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NOTE ON HAMILTONIAN GRAPHS IN ABELIAN 2-GROUPS

KRISTIJAN TABAK1

Abstract. We analyze a graph G whose vertices are subgroups of Zk
2 isomorphic

to Z2 × Z2. Two vertices are joined if their respective subgroups have nontrivial
intersection. We prove that such a graph is 6(2k−2 − 1)-regular. If a graph is
regular, a classical theorem by Ore claims that a graph is Hamiltonian if the degree
of any vertex is at least one half of the number of vertices. Using Ore’s theorem, we
show that G is Hamiltonian for k ∈ {3, 4}. Ore’s theorem cannot be applied when
k ≥ 5. Nevertheless, we manage to construct a Hamiltonian cycle for k = 5. Our
construction uses orbits of one Z4

2 group under an action of an automorphism of
order 31. It is highly likely that this approach could be generalized for k > 5.

1. Introduction and notation

Many algebraic structures, including groups, have nice interpretations in graph
theory (see for example [1,3] and [4]). Readers can find more on groups and graphs in
[5]. If there is a cycle in a graph that visits every vertex, then the graph is Hamiltonian.
In this paper we are interested in Hamiltonian graphs defined on Abelian groups of
exponent 2. For some classical results on Hamiltonian graphs see [5]. The main
tool in our analysis will be the application of various group rings, for example see
[2]. An elementary Abelian group of order 2k is denoted by E2k . If x1, x2, . . . , xk are
generators, then we can write E2k = ⟨x1⟩ × ⟨x2⟩ × · · · × ⟨xk⟩. Additionally, x2

i = 1
for all i ∈ [k] = {1, 2, . . . , k}. With E2l [H] we denote a collection of all subgroups of
order 2l that are contained in H ≤ E2k .

We introduce a set E2s [T, H]−1 = {S | T ≤ S ≤ H, S ∼= E2s} of all E2s-subgroups
that contain T and that are also contained in H. One can see that if t ≤ s ≤ m,
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H ∼= E2m , and T ∼= E2t , then |E2s [T, H]−1| = |E2s−t [H/T ]| = |E2s−t [E2m−t ]| =
[

m−t
s−t

]
2
,

where H/T is a quotient group isomorphic to E2m−t and
[

a
b

]
2

is a Gaussian coefficient.
Let (E22 [E2k ],Ek) be a graph with vertices T ≤ E2k , where T ∼= E22 = Z2 × Z2.

Edges Ek are defined as follows:
{T1, T2} ∈ Ek ⇔ T1 ∩ T2 ∼= Z2.

This means that two E22 groups are joined if and only if they have a common in-
volution (nontrivial intersection). Our main goal is to see when such graphs are
Hamiltonian. We will show that Ore’s Theorem immediately yields that (E22 [E23 ],E3)
and (E22 [E24 ],E4) are Hamiltonian.

We will use deg(u) to denote the degree of a vertex.

Theorem 1.1 (Ore). Let G be a connected graph with n > 3 vertices. If deg(x) +
deg(y) > n for all non-adjacent vertices x and y, then G is Hamiltonian.

A graph G = (V, E) is a r-regular graph if deg(x) = r for all vertices x ∈ V . As an
immediate consequence of Theorem 1.1 we have the following.

Corollary 1.1. If G = (V, E) is r-regular graph and if deg(x) > 1
2 |V |, then G is

Hamiltonian.

2. Regularity

In this section we will prove that (E22 [E2k ],Ek) is a regular graph. This means that
we need to show that for any T ∈ E22 [E2k ] there is a constant number of S ∈ E22 [E2k ]
such that |T ∩ S| = 2.

From this point on, we will assume that k > 2. Furthermore, we will show that if
k ∈ {3, 4}, then a graph (E22 [E2k ],Ek) is Hamiltonian.

Theorem 2.1. A graph (E22 [E2k ],Ek) is 6(2k−2 − 1)-regular. The inequality
1
2 |E22 [E2k ]| − deg(V ) < 0

holds for all V ∈ E22 [E2k ] if any only if k < 5.

Proof. Let V be a vertex of (E22 [E2k ],Ek). Put V ∗ = V \ {1}. Let us denote with
n(V ) the collection of all vertices adjacent to V . If P ∈ n(V ), then P ∼= E22 and
P ∩ V = ⟨g⟩ for some g ∈ E∗

2k . Also, P ∈ E22 [⟨g⟩, E2k ]−1. Hence,

n(V ) =
 ⋃

g∈V ∗
E22 [⟨g⟩, E2k ]−1

 \ {V }.

On the other hand, we have
|E22 [⟨g⟩, E2k ]−1| = |E2[E2k/⟨g⟩]| = |E2[E2k−1 ]| = 2k−1 − 1.

If g, h ∈ V ∗ and g ̸= h, then
|E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1| = |E22 [E2k ] ∩ {V }| = 1.
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Also, for three mutually different g, h, k ∈ T ∗ we get
|E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1 ∩ E22 [⟨k⟩, E2k ]−1| = 1.

Using the inclusion-exclusion formula, the following holds

deg(V ) =
∑

g∈V ∗
|E22 [⟨g⟩, E2k ]−1| −

∑
g ̸=h, g,h∈V ∗

∣∣∣E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1
∣∣∣

+
∑

g ̸=h̸=k ̸=g, g,h,k∈V ∗

∣∣∣E22 [⟨g⟩, E2k ]−1 ∩ E22 [⟨h⟩, E2k ]−1 ∩ E22 [⟨k⟩, E2k ]−1
∣∣∣− 1

=
(

3
1

)
(2k−1 − 1) −

(
3
2

)
· 1 + 1 − 1

=6(2k−2 − 1).

Notice that |E22 [E2k ]| =
[

k
2

]
2

= 1
3(2k − 1)(2k−1 − 1). Put t = 2k−2. Therefore,

1
2 |E22 [E2k ]| − deg(V ) = 1

6(4t − 1)(2t − 1) − 6(t − 1) = 1
6(8t2 − 42t + 37).

For k = 3 and k = 4 we get 8t2 − 42t + 37 < 0. For k ≥ 5 we have 8t2 − 42t + 37 > 0.
This proves our claim. □

Now, using Corollary 1.1, we see that the following holds.

Corollary 2.1. Graphs (E22 [E23 ],E3) and (E22 [E24 ],E4) are Hamiltonian. Further-
more, necessary conditions for application of Ore’s theorem are not satisfied for k ≥ 5.

3. Hamiltonian Cycle in (E22 [E25 ],E5)

Let E25 = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ × ⟨d⟩ × ⟨e⟩ = ⟨a, b, c, d, e⟩, where a, b, c, d, e are generators
of E25 . Any automorphism α ∈ Aut(E25) is represented by its action on generators.
We can denote any α ∈ Aut(E25) by

α =
(

a b c d e
g1 g2 g3 g4 g5

)
,

for some gi ∈ E∗
25 . This means α(a) = g1, α(b) = g2 and so on. The order of an

automorphism o(α) is the smallest nonnegative integer n such that αn is an identity
map. If X ⊆ E25 and α ∈ Aut(E25), then with X⟨α⟩ we will denote one α-orbit of X.
If α is of order n, then an orbit X⟨α⟩ can be represented in a group ring Z[E25 ] like
this:

X⟨α⟩ = X + Xα + · · · + Xαn−1
.

The following lemma will be crucial for a construction of a Hamiltonian cycle in
(E22 [E25 ],E5).

Lemma 3.1. Let E25 = ⟨a, b, c, d, e⟩ and let α ∈ Aut(E25) be given by

α =
(

a b c d e
bc cd bcd de a

)
,
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then o(α) = 31 and H⟨α⟩ = E24 [E25 ], where H = ⟨a, b, c, d⟩. If T = ⟨a, b, c⟩ and
∆i = T ∩ T αi for i ∈ Z31, then

∆i =


⟨b, c⟩, if i = 1, 14,

⟨a, bc⟩, if i = 13, 30,

⟨ab, c⟩, if i = 17, 18,
∼= Z2, otherwise.

Proof. We can rewrite an automorphism α in a simplified form like this: α =
(bc, cd, bcd, de, a). For the purpose of finding αi we represent α in a matrix form
over Z2

α =


0 0 0 0 1
1 0 1 0 0
1 1 1 0 0
0 1 1 1 0
0 0 0 1 0

 .

Rows and columns are indexed by a, b, c, d, e. After calculating powers of α over
Z2, we get that α31 is an identity matrix. Furthermore, αi is not an identity
matrix for all i < 31. Therefore, o(α) = 31. For example, using the same ap-
proach, we get α13 = (de, abcde, bc, abde, d) and α14 = (ade, acde, b, abe, de). Hence,
T α13 = ⟨de, abcde, bc⟩ = ⟨de, abc, bc⟩ = ⟨de, a, bc⟩ and ∆13 = T ∩ T α13 = ⟨a, bc⟩.
Furthermore, T α14 = ⟨ade, acde, b⟩ = ⟨ade, c, b⟩ and ∆14 = ⟨b, c⟩. Also, α17 =
(ae, c, ab, acd, acde), α18 = (abc, bcd, bd, e, ae) and α30 = (e, bc, abc, ac, acd). For all
other cases ∆i is a group of order 2. In the Appendix, one can find all powers αi

together with the images T αi .
Assume that Hαi = H for some power i < 31. Then ∆i = T ∼= E23 . This is a

contradiction with |∆i| ≤ 4, hence Hαi ̸= H. Since the number of all E24 subgroups
of E25 is |E24 [E25 ]| =

[
5
4

]
2

= 25 − 1 = 31, this means that an α-orbit of H contains all
E24 subgroups of E25 . Therefore, H⟨α⟩ = E24 [E25 ]. □

Throughout the rest of the paper the subgroup ⟨a, b, c⟩ ≤ E25 = ⟨a, b, c, d, e⟩ shall
be denoted by T and α shall be the automorphism defined in the Lemma 3.1. We
are now ready to sketch the main idea for a construction of a Hamiltonian cycle in
(E22 [E25 ],E5). A main building block will be an α-orbit of T. There are 7 vertices
or subgroups of order 4 in T αi

, i ∈ Z31. We will show, in Theorem 3.4, that a
collection of all vertices from ⋃31

i=0 E22 [T αi ] is in fact the set of all vertices E22 [E25 ].
Also T ∩ T α ∼= E22 is a vertex. The same holds for all other T αi ∩ T αi+1

. As we will
see from Theorem 3.5, vertices T αi ∩ T αi+1 are all mutually different. As a final step,
we will introduce a recursive procedure that will enable us to choose vertices from
each E22 [T αi ] so that they all together form a Hamiltonian cycle.

Motivated by the previous lemma we introduce slightly different notation:

∆Ω1 =⟨b, c⟩, Ω1 = {1, 14},
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∆Ω2 =⟨a, bc⟩, Ω2 = {13, 30},

∆Ω3 =⟨ab, c⟩, Ω3 = {17, 18}.

Lemma 3.2. Groups ∆αk

Ωi
and ∆Ωi

are distinct for all i ∈ [3] and k ∈ [30].

Proof. Assume the opposite. Let i ∈ [3] and k ∈ [30] such that ∆αk

Ωi
= ∆Ωi

. Since
o(α) = 31 is a prime, then αk generate entire ⟨α⟩. Hence ⟨α⟩ = ⟨αk⟩. Let H =
⟨a, b, c, d⟩. Lemma 3.1 implies that H⟨αk⟩ = E24 [E25 ]. There is s ∈ Z31 such that
∆Ωi

≤ H(αk)s
. Since ∆αk

Ωi
= ∆Ωi

, then ∆Ωi
= ∆(αk)t

Ωi
≤ (H(αk)s)(αk)t = H(αk)s+t for all

t ∈ Z31. A mapping t 7→ s + t is one-to-one map on Z31. Hence, we can write in a
group ring Z[E24 [E25 ]] the following:

30∑
t=0

H(αk)s+t =
∑

t∈Z31

((H)αk)t = E24 [E25 ].

From ∆Ωi
≤ H(αk)s+t for all t ∈ Z31 it follows |E24 [∆Ωi

, E25 ]−1| ≥ 31. This is a
contradiction with

|E24 [∆Ωi
, E25 ]−1| = |E22 [E25/∆Ωi

]| = |E22 [E23 ]| =
[
3
2

]
2

= 23 − 1 = 7. □

Corollary 3.1. If ∆αk

Ωi
= ∆Ωj

, then αk is a unique element from ⟨α⟩.

Proof. Suppose that k1 and k2 are integers such that ∆αk1
Ωi

= ∆αk2
Ωi

= ∆Ωj
. It follows

that ∆αk1−k2
Ωi

= ∆Ωi
. By Lemma 3.2, a map αk1−k2 is an identity map. Thus k1 =

k2. □

Lemma 3.3. Subgroups ∆Ωi
, i ∈ [3], satisfy the following: ∆α30

Ω1 = ∆Ω2 , ∆α18
Ω2 =

∆Ω3 , ∆α14
Ω3 = ∆Ω1 .

Proof. From Lemma 3.1 we have ∆α30
Ω1 = (T ∩ T α)α30 = T α30 ∩ T = ∆Ω2 . Hence

∆α30
Ω1 = ∆Ω2 . Furthermore, ∆α17

Ω1 = (T ∩ T α14)α17 = T α17 ∩ T = ∆Ω3 . Now we have
∆α14

Ω3 = ∆Ω1 . Moreover ∆α13
Ω3 = ∆Ω2 and ∆α18

Ω2 = ∆Ω3 . This proves our claim. □

Theorem 3.1. For T and α the following holds∑
0≤i<j≤30

|E22 [T αi ] ∩ E22 [T αj ]| = 31 · 3.

Proof. Take some i and j such that T αi ∩ T αj ∼= E22 . Then

T αi ∩ T αj = (T ∩ T αj−i)αi = (∆j−i)αi = (∆i−j)αj ∼= E22 .

This means that ∆j−i = ∆i−j
∼= E22 . Thus, by Lemma 3.1, we get {i − j, j − i} ∈

{{1, 30}, {13, 18}, {14, 17}}. Since i ∈ Z31, each {i, j} contributes 31 to the sum∑
0≤i<j≤30 |E22 [T αi ] ∩ E22 [T αj ]|. Therefore, the final number is 31 · 3. This proves our

assertion. □
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Theorem 3.2. For T and α the following holds∑
0≤i<j<k≤30

|E22 [T αi ] ∩ E22 [T αj ] ∩ E22 [T αk ]| = 31.

Proof. Let A = T αi ∩ T αj ∩ T αk ∼= E22 for some 0 ≤ i < j < k ≤ 31. Then A =
(T αi ∩T αj )∩(T αi ∩T αk). This means A = (T ∩T αj−i)αi ∩(T ∩T αk−i)αi = (∆j−i∩∆k−i)αi

.
Hence ∆j−i∩∆k−i

∼= E22 . Since |∆t| ≤ 4 we get ∆j−i = ∆k−i
∼= E22 . Since j−i ̸= k−i,

we get {j − i, k − i} = Ωs for some s ∈ [3].
If s = 1, then {j − i, k − i} = {1, 14}. This implies that {i, j, k} can be represented

as {i, i + 1, i + 14} where i ∈ Z31.
The case s = 2 gives us {j − i, k − i} = {13, 30}. Hence, {i, j, k} can be represented

as {i, i + 13, i + 30} where i ∈ Z31. However, we get
{{i, i+13, i+30} | i ∈ Z31} = {{(i−1)+1, (i−1)+1+13, (i−1)+1+30} | i ∈ Z31},

and this set is equal to = {{j, j +1, j +14} | j ∈ Z31} where j = i−1 in Z31. Therefore,
the previous two cases are in fact the same.

If s = 3, then {j − i, k − i} = {17, 18}. Now we get {i, j, k} is of the form {i, i +
17, i + 18} where i ∈ Z31. Notice that

{{i, i + 17, i + 18} | i ∈ Z31} = {{(i + 17) − 17, i + 17, (i + 17) + 1} | i ∈ Z31}.

It follows
{{j − 17, j, j + 1} | j ∈ Z31} = {{j + 14, j, j + 1} | j ∈ Z31},

where j = i + 17 in Z31. Thus, all the three cases are the same and so we have one
representative.

This means that we have one representative of a triple {i, j, k} such that T αi ∩
T αj ∩ T αk ∼= E22 where i ∈ Z31. This proves the claim of the theorem. □

Theorem 3.3. For T and α the following holds∑
0≤i<j<k<s≤30

|E22 [T αi ] ∩ E22 [T αj ] ∩ E22 [T αk ] ∩ E22 [T αs ]| = 0.

Proof. Assume that A = T αi ∩T αj ∩T αk ∩T αs ∼= E22 for some 0 ≤ i < j < k < s ≤ 30.
It implies that

A =(T ∩ T αj−i)αi ∩ (T ∩ T αk−i)αi ∩ (T ∩ T αs−i)αi = (∆j−i ∩ ∆k−i ∩ ∆s−i)αi

.

This means that ∆j−i = ∆k−i = ∆s−i
∼= E22 . Since T αi

, T αj
, T αk

, T αs are mutually
different, we get |{j − i, k − i, s − i}| = 3. Also, ∆j−i = ∆k−i = ∆s−i

∼= E22 implies
{j − i, k − i, s − i} ⊆ Ωi for some i. That is a contradiction since |Ωi| = 2. □

The next result finally shows that orbit T ⟨α⟩ contains all E22 subgroups of E25 .

Theorem 3.4. For T and α the following holds
30⋃

i=0
E22 [T αi ] = E22 [E25 ].
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Proof. The total number of all E22 subgroups of E25 is |E22 [E25 ]| =
[

5
2

]
2

= 31 ·5. Using
the inclusion-exclusion formula and Theorems 3.1, 3.2 and 3.3 we get∣∣∣∣∣

30⋃
i=0

E22 [T αi ]
∣∣∣∣∣ =

30∑
i=0

∣∣∣E22 [T αi ]
∣∣∣− ∑

0≤i<j≤30

∣∣∣E22 [T αi ] ∩ E22 [T αj ]
∣∣∣

+
∑

0≤i<j<k≤30

∣∣∣E22 [T αi ] ∩ E22 [T αj ] ∩ E22 [T αk ]| + · · · +

=31 · 7 − 31 · 3 + 31 − 0 + 0 − · · ·
=31 · 5.

Therefore, every group from E22 [E25 ] is contained in ⋃30
i=0 E22 [T αi ]. □

Theorem 3.5. A graph (E22 [E25 ],E5) is Hamiltonian.

Proof. Since T ∼= E23 and AB = T , where A, B ∈ E22 [T αi ], it follows that |A ∩ B| =
|A|·|B|
|E23 | = 2. Hence, A and B are adjacent. Therefore, the vertices in E22 [T αi ] ∼= K7

induce a complete graph on 7 vertices denoted by K7. Thus, if we delete some vertices
together with the edges incident to them from E22 [T αi ], there will be a path in a
remaining graph that visits each remaining vertex.

The subgraphs E22 [T αi−1 ], E22 [T αi ] and E22 [T αi+1 ] have common vertices T αi ∩T αi−1

and T αi ∩ T αi+1
. Let L(T αi) = {T αi ∩ T αi−1

, T αi ∩ T αi+1}. Notice that L(T αi) =
{∆αi−1

1 , ∆αi

1 } (since T ∩ T α = ∆1). We may look at vertices L(T αi) as links between
neighboring graphs E22 [T αi−1 ], E22 [T αi ] and E22 [T αi+1 ].

Suppose that there are at least two equal vertices in ⋃30
i=0 L(T αi). Let T αi ∩ T αi+1 =

T αs ∩ T αs+1 for some i ̸= s. Thus, (T ∩ T α)αi = (T ∩ T α)αs
. Hence, ∆αi

1 = ∆αs

1 and
∆αi−s

1 = ∆1 for αi−s ̸= id. This is a contradiction with Lemma 3.2. Therefore, all
vertices in ⋃30

i=0 L(T αi) are mutually different.
As the initial step of a recursive construction of a Hamiltonian cycle, we define

E22 [T αi ]0 = E22 [T αi ] for all i ∈ Z31. Assume that we have formed a sequence(
E22 [T αi ]mi

)
i∈Z31

, where mi is a sequence of integers that count number of steps
(deletions) that we have done in the recursive procedure within E22 [T αi ].

If there is a vertex A and j ̸= i such that A ∈
(
E22 [T αi ]mi

\L(T αi)
)
∩E22 [T αj ]mj

, then
A is not a link, but it is a vertex in graphs E22 [T αi ]mi

and E22 [T αj ]mj
. Then, we delete a

vertex A and the edges incident to it. In this case let E22 [T αi ]mi+1 = E22 [T αi ]mi
\{A}.

If such a vertex A does not exist, we leave E22 [T αi ]mi
unchanged and denote that

by Ẽ22 [T αi ]mi
. Now, continue the same procedure with E22 [T αi+1 ]mi+1 . Following this

process, after finite number of steps, we will construct a sequence
(
Ẽ22 [T αi ]mi

)
i∈Z31

.

Using a notation in a group ring Z[E22 [E25 ]], we have the following:⋃
i∈Z31

⋃
A∈Ẽ22 [T αi ]mi

A = E22 [E25 ].
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Note that by Theorem 3.4, ⋃30
i=0 E22 [T αi ] contains all edges in E25 . From |E22 [T αi ]| = 7

and the fact that we do not delete links in this procedure, we get mi ≤ 5 and
Ẽ22 [T αi ]mi

∼= K7−mi
.

Therefore, there is always a path through each vertex of Ẽ22 [T αi ]mi
, where endver-

tices belong to L(T αi). Since all links are preserved, the mentioned paths, after being
joined together, make a Hamiltonian cycle in (E22 [E25 ],E5). □

4. Appendix

We list here all the powers αi together with the images T αi :

α =(bc, cd, bcd, de, a), T α = ⟨bc, cd, bcd⟩,

α2 =(b, bce, bde, ade, bc), T α2 = ⟨b, bce, bde⟩,

α3 =(bc, ab, ace, abcde, b), T α3 = ⟨bc, ab, ace⟩,

α4 =(bce, bd, ad, acde, cd), T α4 = ⟨bce, bd, ad⟩,

α5 =(ab, ce, bcde, ae, bce), T α5 = ⟨ab, ce, bcde, ae, bce⟩,

α6 =(bd, abcd, abde, abc, ab), T α6 = ⟨bd, abcd, abde⟩,

α7 =(ce, cde, abe, c, bd), T α7 = ⟨ce, cde, abe⟩,

α8 =(abcd, abce, abd, abc, ce), T α8 = ⟨abcd, abce, abd⟩,

α9 =(cde, ac, be, bde, abcd), T α9 = ⟨cde, ac, be⟩,

α10 =(abce, d, acd, ace, cde), T α10 = ⟨abce, d, acd⟩,

α11 =(ac, de, e, ad, abce), T α11 = ⟨ac, de, e⟩,

α12 =(d, ade, a, bcde, ad), T α12 = ⟨d, ade, a⟩,

α13 =(de, abcde, bc, abde, d), T α13 = ⟨de, abcde, bc⟩,

α14 =(ade, acde, b, abe, de), T α14 = ⟨ade, acde, b⟩,

α15 =(abcde, ae, cd, abd, ade), T α15 = ⟨abcde, ae, cd⟩,

α16 =(acde, abc, bce, be, abcde), T α16 = ⟨acde, abc, bce⟩,

α17 =(ae, c, ab, acd, acde), T α17 = ⟨ae, c, ab⟩,

α18 =(abc, bcd, bd, e, ae), T α18 = ⟨abc, bcd, bd⟩,

α19 =(c, bde, ce, a, abc), T α19 = ⟨c, bde, ce⟩,

α20 =(bcd, ace, abcd, bc, c), T α20 = ⟨bcd, ace, abcd⟩,

α21 =(bde, ad, cde, b, bcd), T α21 = ⟨bde, ad, cde⟩,

α22 =(ace, bcde, abce, cd, bde), T α22 = ⟨ace, bcde, abce⟩,
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α23 =(ad, abde, ac, bc, ace), T α23 = ⟨ad, abde, ac⟩,

α24 =(bcde, abe, d, ab, ad), T α24 = ⟨bcde, abe, d⟩,

α25 =(abde, abd, de, bd, bcde), T α25 = ⟨abde, abd, de⟩,

α26 =(abe, be, ade, ce, abde), T α26 = ⟨abe, be, ade⟩,

α27 =(abd, acd, abcde, abcd, abe), T α27 = ⟨abd, acd, abcde⟩,

α28 =(be, e, acde, cde, abd), T α28 = ⟨be, e, acde⟩,

α29 =(ace, a, ae, abce, be), T α29 = ⟨ace, a, ae⟩,

α30 =(e, bc, abc, ac, acd), T α30 = ⟨e, bc, abc⟩,

α31 =(bc, cd, bcd, de, a), T α31 = ⟨bc, cd, bcd⟩.
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