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GIELIS TRANSFORMATION OF THE ARCHIMEDEAN SPIRAL

LUDĚK SPÍCHAL

Abstract. The article shows that the Archimedean spiral, usually described as
a smooth spiral, can be transformed in many different shapes. The main part of
the article concentrates on the curvature of the transformed spirals. It will also be
shown that the shape some of them is an approximation of spiral antennas.

1. Introduction

Gielis transformations of curves were originally introduced in connection with the
modelling of shapes of various biological objects, e.g., flowers, fruits, an arrangement of
leaves, shapes of shells, and so on [1–4]. Gradually, studies have appeared pointing to
the possibility of using transformed curves also in technical applications, e.g., [7–12].

This article aims to continue in theoretical studies in the area of the so-called Gielis’
superformula and Gielis curves. In the early 19th century, a French mathematician
Gabriel Lamé introduced a generalized equation of the ellipse

(1.1)
∣∣∣∣xa
∣∣∣∣n +

∣∣∣∣yb
∣∣∣∣n = 1,

where a, b, n ∈ Q+. The equation (1.1) can generate different types of curves, such as
asteroids (n = 2/3), parallelograms (n = 1), circles and ellipses (n = 2), squares and
rectangles (n → ∞). All these curves are called Lamé curves or superellipses (Figure
1), e.g., [1–4].
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Figure 1. Lamé curves for n = 1
2 , 2

3 , 1, 2, 6, 50, whereas a = b (curves
for other cases are obtained by changing the scale on the axes)

The curve (1.1) can also be expressed in polar coordinates (ρ, θ)

(1.2) ρ =
( ∣∣∣∣∣cos θ

a

∣∣∣∣∣
n

+
∣∣∣∣∣sin θ

b

∣∣∣∣∣
n )− 1

n

.

In the late 20th century, Belgium botanist Johan Gielis generalized (1.2) to the form

(1.3) ρ =
( ∣∣∣∣∣1a cos mθ

4

∣∣∣∣∣
n1

+
∣∣∣∣∣1b sin mθ

4

∣∣∣∣∣
n2 )− 1

q

,

where a, b, m, n1, n2, q ∈ R+. As can be seen from the equation (1.3), Gielis replaced
the exponent n by three independent exponents n1, n2, q and inserted an extra param-
eter m

4 into the argument of both trigonometric functions. The Gielis transformation
consists in replacing the plane curve expressed in polar coordinates (ρ, θ) with a curve

(1.4) ρ = f(θ)
( ∣∣∣∣∣1a cos mθ

4

∣∣∣∣∣
n1

+
∣∣∣∣∣1b sin mθ

4

∣∣∣∣∣
n2 )− 1

q

.

Gielis called the transformation (1.3) and (1.4) as a superformula. Without loss of
generality, in (1.3), we focus on the case a = b = 1 and n1 = n2 = p and put [13]

(1.5) gm,p,q(θ) =
( ∣∣∣∣∣cos mθ

4

∣∣∣∣∣
p

+
∣∣∣∣∣sin mθ

4

∣∣∣∣∣
p )− 1

q

.

The curve defined by the equation ρ = gm,p,q(θ) can be interpreted as the Gielis trans-
formation of a unit circle centered at the origin for various choices of the parameters
m, p, q. Figure 2 shows that Gielis curves can provide far more complicated shapes
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than Lamé curves. There are plenty of examples of natural shapes similar to Gielis
curves [2, 3, 15,16].

In this article, the properties of the curves generated by the Gielis transformation
of the Archimedean spirals will be investigated. There are two available approaches
to what the Archimedean spirals are. The first one considers the general equation in
polar coordinates (ρ, θ) of the form
(1.6) ρ = aθ1/n + b,

where a, b and n are real constants. Several special cases can be described, depending
on the value of n: the arithmetic spiral (n = 1), the hyperbolic spiral (n = −1),
the Fermat spiral (n = 2), and lituus (n = −2) [4, 5, 14]. The second approach
considers the terms the arithmetic spiral and the Archimedean spiral as synonyms
(Archimedean spiral, Wikipedia, The Free Encyclopedia, Available from: https://en.
wikipedia.org/w/index.php?title=Archimedean_spiral&oldid=949421005). In
the next parts of this article, the second approach will be followed, and the equation
(1.6) will be of the form
(1.7) ρ = aθ + b.

The equation (1.7) describes the trajectory of a point moving at a constant speed
along a ray spinning around the origin at a constant angular velocity. Changing the
parameter b moves the center of the spiral outward from the origin (for the option
b > 0 toward θ = 0 and for the option b < 0 toward θ = π). The parameter a changes
the distance between loops of the spiral.

Without loss of generality, in the equation (1.7), we focus on the case b = 0 and
put
(1.8) ρ = aθ.

The Archimedean spirals have a variety of real-world applications. Scroll compres-
sors, made from two members (one of them fixed and the other rotating), each
of them in the shape of an Archimedean spiral, are used for compressing gases (H.
Sakata, O. Masayuki, Fluid compressing device having coaxial spiral members, United
States Patent 5603614. http://www.freepatentsonline.com/5603614.html). The
Archimedean spirals have a constant distance between successive coils and they ap-
pear naturally in such systems as a roll of paper, the grooves of a gramophone record,
and so on [4, 5]. In food microbiology, the Archimedean spirals are used to quantify
bacterial concentration through a spiral platter [6].

There are also plenty of types of Archimedean spiral shaped antennas. Some of
them are in the shape of the smooth Archimedean spiral [11] and the others, as it will
be shown latter, are in the shape of transformed Archimedean spirals, e.g., [7–10].

In the article [13], Matsuura discusses the mathematical structure of the curves
given by the equation ρ = gm,p,q(θ). Matsuura also introduces the concept of Gielis
regular polygons, which he further compares with regular polygons. The substantial
part of the article deals with the curvature of Gielis curves. In the article [15], the

https://en.wikipedia.org/w/index.php?title=Archimedean_spiral&oldid=949421005
https://en.wikipedia.org/w/index.php?title=Archimedean_spiral&oldid=949421005
http://www.freepatentsonline.com/5603614.html
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Figure 2. Gielis curves defined by the equation ρ = gm,p,q(θ) (m = 5):
first row q = 0,5 (p = 0,5, p = 1,5, p = 2,5); second row q = 5 (p = 0,5,
p = 2, p = 10); third row q = 50 (p = 5, p = 20, p = 100); fourth row
q = 500 (p = 100, p = 300, p = 500)
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properties of the transformed logarithmic spirals were investigated and compared with
similarly shaped objects.

The rest of this paper is organized as follows. Firstly, we summarize the known facts
about the transformations of Gielis curves [13] and the logarithmic spirals [15] and
compare them with the Gielis transformation of the Archimedean spiral. Subsequently,
we investigate the curvature of the subspiral (p < 2) and superspiral (p > 2) at the
anchor points and the vertices of the curves. We also discuss the influence of the value
of the parameter m (integer or non-integer) on the shape of spirals. Finally, we point
out objects and shapes, which could be modelled with transformed spirals.

2. Gielis Transformation of the Archimedean Spiral

Using equations (1.5) and (1.8) we obtain the equation

(2.1) ga,m,p,q(θ) = aθ

( ∣∣∣∣∣cos mθ

4

∣∣∣∣∣
p

+
∣∣∣∣∣sin mθ

4

∣∣∣∣∣
p )− 1

q

,

which determines Gielis transformation of the Archimedean spiral. Throughout the
rest of this paper we will be using the following notation and terms.

(i) We denote the planar curves obtain according to the equation (2.1) by the symbol
Ga,m,p,q, i.e. Ga,m,p,q(θ) = ga,m,p,q(θ)(cos θ, sin θ), the Archimedean spiral by the
symbol Ga, i.e., Ga(θ) = aθ(cos θ, sin θ). Figures 3, 5 and 6 show some examples
of transformations of the Archimedean spiral. In Figure 3 one can see that the
coils of the spiral intersect only for rational values of m.

(ii) The pole of the spiral is the point which spiral approaches for θ → −∞. In
the case of the non-shifted spiral, this point lies at the origin of the Cartesian
coordinate system.

(iii) The anchor point of Ga,m,p,q means such a point of Ga, whose position does not
change during the transformation, i.e., Ga,m,p,q(θ) = Ga(θ).

(iv) The vertex of Ga,m,p,q means the point of Ga,m,p,q corresponding to the value of
θ (Fig. 4), where gm,p,q has a local maximum (later we will show that for p < 2
the vertices are identical with anchor points).

(v) The coil of the spiral means the part of the curve where θ ∈ [2kπ, 2(k + 1)π) for
given k ∈ Z.

The following statements summarize some properties of transformed spirals, the proofs
are routine.

Lemma 2.1. The parameter m determines the number of anchor points in one spiral
coil of Ga,m,p,q as follows.

(i) For m ∈ N , the spiral has exactly m anchor points in one coil.
(ii) For m /∈ N , the number of anchor points in one coil corresponds to ⌈m⌉, i.e.,

the next higher integer.

Lemma 2.2. The function gm,p,q satisfies the following properties (k ∈ Z).
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Figure 3. Gielis transformation of the Archimedean spiral (θ ∈
[0, 6π]): first row m = 2,5, q = 3 (p = 0,5, p = 4, p = 10); second row
m = 4, q = 10 (p = 2, p = 10, p = 20); third row m = 6, q = 20 (p = 30,
p = 50, p = 100)

(i) For p < 2 it is increasing on
[

(2k−1)π
m

, 2kπ
m

]
and decreasing on

[
2kπ
m

, (2k+1)π
m

]
.

(ii) For p = 2 it is constant on the whole real axis.
(iii) For p > 2 it is increasing on

[
2kπ
m

, (2k+1)π
m

]
and decreasing on

[
(2k+1)π

m
, 2(k+1)π

m

]
.

(iv) For all θ = 2kπ
m

(k ∈ Z) it is gm,p,q(θ) = θ.



GIELIS TRANSFORMATION OF THE ARCHIMEDEAN SPIRAL 437

Figure 4. Gielis transformation of the Archimedean spiral (θ ≥ 0, left
p < 2, right p > 2)

Corollary 2.1. (i) If p = 2, then Ga,m,p,q is the Archimedean spiral Ga.
Let the points X, Y lie on the same coils of Ga,m,p,q and Ga, and at the same time on
the same half-line starting from the pole P of the spiral. If

• p < 2, then |PX| ≤ |PY |;
• p > 2, then |PX| ≥ |PY |.

(ii) If p < 2, then the anchor points and vertices of Ga,m,p,q correspond to the choice
θ = 2kπ

m
(k ∈ Z). If p > 2, then the anchor points of Ga,m,p,q correspond to the choice

θ = 2kπ
m

(k ∈ Z), and the vertices to the choice θ = (2k+1)π
m

(k ∈ Z).

Theorem 2.2. The function ga,m,p,q satisfies the following properties
(i) ga,m,p,q(θ + 2π

m
) = 2πa

m
ga,m,p,q(θ);

(ii) limq→∞ ga,m,p,q(θ) = aθ.

Proof. The claims (i) and (ii) follow directly from the definition of the function
ga,m,p,q. □

Remark 2.1. For p < 2 we call the curve Ga,m,p,q a subspiral of the Archimedean spiral,
for p > 2 is the curve Ga,m,p,q a superspiral of the Archimedean spiral.

3. Curvature of Subspiral and Superspiral

The aim of this section is to examine the curvature of subspiral and superspiral.
The curvature can generally be characterized as an amount by which a curve deviates
from being a straight line whose curvature is zero. If we consider, that spirals are
given with (2.1), and we use the relation for the curvature of the curve given in polar
coordinates, then we obtain

(3.1) κa,m,p,q(θ) =
ga,m,p,q(θ)2 + 2g′

a,m,p,q(θ)2 − ga,m,p,q(θ)g′′
a,m,p,q(θ){

ga,m,p,q(θ)2 + g′
a,m,p,q(θ)2

} 3
2

,
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Figure 5. Curvature at the anchor points (vertices) of the subspiral
(upper row: p = 1 and successively q = 1, q = (m/4)2p, q = 8), and at
the vertices of the superspiral (lower row: p = q = 8), m = 8

where κa,m,p,q(θ) denotes the curvatute of Ga,m,p,q. For p < 2 the function x 7→ |x|p
does not have the second derivative in zero, therefore g(θ) does not have the second
derivative at the points 2kπ

m
(k ∈ Z) and the curvature is not defined there. If we

substitute in (3.1) the formula aθgm,p,q(θ) for ga,m,p,q(θ), then after simplifying we
obtain

(3.2) κa,m,p,q(θ) = 1
a

·
θ2g(θ)2 + 2

(
g(θ) + θg′(θ)

)2
− θg(θ)

(
2g′(θ) + θg′′(θ)

)
{

θ2g(θ)2 +
(
g(θ) + θg′(θ)

)2
} 3

2
,

where g(θ) is a shortcut for gm,p,q(θ).
Since the second fraction in formula (3.2) represents 2π

m
-periodic function is sufficient

to examine the curvature on the interval [0, 2π
m

). When investigating the curvature of
transformed spirals we focus on the anchor points, i.e., we determine the curvature for
θ = (2k+1)π

m
(k ∈ Z), and the vertices of the spirals, i.e., we determine the curvature

for θ = 2kπ
m

(k ∈ Z). Because of the above, it will be sufficient to do the calculations
in case of anchor points for θ = π

m
, and in the case of vertices for θ = 0.

Theorem 3.1. The curvature κa,m,p,q( π
m

) satisfies the following properties.
(i) κa,m,p,q( π

m
) = 1

agm,p,q( π
m

) · 1

{1+( π
m

)2}
3
2

{
2 + ( π

m
)2 + π2p(p−2)

16q

}
(ii) Let p < 2. Then

• κa,m,p,q( π
m

) < 0 if q < π2(m/4)2p(2−p)
2m2+π2 ,
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Figure 6. Curvature at the anchor points of the superspiral (p = 10
and successively q = 15, q = (m/4)2p, q = 75), m = 8

• κa,m,p,q( π
m

) = 0 if q = π2(m/4)2p(2−p)
2m2+π2 ,

• κa,m,p,q( π
m

) > 0 if q > π2(m/4)2p(2−p)
2m2+π2 .

(iii) If p ≥ 2, then κa,m,p,q( π
m

) > 0.

Proof. To prove (i), it is sufficient to substitute into formula (3.2)

g
(

π

m

)
= 2

p−2
2q , g′

(
π

m

)
= 0, g′′

(
π

m

)
= (m/4)2p(2 − p)

q
2

p−2
2q .

The claims (ii) and (iii) follow directly from (i). □

In the claim (ii) of the previous theorem is for the choice p < 2 mentioned the
dependence of curvature on the value of the parameter q. Examples of the curves
with the negative, zero and positive curvature at points that are “halfway” between
the anchor points are shown in Figure 5.

Theorem 3.2. Let p > 2. The curvature κa,m,p,q(0) satisfies the following properties.
(i) κa,m,p,q(0) = 1

a
· 1

{1+( π
m

)2}
3
2

{
2 + ( π

m
)2 − π2p

16q

}
.

(ii) If
• q < π2(m/4)2p

2m2+π2 , then κa,m,p,q(0) < 0,
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• q = π2(m/4)2p
2m2+π2 , then κa,m,p,q(0) = 0,

• q > π2(m/4)2p
2m2+π2 , then κa,m,p,q(0) > 0.

Proof. To prove (i), it is sufficient to substitute into formula (3.2)

g(0) = 1, g′(0) = 0, g′′(0) = (m/4)2p

q
.

The claim (ii) follows directly from (i). □

Examples of the curves with the negative, zero and positive curvature at the anchor
points of the superspirals are shown in Figure 6.

Remark 3.1. For p = 0 or p = 2 is

κa,m,p,q(θ) = 1
ga(θ) · 2 + θ2

(1 + θ2)3/2

the curvature of the Archimedean spiral Ga.

4. Transformed Archimedean Spirals as Approximations of Spiral
Antennas

The requirement for miniaturizing the antennas led to looking for specific trans-
formed shapes. There are many types of planar spiral antennas whose design is based
mainly on the use of the Archimedean or logarithmic geometry. The antennas operate
in different configurations, e.g., the circular, the rectangular, the polygonal, sinuous
meander or log-periodic. The mentioned configurations have their advantages and
disadvantages but generally allow to reach frequency independent antennas.

Although there are different types of antennas with a different configuration, it
can be shown that it is possible to approximate many of them in terms of Gielis
transformation (Figure 7).

On the other hand, relative simplicity and flexibility of transformation might be
used when looking for an advance or novel construction of the antennas.

5. Conclusion

In this paper, some properties of the Gielis transformation of the Archimedean
spiral were analyzed. We focused in particular on the curvature in anchor points
and the vertices of the transformed curves. In the end, we showed that the Gielis
transformation might be handy when one looks for the appropriate shape of the
Archimedean spiral-like antennas.
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Figure 7. Models of spiral antennas with different configuration ap-
proximated via Gielis transformation of the Archimedean and logarith-
mic spiral
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