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PERMUTING TRI-DERIVATIONS ON POSETS

AHMED Y. ABDELWANIS1 AND ABDUL RAUF KHAN2

Abstract. Let P be a partially ordered set (poset). The main objective of the
present paper is to introduce and study the idea of permuting tri-derivations of
posets. Several characterization theorems involving permuting tri-derivations are
given. In particular, we prove that if d1 and d2 are two permuting tri-derivations
of P with traces ϕ1 and ϕ2, then ϕ1 ≤ ϕ2 if and only if ϕ2(ϕ1(x)) = ϕ1(x) for all
x ∈ P .

1. Introduction

Motivated by the ideas of derivations and related maps in rings and algebras (see
[1,2,7,9] and references therein), the notions of derivation on lattices were introduced
and studied in [10] and [11], respectively. Recently, several authors have studied and
verified a lot of meaningful conclusions by applying derivations and its generalized
forms to lattices (see [3] for more details). In see of over mentioned development, it
is very common to exchange the idea of derivations to partially ordered sets. In this
direction some progress have already been made (see [14]). In the year 2009, Öztürk et
al. [8] brought about the idea of permuting tri-derivations to lattices and investigated
some related properties (for more information see also [4] and [13]).

In the present paper, the notion of permuting tri-derivation of a partially ordered
sets is introduced and some related properties are investigated. Precisely, in Section
2, the notion of permuting tri-derivations of partially ordered sets is presented and
concentrate their essential properties. Further, the fixed sets (for more information
about fixed sets see [12]) are examined in light of the permuting tri-derivations. Finally,
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Section 3 is devoted to the study of the properties of ideals and the operations related
with the permuting tri-derivations.

Throughout this paper, (P, ≤) always denotes a partially ordered set (poset). We
additionally utilize the shorthand P to indicate a poset. According to [14], for
z ∈ P, we write, ↓ z = {p ∈ P : p ≤ z} and ↑ z = {p ∈ P : z ≤ p}. For
W ⊆ P, we denote l(W ) = {p ∈ P : p ≤ w, for all w ∈ W} the lower cone of W and
u(W ) = {p ∈ P : w ≤ p, for all w ∈ W} the upper cone of W dually. It is quickly clear
that both are antitone and their compositions l(u(·)) and u(l(·)) are monotone. Also,
we have l(u(l(·))) = l(·), u(l(u(·))) = u(·) from [5]. If W = {w1, w2, . . . , wn} is a finite
subset, then we write l(W ) = l(w1, w2, . . . , wn) and u(W ) = u(w1, w2, . . . , wn) simply.
Moreover, for W1 ⊆ P and W2 ⊆ P, we will denote l(W1, W2) for l(W1 ∪ W2) and
u(W1, W2) for u(W1∪W2). For A ⊆ P , we write ↓ A = {p ∈ P : p ≤ a for some a ∈ A}.
From [6], we find that if A =↓ A, then A is said to be a lower set. A is directed if it is
nonempty and every finite subset of A has an upper bound in A. From nonemptiness,
it is ample to expect each combine of components in A has an upper bound in A. A
subset J of P is called an ideal if it is a directed lower set.

2. Permuting Tri-Derivations on Posets

The following notions are essential in our discussions.

Definition 2.1. ([14, Definition 2.1]) Let (P, ≤) be a poset and d : P → P be a
function. We call d a derivation on P if it satisfies the following conditions:

(i) d(l(x, y)) = l(u(l(d(x), y), l(x, d(y)))) for all x, y ∈ P ;
(ii) l(d(u(x, y))) = l(u(d(x), d(y))) for all x, y ∈ P .

Let (P, ≤) be a poset. A mapping f : P × P × P → P is called permuting
if f(x, y, z) = f(x, z, y) = f(y, x, z) = f(y, z, x) = f(z, x, y) = f(z, y, x) for all
x, y, z ∈ P. A mapping d : P → P defined by d(x) = f(x, x, x) for all x ∈ P, is called
the trace of f where f is a permuting mapping.

Inspired by the notion permuting tri-derivations on rings [2, 7] and lattices [8, 13]
the following notion on posets is introduced.

Definition 2.2. Let (P, ≤) be a poset and d : P × P × P → P be a permuting
mapping. Nextly, d is called a permuting tri-derivation on P if for all x, y, z, w ∈ P
the following conditions hold:

(i) d(l((x, w), y, z) = l(u(l(d(x, y, z), w), l(x, d(w, y, z)))) for all x, y, z, w ∈ P ;
(ii) l(d(u(x, w), y, z))) = l(u(d(x, y, z), d(w, y, z)) for all x, y, z, w ∈ P.

Remark 2.1. Note that, a permuting tri-derivation on P satisfies the following condi-
tions:

(i) d(x, l(y, w), z) = l(u(l(d(x, y, z), w), l(y, d(x, w, z)))) for all x, y, z, w ∈ P ;
(ii) l(d(x, u(y, w), z))) = l(u(d(x, y, z)), d(x, w, z))) for all x, y, z, w ∈ P ;
(iii) d(x, y, l(z, w)) = l(u(l(d(x, y, z), w), l(z, d(x, y, w)))) for all x, y, z, w ∈ P ;
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(iv) l(d(x, y, u(z, w)))) = l(u(d(x, y, z)), d(x, y, w))) for all x, y, z, w ∈ P.

Example 2.1. Let (P, ≤) = (N, ≤). Define the function d : N × N × N → N by
d(x, y, z) = min{x, y, z} for all x, y, z ∈ P. It is straightforward to check that d is a
permuting tri-derivation on P.

Proposition 2.1. Let P be a poset and d be a permuting tri-derivation on P with
trace ϕ. Then the followings hold:

(1) d(x, y, z) ≤ x, d(x, y, z) ≤ y and d(x, y, z) ≤ z for all x, y, z ∈ P ;
(2) d(x, y, z) ∈ l(x, y, z), for all x, y, z ∈ P ;
(3) if x1 ≤ x2 and y, z ∈ P , then d(x1, y, z) ≤ d(x2, y, z);
(4) if y1 ≤ y2 and x, z ∈ P , then d(x, y1, z) ≤ d(x, y2, z);
(5) if z1 ≤ z2 and x, y ∈ P , then d(x, y, z1) ≤ d(x, y, z2);
(6) ϕ(x) ≤ x, for all x ∈ P ;
(7) ϕ(l(x)) ⊆ l(ϕ(x)), for all x ∈ P ;
(8) if x ≤ y, then ϕ(x) ≤ ϕ(y);
(9) ϕ2(x) = ϕ(x), for all x ∈ P.

Proof. (1) Let d be a permuting tri-derivation on P. Then
d(l(x, x), y, z) = l(u(l(d(x, y, z), x), l(x, d(x, y, z))))

= l(u(l(x, d(x, y, z))))
= l(x, d(x, y, z)),

for all x, y, z ∈ P . Since d(x, y, z) ∈ d(l(x, x), y, z), the above relation gives d(x, y, z) ∈
l(x, d(x, y, z)) for all x, y, z ∈ P. In this way, we conclude that d(x, y, z) ≤ x for
all x, y, z ∈ P. Similarly, we can prove d(x, y, z) ≤ y and d(x, y, z) ≤ z. Hence,
d(x, y, z) ≤ x, d(x, y, z) ≤ y and d(x, y, z) ≤ z for all x, y, z ∈ P.

(2) It is obvious from (1).
(3) Let x1 ≤ x2 and y, z ∈ P. Then

l(d(u(x1, x2)), y, z) = l(d(u(x2), y, z)) = l(u(d(x1, y, z), d(x2, y, z))),
for all x1, x2, y, z ∈ P. Since d(x1, y, z) ∈ l(u(d(x1, y, z), d(x2, y, z))), we find that
d(x1, y, z) ∈ l(d(u(x2), y, z)) for all x1, x2, y, z ∈ P. Hence, d(x1, y, z) ≤ d(x2, y, z) for
all x1, x2, y, z ∈ P.

(4), (5) Proofs run on comparable lines as in (3).
(6) By the definition,

d(l(x, x), x, x) = l(u(l(d(x, x, x), x), l(x, d(x, x, x))))
= l(u(l(x, d(x, x, x))))
= l(x, d(x, x, x)),

for all x ∈ P . Since d(x, x, x) ∈ d(x, l(x, x), x)), the last relation gives
ϕ(x) = d(x, x, x) ∈ l(x, d(x, x, x)), for all x ∈ P.

Consequently, we get ϕ(x) = d(x, x, x) ≤ x for all x ∈ P.
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(7) Let x ∈ P. Then

ϕ(l(x)) = {d(y, y, y) : y ∈ P and y ≤ x},

⊆ d(l(y, y), y, y)
= l(u(l(d(y, y, y), y), l(y, d(y, y, y))))
= l(u(l(d(y, y, y), y)))
= l(u(l(d(y, y, y))))
= l(d(y, y, y))
= l(ϕ(y)), for all y ∈ P and y ≤ x.

This implies that ϕ(l(x)) ⊆ l(ϕ((x))) for all x ∈ P.
(8) Let x, y ∈ P such that x ≤ y. Then, applications of part (7) we get ϕ(l(y)) ⊆

l(ϕ(y)). Since ϕ(x) ∈ ϕ(l(y)), we find that ϕ(x) ∈ l(ϕ(y)) for all x, y ∈ P. Hence, we
conclude that ϕ(x) ≤ ϕ(y) for all x, y ∈ P.

(9) In view of part (5), we get ϕ2(x) = ϕ(ϕ(x)) ≤ ϕ(x) ≤ x for all x ∈ P. Then for
all x ∈ P

ϕ(l(x)) ⊆ l(ϕ(x)),
⊆ d(l(x), y, y)
= d(l(x, x), y, y)
= l(u(l(d(x, y, y), x), l(d(x, y, y)), x))
= l(u(l(d(x, y, y)), l(d(x, y, y))))
= l(u(l(d(x, y, y)))
= l(d(x, y, y))
⊆ l(x, y)
= l(y), for all y ∈ P and y ≤ x.

Then for all x ∈ P we have ϕ(l(x)) ⊆ l(y) for all y ∈ P such that y ≤ x. Since
ϕ2(x) ≤ x for all x ∈ P, we observe that ϕ(l(x)) ⊆ l(ϕ2(x)) for all x ∈ P. Since
ϕ(x) ∈ ϕ(l(x)) for all x ∈ P, so ϕ(x) ∈ l(ϕ2(x)) for all x ∈ P. This implies that
ϕ(x) ≤ ϕ2(x) for all x ∈ P. Hence, finally, ϕ2(x) = ϕ(x) for all x ∈ P. □

Example 2.2. Let (P, ≤) = (N, ≤). Define the function d : N × N × N → N by
d(x, y, z) = max{x, y, z} for all x, y, z ∈ P. Then, d is not a permuting tri-derivation
on P.

Corollary 2.1. Let P be a poset with the least element 0 and let d be a permuting
tri-derivation on P. Then d(0, y, z) = 0 for all y, z ∈ P.

Lemma 2.1. Let P be a poset and I be an ideal of P. Next, let d be a permuting
tri-derivation on P . Then d(x, y, z) ∈ I for all x, y, z ∈ I.
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Proof. Let x, y, z ∈ I. Then in view of Proposition 2.1 (1), we get d(x, y, z) ≤ x for
all x, y, z ∈ I. The last expression yields d(x, y, z) ∈ I, since x ∈ I. Hence, the result
holds. □

Lemma 2.2. Let d be a permuting tri-derivation on P with trace ϕ. Then the following
statements hold:

(1) If d(l(x), x, x) = l(y), then ϕ(x) = y for all x, y ∈ P ;
(2) If d(u(x), x, x) = u(y), then ϕ(x) = y for all x, y ∈ P.

Proof. (1) Let x, y ∈ P such that d(l(x), x, x) = l(y). Then, by the definition of l(·),
we get y ∈ l(y) for all y ∈ P. This gives y ∈ d(l(x), x, x). Hence, there exists z ∈ l(x)
such that d(z, x, x) = y. Application of Proposition 2.1(3) yields y = d(z, x, x) ≤
d(x, x, x) = ϕ(x) for x ∈ P. Therefore, the above relation forces that y ≤ ϕ(x) for all
x, y ∈ P. On the other hand if ϕ(x) ∈ d(l(x), x, x) = l(y), then we obtain ϕ(x) ≤ y.
Hence ϕ(x) = y for all x, y ∈ P.

(2) By using comparable approach with fundamental variety, we can prove (2). □

Theorem 2.1. Let P be a poset with a greatest element 1 and d be a permuting
tri-derivation on P with trace ϕ. Then ϕ(1) = 1 if and only if d(x, 1, 1) = x for all
x ∈ P.

Proof. By the assumption, ϕ(1) = d(1, 1, 1) = 1. In view of Proposition 2.1(1), it is
easy to see that d(x, 1, 1) ≤ x for all x ∈ P. Secondly, to prove that x ≤ d(x, 1, 1) for
all x ∈ P. Let x ∈ P. Then, we have

d(l(x), 1, 1) = d(l(x, 1), 1, 1)
= l(u(l(d(x, 1, 1), 1), l(x, d(1, 1, 1)))
= l(u(l(d(x, 1, 1), 1), l(x, 1))
= l(u(l(d(x, 1, 1)), l(x))
= l(u(l(x))) (since d(x, 1, 1) ≤ x)
= l(x).

By another way, observe that
d(l(x), 1, 1) = d(l(x, x), 1, 1)

= l(u(l(d(x, 1, 1), x), l(x, d(x, 1, 1)))
= l(u(l(d(x, 1, 1))), l(d(x, 1, 1)))
= l(u(l(d(x, 1, 1))))
= l(d(x, 1, 1).

On comparing the above two expressions, we get l(x) = l(d(x, 1, 1)) for all x ∈ P.
Hence d(x, 1, 1) = x for all x ∈ P . The converse part is clear. □

Theorem 2.2. Let P be a poset with a least element 0 and a greatest element 1.
Next, let d be a permuting tri-derivation on P . Then d(1, 0, 0) = 0 if and only if
d(x, 0, 0) = 0 for all x ∈ P.
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Proof. Suppose that d(1, 0, 0) = 0 and x ∈ P. Then
d(l(1), 0, 0) = d(l(1, 1), 0, 0)

= l(u(l(d(1, 0, 0), 1), l(1, d(1, 0, 0))))
= l(u(l(0, 1), l(1, 0))
= l(u(l(0), l(0)) = l(u(l(0)))
= l(0) = {0}.

But l(1) = P and x ∈ P, the above relation gives d(x, 0, 0) ∈ d(l(1), 0) = l(0) = {0}.
Hence, d(x, 0, 0) = 0 for all x ∈ P . For the converse part, proof is obvious. □

Theorem 2.3. Let P be a poset with a greatest element 1 and d be a permuting
tri-derivation on P with trace ϕ. If x ≤ ϕ(1), then d(x, 1, 1) = x for all x ∈ P.

Proof. Let x ≤ ϕ(1) = d(1, 1, 1) for all x ∈ P. Then for all x ∈ P, we have
d(l(x), 1, 1) = d(l(x, 1), 1, 1)

= l(u(l(d(x, 1, 1), 1), l(x, d(1, 1, 1))))
= l(u(l(d(x, 1, 1)), l(x)))
= l(u(l(x))) (since d(x, 1, 1) ≤ x)
= l(x).

On the other hand,
d(l(x), 1, 1) = d(l(x, x), 1, 1)

= l(u(l(d(x, 1, 1), x), l(x, d(x, 1, 1))))
= l(u(l(d(x, 1, 1)), l(d(x, 1, 1))))
= l(u(l(d(x, 1, 1))))
= l(d(x, 1, 1)).

By comparing the above two expressions, we infer that l(d(x, 1, 1)) = l(x). Hence,
d(x, 1, 1) = x for all x ∈ P. This proves the theorem completely. □

Corollary 2.2. Let P be a poset with a greatest element 1 and d be a permuting
tri-derivation on P with trace ϕ. Then ϕ(1) = 1 if and only if ϕ = idP (identity map
on P ).

Proof. Assume that ϕ(1) = d(1, 1, 1) = 1. Now we prove that x = ϕ(x) = d(x, x, x)
for all x ∈ P. Let x ∈ P. Then, we have

d(l(x), x, x) = d(l(x, 1), x, x)
= l(u(l(d(x, x, x), 1), l(x, d(1, x, x)))
= l(u(l(d(x, x, x)), l(d(1, x, x))
= l(u(l(d(1, x, x))) (since d(x, x, x) ≤ d(1, x, x))
= l(d(1, x, x)).
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By another way, observe that
d(l(x), x, x) = d(l(x, x), x, x)

= l(u(l(d(x, x, x), x), l(x, d(x, x, x)))
= l(u(l(d(x, x, x))), l(d(x, x, x)))
= l(u(l(d(x, x, x))))
= l(d(x, x, x).

On comparing the above two expressions, we get l(d(x, x, x)) = l(d(1, x, x)) for all
x ∈ P. Hence d(x, x, x) = d(1, x, x) for all x ∈ P . Again

d(l(x), x, 1) = d(l(x, 1), x, 1)
= l(u(l(d(x, x, 1), 1), l(x, d(1, x, 1)))
= l(u(l(d(x, x, 1)), l(d(1, x, 1))
= l(u(l(d(1, x, 1))) (since d(x, x, 1) ≤ d(1, x, 1))
= l(d(1, x, 1)).

Similarly we observe that
d(l(x), x, 1) = d(l(x, x), x, 1)

= l(u(l(d(x, x, 1), x), l(x, d(x, x, 1)))
= l(u(l(d(x, x, 1))), l(d(x, x, 1)))
= l(u(l(d(x, x, 1))))
= l(d(x, x, 1).

From the above two expressions, we get l(d(1, x, 1)) = l(d(x, x, 1)) for all x ∈ P.
So d(1, x, 1) = d(x, x, 1) for all x ∈ P . Since d is permuting map then d(1, x, 1) =
d(x, 1, 1) = d(1, x, x) = d(x, x, 1) for all x ∈ P. Hence, ϕ(x) = d(x, x, x) = d(x, 1, 1)
for all x ∈ P. Applications of Theorem 2.3 gives ϕ(x) = x for all x ∈ P , i.e., ϕ = idP .
The converse part is obvious. □

Theorem 2.4. Let P be a poset and d : P × P × P → P be a permuting map. Then,
d is a permuting tri-derivation on P if and only if

(1) d(l(x, y), z, w)) = l(d(x, z, w), y)) = l(x, d(y, z, w)) for all x, y, z, w ∈ P ;
(2) l(d(u(x, y), z, w))) = l(u(d(x, z, w), d(y, z, w))) for all x, y, z, w ∈ P .

Proof. Essentially ought to appear that the condition (1) in Definition 2.1 is identical
to the one (1) in this hypothesis. First, we suppose that the condition in this hypothesis
holds. Then

d(l(x, y), z, w) = l(d(x, z, w), y)
= l(u(l(d(x, z, w), y)))
= l(u(l(d(x, z, w), y), l(x, d(y, z, w)))),
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for all x, y, z, w ∈ P . Secondly, suppose that d is a permuting tri-derivation on P.
Then

l(d(x, y, z), w) = l(u(l(d(x, y, z), w)))
⊆ l(u(l(d(x, y, z), w), l(x, d(y, z, w))))
= d(l(x, w), y, z)),

for all x, y, z, w ∈ P . On the other hand, suppose that v ∈ d(l(x, y), z, w)), then there
exists t ∈ l(x, y) satisfying the relation d(t, z, w) = v. By using Proposition 2.1 (1) and
(3), it is easy to see that d(t, z, w) ≤ d(x, z, w), d(t, z, w) ≤ d(y, z, w) ≤ y. This shows
that v = d(t, z, w) ∈ l(d(x, z, w), y). Thus d(l(x, y), z, w)) ⊆ l(d(x, z, w), y). Hence,

d(l(x, y), z, w)) = l(d(x, z, w), y), for all x, y, z, w ∈ P.

Similarly, the case d(l(x, y), z, w)) = l(x, d(y, z, w)) for all x, y, z, w ∈ P . This proves
the theorem. □

Let P be a poset and d be a permuting tri-derivation on P with trace ϕ. Put
Fixϕ(P ) = {x ∈ P : ϕ(x) = x}. If P has a least element 0, then 0 ∈ Fixϕ(P ). In view
of Proposition 2.1, it is easy to get Fixϕ(P ) ̸= ∅.

Proposition 2.2. Let d, t be two permuting tri-derivations on P with traces ϕ1, ϕ2,
respectively. Then ϕ1 = ϕ2 if and only if Fixϕ1(P ) = Fixϕ2(P ).

Proof. It is clear that if ϕ1 = ϕ2, then Fixϕ1(P ) = Fixϕ2(P ). Conversely, assume
that Fixϕ1(P ) = Fixϕ2(P ), and x ∈ P. Then by Proposition 2.1 (9), obtain ϕ1(x) ∈
Fixϕ1(P ) = Fixϕ2(P ). This implies that ϕ2(ϕ1(x)) = ϕ1(x). By a similar way we get
ϕ1(ϕ2(x)) = ϕ2(x) for all x ∈ P . Application of Proposition 2.1 (6), (8) yields that
ϕ1(x) ≤ ϕ2(x) and ϕ2(x) ≤ ϕ1(x) for all x ∈ P. Consequently, ϕ1 = ϕ2. □

Proposition 2.3. Let P be a poset with a least element 0 and d be a permuting
tri-derivation on P with trace ϕ. Then the followings hold.

(1) Fixϕ(P ) ̸= ∅.
(2) If x ∈ Fixϕ(P ), and y ≤ x then y ∈ Fixϕ(P ).
(3) If P is directed, then, for any x, y ∈ Fixϕ(P ), there exists z ∈ Fixϕ(P )

satisfying x ≤ z, y ≤ z.

Proof. (1) Since ϕ(0) = d(0, 0, 0) = 0, then 0 ∈ Fixϕ(P ). Thus, Fixϕ(P ) ̸= ∅.
(2) Assume that x ∈ Fixϕ(P ), and y ≤ x then ϕ(x) = d(x, x, x) = x. Then using

Proposition 2.1 (6) implies that ϕ(y) ≤ y. Now prove that y ≤ ϕ(y). Using Theorem
2.4 (1), to get d(l(y), x, x) = d(l(x, y), x, x) = l(d(x, x, x), y) = l(x, y) = l(y). Since
y ∈ l(y), so y ∈ d(l(y), x, x) and this leads to y ≤ d(y, x, x). Hence d(y, x, x) = y.
Again by using Theorem 2.4 (1) get d(l(y), y, y) = d(l(x, y), y, y) = l(d(x, y, y), y) =
l(d(x, y, y))). Application of Lemma 2.2 (1) yields that ϕ(y) = d(x, y, y). Thus, using
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Theorem 2.4 (2) implies that
l(d(u(y), y, x)) = l(d(u(y, y), y, x))

= l(u(d(y, y, x), d(y, y, x)))
= l(u(d(y, y, x))).

Since d(y, y, x) = d(x, y, y), d(y, x, x) = d(x, y, x) ∈ l(d(u(y), y, x)), and this leads
to d(y, x, x) ∈ l(u(d(x, y, y))). Thus, y = d(y, x, x) ≤ d(x, y, y) = ϕ(y). Hence, y ∈
Fixϕ(P ).

(3) Assume that P is directed. Then for any x, y ∈ P, there exists v ∈ P such
that x ≤ v and y ≤ v. Since x, y ∈ Fixϕ(P ), then ϕ(x) = x and ϕ(y) = y. Since
ϕ(x) = x ≤ ϕ(v) and ϕ(y) = y ≤ ϕ(v). Put z = ϕ(v), hence by Proposition 2.1 (7) we
get z ∈ Fixϕ(P ). □

Corollary 2.3. Let P be a directed poset with the least element 0. Then Fixϕ(P ) is
an ideal of P .

3. Structural Properties of Posets Including Permuting
Tri-Derivations

In this section, P is a poset with the least element 0.

Theorem 3.1. Let P be a poset with the least element 0 and d be a permuting tri-
derivation on P with trace ϕ. Then ker ϕ = {x ∈ P : ϕ(x) = 0} is a nonempty lower
set of P .

Proof. In view of Proposition 2.1, ϕ(0) = d(0, 0, 0) = 0. Thus, 0 ∈ ker ϕ, and hence
ker ϕ ̸= ∅. Suppose that x ∈ ker ϕ and y ∈ P such that y ≤ x. Then ϕ(x) = 0 and
y ≤ x. Using Proposition 2.1 (8) to get ϕ(y) ≤ ϕ(x) = 0. Thus, ϕ(y) = 0 for all y ∈ P.
This shows that y ∈ ker ϕ. Hence, ker ϕ = {x ∈ P : ϕ(x) = 0} is a nonempty lower set
of P . □

Proposition 3.1. Let P be a poset with the least element 0. Next, let d be a permuting
tri-derivation on P with trace ϕ and I be an ideal of P . Then, ϕ−1(I) is an ideal of
P such that ker ϕ ⊆ ϕ−1(I).

Proof. Since ϕ(0) = 0, 0 ∈ ϕ−1(I). Then, ϕ−1(I) ̸= ∅. Suppose x ∈ ϕ−1(I) and y ≤ x.
Then ϕ(x) ∈ I. Thus, using Proposition 2.1 (8), to obtain ϕ(y) ≤ ϕ(x) ∈ I. Since I is
an ideal, hence ϕ(y) ∈ I, and this leads to y ∈ ϕ−1(I). Hence, ϕ−1(I) is an ideal of P.
On the other hand, note that ker ϕ = ϕ−1({0}) ⊆ ϕ−1(I). □

Proposition 3.2. Let P be a poset and d be a permuting tri-derivation on P with
trace ϕ. If I, J are two ideals of P such that I ⊆ J, then ϕ(I) ⊆ ϕ(J).

Proof. Assume that x ∈ ϕ(I), then there exists y ∈ I ⊆ J such that x = ϕ(y). Hence,
x ∈ ϕ(J). This implies that ϕ(I) ⊆ ϕ(J). □
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Theorem 3.2. Let P be a poset and d1, d2 be two permuting tri-derivations on P
with traces ϕ1, ϕ2, respectively. Then ϕ1(x) ≤ ϕ2(x) for all x ∈ P if and only if
ϕ2(ϕ1(x)) = ϕ1(x) for all x ∈ P.

Proof. Let d1, d2 be two permuting tri-derivations on P, with traces ϕ1, ϕ2, respectively,
such that ϕ1 ≤ ϕ2. Then, for any x ∈ P, ϕ1(x) ∈ Fixϕ1(P ), i.e., ϕ1(x) = ϕ1(ϕ1(x)) ≤
ϕ2(ϕ1(x)). Proposition 2.1 (6) gives that ϕ2(ϕ1(x)) ≤ ϕ1(x). Thus, ϕ2(ϕ1(x)) = ϕ1(x)
for all x ∈ P. This shows that ϕ2(ϕ1(x)) = ϕ1(x) for all x ∈ P. On the other hand
we find that ϕ1(x) = ϕ2(ϕ1(x)) ≤ ϕ2(x), for any x ∈ P, from Proposition 2.1 (6),
(8). This implies that ϕ1(x) ≤ ϕ2(x) for all x ∈ P. This completes the proof of the
theorem. □
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