ≡GBI





(x + y)(1 + z)fk(y, z), n = 3k,
fk(y, z), n = 3k + 1,
(1 + x + y + z)fk(y, z), n = 3k + 2,

where

fk(y, z) = y3k + y3(k−1)z3 + · · · + y3z3(k−1) + z3k =
k∑

i=0

y3(k−i)z3i.
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Figure 9. Decomposition of the tetrahedron T3(5).

Lemma 2.1. For every n ∈ N

(2.2) y3 (f0 + f1 + · · · + fn−1) = f0 + f1 + · · · + fn −
(
z3n + · · · + z3 + 1


.

Proof. This is proved by induction on n. The identity is valid for n = 1 since,

y3f0 = y3 = (1 + y3 + z3) − (z3 + 1) = f0 + f1 − (z3 + 1).

Let us assume that (2.2) is true for n = k. Since

y3 (f0 + f1 + · · · + fk−1 + fk)

=y3 (f0 + f1 + · · · + fk−1) + y3fk

=f0 + · · · + fk −
(
z3k + · · · + z3 + 1


+ y3

(
y3k + y3(k+1)z3 + · · · + z3k



=f0 + · · · + fk −
(
z3k + · · · + z3 + 1


+ y3(k+1) + y3kz3 + · · · + y3z3k + z3(k+1)

− z3(k+1)

=f0 + · · · + fk + fk+1 −
(
z3(k+1) + z3k + · · · + z3 + 1


,

we conclude that (2.2) holds for n = k+1. It follows, by the Principle of mathematical
induction, that (2.2) is true for all n ∈ N. □

Lemma 2.2. For every n ∈ N

(2.3)
fn = (y3 −1) (f0 + f1 + · · · + fn−1)+(z3 −1)

(
z3(n−1) + · · · + (n − 1)z3 + n


+(n+1).

The remainders of the division of polynomial fn by elements of the basis GBI are

periodic, with the period 9.

Proof. If n = 0 then f0 = 1. For n = 1

f1 = y3 + z3 = (y3 − 1)f0 + (z3 − 1) + 2,



GRÖBNER LATTICE-POINT ENUMERATORS 451

which is in agreement with (2.3). Suppose that the identity (2.3) is valid for some
k ∈ N. Since

fk+1(y, z) = y3(k+1) + y3kz3 + · · · + y3z3k + z3(k+1)

= y3
(
y3k + y3(k−1)z3 + · · · + y3z3(k−1) + z3k


+ z3(k+1)

= y3
(
(y3 − 1)(f0 + · · · + fk−1) + (z3 − 1)(z3(k−1) + · · · + (k − 1)z3 + k)

+(k + 1)) + z3(k+1)

= (y3 − 1)
(
y3(f0 + · · · + fk−1)


+ y3

(
(z3 − 1)(z3(k−1) + · · · +

+(k − 1)z3 + k)


+ y3(k + 1) + z3(k+1) (by Lemma 2.1)

= (y3 − 1)
(
(f0 + · · · + fk−1 + fk) − (z3k + · · · + z3 + 1)



+ y3(z3k + · · · + z3 − k) + y3(k + 1) + z3(k+1)

= (y3 − 1) (f0 + · · · + fk−1 + fk) + z3(k+1) + z3k + · · · + z3 + 1

= (y3 − 1) (f0 + · · · + fk−1 + fk) + (z3 − 1)
(
z3k + · · · + (k + 1)



+ (k + 2),

we conclude that (2.3) holds for n = k+1. Therefore, by the Principle of mathematical
induction, (2.3) is true for all n ∈ N.

Since y3 − 1 = (y − 1)b2 i z3 − 1 = (z − 1)b6, we see that

(y3−1) (f0 + f1 + · · · + fn−1)+(z3−1)
(
z3(n−1) + 2z3(n−2) + · · · + (n − 1)z3 + n


∈ I.

From this and (2.3), we conclude that the remainder of the division of fn by elements
of the set GBI equals the remainder of the division n + 1 by g10. Therefore,

(2.4)

f0
GBI

= 1, f1
GBI

= 2,

f2
GBI

= 3, f3
GBI

= 4,

f4
GBI

= −4, f5
GBI

= −3,

f6
GBI

= −2, f7
GBI

= −1,

f8
GBI

= 0,

and we see that the remainders are periodic, with period of length 9. For this reason,
f9k−1 ≡GBI 0, k ∈ N. □

Theorem 2.1. The tetrahedron T3(n) admits a signed tiling by tribones b1, b2, . . . , b6

if and only if n = 33k − 2, n = 33k − 1 or n = 33k for k ∈ N.

Proof. The tetrahedron T3(n) admits a signed tiling by tribones b1, . . . , b6 if and only
if the remainder of the polynomial T3(n), on division by the Gröbner bases GBI of
the ideal I3

3 , is equal to zero.
Since the remainder on division of the polynomial fn by GBI is periodic with the

period 32, from (2.1), (2.4) and Table 1, follows that the remainder on division of the
polynomial T3(n) by GBI is periodic with the period 33.
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Table 1

k T3(3k − 2)
GBI

T3(3k − 1)
GBI

T3(3k)
GBI

1 1 x+y+z 4-x-y-z
2 2 2-x-y-z -1+x+y+z
3 3 3 3
4 4 4+x+y+z -2-x-y-z
5 -4 -4-x-y-z 2+x+y+z
6 -3 -3 -3
7 -2 -2x+y+z -1-x-y-z
8 -1 -1-x-y-z -4+x+y+z
9 0 0 0

From here we Ąnally conclude that the region T3(n) admits a signed tiling by
tribones if and only if n = 33k − 2, n = 33k − 1 or n = 33k for some k ∈ N. □

3. The Role of Number 9 in Z-tiling by Tribones

Let I3
3 ⊂ Z[x, y, z] be the tribone ideal, generated by polynomials

(3.1)
Ax = x2 + x + 1, Ay = y2 + y + 1, Az = z2 + z + 1,
Axy = x2 + xy + y2, Axz = x2 + xz + z2, Ayz = y2 + yz + z2,

renamed to emphasize the symmetry w.r.t. permutations of variables. The Gröbner
basis of I = I3

3 , with respect to the lexicographic order (Lex) of monomials arising
from the order x > y > z, is the following:

(3.2)

Ax = x2 + x + 1, Ay = y2 + y + 1, Az = z2 + y + 1,
Bxy = xy − x − y − 2, Bxz = xz − x − z − 2, Ayz = yz − y − z − 2,
Cx = 3x − 3, Cy = 3y − 3, Cz = 3z − 3,

D = 9.

It follows that there exists a relation

(3.3) 9 = a1Ax + a2Ay + a3Az + b1Axy + b2Axz + b3Ayz,

for some polynomials ai, bj ∈ Z[x, y, z]. In other words the relation (3.3) guarantees
the existence of a signed tiling where the tribones Şcancel outŤ everywhere in the
3-dimensional lattice, except at one point.

Our objective is to make relation (3.3) explicit, for as simple as possible choice of
polynomials ai, bj.

We essentially apply Buchberger’s Algorithm (over integers) by iterating the calcu-
lation of S-polynomials, beginning with the polynomials from the basis (3.1). Note
that, in light of the symmetry of the ideals (3.1) and (3.2), the expression for 3z −3 in
the following proposition can be easily turned in the expression for 3x−3 (respectively
3y − 3).
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Proposition 3.1.

9 =2 [6Az − zRHS(3.9) + 2zRHS(3.6)] − [RHS(3.9) − 2RHS(3.6)] ,

3z − 3 = [RHS(3.9) − 2RHS(3.6)] − [6Az − zRHS(3.9) + 2zRHS(3.6)] .

Proof. The Ąrst row of (3.2) coincides with the Ąrst row of (3.1). The second row of
(3.2) is obtained by adding and subtracting the polynomials from the Ąrst two rows
of (3.1), for example

(3.4) Bxy = Axy − Ax − Ay .

We continue by computing the S-polynomial of Ax and Axy, and its subsequent
reduction

S[Ax, Axy] =y(x2 + x + 1) − x(xy − x − y − 2) = x2 + 2xy + 2x + y,

x2 + 2xy + 2x + y =Ax + 2xy + x + y − 1 = Ax + 2Bxy + 3(x + y + 1).

From here we obtain the relation

(3.5) 3(x + y + 1) = yAx − xBxy − Ax − 2Bxy = (y − 1)Ax − (x + 2)Bxy,

which in light of (3.4) produces the relation
(3.6)
3(x+y+1) = (y−1)Ax−(x+2)(Axy−Ax−Ay) = (x+y+1)Ax+(x+2)Ay−(x+2)Ax,y.

Similarly, we have the relations

3(z + x + 1) =(z + x + 1)Az + (z + 2)Ax − (z + 2)Ax,z,(3.7)

3(y + z + 1) =(y + z + 1)Ay + (y + 2)Az − (y + 2)Ay,z,(3.8)

and by adding up all three of them we have
(3.9)
9+6(x+y +z) = (x+y +z +3)(Ax +Ay +Az)−(x+2)Ax,y −(y +2)Ay,z −(z +2)Ax,z.

Let us multiply both sides of (3.6) by 2 and subtract from (3.9). We obtain

(3.10) 6z + 3 = RHS(3.9) − 2RHS(3.6).

Note that

(3.11) S(Az, 6z + 3) = 6Az − z(6z + 3) = 3z + 6 = 6Az − zRHS(3.9) + 2zRHS(3.6).

From (3.10) and (3.11) we Ąnally have

9 = 2(3z + 6) − (6z + 3)

= 2 [6Az − zRHS(3.9) + 2zRHS(3.6)] − [RHS(3.9) − 2RHS(3.6)] .

Note that in passing we obtain an explicit expression for the third row of (3.2) in
terms of (3.1). For example

3z − 3 = (6z + 3) − (3z + 6)

= [RHS(3.9) − 2RHS(3.6)] − [6Az − zRHS(3.9) + 2zRHS(3.6)] . □
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The following corollary is an immediate consequence of the Şcancelation phenome-
nonŤ, exhibited in Proposition 3.1.

Corollary 3.1. There exists a configuration of 15 tribones in the 3-space where exactly

one lattice point (the center of the star) is covered by an odd number of tiles.

Proof. As a consequence of the Ąrst relation proved in Proposition 3.1, by reducing
modulo 2 we obtain the identity 1 = RHS(3.9). By further simpliĄcation we obtain
the identity

1 = (x + y + z + 1)(Ax + Ay + Az) + xAx,y + yAy,z + zAx,z,

which completes the proof. □

4. Z-Tiling by k-Bones in d Variables

In this section we address the general problem of the existence of Z-tiling by k-bones
in the d-dimensional lattice Z

d ⊂ R
d. We use standard abbreviations for monomials

(power products) xa = xa1

1 xa2

2 . . . xad

d and rely on standard concepts and terminology
used in the theory of lattice-point enumeration in polyhedra, see [2] or [3].

In particular each set R ⊂ R
d is associated the integer-point transform σR =∑

a∈R∩Zd xa ∈ Z[[x±1
1 , . . . , x±1

d ]], which is a Laurent polynomial if and only if R is
bounded. Typically R is a convex polytope Q ⊂ R

d
+ with vertices in N

d in which case
σQ ∈ Z[x1, . . . , xd] is simply the sum of all monomials ŞcoveredŤ by Q.

Conversely, for each polynomial p =
∑

a∈Nd caxa ∈ Z[x1, x2, . . . , xd] the associated
Newton polytope is the convex polytope Newton(p) = Conv¶a ♣ ca ̸= 0♢.

Let ∆ = Conv¶ei♢
d
i=0 be the standard simplex in R

d, where e0 = 0 and ¶ei♢
d
i=1 is

the standard orthonormal basis of Rd which generates the lattice Z
d.

Given an integer k ≥ 1, the k-bones in the d-dimensional lattice are the prototiles
associated to the edges Eij = [kei, kej] (i ≠ j) of the kth dilate k∆ = Conv¶kei♢

d
i=0 of

the simplex ∆.

More explicitly, the polynomials (integer-point transforms) of the k-bones are

bi =xk−1
i + xk−2

i + · · · + 1, i = 1, . . . , d,

bij =xk−1
i + xk−2

i xj + · · · + xk−2
j , 1 ≤ i < j ≤ d.

The associated ideal

Id
k = ⟨bi, bi,j⟩ ⊆ Z[x1, . . . , xd]

is referred to as the k-bone ideal in d-dimensions, or simply as the k-bone ideal.
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4.1. Gröbner lattice-point enumerators. Our general objective is to study the
geometry and combinatorics of Z-tilings of different shapes (convex polytopes) in R

d

by k-bones (or more general prototiles), by methods of combinatorial commutative
algebra and Gröbner basis.

The Gröbner basis of the ideal Id
k with respect to some term order (usually the

lexicographic order) is denoted by GBId
k (occasionally by GBI or G). We work

with Z-coefficients so the Abelian group of all remainders may have torsion and
its generators are reduced monomials xα /∈ ⟨LM(Id

k )⟩, not contained in the ideal of
leading monomials of Id

k . (The reader is referred to the Appendix (Section 6) for a
brief introduction into Gröbner basis theory and a guide to the literature.)

As in Section 2.2 the remainder on division of f by GBI is f
GBI

=
∑

α cαxα, where
xα are reduced monomials. For improved legibility we sometimes write RedG(f)
instead of f

G
. The coefficient cα, which takes values in Z or some quotient Z/νZ, is

denoted by

(4.1) [xα]
(
f

GBI


.

Table 1 (Section 2.2) provides examples of the calculation and illustrates the impor-
tance of numerical functions (4.1) for the general polyomino tiling problem.

4.2. Motivating example. Here is another point of view which explains why (4.1)
are called Gröbner lattice-point enumerators (DeĄnition 4.1).

Let Q be a convex polytope with vertices in N
d and let σQ(x) =

∑
α∈Q∩Nd xα be its

ŞNewton polynomialŤ (integer-point transform). The usual Şdiscrete volumeŤ (lattice-
point enumerator) of Q, deĄned in [2,3] as the number of integer points inside Q, is
clearly equal to the value of σQ at x = (1, 1, . . . , 1) ∈ R

d.
Moreover, for each polynomial f(x1, . . . , xd) ∈ Z[x1, . . . , xd] there is a relation

(4.2) f(x1, . . . , xd) = f1(x1 − 1) + · · · + fd(xd − 1) + C,

where C = f(1, . . . , 1) is the remainder obtained on division of f by the ideal

I = ⟨x1 − 1, x2 − 1, . . . , xd − 1⟩.

It follows that the number of lattice points in a lattice convex polytope Q can be
interpreted as the remainder of σQ on division by the ideal I.

4.3. General research problem. Division of multivariate polynomials by ideals is
in general not unique and in particular the corresponding remainders (such as C in the
expression (4.2)) are not uniquely deĄned. However, the division by the Gröbner basis
of an ideal yields a unique remainder (in general a polynomial) which, in agreement
with motivating example from Section 4.2, leads to the following research problem.

Let J ⊂ Z[x1, . . . , xd] be an ideal, say the ideal associated to a set R of prototiles
in N

d. Let G = GJ be the Gröbner basis of J with respect to some term order. It
is interesting to ask (for some carefully chosen ideals J) what is the geometric and
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combinatorial signiĄcance of the remainder f
G

Q of the integer-point transform σQ on
division by the Gröbner basis G.

Definition 4.1. The polynomial valued function Q 7→ f
G

Q is referred to as Gröbner
or G-discrete volume of Q with respect to the Gröbner basis G. The coefficients (4.1)
are called Gröbner lattice-point enumerators of Q.

4.4. Cyclotomic ideals. A cyclotomic ideal in the ring Z[x1, x2, . . . , xd] is an ideal
of the following form

(4.3) W d
k = ⟨xk

1 − 1, xk
2 − 1, . . . , xk

d − 1⟩,

where d and k are positive integers. In light of the obvious identities

xk
i −1 = (xi−1)(xk−1

i +xk−2
i +· · ·+1), xk

i −xk
j = (xi−xj)(x

k−1
i +xk−2

i xj +· · ·+xk−1
j ),

W d
k is contained in the ideal Id

k generated by k-in-line polyominoes (k-bones) in the
d-dimensional lattice.

Proposition 4.1. The set Sd
k = ¶xk

1 − 1, xk
2 − 1, . . . , xk

d − 1♢ is a (strong) Gröbner

basis of the ideal W d
k in the sense of [11].

Proof. Indeed, the S-polynomial

S[xk
i − 1, xk

j − 1] = xk
j (xk

i − 1) − xk
i (xk

j − 1) = (xk
i − 1) − (xk

j − 1)

is trivially reducible by the basis Sd
k . □

The following criterion for the existence Z-tilings is formulated in [10, Proposi-
tion 3.1].

Proposition 4.2. A polyomino P admits a signed tiling by translates of prototiles
P1, P2, . . . , Pk if and only if for some monomial xα = xα1

1 · · · xαn
n with a non-negative

exponent α ∈ N
d the polynomial xασP is in the ideal generated by polynomials

σP1
, . . . , σPk

,

(4.4) xασP ∈ ⟨σP1
, σP2

, . . . , σPk
⟩.

Note that xασP ∈ J implies xα′
σP ∈ J in any ideal J , provided xα′

is divisible by
xα, which allows us to formulate the following simpliĄed criterion for k-bone ideals
Id

k .

Proposition 4.3. A polyomino P admits a signed tiling by translates of k-bones Eij,

0 ≤ i < j ≤ d, if and only if

(4.5) σP ∈ Id
k .

Proof. If σP ∈ Id
k then obviously P admits a signed tiling by translates of k-bones

Eij. Conversely, suppose P admits a signed tiling by translates of k-bones Eij. By
Proposition 4.2 there exists a monomial xα such that xασP ∈ Id

k . Since for some
β ∈ N

d the vector α + β = kγ ∈ kNd is divisible by k we conclude that xkγσP ∈ Id
k .

Since W d
k ⊂ Id

k we know that xkγ ≡ 1 (mod Id
k ), which in turn implies σP ∈ Id

k . □
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4.5. Reduction of monomials xa modulo W d
k and Id

k . Let xa = xa1

1 xa2

2 . . . xad

d

be the monomial with multi-index a ∈ Z
d
+. Given z ∈ Z+, let ẑ = r(z) be the

remainder on division of z by k, r(z) ∈ Zk = ¶0, 1, . . . , k − 1♢. The reduced version
of the monomial xa with respect to the ideal W d

k is the monomial RedW d
k
(xa) = xâ =

xâ1

1 xâ2

2 . . . xâd

d .

Note that RedW d
k
(xa) is obtained from xa by successive division (in any order) by

elements of the ideal W d
k .

Our objective is to compute the W d
k -reduced version of the polynomial T d

k (n)

(4.6) RedW d
k
(T d

k (n)) = RedW d
k




∑

0≤a

♣a♣≤n−1

xa


 :=

∑

0≤a

♣a♣≤n−1

xâ .

Proposition 4.4. Let

(4.7) RedW d
k
(T d

k (n)) = RedW d
k




∑

0≤a

♣a♣≤n−1

xa


 =

∑

r∈(Zk)d

td
k(n, r)xr

be the reduction of the polynomial T d
k (n) with respect to the ideal W d

k . Then

td
k(n, r) =

(
d + (n♣r)

d

)
,

where

(n♣r) :=

⌊
n − 1 − ♣r♣1

k

⌋

and ♣r♣1 = ♣(r1, r2, . . . , rd)♣1 = r1 + · · · + rd.

Proof. Given a W d
k -reduced monomial xr, where r = (r1, r2, . . . , rd) ∈ (Zk)d, we want

to calculate the number of solutions of the inequality

(4.8) (kx1 + r1) + (kx2 + r2) + · · · + (kxd + rd) ≤ n − 1

in non-negative integer variables x1, . . . , xd. Equivalently, we need to calculate the
number of non-negative integer solutions of

(4.9) x1 + x2 + · · · + xd ≤

⌊
n − 1 − ♣r♣1

k

⌋
,

where ⌊x⌋ is the integer part of x. Recall the lattice point enumerator [3, Theorem 2.2]
of the standard simplex in the positive hyperorthant R

d
+ bounded by the hyperplane

x1 + · · · + xd = m,

L∆(m) =

(
d + m

d

)
.

By substitution m = (n♣r) we complete the proof of the proposition. □

As a corollary we obtain the following proposition.
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Proposition 4.5. Let GBI = GBId
k be a Gröbner basis of the ideal Id

k with respect

to some term order. Then the remainder

T d
k (n)

GBI

of the polynomial T d
k (n) on division by GBI = GBId

k , expressed in terms basic mono-

mials xα, admits a decomposition

(4.10) T d
k (n)

GBI
=
∑

α

cαxα,

where cα = [xα](T d
k (n)

GBI
) is some (finite) Z-linear combination of functions td

k(n, r).
More explicitly,

cα = [xα]


T d
k (n)

GBI


=
∑

r∈(Zk)d

er
αtd

k(n, r),

for some integers er
α.

Proof. As a consequence of (4.7) we obtain

(4.11) T d
k (n)

GBI
= RedId

k
(T d

k (n)) =
∑

r∈(Zk)d

td
k(n, r)xrGBI =

∑

r∈(Zk)d

td
k(n, r)

∑

α

er
αxα.

□

5. Ehrhart Theory and Gröbner Bases

Quasipolynomials play a fundamental role in the Ehrhart theory of lattice-point
enumerators of polytopes with rational vertices. We demonstrate that they play a
similar role in Gröbner lattice-point enumeration with respect to ideals W d

k and Id
k .

5.1. Quasipolynomials. A quasipolynomial [13, Section 4.4] of degree d is a function
f : N → C of the form

f(n) = cd(n)nd + cd−1(n)nn−1 + · · · + c0(n),

where each ci(n) is a periodic function and cd(n) is not identically equal to zero.
It is not difficult to show that f is a quasipolynomial if and only if there exists an

integer N > 1 and polynomials f0, f1, . . . , fN−1 such that

f(n) = fi(n), if n ≡ i (mod N).

Quasipolynomials play an exceptionally important role in enumerative combina-
torics. For example the Ehrhart polynomial LQ(n), deĄned as the lattice point enu-
merator of the nth dilate nQ of a convex polytope Q with rational vertices, is always
a quasipolynomial.

It is an easy exercise to check that the function td
k(n, r), introduced in Proposition

4.4, is a quasipolynomial in the variable n. In turn, the coefficients cα (that appear
in Proposition 4.5) are also quasipolynomials, being linear combinations of functions
td
k(n, r).
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The functions cα = cα(T d
k (n)), being deĄned essentially as summands of the re-

mainder on division by the ideal Id
k , are extended in a straightforward way to all

convex rational convex polytopes Q. They are referred to as Gröbner lattice-point

enumerators.

5.2. Quasipolynomials and generalizations of Pick’s theorem. Here we remind
the reader why (quasi)polynomials are important in lattice-point enumeration prob-
lems (Ehrhart theory). In the planar case the Ehrhart polynomial is a polynomial
LQ(n) = a0n

2 + a1n + a2 where a0 = Area(Q) and a2 = LQ(0) = 1. Moreover,
LQ(1) = a0 + a1 + a2 is the number of lattice points in Q and, by Ehrhart-Macdonald
reciprocity (see [3, Theorem 4.1]),

LQ(1) + LQ(−1)

is the number of lattice points on the boundary of Q.
The four quantities a0, LQ(0), LQ(1) and LQ(1)+LQ(−1) can be interpreted as linear

forms on the 3-dimensional vector space of all quadratic polynomials and classical
Pick’s theorem is nothing but a non-trivial linear relation

(5.1) λ1a0 + λ2LQ(0) + λ3LQ(1) + λ4(LQ(1) + LQ(−1)) = 0.

Once we know that such a relation exists, the coefficients λi are easily evaluated by
choosing special polygons Q.

The importance of this proof of PickŠs theorem is that it can be easily generalized.
For example ReeveŠs theorem (a 3-dimensional analogue of PickŠs theorem) says that
in addition to linear forms listed in (5.1) it suffices to take one more, the form LQ(2)
evaluating the number of lattice points in the second dilate of Q.

Similar scheme can be applied to quasipolynomials as well and the following sec-
tions should provide a theoretical basis for studying analogues of PickŠs theorem for
Gröbner basis enumerators of lattice polytopes. (This is the subject of a subsequent
publication.)

5.3. Ehrhart quasipolynomial for Gröbner W d
k -enumerators. In this section

we prove that Gröbner lattice-point enumerators of lattice polytopes, with respect
to the ideal W d

k , are quasipolynomials. We have already calculated (Section 4.5) the
W d

k -reduction of the tetrahedron associated to the polynomial T d
k (n) and showed

(Proposition 4.4) that the result is a quasipolynomial in the variable n. Here we
extend this result to the case of a general rational polytope.

Theorem 5.1. Let σQ be the integer-point transform of a rational convex polytope

Q ⊂ (R+)d and c
W d

k
α (Q) = [xα](RedW d

k
(σQ)) the Gröbner lattice-point enumerator with

respect to the ideal W d
k , associated to a W d

k -reduced monomial xα. Then the function

f
W d

k
α (n) = c

W d
k

α (nQ) = [xα](RedW d
k
(σnQ)),
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computing the Gröbner basis enumerator c
W d

k
α of the nth dilate of the convex polytope

Q, is a quasipolynomial in the variable n.

As usual in Ehrhart theory [3, Chapter 3], the case of a general rational polytope is
reduced to the case of a rational simplex. Moreover the case of general rational simplex
(simplicial cone) is treated similarly as the case of a simplex with integral vertices. So
the proof of Theorem 5.1 follows from the proof of the following proposition.

Proposition 5.1. Let ∆ ⊂ (R+)d be a simplex with integral vertices and let r =
(r1, . . . , rd) ∈ (Zk)d. Then a mod-k lattice-point enumerator Lk,r

∆ (n) of ∆, defined as

the number of lattice points a = (a1, . . . , ad) ∈ Z
d ∩ n∆ such that ai ≡ ri mod k for

each i ∈ [d], is a quasipolynomial in d.

Proof. Since Lk,r
∆ (n) = Lk,r

v+∆(n) for each v ∈ Z
d we assume, without loss of generality,

that − r
k

+ ∆ ⊂ (R+)d. Let ∆ = Conv¶vi♢
d+1
i=1 .

By [3, Theorem 3.5] it is known that the integer-point transform σv+K of a shifted
simplicial cone

(5.2) K = ¶λ1w1 + λ2w2 + · · · + λdwd ♣ λi ≥ 0♢ ⊆ R
d

is the rational function

(5.3) σv+K(z) =
σv+Π(z)

(1 − zw1)(1 − zw2) · · · (1 − zwd)
,

where

Π = ¶λ1w1 + λ2w2 + · · · + λdwd ♣ 0 ≤ λi < 1♢

is the associated fundamental half-open parallelepiped. Let wi = (vi, 1) ∈ R
d+1,

i ∈ [d + 1], and let K ⊂ R
d+1 be the associated simplicial cone deĄned by (5.2), with

the associated fundamental parallelepiped Π.
It follows that the integer-point transform σK(z, t) of K is given by the formula

(5.3), where d is replaced by d + 1 and the new (vertical) variable is t. Moreover [3,
Section 3.3], the nth dilate of ∆ is essentially the intersection of K with the horizontal
hyperplane Hn := ¶(z, t) ∈ R

d+1 ♣ t = n♢, and the generating function for the Ehrhart
polynomial L∆(n), calculating the number of lattice points in n∆, is given by the
formula

∑

n≥0

L∆(n) tn = σK(✶, t),

where the RHS is evaluated at z = ✶ = (1, 1, . . . , 1) ∈ R
d.

We want to describe the generating function calculating the lattice points a ∈ K
such that a = ka′ +r for some a′ ∈ Z

d+1. In other words we need a generating function
for the set of lattice points a′ in the shifted cone

K ′ = −
r

k
+

1
k

K.
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Again by (5.3), taking into account that K ′ is scaled down by the factor k, we
obtain

∑

n≥0

Lk,r
∆ (n) tn = σK′(✶, t) =

g(t)
(1 − tk)d+1

,

where g(t) = σΠ′(✶, t) and Π′ = −r/k + Π is the shifted fundamental parallelepiped
of K ′.

By assumption − r
k

+ ∆ ⊂ (R+)d which implies that

(−r/k + Π) ∩ Z
d+1 ⊆ Π ∩ Z

d+1 ⊂ N
d+1 .

It follows that deg(g) < k(d + 1) and, as a consequence of Proposition 4.4.1 [13,
Proposition 4.4.1], we conclude that Lk,r

∆ (n) is a quasipolynomial. □

5.4. Ehrhart theory for Gröbner Id
k -enumerators. Here we show that Gröb-

ner lattice-point enumerators of lattice polytopes, with respect to the ideal Id
k , are

(modular reductions of) quasipolynomials. Since quasipolynomials naturally appear
as lattice points enumerators (Ehrhart theory) for convex polytopes with rational
vertices, see [3, Section 3.7], the following result can be interpreted as a Ąrst step in
the direction of developing Ehrhart theory for Gröbner basis enumerators of rational
convex polytopes.

We say that a function f : N → Zν (where ν ∈ Z+ ∪ ¶∞♢ and by convention
Z∞ = Z) is a modular quasipolynomial, if there exists and integer valued function
f ′ : N → Z such that f(n) is the mod ν reduction of f ′(n) for each n ∈ N.

Theorem 5.2. Let σQ be the integer-point transform of a rational convex polytope

Q in (R+)d and cβ = c
Id

k

β (Q) = [xα](RedId
k
(σQ)) the Gröbner lattice-point enumerator

associated to a Id
k -reduced monomial xβ. Then the function

f
Id

k

β (n) = c
Id

k

β (nQ) = [xβ](RedId
k
(σnQ)),

computing the Gröbner lattice-point enumerator cβ of the nth dilate of the convex

polytope Q, is a modular quasipolynomial in the variable n.

Proof. Since W d
k ⊂ Id

k ,

RedId
k
(σnQ) = RedId

k
(RedW d

k
(σnQ)) = RedId

k

(
∑

α

cαxα

)
,

where on the right is an expression involving W d
k -reduced monomials xα. Since for

each Id
k -reduced monomial xβ

[xβ](RedId
k
(σnQ)) = [xβ]

(
∑

α

cαRedId
k
(xα)

)
=
∑

α

cα[xβ]
(
RedId

k
(xα)


,

the result is an immediate consequence of Theorem 5.1. □
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Remark 5.1. We have shown (Theorems 5.1 and 5.2) that Gröbner lattice-point enu-
merators of ideals W d

k and Id
k are (modular) quasipolynomials. Is this a general

phenomenon? In other words is it true that G-enumerators of (polyomino) ideals are
(modular) quasipolynomials for any choice of prototiles. We suspect that the answer
is negative in general but we donŠt have an example at hand.

6. Appendix: Gröbner Bases

The reader not familiar with the fundamental concepts and results of Gröbner bases
theory is encouraged to use it as black box, after consulting a two page introduction in
[14]. Since [14] deals only with polynomials with coefficients in the Ąeld here we briefly
outline, following [11], how the theory is modiĄed if we work with integer coefficients.

A term is a product t = cxα where c is the coefficient and xα = xα1

1 · · · xαk

k is the
associated monomial (power product). For a given polynomial f ∈ Z[x1, x2, . . . , xk]
the associated remainder on division by a Gröbner basis G is f

G
and f reduces to

zero f
G

−→ 0 if f
G

= 0. LM(f) and LC(f) are respectively the leading monomial and
the leading coefficient with respect to the chosen term order ⪯. We write lcm(a, b)
and gcd(a, b) respectively for the least common multiple and the greatest common
divisor of a and b.

For other basic notions of Gröbner basis theory (over integers), such as S-polynomial,
standard representation, etc. the reader is referred to [11] (see also [1, 4] for a more
complete exposition of the theory).

6.1. Gröbner bases over principal ideal domains. Let Λ = R[x1, . . . , xk] be the
ring of polynomials with coefficients in a principal ideal domain R. For a given ideal
I ⊂ Λ the associated strong Gröbner basis, called also the D bases in [4], may be
introduced as follows (see [1, p. 251] and [4, p. 455]).

Definition 6.1. A Ąnite set G ⊂ I is a strong Gröbner basis of I (with respect to
the chosen term order ⪯) if for each f ∈ I \ ¶0♢ there exists g ∈ G such that the
leading term of f is divisible by the leading term of g, LT (g)♣LT (f), meaning that
LT (f) = tLT (g) for some term t.

The following theorem provides a useful criterion for testing whether a Ąnite set
of polynomials is a Gröbner basis of the ideal generated by them, see [4, Chapter 10,
Corollary 10.12].

Theorem 6.1. Let G be a finite collection of non-zero polynomials which generate

an ideal IG. Suppose that,

(1) for each pair g1, g2 ∈ G there exists h ∈ G such that,

LM(h)♣lcm(LM(g1), LM(g2)) and LC(h)♣gcd(LC(g1), LC(g2));

(2) for each pair g1, g2 ∈ G the associated S-polynomial reduces to zero,

S(g1, g2)
G

−→ 0.
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Then G is a strong Gröbner basis of IG.

6.2. Gröbner bases over Euclidean domains. The general theory is further sim-
pliĄed if one works with Euclidean domains. Aside from standard references [1, 4] a
self-contained account can be found in [11]. In the case of integers one usually chooses
the linear ordering,

(6.1) · · · < 0 < +1 < −1 < +2 < −2 < +3 < −3 < +4 < −4 < +5 < · · · ,

which allows us to deĄne unambiguously remainders, S-polynomials etc.
Recall that the constant g10 = 9 is an element of the Gröbner basis GBI of the

tribone ideal (Section 2.1). The ordering (6.1) explains why −4 (rather than +5)
appears in reduced expressions fGBI , for example in Table 1.
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CONCERNING MULTIVARIATE BERNSTEIN POLYNOMIALS

AND STOCHASTIC LOGIC

YAMILET QUINTANA1,2

Abstract. Among the applications of the Bernstein polynomials in one variable
is their use in solving problems associated with stochastic computing. Taking as a
starting point the notion of stochastic logic in the sense of Qian-Riedel-Rosenberg,
the aim of this paper is to investigate some necessary and sufficient conditions
for guaranteeing whether polynomial operations can be implemented with stochas-
tic logic based on multivariate Bernstein polynomials with coefficients in the unit
interval.

1. Introduction

Stochastic computing (SC) arises as a collection of techniques to represent analog
quantities by probabilities of discrete events, or represent continuous values by means
of random bit-streams, so that complex operations can be performed by simple bitwise
operations on random pulse trains [1, 7–10, 27]. The analogy between probability
algebras and Boolean algebras [12, 13, 25] is used to obtain very simple processing
units and an adequate arithmetic. The basic operations described in the literature
are the addition and the multiplication since these are the fundamental operations
involved in neural networks and in the design of stochastic circuitry (fields in which
fertile ground has been found for applications of SC). Also, SC has been applied to
division and square-rooting [10, 33], matrix operations and decoding of low-density
parity check (LDPC) codes [11,21,23], and polynomial arithmetic [28,29].

A stochastic number can be defined as a pair (x, px), where x is a finite binary
sequence, i.e., x ∈ ¶0, 1♢N , for some N ∈ N and px ∈ [0, 1] is the probability of

Key words and phrases. Stochastic computing, stochastic logic, multivariate Bernstein polynomials,
uniform approximation.
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observing a 1 at an arbitrary position of x [1, 9, 10, 24]. So, a stochastic number
is represented by a finite binary sequence (or bit-stream) in such a way that the
probability (ratio) of ‘1’ in the binary sequence is interpreted as the number itself.
The probability px is sometimes called value of the stochastic number (see, e.g., [24]).

For instance, if (x, px) is a stochastic number whose binary sequence x has N

components, of which m are equal to 1 and N − m are equal to 0, then px = m
N

and, clearly, the representation of the pair (x, px) is not unique. SC uses a redundant

number system in which there are


N

m



possible representations for each value px = m
N

.

Furthermore, a binary sequence x can only has associated probabilities in the set
¶0, 1

N
, 2

N
, . . . , N−1

N
, 1♢, so only a small subset of the real numbers in [0, 1] can be

expressed exactly in SC.
The main idea behind the combinational circuits design with polynomial arithmetic

of Qian et al. [28, 29] consist of the following.

(1) Take advantage -in a suitable way- of the redundancy provided by SC for
choosing binary sequences x ∈ ¶0, 1♢N corresponding to the value px, in or-
der to make an association between x and a certain N -tuple of independent
random variables X = (X1, . . . , XN), where each component Xk has Bernoulli
distribution with some parameter pk ∈ [0, 1].

(2) Given a Boolean function y = f(x1, . . . , xN) implementing a combinational
circuit, use the association aforementioned for inducing a stochastic circuit
implemented by a function of the form Y = F (X1, . . . , XN) (see for instance,
[25]).

The passage of the Boolean function y = f(x1, . . . , xN) to the function Y =
F (X1, . . . , XN) is called stochastic logic or stochastic logic in the sense of Qian-
Riedel-Rosenberg [28,29] and the following property holds.

Theorem 1.1. ([28, Theorem 1]). Given a Boolean function f : ¶0, 1♢N → ¶0, 1♢.

Stochastic logic yields a polynomial in N variables F̂ given by

F̂ (a1, . . . , aN) =
1∑

i1=0

· · ·
1∑

iN =0



αi1...iN

N∏

k=1

a
ik

k



,

where the coefficients αi1...iN
are integers. Moreover, for each y = f(x1, . . . , xN) we

have

pY = F̂ (pX1
, pX2

, . . . , pXN
) =

1∑

i1=0

· · ·
1∑

iN =0



αi1...iN

N∏

k=1

p
ik

Xk



.

It is worth pointing out that to the best of our knowledge, the treatment or imple-
mentation by use of some stochastic logic of Qian-Riedel-Rosenberg type has not been
considered for Boolean maps of the form f : ¶0, 1♢N → ¶0, 1♢N . Thus, the following
questions related to Theorem 1.1 arise: Can Theorem 1.1 be extended in this setting?
In negative case, what is the difficult for finding such an extension? In affirmative
case, how do we characterize such an extension? In this paper, we are interested
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in the theoretical issues concern stochastic logic of Qian-Riedel-Rosenberg type. In
particular, we focus our attention on the theoretical connection between a stochastic
logic of Qian-Riedel-Rosenberg type and certain class of multivariate Bernstein poly-
nomials related with combinational circuits. So, some of aforementioned questions
will be answer in the present paper.

The outline of the paper is as follows. Section 2 contains some relevant properties of
the induced multivariate Bernstein polynomials. In Section 3 the notion of stochastic
logic of Qian-Riedel-Rosenberg type is introduced, its connection with induced mul-
tivariate Bernstein polynomials is given and our main results are stated and proved.
Finally, Section 4 is devoted to a brief additional remark on a model of stochastic logic
based on the so-called degenerate Bernstein polynomials. Throughout this paper, we
only consider combinational circuitry.

2. Multivariate Bernstein Polynomials

This section is devoted to introduce a class of multivariate Bernstein polynomials
and recall some of their structural properties. We adopt the way of writing multivariate
Bernstein polynomials used in [3]. For more details the reader can see [3], [22, § 2.9, p.
51] and the references thereof. However, before we look at this class we will recall the
definition and some algebraic and analytic properties of the Bernstein polynomials in
one variable (cf., [22, 29]).

Given n ∈ N, for f : [0, 1] → R a continuous function and t ∈ [0, 1], the nth
Bernstein polynomial of f is given by

(2.1) Bn(t) = Bn(f ; t) :=
n∑

k=0

f



k

n



n

k



tk(1 − t)n−k.

The polynomials Bn(t) converge uniformly to f on [0, 1] and this fact is the key piece
for the Bernstein constructive demonstration of Weierstrass approximation theorem
[22,26].

The polynomials appearing in the formula on the right hand side of (2.1), namely;

bk(t) = bk,n(t) :=



n

k



tk(1 − t)n−k, k = 0, . . . , n,

form a basis for the space of polynomials of degree at most n with real coefficients
and the set ¶bk,n(t) : k = 0, . . . , n♢ and it is usually called Bernstein basis [5,30]. Also,
it is clear that deg(bk,n(t)) = n, for each k = 0, . . . , n.

We call Bernstein polynomial to the representation in terms of the Bernstein basis
of any polynomial P (t) of degree at most n and real coefficients. So, there exists a
unique vector (β0,0, β1,n, . . . , βn,n) ∈ R

n+1 such that

(2.2) P (t) =
n∑

k=0

βk,nbk,n(t)

︸ ︷︷ ︸

Bernstein polynomial

.
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The name Bernstein polynomial for the expression on the right hand side of (2.2)
was coined by Qian et al. (cf., [28, 29]), although Farouki and Goodman [5] have
preferred to use the term Bernstein form of P (t) to refer to the same expression. By
(2.2) we have that the nth Bernstein polynomial of the function f ∈ C[0, 1] given by

(2.1) becomes in a particular case of Bernstein polynomial, for which βk,n = f


k
n



,

k = 0, 1, . . . , n.
The following results show some pertinent properties of the Bernstein basis and

polynomials.

Proposition 2.1. The Bernstein basis ¶bk,n(t) : k = 0, . . . , n♢ satisfies the following

algebraic and analytic properties [6, 29].

(i) Partition of unity property.

n∑

k=0

bk,n(t) = 1, for all t ∈ R.

(ii) Non-negativity property.

bk,n(t) ≥ 0, for all t ∈ [0, 1].

(iii) Symmetry property.

bk,n(t) = bn−k,n(1 − t), for all t ∈ [0, 1].

(iv) Recurrence formula.

bk,n+1(t) = tbk−1,n(t) + (1 − t)bk,n(t), for all t ∈ [0, 1].

(v) Unimodality or extremal property. For n ≥ 1, bk,n(t) attains a relative maxi-

mum at t = k
n
, k = 0, . . . , n.

(vi) Degree elevation property. For k = 0, . . . , n, we have

bk,n(t) =
n + 1 − k

n + 1
bk,n+1(t) +

k + 1

n + 1
bk+1,n+1(t),

for all t ∈ [0, 1].
(vii) Representation in terms of the canonical basis of the space of polynomials of

degree at most n with real coefficients.

bk,n(t) =
n∑

j=k

(−1)j−k



n

j



j

k



tj.

Proposition 2.2. Let P (t) =
∑n

k=0 βk,nbk,n(t) be a Bernstein polynomial. Then the

following properties hold [6, 29].

(i) P (0) = β0,n and P (1) = βn,n.

(ii) Inversion formula. For each 0 ≤ j ≤ n, we have

tj =
n∑

k=j


k

j




n

j

bk,n(t).
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(iii) Change of basis. If P (t) has the following representation in terms of the cano-

nical basis of the space of polynomials of degree at most N with real coefficients:

P (t) =
n∑

k=0

ak,ntk,

then

βk,n =
k∑

j=0


k

j




n

j

aj,n, k = 0, . . . , n.

(iv) Lower and upper bounds.

min
0≤k≤n

βk,n ≤ P (t) ≤ max
0≤k≤n

βk,n.

(v) Degree elevation procedure. For any m ≥ n, it is always possible to represent

P (t) in terms of the Bernstein basis ¶bk,m+1(t) : k = 0, . . . , m + 1♢ as follows

P (t) =
m+1∑

k=0

βk,m+1bk,m+1(t),

where the Bernstein coefficients βk,m+1 are given by

βk,m+1 =







β0,m, for k = 0,
k

m+1
βk−1,m +



1 − k
m+1



βk,m, for k = 1, . . . , m,

βm,m, for k = m + 1.

(vi) (cf. [29, Theorem 1]) Uniform approximation of the Bernstein coefficients. Let

g(t) be a polynomial of degree n ≥ 0. For any ϵ > 0, there exists a positive

integer M ≥ n such that for all integer m ≥ M and k = 0, 1, . . . , m, we have
∣
∣
∣
∣
∣
βk,m − g



k

m

∣
∣
∣
∣
∣
< ϵ,

where β0,m, β1,m, . . . , βm,m satisfy that g(t) =
∑m

k=0 βk,mbk,m(t).

Given N ∈ N and N0 = N∪¶0♢, to deal with multivariate polynomials we recall the
standard multi-index notation. A multi-index is denoted by ν = (ν1, . . . , νN) ∈ N

N
0 .

For two given multi-indices α, ν ∈ N
N
0 we write α ≤ ν if and only if αj ≤ νj,

j = 1, . . . , N . The multi-index α + ν is defined by α + ν = (α1 + ν1, . . . , αN + νN).
If α ≤ ν, the multi-index ν − α is defined by ν − α = (ν1 − α1, . . . , νN − αN). We

write


ν

α



for the multiplication


ν1

α1



· · ·


νN

αN



, whenever α ≤ ν. For ν ∈ N
N
0 and

x = (x1, . . . , xN) ∈ R
N a monomial in variables x1, . . . , xN of index ν is defined by

xν = xν1

1 · · · xνN

N .

We denote by P
N = R[x1, . . . , xN ] the space of all polynomials of N variables with

real coefficients. Let p(x) = p(x1, . . . , xN) ∈ P
N . We say that a multi-index κ =

(κ1, . . . , κN) is the multi-index of maximum degree of p(x) if κj is the maximum
degree of xj in p(x), j = 1, . . . , N (cf. [3]).
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So, the set S = ¶ν ∈ N
N
0 : ν ≤ κ♢ contains all the combinations from N

N
0 which are

smaller than or equal to the multi-index κ of maximum degree. Hence, p(x) can be
expressed as

(2.3) p(x) = p(x1, . . . , xN) =
∑

ν∈S

aν,κxν ,

where aν,κ ∈ R. The multivariate polynomial appearing on the right hand side of
(2.3) is called the power form of p(x).

An N -dimensional generalization of the Bernstein polynomials can be defined as
follows. Let f : [0, 1]N → R be a bounded function. The N -dimensional Bernstein of
f is given by

(2.4) Bn1,...,nN
(f ; (x1, . . . , xN)) :=

∑

ν∈S∗

f


ν1

n1

, . . . ,
νN

nN



Bν,N(x1, . . . , xN),

where S∗ = ¶ν ∈ N
N
0 : 0 ≤ ν ≤ N♢, N = (n1, . . . , nN) and Bν,N(x1, . . . , xN) =

∏N
j=1 bνj ,nj

(xj).
It is well known that the N -dimensional Bernstein Bn1,...,nN

(f ; (x1, . . . , xN)) con-
verges to f((x1, . . . , xN)) at any point of continuity of this function, as all nk → ∞
(cf., [4,14]), and from (2.4) it is possible to induce a multivariate Bernstein polynomial
as follows:

(2.5) P (x) = P (x1, . . . , xN) :=
∑

ν∈S∗

cν,NBν,N(x1, . . . , xN) =
∑

ν∈S∗

cν,NBν,N(x),

x ∈ [0, 1]N , cν,N ∈ R. We call to the polynomial P (x1, . . . , xN) induced multivariate
Bernstein polynomial.

Furthermore, if x ∈ [0, 1]N and p(x) is a multivariate polynomial which is written
by means of a power form (2.3), then p(x) can be expressed in terms of an induced
multivariate Bernstein polynomial as follows.

(2.6) p(x) =
∑

ν∈S

cν,κBν,κ(x),

where the Bernstein coefficients cν,κ are given by

(2.7) cν,κ =
∑

α≤ν


ν

α




κ

α

aα,κ, ν ∈ S.

The multivariate polynomial appearing on the right hand side of (2.6) is called Bern-
stein form of p(x).

3. Main Results

Given N ∈ N and (x, px) a stochastic number with x ∈ ¶0, 1♢N . For each
k = 1, 2, . . . , N we choose pk ∈ [0, 1] and consider discrete and independent ran-
dom variables Xk having Bernoulli distribution with parameter pk, i.e., Xk ∼ Be(pk)
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(cf. [25, 31]). Since xk ∈ ¶0, 1♢, each probability density function is given by

(3.1) P¶Xk = xk♢ = p
xk

k (1 − pk)1−xk .

We define

pXk
:= P¶Xk = 1♢ = pk and 1 − pXk

:= P¶Xk = 0♢ = 1 − pk, k = 1, 2, . . . , N.

Assume that a combinational circuit implements the Boolean map f : ¶0, 1♢N →
¶0, 1♢N . Let (f1, . . . , fN) be the component functions of f . Thus, each Boolean
function fj : ¶0, 1♢N → ¶0, 1♢ can be assumed as a subcircuit associated to f , j =
1, 2, . . . , N .

Given (x, px) a stochastic number with x = (x1, . . . , xN) ∈ ¶0, 1♢N , choose an
N -tuple of discrete and independent random variables X = (X1, . . . , XN) such that
Xk ∼ Be(pk) for some pk ∈ [0, 1] and satisfying (3.1). We can associate to each
component function fj : ¶0, 1♢N → ¶0, 1♢, a discrete random variable Yj using that
its probability density function is uniquely determined by the given N -tuple X =
(X1, . . . , XN). More precisely, for determining pYj

:= P¶Yj = 1♢, j = 1, . . . , N , we
proceed as follows (cf. [25]). Since each yj = fj(x) = fj(x1, . . . , xN) ∈ ¶0, 1♢, for
j = 1, . . . , N , we have

(3.2)

pYj
= P¶Yj = 1♢ =

∑

x1,...,xN :
fj(x1,...,xN )=1

P¶X1 = x1, X2 = x2, . . . , XN = xN♢

=
∑

x1,...,xN :
fj(x1,...,xN )=1


N∏

k=1

P¶Xk = xk♢



.

The identity (3.2) is consequence of the independence of Xk, and since P¶Xk = xk♢
is either pXk

or 1 − pXk
, depending on the value of xk in the given combination.

Thus, the Boolean function fj : ¶0, 1♢N → ¶0, 1♢ induces a function Fj acting on
the discrete and independent random variables X1, . . . , XN such that for each Yj =
Fj(X1, . . . , XN) the identity (3.2) holds. Furthermore, the random variable Yj has
Bernoulli distribution with parameter pYj

.
It is easily seen that pYj

is a multivariate polynomial with arguments pX1
, . . . , pXN

,
and if we expand (3.2) into a power form, each product term has an integer coefficient
and the degree of each variable in that term is less than or equal to 1. Hence, applying
Theorem 1.1 we have that the stochastic logic yields a polynomial in N variables F̂j

given by

F̂j(a1, . . . , aN) =
1∑

i1=0

· · ·
1∑

iN =0



αi1...iN ;j

N∏

k=1

a
ik

k



,

where the coefficients αi1...iN ;j are integers. Moreover, for each yj = fj(x1, . . . , xN),
j = 1, . . . , N , we have

pYj
= F̂j(pX1

, pX2
, . . . , pXN

) =
1∑

i1=0

· · ·
1∑

iN =0



αi1...iN ;j

N∏

k=1

p
ik

Xk



.
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We call stochastic logic of Qian-Riedel-Rosenberg type to the passage of the Boolean
map f : ¶0, 1♢N → ¶0, 1♢N to the map F = (F1, . . . , FN) acting on the discrete and
independent random variables X1, . . . , XN such that for each Yj = Fj(X1, . . . , XN)
the identity (3.2) holds.

We summarize the previous ideas in the following theorem.

Theorem 3.1. Given a Boolean map f : ¶0, 1♢N → ¶0, 1♢N . The stochastic logic of

Qian-Riedel-Rosenberg type yields a map F̂ = (F̂1, . . . , F̂N) acting on the discrete and

independent random variables X1, . . . , XN , whose component functions are multiva-

riate polynomials of the form

F̂j(a1, . . . , aN) =
1∑

i1=0

· · ·
1∑

iN =0



αi1...iN ;j

N∏

k=1

a
ik

k



,

where the coefficients αi1...iN ;j are integers. Moreover, for each yj = fj(x1, . . . , xN),
j = 1, . . . , N , we have

(3.3) pYj
= F̂j(pX1

, pX2
, . . . , pXN

) =
1∑

i1=0

· · ·
1∑

iN =0



αi1...iN ;j

N∏

k=1

p
ik

Xk



.

Example 3.1. Consider the Boolean map f : ¶0, 1♢3 → ¶0, 1♢3 given by

f(x1, x2, x3) = ((x1 ∧ x3) ∨ (x2 ∧ (¬x3)), x1 ∧ x3, x2 ∧ (¬x1)),

where ∧ means logical AND, ∨ means logical OR, and ¬ means logical negation.
Choose p1, p2, p3 ∈ [0, 1] and let X1, X2, X3 be three discrete and independent random
variables such that X1 ∼ Be(p1), X2 ∼ Be(p2), X3 ∼ Be(p3) whose probability
density functions satisfy (3.1). It is clear that

f1(x1, x2, x3) = (x1 ∧ x3) ∨ (x2 ∧ (¬x3)),

f2(x1, x2, x3) = x1 ∧ x3,

f3(x1, x2, x3) = x2 ∧ (¬x1).

By the definition of pYj
, j = 1, 2, 3, we have

pY1
= P¶X1 = 1, X2 = 0, X3 = 1♢ + P¶X1 = 1, X2 = 1, X3 = 1♢

+ P¶X1 = 0, X2 = 1, X3 = 0♢ + P¶X1 = 1, X2 = 1, X3 = 0♢

= pX1
(1 − pX2

)pX3
+ pX1

pX2
pX3

+ (1 − pX1
)pX2

(1 − pX3
) + pX1

pX2
(1 − pX3

)

= pX2
+ pX1

pX3
− pX2

pX3
,

pY2
= P¶X1 = 1, X2 = 0, X3 = 1♢ + P¶X1 = 1, X2 = 1, X3 = 1♢

= pX1
(1 − pX2

)pX3
+ pX1

pX2
pX3

= pX1
pX3

,

pY3
= P¶X1 = 0, X2 = 1, X3 = 0♢ + P¶X1 = 0, X2 = 1, X3 = 1♢

= (1 − pX1
)pX2

(1 − pX3
) + (1 − pX1

)pX2
pX3

= pX2
− pX1

pX2
,
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and the random variables Y1, Y2 and Y3 are given by

(3.4)

Y1 = F1(X1, X2, X3) = X2 + X1X3 − X2X3,

Y2 = F2(X1, X2, X3) = X1X3,

Y3 = F3(X1, X2, X3) = X2 − X1X2,

which confirms that (3.4) induces a map F̂ = (F̂1, F̂2, F̂3) acting on the discrete and
independent random variables X1, X2, X3, whose component functions are polynomials
in the variables (a, b, c) with integer coefficients:

F̂1(a, b, c) = b + ac − bc,

F̂2(a, b, c) = ac,

F̂3(a, b, c) = b − ab.

We now come to the second part of the main results of this section: the connection
between stochastic logic of Qian-Riedel-Rosenberg type and induced multivariate Bern-
stein polynomials. Suppose that we have a combinational circuit w = g(x1, x2, . . . , xN)
consisting of N combinational subcircuits yj = fj(x1, x2, . . . , xN), j = 1, . . . , N , and
only an N -input AND gate. Each combinational subcircuit yj = fj(x1, x2, . . . , xN)
consists of a decoding block and a multiplexing block, which transform the N inputs
¶x1, . . . , xN♢ ∈ ¶0, 1♢ as follows: If k out of the inputs ¶x1, . . . , xN♢ of the jth de-
coding block are logical 1, then skj is set to 1 and the other outputs are set to 0,
(0 ≤ k ≤ N). So, the output of the jth decoding block is sj = (s0j, . . . , sNj). The
outputs of the jth decoding block are fed into the jth multiplexing block, as shown
in Figure 1, and they act as the selecting signals (control inputs). The data signals
(inputs) of the jth multiplexing block consist of N + 1 inputs z0j, . . . , zNj ∈ ¶0, 1♢.

Once the jth multiplexing block is used, the Boolean function yj = fj(x1, x2, . . . , xN)
takes the form

(3.5) yj =
N∨

k=0

(zkj ∧ skj), j = 0, . . . , N,

which means that the output of the jth multiplexing block yj is set to be the input
zkj if skj = 1.

Next, the inputs of the N -input AND gate are y1, . . . , yN ∈ ¶0, 1♢ and the Boolean
function w = g(x1, x2, . . . , xN) can be expressed as

(3.6) w =
N∧

j=1

yj =
N∧

j=1


N∨

k=0

(zkj ∧ skj)

]

.

Using the association (3.1) for (x1, . . . , xN), (s0j, . . . , sNj) and (z0j, . . . , zNj) we
can choose discrete and independent random variables (X1, . . . , Xn), (S0j, . . . , SNj)

and (Z0j, . . . , ZNj), such that Xj ∼ Be(pj), Skj ∼ Be(p̂kj) and Zkj ∼ Be(ˆ̂pkj),
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Figure 1. Combinational circuit associated to a multivariate Bernstein
polynomial with coefficients in [0, 1].

k = 0, . . . , N , j = 1, . . . , N . Similarly, we define

pXk
:= P¶Xk = 1♢ = pk and 1 − pXk

:= P¶Xk = 0♢ = 1 − pk,

pSkj
:= P¶Skj = 1♢ = p̂kj and 1 − pSkj

:= P¶Skj = 0♢ = 1 − p̂kj,

pZkj
:= P¶Zkj = 1♢ = ˆ̂pkj and 1 − pZkj

:= P¶Zkj = 0♢ = 1 − ˆ̂pj,

for k = 0, . . . , N , j = 1, . . . , N .
Applying Theorem 3.1 to the Boolean map f : ¶0, 1♢N → ¶0, 1♢N given by

f(x1, . . . , xN) = (y1, . . . , yN), we have that the stochastic logic of Qian-Riedel-Rose-
nberg type yields N multivariate polynomials as in (3.3), such that

pYj
= F̂j(pX1

, . . . , pXN
), j = 1, . . . , N .

Let W be the discrete random variable associated to Boolean function
w = g(x1, x2, . . . , xN) by means of

P¶W = 1♢ =
∑

x1,...,xN :
g(x1,...,xN )=1

P¶X1 = x1, X2 = x2, . . . , XN = xN♢.

We define pW := P¶W = 1♢ and 1 − pW := P¶W = 0♢. According to (3.6) and
Theorem 3.1 we have

(3.7) pW =
N∏

j=1

pYj
=

N∏

j=1

F̂j(pX1
, . . . , pXN

).
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Let us consider the polynomial qj(t) given by

qj(t) = F̂j(t, t, . . . , t
︸ ︷︷ ︸

N−times

), j = 0, . . . , N.

Assume that pX1
= · · · = pXN

= t0, since skj is set to 1 if and only if k out of N

inputs of the jth decoding block are 1, the probability that Skj is 1 is (see, e.g., [1,
pp. 10–11]):

pSkj
= P¶Skj = 1♢ =



N

k



tk
0(1 − t0)

N−k = bk,N(t0), k = 0, . . . , N.

Now, assume that pZkj
= β

j
k,N . Then

(3.8) pYj
= P¶Yj = 1♢ =

N∑

k=0

P¶Yj = 1♣Skj = 1♢P¶Skj = 1♢,

but from (3.5) is deduced that Skj = 1 implies Yj = Zkj, so

(3.9) P¶Yj = 1♣Skj = 1♢ = P¶Zkj = 1♢ = pZkj
= β

j
k,N .

By (3.8) and (3.9) we obtain

qj(t0) = pYj
=

N∑

k=0

β
j
k,Nbk,N(t0), j = 1, . . . , N,

and (3.7) becomes

pW =
N∏

j=1

N∑

k=0

β
j
k,Nbk,N(t0).

Therefore, under the constrains imposed by us, each combinational subcircuit yj =
fj(x1, x2, . . . , xN) would require that qj(t) be a Bernstein polynomial whose coeffi-

cients β
j
k,N belong to [0, 1], (cf., [28–30]). Consequently, the combinational circuit

w = g(x1, x2, . . . , xN) would require an induced multivariate Bernstein polynomial
P (x1, . . . , xN) such that

P (x1, . . . , xN) =
N∑

k=0

· · ·
N∑

k=0

ck,NBk,N(x1, . . . , xN),

where ck,N =
∏N

j=1 β
j
k,N , Bk,N(x1, . . . , xN) =

∏N
j=1 bk,N(xj), for k = 0, . . . , N and

multi-index of maximum degree N = (N, . . . , N). That is, the combinational circuit
w = g(x1, x2, . . . , xN) would require that P (x1, . . . , xN) be an induced multivariate
Bernstein polynomial whose coefficients ck,N are expressed as a product of N real
numbers belonging to [0, 1]. Thus, we have the following theorem.

Theorem 3.2. Let P (x1, . . . , xN) be an induced multivariate Bernstein as in (2.5)
such that

(i) the components of its multi-index of maximum degree N are equal;
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(ii) its Bernstein coefficients satisfy that cν,N =
∏N

j=1 β
j
k,N with ν = (k, . . . , k),

k = 0, . . . , N .

If all the factors β
j
k,N belong to [0, 1], then we can design a stochastic logic of Qian-

Riedel-Rosenberg type to compute P (x1, . . . , xN).

A multivariate polynomial can be represented in a power form as (2.3). If it can be
converted into an induced multivariate Bernstein polynomial satisfying the hypothesis
of Theorem 3.2, then the preceding arguments show us how to implement it with
stochastic logic of Qian-Riedel-Rosenberg type. The following result describes such a
class of induced multivariate Bernstein polynomials.

Theorem 3.3. Let N be any fixed positive integer. If qj(t) is a polynomial such that

some of the following conditions is satisfied:

(i) qj(t) is identically equal to 0 or to 1, j = 1, . . . , N ;

(ii) for any t ∈ (0, 1) we have 0 < qj(t) < 1, with qj(0) ≥ 0 and qj(1) ≤ 1, for all

j = 1, . . . , N .

Then for x ∈ [0, 1]N the multivariate polynomial q(x) given by

(3.10) q(x) = q(x1, . . . , xN) =
N∏

j=1

qj(xj)

can be converted into an induced multivariate Bernstein polynomial as in Theorem

3.2 with Bernstein coefficients expressed as a product of N real numbers belonging to

[0, 1].
Reciprocally, if q(x) can be converted into an induced multivariate Bernstein polyno-

mial as in (2.5) with Bernstein coefficients expressed as a product of N real numbers

belonging to [0, 1], then the polynomials qj(t) satisfy (i) or (ii), j = 1, . . . , N .

Proof. We begin by noting if qj(t) = 0 for every t ∈ [0, 1], j = 1, . . . , N then taking

β
j
k,N = 0, for k = 0, . . . , N, j = 1, . . . , N,

cν,N =
N∏

j=1

β
j
k,N = 0, with ν = (k, . . . , k), k = 0, . . . , N, and N = (N, . . . , N),

it follows that

qj(t) =
N∑

k=0

β
j
k,Nbk,N(t) = 0, for every t ∈ [0, 1],

q(x) =
∑

ν∈S∗

cν,NBν,N(x) = 0, for every x ∈ [0, 1]N .

Analogously, if qj(t)) = 1 for every t ∈ [0, 1] then taking

β
j
k,N = 1, for k = 0, . . . , N, j = 1, . . . , N,

cν,N =
N∏

j=1

β
j
k,N = 1, with ν = (k, . . . , k), k = 0, . . . , N, and N = (N, . . . , N),
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and using part (i) of Proposition 2.1, it follows that

qj(t) =
N∑

k=0

β
j
k,Nbk,N(t) = 1, for every t ∈ [0, 1],

q(x) =
∑

ν∈S∗

cν,NBν,N(x) = 1, for every x ∈ [0, 1]N .

Now consider any polynomials qj(t) such that qj(t) ̸= 0 and qj(t) ̸= 1 for every
t ∈ [0, 1], and qj(t) satisfy (ii) for all j = 1, . . . , n. We distinguish four possible cases
according to the inequalities satisfied by qj(0) and qj(1), for all j = 1, . . . , N :

Case I: 0 ≤ qj(0) and qj(1) < 1, for all j = 1, . . . , N . For the sake of clarity and
readability, we have decided to include the details of the proof of this case. However,
one can check that it suffices to follow the reasoning in [29, Theorem 4], making the
appropriate modifications.

Since qj(t) is a continuous function on the compact interval [0, 1], it attains its
maximum value Mqj

on [0, 1]. Thus Mqj
< 1, because qj(t) < 1 for all t ∈ [0, 1].

Let ϵj = 1 − Mqj
> 0, by part (vi) of Proposition 2.2 there exists a positive integer

Mj ≥ N such that for all m ≥ Mj and k = 0, . . . , m, we have
∣
∣
∣
∣
∣
β

j
k,m − qj



k

m

∣
∣
∣
∣
∣
< ϵj, j = 1, . . . , N,

where β
j
0,m, . . . , βj

m,m satisfy that qj(t) =
∑m

k=0 β
j
k,mbk,m(t), j = 1, . . . , N . Thus, for all

m ≥ Mj and k = 0, . . . , m,

(3.11) β
j
k,m < qj



k

m



+ ϵj ≤ Mqj
+ 1 − Mqj

= 1.

Denote by rj the multiplicity of 0 as root of qj(t) (where rj = 0 if qj(0) > 0) and by
sj the multiplicity of 0 as root of 1 as root of qj(t) (where sj = 0 if qj(1) ̸= 0). We
can factorize each qj(t) as

(3.12) qj(t) = trj (1 − t)sj hj(t),

where hj(t) is a polynomial satisfying that hj(0) ̸= 0 and hj(1) ̸= 1, j = 1, . . . , N .
It is clear that hj(0) > 0, since if we suppose, contrary of our claim, that hj(0) ≤ 0,

using that hj(0) ̸= 0 we have necessarily hj(0) < 0, and by the continuity of hj(t),
there exists t∗

j ∈ (0, 1) such that hj(t
∗
j) < 0. Hence, qj(t

∗
j) = trj (1 − t)sj hj(t

∗
j) < 0.

This contradicts the fact that qj(t) > 0 for all t ∈ (0, 1). Similarly, we have hj(1) > 0.
Consequently, hj(t) > 0 for all t ∈ [0, 1]. Since hj(t) is a continuous function on

the compact interval [0, 1], it attains its minimum value mhj
on [0, 1], and clearly,

mhj
> 0.

Let εj = mhj
> 0, by part (vi) of Proposition 2.2 there exists a positive integer

Kj ≥ N − rj − sj such that for all d ≥ Kj and k = 0, . . . , d, we have
∣
∣
∣
∣
∣
γ

j
k,d − hj



k

d

∣
∣
∣
∣
∣
< εj, j = 1, . . . , N,
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where γ
j
0,d, . . . , γ

j
d,d satisfy that

(3.13) hj(t) =
d∑

k=0

γ
j
k,dbk,d(t), j = 1, . . . , N.

Thus, for all d ≥ Kj and k = 0, . . . , d, we have

γ
j
k,d > hj



k

d



− εj ≥ mhj
− mhj

= 0.

Combining and (3.12) (3.13), we get

qj(t) = trj (1 − t)sj

d∑

k=0

γ
j
k,dbk,d(t) =

d∑

k=0

γ
j
k,d


d

k




d+rj+sj

k+rj





d + rj + sj

k + rj



bk,d+rj+sj
(t)

=
d+rj+sj∑

k=0

β
j
k,d+rj+sj

bk,d+rj+sj
(t),

where βk,d+rj+sj
are the coefficients of the Bernstein polynomial of degree d + rj + sj

of qj(t), and

β
j
k,d+rj+sj

=







0, for 0 ≤ k < rj and d + rj < k ≤ d + rj + sj,
γ

j

k,d(
d

k)
(d+rj +sj

k+rj
)

> 0, for rj ≤ k ≤ d + rj.

Thus, taking r = max1≤N¶rj♢, s = max1≤N¶sj♢ and K = max1≤N¶Kj♢ when m ≥
d + r + s ≥ K + r + s, we have

(3.14) β
j
k,m ≥ 0, k = 0, . . . , m.

According to (3.11) and (3.14) if we take M = max¶Mj♢ and choose an m0 ≥
max¶M, K + r + s♢, then qj(t) can be expressed as a Bernstein polynomial of degree
m0:

qj(t) =
m0∑

k=0

β
j
k,m0

bk,m0
(t),

with 0 ≤ β
j
k,m0

≤ 1, for all k = 0, . . . , m0 and j = 1 . . . , N . Now, taking

cν,N =
m0∏

j=1

β
j
k,m0

, with ν = (k, . . . , k), k = 0, . . . , m0, and N = (m0, . . . , m0),

it follows that

q(x) = q(x1, . . . , xN) =
N∏

j=1

qj(xj) =
∑

ν∈S∗

cν,NBν,N(x), for every x ∈ [0, 1]N .

Case II: qj(0) = 0 and qj(1) = 1, for all j = 1, . . . , N . It suffices to combine a
reasoning similar to that in the proof of Case I with the reasoning in [29, Theorem
5], making the appropriate modifications.

Case III: 0 < qj(0) and qj(1) ≤ 1, for all j = 1, . . . , N . Consider the polynomials
gj(t) = 1 − qj(t), for all t ∈ [0, 1], j = 1, . . . , N . Then 0 < gj(t) < 1, for all t ∈ (0, 1)
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with 0 ≤ gj(0) and gj(1) < 1, for all j = 1, . . . , N . Then in view of Case I we can
choose an m0 ≥ N , then gj(t) can be expressed as a Bernstein polynomial of degree
m0:

gj(t) =
m0∑

k=0

β
j
k,m0

bk,m0
(t),

with 0 ≤ β
j
k,m0

≤ 1, for all k = 0, . . . , m0 and j = 1 . . . , N . Hence, using part (i) of
Proposition 2.1, it follows that

qj(t) = 1 − gj(t) =
m0∑

k=0

(1 − β
j
k,m0

)bk,m0
(t) =

m0∑

k=0

γ
j
k,m0

bk,m0
(t),

where γ
j
k,m0

= 1 − β
j
k,m0

, with 0 ≤ γ
j
k,m0

≤ 1, for all k = 0, . . . , m0 and j = 1 . . . , N .
Now, taking

cν,N =
m0∏

j=1

γ
j
k,m0

, with ν = (k, . . . , k), k = 0, . . . , m0, and N = (m0, . . . , m0),

it follows that

q(x) = q(x1, . . . , xN) =
N∏

j=1

qj(xj) =
∑

ν∈S∗

cν,NBν,N(x), for every x ∈ [0, 1]N .

Case IV: qj(0) = 1 and qj(1) = 0, for all j = 1, . . . , N . Consider the polynomials
gj(t) = 1 − qj(t), for all t ∈ [0, 1], j = 1, . . . , N . Then 0 < gj(t) < 1, for all t ∈ (0, 1)
with 0 ≤ gj(0) and gj(1) < 1, for all j = 1, . . . , N . Then in view of Case II we can
choose an m0 ≥ N , then gj(t) can be expressed as a Bernstein polynomial of degree
m0:

gj(t) =
m0∑

k=0

β
j
k,m0

bk,m0
(t),

with 0 ≤ β
j
k,m0

≤ 1, for all k = 0, . . . , m0 and j = 1 . . . , N . Hence, using part (i) of
Proposition 2.1, it follows that

qj(t) = 1 − gj(t) =
m0∑

k=0

(1 − β
j
k,m0

)bk,m0
(t) =

m0∑

k=0

γ
j
k,m0

bk,m0
(t),

where γ
j
k,m0

= 1 − β
j
k,m0

, with 0 ≤ γ
j
k,m0

≤ 1, for all k = 0, . . . , m0 and j = 1 . . . , N .
Therefore, if we take

cν,N =
m0∏

j=1

γ
j
k,m0

, with ν = (k, . . . , k), k = 0, . . . , m0, and N = (m0, . . . , m0),

it follows that

q(x) = q(x1, . . . , xN) =
N∏

j=1

qj(xj) =
∑

ν∈S∗

cν,NBν,N(x), for every x ∈ [0, 1]N .

Finally, it can be shown that if qj(t) is not identically equal to 0 or to 1 for some
j and there exists a t0 ∈ (0, 1) such that qj(t0) = 0 or 1, then we cannot express the
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polynomial qj(t) as a Bernstein polynomial with coefficients in the unit interval (cf.
[28]). Consequently, q(x) cannot be converted into an induced multivariate Bernstein
polynomial as in (2.5) with Bernstein coefficients expressed as a product of N real
numbers belonging to [0, 1].

This completes the proof. □

Notice that the multi-index of maximum degree of the induced multivariate Bern-
stein polynomial with coefficients in the unit interval may be greater than the multi-
index of maximum degree of the original polynomial.

Example 3.2. Consider the polynomial q(x, y) = q1(x)q1(y), where q1(x) = 3x − 8x2 +
6x3 and q2(y) = y, for all x, y ∈ [0, 1]. The polynomial q(x, y) has multi-index of
maximum degree κ = (3, 1), and the polynomials q1(x) and q2(y) satisfy the conditions

0 < q1(x) < 1, whenever x ∈ (0, 1), q1(0) = 0, q1(1) = 1,

0 < q2(y) < 1, whenever y ∈ (0, 1), q2(0) = 0, q2(1) = 1.

Using (2.7) and part (v) of Proposition 2.2 we have

q(x, y) =


b1,3(x) −
2

3
b2,3(x) + b3,3(x)



b1,1(y)

=


3

4
b1,4(x) +

1

6
b2,4(x) −

1

4
b3,4(x) + b4,4(x)



b1,1(y)

=


3

5
b1,5(x) +

2

5
b2,5(x) + b5,5(x)



b1,1(y)

=
3

5
B((1,1),(5,1))(x, y) +

2

5
B((2,1),(5,1))(x, y) + B((5,1),(5,1))(x, y),

and the induced multivariate Bernstein polynomial of q(x, y):

P (x, y) =
3

5
B((1,1),(5,1))(x, y) +

2

5
B((2,1),(5,1))(x, y) + B((5,1),(5,1))(x, y)

has multi-index of maximum degree N = (5, 1).

The following example show a polynomial q(x, y) which can be converted into an
induced multivariate Bernstein polynomial, however it cannot be implemented with
stochastic logic of Qian-Riedel-Rosenberg type.

Example 3.3. Consider the polynomial q(x, y) = 3xy − 8x2y2 + 6x3y3 with multi-index
of maximum degree κ = (3, 3), satisfying the conditions 0 < q(x, y) < 1, whenever
(x, y) ∈ (0, 1)2, q(0, 0) = 0 and q(1, 1) = 1. Since

q(x, y) = P1(x)b1,3(y) + P2(x)b2,3(y) + P3(x)b3,3(y) + P3(y)b3,3(x),

where P1(x) = 1
3
b1,3(x) + 2

3
b2,3(x), P2(x) = 2

3
b1,3(x) + 4

9
b2,3(x), P3(x) = b1,3(x) −

2
3
b2,3(x) + 1

2
b3,3(x), and the coefficients of P3(x) do not all belong to the interval [0, 1],
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using part (v) of Proposition 2.2 we see that

P3(x) =
3

13
b1,13(x) +

14

39
b2,13(x) +

21

52
b3,13(x) +

5

13
b4,13(x) +

25

78
b5,13(x) +

3

13
b6,13(x)

+
7

52
b7,13(x) +

2

39
b8,13(x) +

11

156
b11,13(x) +

3

13
b12,13(x) +

1

2
b13,13(x).

From (2.6) and (2.7) it follows that

(3.15) q(x, y) = r1(x, y) + r2(x, y) + r3(x, y) + r4(x, y),

where

r1(x, y) =
1

13
B((1,1),(13,3))(x, y) +

2

13
B((2,1),(13,3))(x, y) +

5

22
B((3,1),(13,3))(x, y)

+
42

143
B((4,1),(13,3))(x, y) +

50

143
B((5,1),(13,3))(x, y) +

56

143
B((6,1),(13,3))(x, y)

+
119

286
B((7,1),(13,3))(x, y) +

60

143
B((8,1),(13,3))(x, y) +

57

143
B((9,1),(13,3))(x, y)

+
50

143
B((10,1),(13,3))(x, y) +

7

26
B((11,1),(13,3))(x, y) +

2

13
B((12,1),(13,3))(x, y),

r2(x, y) =
2

13
B((1,2),(13,3))(x, y) +

32

117
B((2,2),(13,3))(x, y) +

155

429
B((3,2),(13,3))(x, y)

+
60

143
B((4,2),(13,3))(x, y) +

580

1287
B((5,2),(13,3))(x, y) +

196

429
B((6,2),(13,3))(x, y)

+
63

143
B((7,2),(13,3))(x, y) +

40

99
B((8,2),(13,3))(x, y) +

50

143
B((9,2),(13,3))(x, y)

+
40

143
B((10,2),(13,3))(x, y) +

23

117
B((11,2),(13,3))(x, y) +

4

39
B((12,2),(13,3))(x, y),

r3(x, y) =
3

13
B((1,3),(13,3))(x, y) +

14

39
B((2,3),(13,3))(x, y) +

21

52
B((3,3),(13,3))(x, y)

+
5

13
B((3,3),(13,3))(x, y) +

25

78
B((5,3),(13,3))(x, y) +

3

13
B((6,3),(13,3))(x, y)

+
7

52
B((7,3),(13,3))(x, y) +

2

39
B((8,3),(13,3))(x, y) +

11

156
B((11,3),(13,3))(x, y)

+
3

13
B((12,3),(13,3))(x, y) +

1

2
B((13,3),(13,3))(x, y),

r4(x, y) = r3(y, x).

Hence, the induced multivariate Bernstein polynomial on the right hand side of
(3.15) has multi-index of maximum degree N = (13, 3). However, q(x, y) cannot be
factorized as (3.10).

As a consequence of Theorems 3.2 and 3.3 we obtain the following result.

Corollary 3.1. Let N be any fixed positive integer. If qj(t) is a polynomial such that

some of the following conditions is satisfied:

(i) qj(t) is identically equal to 0 or to 1, j = 1, . . . , N ;
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(ii) for any t ∈ (0, 1) we have 0 < qj(t) < 1, with qj(0) ≥ 0 and qj(1) ≤ 1, for all

j = 1, . . . , N ,

then we can design a stochastic logic of Qian-Riedel-Rosenberg type to compute the

multivariate polynomial q(x) given by

q(x) = q(x1, . . . , xN) =
N∏

j=1

qj(xj), x ∈ [0, 1]N .

Reciprocally, if q(x) can be implemented with stochastic logic of Qian-Riedel-Rosenberg

type, then the polynomials qj(t) satisfy (i) or (ii), j = 1, . . . , N .

4. A Further Remark

In recent years, extensive researches have been done for various degenerate versions
of some special polynomials and numbers and have yielded many interesting arith-
metical and combinatorial results. These include the degenerate Stirling numbers of
the first and second kinds, degenerate central factorial numbers of the second kind,
degenerate Bernoulli numbers of the second kind, degenerate Bernstein polynomi-
als, degenerate Bell numbers and polynomials, degenerate central Bell numbers and
polynomials, degenerate complete Bell polynomials and numbers, and so on.

Degenerate versions of some special polynomials have been shown to play an im-
portant role in various areas. However, not much is known about the properties of
these polynomials (cf., e.g, [15–20, 32] and references thereof). In particular, as a
degenerate version of Bernstein polynomials, the degenerate Bernstein polynomials
were introduced recently by Kim and Kim in [16].

In this regard, the remarkable papers [16, 19] suggest that the fundamental proper-
ties and identities satisfied by the degenerate Bernoulli polynomials could be used
to define a special model of stochastic logic. Thus, one of our future projects is to
explore such a model.
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NUMERICAL METHOD FOR SOLUTION OF FOURTH-ORDER

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS BY GREEN’S

FUNCTION

FATMA A. AKGUN1 AND ZAUR RASULOV2

Abstract. In this paper, we generalize Picard-Green’s Embedded method for
solving fourth-order Volterra integro-differential equations. We prove the existence
and uniqueness theorems. Moreover, we illustrate some numerical examples to
present the better approximation with a minimum error. We use MATLAB for
numerical solutions.

1. Introduction

Several authors have been interested in differential equations since they are widely
used in applications in the technical field as well as in the science and engineering
sciences. Particularly elastic theory, biomechanics, electromagnetics, fluids models in
physics and biology such as dynamics, heat transfer, population dynamics, and the
spread of infectious diseases are frequently encountered.

Studies for the solution of integral and integro-differential equations (IDEs) have
continued since Volterra [1, 9, 19]. Although studies on these equations include linear
equations, it is often not possible to find their analytical solutions to these equa-
tions. For this reason, numerical approaches [2] find more place in the literature.
Various algorithms for finding the approximate numerical values are introduced and
implemented to find the best results.

Some of these are Wavelet-Galerkin method [6], monotone iterative methods [5,
20], homotopy perturbation method reproducing kernel [4], Adomian decomposition

Key words and phrases. Fixed point iteration, Picard-Green’s method, convergence rate, numerical
approximation.
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method [8], Picard-Green’s method [7, 18], Tau method [11], spectral collocation
methods [12], Taylor polynomials [14], Lagrange interpolation [16], exponential spline
method [17] and the references therein. Furthermore, higher-order boundary value
problems (BVPs) for IDEs have been researched by Agarwal [3] and Morchalo [15].

Consider the following boundary value problem

L[y] = p0(t)y
′′′′(t) + p1(t)y

′′′(t) + p2(t)y
′′(t) + p3(t)y

′(t) + p4(t)y(t)

= f(t) +
∫ t

0
K(t, s)g(y(s))ds,(1.1)

with the boundary conditions

Ba[y] = α1y(a) + α2y
′(a) + α3y

′′(a) + α4y
′′′(a) = ζ1,

Bb[y] = β1y(b) + β2y
′(b) + β3y

′′(b) + β4y
′′′(b) = ζ2,(1.2)

Bc[y] = γ1y(c) + γ2y
′(c) + γ3y

′′(c) + γ4y
′′′(c) = ζ3,

Bd[y] = ω1y(d) + ω2y
′(d) + ω3y

′′(d) + ω4y
′′′(d) = ζ4,

where t ∈ (a, b), ζi, i = 1, . . . , 4, are constants and either c = a or c = b and either
d = a or d = b. The existence and uniqueness results for (1.1)–(1.2) are given in [10].

The Green’s function G(t, s) of problem (1.1) and (1.2) is;

G(t, s) =







a1y1 + a2y2 + a3y3 + a4y4, a < t < s,

b1y1 + b2y2 + b3y3 + b4y4, s < t < b,

where t ≠ s, yi are linearly independent solutions of L[y] and ai, bi are constants for
i = 1, . . . , 4.

To implement the proposed methodology, we denote the linear integral operator
(1.3)

T [y] = yh +
∫ b

a
G(t, s)(p0(s)y′′′′(s)+p1(s)y′′′(s)+p2(s)y′′(s)+p3(s)y′(s)+p4(s)y(s))ds,

where yh is the homogeneous solution of (1.1)–(1.2). From (1.3), we get

T [y] =yh +
∫ b

a
G(t, s)



p0(s)y′′′′(s) + p1(s)y′′′(s) + p2(s)y′′(s) + p3(s)y′(s) + p4(s)y(s)

− f(s) −
∫ s

0
K(t, s)g(y(t))dt



ds +
∫ b

a
G(t, s)



f(s) +
∫ s

0
K(t, s)g(y(t))dt



ds.(1.4)

Let yp be the particular solution of (1.1), then

(1.5) yp =
∫ b

a
G(t, s)



f(s) +
∫ s

0
K(t, s)g(y(t))dt



ds.

By applying y = yp + yh, from (1.4) and (1.5), we obtain

T [y] =y +
∫ b

a
G(t, s)



p0(s)y′′′′(s) + p1(s)y′′′(s) + p2(s)y′′(s) + p3(s)y′(s) + p4(s)y(s)

− f(s) −
∫ s

0
K(t, s)g(y(t))dt



ds.(1.6)
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Let the starting function y0 be the homogeneous solution of L[y] = 0 and yn+1 = T [yn],
for all n ≥ 0, then Picard-Green’s fixed point iteration method for (1.1) is defined as

yn+1 =yn +
∫ b

a
G(t, s)



p0(s)yn
′′′′(s) + p1(s)yn

′′′(s) + p2(s)yn
′′(s) + p3(s)yn

′(s)

+ p4(s)yn(s) − f(s) −
∫ s

0
K(t, s)g(yn(t))dt



ds.(1.7)

In this paper, we generalize Picard-Green’s Embedding method (PGEM) for the
fourth-order BVPs of Volterra IDEs. We show convergence and prove the convergence
theorem. We demonstrate that the developed method offers a better approach than
the existing methods by numerical examples.

2. Convergence Analysis and Convergence Rate

In this section, we will introduce convergence analysis using nonlinear differential
equations and the contraction principle and determine the convergence rate.

Consider the fourth-order BVP

(2.1) yiv(t) = f(t, y(t), y′(t), y′′(t), y′′′(t)) +
∫ t

0
K(t, s)g(y(s))ds,

with the boundary conditions

(2.2) y(0) = y′(0) = y(1) = y′(1) = 0.

The solution of the problem (2.1)–(2.2) is as follows

(2.3) yp =
∫ 1

0
G(t, s)



f(s, yp, y′
p, y′′

p, y′′′
p) +

∫ t

0
K(t, s)g(yp(s))ds



ds

and

T [yp] =
∫ 1

0
G(t, s)

[

p0(s)yp
′′′′(s) + p1(s)yp

′′′(s)(2.4)

+ p2(s)yp
′′(s) + p3(s)yp

′(s) + p4(s)yp(s)
]

ds,

where G(t, s) is

G(t, s) =







t3


−2s3+3s2−1
6



+ t2


s3−2s2+s
2



, 0 < t < s,

s3


−2t3+3t2−1
6



+ s2


t3−2t2+t
2



, s < t < 1.

From (2.3) and (2.4), we get

T [yp] =yp

+
∫ b

a
G(t, s)



p0(s)y′′′′(s) + p1(s)y′′′(s) + p2(s)y′′(s) + p3(s)y′(s) + p4(s)y(s)

− f(s, yp, y′
p, y′′

p, y′′′
p) +

∫ s

0
K(t, s)g(yp(t)dt



ds.
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By applying PGEM to the problem (2.1)–(2.2), we obtain the following iterative
scheme.

yn+1

=yn+
∫ b

a
G∗(t, s)



yn
′′′′(s) − f(s, yn(s), yn

′(s), yn
′′(s), yn

′′′(s))−
∫ s

0
K(t, s)g(yn(t))dt



ds.

In particular, we have

yn+1 =yn −
∫ t

0



s3



−2t3 + 3t2 − 1

6



+ s2



t3 − 2t2 + t

2



(2.5)

×


yn
′′′′(s) − f(s, yn(s), yn

′(s), yn
′′(s), yn

′′′(s)) −
∫ s

0
K(t, s)g(yn(t))dt



ds(2.6)

−
∫ 1

t



t3



−2s3 + 3s2 − 1

6



+ t2



s3 − 2s2 + s

2



×


yn
′′′′(s) − f(s, yn(s), yn

′(s), yn
′′(s), yn

′′′(s)) −
∫ s

0
K(t, s)g(yn(t))dt



ds.

Theorem 2.1. Let X = C[0, 1]be a Banach space with the norm ∥x∥ = maxt∈[0,1] ♣x(t)♣,
x ∈ X. Assume that the function g satisfies the Lipschitz condition such that

♣g(y) − g(v)♣ ≤ L♣y − v♣, L ∈ (0, 1]. Then operator T defined in (1.6) is a Banach’s

contraction and the sequence yn converges strongly to the solution of the problem (2.1)
and (2.2) under the following conditions

Q =


1

98



A < 1,

where

A = max
[0,1]×R4

∣

∣

∣

∣

∣

∂f(t, y, y′, y′′, y′′′)

∂y

∣

∣

∣

∣

∣

+ ∥K∥L



1

2



.

Proof. Integrating (2.5) by parts, we get

(2.7) yn+1 = yn(t) +
∫ 1

0
G∗(t, s)



f(s, yn, yn
′, yn

′′, yn
′′′) +

∫ s

0
K(t, s)g(yn(t))dt



ds.

Let TG : [0, 1] → [0, 1] be the right side of (2.7), then

∥TG(yn) − TG(ym)∥ =
∥

∥

∥

∥

∫ 1

0
G∗(t, s)



f(s, y, y′, y′′, y′′′) +
∫ s

0
K(t, s)g(yn(t))dt)

−f(s, ym, y′
m, y′′

m, y′′′
m) +

∫ s

0
K(t, s)g(ym(t))dt



ds

∥

∥

∥

∥

.

By using the fact that

∥G∥ = max
0≤t,s≤1

♣G∗(t, s)♣ =
1

98
,
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we get

∥TG(yn) − TG(ym)∥ ≤
1

98

∫ 1

0

∥

∥

∥

∥



f(s, yn, y′
n, y′′

n, y′′′
n ) +

∫ s

0
K(t, s)g(yn(t))dt

−f(s, ym, y′
m, y′′

m, y′′′
m) +

∫ t

0
K(t, s)g(ym(s))dt


∥

∥

∥

∥

ds.

Implementing Mean Value Theorem, we obtain

∥TG(yn) − TG(ym)∥ ≤
1

98
A∥yn − ym∥.

Therefore, we get

(2.8) ∥TG(yn) − TG(ym)∥ ≤ Q∥yn(t) − ym(t)∥,

where Q ∈ (0, 1). From (2.8) we have

∥yn − ym∥ = ∥(yn − yn−1) + (yn−1 − yn−2) + · · · + (ym+1 − ym)∥

≤ ∥yn − yn−1∥ + ∥yn−1 − yn−2∥ + · · · + ∥ym+1 − ym∥

≤ (Qn−1 + Qn−2 + · · · + Qm)∥y1 − y0∥

≤ Qm(1 + Q + Q2 + · · · + Qn−m−1)∥y1 − y0∥

= Qm



1 − Qn−m

1 − Q



∥y1 − y0∥.

Since Q ∈ (0, 1), we have

(2.9) ∥yn − ym∥ ≤
Qm

1 − Q
∥y1 − y0∥,

which converges to zero, i.e., ∥yn−ym∥ → 0, while m → 0. Thus, TG(y) is a contraction
mapping. □

Let y∗ be the solution of problem (2.1) and (2.2). Then T (y∗) = y∗. From (2.8)
and (2.9), we have

∥yn+1 − y∗∥ = ∥T (yn) − y∗∥ ≤ Q∥yn − y∗∥ ≤ · · · ≤ Qn+1∥y0 − y∗∥.

Since 0 < Q < 1, it concludes that yn converges strongly to y∗. The rest proof can be
completed from the proof of [13, Proposition 1].

3. Numerical Examples

In this section, we give numerical examples to confirm the applicability of the main
results.

Example 3.1. Consider the fourth order BVP

(3.1) yiv(t) = f(t) +
∫ t

0
y(s)ds,

with the boundary conditions

(3.2) y(0) = y′(0) = 1, y(1) = 1 + e, y′(1) = 2e,
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where f(t) = −t + 5et − 1 and the exact solution y(t) = 1 + tet and the Green’s
function is

G(t, s) =







t3


−2s3+3s2−1
6



+ t2


s3−2s2+s
2



, 0 < t < s,

s3


−2t3+3t2−1
6



+ s2


t3−2t2+t
2



, s < t < 1.

By applying PGEM, we get

yn+1 =yn −
∫ t

0



s3



−2t3 + 3t2 − 1

6



+ s2



t3 − 2t2 + t

2

]

(3.3)

×


yiv
n (s) + s − 5es + 1 −

∫ s

0
yn(t)dt



ds

−
∫ 1

t



t3



−2s3 + 3s2 − 1

6



+ t2



s3 − 2s2 + s

2

]

×


yiv
n (s) + s − 5es + 1 −

∫ s

0
yn(t)dt



ds,

where the starting function is y0 = t3 + (e − 2)t2 + t + 1. The absolute error of the
problem is estimated by

Err = ♣y(t) − yn(t)♣.

Table 1 gives the maximum errors of the problem (3.1)–(3.2) to demonstrate the high
accuracy of the proposed method. Considering the values in the table, the margin of
error decreases considerably and approaches zero as the number of iterations increases.

Table 1. The maximum errors of Example 1

No. of iterations 6 8 10 12
Max Error(n) 2.96E-18 1.23E-24 5.13E-31 2.13E-37

Table 2 shows the absolute errors for the second and third iterations solved by two
different methods. The table shows that PGEM has a better convergence rate than
Adomian Decomposition Method (MADM). Meanwhile, the chart 1 represents the
line graphs of the absolute errors of both methods for the third iteration. Therefore,
it is clear that PGEM approaches 0 faster than MADM.

Table 2. The absolute errors (n) of Example 1

PGEM PGEM MADM MADM
t Numerical Solution Error (2) Error(3) Error(2) Error(3)

0.1 1.1111924502842667426690545607791 1.68E-06 1.08E-09 4.54E-05 2.29E-08
0.3 1.4086348815636588244756957461284 1.05E-05 6.75E-09 4.23E-05 4.74E-07
0.5 1.8295725879184859388029560326160 1.70E-05 1.10E-08 6.63E-05 3.37E-07
0.7 2.4133047634097381621411544034260 1.35E-05 8.81E-09 6.92E-05 4.78E-07
0.9 3.2143183796746349483923129747728 2.74E-06 1.80E-09 7.97E-06 5.81E-08
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Figure 1. The relative absolute errors of Example 1

Example 3.2. Consider non-linear BVP

(3.4) yiv = 1 +
∫ t

0
e−sy2(s)ds,

corresponding to boundary conditions

(3.5) y(0) = y′(0) = 1, y(1) = y′(1) = e.

The exact solution of the problem given above is y(t) = ex, and the Green’s function
of (3.4)–(3.5) is

G(t, s) =







t3


−2s3+3s2−1
6



+ t2


s3−2s2+s
2



, 0 < t < s,

s3


−2t3+3t2−1
6



+ s2


t3−2t2+t
2



, s < t < 1,

where the starting function is y0 = (−e − 3)t3 + (2e − 5)t2 + t + 1.
By applying PGEM, we get

yn+1 =yn −
∫ t

0



s3



−2t3 + 3t2 − 1

6



+ s2



t3 − 2t2 + t

2

]

×


yiv
n (s) − 1 −

∫ s

0
e−sy2

n(t)dt



ds

−
∫ 1

t



t3



−2s3 + 3s2 − 1

6



+ t2



s3 − 2s2 + s

2

]

(3.6)

×


yiv
n (s) − 1 −

∫ s

0
e−sy2

n(t)dt



ds.

Table 3 demonstrates the high accuracy of the proposed method for the problem
given in Example 2. It presents second iteration errors for PGEM, MADM, and
MDMGF (Modified Decomposition Method with Green function). The results of
recommended method PGEM converge to the exact solution faster.

Table 4 shows the third iteration errors for the methods discussed in Table 3. When
we examine these results, it is clear that the results of the PGEM method decrease
faster as the number of iterations increases and converge to zero faster than the other
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Table 3. The absolute errors (n) of Example 2

t Numerical Solution Error(2) PGEM MADM MDMGF
0.1 1.1051709173255609245824473770908 5.85E-07 8.48E-05 1.43E-05
0.3 1.3498588028660124806131472805192 3.66E-06 9.16E-05 9.17E-05
0.5 1.6487212630265689433471827882745 5.93E-06 3.66E-04 1.56E-04
0.7 2.0137527013290129690745570786289 4.71E-06 4.54E-04 1.34E-04
0.9 2.4596031099034457029111001120299 9.55E-07 3.00E-05 3.00E-05

Table 4. The other absolute errors (n) of Example 2

t Numerical Solution Error(3) MADM PGEM MDMGF
0.1 1.1051709173255609245824473770908 2.32E-06 7.50E-10 4.32E-08
0.3 1.3498588028660124806131472805192 7.72E-05 4.71E-09 2.75E-07
0.5 1.6487212630265689433471827882745 7.52E-05 7.67E-09 4.54E-07
0.7 2.0137527013290129690745570786289 4.72E-05 6.14E-09 3.72E-07
0.9 2.4596031099034457029111001120299 7.61E-06 1.25E-09 7.61E-08

methods, as in Table 3. These results clearly show that PGEM is more effective, as
we tried to demonstrate.

While the Figure 2 shows the comparisons of the values in the tables 3 and 4, Fig.
3 depicts the comparisons between the exact solutions and the numerical solutions
obtained in the third iteration. Overall, it is clear from the first graph that the values
obtained via PGEM tend to approach zero faster than other methods. Moreover, as
shown by the second graph, the numerical solutions got by PGEM are very close to
the exact values.

Figure 2. The absolute errors of Example 2

4. Conclusion

In this study, we generalize Picard-Green’s fixed-point iteration method, one of
the most popular methods for fourth-order nonlinear and linear IVPs, by embedding
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Figure 3. Exact and numerical solutions

Green’s function. We proved the convergence and got the convergence rate. We solve
some examples to show the correctness and generality of the proposed scheme. We
compared the numerical results obtained by the determined method with the results
of the methods well known in the literature. For comparison, we considered the
MADM and MDMGF methods. We used MATLAB to calculate numerical results.
We presented the obtained results with the help of tables and figures. Our method
gives better results than other methods when comparing numerical results, exact
results, and calculated values. Therefore, the aim of our study has been revealed.

There are many iteration methods in the literature to find the best approach. This
study compared the results obtained for the fourth-order Volterra integro-differential
equations with the Adomian decomposition methods. However, solving higher order
linear and nonlinear differential and integro-differential equations with a better ap-
proach than other existing methods is still a problem to be developed. We believe its
solution will lead to many studies.

Acknowledgements. The study was supported Yildiz Technical University, within
the scope of BAP projects, Project Number: FBA-2021-4231.
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