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INVESTIGATIONS ON A RIEMANNIAN MANIFOLD WITH A
SEMI-SYMMETRIC NON-METRIC CONNECTION AND

GRADIENT SOLITONS

KRISHNENDU DE1, UDAY CHAND DE2, AND AYDIN GEZER3

Abstract. This article carries out the investigation of a three-dimensional Rie-
mannian manifold N3 endowed with a semi-symmetric type non-metric connection.
Firstly, we construct a non-trivial example to prove the existence of a semi-symmetric
type non-metric connection on N3. It is established that a N3 with the semi-
symmetric type non-metric connection, whose metric is a gradient Ricci soliton, is
a manifold of constant sectional curvature with respect to the semi-symmetric type
non-metric connection. Moreover, we prove that if the Riemannian metric of N3

with the semi-symmetric type non-metric connection is a gradient Yamabe soliton,
then either N3 is a manifold of constant scalar curvature or the gradient Yamabe
soliton is trivial with respect to the semi-symmetric type non-metric connection. We
also characterize the manifold N3 with a semi-symmetric type non-metric connec-
tion whose metrics are Einstein solitons and m-quasi Einstein solitons of gradient
type, respectively.

1. Introduction

In this paper, on a Riemannian manifold N3, we carry out an investigation of gra-
dient solitons with a semi-symmetric type non-metric connection (briefly, SSNMC).
Many years ago, on a differentiable manifold, Friedman and Schouten [11] presented
the concept of semi-symmetric linear connection. After that in 1932, on a Riemannian
manifold, Hayden [15] introduced the notion of metric connection with torsion. In
1970, a systematic investigation of semi-symmetric metric connection which plays a
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significant role in the study of Riemannian manifolds, was conducted by Yano [23].
In this connection, we may mention the work of Zengin et al. [24, 25].

On N3, a linear connection ∇̂ is named semi-symmetric if T̂ , the torsion tensor
defined by
(1.1) T̂ (U, V ) = ∇̂UV − ∇̂VU − [U, V ]
obeys
(1.2) T̂ (U, V ) = ψ(V )U − ψ(U)V,
where ψ is a 1-form defined by ψ(U) = g(U, ξ), for a fixed vector field ξ (the associated
vector field of ∇̂). If in the right side of the equation (1.2) we substitute the inde-
pendent vector fields U and V , respectively, by ϕU and ϕV , where ϕ is a (1, 1)-tensor
field [12], then the connection ∇̂ transforms into a quarter-symmetric connection.

Again, if a semi-symmetric connection ∇̂ on N3 obeys
(1.3) (∇̂Ug)(V, Y ) = 0,
then ∇̂ is called metric [23]. If ∇̂g ≠ 0, then it is called non-metric [15]. Here, we
choose the SSNMC, that is, ∇̂g ̸= 0 and the connection ∇̂ obeys the equation (1.2).
The concept of the SSNMC on a Riemannian manifold was investigated in [1]. After
that, several researchers investigated the properties of SSNMC on manifolds with
different structures (see [6, 10,18,19]).

Hamilton [14] introduced the concept of Ricci flow as a solution to the challenge of
obtaining a canonical metric on a smooth manifold. Ricci flow occurs when the metric
of a Riemannian manifold N3 is fulfilled by the evolution equation ∂

∂t
gij(t) = −2Sij,

where Sij and gij are the components of the Ricci tensor and the metric tensor,
respectively. Ricci solitons were created via self-similar solutions to the Ricci flow.

A metric of N3 is named a Ricci soliton [13] if it fulfills
(1.4) LWg + 2λg + 2Ŝ = 0,
for some λ ∈ R, the set of real numbers. Here, L being the Lie derivative operator and
Ŝ is the Ricci tensor with respect to the non-metric connection ∇̂. W is a complete
vector field known as a potential vector field. The Ricci soliton is considered to be
shrinking, expanding or steady depending on whether λ is negative, positive, or zero.
If W is Killing or zero, the Ricci soliton is trivial and N3 is Einstein. Also, if W = Df
for some smooth function f , then equation (1.4) turns into
(1.5) ∇̂2 f + Ŝ + λg = 0,
where ∇̂2 and D indicate the Hessian and the gradient operator of g, respectively.
The metric obeying the equation (1.5) is called a gradient Ricci soliton. Here, f is
said to be the potential function of the gradient Ricci soliton.

On a complete Riemannian manifoldN3, Hamilton [14] proposed the idea of Yamabe
flow, which was inspired by Yamabe’s conjecture (“metric of a complete Riemannian
manifold is conformally connected to a metric with constant scalar curvature”). A



RIEMANNIAN MANIFOLD 389

Riemannian manifold N3 equipped with a Riemannian metric g is called a Yamabe
flow if it obeys:

(1.6) ∂

∂t
g(t) + rg(t) = 0, g0 = g(t),

where t indicates the time and r being the scalar curvature of N3. A Riemannian
manifold N3 equipped with a Riemannian metric g is named a Yamabe soliton if it
fulfills
(1.7) LWg − 2(r̂ − λ)g = 0,
for real constant λ : M → R and r̂ is the scalar curvature with respect to the non-
metric connection ∇̂. Here, W is called the potential vector field. In N3, with the
condition W = Df , the Yamabe soliton reduces to the gradient Yamabe soliton. Thus,
(1.7) takes the form
(1.8) ∇̂2f − (r̂ − λ)g = 0.
If f is constant (or, W is Killing) on M , then the soliton becomes trivial. The 3-
Kenmotsu manifolds and almost co-Kähler manifolds with Yamabe solitons have been
characterized by Wang [21] and Suh and De [20], respectively. Chen and Deshmukh [5,
9] studied the Yamabe solitons on Riemannian manifolds. Some interesting outcomes
on this solitons have been investigated in [2, 3, 7, 8, 17] and also by others.

The notion of gradient Einstein soliton was presented in [4] and obeys

(1.9) Ŝ − 1
2 r̂g + ∇̂2f + λg = 0,

where λ ∈ R is a constant and f indicates a smooth function.
A Riemannian manifold N3 endowed with the Riemannian metric g is named a

gradient m-quasi Einstein metric [4] if there exists a constant λ, a smooth function
f : N3 → R and obeys

(1.10) Ŝ − λg + ∇̂2 f − 1
m
df ⊗ df = 0,

where ⊗ indicate the tensor product and m is an integer. In this case f being the
m-quasi Einstein potential function [4]. Here, the gradient m-quasi Einstein soliton
is expanding for λ > 0, steady for λ = 0 and shrinking when λ < 0. If m = ∞, the
foregoing equation represents a gradient Ricci soliton and the metric represents almost
gradient Ricci soliton if it obeys the condition m = ∞ and λ is a smooth function.
Few characterizations of the above metrics were characterized by He et al. [16].

The foregoing investigations motivate us to study the Riemannian manifold N3

endowed with a SSNMC.
The content of the paper is laid out as: In Section 2, we produce the preliminary

ideas of SSNMC. The existence of a SSNMC on a Riemannian manifold are
established in Section 3. The gradient Ricci soliton on N3 equipped with a SSNMC
is investigated in Section 4. Section 5 concerns with gradient Yamabe soliton on N3

with a SSNMC. We study the properties of N3 with a SSNMC whose metrics are
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gradient Einstein solitons and gradient m-quasi Einstein solitons, in Section 6 and
Section 7, respectively.

2. Semi-Symmetric Non-Metric Connection

A linear connection ∇̂ on N , defined by
(2.1) ∇̂UV = ∇UV + ψ(V )U,
∇ being the Levi-Civita connection, is a SSNMC. It also obeys
(2.2) (∇̂Ug)(V, Y ) = −ψ(V )g(U, Y ) − ψ(Y )g(U, V ).
Then R̂, the curvature tensor with respect to the SSNMC, ∇̂, and R, the Riemannian
curvature tensor are related by [1]
(2.3) R̂(U, V )Y = R(U, V )Y − α∗(V, Y )U + α∗(U, Y )V,
for all U, V, Y on N3, where α∗ is a (0, 2)-tensor field defined by
(2.4) α∗(U, V ) = (∇Uψ)(V ) − ψ(U)ψ(V ).
Throughout this article, we choose that the vector field ξ is a unit parallel vector field
with respect to the Levi-Civita connection ∇. Then ∇Uξ = 0, which immediately
implies
(2.5) R(U, V )ξ = 0
and
(2.6) S(U, ξ) = 0.
Also, using ∇Uξ = 0, we obtain
(2.7) (∇Uψ)V = 0.
Hence, by the preceding equation, we get from (2.3)
(2.8) R̂(U, V )Y = R(U, V )Y + ψ(Y )[ψ(V )U − ψ(U)V ].
From the foregoing equation, we can easily have
(2.9) Ŝ(U, V ) = S(U, V ) + 2ψ(U)ψ(V ).
Contracting the above equation, we lead
(2.10) r̂ = r − 2,
since ψ(ξ) = g(ξ, ξ) = 1. Making use of (2.5), we infer from (2.8)
(2.11) R̂(U, V )ξ = ψ(V )U − ψ(U)V.
Therefore, we obtain the subsequent relations

ψ(R̂(U, V )Y ) =0,(2.12)
Ŝ(U, ξ) =2ψ(U), Q̂ξ = 2ξ.(2.13)

We first establish the subsequent lemma.
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Lemma 2.1. Let N3 be a Riemannian manifold with a SSNMC, ∇̂. Then we have

(2.14) ξr̂ = 0.

Proof. In N3, the Riemannian curvature tensor is expressed by

R(U, V )Y =g(V, Y )QU − g(U, Y )QV + S(V, Y )U − S(U, Y )V(2.15)

− r

2[g(V, Y )U − g(U, Y )V ].

Making use of (2.8) and (2.9), we acquire

R̂(U, V )Y − ψ(Y )[ψ(V )U − ψ(U)V ](2.16)
=g(V, Y )[Q̂U − 2ξψ(U)] − g(U, Y )[Q̂V − 2ξψ(V )] + [Ŝ(V, Y ) − 2ψ(V )ψ(Y )]U

− [Ŝ(U, Y ) − 2ψ(U)ψ(Y )]V − r

2[g(V, Y )U − g(U, Y )V ].

Putting V = Y = ξ, the foregoing equation yields

(2.17) Q̂U =
(
r̂

2 + 1
)
U −

(
r̂

2 − 1
)
ψ(U)ξ.

Taking covariant derivative along V , we write

(2.18) (∇V Q̂)U = (V r̂)
2 [U − ψ(U)ξ].

Contracting the foregoing equation we acquire the desired result. □

The projective curvature tensor P̂ of N3 with respect to ∇̂ is defined by

(2.19) P̂ (U, V )Y = R̂(U, V )Y − 1
2[Ŝ(V, Y )U − Ŝ(U, Y )V ].

Making use of (2.8) and (2.9), (2.19) reduces to

(2.20) P̂ (U, V )Y = P (U, V )Y,

where P represents the projective curvature tensor with respect to the Levi-Civita
connection ∇ defined by

(2.21) P (U, V )Y = R(U, V )Y − 1
2[S(V, Y )U − S(U, Y )V ].

Theorem 2.1. If N3 is endowed with a SSNMC ∇̂, then the projective curvature
tensor with respect to ∇̂ and ∇, respectively, coincide on N3.

In differential geometry, the investigation of conformal curvature tensor performs
a significant role. Also, it has various applications in applied physics and the other
branches of modern sciences. Motivated by the above facts we investigate the proper-
ties of the conformal curvature tensor C. With respect to ∇̂, the conformal curvature
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tensor Ĉ is defined by

Ĉ(U, V )Y =R̂(U, V )Y − [Ŝ(V, Y )U − Ŝ(U, Y )V + g(V, Y )Q̂U

− g(U, Y )Q̂V ] + r̂

2[g(V, Y )U − g(U, Y )V ],(2.22)

for all U , V and Y on N3 [22]. Utilizing (2.8) and (2.9) in (2.22), we obtain

Ĉ(U, V )Y =C(U, V )Y − ψ̂(V )ψ̂(Y )U + ψ̂(U)ψ̂(Y )V
+ 2ξg(V, Y )ψ̂(U) − 2ξg(U, Y )ψ̂(V ) + g(V, Y )U − g(U, Y )V,(2.23)

where C represents the conformal curvature tensor with respect to the Levi-Civita
connection ∇ defined by

C(U, V )Y =R(U, V )Y − [S(V, Y )U − S(U, Y )V + g(V, Y )QU − g(U, Y )QV ]

+ r

2[g(V, Y )U − g(U, Y )V ].(2.24)

Putting Y = ξ in (2.23), we get

(2.25) Ĉ(U, V )ξ = C(U, V )ξ.

Hence, we have the subsequent theorem.

Theorem 2.2. If N3 is equipped with a SSNMC ∇̂, then the the conformal curvature
tensor with respect to ∇̂ and ∇, satisfy the relation (2.25).

3. Existence of a Semi-Symmetric Type Non-Metric Connection

Here we construct a non-trivial example of semi-symmetric type non-metric con-
nection on a Riemannian manifold.

Example 3.1. Let us consider a three-dimensional differentiable manifold N3 =
{(u, v, w) ∈ R3, w ̸= 0}, where (u, v, w) indicates the standard coordinate of R3.
Let us choose

(3.1) k1 = ew ∂

∂u
, k2 = ew ∂

∂v
, k3 = ∂

∂w
.

At each point of N3 the preceding vector fields are linearly independent. Here we
define the Riemannian metric g as

g(k1, k3) =g(k1, k2) = g(k2, k3) = 0,
g(k1, k1) =g(k2, k2) = g(k3, k3) = 1,
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ψ indicates a 1-form defined by ψ(U) = g(U, ξ), where ξ = k3. Hence, (N3, g) is a
three-dimensional Riemannian manifold. The Lie brackets are calculated as

[k1, k3] = k1k3 − k3k1

= ew ∂

∂u

(
∂

∂w

)
−
(
∂

∂w

)(
ew ∂

∂u

)

= ew ∂2

∂u∂w
− ew ∂2

∂w∂u
− ew ∂

∂u
= −k1.(3.2)

Similarly,
(3.3) [k1, k2] = 0 and [k2, k3] = −k2.

∇, the Levi-Civita connection with respect to g, is obtained by
2g(∇UV, Y ) =Ug(V, Y ) + V g(Y, U) − Y g(U, V )

− g(U, [V, Y ]) − g(V, [U, Y ]) + g(Y, [U, V ]),(3.4)
which is termed as Koszul’s formula.

Making use of (3.4) we have
2g(∇k1k3, k1) = −2g(k1, k1).(3.5)

Again by (3.4)
(3.6) 2g(∇k1k3, k2) = 0 = −2g(k1, k2)
and
(3.7) 2g(∇k1k3, k3) = 0 = −2g(k1, k3).

From (3.5), (3.6) and (3.7) we get
2g(∇k1k3, U) = −2g(k1, U),

for all U ∈ X(N).
Thus, ∇k1k3 = −k1. Therefore, (3.4) further gives

∇k1k2 = 0, ∇k1k1 = k3,

∇k2k3 = −k2, ∇k2k2 = k3, ∇k2k1 = 0,

(3.8) ∇k3k3 = 0, ∇k3k2 = 0, ∇k3k1 = 0.
We know that
(3.9) R(U, V )Y = ∇U∇V Y − ∇V ∇UY − ∇[U,V ]Y,

where R is the Riemann curvature tensor. Utilizing the foregoing results and with
the help of (3.9), we acquire

R(k1, k2)k3 = 0, R(k1, k3)k3 = −k1,

R(k1, k2)k2 = −k1, R(k2, k3)k2 = k3, R(k1, k3)k2 = 0,
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R(k1, k2)k1 = k2, R(k2, k3)k1 = 0, R(k1, k3)k1 = k3.

Using the above expressions, the Ricci tensor can be obtained as
S(k1, k1) = g(R(k1, k2)k2, k1) + g(R(k1, k3)k3, k1) = −2.(3.10)

Similarly, we get
(3.11) S(k2, k2) = S(k3, k3) = −2.
Therefore, the scalar curvature r is calculated as
(3.12) r = S(k1, k1) + S(k2, k2) + S(k3, k3) = −6.
Making use of the above expressions and using the equation (2.1), we have

∇̂k1k3 = 0, ∇̂k1k2 = 0, ∇̂k1k1 = k3,

∇̂k2k3 = 0, ∇̂k2k2 = k3, ∇̂k2k1 = 0,

(3.13) ∇̂k3k3 = k3, ∇̂k3k2 = 0, ∇̂k3k1 = 0.

From the last equation and using (1.2), we obtain T̂ (k1, k3) = k1 and ψ(k3)k1 −
ψ(k1)k3 = k1. Similarly, other components can be verified. Therefore, the linear
connection ∇̂ defined on (N3, g) as (2.1), is a semi-symmetric connection. Also, we
have
(3.14) (∇̂k1g)(k1, k3) = −1 ̸= 0.

Thus, the linear connection ∇̂ is non-metric on (N3, g).

4. Gradient Ricci Solitons on N3 with a SSNMC

This section carries out the study of gradient Ricci solitons in N3 with a SSNMC.
Let us choose that the soliton vector W of the Ricci soliton (g,W, λ) in N3 with a

SSNMC is a gradient of some smooth function f . Then using (1.5), we infer

(4.1) ∇̂UDf = −Q̂U − λU,

for all U ∈ X(N). Making use of the above equation, the subsequent relation

(4.2) R̂(U, V )Df = ∇̂U∇̂VDf − ∇̂V ∇̂UDf − ∇̂[U,V ]Df

yields
(4.3) R̂(U, V )Df = (∇̂UQ̂)(V ) − (∇̂V Q̂)(U).
The contraction of the preceding equation gives

(4.4) Ŝ(U,Df) = −1
2(Ur̂).

Again, from (2.17) we obtain

(4.5) Ŝ(U,Df) =
(
r̂

2 + 1
)

(Uf) −
(
r̂

2 − 1
)
ψ(U)(ξf).
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Comparing the equations (4.4) and (4.5)

(4.6) − 1
2(Ur̂) =

(
r̂

2 + 1
)

(Uf) −
(
r̂

2 − 1
)
ψ(U)(ξf).

Now, putting U = ξ in (4.6), we find
(4.7) ξf = 0,
since ξr̂ = 0.

Equation (4.3) gives
(4.8) g(R̂(U, V )ξ,Df) = 0.
Again, from equation (2.11) we infer that
(4.9) g(R̂(U, V )ξ,Df) = ψ(V )(Uf) − ψ(U)(V f).
Comparing last two equations and putting V = ξ and using ξf = 0, we lead
(4.10) Uf = 0,
which shows that f = constant. Making use of the fact that f is constant, equation
(4.1) infers that the manifold is an Einstein manifold. Hence, the Riemannian manifold
N3 is of constant sectional curvature.

Theorem 4.1. Let the soliton vector field W of the Ricci soliton (g,W, λ) in N3 with
a SSNMC be a gradient Ricci soliton. Then N3 is a manifold of constant sectional
curvature with respect to the SSNMC.

5. Gradient Yamabe Solitons on N3 with a SSNMC

From equation (1.8), we find
(5.1) ∇̂VDf = (r̂ − λ)V.
Differentiating (5.1) covariantly along the vector field U , we obtain
(5.2) ∇̂U∇̂VDf = (Ur̂)V + (r̂ − λ)∇̂UV.

Interchanging U and V in the above equation and then utilizing the preceding equation
in R̂(U, V )Df = ∇̂U∇̂VDf − ∇̂V ∇̂UDf − ∇̂[U,V ]Df , we lead

(5.3) R̂(U, V )Df = (Ur̂)V − (V r̂)U.
Contracting the previous equation over U , we get
(5.4) Ŝ(V,Df) = −2(V r̂).
Combining the last equation and (4.5), we infer

(5.5) − 2(Ur̂) =
(
r̂

2 + 1
)

(Uf) −
(
r̂

2 − 1
)
ψ(U)(ξf).

Putting U = ξ in the foregoing equation, we have
(5.6) ξf = 0,
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since ξr̂ = 0. Thus, from (5.5), we obtain

(5.7) − 2(Ur̂) =
(
r̂

2 + 1
)

(Uf).

Now, from equation (5.3) we find that

(5.8) g(R̂(U, V )ξ,Df) = ψ(U)(V r̂) − ψ(V )(Ur̂).

Combining equation (4.9) and (5.8), we have

(5.9) ψ(V )(Uf) − ψ(U)(V f) = ψ(U)(V r̂) − ψ(V )(Ur̂).

Setting V = ξ in the previous equation gives

(5.10) (Ur̂) = −(Uf).

Utilizing (5.10) in (5.7) we infer that

(5.11)
(
r̂

2 − 1
)

(Uf) = 0,

which entails that either r̂ = 2 or r̂ ̸= 2.
If r̂ = 2, then from (2.10) we infer that r = 4. Therefore, N3 is of constant scalar

curvature.
Next, we suppose that r̂ ≠ 2, that is, (Uf) = 0, which implies f is a constant.

Therefore, the gradient Yamabe soliton is trivial.
Hence, we state the result.

Theorem 5.1. Let the Riemannian metric of N3 with a SSNMC be the gradient
Yamabe soliton. Then, either N3 is a manifold of constant scalar curvature or the
gradient Yamabe soliton is trivial with respect to the SSNMC.

Also, if r̂ = 2, then using the equation (2.17) we acquires that the manifold is
an Einstein manifold. Hence, the Riemannian manifold N3 is of constant sectional
curvature.

Corollary 5.1. Let the Riemannian metric of N3 with a SSNMC be the gradient
Yamabe soliton. Then, either N3 is a manifold of constant sectional curvature or the
gradient Yamabe soliton is trivial with respect to the SSNMC.

6. Gradient Einstein Solitons on N3 with a SSNMC

Making use of (1.9), we have

(6.1) ∇̂VDf = −Q̂V + r̂

2V − λV.

Differentiating (6.1) covariantly along U , we find

(6.2) ∇̂U∇̂VDf = −∇̂UQ̂V + 1
2(Ur̂)V +

(
r̂

2 − λ
)

∇̂UV.
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Interchanging U and V and then making use of the above equation in R̂(U, V )Df =
∇̂U∇̂VDf − ∇̂V ∇̂UDf − ∇̂[U,V ]Df , we infer

R̂(U, V )Df = 1
2[(Ur̂)V − (V r̂)U ] − (∇̂UQ̂)(V ) + (∇̂V Q̂)(U).(6.3)

Contracting the foregoing equation over U , we obtain

(6.4) Ŝ(V,Df) = −1
2(V r̂).

Combining the last equation and (4.5), we get

(6.5) − 1
2(Ur̂) =

(
r̂

2 + 1
)

(Uf) −
(
r̂

2 − 1
)
ψ(U)(ξf).

Setting U = ξ in (6.5), we have
(6.6) (ξf) = 0,
since ξr̂ = 0. Thus, from (6.5), we acquire

(6.7) − 1
2(Ur̂) =

(
r̂

2 + 1
)

(Uf).

Now, from equation (6.3) we obtain that

(6.8) g(R̂(U, V )ξ,Df) = −1
2[ψ(U)(V r̂) − ψ(V )(Ur̂)].

Combining equation (4.9) and (6.8), we lead

(6.9) ψ(V )(Uf) − ψ(U)(V f) = −1
2[ψ(U)(V r̂) − ψ(V )(Ur̂)].

Putting V = ξ in the last equation yields

(6.10) (Uf) = −1
2(Ur̂).

Using (6.10) in (6.7) we find that

(6.11) r̂

2(Uf) = 0.

Hence, either r̂ = 0 or r̂ ̸= 0.
If r̂ = 0, then from (2.10) we acquire that r = 2. Therefore, N3 is of constant scalar

curvature.
Next, we suppose that r̂ ≠ 0, that is, (Uf) = 0, which implies f is a constant.

Then, equation (6.1) reveals that N3 is an Einstein manifold. Hence, N3 is of constant
sectional curvature, since the manifold is of dimension 3.

Thus, we state the subsequent.

Theorem 6.1. If the Riemannian metric of N3 with a SSNMC is a gradient Einstein
soliton, then N3 is either a manifold of constant scalar curvature or a manifold of
constant sectional curvature with respect to the SSNMC.
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7. Gradient m-Quasi Einstein Solitons on N3 with a SSNMC

Here, we investigate the m-quasi Einstein metric on N3 with a SSNMC. Initially,
we prove the following lemma.

Lemma 7.1. In N3, we have the following:

R̂(U, V )Df =(∇̂V Q̂)U − (∇̂UQ̂)V + λ

m
{(V f)U − (Uf)V }

+ 1
m

{(Uf)Q̂V − (V f)Q̂U},(7.1)

for all U, V ∈ X(M).

Proof. Let the Riemannian metric of N3 with a SSNMC be a m-quasi Einstein
metric. Therefore, the equation (1.10) can be represented as

(7.2) ∇̂UDf = −Q̂U + 1
m
g(U,Df)Df + λU.

Covariant derivative of (7.2) along V yields

∇̂V ∇̂UDf = − ∇̂V Q̂U + 1
m

∇̂V g(U,Df)Df + 1
m
g(U,Df)∇̂VDf + λ∇̂VU.(7.3)

Exchanging U and V in (7.3), we obtain

∇̂U∇̂VDf = −∇̂UQ̂V + 1
m

∇̂Ug(V,Df)Df + 1
m
g(V,Df)∇̂UDf + λ∇̂UV(7.4)

and

(7.5) ∇̂[U,V ]Df = −Q̂[U, V ] + 1
m
g([U, V ], Df)Df + λ[U, V ].

Utilizing (7.2)–(7.5) and the relation R̂(U, V )Df = ∇̂U∇̂VDf−∇̂V ∇̂UDf−∇̂[U,V ]Df ,
we have

R̂(U, V )Df =(∇̂V Q̂)U − (∇̂UQ̂)V + λ

m
{(V f)U − (Uf)V }

+ 1
m

{(Uf)Q̂V − (V f)Q̂U}. □

Now contracting the equation (7.1) over U , we obtain

(7.6) Ŝ(V,Df) = 1
2(V r̂) + 2λ

m
(V f) − 1

m

{(
r̂

2 + 3
)

(V f) +
(
r̂

2 − 1
)

(ξf)ψ(V )
}
.

Combining (7.6) and (4.5), we have
1
2(V r̂) + 2λ

m
(V f) − 1

m

{(
r̂

2 + 3
)

(V f) +
(
r̂

2 − 1
)

(ξf)ψ(V )
}

=
(
r̂

2 + 1
)

(V f) −
(
r̂

2 − 1
)
ψ(V )(ξf).(7.7)

Setting V = ξ in (7.7), we obtain
(7.8) (2m+ r̂ − 2λ+ 2)(ξf) = 0,
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since ξr̂ = 0.
Now, from equation (7.1) we have

(7.9) g(R̂(U, V )ξ,Df) =
(
λ

m
− 2
m

)
[ψ(V )(Uf) − ψ(U)(V f)].

Combining equations (4.9) and (7.9), we find that

(7.10) ψ(V )(Uf) − ψ(U)(V f) =
(
λ

m
− 2
m

)
[ψ(V )(Uf) − ψ(U)(V f)].

Putting V = ξ in the foregoing equation yields
(7.11) (λ−m− 2)(Uf) = 0,
where we have used ξf = 0.

Hence, either (λ−m− 2) = 0 or (λ−m− 2) ̸= 0.
If (λ−m− 2) = 0, then we get λ = m+ 2 = positive integer. Hence, the gradient

m-quasi Einstein soliton is expanding.
If we suppose that (λ−m− 2) ̸= 0, then (Uf) = 0, which implies f is a constant.

Then, equation (7.1) reveals that N3 is an Einstein manifold. Hence, N3 is of constant
sectional curvature, since the manifold is of dimension 3,.

Hence, we state the following.

Theorem 7.1. If the Riemannian metric of N3 with a SSNMC is a gradient m-quasi
Einstein soliton, then either the soliton is expanding or it is a manifold of constant
sectional curvature with respect to the SSNMC, provided (2m+ r̂ − 2λ+ 2) ̸= 0.
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