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CRITICAL POINT APPROACHES FOR A CLASS OF

DIFFERENTIAL EQUATIONS WITH STURM-LIOUVILLE TYPE

NONHOMOGENEOUS BOUNDARY CONDITIONS

SHAPOUR HEIDARKHANI AND FARAHNAZ AYAZI

Abstract. A class of p-Laplacian equations with Sturm-Liouville type nonhomoge-
neous boundary value problem with nonlinear derivative depending on two control
parameters is investigated. Existence and multiplicity of solutions are discussed by
means of variational methods and critical point theory. Two examples supporting
our theoretical results are also presented.

1. Introduction

Various generalizations of classical Sturm-Liouville problems for ordinary linear
differential equations have attracted a lot of attention because of appearance of new
important applications in physical sciences and applied mathematics. Sturm-Liouville
boundary value problems have received a lot of attention in recent years. There have
been many papers studying the existence of solutions for boundary value problems, for
a small sample of recent work, we refer the reader to [1,7,8,11,13,16–18] that authors
have studied the existence of solutions of Sturm-Liouville boundary value problem
by using critical point theorem and fixed point theorem. For example, Bonanno and
Riccobono in [8] have established the existence of multiple solutions for the second
order Sturm-Liouville boundary value problem







(ρϕp(x′))′ + sϕp(x) = λf(t, x), t ∈ [a, b],

αx′(a) − βx(a) = A, γx′(b) + σx(b) = B,

Key words and phrases. Multiple solutions, p-Laplacian equation, Sturm-Liouville type nonhomo-
geneous boundary condition, variational methods.

2020 Mathematics Subject Classification. Primary: 35J20. Secondary:35J60, 34B24.
DOI 10.46793/KgJMat2504.503H
Received: May 06, 2022.
Accepted: June 22, 2022.

503



504 S. HEIDARKHANI AND F. AYAZI

where p > 1, ϕp(x) = ♣x♣p−2x, ρ, s ∈ L∞([a,b]) with essinf[a,b]ρ > 0 and essinf[a,b]s > 0,
A, B ∈ R, α, β, γ, σ > 0, f : [a, b] × R → R is an L1-Carathéodory function and
λ is a positive real parameter. In [18] Tian and Ge, applying a three critical point
theorem due to Averna and Bonanno discussed the existence of three solutions for a
Sturm-Liouville boundary value problem depending upon the parameter λ, while in
[17] using lower and upper solutions approach and variational methods they proved
the existence of multiple solutions for second order Sturm-Liouville boundary value
problem







−Lu = f(x, u), x ∈ [0, 1],

R1(u) = 0, R2(u) = 0,

where Lu = (p(x)u′)′ − q(x)u is a Sturm-Liouville operator R1(u) = αu′(0) − βu(0),
R2(u) = γu′(1) + σu(1). In [13] using critical point theory and Ricceri’s variational
principle, the existence of infinitely many classical solutions to a boundary value
system with Sturm-Liouville boundary conditions was obtained.

In the present paper, we investigate the existence of solutions for the Sturm-Liouville
type nonhomogeneous boundary value problem
(1.1)














−(ϕp(u′))′ =



λf(x, u(x)) +
∫ u′(x)

0

∂

∂x

(

(p − 1)♣τ ♣p−2

h(x, τ)



dτ



h(x, u′(x)), x ∈ (a, b),

αu(a) − βu′(a) = A, γu(b) + σu′(b) = B,

where p > 1, ϕp(t) = ♣t♣p−1t, λ > 0, is a parameter, α, γ, β, σ > 0 and A, B are
arbitrary constants. The function h : [a, b] × R → R satisfies the conditions

(i) 0 < m := inf(x,t)∈[a,b]×R h(x, t) ≤ M := sup(x,t)∈[a,b]×R
h(x, t);

(ii) the function t → h(x, t) is continuous for all x ∈ [a, b] and the function
x → h(x, t) is in C1([a, b]) for all t ∈ R.

We also assume that the function f : [a, b] × R → R is an L1-Carathéodory function.
In [14] Sun et al. established the new criteria for the existence of infinitely many

solutions for a class of one-dimensional p-Laplacian equations with Sturm-Liouville
type nonhomogeneous boundary problem (1.1) with the perturbation term µg(x, u(x)).

We also refer the interested reader to the papers [3, 12] in which using variational
methods and critical point theory, the existence of solutions for boundary value
problems with nonlinear derivative dependence have been discussed. A second-order
impulsive differential inclusion with Sturm-Liouville boundary conditions is studied.
By using a nonsmooth version of a three critical point theorem of Ricceri, the existence
of three solutions is obtained in [15]. In [4] utilizing variational methods the existence
of at least one weak solution for elliptic problems on the real line was discused.

Here, we study the existence of multiple solutions for the problem (1.1). In Theorem
3.1 we prove the existence of at least two solutions for the problem (1.1). As a special
case of Theorem 3.1, we investigate the existence of at least two solutions, when
w(x) = d, that d is a constant; see Corollary 3.1. In Theorem 3.2 we show that the
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problem (1.1) has at least three solutions. We also show that for small values of the
parameter and requiring an additional asymptotical behaviour of the potential at zero
if f(x, 0) = 0 for all x ∈ [a, b], the solutions are nontrivial; see Remark 3.1. Moreover,
we deduce the existence of solutions for small positive values of the parameter λ such
that the corresponding solutions have smaller and smaller energies as the parameter
goes to zero; see Remark 3.2. Finally, we give two examples to show the application
of our results.

2. Preliminaries

Let X be a real Banach space and for two functions Φ, Ψ : X → R for all r, r1, r2 >

infX Ψ, with r1 < r2 we define the following functions

φ1(r) = inf
u∈Ψ−1(]−∞,r[)

Φ(u) − inf
u∈Ψ−1(]−∞,r[)ω Φ(u)

r − Ψ(u)
,(2.1)

φ2(r1, r2) = inf
u∈Ψ−1(]−∞,r1[)

sup
v∈Ψ−1([r1,r2[)

Φ(u) − Φ(v)

Ψ(v) − Ψ(u)
,(2.2)

where Ψ−1(] − ∞, r[)ω is the closure Ψ−1(] − ∞, r[) in the weak topology.

Theorem 2.1. ([5, Theorem 1.1.]) Let X be a reflexive real Banach space, and let

Φ, Ψ : X → R be two sequentially weakly lower semicontinuous and Gâteaux differen-

tiable functions. Assume that Ψ is (strongly) continuous and satisfies lim∥u∥→+∞ Ψ(u)
= +∞. Assume also that there exist two constants r1 and r2 such that

(a1) infX Ψ < r1 < r2;
(a2) φ1(r1) < φ2(r1, r2);
(a3) φ1(r2) < φ2(r1, r2).

Then, there exists a positive real number σ such that, for each

λ ∈





1

φ2(r1, r2)
, min

{

1

φ1(r1)
,

1

φ1(r2)

}



,

the equation Ψ′ + λΦ′ admits at least two solutions whose norms are less than σ.

For all r1, r2, r3 > infX Ψ we define

φ3(r1, r2, r3) = inf
u∈Ψ−1([r1,r2[)

sup
v∈Ψ−1([r2,r3[)

Φ(u) − Φ(v)

Ψ(v) − Ψ(u)
.(2.3)

Clearly, φ2(r2, r3) ≤ φ3(r1, r2, r3).

Theorem 2.2. ([5, Theorem 2.2.]) Let X be a reflexive real Banach space, and let

Φ, Ψ : X → R be two sequentially weakly lower semicontinuous and Gâteaux differen-

tiable functions. Assume that Ψ is (strongly) continuous and satisfies lim∥u∥→+∞ Ψ(u)
= +∞. Assume also that there exist two constants r1, r3 and r3 such that

(b1) infX Ψ < r1 < r2 < r3;
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(b2) max¶φ1(r1), φ1(r2), φ1(r3)♢ < min¶φ2(r1, r2), φ3(r1, r2, r3)♢.

Then there exists a positive real number σ such that for each

λ ∈



max

{

1

φ2(r1, r2)
,

1

φ3(r1, r2, r3)

}

, min

{

1

φ1(r1)
,

1

φ1(r2)
,

1

φ1(r3)

}



,

the equation Ψ′ + λΦ′ = 0 admits at least three solutions whose norms are less than σ.

Theorems 2.1 and 2.2 have been used to the existence of multiple solutions for
a two point boundary value problem driven by one-dimensional p-Laplacian and a
second-order Sturm-Liouville boundary value problem in [5, 16], respectively. The
present paper paper is a continuation for the application of the critical point theorems.

Let X be the Sobolev space W 1,p([a, b]) equipped with norm

∥u∥ :=





∫ b

a
♣u(t)♣p + ♣u′(t)♣pdt





1

p

, for all u ∈ X.

Then, the space (X, ∥.∥) is a real reflexive Banach space and max¶∥u∥Lp , ∥u′∥Lp♢ ≤
∥u∥ for each u ∈ X. By the Sobolev embedding theorem (see [9]), X is compactly
embedded into C([a, b]). We also denote ∥ · ∥∞ as the usual norm of L∞([a, b]).

For all x ∈ [a, b] and s ∈ R, define the functions

Jx(s) = J(x, s) :=
∫ s

0

(p − 1)♣δ♣p−2

h(x, δ)
dδ

and

Hx(s) = H(x, s) :=
∫ s

0
J(x, τ)dτ.

For any fixed x ∈ [a, b], the fact that H ′′
x(s) = J ′

x(s) = (p−1)♣s♣p−2

h(x,s)
≥ 0 implies that Hx

is a strictly convex C2 function and Jx is a strictly increasing C1 function. Simple
calculation shows that for every x ∈ [a, b], s ∈ R,

(2.4)
♣s♣p−1

M
≤ ♣J(x, s)♣ ≤

♣s♣p−1

m
,

♣s♣p

pM
≤ ♣H(x, s)♣ ≤

♣s♣p

pm
.

For each u ∈ X, let the functionals Ψ, Φ : X → R be as follows

(2.5) Ψ(u) =
∫ b

a
H(x, u′(x))dx +

β

α
H

(

a,
α

β
u(a) −

1

β
A



+
σ

γ
H

(

b, −
γ

σ
u(b) +

1

σ
B



and

(2.6) Φ(u) =
∫ b

a
F (x, u(x))dx,

where

F (x, t) :=
∫ t

0
f(x, s)ds, for all (x, t) ∈ [a, b] × R.
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In view of (2.4), one has

1

Mp

(

∥u′∥p
Lp +

αp−1

βp−1

∣

∣

∣

∣

∣

u(a) −
1

α
A

∣

∣

∣

∣

∣

p

+
γp−1

σp−1

∣

∣

∣

∣

∣

u(b) −
1

γ
B

∣

∣

∣

∣

∣

p

≤Ψ(u) ≤
1

mp

(

∥u′∥p
Lp +

αp−1

βp−1

∣

∣

∣

∣

∣

u(a) −
1

α
A

∣

∣

∣

∣

∣

p

+
γp−1

σp−1

∣

∣

∣

∣

∣

u(b) −
1

γ
B

∣

∣

∣

∣

∣

p

.

(2.7)

Lemma 2.1. ([14, Lemma 2.1]) Assume that u ∈ X and there exists r > 0 such that

Φ(u) ≤ r, then, we have

∥u∥∞ ≤ (Mpr)
1

p





(

β

α


1

q

+ (b − a)
1

q



+
1

α
♣A♣,

where q is the conjugate of p, i.e., 1
p

+ 1
q

= 1.

Definition 2.1. We say that u is a classical solution to (1.1) if u ∈ C1([a, b]),

♣u′♣p−2u′ ∈ AC1([a, b]), αu(a)−βu′(a) =
∫ b

a ξ(x)u(x)dx, γu(b)−σu′(b) =
∫ bη(x)

a u(x)dx

and

−(ϕp(u′(x)))′ =



λf(x, u(x)) +
∫ u′(x)

0

∂

∂x

(

(p − 1)♣τ ♣p−2

h(x, τ)
dτ





h(x, u′(x)),

for almost every complete x ∈ [a, b], where AC1([a, b]) denotes the space of those
functions whose first derivatives along with themselves are absolutely continuous on
[a, b].

Definition 2.2. We say that u is a weak solution to (1.1) if u ∈ X and
∫ b

a
J(x, u′(x))v′(x)dx + J

(

a,
α

β
u(a) −

1

β
A



v(a) − J

(

b, −
γ

σ
u(b) +

1

σ
B



v(b)

− λ

∫ b

a
f(x, u(x))v(x)dx = 0,

for any v ∈ X.

Lemma 2.2. ([14, Lemma 2.4]) Weak solutions of (1.1) coincide with classical solu-

tions of (1.1).

Lemma 2.3. ([14, Lemma 2.5]) Assume that the functional Ψ : X → R is de-

fined by (2.5). Then Ψ is sequentially weakly lower semicontinuous, continuous,

lim∥u∥→+∞ Ψ(u) = +∞ and its Gâteaux derivative u ∈ X is the functional Ψ′(u)
given by

Ψ′(u)(v) =
∫ b

a
J(x, u′(x))v′(x)dx + J

(

a,
α

β
u(a) −

1

β
A



v(a)

− J

(

b, −
γ

σ
u(b) +

1

σ
B



v(b),

for every v ∈ X.
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Remark 2.1. If u ∈ X is a critical point of Iλ = Ψ + λΦ in view of Definition 2.2, then,
u is a classical solution of the problem (1.1).

3. Main Results

For any ν > 0, we define

Q(ν) :=

{

t ∈ R : ♣t♣ ≤ ν





(

β

α


1

q

+ (b − a)
1

q



+
1

α
♣A♣

}

.

We formulate our first main result as an application of Theorem 2.1 as follows.

Theorem 3.1. Assume there exist two positive constants c1 < c2 and a function

w ∈ X such that

(A1) c
p
1 ≤ Kw ≤ m

M
c

p
2, where

Kw :=

(

∥w′∥p
Lp +

αp−1

βp−1

∣

∣

∣

∣

∣

w(a) −
1

α
A

∣

∣

∣

∣

∣

p

+
γp−1

σp−1

∣

∣

∣

∣

∣

w(b) −
1

γ
B

∣

∣

∣

∣

∣

p

;

(A2) Aci
Mp <

∫ b
a F (x, w(x))dx −

∫ b
a supt∈Q(c1) F (x, t)dx

Ψ(w)
for i = 1, 2.

Then, for each

λ ∈





Ψ(w)
∫ b

a F (x, w(x))dx −
∫ b

a supt∈Q(c1) F (x, t)dx
,
min¶ 1

Ac1
, 1

Ac2
♢

Mp



,

the problem (1.1) has at least two classical solutions whose norms in C([a, b]) are less

than c2 where Aci
= 1

c
p

i

∫ b
a supt∈Q(ci)

F (x, t)dx.

Proof. Let Ψ, Φ be as given by (2.5) and (2.6), respectively. By Lemma 2.3 we observe
that Ψ, Φ : X → R are two sequentially weakly lower semicontinuous and Gâteaux
differentiable functions and Ψ is continuous and satisfies lim∥u∥→+∞ Ψ(u) = +∞. We
want to obtain at least two critical points of Iλ = Ψ+λΦ by applying Theorem 2.1. It

remains to verify condition (a1), (a2) and (a3) in Theorem 2.1. Let ri =
c

p

i

Mp
, i = 1, 2.

By (2.7) and (A1) we have

r1 <
1

Mp
Kw ≤ Ψ(w) ≤

1

mp
Kw < r2.

It is easy to see that (a1) holds since r1, r2 > 0. Now we will show that (a2) in Theorem
2.1 is satisfied. Taking into account that the function u ≡ 0 on [a, b] obviously belongs
to Ψ−1(] − ∞, r[) and that Ψ(0) = Φ(0) = 0, we get

φ1(r) = inf
u∈Ψ−1(]−∞,r[)

Φ(u) − inf
u∈Ψ−1(]−∞,r[)ω Φ(x)

r − Ψ(u)
≤ −

1

r
inf

u∈Ψ−1(]−∞,r[)ω

Φ(u).(3.1)
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Noticing Ψ−1(] − ∞, r[)ω = Ψ−1(] − ∞, r[) by Lemma 2.1 we obtain

Ψ−1(−∞, r) = ¶u ∈ X : Ψ(u) < r♢

⊆







u ∈ X : ∥u∥∞ ≤ (Mpr)
1

p





(

β

α


1

q

+ (b − a)
1

q



+
1

α
♣A♣







=







u ∈ X : max
x∈[a,b]

♣u(x)♣ ∈ Q(c)







.

Then

φ1(r) ≤
supu∈Ψ−1(−∞,r)

∫ b
a F (x, u(x))dx

r

≤

∫ b
a supt∈Q(c) F (x, t)dx

r
,

and therefore, we have

φ1(ri) ≤
Mp

c
p
i

∫ b

a
sup

t∈Q(ci)
F (x, t)dx, i = 1, 2.

On the one hand, by Lemma 2.1 and r1 ≤ Ψ(w) ≤ r2 we have

φ2(r1, r2) = inf
u∈Ψ−1(]−∞,r1[)

sup
v∈Ψ−1([r1,r2[)

Φ(u) − Φ(v)

Ψ(v) − Ψ(u)

≥ inf
u∈Ψ−1(]−∞,r1[)

Φ(u) − Φ(w)

Ψ(w) − Ψ(u)

≥ inf
u∈Ψ−1(]−∞,r1[)

1

Ψ(w) − Ψ(u)

(

∫ b

a
F (x, w(x))dx −

∫ b

a
F (x, u(x))dx



≥

∫ b
a F (x, w(x))dx −

∫ b
a supt∈Q(c1) F (x, t)dx

Ψ(w) − Ψ(u)
.

By (A2) we have that
∫ b

a F (x, w(x))dx −
∫ b

a F (x, u(x))dx > 0, so

φ2(r1, r2) ≥

∫ b
a F (x, w(x))dx −

∫ b
a supt∈Q(c1) F (x, t)dx

Ψ(w)
.

Then, from (A2), (a2) and (a3) in Theorem 2.1 are fulfilled. By choosing σ = r2, the
conclusion follows. Therefore, it follows that the functional Iλ has two critical points
which are the weak solutions of the problem (1.1), and since from Lemma 2.3 the
weak solutions coincide with the classical solutions, we have the desired result. □

In Theorem 3.1, the condition (A2) is related to the function w ∈ W 1,p. A different
function w ∈ W 1,p would lead to a different condition, which is similar to (A2). For
example, we let w(x) = d where d is a constant. We have the following result.

Corollary 3.1. Assume there exist three positive constants c1, d, c2 such that
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(A′
1) c

p
1 < Kd < m

M
c

p
2, where

Kd :=

(

α

β

p−1 ∣
∣

∣

∣

d −
1

α
A

∣

∣

∣

∣

p

+
(

γ

σ

)p−1
∣

∣

∣

∣

∣

d −
1

γ
B

∣

∣

∣

∣

∣

p

;

(A′
2) Aci

M
m

<
B(d,c1)

Kd
,

where Aci
is defined in Theorem 3.1 and

B(d, c1) =
∫ b

a
F (x, d)dx −

∫ b

a
sup

t∈Q(c1)
F (x, t)dx.

Then, for every

λ ∈





Kd

mpB(d, c1)
,
min¶ 1

Ac1
, 1

Ac2
♢

Mp



,

the problem (1.1) has at least two classical solutions whose norms in C([a, b]) are less

than c2.

Next, we state our second main result as an application of Theorem 2.2 as follows.

Theorem 3.2. Assume that there exist five constants c1, d1, c2, d2, c3 with

c
p
i < Kdi

≤ c
p
i+1

m

M
, i = 1, 2,

such that

(3.2)
M

m
A∗(c1, c2, c3) ≤ B∗

c1,c2
(d1, d2),

where

A∗(c1, c2, c3) = max¶Aci
: i = 1, 2, 3♢

and

B∗
c1,c2

(d1, d2) = min

{

B(d1, c1)

Kd1

,
B(d2, c2)

Kd2

}

.

Then, for each

λ ∈





1

mpB∗
c1,c2

(d1, d2)
,

1

Mp A∗(c1, c2, c3)



,

the problem (1.1) admits at least three classical solutions whose norms in C([a, b]) are

less than c3.

Proof. Take the Banach space X and the functionals Ψ, Φ on X are defined by (2.5)

and (2.6). Let ri =
c

p

i

Mp
and w1 = d1, w2 = d2. By the same arguing as given in the

proof of Theorem 3.1 one has

r1 < Ψ(w1) < r2 < Ψ(w2) < r3,

φ2(r1, r2) ≥
mp

Kd1

B(d1, c1),

φ2(r1, r2, r3) ≥ φ2(r2, r3) ≥
mp

Kd2

B(d2, c2)
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and
φ(ri) ≤ Mp Aci

, i = 1, 2, 3.

Therefore, taking into account (3.2), there exist at least three classical solutions.
Not taking into account the zero solution, there are at least three nonzero classical
solutions whose norms in C([a, b]) are less than c3. Then, taking into account the
fact that the weak solutions of the problem (1.1) are exactly critical points of the
functional Iλ, also by using Lemma 2.3, we know the weak solutions coincide with the
classical solutions, so we have the desired conclusion. □

Remark 3.1. If f(x, 0) ̸= 0 for some x ∈ [a, b], then the ensured solutions in Theorem
3.1 are non-trivial. On the other hand, the non-triviality of the solution can be
achieved also in f(x, 0) = 0 for some x ∈ [a, b], requiring the extra condition at zero,
and there are a non-empty open set D ⊆ (a, b) and B ⊂ D such that

lim sup
ξ→0+

infx∈B F (x, ξ)

♣ξ♣p
= +∞

and

lim inf
ξ→0+

infx∈D F (x, ξ)

♣ξ♣p
> −∞.

Indeed, let 0 < λ < λ∗, where

λ∗ =
min

{

1
Ac1

, 1
Ac2

}

Mp
.

Let Φ and Ψ be as given in (2.5) and (2.6), respectively. Due to Corollary 3.1

for every λ ∈
(

Kd

mpB(d,c1)
, λ
)

there exists a critical point of Iλ = Ψ + λΦ such that

uλ ∈ Ψ−1(−∞, r), where rλ =
c

p

λ

Mp
. In particular, uλ is a global minimum of the

restriction of Iλ to Ψ−1(−∞, r). We will prove that uλ cannot be trivial. Let us show
that

lim sup
∥u∥→0+

Φ(u)

Ψ(u)
= +∞.(3.3)

Thanks to our assumptions at zero, we can fix a sequence ¶ξn♢ ⊂ R
+ converging to

zero and two constants σ, κ (with σ > 0) such that for every ξ ∈ [0, σ]

lim
ξ→0+

infx∈B F (x, ξn)

♣ξn♣p
= +∞(3.4)

and
inf
x∈D

F (x, ξ) > κ♣ξ♣p.

We consider a set G ⊂ B of positive measure and a function v ∈ X such that

(k1) v(t) ∈ [0, 1] for every t ∈ (a, b);
(k2) v(t) = 1 for every t ∈ G;
(k3) v(t) = 0 for every t ∈ (a, b)\D.



512 S. HEIDARKHANI AND F. AYAZI

Finally, fix M > 0 and consider a real positive number η with

M <
mpη meas(G) + mpκ

∫

D\G ♣v(t)♣dt

Ku

,

where

Ku =
1

mp

(

∥u′∥p
Lp +

αp−1

βp−1

∣

∣

∣

∣

∣

u(a) −
1

α
A

∣

∣

∣

∣

∣

p

+
γp−1

σp−1

∣

∣

∣

∣

∣

u(b) −
1

γ
B

∣

∣

∣

∣

∣

p

.

Then, there is n0 ∈ N such that ξn < σ and

inf
x∈B

F (x, ξn) ≥ κ♣ξn♣p,

for every n > n0. Now, for every n > n0, by considering the properties of the function
v (that is 0 ≤ ξnv(t) < σ for n large enough), one has

Φ(ξnv)

Ψ(ξnv)
=

∫

G F (t, ξn)dt +
∫

D\G F (t, ξnv(t))dt

Ψ(ξnv)

>
mpη meas(G) + mpκ

∫

D\G ♣v(t)♣dt

Ku

> M.

Since M could be arbitrarily large, it yields

lim
n→∞

Φ(ξnv)

Ψ(ξnv)
= +∞

from which (3.3) clearly follows. Hence, there exists ¶ωn♢ ⊂ X strongly converging
to zero such that, ωn ∈ Ψ−1(−∞, r) and

Iλ(ωn) = Ψ(ωn) + λΦ(ωn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Ψ−1(−∞, r), we conclude that

(3.5) Iλ(uλ) < 0.

Remark 3.2. From (3.5) we easily observe that the map

(3.6)

(

Kd

mpB(d, c1)
, λ∗



∋ λ 7→ Iλ(uλ)

is negative. Also, one has

lim
λ→0+

∥uλ∥ = 0.

Indeed, bearing in mind that Ψ is coercive and for every λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

the

solution uλ ∈ Ψ−1(−∞, r), one has that there exists a positive constant L such that

∥uλ∥ ≤ L for every λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

. Then, there exists a positive constant N such

that

(3.7)
∣

∣

∣

∣

∫ b

a
f(x, u(x))v(x)dx

∣

∣

∣

∣

≤ N∥uλ∥ ≤ NL,
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for every λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

. Since uλ is a critical point of Iλ, we have I ′
λ(uλ)(v) = 0

for every v ∈ X and every λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

. In particular I ′
λ(uλ)(uλ) = 0, that is

Ψ′(uλ)(uλ) = −λ

∫ b

a
f(x, uλ(x))uλ(x)dx,

for every λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

. Then, it follows

0 ≤
1

Mp

(

∥u′
λ∥p

Lp +
αp−1

βp−1

∣

∣

∣

∣

∣

uλ(a) −
1

α
A

∣

∣

∣

∣

∣

p

+
γp−1

σp−1

∣

∣

∣

∣

∣

uλ(b) −
1

γ
B

∣

∣

∣

∣

∣

p

≤ Ψ′(uλ)(uλ)

= −λ

∫ b

a
f(x, uλ(x))uλ(x)dx,

for every λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

. Letting λ → 0+ by (3.7), we get

lim
λ→0+

∥uλ∥ = 0.

Then, we have obviously the desired conclusion. Finally, we have to show that the

map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

. We see that for any

u ∈ X one has

(3.8) Iλ = λ

(

Ψ(u)

λ
+ Φ(u)



.

Now, let us fix 0 < λ1 < λ2 < λ∗ and let uλi
be the global minimum of the functional

Iλi
restricted to Ψ(−∞, r) for i = 1, 2. Also, set

mλi
=

(

Ψ(uλi
)

λi

+ Φ(uλi
)



= inf
v∈Ψ−1(−∞,r)

(

Ψ(v)

λi

+ Φ(v)



,

for every i = 1, 2. Clearly, (3.6) together with (3.8) and the positivity of λ imply that

(3.9) mλi
< 0, for i = 1, 2.

Moreover

(3.10) mλ2
< mλ1

,

due to the fact that 0 < λ1 < λ2. Then, by (3.8)–(3.10) and again by the fact that
0 < λ1 < λ2, we get

Iλ2
(uλ2

) = λ2mλ2
≤ λ2mλ1

< λ1mλ1
,

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

. The arbitrari-

ness of λ < λ∗ shows that λ 7→ Iλ(uλ) is strictly decreasing in λ ∈
(

Kd

mpB(d,c1)
, λ∗

)

.

We now present the following example to illustrate Corollary 3.1.
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Example 3.1. Let a = 0, b = 1, α = β = 1, γ = 1, σ = 2, A = 0, B = 10, p = 2,

h(x, t) = 1+x+ ♣ sin t♣ for every (x, t) ∈ [0, 1]×R and f(x, t) = 1
106

(

t9e−t(10−t) sin x
)

for every t ∈ R. By the expression of f , we have F (x, t) = 1
106

(

t10e−t sin x
)

for every

t ∈ R. We observe that m = 1, and M = 3. Choosing d = 10, c1 = 1
10

, c2 = 102, since

Q(c1) = 2
10

, Q(c2) = 2 × 102, Kd = 102, we see that all conditions in Corollary 3.1 are
satisfied. Therefore, taking Remark 3.2 it follows that for each

λ ∈





102

9180e−10
,
213 × 57375e−200

6



,

the problem


























−(ϕp(u′))′ =



λf(u) +
∫ u′(x)

0

∂

∂x

(

(p − 1)♣τ ♣p−2

1 + x + ♣ sin τ ♣

)

dτ





×(1 + x + ♣ sin u′(x)♣), x ∈ (0, 1),

u(0) − u′(0) = 0, u(1) + 2u′(1) = 10,

has at least two nontrivial solutions u1λ and u2λ in X such that

lim
λ→0+

∥uiλ∥ = 0

and the real function

λ →
∫ b

a
H(x, u′

iλ(x))dx + H

(

0, uiλ(0)



+
σ

γ
H

(

1, −
1

2
uiλ(1) +

1

2
10



+
λ

106

∫ 1

0
t10e−t sin uiλ(x)dx,

for i = 1, 2.
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SOME REMARKS ON THE RANDIĆ ENERGY OF GRAPHS

Ş. B. BOZKURT ALTINDAĞ1, I. MILOVANOVIĆ2, AND E. MILOVANOVIĆ2

Abstract. Let G be a graph of order n. The Randić energy of G is deĄned as
RE (G) =

∑

n

i=1
|ρi|, where ρ1 ≥ ρ2 ≥ · · · ≥ ρn are the Randić eigenvalues of G. In

this study, we present improved bounds for RE(G) as well as a relationship between
(ordinary) graph energy and RE(G).

1. Introduction

Let G = (V, E), V = {v1, v2, . . . , vn}, be a simple connected graph of order n and
size m, with vertex degree sequence ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, di = d(vi). Denote
by D = diag(d1, d2, . . . , dn) the diagonal matrix of its vertex degrees. If vertices vi

and vj are adjacent in G, it will be denoted as i ∼ j.
Let A = (aij), be the (0, 1) adjacency matrix of G. The eigenvalues of matrix

A, λ1 ≥ λ2 ≥ · · · ≥ λn, are the (ordinary) eigenvalues of G [4]. Some well known
properties of these eigenvalues are [4]:

n
∑

i=1

λi = tr(A) = 0,
n
∑

i=1

λ2
i = tr(A2) =

n
∑

i=1

di = 2m,
n
∏

i=1

λi = det A.

Denote with |λ∗
1| ≥ |λ∗

2| ≥ · · · ≥ |λ∗
n| the non-increasing arrangement of the absolute

values of eigenvalues of G. The notion of (ordinary) graph energy was introduced in
[12]. It is deĄned to be

E(G) =
n
∑

i=1

|λi| =
n
∑

i=1

|λ∗
i |.

Key words and phrases. Graph spectrum, Randić spectrum, graph energy, Randić energy.
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The Randić matrix of G [2] is deĄned as

R = R(G) = D−1/2AD−1/2.

The eigenvalues of matrix R , ρ1 ≥ ρ2 ≥ · · · ≥ ρn, form the Randić spectrum of G.
Some properties of Randić eigenvalues are (see, e.g., [2]):

n
∑

i=1

ρi = tr(R) = 0,
n
∑

i=1

ρ2
i = tr(R2) = 2R−1(G),

where R−1(G) is a vertexŰdegree based graph invariant introduced in [3] deĄned as

R−1(G) =
∑

i∼j

1

didj

.

It is known as general Randić index R−1, as well as modiĄed second Zagreb index
[24].

In [14] it was proven that the following identity is valid

(1.1) det R =
det A
∏n

i=1 di

.

The other two vertexŰdegree based topological indices that are of interest for the
present paper are the Ąrst Zagreb index [17]

M1(G) =
n
∑

i=1

d2
i =

∑

i∼j

(di + dj),

and the inverse degree index [9] deĄned as

ID(G) =
n
∑

i=1

1

di

=
∑

i∼j

(

1

d2
i

+
1

d2
j



.

Denote with |ρ∗
1| ≥ |ρ∗

2| ≥ · · · ≥ |ρ∗
n| the non-increasing arrangement of the absolute

values of Randić eigenvalues of G. The Randić energy of G is deĄned as [2]

RE(G) =
n
∑

i=1

|ρi| =
n
∑

i=1

|ρ∗
i |.

More on its mathematical properties can be found in [1Ű3,5, 7, 14,20,22].
In this paper, we obtain improved bounds for RE(G) as well as a relationship

between E(G) and RE(G).

2. Preliminaries

In this section we recall some results from spectral graph theory and analytical
inequalities that are of interest for the present paper.

Lemma 2.1 ([20]). The Randić spectral radius is ρ1 = 1.

Remark 2.1. In [14] it was observed that when G ∼= Kn then ρ1 = 0. Therefore, if G

has at least one edge, then ρ1 = 1.
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Let G1
∨

G2 denote the complete product of two graphs G1 and G2. This graph is
obtained from G1 ∪ G2 by joining every vertex of G1 with every vertex of G2.

Lemma 2.2 ([8]). Let G be a connected graph of order n with maximum vertex degree

∆ = n − 1. Then |ρ2| = |ρ3| = · · · = |ρn| if and only if G ∼= Kn, or G ∼= K1
∨

r K2,

with n = 2r + 1 (r ≥ 2).

Lemma 2.3 ([20]). Let G be a connected graph of order n. Then

(2.1) RE(G) ≤ 1 +
√

(n − 1)(2R−1(G) − 1).

Remark 2.2. The inequality (2.1) was also proved in [19, 21], as well as in [5] as a
special case of one more general result. In [8] it was proved that when ∆ = n − 1,
equality in (2.1) holds if and only if G ∼= Kn, or G ∼= K1

∨

r K2, with n = 2r + 1
(r ≥ 2).

Lemma 2.4 ([1]). Let G be a connected bipartite graph of order n ≥ 2. Then

(2.2) RE(G) ≤ 2 +
√

(n − 2)(2R−1(G) − 2).

Remark 2.3. The inequality (2.2) was also proved in [21]. In [8] it was proven that
equality in (2.2) holds if and only if G ∼= Kp,q, p + q = n, for odd n.

Lemma 2.5 ([11]). Let G be a connected bipartite graph of order n ≥ 3 with Randić

eigenvalues ρ1 = 1 ≥ ρ2 ≥ · · · ≥ ρn−1 ≥ ρn = −1 and let ρ = max2≤i≤n−1 {|ρi|}.

Then, for any real k, ρ ≥ k ≥
√

2R−1(G)−2
n−2

, holds

(2.3) RE(G) ≤ 2 + k +
√

(n − 3)(2R−1(G) − 2 − k2).

Equality holds if G is a complete bipartite graph, in which case k = 0.

Remark 2.4. In [18, Theorem 3.4] it was claimed that when

(2.4)
1

∆
≥
√

2R−1(G) − 1

n − 1
,

then

(2.5) RE(G) ≤ 1 +
1

∆
+

√

(n − 2)


2R−1(G) − 1 − 1

∆2



,

which would mean that (2.5) is stronger than (2.1). However, if (2.4) is true, then
∆ ≥ n − 1, which is not possible. Therefore, the inequality (2.5) is not correct.

Lemma 2.6 ([6, 18]). Let G be a connected graph of order n. Then

(2.6) RE(G) ≥ 1 + (n − 1)

(

| det A|
∏n

i=1 di


1

n−1

.

The following analytical inequality would be used in proofs of theorems in the
present paper.
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Lemma 2.7 ([23]). Let p = (pi), i = 1, 2, . . . , n, be a sequence of positive real

numbers and a = (ai) and b = (bi), i = 1, 2, . . . , n, two similarly ordered sequences of

nonŰnegative real numbers. Then

(2.7)
n
∑

i=1

pi

n
∑

i=1

piaibi ≥
n
∑

i=1

piai

n
∑

i=1

pibi.

When a = (ai) and b = (bi), i = 1, 2, . . . , n, are of different monotonicity, then opposite

inequality is valid. Equality holds if and only if a1 = · · · = an or b1 = · · · = bn.

3. Main Results

In the next theorem we establish a lower bound on RE(G).

Theorem 3.1. Let G be a connected graph of order n. Then, for any real k, |ρ∗
2| ≥

k ≥
√

2R−1(G)−1
n−1

, holds

(3.1) RE(G) ≥ 1 + k + (n − 2)

(

| det A|
k
∏n

i=1 di


1

n−2

.

Equality holds if and only if G is a graph with the property ρ1 = |ρ∗
1| = 1, |ρ∗

2| = k,

and |ρ∗
i | =

√

2R−1(G)−1−k2

n−2
, for i = 3, 4, . . . , n.

Proof. Using arithmetic-geometric mean inequality (see, e.g., [23]), Lemma 2.1 and
(1.1) we obtain

RE(G) =
n
∑

i=1

|ρ∗
i | = 1 + |ρ∗

2| +
n
∑

i=3

|ρ∗
i |

≥1 + |ρ∗
2| + (n − 2)

(

| det R|
|ρ∗

2|


1

n−2

=1 + |ρ∗
2| + (n − 2)

(

| det A|
|ρ∗

2|
∏n

i=1 di


1

n−2

.(3.2)

Let us consider the following function deĄned by

f(k) = x + (n − 2)

(

| det A|
x
∏n

i=1 di


1

n−2

.

Observe that f is increasing for x ≥


| det A|
∏

n

i=1
di


1

n−1

. Considering Lemmas 2.1 and 2.3

together with (1.1), for any real k, |ρ∗
2| ≥ k ≥

√

2R−1(G)−1
n−1

, we have that

|ρ∗
2| ≥ k ≥

√

2R−1(G) − 1

n − 1
≥ RE(G) − 1

n − 1
=

∑n
i=2 |ρ∗

i |
n − 1

≥
(

n
∏

i=2

|ρ∗
i |


1

n−1

=

(

| det A|
∏n

i=1 di


1

n−1

.
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Then, we deduce that f(|ρ∗
2|) ≥ f(k). Combining this with (3.2), the inequality (3.1)

is obtained. The equality in (3.1) holds if and only if

|ρ∗
2| = k and |ρ∗

3| = · · · = |ρ∗
n|.

Since
∑n

i=2 |ρ∗
i |2 = 2R−1(G) − 1, the above conditions imply that |ρ∗

3| = · · · = |ρ∗
n| =

√

2R−1(G)−1−k2

n−2
. This completes the proof. □

Corollary 3.1. Let G be a connected graph of order n. Then

(3.3) RE(G) ≥ 1 +

√

2R−1(G) − 1

n − 1
+ (n − 2)





| det A|
√

2R−1(G)−1
n−1

∏n
i=1 di





1

n−2

.

If the maximum vertex degree ∆ is equal to n − 1, the equality in (3.3) holds if and

only if G ∼= Kn, or G ∼= K1
∨

r K2, with n = 2r + 1 (r ≥ 2).

Proof. The inequality (3.3) is obtained from (3.1) for k =
√

2R−1(G)−1
n−1

. Now, assume

that equality in (3.3) holds. Then

|ρ∗
2| =

√

2R−1(G) − 1

n − 1
and |ρ∗

3| = · · · = |ρ∗
n|.

Since
∑n

i=2 |ρ∗
i | = 2R−1(G) − 1, we get

|ρ∗
3| = · · · = |ρ∗

n| =

√

2R−1(G) − 1

n − 1
.

The above results state that |ρ∗
2| = |ρ∗

3| = · · · = |ρ∗
n|, that is |ρ2| = |ρ3| = · · · = |ρn|.

Then, by Lemma 2.2 if ∆ = n − 1, the equality in (3.3) holds if and only if G ∼= Kn,
or G ∼= K1

∨

r K2, with n = 2r + 1 (r ≥ 2). □

Remark 3.1. The lower bounds (3.1) and (3.3) are stronger than the lower bound
(2.6). Moreover, by Theorem 3.1, it is possible to derive stronger lower bound than

(3.3) using any real k such that |ρ∗
2| ≥ k ≥

√

2R−1(G)−1
n−1

.

In the next theorem we establish a relationship between Randić energy and general
Randić index R−1.

Theorem 3.2. Let G be a connected graph of order n ≥ 3. Then, for any real k, such

that |ρ∗
2| ≥ k ≥

√

2R−1(G)−1
n−1

, we have

(3.4) RE(G) ≤ 1 + k +
√

(n − 2)(2R−1(G) − 1 − k2).

Equality holds if and only if G is a graph with the property ρ1 = |ρ∗
1| = 1, |ρ∗

2| = k

and |ρ∗
i | =

√

2R−1(G)−1−k2

n−2
, for i = 3, 4, . . . , n.

Proof. By the CauchyŰSchwarz inequality (see, e.g., [23]), we have that

n
∑

i=3

|ρ∗
i | ≤

(

n
∑

i=3

1

1/2 ( n
∑

i=3

|ρ∗
i |2
1/2

,
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that is

RE(G) ≤ |ρ∗
1| + |ρ∗

2| +
√

(n − 2)(2R−1(G) − |ρ∗
1|2 − |ρ∗

2|2).
By Lemma 2.1, we have that ρ1 = |ρ∗

1| = 1. Considering this fact with the above
inequality, we get

(3.5) RE(G) ≤ 1 + |ρ∗
2| +

√

(n − 2)(2R−1(G) − 1 − |ρ∗
2|2).

Now, observe the function

f(x) = x +
√

(n − 2)(2R−1(G) − 1 − x2), x ≥ 0.

This function is monotone decreasing for x ≥
√

2R−1(G)−1
n−1

. Therefore for any k ≥ 0

with the property |ρ∗
2| ≥ k ≥

√

2R−1(G)−1
n−1

, holds that f(|ρ∗
2|) ≤ f(k). From this

inequality and (3.5) we obtain (3.4).
The equality case for (3.4) can be proved similarly as in case of Theorem 3.1. □

Remark 3.2. When k =
√

2R−1(G)−1
n−1

, from (3.4) the inequality (2.1) is obtained, which

means that inequality (3.4) is stronger than (2.1).

Remark 3.3. Recall that the Randić spectrum of a bipartite graph is symmetric with
respect to the origin, that is, ρi = −ρn−i+1, for i = 1, 2, . . . , n [10]. In this case,
|ρ∗

1| = ρ1 = 1 = |ρn| = |ρ∗
2|. On the other hand, ρ = |ρ∗

3| = |ρ∗
4|.

Having in mind the above remark, by a similar procedure as in Theorem 3.2, the
following result can be proven.

Theorem 3.3. Let G be a connected bipartite graph of order n ≥ 5. Then, for any

real k such that |ρ∗
3| ≥ k ≥

√

2R−1(G)−2
n−2

, we have

(3.6) RE(G) ≤ 2 + 2k +
√

(n − 4)(2R−1(G) − 2 − 2k2).

Equality holds if and only if G is a graph with the property ρ1 = |ρ∗
1| = |ρ∗

2| = 1,

|ρ∗
3| = |ρ∗

4| = k and |ρ∗
i | =

√

2R−1(G)−2−2k2

n−4
, for i = 5, . . . , n.

Remark 3.4. When k =
√

2R−1(G)−2
n−2

, from (3.6) the inequality (2.2) is obtained. Fur-

thermore, the inequality (3.6) is stronger than (2.2) and (2.3).

Theorem 3.4. Let G be a connected graph of order n ≥ 2. Then

(3.7) RE(G) ≤ 1 +

√

(n − 1)


2R−1(G) − 1 − 1

2
(|ρ∗

2| − |ρ∗
n|)2



.

Equality holds if and only if G is a graph with the property ρ1 = |ρ∗
1| = 1 and

|ρ∗
3| = · · · = |ρ∗

n−1| =
|ρ∗

2
|+|ρ∗

n|

2
.
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Proof. Based on the LagrangeŠs identity (see e.g. [23]), we have that

(n − 1)
n
∑

i=2

|ρ∗
i |2 −

(

n
∑

i=2

|ρ∗
i |
2

=
∑

2≤i<j≤n

(|ρ∗
i | − |ρ∗

j |)2

≥(|ρ∗
2| − |ρ∗

n|)2 +
n−1
∑

i=3

(

(|ρ∗
i | − |ρ∗

n|)2 + (|ρ∗
2| − |ρ∗

i |)2


≥(|ρ∗
2| − |ρ∗

n|)2 +
1

2

n−1
∑

i=3

(|ρ∗
2| − |ρ∗

n|)2(3.8)

=
n − 1

2
(|ρ∗

2| − |ρ∗
n|)2.

Since

(n − 1)
n
∑

i=2

|ρ∗
i |2 −

(

n
∑

i=2

|ρ∗
i |
2

= (n − 1)(2R−1(G) − 1) − (RE(G) − 1)2,

from (3.8) the inequality (3.7) is obtained.
Equality in (3.8) holds if and only if |ρ∗

3| = · · · = |ρ∗
n−1| and |ρ∗

i | − |ρ∗
n| = |ρ∗

2| − |ρ∗
i |,

for i = 3, . . . , n−1, which implies that equality in (3.7) holds if and only if ρ1 = |ρ∗
1| = 1

and |ρ∗
3| = · · · = |ρ∗

n−1| =
|ρ∗

2
|+|ρ∗

n|

2
. □

Remark 3.5. Let us note that the inequality (3.7) is stronger than (2.1).

The proof of the next theorem is analogous to that of Theorem 3.4, hence omitted.

Theorem 3.5. Let G be a connected bipartite graph of order n ≥ 4. Then

(3.9) RE(G) ≤ 2 +

√

(n − 2)


2R−1(G) − 2 − 1

2
(|ρ∗

3| − |ρ∗
n|)2



.

Equality holds if and only if G is a graph with the property ρ1 = |ρ∗
1| = |ρ∗

2| = 1 and

|ρ∗
4| = · · · = |ρ∗

n−1| =
|ρ∗

3
|+|ρ∗

n|

2
.

Remark 3.6. Notice that the inequality (3.9) is stronger than (2.2).

We now give a relationship between E(G) and RE(G).

Theorem 3.6. Let G be a graph of order n ≥ 2 and size m, without isolated vertices.

Then we have

(3.10) E(G)RE(G) ≤ 2n
√

mR−1(G).

Equality holds if and only if G ∼= n
2
K2, for even n.

Proof. For pi = 1, ai = |λ∗
i |, bi = |ρ∗

i |, i = 1, 2, . . . , n, the inequality (2.7) becomes

n
∑

i=1

1
n
∑

i=1

|λ∗
i | |ρ∗

i | ≥
n
∑

i=1

|λ∗
i |

n
∑

i=1

|ρ∗
i |,
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that is

(3.11) E(G)RE(G) ≤ n
n
∑

i=1

|λ∗
i | |ρ∗

i |.

On the other hand, having in mind CauchyŰSchwarz inequality, we have that

n
n
∑

i=1

|λ∗
i | |ρ∗

i | ≤ n

(

n
∑

i=1

|λ∗
i |2
1/2 ( n

∑

i=1

|ρ∗
i |2
1/2

,

that is

(3.12) n
n
∑

i=1

|λ∗
i | |ρ∗

i | ≤ 2n
√

mR−1(G).

Now, from (3.11) and (3.12) we arrive at (3.10).
Equality in (3.11) holds if and only if |λ∗

1| = · · · = |λ∗
n|, or |ρ∗

1| = · · · = |ρ∗
n|.

Equality in (3.12) holds if and only if |λ∗
i | = C |ρ∗

i |, C = Const, for i = 1, 2, . . . , n.
Thus, equalities in both (3.11) and (3.12) hold if and only if |λ∗

1| = · · · = |λ∗
n| and

|ρ∗
1| = · · · = |ρ∗

n|. Since G has no isolated vertices, equality in (3.10) holds if and only
if G ∼= n

2
K2, for even n. □

Recall that the Sombor energy of a graph G, denoted by ESO(G), is introduced
as the sum of the absolute values of the eigenvalues of its Sombor matrix [13]. The
following relationship between graph energy and Sombor energy can be found in [15].

Theorem 3.7 ([15]). If G is a bipartite graph whose all cycles (if any) have size not

divisible by 4, then

ESO (G) ≤
√

2∆E (G) .

From Theorem 3.6 and Theorem 3.7, we directly have the following.

Corollary 3.2. If G is a bipartite graph whose all cycles (if any) have size not divisible

by 4, then

ESO (G) RE(G) ≤ 2∆n
√

2mR−1(G).

Corollary 3.3. Let G be a graph of order n ≥ 2 and size m, without isolated vertices.

Then we have

E(G) ≤ n
√

mR−1(G).

Proof. In [3] it was proven that RE(G) ≥ 2. Considering this with inequality (3.10)
we obtain the required result. □

Corollary 3.4. Let G be a graph of order n ≥ 2 and size m, without isolated vertices.

Then we have

(3.13) E(G) ≤ n

√

M2(G)

m
,

where M2(G) =
∑

i∼j didj is the second Zagreb index [16].
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Proof. In [3] it was also proven that

RE(G) ≥ 2R−1(G).

From the above and inequality (3.10) we obtain

(3.14) E(G) ≤ n

√

m

R−1(G)
.

On the other hand, by the inequality between arithmetic and harmonic means (see,
e.g., [23]), we have that

M2(G)R−1(G) ≥ m2.

Combining the above and inequality (3.14) we arrive at (3.13). □
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k−FRACTIONAL OSTROWSKI TYPE INEQUALITIES VIA

(s, r)−CONVEX

ALI HASSAN1 AND ASIF R. KHAN2

Abstract. We introduce the generalized class named it the class of (s, r)−convex
in mixed kind, this class includes s−convex in 1st and 2nd kind, P−convex, quasi
convex and the class of ordinary convex. Also, we state the generalization of
the classical Ostrowski inequality via k−fractional integrals, which is obtained for
functions whose first derivative in absolute values is (s, r)−convex in mixed kind.
Moreover, we establish some Ostrowski type inequalities via k−fractional integrals
and their particular cases for the class of functions whose absolute values at certain
powers of derivatives are (s, r)−convex in mixed kind by using different techniques
including Hölder’s inequality and power mean inequality. Also, various established
results would be captured as special cases. Moreover, some applications in terms of
special means are given.

1. Introduction

In almost every field of science, inequalities play an important role. Although it is
very vast discipline but our focus is mainly on Ostrowski type inequalities. In 1938,
Ostrowski established the following interesting integral inequality for differentiable
mappings with bounded derivatives. This inequality is well known in the literature
as Ostrowski inequality which is stated as follows.

Key words and phrases. Ostrowski inequality, convex function, power mean inequality, Hölder’s
inequality.
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Theorem 1.1 ([14]). Let f : [a, b] → R be differentiable function on (a, b), ♣f ′(t)♣ ≤ M,

for all t ∈ (a, b). Then

(1.1)

∣

∣

∣

∣

∣

f(x) − 1

b − a

∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤ M(b − a)





1

4
+

(

x − a+b
2

b − a

)2


 ,

for all x ∈ (a, b).

Also, one can see the numerous variants and applications in [5]-[11]. Nowadays,
with the increasing demand of researchers for the study of natural phenomena, the
use of fractional differential operators and fractional differential equations has become
an effective means to achieve this goal. Compared with integer order operators,
fractional operators, which can simulate natural phenomena better, are a class of
operators developed in recent years. This kind of operators have expanded and have
been widely used in modeling real-world phenomena such as biomathematics, electrical
circuits, medicine, disease transmission and control.

On other hand convexity is very simple and ordinary concept. Due to its massive
applications in industry and business, convexity has a great influence on our daily life.
In the solution of many real world problems the concept of convexity is very decisive.
The problems faced in constrained control and estimation are convex. Geometrically,
a real valued function is said to be convex if the line segment segment joining any two
of its points lies on or above the graph of the function in Euclidean space. First we
present the important classes of convex functions from literature.

Definition 1.1 ([3]). The function g : I → R, I ⊂ (0, ∞), is convex, if

g (tx + (1 − t)y) ≤ tg(x) + (1 − t)g(y),

for all x, y ∈ I, t ∈ [0, 1].

Definition 1.2 ([15]). Let function s ∈ (0, 1], the g : I → [0, ∞), I ⊂ (0, ∞), is
s−convex in 1st kind, if

g (tx + (1 − t)y) ≤ tsg(x) + (1 − ts)g(y),

for all x, y ∈ I, t ∈ [0, 1].

Definition 1.3 ([3]). The g : I → [0, ∞), I ⊂ (0, ∞), is quasi convex, if

g (tx + (1 − t)y) ≤ max¶g(x), g(y)♢,

for all x, y ∈ I, t ∈ [0, 1].

Definition 1.4 ([15]). Let s ∈ (0, 1], the function g : I → [0, ∞), I ⊂ (0, ∞), is
s−convex in 2nd kind, if

g (tx + (1 − t)y) ≤ tsg(x) + (1 − t)sg(y),

for all x, y ∈ I, t ∈ [0, 1].
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Definition 1.5 ([3]). The function g : I → [0, ∞), I ⊂ (0, ∞), is a P−convex, if
g(x) ≥ 0 and for all x, y ∈ I and t ∈ [0, 1],

g (tx + (1 − t)y) ≤ g(x) + g(y).

An important area in the field of applied and pure mathematics is the integral
inequality. As it is known, inequalities aim to develop different mathematical meth-
ods. Nowadays, we need to seek accurate inequalities for proving the existence and
uniqueness of the mathematical methods. The concept of convexity plays a strong
role in the field of inequalities due to the behavior of its definition and its properties.
Furthermore, there is a strong correlation between convexity and symmetry concepts.

Definition 1.6 ([12]). The Riemann-Liouville integrals Iε
a+f and Iε

b−
f of f ∈ L1([a, b])

having order ε > 0 with 0 ≤ a < b are defined by

Iε
a+f(x) =

1

Γ (ε)

∫ x

a

f(t)

(x − t)1−ε dt, x > a,

and

Iε
b−f(x) =

1

Γ (ε)

∫ b

x

f(t)

(t − x)1−ε dt, x < b,

respectively. Here Γ (ε) =
∫

∞

0 e−uuε−1du is the Gamma function and I0
a+f(x) =

I0
b−

f(x) = f(x). We also make use of Euler’s beta function, which is for x, y > 0
defined as

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt =

Γ(x)Γ(y)

Γ(x + y)
.

Definition 1.7 ([12]). The k−fractional integrals kJε
a+f and kJε

b−
f of f ∈ L1([a, b])

having order ε > 0 with 0 ≤ a < b, k > 0 are defined by

kJε
a+f(x) =

1

kΓk(ε)

∫ x

a

f(t)

(x − t)1−
ε
k

dt, x > a,

and
kJε

b−f(x) =
1

kΓk(ε)

∫ b

x

f(t)

(t − x)1−
ε
k

dt, x < b,

respectively. Here Γk(ε) =
∫

∞

0 e−
uk

k uε−1du is the generalized gamma function and
1J0

a+f(x) = 1J
0
b−f(x) = f(x).

Throught this paper, we denote

Yf (ε, k, a, x, b) =





(x − a)
ε
k + (b − x)

ε
k

(b − a)



 f(x) − kΓk(ε + 1)

b − a

(

kJε
x−f(a) + kJε

x+f(b)


,

Zf (ε, x, a, b) =

(

(x − a)ε + (b − x)ε

b − a

)

f(x) − Γ (ε + 1)

b − a
(Iε

x−f(a) + Iε
x+f(b)) ,

εκb
a(x) =

(

(x − a)ε+1 + (b − x)ε+1

b − a

)

.
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In order to prove our main results we need the following lemma.

Lemma 1.1 ([12]). Let f : I → R, I ⊂ (0, ∞), be an absolutely continuous function

and a, b ∈ I, a < b. If f ′ ∈ L1[a, b], ε, k > 0, then

Yf (ε, k, a, x, b) =
(x − a)

ε
k

+1

b − a

∫ 1

0
t

ε
k f ′ (tx + (1 − t)a) dt

− (b − x)
ε
k

+1

b − a

∫ 1

0
t

ε
k f ′ (tx + (1 − t)b) dt.

Theorem 1.2 ([12]). Let f : I → R be differentiable mapping on I0, with a, b ∈ I, a <

b, f ′ ∈ L1[a, b] and for ε, k > 1, Montgomery identity for k−fractional integrals holds:

f(x) =
kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) − kJ

ε−1

a (P1(x, b)f(b)) + kJ
ε

a(P1(x, b)f ′(b)),

where P1(x, t) is the fractional Peano Kernel defined by:

P1(x, t) =











t−a
b−a

· kΓk(ε)

(b−x)
ε
k

−1
, if t ∈ [a, x],

t−b
b−a

· kΓk(ε)

(b−x)
ε
k

−1
, if t ∈ (x, b].

Let [a, b] ⊆ (0, +∞), we may define special means as follows

(a) the arithmetic mean

A = A(a, b) :=
a + b

2
;

(b) the geometric mean

G = G(a, b) :=
√

ab;

(c) the harmonic mean

H = H(a, b) :=
2

1
a

+ 1
b

;

(d) the logarithmic mean

L = L(a, b) :=







a, if a = b,
b−a

ln b−ln a
, if a ̸= b;

(e) the identric mean

I = I(a, b) :=















a, if a = b,

1

e

(

bb

aa

)

1

b−a

, if a ̸= b;

(f) the p−logarithmic mean

Lp = Lp(a, b) :=







a, if a = b,
(

bp+1
−ap+1

(p+1)(b−a)


1

p
, if a ̸= b,

where p ∈ R \ ¶0, −1♢.
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2. k−Fractional Ostrowski Type Inequalities via (s, r)−Convex

In this section, we introduce the concept of (s, r)−convex in mixed kind. This class
contains many classes of convex from literature of convex analysis. The main aim of
this study is to reveal new generalized-Ostrowski-type inequalities via (s, r)−convex
using k−fractional operator which generalizes Riemann-Liouville integral operator.

Definition 2.1. Let (s, r) ∈ (0, 1]2, the function g : I → [0, ∞), I ⊂ (0, ∞), is
(s, r)−convex in mixed kind, if

(2.1) g (tx + (1 − t)y) ≤ trsg(x) + (1 − tr)sg(y),

for all x, y ∈ I, t ∈ [0, 1].

Remark 2.1. In Definition 2.1, we can see the following.

(a) If s = 1 and r ∈ [0, 1] in (2.1), we get r−convex in 1st kind.
(b) If r → 0 and s = 1, in (2.1), we get quasi convex.
(c) If r = 1 and s ∈ [0, 1] in (2.1), we get s−convex in 2nd kind.
(d) If s → 0 and r = 1 in (2.1), we get P−convex.
(e) If s = r = 1 in (2.1), gives us ordinary convex.

Now, we will generalize the Ostrowski type inequalities via (s, r)−convex by using
k−fractional integral operator.

Theorem 2.1. Let f : [a, b] → R be differentiable on (a, b), f ′ : [a, b] → R be integrable

on [a, b] and g : I ⊂ R → R, be an (s, r)−convex function in mixed sense, then we

have the inequalities

g

(

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

)

(2.2)

≤(b − x)1−
ε
k

(b − a)rs

(

(x − a)rs−1
∫ x

a
g

(

(t − a)f ′(t)

(b − t)1−
ε
k

)

dt

+
((b − a)r − (x − a)r)s

b − x

∫ b

x
g

(

(t − b)f ′(t)

(b − t)1−
ε
k

)

dt

)

,

for all x ∈ (a, b) .
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Proof. Utilizing the Theorem 1.2, we get

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

=kJε
a(P1(x, b)f ′(b))

=
1

kΓk(ε)

∫ b

a
P1(x, t)

f ′(t)

(b − t)1−
ε
k

dt

=


x − a

b − a



(

(b − x)1−
ε
k

x − a

∫ x

a

(t − a) f ′(t)

(b − t)1−
ε
k

dt

)

+


1 −


x − a

b − a



(

(b − x)1−
ε
k

b − x

∫ b

x

(t − b) f ′(t)

(b − t)1−
ε
k

dt

)

,

for all x ∈ (a, b) . Next by using the (s, r)−convex function in mixed sense of g : I ⊂
[0, ∞) → R, we get

g

(

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

)

≤


x − a

b − a

rs

g

(

(b − x)1−
ε
k

x − a

∫ x

a

(t − a) f ′(t)

(b − t)1−
ε
k

dt

)

+


1 −


x − a

b − a

rs

g

(

(b − x)1−
ε
k

b − x

∫ b

x

(t − b) f ′(t)

(b − t)1−
ε
k

dt

)

,

for all x ∈ (a, b) . Applying Jensen’s integral inequality [6], we get (2.2). □

Corollary 2.1. In Theorem 2.1, one can see the following.

(a) If s = 1 and r ∈ (0, 1] in (2.2), then Ostrowski inequality for r−convex functions

in 1st kind:

g

(

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

)

≤(b − x)1−
ε
k

(b − a)r

(

(x − a)r−1
∫ x

a
g

(

(t − a)f ′(t)

(b − t)1−
ε
k

)

dt

+
(b − a)r − (x − a)r

(b − x)

∫ b

x
g

(

(t − b)f ′(t)

(b − t)1−
ε
k

)

dt

)

.

(b) If s = 1 and r → 0 in (2.2), we get quasi-convex function

g

(

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

)

≤(b − x)1−
ε
k

(x − a)

∫ x

a
g

(

(t − a)f ′(t)

(b − t)1−
ε
k

)

dt.
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(c) If r = 1 and s ∈ [0, 1) in (2.2), then fractional Ostrowski type inequality for

s−convex functions in 2nd kind:

g

(

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

)

≤(b − x)1−
ε
k

(b − a)s

(

(x − a)s−1
∫ x

a
g

(

(t − a)f ′(t)

(b − t)1−
ε
k

)

dt + (b − x)s−1
∫ b

x
g

(

(t − b)f ′(t)

(b − t)1−
ε
k

)

dt

)

.

(d) If r = 1 and s → 0 in (2.2), then fractional Ostrowski type inequality for

P−convex functions:

g

(

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

)

≤(b − x)1−
ε
k

(

1

x − a

∫ x

a
g

(

(t − a)f ′(t)

(b − t)1−
ε
k

)

dt +
1

b − x

∫ b

x
g

(

(t − b)f ′(t)

(b − t)1−
ε
k

)

dt

)

.

(e) If s = r = 1 in (2.2), then fractional Ostrowski type inequality for convex

functions:

g

(

f(x) − kΓk(ε)

b − a
(b − x)1−

ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

)

≤(b − x)1−
ε
k

b − a

(

∫ x

a
g

(

(t − a)f ′(t)

(b − t)1−
ε
k

)

dt +
∫ b

x
g

(

(t − b)f ′(t)

(b − t)1−
ε
k

)

dt

)

.

Theorem 2.2. Let f : [a, b] → R, [a, b] ⊂ (0, ∞), be an absolutely continuous, and

f ′ ∈ L1[a, b]. If ♣f ′♣ is (s, r)−convex, ♣f ′(x)♣ ≤ M, for all x ∈ [a, b], and ε, k > 0, then

(2.3)

♣Yf (ε, k, a, x, b)♣ ≤ M

∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt



(

(x − a)
ε
k

+1

b − a
+

(b − x)
ε
k

+1

b − a

)

.

Proof. By using the Lemma 1.1,

♣Yf (ε, k, a, x, b)♣ ≤ (x − a)
ε
k

+1

b − a

∫ 1

0
t

ε
k ♣f ′ (tx + (1 − t)a)♣ dt

+
(b − x)

ε
k

+1

b − a

∫ 1

0
t

ε
k ♣f ′ (tx + (1 − t)b)♣ dt.

Since ♣f ′♣ is (s, r)−convex and by using ♣f ′(x)♣ ≤ M, we get

♣Yf (ε, k, a, x, b)♣ ≤ (x − a)
ε
k

+1

b − a

∫ 1

0
t

ε
k

(

trs♣f ′(x)♣ + (1 − tr)s♣f ′(a)♣


dt

+
(b − x)

ε
k

+1

b − a

∫ 1

0
t

ε
k

(

trs♣f ′(x)♣ + (1 − tr)s♣f ′(b)♣


dt.



534 A. HASSAN AND A. R. KHAN

Therefore,

♣Yf (ε, k, a, x, b)♣ ≤ (x − a)
ε
k

+1

b − a



♣f ′(x)♣
∫ 1

0
t

ε
k trsdt + ♣f ′(a)♣

∫ 1

0
t

ε
k (1 − tr)sdt



+
(b − x)

ε
k

+1

b − a



♣f ′(x)♣
∫ 1

0
t

ε
k trsdt + ♣f ′(b)♣

∫ 1

0
t

ε
k (1 − tr)sdt



. □

Remark 2.2. In Theorem 2.2, one can also capture the inequalities for s−convex in 1st

and 2nd kind, P−convex and convex via k−fractional integrals by using Remark 2.1.

Corollary 2.2. In Theorem 2.2, one can see for k = 1 the following.

(a) The Ostrowski inequality for (s, r)−convex in mixed kind via fractional inte-

grals:

♣Zf (ε, x, a, b)♣ ≤ M





1

ε + rs + 1
+

B
(

ε+1
r

, s + 1


r





εκb
a(x).

(b) If s = 1 and r ∈ (0, 1] in inequality (2.3), then the Ostrowski inequality for

r−convex in 1st kind via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M





1

ε + r + 1
+

B
(

ε+1
r

, 2


r





εκb
a(x).

(c) If r = 1 and s ∈ (0, 1] in inequality (2.3), then the Ostrowski inequality for

s−convex in 2nd kind via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M



1

ε + s + 1
+ B (ε + 1, s + 1)



εκb
a(x).

(d) If ε = r = 1 and s ∈ (0, 1] in inequality (2.3), then the inequality (2.1) of

Theorem 2 in [1].
(e) If r = 1 and s ∈ (0, 1] in inequality (2.3), then the inequality (2.6) of Theorem

7 in [15].
(f) If s → 0 and r = 1, in inequality (2.3), then the Ostrowski inequality for

P−convex via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M



1

ε + 1
+ B (ε + 1, 1)



εκb
a(x).

(g) If r = s = 1, in inequality (2.3), then the Ostrowski inequality for convex via

fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M



1

ε + 2
+ B (ε + 1, 2)



εκb
a(x).

(h) If ε = r = s = 1, in inequality (2.3), then the Ostrowski inequality (1.1) for

convex.
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Theorem 2.3. Let f : [a, b] → R, [a, b] ⊂ (0, ∞), be an absolutely continuous, and

f ′ ∈ L[a, b]. If ♣f ′♣q is (s, r)−convex for q > 1 and ♣f ′(x)♣ ≤ M, for all x ∈ [a, b], and

ε, k > 0, then

♣Yf (ε, k, a, x, b)♣ ≤ M

L
1

q
−1

(

(x − a)
ε
k

+1

b − a
+

(b − x)
ε
k

+1

(b − a)

)

(2.4)

×
∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt



1

q

,

where

L =
∫ 1

0
t

ε
k dt.

Proof. By using the Lemma 1.1, and Power mean inequality,

♣Yf (ε, k, a, x, b)♣ ≤ (x − a)
ε
k

+1

b − a

∫ 1

0
t

ε
k dt

1−
1

q
∫ 1

0
t

ε
k ♣f ′ (tx + (1 − t)a)♣q dt



1

q

+
(b − x)

ε
k

+1

b − a

∫ 1

0
t

ε
k dt

1−
1

q
∫ 1

0
t

ε
k ♣f ′ (tx + (1 − t)b)♣q dt



1

q

.

Since ♣f ′♣q is (s, r)−convex and ♣f ′(x)♣ ≤ M

♣Yf (ε, k, a, x, b)♣ ≤ M(x − a)
ε
k

+1

L
1

q
−1(b − a)

∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt



1

q

+
M(b − x)

ε
k

+1

L
1

q
−1(b − a)

∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt



1

q

. □

Remark 2.3. In Theorem 2.3, one can also capture the inequalities for s−convex in 1st

and 2nd kind, P−convex and convex via k−fractional integrals by using Remark 2.1.

Corollary 2.3. In Theorem 2.3, one can see for k = 1 the following.

(a) The Ostrowski inequality for (s, r)−convex in mixed kind via fractional inte-

grals:

♣Zf (ε, x, a, b)♣ ≤ M

(ε + 1)1−
1

q





1

ε + rs + 1
+

B
(

ε+1
r

, s + 1


r





1

q

εκb
a(x).

(b) If s = 1 and r ∈ (0, 1] in inequality (2.4), then the Ostrowski inequality for

r−convex in 1st kind via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M

(ε + 1)1−
1

q





1

ε + s + 1
+

B
(

ε+1
s

, 2


s





1

q

εκb
a(x).
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(c) If r = 1 and s ∈ (0, 1] in inequality (2.4), then the Ostrowski inequality for

s−convex in 2nd kind via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M

(ε + 1)1−
1

q



1

ε + s + 1
+ B (ε + 1, s + 1)


1

q
εκb

a(x).

(d) If ε = r = 1, and s ∈ (0, 1] in inequality (2.4), then the inequality (2.3) of

Theorem 4 in [1].
(e) If r = 1 and s ∈ (0, 1] in inequality (2.4), then the inequality (2.8) of Theorem

9 in [15].
(f) If r = 1 and s → 0 in inequality (2.4), then the Ostrowski inequality for

P−convex via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M

(ε + 1)1−
1

q



1

ε + 1
+ B (ε + 1, 1)


1

q
εκb

a(x).

(g) If r = s = 1, in inequality (2.4), then the Ostrowski inequality for convex via

fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M

(ε + 1)1−
1

q



1

ε + 2
+ B (ε + 1, 2)


1

q
εκb

a(x).

Theorem 2.4. Let f : [a, b] → R, [a, b] ⊂ (0, ∞), be an absolutely continuous,

f ′ ∈ L[a, b]. If ♣f ′♣q is (s, r)−convex, ♣f ′(x)♣ ≤ M, for all x ∈ [a, b], ε, k > 0, and

p, z > 1 with 1
z

+ 1
q

= 1, then

♣Yf (ε, k, a, x, b)♣ ≤ MK
1

z

b − a



1

rs + 1
+

1

r
B



1

r
, s + 1


1

q

×
(

(x − a)
ε
k

+1 + (b − x)
ε
k

+1


,

(2.5)

where

K =
∫ 1

0
t

εz
k dt.

Proof. By using Lemma 1.1, and Hölder’s inequality,

♣Yf (ε, k, a, x, b)♣ ≤ (x − a)
ε
k

+1

b − a

∫ 1

0
t

εz
k dt



1

z
∫ 1

0
♣f ′ (tx + (1 − t)a)♣q dt



1

q

+
(b − x)

ε
k

+1

b − a

∫ 1

0
t

εz
k dt



1

z
∫ 1

0
♣f ′ (tx + (1 − t)b)♣q dt



1

q

.

Since ♣f ′♣q is (s, r)−convex and ♣f ′(x)♣ ≤ M

♣Yf (ε, k, a, x, b)♣ ≤ K
1

z (x − a)
ε
k

+1

b − a



M q

rs + 1
+

M q

r
B



1

r
, s + 1



1

q

+
K

1

z (b − x)
ε
k

+1

b − a



M q

rs + 1
+

M q

r
B



1

r
, s + 1



1

q

. □
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Remark 2.4. In Theorem 2.4, one can also capture the inequalities for s−convex in 1st

and 2nd kind, P−convex and convex via k−fractional integrals by using Remark 2.1.

Corollary 2.4. In Theorem 2.4, one can see for k = 1 the following.

(a) The Ostrowski inequality for (s, r)−convex in mixed kind via fractional inte-

grals:

♣Zf (ε, x, a, b)♣ ≤ M

(εz + 1)
1

z





1

rs + 1
+

B
(

1
r
, s + 1



r





1

q

εκb
a(x).

(b) If s = 1 and r ∈ (0, 1] in inequality (2.5), then the Ostrowski inequality for

r−convex in 1st kind via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M

(εz + 1)
1

z





1

s + 1
+

B
(

1
s
, 2


s





1

q

εκb
a(x).

(c) If r = 1 and s ∈ (0, 1] in inequality (2.5), then the Ostrowski inequality for

s−convex in 2nd kind via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M

(εz + 1)
1

z



1

s + 1
+ B (1, s + 1)


1

q
εκb

a(x).

(d) If ε = r = 1 and s ∈ (0, 1] in inequality (2.5), then the inequality (2.2) of

Theorem 3 in [1].
(e) If r = 1 and s ∈ (0, 1] in inequality (2.5), then the inequality (2.7) of Theorem

8 in [15].
(f) If r = 1, and s → 0 in inequality (2.5), then the Ostrowski inequality for

P−convex via fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ (2)
1

q M

(εz + 1)
1

z

εκb
a(x).

(g) If r = s = 1, in inequality (2.5), then the Ostrowski inequality for convex via

fractional integrals:

♣Zf (ε, x, a, b)♣ ≤ M

(εz + 1)
1

z

εκb
a(x).

3. Applications to Special Means

If we replace f by −f and x = a+b
2

in Theorem 2.1, we get the following.
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Theorem 3.1. Let f : [a, b] → R be differentiable on (a, b), f ′ : [a, b] → R be integrable

on [a, b] and g : I → R, I ⊂ R, be a (s, r)−convex function in mixed sense, then

g







kΓk(ε)
(

b−a
2

1−
ε
k

b − a
kJε

af(b) − f

(

a + b

2

)

− kJε−1
a

(

P1

(

a + b

2
, b

)

f(b)

)







(3.1)

≤ 2ε−1

(b − a)ε

(

1

2sr−1

∫ a

a+b
2

g

(

(t − a)f ′(t)

(b − t)1−
ε
k

)

dt +
(2r − 1)s

2rs−1

∫ a+b
2

b
g

(

(t − b)f ′(t)

(b − t)1−
ε
k

)

dt

)

.

Remark 3.1. In Theorem 3.1, if we put ε = k = 1 in (3.1), we get

g

(

1

b − a

∫ b

a
f(t)dt − f

(

a + b

2

))

≤ 1

b − a

(

1

2sr−1

∫ a+b
2

a
g((a − t)f ′(t))dt +

(2r − 1)s

2rs−1

∫ b

a+b
2

g((b − t)f ′(t))dt

)

.

Remark 3.2. Assume that g : I → R, I ⊂ [0, ∞), is an (s, r)−convex function in
mixed kind.

(a) If ε = k = 1, f(t) = 1
t

in inequality (3.1), where t ∈ [a, b] ⊂ (0, ∞), then we
have

(b − a)g

(

A(a, b) − L(a, b)

A(a, b)L(a, b)

)

≤ 1

2sr−1

∫ a+b
2

a
g



t − a

t2



dt +
(2r − 1)s

2rs−1

∫ b

a+b
2

g

(

t − b

t2

)

dt.

(b) If ε = k = 1, f(t) = − ln t in inequality (3.1), where t ∈ [a, b] ⊂ (0, ∞), then
we have

(b − a)g

(

ln

(

A(a, b)

I(a, b)

))

≤ 1

2sr−1

∫ a+b
2

a
g



t − a

t



dt +
(2r − 1)s

2rs−1

∫ b

a+b
2

g

(

t − b

t

)

dt.

(c) If ε = k = 1, f(t) = tp, p ∈ R \ ¶0, −1♢ in inequality (3.1), where t ∈ [a, b] ⊂
(0, ∞), then we have

(b − a)g
(

Lp
p(a, b) − Ap(a, b)



≤ 1

2sr−1

∫ a+b
2

a
g

(

p (a − t)

t1−p

)

dt +
(2r − 1)s

2rs−1

∫ b

a+b
2

g

(

p (b − t)

t1−p

)

dt.

Remark 3.3. In Theorem 2.3, one can see for ε = k = 1 the following.
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(a) Let x = a+b
2

, 0 < a < b, q ≥ 1 and f : R → R
+, f(t) = tn in (2.4). Then

♣An (a, b) − Ln
n (a, b)♣ ≤ M (b − a)

(2)2−
1

q





1

rs + 2
+

B
(

2
r
, s + 1



r





1

q

.

(b) Let x = a+b
2

, 0 < a < b, q ≥ 1 and f : (0, 1] → R, f(t) = − ln t in (2.4). Then

∣

∣

∣

∣

∣

ln

(

A (a, b)

I (a, b)

)∣

∣

∣

∣

∣

≤ M (b − a)

(2)2−
1

q





1

rs + 2
+

B
(

2
r
, s + 1



r





1

q

.

Remark 3.4. In Theorem 2.4, one can see for ε = k = 1 the following.

(a) Let x = a+b
2

, 0 < a < b, p−1 + q−1 = 1 and f : R → R
+, f(t) = tn in (2.5).

Then

♣An (a, b) − Ln
n (a, b)♣ ≤ M (b − a)

2 (z + 1)
1

z





1

rs + 1
+

B
(

1
r
, s + 1



r





1

q

.

(b) Let x = a+b
2

, 0 < a < b, p−1 + q−1 = 1 and f : (0, 1] → R, f(t) = − ln t in
(2.5). Then

∣

∣

∣

∣

∣

ln

(

A (a, b)

I (a, b)

)∣

∣

∣

∣

∣

≤ M (b − a)

2 (z + 1)
1

z





1

rs + 1
+

B
(

1
r
, s + 1



r





1

q

.

4. Conclusion

Ostrowski inequality is one of the most celebrated inequalities. We can find its
various generalizations and variants in literature. In this paper, we presented the
generalized notion of (s, r)−convex in mixed kind, this class of functions contains
many important classes including class of s−convex in 1st and 2nd kind, P−convex,
quasi convex and the class of convex. In this study, theorems are put forward to
obtain new upper bounds by k−fractional operator for Ostrowski type inequalities.
We have stated our first main result in Section 2, the generalization of Ostrowski
inequality [14] via k−fractional integral and others results obtained by using different
techniques including Hölder’s inequality and power mean inequality. Also, various
established results captured as special cases. Moreover, some applications in terms of
special means was presented at the end.
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STRONGLY EXTENDING MODULAR LATTICES

SHAHABADDIN EBRAHIMI ATANI1, MEHDI KHORAMDEL1,
SABOURA DOLATI PISH HESARI1, AND MAHSA NIKMARD ROSTAM ALIPOUR1

Abstract. In this paper, our purpose is to initiate the study of the concept of
strongly extending modular lattices based on the similar notion of strongly extending
modules. We will prove some basic properties of strongly extending modular lattices
and employ this results to give applications to the category of modules with a Ąxed
hereditary torsion class and Grothendieck categories.

1. Introduction

The notion of CC or extending for modules and related notions is an interesting top-
ics for several authors that were extensively studied in the literature ([18]). A module
M is said to be an extending (or a CS) module provided that every submodule of M is
contained in a direct summand of M as an essential submodule. A module M is called
a FI-extending module provided that each of its fully invariant submodule is essential
in a direct summand ([12]). Another interesting related concepts of the extending
modules is strongly FI-extending ([13, 15]). The strongly FI-extending property of
modules has been used for the existence and description of the FI-extending module
hull of any finitely generated projective module over a semiprime ring ([14]). A module
M is said to be a strongly FI-extending module if each fully invariant submodule is
essentially contained in a fully invariant direct summand. In [19], a subclass of ex-
tending modules, strongly extending modules, introduced and investigated. A module
M is said to be strongly extending provided that each submodule is essential in a fully
invariant direct summand. Recently, the known conditions on modules (extending,

Key words and phrases. Modular lattice, upper continuous lattice, linear lattice morphism, fully
invariant element, strongly extending lattice.
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FI-extending, strongly FI-extending, etc.) have been introduced and considered in
lattices, in order to give some interesting results to Grothendieck categories and the
category of modules with hereditary torsion theories [5–7,9, 10].

When we study the classes of extending, FI-extending, strongly FI-extending lat-
tices, it is an ambition to study the notion of strongly extending in lattices. Also one
of the motivations to study this topic is the following questions.

(1) If a lattice L is strongly extending, then is it true that every complement is
fully invariant?

(2) Is it true that every idempotent linear endomorphism of a lattice L commutes
with another linear endomorphism of L if and only if every complement of L is fully
invariant in L?

This paper is allocated to initiate the strongly extending condition for lattices, and
investigate their properties that are similar to results on modules introduced and
studied in [19]. We will adopt the results from [19] to strongly extending lattices,
however it is not always easy because some theoretical tools and techniques in modules
do not work in lattices.

In Section 2, we recall some preliminaries and definitions about lattices from [1–11].
We recall the useful notion of linear morphisms between two lattices introduced by
Albu and Iosif [5]. This concept is used in our main results. In Section 3, we define the
conditions strongly extending and Abelian for lattices, and some of their structural
properties are studied. We will answer the previous questions affirmatively. We
will show that every idempotent linear endomorphism of a lattice L commutes with
another linear endomorphism of L if and only if D(L) ⊂ FI(L). Also, it is shown that,
a strongly extending lattice L is extending and every idempotent linear endomorphism
of a lattice L commutes with another linear endomorphism of L. Moreover, if L is
complete and strongly extending, then D(L) is a sublattice of L and every its subset
has a greatest lower bound. Further, we prove that the strongly extending condition
of lattices is preserved by their complement intervals, and consider when direct joins
have this property. In Section 3 and Section 4 we exhibit some usage of the results to
Grothendieck categories and the category of modules with a fixed hereditary torsion
class.

2. Preliminaries

Throughout this paper, by L, we will indicate a modular lattice (L,≤,∧,∨, 0, 1)
that has least element 0 and greatest element 1. For any l, k ∈ L, where l ≤ k, let
k/l denote the interval ¶x ∈ L ♣ l ≤ x ≤ k♢. For basic terminology and notation
on lattices, we refer the reader to [4, 16, 17, 20] and [21], but particularly to [4]. For
a lattice L, by D(L), P (L), E(L) and C(L), we denote the set of all complement

elements of L, the set of all pseudo-complement elements of L, the set of all essential

elements of L and the set of all closed elements of L, respectively.
A lattice L is said to be extending or CC if, for any l ∈ L, we have l is essential in

k/0, for some complement interval k/0 in L. Also, L is said to be quasi-continuous
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provided that it is extending and for any two complement elements l1, l2 of L with
l1 ∧ l2 = 0, we have l1 ∨ l2 ∈ D(L) ([8, Definition 1.2]).

By Albu and Iosif [5], a map θ : L → L′ between two lattices L with greatest
element 1L, least element 0L and a lattice L′ with greatest element 1L′ , least element
0L′ is called a linear morphism provided that there exist i ∈ L′ and k ∈ L (k is said
to be a kernel of θ) such that θ(l) = θ(l ∨ k), for each l ∈ L, and f induces a lattice
isomorphism:

θ̄ : 1L/k → i/0L′ , θ̄(l) = θ(l), for all l ∈ 1/k.

Assume that L is a lattice. By [6, Examples 0.2 (2)], if c, d ∈ L and c∧ d = 0, then
the mapping

pd,c : (c ∨ d)/0 → c/0, pd,c(a) := (a ∨ d) ∧ c,

is said to be the canonical projection on c/0, which is a linear morphism (surjective)
and its kernel is d. Notice that if L is a modular lattice, then pd,c(a) = a, for all a ∈ c/0.
In particular, if k ∈ L is a complement of l ∈ L, we will use the notation p̃l,k, the
linear endomorphism of L obtained by composing p̃l,k with the canonical inclusion
mapping i : k/0 → L. If there is not any ambiguity about l, the notation p̃k will be
used instead of p̃l,k.

Throughout this paper, End(L) denotes the collection of all linear endomorphisms
of a modular lattice L (it is a monoid, with respect to the composition “◦” of functions).
We will use the notation fg for the composition f ◦g of two linear morphisms f, g. An
element l ∈ L is said to be a fully invariant element, provided that θ(l) ≤ l for each
θ ∈ End(L) ([9]). By FI(L), we will indicate the set ¶l ∈ L ♣ l is fully invariant in L♢.
A linear endomorphism θ of a modular lattice L is said to be a left semicentral

idempotent of End(L) (or L) if θ2 = θ and θψ = θψθ for all ψ ∈ End(L) ([10]). We
exhibit by Sl(L) the collection of all left semicentral idempotents of L.

It is assumed throughout this paper that a ring R is an associative ring with unity
and all modules are unital right R-modules. The notation Mod − R denotes the
category of all unital right R-modules. We denote by MR a unital right R-module M .
Let L(MR) indicate the lattice of all submodules of a module MR. For submodules T
and H of M , T ≤ H will denote that T is a submodule of H.

3. Strongly Extending Lattices

This section is allocated to introduce and investigate our main concept, namely,
strongly extending lattices and give some properties of this class of lattices and
establish some relations between the notion of strongly extending and the other
notions in the literature. We begin with the following lemma which is a quite useful
in this note.

Lemma 3.1. Let θ be an idempotent linear endomorphism of L. Then θ(1) is a

complement of ker(θ) and p̃θ(1) = θ.
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Proof. Let k := ker(θ). We claim θ(1) ∨ k = 1 and θ(1) ∧ k = 0. As θ commutes
with arbitrary joins ([6, Lemma 06]), θ(θ(1) ∨ k) = θ(θ(1)) ∨ θ(k) = θ(1). Thus,
θ(θ(1) ∨ k) = θ(1). As θ is an isomorphism, θ(1) ∨ k = 1.

Since θ is an isomorphism, we have θ(1) ∧ k = θ(c), for some c ∈ 1/k. Thus,
θ(1) ∧ k = θ(c). Hence,

θ(θ(1) ∧ k) = θ(θ(c)) = θ(c).

As θ(1) ∧ k ≤ k, θ(θ(1) ∧ k) = 0. Therefore, 0 = θ(c) = θ(1) ∧ k, as desired.
Now we show that p̃θ(1) = h. As θ commutes with arbitrary joins and θ(k) = 0,

θ(x ∨ k) = θ(x) ∨ θ(k) = θ(x). Since θ is idempotent,

θ(x ∨ k) =θ(x ∨ k) = θ(x) = θ(θ(x))

=θ(θ(x) ∨ k) = θ(θ(x) ∨ k).

Thus, x ∨ k = θ(x) ∨ k, because θ is a lattice isomorphism. As L is modular and
θ(x) ≤ θ(1),

p̃θ(1)(x) =(x ∨ k) ∧ θ(1)

=(θ(x) ∨ k) ∧ θ(1) = θ(x) ∨ (θ(1) ∧ k)

=θ(x).

It completes the proof. □

Definition 3.1. A lattice L is said to be Abelian, if any idempotent linear endo-
morphism of L is central in End(L) (i.e., commute with any linear endomorphism of
L).

In the following, we provide a characterization for Abelian lattices.

Proposition 3.1. Let L be a lattice. Then the following statements are equivalent:

(1) D(L) ⊆ FI(L);
(2) L is Abelian.

Proof. (1) ⇒ (2) Let θ be an idempotent linear endomorphism of L. Put l := θ(1)
and m = ker(θ). By Lemma 3.1, l ∧ m = 0, l ∨ m = 1 and p̃l = θ. By (1),
l,m ∈ FI(L). Therefore, we have p̃l, p̃m ∈ Sl(End(L)), by [10, Lemma 2.8] (it
is known that if e ∈ D(L), then p̃e ∈ Sl(End(L)) if and only if e ∈ FI(L) [10,
Lemma 2.8]). Let ψ ∈ End(L). We will show that ψθ = θψ. Let x ∈ L. Then
ψ(θ(x)) = ψ(p̃l(x)) = ψ((x ∨m) ∧ l). As (x ∨m) ∧ l ≤ l and l ∈ FI(L), we have

ψ((x ∨m) ∧ l) ≤ ψ(l) ≤ l.

Moreover, m ∈ FI(L) and (x ∨m) ∧ l ≤ x ∨m, hence

ψ((x ∨m) ∧ l) ≤ψ(x ∨m) = ψ(x) ∨ ψ(m) ≤ ψ(x) ∨m.

Thus,

ψ(θ(x)) = ψ(p̃l(x)) =ψ((x ∨m) ∧ l) ≤ (ψ(x) ∨m) ∧ l = p̃l(ψ(x)) = θ(ψ(x)).
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For the reverse, we have (x ∨ l) ∧m ≤ m ≤ x ∨m. Since L is modular,

((x ∨m) ∧ l) ∨ ((x ∨ l) ∧m) =(x ∨m) ∧ (l ∨ ((x ∨ l) ∧m))

=(x ∨m) ∧ ((l ∨m) ∧ (x ∨ l))

=(x ∨m) ∧ (x ∨ l).

Thus, we have

x ≤ (x ∨m) ∧ (x ∨ l) =((x ∨m) ∧ l) ∨ ((x ∨ l) ∧m) = p̃l(x) ∧ p̃m(x).

Hence, ψ(x) ≤ ψ((p̃l(x) ∧ p̃m(x))) and

θ(ψ(x)) ≤θ(ψ((p̃l(x) ∧ p̃m(x)))) = θ(ψ(p̃l(x))) ∨ θ(ψ(p̃m(x))).

Since p̃l = θ, p̃m ∈ Sl(End(L)), θψθ = ψθ and p̃mψp̃m = ψp̃m. Therefore,

θψθ(x) ∨ θfp̃m(x) = ψθ(x) ∨ θp̃mψp̃m(x).

As θ(p̃m)(c) = 0, for each c ∈ L, we have θψ(x) ≤ ψθ(x). Therefore, eθ = ψθ, as
desired.

(2) ⇒ (1) Let l ∈ D(L). By (2), p̃l is central and so p̃l ∈ Sl(End(L)), by [10,
Lemma 2.8]. Therefore, l ∈ FI(L) and D(L) ⊆ FI(L). □

In the following, we introduce the key definition of this paper.

Definition 3.2. A lattice L is said to be strongly extending, provided that for any
l ∈ L, l ∈ E(e/0) for some e ∈ (FI(L) ∩D(L)).

In the following observation, we give some characterizations of strongly extending
lattices.

Theorem 3.1. Let L be a lattice. Then the following statements are equivalent:

(1) L is a strongly extending lattice;

(2) L is extending and C(L) ⊆ FI(L);
(3) L is extending and P (L) ⊆ FI(L);
(4) L is extending and D(L) ⊆ FI(L);
(5) L is extending and L is Abelian.

Proof. (1) ⇒ (2) If L is strongly extending, then L is extending. Let e ∈ C(L).
Hence there exists l ∈ D(L) ∩ FI(L) such that e ∈ E(l/0). Thus, e = l, and so
C(L) ⊆ FI(L).

(2) ⇒ (3) ⇒ (4) It is clear, because D(L) ⊆ P (L) ⊆ C(L), by [8, Proposition 1.7
(1)].

(4) ⇒ (5) It is clear by Proposition 3.1.
(5) ⇒ (1) Let l ∈ L. Then l ∈ E(k/0), for some k ∈ D(L). By (5), p̃k ∈ Sl(End(L)).

Therefore, k ∈ FI(L), by [10, Lemma 2.8]. Hence, L is strongly extending. □

Corollary 3.1. If L is a uniform lattice, then L is strongly extending.

The converse of Corollary 3.1 is true, provided that L is indecomposable.
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Theorem 3.2. Let L be a complete strongly extending lattice. Then D(L) is a

sublattice of L. Moreover, every subset of D(L) has a greatest lower bound.

Proof. Let e, f ∈ D(L) and e ∨ e′ = 1, e ∧ e′ = 0, f ∨ f ′ = 1 and f ∧ f ′ = 0. We are
going to show f ∨ e ∈ D(L). By Theorem 3.1, D(L) ⊂ FI(L), and so by [9, Lemma
1.8(4)], we have

e = (e ∧ f) ∨ (e ∨ f ′).

Therefore, e ∧ f ∈ D(e), and hence e ∧ f ∈ D(L), by [8, Proposition 1.7(3)].
Now, we will show that e ∨ f ∈ D(L). By [9, Lemma 1.8(4)], we have

f = (e ∧ f) ∨ (e′ ∨ f).

Therefore,
e ∨ f = e ∨ (f ∧ e) ∨ (f ∧ e′) = e ∨ (f ∧ e′).

By the previous argument, f ∧ e′ ∈ D(L), hence there exits t ∈ L such that 1 =
(f ∧ e′) ∨ t and (f ∧ e′) ∧ t = 0. Since e ∈ FI(L), we have

e = (e ∧ t) ∨ (e ∧ (f ∧ e′)) = e ∧ t,

by [9, Lemma 1.8 (4)]. Thus, e ≤ t and e ∈ D(t/0). Let t = e∨̇h. Then 1 =
(f ∧ e′) ∨ e ∨ h = (e ∨ f)∨̇h. Hence, e ∨ f ∈ D(L).

Now, suppose that ¶di♢i∈I ⊂ D(L), where I is an arbitrary index set. Then∧
i∈I di ∈ E(a/0), for some a ∈ D(L) ∩ FI(L). Let d′

i ∈ D(L) be such that di ∨ d′
i = 1

for each i ∈ I. Since a ∈ FI(L), a = (a ∧ di) ∨ (a ∧ d′
i), by [9, Lemma 1.8 (4)]. Since∧

i∈I di ∈ E(a/0) and (
∧
i∈I di) ∧ d′

i = 0, for each i ∈ I, we have d′
i ∧ a = 0. Therefore,

a = a ∧ di, for each i ∈ I, and so a ≤ di, for each i ∈ I. Hence, a ≤
∧
i∈I di and

a =
∧
i∈I di ∈ D(L). Hence, every subset of D(L) has a greatest lower bound. □

Corollary 3.2. Let L be a strongly extending lattice. Then L is quasi-continuous.

Proof. Assume that L is a strongly extending lattice. Then L satisfies the condition
C1. Moreover, L has C3 property by Theorem 3.2. □

Next, we give some properties of a strongly extending lattice.

Proposition 3.2. Let L be a strongly extending lattice. Then the following statements

hold.

(1) If θ is a linear monomorphism, then θ(1) ∈ E(L).
(2) If θψ = 1End(L), for some ψ, θ ∈ End(L), then ψθ = 1End(L).

Proof. (1) Let θ be a linear monomorphism. Then θ(1) ∈ E(h/0), for some h ∈
D(L) ∩ FI(L). Since h ∈ D(L), 1 = h∨̇h′, for some h′ ∈ L. Hence, (p̃h′ ◦ θ)(1) = 0.
By Theorem 3.1, p̃h′ is central, therefore θ◦ p̃h′ = p̃h′ ◦θ. Thus, (θ◦ p̃h′)(1) = θ(h′) = 0.
Since θ is a linear monomorphism, θ(h′) = θ(0) implies that h′ = 0. Therefore, h = 1
and θ(1) ∈ E(L).

(2) Let θ, ψ ∈ End(L) and θ ◦ ψ(x) = x, for each x ∈ L. Then

ψ ◦ θ ◦ ψ ◦ θ(x) =ψ((θ ◦ ψ)(θ(x))) = ψ(θ(x)) = ψ ◦ θ(x).



STRONGLY EXTENDING MODULAR LATTICES 547

This proves that ψθ is an idempotent linear morphism of L. By Theorem 3.1, ψθ
is central in End(L). Therefore, θ ◦ (ψ ◦ θ) = (ψ ◦ θ) ◦ θ. Thus, we have

ψ ◦ θ(x) =(ψ ◦ θ)(θ ◦ ψ(x)) = ((ψ ◦ θ) ◦ θ)(ψ(x))

=(θ ◦ (ψ ◦ θ)(ψ(x)) = (θ ◦ ψ)(θ ◦ ψ(x))

=θ ◦ ψ(x) = x.

Therefore, ψθ = 1End(L). □

Lemma 3.2. Let L be a lattice and 1 = c∨̇d, for some c, d ∈ L. Then there is not

any non-zero linear morphism between c/0 and d/0 if and only if c ∈ FI(L).

Proof. Assume that c ∈ FI(L). Let θ : c/0 → d/0 be a linear morphism and λ the
composition

L
p̃c

// c/0
θ

// d/0
i

// L,

where p̃c : L → c/0 is the canonical projection p̃d,c on c/0 and i : d/0 → L is
the mapping of canonical inclusion. Thus, λ ∈ End(L) as a composition of linear
morphisms of lattices. Since c ∈ FI(L), h(c) ≤ c. It is clear that λ(c) ≤ d. Hence,
λ(c) ≤ c ∧ d = 0 and so λ(c) = 0. This proves θ(c) = 0, and so θ = 0, as desired.

Conversely, assume that there is not any non-zero linear morphism between c/0
and d/0, for each i ̸= j ∈ I. Let θ ∈ End(L) and λ be the composition

c/0
θ♣c/0

// L
pd

// d/0 ,

where θ♣c/0 is the restriction of θ to c/0. Then, by our assumption, λ = 0. Hence,
pd(θ(c)) = 0. Therefore, θ(c) ≤ ker(pd) = c, and so c is fully invariant. □

Corollary 3.3. Let L be a strongly extending lattice and 1 = c∨̇e, for some c, e ∈ L.

Then there is not any non-zero linear morphism between c/0 and e/0.

Proof. It is clear from Theorem 3.1 and Lemma 3.2. □

In the sequel, we show that the strongly extending property of a lattice is preserved
by complement intervals and also consider when direct joins have this property.

Proposition 3.3. Let L be a strongly extending lattice. If l ∈ D(L), then l/0 is

strongly extending.

Proof. Assume that L is strongly extending, l ∈ D(L) and x ∈ l/0. Then x ∈ E(p/0),
for some p ∈ D(L) ∩ FI(L). As l, p ∈ D(L), p ∨ q = 1 and p ∧ q = 0, also l ∨m = 1
and l ∧ m = 0, for some m, q ∈ L. Since x ∈ E(p/0), x ∈ E((p ∧ l)/0). We are
now going to prove that p ∧ l ∈ FI(l/0) ∩ D(l/0). As l ∨ m = 1 and p ∈ FI(L),
p = (p ∧ l) ∨ (p ∧m), by [9, Lemma 1.8 (4)]. Therefore, (p ∧ l) ∨ (p ∧m) ∨ q = 1. By
modularity, we have

l = l ∧ 1 =d ∧ ((p ∧ l) ∨ (p ∧m) ∨ q) = (p ∧ l) ∨ (l ∧ ((p ∧m) ∨ q)).
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Also, (p ∧ l) ∨ (l ∧ ((p ∧m) ∨ q)) ≤ l and

(p ∧ l) ∧ (l ∧ ((p ∧m) ∨ q)) =(p ∧ l) ∧ ((p ∧m) ∨ q)

≤p ∧ ((p ∧m) ∨ q)

=(p ∧m) ∨ (p ∧ q) = p ∧m

≤m.

Therefore,

(p ∧ l) ∧ (l ∧ ((p ∧m) ∨ q)) ≤ l ∧m = 0.

Hence, we have p ∧ l ∈ D(l/0). Moreover, p ∧ l ∈ FI(l/0), by [9, Lemma 1.8 (3)].
This proves that l/0 is strongly extending. □

Proposition 3.4. Let L be a strongly pseudo-complemented lattice and 1 = p∨̇q, for

some p, q ∈ L. Then the following statements are equivalent:

(1) L is strongly extending;

(2) each closed element t of L with t ∧ q = 0 or t ∧ p = 0 is a fully invariant

complement.

Proof. (1) ⇒ (2) It is clear by Theorem 3.1.
(2) ⇒ (1) We will show that, if t ∈ C(L), then t ∈ D(L) ∩ FI(L). Put c := t ∧ p.

Then there exists e ∈ C(t/0) such that c ∈ E(e/0), because t/0 is essentially closed
by [8, Lemma 1.6, Lemma 1.14]. As e ∈ C(t/0) and t ∈ C(L), we have e ∈ C(L),
by [8, Lemma 1.6, Lemma 1.11]. Since c ∧ q = 0 and c ∈ E(e/0), e ∧ q = 0. By (2),
e ∈ D(L) ∩ FI(L). Hence,

e ∨ e′ = 1 and e ∧ e′ = 0,

for some e′ ∈ L. By modularity and e ≤ t, we have t = e ∨ (e′ ∧ t). By the previous
argument, e′ ∧ t ∈ C(L). Since c ∈ E(e/0) and c∧ e′ = 0, we have (t∧ e′) ∧ p = 0. By
(2), t ∧ e′ ∈ D(L) ∩ FI(L). Hence,

1 = (t ∧ e′) ∨ d and (t ∧ e′) ∧ d = 0,

for some d ∈ L. Now, by modularity we have e′ = (t ∧ e′) ∨ (d ∧ e′). Therefore,

1 =e ∨ e′ = e ∨ (t ∧ e′) ∨ (d ∧ e′) = t ∨ (d ∧ e′).

Moreover,

t ∧ (d ∧ e′) = (t ∧ e′) ∧ d = 0.

Thus, t ∈ D(L). So L is extending by [8, Proposition 1.10 (4)]. Since e ∈ FI(L)
and e′ ∧t ∈ FI(L), we have t ∈ FI(L), by [9, Lemma 1.8 (1)]. Therefore, L is strongly
extending by Theorem 3.1. □

Theorem 3.3. Let L be a strongly pseudo-complemented lattice and 1 = m∨̇n, for

some m,n ∈ L. Then L is strongly extending provided that the following statements

hold.

(1) m/0 and n/0 are strongly extending.



STRONGLY EXTENDING MODULAR LATTICES 549

(2) For each sublattices H1 of m/0, there is not a non-zero linear morphisms from

H1 to n/0.

(3) For each sublattice H2 of n/0, there is not a non-zero linear morphisms from

H2 to m/0.

Proof. Assume that k is a closed element of L with k ∧ m = 0. Let p̃m : L → m/0
and p̃n : L → n/0 be the canonical projections p̃n,m and p̃m,n, respectively. We
consider p̃n♣k/0 : k/0 → n/0, the restriction of p̃n to k/0. Let x = ker(p̃n♣k/0). Then
x ≤ m = ker(p̃n). Therefore, x = 0. Thus, p̃n♣k/0 : k/0 → p̃m(k/0) is a linear
monomorphism by [5, Corollary 1.6]. Therefore, p̃n♣k/0 : k/0 → p̃n(k/0) is a lattice
isomorphism (by definition of linear monomorphism). Let ψ : p̃n(k/0) → k/0 be the
inverse of p̃n♣k/0. Then we denote by θ the composition

p̃n♣k/0(k/0)
ψ

// k/0
p̃m♣k/0

// m/0 .

Since p̃n♣k/0(k/0) ⊆ n/0, we have θ = 0, by our assumption. Therefore,

p̃m(ψ(p̃n♣k/0(k/0))) = p̃m(k/0) = 0.

Hence, k ≤ ker(p̃m) = n. Since k ∈ C(L), k ∈ C(n/0). Thus by strongly extending
property of n/0, k ∈ FI(n/0) ∩ D(n/0). By [8, Proposition 1.7 (3)], k ∈ D(L). By
Lemma 3.2, n ∈ FI(L), therefore k ∈ FI(L), by [9, Lemma 1.8 (2)]. Hence, by
Proposition 3.4, L is strongly extending. □

4. Applications to Grothendieck Categories

This section is allocated to employ the main results in Section 3 to Grothendieck
categories. First, we recall some notations and terminology from [1–11]. In this section
G will indicate a Grothendieck category. Let H be an object of G. We will denote by
L(H), the upper continuous modular lattice of all subobjects of H ([11], [21, Chapter
4, Proposition 5.3, and Chapter 5, Section 1]). According to [2], for any object H of
G, and for each subset W ⊆ L(H), we denote

∧
W =

⋂

E∈W

E,
∨
W =

∑

E∈W

E.

We recall the next definition from [2], which is the key definition of this section.

Definition 4.1 ([2]). If P is a condition on lattices, then it is called H ∈ G is P,
provided that the lattice L(H) satisfies P. Further, a subobject H ′ of an object H ∈ G

is P if the element H ′ of the lattice L(H) satisfies P.

Now, by Definition 4.1, one can define the concepts of a strongly extending object
and fully invariant subobject, etc. Notice that we will use the term direct summand
subobject instead of complement subobject.

By [6, Lemma 5.1], it is known that if H1, H2 ∈ G and θ : H1 → H2 is a morphism,
then the canonical mapping φ : L(H1) → L(H2) defined by φ(K) := θ(K), for
each K ≤ H1, is a linear morphism of lattices. Notice that, the notions of linear
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morphism and morphism are different. For any two objects H1 and H2, we denote by
LHom(H1, H2), the set of all linear morphisms ψ : L(H1) → L(H2).

In the following, we give some results.

Theorem 4.1. If H is an object of a Grothendieck category G, then H is strongly

extending if and only if H is extending and every direct summand of H is fully

invariant in H.

Proposition 4.1. Let H = H1 ⊕H2, where H ∈ G and H1, H2 are subobject of H. If

H is strongly extending, then Hom(H1, H2) = 0 and Hom(H2, H1) = 0.

Proof. Assume that H = H1 ⊕ H2 and X is strongly extending. If θ : H1 → H2 is
a morphism, then the map ψ : L(H1) → L(H2) defined by ψ(A) := θ(A), for each
A ≤ H1, is a linear morphism ([6, Lemma 5.1]). By Corollary 3.3, ψ = 0, therefore
θ = 0. □

Theorem 4.2. Assume that H is an object of a Grothendieck category G and H is

strongly extending. Then the intersection of any family of direct summands of H is a

direct summand of H.

Theorem 4.3. Let H = H1 ⊕ H2, where H ∈ G and H1, H2 are subobject of H. If

H1 and H2 are strongly extending and for each subobject K1 of H1 and K2 of H2,

LHom(K1, H2) = 0 and LHom(K2, H1) = 0, then H is strongly extending.

5. Applications to Modules with a Hereditary Torsion Theory

In this section, some applications of the results proved in Sections 3 to the category
of modules with a fixed hereditary torsion class are given. Let τ = (T,F) be a
hereditary torsion theory in Mod−R, and τ(M) the τ -torsion submodule of a module
M . We recall some notations and terminology from [1–11]. For an R-module M , by
Satτ (M), we will denote the set ¶K ♣ K ≤ M and M/K ∈ F♢. Let K ≤ M . Then by
K, we will denote the τ -saturation of K (in M) defined by K/K = τ(M/K). Let K
be submodule of M . Then K is said to be τ -saturated if K = K. One can prove that
Satτ(M) = ¶K ♣ K ≤ M, K = K♢. By [21, Chapter 9, Proposition 4.1], it is known
that for a right R-module M , (Satτ (M),⊆,

∧
,
∨
, τ(M),M) is an upper continuous

modular lattice (the greatest element is M and the least element is τ(M)) and
∨

and∧
defined as follows:

∨

i∈J

Ki =
∑

i∈J

Ki and
∧

i∈J

Ki =
⋂

i∈J

Ki.

We refer to [21] the reader for the discussion of torsion theoretical concepts and
facts.

We recall the next definition from [2], which is the key definition of this section.

Definition 5.1 ([2]). Let C be a condition on lattices. Then it is called a right
R-module M is τ − C provided that the lattice Satτ (M) satisfies the condition C.
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Moreover, it is called a submodule K of a right R-module M is τ − C, provided that
its τ -saturation K, which is an element of Satτ (M), satisfies the condition C.

Therefore, we can define the notions of a τ -strongly extending module, τ -Abelian
module, etc, based on the Definition 5.1. By [2], we have the concepts of a τ -essential

submodule of a module, τ -fully invariant submodules, etc. As K = K, we have K is
τ − P if and only if K is τ − P. It is known that K is τ -essential in M if and only if
H ∩ K ∈ T implies that H ∈ T, for each H ≤ M , by [2, Proposition 5.3], moreover,
K is a τ -direct summand in M if and only if M/(K + H) ∈ T and K ∩ H ∈ T, for
some H ≤ M . In [6, Lemma 6.6], it is proved that, if f : M → N is a morphism of
right R-modules, then the canonical mapping fτ : Satτ (M) → Satτ (N) defined by
fτ (X) = f(X), for each X ∈ Satτ (M) is a linear morphism of lattices.

In the following, we give some results on the strongly τ -extending modules.

Theorem 5.1. An R-module M is τ -strongly extending if and only if M is τ -CS

(τ -extending) and every τ -direct summand of M is τ -fully invariant.

Proof. Assume that M is τ -strongly extending. It suffices to prove that every τ -direct
summand of M is τ -fully invariant. Let N be a τ -direct summand of M . Since M is
τ -strongly extending, Satτ (M) is a strongly extending lattice. Hence, N is τ -essential
in L, where L is fully invariant in lattice Satτ (M). As N is closed in Satτ (M), N = L.
Hence, N is τ -fully invariant in M . The converse is clear. □

Proposition 5.1. Each τ -direct summand a τ -strongly extending module is τ -strongly

extending.

Theorem 5.2. Suppose that M is a τ -strongly extending R-module and H1, H2 ≤ M
(H1, H2 /∈ T) such that H1 ∩ H2 ∈ T, M = H1 + H2. If f : Hi → Hj is an R-

homomorphism (1 ≤ i ̸= j ≤ 2), then f(Hi) ∈ T.

Proof. Since M = H1 +H2, we have

M = H1 +H2 ⊆ H1 +H2 ⊆ H1 +H2.

Therefore, M = H1 +H2. As H1 ∩ H2 ∈ T, we have H1 ∧ H2 = H1 ∩ H2 = τ(M).
Therefore, M = H1∨̇H2. Let f : H1 → H2 be a homomorphism of R-modules
H1 and H2. Then the canonical mapping fτ : Satτ (H1) → Satτ (H2) defined by
fτ (X) = f(X), for each X ∈ Satτ (H1) is a linear morphism of lattices. By [3,4], there
exist lattice isomorphisms h : Satτ (H1) → Satτ (H1) and g : Satτ (H2) → Satτ (H2).
By [5, Proposition 2.2(2)], h, g are linear morphisms. Take φ := g ◦ fτ ◦ h−1. By
Corollary 3.3, φ = 0, thus f(H1) = 0, in Satτ (M). Thus, f(H1) ∈ T. Similarly, if
f : H2 → H1 is a homomorphism between two R-modules H2 and H1, then we have
f(H2) ∈ T. □
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EXISTENCE RESULTS OF IMPULSIVE HYBRID FRACTIONAL

DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY

HYBRID CONDITIONS

MOHAMED HANNABOU1, MOHAMED BOUAOUID1, AND KHALID HILAL1

Abstract. In this paper, we establish sufficient conditions for the existence and
uniqueness of solution of impulsive hybrid fractional differential equations with
initial and boundary hybrid conditions. The proof of the main result is based on
the classical fixed point theorems such as Banach fixed point theorem and Leray-
Schauder alternative fixed point theorem. Two examples are included to show the
applicability of our results.

1. Introduction

Fractional calculus refers to integration or differentiation of any order. The field
has a history as old as calculus itself, which did not attract enough attention for a
long time. In the past decades, the theory of fractional differential equations has
become an important area of investigation because of its wide applicability in many
branches of physics, economics and technical sciences. For a nice introduction, we
refer the reader to [9, 10] and references cited therein.

Impulsive effects are common phenomena due to short-term perturbations whose
duration is negligible in comparison with the total duration of the original process
[8]. Such perturbations can be reasonably well approximated as being instantaneous
changes of state, or in the form of impulses. The governing equations of such phe-
nomena may be modeled as impulsive differential equations. In recent years, there
has been a growing interest in the study of impulsive differential equations as these

Key words and phrases. Hybrid systems of ordinary differential equations, fractional derivatives
and integrals, fixed-point theorems.
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equations provide a natural frame work for mathematical modelling of many real world
phenomena, namely in the control theory, physics, chemistry, population dynamics,
biotechnology, economics and medical fields.

In [11], Surang Sitho, Sotiris K. Ntouyas and Jessada Tariboon, discussed the
existence results for the following hybrid fractional integro-differential equation:











Dα



x(t)−
∑m

i=1
Iβi hi(t,x(t))

f(t,x(t))



= g(t, x(t)), t ∈ J = [0, T ],

x(0) = 0,

where Dα denotes the Riemann-Liouville fractional derivative of order α, 0 < α ≤ 1,
Iϕ is the Riemann-Liouville fractional integral of order ϕ > 0, ϕ ∈ ¶β1, β2, . . . , βm♢,
f ∈ C(J × R,R \ ¶0♢), g ∈ C(J × R,R), with hi ∈ C(J × R,R) and hi(0, 0) = 0,
i = 1, 2, . . . , m.

In [4], K. Hilal and A. Kajouni, considered boundary value problems for hybrid
differential equations with fractional order (BVPHDEF of short) involving Caputo
differential operator of order 0 < α < 1:











Dα



x(t)
f(t,x(t))



= g(t, x(t)), t ∈ J = [0, T ],

a x(0)
f(0,x(0))

+ b x(T )
f(T,x(T ))

= c,

where f ∈ C(J × R,R\¶0♢), g ∈ C(J × R,R) and a, b, c are real constants with
a + b ̸= 0.

Dhage and Lakshmikantham [2], discussed the following first order hybrid differen-
tial equation:







d
dt

[

x(t)
f(t,x(t))

]

= g(t, x(t)), t ∈ J = [0, T ],

x(t0) = x0 ∈ R,

where f ∈ C(J × R,R\¶0♢) and g ∈ C(J × R,R). They established the existence,
uniqueness results and some fundamental differential inequalities for hybrid differential
equations initiating the study of theory of such systems and proved utilizing the theory
of inequalities, its existence of extremal solutions and comparison results.

Zhao, Sun, Han and Li [13], are discussed the following fractional hybrid differential
equations involving Riemann-Liouville differential operator:







Dq
[

x(t)
f(t,x(t))

]

= g(t, x(t)), t ∈ J = [0, T ],

x(0) = 0,

where f ∈ C(J × R,R\¶0♢) and g ∈ C(J × R,R). They established the existence
theorem for fractional hybrid differential equation, some fundamental differential
inequalities are also established and the existence of extremal solutions.
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Benchohra et al. [1] discussed the following boundary value problems for differential
equations with fractional order:







cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], 0 < α < 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, f : [0, T ] × R → R is a continuous
function, a, b, c are real constants with a + b ̸= 0.

Motivated by some recent studies related to the boundary value problem of a class
of impulsive hybrid fractional differential equations and by the nice works [12,14], we
consider the following Cauchy problem of hybrid fractional differential equations:

(1.1)



















Dα



u(t)
f(t,u(t))



= g(t, u(t)), t ∈ [0, 1], t ̸= ti, i = 1, 2, . . . , n, 0 < α < 1,

u(t+
i ) = u(t−

i ) + Ii(u(t−
i )), ti ∈ (0, 1), i = 1, 2, . . . , n,

u(0)
f(0,u(0))

= ϕ(u),

Dα stands for Caputo fractional derivative of order α, f ∈ C([0, 1] × R,R \ ¶0♢) and
ϕ : C([0, 1],R) → R are continuous functions such that ϕ(u) =

∑n
i=1 λiu(ξi), where

ξi ∈ (0, 1) for i = 1, 2, . . . , n, and Ik : R → R with u(t+
k ) = limϵ→0+ u(tk + ε) and

u(t−
k ) = limϵ→0− u(tk + ε) represent the right and left limits of u(t) at t = tk, k = i.

In the sequel of this work, we assume that
∑n

i=1 λiu(ξi)
α−1 < 1.

This paper is arranged as follows. In Section 2, we recall some tools related to the
fractional calculus as well as some needed results. In Section 3, we present the main
results. Section 4 is devoted to examples of application of the main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.

Throughout this paper, let J0 = [0, t1], J1 = (t1, t2], . . . , Jn−1 = (tn−1, tn], Jn =
(tn, 1], n ∈ N, n > 1.

For ti ∈ (0, 1) such that t1 < t2 < · · · < tn we define the following spaces:

I ′ =I \ ¶t1, t2, . . . , tn♢,

X =¶u ∈ C([0, 1],R) : u ∈ C(I ′) and left u(t+
i ) and right limit u(t−

i )

exist and u(t−
i ) = u(ti), 1 ≤ i ≤ n♢.

Then, clearly (X, ∥ · ∥) is a Banach space under the norm ∥u∥ = maxt∈[0,1]♣u(t)♣.

Definition 2.1 ([6]). The fractional integral of the function h ∈ L1([a, b],R+) of order
α ∈ R

+ is defined by

Iα
a h(t) =

∫ t

a

(t − s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function.
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Definition 2.2 ([6]). For a function h defined on the interval [a, b], the Riemann-
Liouville fractional-order derivative of h, is defined by

(cDα
a+h)(t) =

1

Γ(n − α)

(

d

dt

n
∫ t

a

(t − s)n−α−1

Γ(α)
h(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3 ([6]). For a function h defined on the interval [a, b], the Caputo
fractional-order derivative of h, is defined by

(cDα
a+h)(t) =

1

Γ(n − α)

∫ t

a

(t − s)n−α−1

Γ(α)
h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.1 ([10]). Let α, β ≥ 0, then the following relations hold:

1. Iαtβ =
Γ(β + 1)

Γ(α + β + 1)
tα+β;

2. cDαtβ =
Γ(β + 1)

Γ(β − α + 1)
tβ−α.

Lemma 2.2 ([10]). Let n ∈ N and n − 1 < α < n. If f is a continuous function,

then we have

Iα cDαf(t) = f(t) + a0 + a1t + a2t
2 + · · · + an−1t

n−1.

3. Main Results

In this section, we prove the existence of a solution for Cauchy problem (1.1).
To do so, we will need the following assumptions.

(H1) The function u 7→ u
f(t,u)

is increasing in R for every t ∈ [0, 1].

(H2) The function f is continuous and bounded, that is, there exists a positive
number L > 0 such that ♣f(t, u)♣ ≤ L for all (t, u) ∈ [0, 1] × R.

(H3) There exists a positive number Mg > 0, such that

♣g(t, u) − g(t, ū)♣ ≤ Mg♣u − ū♣, for all u, ū ∈ R and t ∈ [0, 1].

(H4) There exists a constant A > 0, such that

♣Ii(u) − Ii(ū)♣ ≤ A♣u − ū♣, i = 1, 2, . . . , n, for all u, ū, ∈ R.

(H5) There exists a constant Kϕ > 0, such that

♣ϕ(u) − ϕ(v)♣ ≤ Kϕ∥u − v∥, for all u, v ∈ C([0, 1],R).

(H6) There exist constants Mϕ > 0 and NI > 0, such that

♣ϕ(u)♣ ≤ Mϕ∥u∥, ♣Ii(v)♣ ≤ NI ♣v♣, i = 1, 2, . . . , n,

for all u ∈ C([0, 1],R) and v ∈ R.
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(H7) There exists a constant C > 0, such that

♣Ii(u)♣ ≤ C, i = 1, 2, . . . , n, for all u ∈ R.

(H8) There exists a constant ρ > 0, such that

♣ϕ(u)♣ ≤ ρ, for all u ∈ X.

(H9) There exist constants ρ0, ρ1 > 0, such that

♣g(t, u(t))♣ ≤ ρ0 + ρ1∥u∥, for all u ∈ X and t ∈ [0, 1].

For brevity, let us set

(3.1) ∆ = L

(

Kϕ + nA +
Mg

Γ(α + 1)



.

Lemma 3.1. Let α ∈ (0, 1) and h : [0, T ] → R be continuous. A function u ∈
C([0, T ],R) is a solution of the fractional integral equation

u(t) = u0 −
∫ a

0

(t − s)α−1

Γ(α)
h(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

if and only if u is a solution of the following fractional Cauchy problem:






Dαu(t) = h(t), t ∈ [0, T ],

u(a) = u0, a > 0.

Lemma 3.2. Assume that hypotheses (H1) and (H2) hold. Let α ∈ (0, 1) and h :
[0, 1] → R be continuous. A function u is a solution of the fractional integral equation

(3.2)

u(t) = f(t, u(t))



ϕ(u) + θ(t)
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

]

, t ∈ [ti, ti+1],

where

θ(t) =







0, t ∈ [t0, t1],

1, t /∈ [t0, t1[,

if and only if u is a solution of the following impulsive problem:

(3.3)



















Dα



u(t)
f(t,u(t))



= h(t), t ∈ [0, 1], t ̸= ti, i = 1, 2, . . . , n, 0 < α < 1,

u(t+
i ) = u(t−

i ) + Ii(u(t−
i )), ti ∈ (0, 1), i = 1, 2, . . . , n,

u(0)
f(0,u(0))

= ϕ(u).

Proof. Assume that u satisfies (3.3). If t ∈ [t0, t1[, then

Dα



u(t)

f(t, u(t))



=h(t), t ∈ [t0, t1[,(3.4)

u(0)

f(0, u(0))
=ϕ(u).(3.5)
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Applying Iα on both sides of (3.4), we obtain

u(t)

f(t, u(t))
=

u(0)

f(0, u(0))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds = ϕ(u) +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds.

Then we get

u(t) = f(t, u(t))

(

ϕ(u) +
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds



.

If t ∈ [t1, t2[, then

Dα



u(t)

f(t, u(t))



= h(t), t ∈ [t1, t2[,(3.6)

u(t+
1 ) = u(t−

1 ) + I1(u(t−
1 )).(3.7)

According to Lemma 3.1 and the continuity of t 7→ f(t, u(t)), we have

u(t)

f(t, u(t))
=

u(t+
1 )

f(t1, u(t1))
−
∫ t1

0

(t1 − s)α−1

Γ(α)
h(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

=
(u(t−

1 ) + I1(u(t−
1 )))

f(t1, u(t1))
−
∫ t1

0

(t1 − s)α−1

Γ(α)
h(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds.

Since

u(t−
1 ) = f(t1, u(t1))

(

ϕ(u) +
∫ t1

0

(t1 − s)α−1

Γ(α)
h(s)ds



,

then we get

u(t)

f(t, u(t)))
=

(

ϕ(u) +
∫ t1

0

(t1 − s)α−1

Γ(α)
h(s)ds



+
I1(u(t−

1 ))

f(t1, u(t1))

−
∫ t1

0

(t1 − s)α−1

Γ(α)
h(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

=ϕ(u) +
I1(u(t−

1 ))

f(t1, u(t1))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds.

So, one has

u(t) = f(t, u(t))

(

ϕ(u) +
I1(u(t−

1 ))

f(t1, u(t1))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds



.

For t ∈ [t2, t3[, we have

u(t)

f(t, u(t))
=

u(t+
2 )

f(t2, u(t2))
−
∫ t2

0

(t2 − s)α−1

Γ(α)
h(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

=
(u(t−

2 ) + I2(u(t−
2 )))

f(t2, u(t2))
−
∫ t2

0

(t2 − s)α−1

Γ(α)
h(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

and

u(t−
2 ) = f(t2, u(t2))

(

ϕ(u) +
(u(t−

1 ) + I1(u(t−
1 )))

f(t1, u(t1))
+
∫ t2

0

(t2 − s)α−1

Γ(α)
h(s)ds



.



EXISTENCE RESULTS OF IHFDE WITH INITIAL AND BOUNDARY HYBRID CONDITIONS561

Therefore, we obtain

u(t)

f(t, u(t))
=ϕ(u) +

(u(t−
1 ) + I1(u(t−

1 )))

f(t1, u(t1))
+
∫ t2

0

(t2 − s)α−1

Γ(α)
h(s)ds

+
I2(u(t−

2 ))

f(t2, u(t2))
−
∫ t2

0

(t2 − s)α−1

Γ(α)
h(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

=ϕ(u) +
I1(u(t−

1 ))

f(t1, u(t1))
+

I2(u(t−
2 ))

f(t2, u(t2))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds.

Consequently, we get

u(t) = f(t, u(t))

(

ϕ(u) +
2
∑

i=1

Ii(u(t−
i ))

f(ti, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds



.

By using the same method, for t ∈ [ti, ti+1[, i = 3, 4, . . . , n, one has

u(t) = f(t, u(t))

(

ϕ(u) +
k
∑

i=1

Ii(u(t−
i ))

f(ti, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds



.

Conversely, assume that u satisfies (3.2). Then for t ∈ [t0, t1[, we have

(3.8) u(t) = f(t, u(t))

(

ϕ(u) +
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds



.

Then, dividing by f(t, u(t)) and applying Dα on both sides of (3.8), we get equation
(3.4).

Again, substituting t = 0 in (3.8), we obtain u(0)
f(0,u(0))

= ϕ(u). Since u 7→ u
f(t,u)

is

increasing in R for t ∈ [t0, t1[, the map u 7→ u
f(t,u)

is injective in R. Then we get (3.5).

If t ∈ [t1, t2[, then we have

(3.9) u(t) = f(t, u(t))

(

ϕ(u) +
I1(u(t−

1 ))

f(t1, u(t1))
+
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds



.

Then, dividing by f(t, u(t)) and applying Dα on both sides of (3.9), we get equation
(3.6). Again by (H3), substituting t = t1 in (3.8) and taking the limit in (3.9), then
(3.9) minus (3.8) gives (3.7).

Similarly, for t ∈ [ti, ti+1[, i = 2, 3, . . . , n, we get










Dα



u(t)
f(t,u(t))



= h(t), t ∈ [tk, tk+1[,

u(t+
i ) = u(t−

i ) + Ii(u(t−
i )).

(3.10)

This completes the proof. □

Lemma 3.3. Let g be continuous, then u ∈ X is a solution of Cauchy problem (1.1)
if and only if u is a solution of the integral equation

(3.11)

u(t) = f(t, u(t))

(

ϕ(u) + θ(t)
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α)
g(t, u(t))ds



, t ∈ [ti, ti+1

]

,
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where

θ(t) =







0, t ∈ [t0, t1],

1, t /∈ [t0, t1[.

Now we are in a position to present our first result which deals with the existence
and uniqueness of solution for Cauchy problem (1.1). This result is based on Banach’s
fixed point theorem. To do so, we define the operator Ψ : X → X by

(3.12) Ψ(u)(t) = f(t, u(t))

(

ϕ(u) + θ(t)
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α)
g(s, u(s))ds



.

Theorem 3.1. Assume that conditions (H1)-(H6) hold and the function g : [0, 1]×R →
R is continuous. Then Cauchy problem (1.1) has an unique solution provided that

∆ < 1, where ∆ is the constant given in equation (3.1).

Proof. Let us set supt∈[0,1] g(t, 0) = κ < ∞, and define a closed ball B̄ as follows

B̄ = ¶u ∈ X : ∥u∥ ≤ r♢,

where

(3.13) r ≥
Lκ

1 − L
(

Mϕ + nNI + 1
Γ(α+1)

Mg

 .

We show that Ψ(B̄) ⊂ B̄. For u ∈ B̄, we obtain

♣Ψ(u)(t)♣ ≤ L

∣

∣

∣

∣

ϕ(u) + θ(t)
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α)
g(s, u(s))ds

∣

∣

∣

∣

≤ L


Mϕ∥u∥ + nNI∥u∥ +
∫ t

0

(t − s)α−1

Γ(α)
(♣g(s, u(s)) − g(s, 0)♣ + ♣g(s, 0)♣)ds



≤ L


Mϕ∥u∥ + nNI∥u∥ +
1

Γ(α + 1)

(

Mg∥u∥ + κ




≤ L


(Mϕ + nNI)r +
1

Γ(α + 1)
(Mgr + κ)



.

Hence, we get

(3.14) ∥Ψ(u)∥ ≤ L

(

(Mϕ + nNI)r +
1

Γ(α + 1)

(

Mgr + κ1





.

From (3.14), it follows that ∥Ψ(u)∥ ≤ r.
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Next, for (u, ū) ∈ X2 and for any t ∈ [0, 1], we have

♣Ψ(u)(t) − Ψ(ū)(t)♣ =
∣

∣

∣

∣

f(t, u(t))



ϕ(u) + θ(t)
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α)
g(s, u(s))ds

]

− f(t, ū(t))


ϕ(ū) + θ(t)
n
∑

i=1

Ii(ū(t−
i ))

f(t, ū(ti))

+
∫ t

0

(t − s)α−1

Γ(α)
g(s, ū(s))ds

∣

∣

∣

∣

≤L

(

Kϕ♣u − ū♣ + nA♣u − ū♣ +
Mg

Γ(α + 1)
♣u − ū♣



,

which implies that

∥Ψ(u) − Ψ(ū)∥ ≤ L


Kϕ + nA +
Mg

Γ(α + 1)



∥u − ū∥ = ∆∥u − ū∥.(3.15)

In view of condition ∆ < 1, it follows that Ψ is a contraction operator. So Banach’s
fixed point theorem applies and hence the operator Ψ has an unique fixed point, which
is an unique solution of Cauchy problem (1.1). This completes the proof. □

In our second result, we discuss the existence of solutions for Cauchy problem (1.1)
by means of Leray-Schauder alternative.

For brevity, let us set

µ1 =
L

Γ(α + 1)
,(3.16)

µ0 = 1 − µ1ρ1.(3.17)

Lemma 3.4 (Leray-Schauder alternative see [3]). Let F : G → G be a completely

continuous operator (i.e., a map that is restricted to any bounded set in G is compact).
Let P (F) = ¶u ∈ G : u = λFu for some 0 < λ < 1♢. Then either the set P (F) is

unbounded or F has at least one fixed point.

Theorem 3.2. Assume that conditions (H1)-(H3) and (H7)-(H9) hold. Furthermore,

it is assumed that µ1ρ1 < 1, where µ1 is given by (3.16). Then Cauchy problem (1.1)
has at least one solution.

Proof. We will show that the operator Ψ : X → X satisfies all the assumptions of
Lemma 3.4.

Step 1. We prove that the operator Ψ is completely continuous.
Clearly, it follows from the continuity of functions f and g that the operator Ψ is

continuous.
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Let S ⊂ X be bounded. Then we can find a positive constant H such that
♣g(t, u(t))♣ ≤ H, u ∈ S. Thus, for any u ∈ S, we can get

♣Ψ(u)(t)♣ ≤ L

(

ρ +
n
∑

i=1

C +
∫ t

0

(t − s)α−1

Γ(α)
Hds



≤ L

(

ρ + nC +
H

Γ(α + 1)



,

which yields

(3.18) ∥Ψ(u)∥ ≤ L

(

ρ + nC +
H

Γ(α + 1)



.

From the inequality (3.18), we deduce that the operator Ψ is uniformly bounded.
Step 2. Now we show that the operator Ψ is equicontinuous.
For τ1, τ2 ∈ [0, 1] with τ1 < τ2, we obtain

♣Ψ(u(τ2)) − Ψ(u(τ1))♣

≤L

∣

∣

∣

∣



ϕ(u) + θ(τ2)
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+ H

∫ τ2

0

(τ2 − s)α−1

Γ(α)
ds


−


ϕ(u) + θ(τ1)
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+ H

∫ τ1

0

(τ1 − s)α−1

Γ(α)
ds
∣

∣

∣

∣

≤L


∣

∣

∣(θ(τ2) − θ(τ1))
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))

∣

∣

∣+ H

∣

∣

∣

∣

∫ τ2

0

(τ2 − s)α−1

Γ(α)
ds −

∫ τ1

0

(τ1 − s)α−1

Γ(α)
ds

∣

∣

∣

∣



≤L


∣

∣

∣(θ(τ2) − θ(τ1))
n
∑

i=1

Ii(u(t−
i ))

f(t, u(ti))

∣

∣

∣+ H

∣

∣

∣

∣

∫ τ1

0

(τ2 − s)α−1 − (τ1 − s)α−1

Γ(α)
ds

+
∫ τ2

τ1

(τ2 − s)α−1

Γ(α)
ds

∣

∣

∣

∣



,

which tends to 0 independently of u. This implies that the operator Ψ(u) is equicon-
tinuous. Thus, by the above findings, the operator Ψ(u) is completely continuous.

In the next step, it will be established that the set P = ¶u ∈ X : u = λΨ(u), 0 <
λ < 1♢ is bounded.

For u ∈ P , we have u = λΨ(u). Thus, for any t ∈ [0, 1], we can write u(t) =
λΨ(u)(t). Then we obtain

∥u∥ ≤ L

(

ρ + nC +
1

Γ(α + 1)
(ρ0 + ρ1∥u∥)



≤ L(ρ + nC) + µ1(ρ0 + ρ1∥u∥).

Hence, we get

∥u∥ ≤
L(ρ + nC) + µ1ρ0

µ0

.
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This shows that the set P is bounded. In consequence, all the conditions of Lemma 3.4
are satisfied. Finally, the operator Ψ has at least one fixed point, which is a solution
of Cauchy problem (1.1). This completes the proof. □

4. Examples

Example 4.1. Consider the hybrid fractional differential equation:

(4.1)







































cD
1
2





u(t)
e−1+t+

√
u(t)

40+t2



 = e−t+♣ sin u(t)♣
20

, t ∈ [0, 1] \ ¶t1♢,

u(t+
1 ) = u(t−

1 ) + (−2u(t−
1 )), t1 ̸= 0, 1,

u(0)
f(0,u(0)

=
n
∑

i=1

λiu(ti).

Here, we have

f(t, u(t)) =
e−1 + t +

√

u(t)

40 + t2
,

g(t, u(t)) =
e−t + ♣ sin u(t)♣

20
,

♣g(t, u1) − g(t, u2)♣ ≤
1

40
♣u2 − u1♣, t ∈ [0, 1] and u1, u2 ∈ R,

∆ = L

(

Kϕ + nA +
Mg

Γ(α + 1)



≃ 0.0012345687 < 1.

Then all the assumptions of Theorem 3.2 are satisfied, thus our results can be applied
to Cauchy problem (4.1).

Example 4.2. Consider another example for hybrid fractional differential equations of
the following form

(4.2)







































cD
1
2





v(t)
e−1+t2+

√
v(t)

32+t



 = e−2t+cos2(v(t))
20

, t ∈ [0, 1] \ ¶t1♢,

v(t+
1 ) = v(t−

1 ) + (−2v(t−
1 )), t1 ̸= 0, 1,

v(0)
f(0,v(0))

=
n
∑

j=1

λjv(tj)).

Here, we have

f(t, v(t)) =
e−1 + t2 +

√

v(t)

32 + t
,

g(t, v(t)) =
e−2t + cos2(v(t))

20
,
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♣g(t, v1) − g(t, v2)♣ ≤
1

20
♣v2 − v1♣, t ∈ [0, 1] and v1, v2 ∈ R,

∆ = L

(

Kϕ + nA +
Mg

Γ(α + 1)



≃ 0.3354687 < 1.

Then all the assumptions of Theorem 3.2 are satisfied, thus our results can be
applied to Cauchy problem (4.2).
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QUANTITATIVE UNCERTAINTY PRINCIPLES FOR THE

CANONICAL FOURIER BESSEL TRANSFORM

KHALED HLEILI1 AND MANEL HLEILI2

Abstract. The aim of this paper is to prove new uncertainty principles for the
Canonical Fourier Bessel transform. To do so we prove a quantitative uncertainty
inequality about the essential supports of a nonzero function for this transformation.

1. Introduction

The classical linear canonical transform (LCT) is considered as a generalization of
the Fourier transform, and was first proposed in the 1970s by Collins [5] and Moshinsky
and Quesne [26]. Very recently, many works have been devoted the LCT under many
different names and in different contexts. Namely, in [22] the LCT is known as the
generalized Fresnel transform, in [4] is called ABCD transform and in [1] is also called
the special affine Fourier transform. Also, the LCT has been studied by many authors
for various Fourier transforms, for examples [11,23,34]. In [11], the authors introduced
the Dunkl linear canonical transform (DLCT) which is a generalization of the LCT in
the framework of Dunkl transform [7]. DLCT includes many well-known transforms
such as the Dunkl transform [7,10] and the canonical Fourier Bessel transform [8,11].
The LCT plays an important role in many fields of optics, radar system analysis,
GRIN medium system analysis, filter design, phase retrieval, pattern recognition and
many others [3, 28, 29]. In [8] the authors established some important properties of
the Canonical Fourier Bessel transform (QFBT) such as Riemann-Lebesgue lemma,
inversion formula, Plancherel theorem and some uncertainty principles.

Key words and phrases. Canonical Fourier Bessel transform, Donoho-Stark’s uncertainty principle,
Matolcsi-Szücs-type inequality.
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On the other hand, the uncertainty principle plays one important role in signal
processing. It describes a function and its Fourier transform, which cannot both
be simultaneously sharply localized. If we try to limit the behaviour of one we
lose control of the other. Many of these uncertainty principles have already been
studied from several points of view for the Fourier transform, such as Heisenberg-
Pauli-Weyl inequality [6] and local uncertainty inequality [30]. Uncertainty principles
have implications in two main areas: quantum physics and signal analysis. In quantum
physics, they tell us that a particle’s speed and position cannot both be measured
with arbitrary precision. In signal analysis, they tell us that if we observe a signal
only for a finite period of time, we will lose information about the frequencies the
signal consists of. Timelimited functions and bandlimited functions are basic tools
of signal and image processing. Unfortunately, the simplest form of the uncertainty
principle tells us that a signal cannot be simultaneously time and bandlimited. This
leads to the investigation of the set of almost time and almost bandlimited functions,
which has been initially carried through Landau, Pollak [24,25] and then by Donoho,
Stark [9]. In recent past, many works have been devoted to establish some uncertainty
principles in different setting and for various transforms (see for example [2,12–21,31])
and others.

The purpose of this paper is to obtain uncertainty principle similar to Donoho-
Stark’s principle for the QFBT.

In order to describe our results, we first need to introduce some facts about harmonic
analysis related to Canonical Fourier Bessel transform. For more details, see [8].

Throughout this paper, α denotes a real number such that α ⩾ −1
2
. We use the

following notation.
• Ce,0(R) denotes the space of even continuous functions on R and vanishing at

infinity. We provide Ce,0(R) with the topology of uniform convergence.
• Lp,α denotes the Lebesgue space of measurable functions f on R+, such that

∥f∥p,α =
(∫ +∞

0
♣f(y)♣py2α+1dy

)

1

p

< +∞, if 1 ⩽ p < +∞,

∥f∥∞,α =ess sup
y∈R+

♣f(y)♣ < +∞, if p = +∞.

We provide Lp,α with the topology defined by the norm ∥ · ∥p,α.
• L2,α denotes the Hilbert space equipped with the inner product ⟨·, ·⟩ given by

⟨f, g⟩ =
∫ +∞

0
f(y)g(y)y2α+1dy.

• m =

(

a b

c d

)

is an arbitrary matrix in SL(2,R), such that b ̸= 0.

Definition 1.1. The canonical Fourier Bessel transform of a function f ∈ L1,α is
defined by

F
m
α (f)(x) =

cα

(ib)α+1

∫ +∞

0
Km

α (x, y)f(y)y2α+1dy,
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where

(1.1) cα =
1

2αΓ(α + 1)

and

Km
α (x, y) = e

i
2

(

dx2

b
+ ay2

b

)

jα

(

xy

b

)

.

Here jα denotes the normalized Bessel function of order α ⩾ −1
2

and defined by [33]

jα(z) = 2αΓ(α + 1)
Jα(z)

zα
= Γ(α + 1)

+∞
∑

k=0

(−1)k

k!Γ(α + 1 + k)

(

z

2

)2k

, z ∈ C.

Proposition 1.1 ([8]). We denote by ∆m
α the differential operator

∆m
α =

d2

dx2
+
(

2α + 1

x
− 2i

d

b
x

)

d

dx
−
(

d2

b2
x2 + 2i(α + 1)

d

b

)

.

(1) For each y ∈ R, the kernel Km
α (·, y) of the canonical Fourier Bessel transform

F m
α is the unique solution of















∆m
α Km

α (·, y) = −y2

b2 Km
α (·, y),

Km
α (0, y) = e

iay2

2b ,
d

dx
Km

α (0, y) = 0.

(2) For each x, y ∈ R the kernel Km
α has the following integral representation

Km
α (x, y) =















2Γ(α+1)√
πΓ(α+ 1

2
)
e

i
2

(

dx2

b
+ ay2

b

)

∫ 1
0 (1 − t2)α− 1

2 cos(xyt

b
)dt, if α > −1

2
,

e
i
2

(

dx2

b
+ ay2

b

)

cos(xy

b
), if α = −1

2
.

In particular, we have

(1.2) ♣Km
α (x, y)♣ ⩽ 1 for all x, y ∈ R.

Theorem 1.1 ([8]). (1) (Plancherel theorem) If f ∈ L1,α ∩ L2,α, then F m
α (f) ∈ L2,α

and

(1.3) ∥F
m
α (f)∥2,α = ∥f∥2,α.

(2) (Orthogonality relation) For every f, g ∈ L2,α, we have

(1.4) ⟨f, g⟩ = ⟨F m
α (f), F m

α (g)⟩.

(3) (The reversibility property) For all f ∈ L1,α, with F m
α ∈ L1,α, we have

(1.5) (F m
α ◦ F

m−1

α )(f) = (F m−1

α ◦ F
m
α )(f) = f, a.e.

Babenko-Beckner inequality. Let m =

(

a b

c d

)

an arbitrary matrix in

SL(2,R), such that b ̸= 0. Let p and q be real numbers such that 1 < p ⩽ 2
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and 1
p

+ 1
q

= 1. Then, F m
α extends to a bounded linear operator on Lp,α, α ⩾ −1

2
and

we have

(1.6) ∥F
m
α (f)∥q,α ⩽ ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

∥f∥p,α,

where cα is the constant given by (1.1).
Riemann-Lebesgue lemma. For all f ∈ L1,α, the canonical Fourier Bessel

transform F m
α (f) belongs to Ce,0(R) and verifies

(1.7) ∥F
m
α (f)∥∞,α ⩽ cα♣b♣−(α+1)∥f∥1,α.

2. Donoho-Stark’s Uncertainty Principle for the Canonical Fourier
Bessel Transform

In this section, based on the techniques of Donoho-Stark [9], we will show uncertainty
principle of concentration-type the canonical Fourier Bessel transform.

In the following, we consider a pair of orthogonal projections on L2,α. The first is
the time-limiting operator defined

(2.1) PSf = χSf,

and the second is the frequency-limiting operator defined by

(2.2) F
m
α (QΣf) = χΣF

m
α (f),

where S and Σ are two measurable subsets of R+ and χS and χΣ denote the charac-
teristic functions of S and Σ.

Definition 2.1. Let 0 < εS, εΣ < 1 and let f ∈ L2,α be a nonzero function.
(1) We say that f is εS-concentrated on S if

(2.3) ∥PScf∥2,α ⩽ εS∥f∥2,α.

(2) We say that f is εΣ-concentrated on Σ for the canonical Fourier Bessel transform
if

(2.4) ∥QΣcf∥2,α ⩽ εΣ∥f∥2,α.

PS and QΣ are projections. Indeed, let f, g ∈ L2,α. By relation (1.4), we have

⟨P 2
Sf, g⟩ = ⟨PSf, PSg⟩ = ⟨F m

α (PSf), F m
α (PSg)⟩

=
∫ +∞

0
F

m
α (PSf)(y)F m

α (PSg)(y)y2α+1dy

=
∫

S
F

m
α (f)(y)F m

α (g)(y)y2α+1dy

=
∫ +∞

0
F

m
α (PSf)(y)F m

α (g)(y)y2α+1dy

= ⟨PSf, g⟩.

Thus, P 2
S = PS and hence PS is a projection.
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By the same way,

⟨Q2
Σf, g⟩ = ⟨QΣf, QΣg⟩ = ⟨F m

α (QΣf), F m
α (QΣg)⟩

=
∫ +∞

0
F

m
α (QΣf)(y)F m

α (QΣg)(y)y2α+1dy

=
∫

Σ
F

m
α (f)(y)F m

α (g)(y)y2α+1dy

=
∫ +∞

0
F

m
α (QΣf)(y)F m

α (g)(y)y2α+1dy

= ⟨QΣf, g⟩.

Thus, Q2
Σ = QΣf and hence QΣf is a projection.

For all f ∈ L2,α, given the kernel N which satisfies the following two conditions:
f(·)N(·, y) ∈ L1,α for almost every y ∈ R+ and if

Mf(x) =
∫ +∞

0
f(y)N(x, y)y2α+1dy,

then Mf ∈ L2,α. Then we define the norm of M to be

∥M∥ = sup
f∈L2,α

∥Mf∥2,α

∥f∥2,α

, f ̸= 0,

and the Hilbert-Schmidt norm of M is given by

∥M∥HS =
(∫ +∞

0

∫ +∞

0
♣N(x, y)♣2x2α+1y2α+1dxdy

)

1

2

.

It is clear that ∥PS∥ = ∥QΣ∥ = 1 (see [9]). If ♣Σ♣ < +∞, where Σ is a set of finite
measure of R+, we have by [27]

♣Σ♣ =
∫

Σ
x2α+1dx.

Lemma 2.1. If S and Σ are two measurable sets of R+ such that ♣S♣ < +∞ and

♣Σ♣ < +∞, then

∥PSQΣ∥HS = ∥QΣPS∥HS.

Proof. From relations (1.5), (2.1) and (2.2), we have

QΣPS(f)(x) =
cα

(−ib)α+1

∫

Σ
Km

α (y, x)F m
α (χSf)(y)y2α+1dy

=
cα

(−ib)α+1

∫

Σ
Km

α (y, x)

(

cα

(ib)α+1

∫

S
Km

α (y, z)f(z)z2α+1dz

)

y2α+1dy

=
c2

α

b2α+2

∫

S
f(z)

(∫

Σ
Km

α (y, x)Km
α (y, z)y2α+1dy

)

z2α+1dz

=
∫

S
f(z)k(x, z)z2α+1dz,
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where

k(x, z) =
c2

α

b2α+2

∫

Σ
Km

α (y, x)Km
α (y, z)y2α+1dy, z ∈ S, x ∈ R+.

In the same way, we get

PSQΣ(f)(x) = χS(x)QΣ(f)(x)

= χS(x)
cα

(−ib)α+1

∫

Σ
Km

α (y, x)F m
α (f)(y)y2α+1dy

= χS(x)
c2

α

b2α+2

∫

Σ
Km

α (y, x)
(∫ +∞

0
Km

α (y, z)f(z)z2α+1dz

)

y2α+1dy

= χS(x)
c2

α

b2α+2

∫ +∞

0
f(z)

(∫

Σ
Km

α (y, x)Km
α (y, z)y2α+1dy

)

z2α+1dz

= χS(x)
∫ +∞

0
f(z)k(x, z)z2α+1dz.

Then, from the above results we can easily obtain that

∥QΣPS∥HS =
(∫

S

∫ +∞

0
♣k(x, z)♣2x2α+1z2α+1dxdz

)

1

2

and

∥PSQΣ∥HS =
(∫ +∞

0

∫

S
♣k(x, z)♣2x2α+1z2α+1dxdz

)

1

2

,

which yields the desired result. □

Using Cauchy-Schwarz inequality, we can easily obtain that

(2.5) ∥PSQΣ∥ ⩽ ∥PSQΣ∥HS.

Lemma 2.2. If S and Σ are two measurable subsets of R+ such that ♣S♣ < +∞ and

♣Σ♣ < +∞, then

∥PSQΣ∥ ⩽
cα

♣b♣α+1

√

♣S♣♣Σ♣,

where cα is the constant given by relation (1.1).

Proof. For x ∈ S, let gx(t) = k(x, t). Note that

F
m
α (gx)(y) =

cα

(ib)α+1
χΣ(y)Km

α (x, y).

By relations (1.3) and (1.2), we have
∫ +∞

0
♣gx(t)♣2t2α+1dt =

∫ +∞

0
♣F m

α (gx)(y)♣2y2α+1dy

=
c2

α

♣b♣2α+2

∫

Σ
♣Km

α (x, y)♣2y2α+1dy

⩽
c2

α

♣b♣2α+2
♣Σ♣.
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Hence,
∫ +∞

0

∫ +∞

0
♣k(x, t)♣2x2α+1t2α+1dxdt ⩽

c2
α

♣b♣2α+2
♣Σ♣

∫

S
x2α+1dx =

c2
α

♣b♣2α+2
♣Σ♣♣S♣.

Therefore,

∥PSQΣ∥2
HS ⩽

c2
α

♣b♣2α+2
♣Σ♣♣S♣.

And the proof is complete by (2.5). □

Proposition 2.1. Let S and Σ be two measurable subsets of R+ and assume that

εS + εΣ < 1, f is εS-concentrated on S and F m
α is εΣ-concentrated on Σ, with

∥f∥2,α = 1. Then

c2
α

♣b♣2α+2
♣Σ♣♣S♣ ⩾ (1 − εS − εΣ)2.

Proof. Assume that 0 < ♣S♣, ♣Σ♣ < +∞. As ∥QΣ∥ = 1, it follows that

∥f − QΣPS(f)∥2,α ⩽ ∥f − QΣ(f)∥2,α + ∥QΣ(f) − QΣPS(f)∥2,α

⩽ εΣ + ∥QΣ∥∥f − PS(f)∥2,α

⩽ εΣ + εS.

The triangle inequality gives

∥QΣPS(f)∥2,α ⩾ ∥f∥2,α − ∥f − QΣPS(f)∥2,α ⩾ 1 − εΣ − εS.

Hence,

∥QΣPS∥ ⩾ 1 − εΣ − εS.

Then from lemmas 2.1 and 2.2, we get the desired result. □

Theorem 2.1 (Donoho-Stark uncertainty principle-type). Let f ∈ L2,α and S, Σ be

two measurable subsets of R+ such that ♣S♣♣Σ♣ <
|b|2α+2

c2
α

and let εS, εΣ > 0 such that

ε2
S + ε2

Σ < 1. If f is εS-concentrated on S and εΣ-concentrated on Σ for the canonical

Fourier Bessel transform, then

c2
α

♣b♣2α+2
♣S♣♣Σ♣ ⩾

(

1 −
√

ε2
S + ε2

Σ

)2

.

Proof. Since I = PS + PSc = PSQΣ + PSQΣc + PSc , then, using the orthogonality of
PS and PSc , we have

∥f − PSQΣ(f)∥2
2,α = ∥PSQΣc(f) + PSc(f)∥2

2,α

= ∥PSQΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α

⩽ ∥PS∥2∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α.

From (2.1), we have

(2.6) ∥PS∥ ⩽ 1.
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Since PS is a projection on L2,α, then

(2.7) ∥PS∥ = ∥PS ◦ PS∥ ⩽ ∥PS∥2.

By (2.6) and (2.7), we deduce that ∥PS∥ = 1. Thus,

(2.8) ∥f − PSQΣ(f)∥2,α ⩽
√

∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α.

On the other hand,

∥f − PSQΣ(f)∥2,α ⩾ ∥f∥2,α − ∥PSQΣ(f)∥2,α ⩾ (1 − ∥PSQΣ∥)∥f∥2,α.

Then, by (2.8), we have

(1 − ∥PSQΣ∥)∥f∥2,α ⩽
√

∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α.

Since cα

|b|α+1

√

♣S♣♣Σ♣ < 1, it follows from Lemma 2.2 that

(2.9) ∥f∥2
2,α ⩽

(

1 −
cα

♣b♣α+1

√

♣S♣♣Σ♣
)−2 (

∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α

)

.

Now, by relations (2.3) and (2.4), we get

(2.10) ∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α ⩽ (ε2
S + ε2

Σ)∥f∥2
2,α.

By combining relations (2.9) and (2.10), we obtain the desired result. □

3. Lp,α-Uncertainty Principles for the Canonical Fourier Bessel
Transform

In this section, building on the techniques of Donoho and Stark [9] and Soltani
[32], we show a quantitative uncertainty inequality about the essential supports of a
nonzero function f ∈ Lp,α, 1 ⩽ p ⩽ 2 and its canonical Fourier Bessel transform.

Proposition 3.1. Let f ∈ L1,α ∩ Lp,α, 1 < p ⩽ 2. Then

∥F
m
α (f)∥q,α ⩽

cα

♣b♣α+1
♣supp F

m
α (f)♣

1

q ♣supp f ♣
1

q ∥f∥p,α,

with q = p

p−1
.

Proof. Let f ∈ L1,α ∩ Lp,α, 1 ⩽ p ⩽ 2. Then by Hölder’s inequality and (1.7), we get

∥F
m
α (f)∥q,α ⩽ ♣supp F

m
α (f)♣

1

q ∥F
m
α (f)∥∞,α

⩽
cα

♣b♣α+1
♣supp F

m
α (f)♣

1

q ∥f∥1,α

⩽
cα

♣b♣α+1
♣supp F

m
α (f)♣

1

q ♣supp f ♣
1

q ∥f∥p,α,

which gives the desired result. □
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Proposition 3.2. Let f ∈ L2,α ∩ Lp,α, 1 < p < 2. Then

1 ⩽ ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

♣supp F
m
α (f)♣

q−2

2q ♣supp f ♣
2−p

2p ,

with q = p

p−1
.

Proof. Let f ∈ L2,α ∩ Lp,α, 1 ⩽ p ⩽ 2. Then by Hölder’s inequality and (1.6), we get

∥F
m
α (f)∥q,α ⩽ ♣supp F

m
α (f)♣

q−2

2q ∥F
m
α (f)∥q,α

⩽ ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

♣supp F
m
α (f)♣

q−2

2q ∥f∥p,α

⩽ ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

♣supp F
m
α (f)♣

q−2

2q ♣supp f ♣
2−p

2p ∥f∥2,α.

Relation (1.3) completes the proof. □

Definition 3.1. Let 0 < εS, εΣ < 1.
(1) We say that a function f ∈ Lp,α, 1 ⩽ p ⩽ 2 is εS-concentrated to S in Lp,α-norm

if and only if

(3.1) ∥f − PSf∥p,α ⩽ εS∥f∥p,α.

(2) Let f ∈ Lp,α, 1 ⩽ p ⩽ 2. We say that F m
α (f) is εΣ-concentrated on Σ in

Lq,α-norm, q = p

p−1
if and only if

(3.2) ∥F
m
α (f) − F

m
α (QΣf)∥q,α ⩽ εΣ∥F

m
α (f)∥q,α.

Lemma 3.1. Let f ∈ Lp,α, 1 < p ⩽ 2. Then

∥F
m
α (QΣf)∥q,α ⩽ ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

∥f∥p,α,

with q = p

p−1
.

Proof. Let f ∈ Lp,α, 1 < p ⩽ 2 and q = p

p−1
. From relations (1.6) and (2.2), we get

∥F
m
α (QΣf)∥q,α =

(∫

Σ
♣F m

α (f)(x)♣qx2α+1dx

)
1

q

⩽ ∥F
m
α (f)∥q,α

⩽ ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

∥f∥p,α,

which yields the desired result. □
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Lemma 3.2. Let S and Σ be two measurable subsets of R+ and f ∈ Lp,α, 1 < p ⩽ 2,

q = p

p−1
. Then

∥F
m
α (QΣPSf)∥q,α ⩽

cα

♣b♣α+1
♣S♣

1

q ♣Σ♣
1

q ∥f∥p,α.

Proof. Assume that ♣S♣ < +∞ and ♣Σ♣ < +∞. From relation (2.2), we have

(3.3) ∥F
m
α (QΣPSf)∥q,α =

(∫

Σ
♣F m

α (χSf)(x)♣qx2α+1dx

)
1

q

.

By (1.2) and Hölder’s inequality it follows that

♣F m
α (χSf)(x)♣ ⩽

cα

♣b♣α+1

(∫

S
♣f(y)♣py2α+1dy

)
1

p
(∫

S
♣Km

α (x, y)♣qy2α+1dy

)
1

q

⩽
cα

♣b♣α+1
♣S♣

1

q ∥f∥p,α.

Then from (3.3), we obtain the desired result. □

Theorem 3.1. Let S and Σ be two measurable subsets of R+ and f ∈ Lp,α, 1 < p ⩽ 2,

q = p

p−1
. If f is εS-concentration to S in Lp,α-norm and F m

α (f) is εΣ-concentration

to Σ in Lq,α-norm, then

∥F
m
α (f)∥q,α ⩽

1

1 − εΣ





cα

♣b♣α+1
♣S♣

1

q ♣Σ♣
1

q + εS♣b♣(α+1)( 2

q
−1)

(

(cαp)
1

p

(cαq)
1

q

)α+1


 ∥f∥p,α.

Proof. Assume that ♣S♣ < +∞ and ♣Σ♣ < +∞. From the triangle inequality, relations
(1.6), (3.1), (3.2) and Lemma 3.2, we get

∥F
m
α (f)∥q,α ⩽∥F

m
α (QΣPSf)∥q,α + ∥F

m
α (f) − F

m
α (QΣPSf)∥q,α

⩽∥F
m
α (QΣPSf)∥q,α + ∥F

m
α (f) − F

m
α (QΣf)∥q,α

+ ∥F
m
α (QΣf) − F

m
α (QΣPSf)∥q,α

⩽
cα

♣b♣α+1
♣S♣

1

q ♣Σ♣
1

q ∥f∥p,α + εΣ∥F
m
α (f)∥q,α

+ ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

∥f − PSf∥p,α

⩽







cα

♣b♣α+1
♣S♣

1

q ♣Σ♣
1

q + εS♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1




 ∥f∥p,α

+ εΣ∥F
m
α (f)∥q,α,

which gives the desired result. □

Theorem 3.2 (Donoho-Stark’s uncertainty principle-type). Let S and Σ be two

measurable subsets of R+ and f ∈ Lp1,α ∩ Lp2,α, 1 < p1 < p2 ⩽ 2. If f is εS-

concentration to S in Lp1,α-norm and F m
α (f) is εΣ-concentration to Σ in Lq2,α-norm,
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q2 = p2

p2−1
, then

∥F
m
α (f)∥q2,α ⩽

♣S♣
p2−p1
p1p2 ♣Σ♣

q1−q2
q1q2

(1 − εΣ)(1 − εS)
♣b♣

(α+1)( 2

q1
−1)





(cαp1)
1

p1

(cαq1)
1

q1





α+1

∥f∥p2,α,

where q1 = p1

p1−1
.

Proof. Assume that ♣S♣ < +∞ and ♣Σ♣ < +∞. Let f ∈ Lp1,α ∩Lp2,α, 1 < p1 < p2 ⩽ 2.

Since F m
α (f) is εΣ-concentration to Σ in Lq2,α-norm, then, by Hölder’s inequality, we

obtain

∥F
m
α (f)∥q2,α ⩽ εΣ∥F

m
α (f)∥q2,α + ∥χΣF

m
α (f)∥q2,α

⩽ εΣ∥F
m
α (f)∥q2,α + ♣Σ♣

q1−q2
q1q2 ∥F

m
α (f)∥q1,α.

Thus, by (1.6),

(3.4) ∥F
m
α (f)∥q2,α ⩽

♣Σ♣
q1−q2
q1q2

1 − εΣ

♣b♣
(α+1)( 2

q1
−1)





(cαp1)
1

p1

(cαq1)
1

q1





α+1

∥f∥p1,α.

On the other hand, since f is εS-concentration to S in Lp1,α-norm, then by Hölder’s
inequality, we deduce that

∥f∥p1,α ⩽ εS∥f∥p1,α + ∥χSf∥p1,α ⩽ εS∥f∥p1,α + ♣S♣
p2−p1
p1p2 ∥f∥p2,α.

Thus,

(3.5) ∥f∥p1,α ⩽
♣S♣

p2−p1
p1p2

1 − εS

∥f∥p2,α.

Combining (3.4) and (3.5), we obtain the result of this theorem. □

Corollary 3.1. Let S and Σ be two measurable subsets of R+ and f ∈ L2,α ∩ Lp,α,

1 < p < 2. If f is εS-concentration to S in Lp,α-norm and F m
α (f) is εΣ-concentration

to Σ in L2,α-norm, then

(1 − εΣ)(1 − εS) ⩽ ♣S♣
2−p

2p ♣Σ♣
q−2

2q ♣b♣(α+1)( 2

q
−1)





(cαp)
1

p

(cαq)
1

q





α+1

,

where q = p

p−1
.

Let Bp(Σ), 1 ⩽ p ⩽ 2, be the set of functions g ∈ Lp,α that are bandlimited to Σ,
i.e., (g ∈ Bp(Σ) implies QΣg = g).

We say that f is εΣ-bandlimited to Σ in Lp,α-norm if there is a g ∈ Bp(Σ) with

∥f − g∥p,α ⩽ εΣ∥f∥p,α.

In the following, we state an Lp1,α ∩ Lp2,α bandlimited uncertainty principle of
concentration-type.
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Theorem 3.3 (Bandlimited principle-type). Let S and Σ be two measurable subsets

of R+ and f ∈ Lp1,α ∩ Lp2,α, 1 ⩽ p1 < p2 ⩽ 2. If f is εS-concentration to S in

Lp1,α-norm and εΣ-bandlimited to Σ in Lq2,α-norm, q2 = p2

p2−1
, then

∥f∥p1,α

⩽
♣S♣

p2−p1
p1p2

1 − εS





(1 + εΣ)cα♣Σ♣
1

p2 ♣S♣
1

p2 ♣b♣
(α+1)( 2

q2
−2)





(cαp2)
1

p2

(cαq2)
1

q2





α+1

+ εΣ





 ∥f∥p2,α.

Proof. Assume that ♣S♣ < +∞ and ♣Σ♣ < +∞. Let f ∈ Lp1,α ∩ Lp2,α, 1 ⩽ p1 <

p2 ⩽ 2. Since f is εS-concentration to S in Lp1,α-norm, then by Hölder’s inequality,
we deduce that

∥f∥p1,α ⩽ εS∥f∥p1,α + ∥PSf∥p1,α ⩽ εS∥f∥p1,α + ♣S♣
p2−p1
p1p2 ∥PSf∥p2,α.

Thus,

(3.6) ∥f∥p1,α ⩽
♣S♣

p2−p1
p1p2

1 − εS

∥PSf∥p2,α.

As f is εΣ-bandlimited to Σ in Lq2,α-norm, there is a g ∈ Bp2(Σ) with

∥f − g∥p2,α ⩽ εΣ∥f∥p2,α.

On the other hand, we have

∥PSf∥p2,α ⩽ ∥PSg∥p2,α + ∥PS(f − g)∥p2,α ⩽ ∥PSg∥p2,α + εΣ∥f∥p2,α.

But g ∈ Bp2(Σ), from (2.2), g(x) = F m−1

α (χΣF m
α (g))(x) and by (1.6) and Hölder’s

inequality, we deduce that

♣g(x)♣ ⩽
cα

♣b♣α+1
♣Σ♣

1

p2 ∥F
m
α (g)∥q2,α

⩽ cα♣Σ♣
1

p2 ♣b♣
(α+1)( 2

q2
−2)





(cαp2)
1

p2

(cαq2)
1

q2





α+1

∥g∥p2,α.

Hence,

∥PSg∥p2,α =
(∫

S
♣g(x)♣p2x2α+1dx

)
1

p2

⩽ cα♣Σ♣
1

p2 ♣S♣
1

p2 ♣b♣
(α+1)( 2

q2
−2)





(cαp2)
1

p2

(cαq2)
1

q2





α+1

∥g∥p2,α.

Then by (3.6) and the fact that ∥g∥p2,α ⩽ (1 + εΣ)∥f∥p2,α, we get

∥f∥p1,α ⩽
♣S♣

p2−p1
p1p2

1 − εS





(1 + εΣ)cα♣Σ♣
1

p2 ♣S♣
1

p2 ♣b♣
(α+1)( 2

q2
−2)





(cαp2)
1

p2

(cαq2)
1

q2





α+1

+ εΣ





 ∥f∥p2,α.

This completes the desired result. □
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Corollary 3.2. Let S and Σ be two measurable subsets of R+ and f ∈ Lp,α, 1 < p ⩽ 2.

If f is εS-concentration to S and εΣ-bandlimited to Σ in Lp,α-norm, then

1 − εS − εΣ

1 + εΣ

⩽ cα♣Σ♣
1

p ♣S♣
1

p ♣b♣(α+1)( 2

q
−2)





(cαp)
1

p

(cαq)
1

q





α+1

.

Theorem 3.4 (Matolcsi-Szücs-type inequality). Let f ∈ Lp1,α ∩ Lp2,α, 1 < p1 ⩽ p2 ⩽

2. Then

∥F
m
α (f)∥q2,α ⩽ ♣b♣

(α+1)( 2

q1
−1)





(cαp1)
1

p1

(cαq1)
1

q1





α+1

♣supp F
m
α (f)♣

q1−q2
q1q2 ♣supp f ♣

p2−p1
p1p2 ∥f∥p2,α,

where q1 = p1

p1−1
and q2 = p2

p2−1
.

Proof. Let f ∈ Lp1,α ∩ Lp2,α, 1 < p1 ⩽ p2 ⩽ 2, q1 = p1

p1−1
and q2 = p2

p2−1
. Then, by

relation (1.6) and Hölder’s inequality, we obtain

∥F
m
α (f)∥q2,α

⩽♣supp F
m
α (f)♣

q1−q2
q1q2 ∥F

m
α (f)∥q1,α

⩽♣b♣
(α+1)( 2

q1
−1)





(cαp1)
1

p1

(cαq1)
1

q1





α+1

♣supp F
m
α (f)♣

q1−q2
q1q2 ∥f∥p1,α

⩽♣b♣
(α+1)( 2

q1
−1)





(cαp1)
1

p1

(cαq1)
1

q1





α+1

♣supp F
m
α (f)♣

q1−q2
q1q2 ♣supp f ♣

p2−p1
p1p2 ∥f∥p2,α,

which yields the desired result. □

Corollary 3.3. Let f ∈ L2,α ∩ Lp,α, 1 < p < 2 and q = p

p−1
. Then





(cαp)
1

p

(cαq)
1

q





−(α+1)

♣b♣(α+1)(1− 2

q
)
⩽ ♣supp f ♣

2−p

2p ♣supp F
m
α (f)♣

q−2

2q .
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MP-RESIDUATED LATTICES

SAEED RASOULI1 AND AMIN DEHGHANI2

Abstract. This paper is devoted to the study of a fascinating class of residuated
lattices, the so-called mp-residuated lattice, in which any prime Ąlter contains a
unique minimal prime Ąlter. A combination of algebraic and topological methods
is applied to obtain new and structural results on mp-residuated lattices. It is
demonstrated that mp-residuated lattices are strongly tied up with the dual hull-
kernel topology. Especially, it is shown that a residuated lattice is mp if and only if its
minimal prime spectrum, equipped with the dual hull-kernel topology, is Hausdorff
if and only if its prime spectrum, equipped with the dual hull-kernel topology, is
normal. The class of mp-residuated lattices is characterized by means of pure Ąlters.
It is shown that a residuated lattice is mp if and only if its pure Ąlters are precisely
its minimal prime Ąlters, if and only if its pure spectrum is homeomorphic to its
minimal prime spectrum, equipped with the dual hull-kernel topology.

1. Introduction

Let A be a residuated lattice, F (A) the lattice of filters, and PF (A) the lattice
of principal filters of A. The lattice of coannihilators of A, say Γ(A), is the skeleton
of F (A), and the lattice of coannulets of A, say γ(A), is the skeleton of PF (A).
So (Γ(A); ∨Γ, ∩, ¶1♢, A) is a complete Boolean lattice, in which ∨Γ is the join in the
skeleton, and γ(A) is a sublattice of Γ(A). A is said to be Baer provided that Γ(A)
is a sublattice of F (A), and Rickart provided that γ(A) is a Boolean sublattice of
F (A). Obviously, A is Rickart if and only if γ(A) is both Boolean and a sublattice
of F (A). The latter can be characterized by a property that can be formulated in

Key words and phrases. Mp-residuated lattice, pure Ąlter, dual hull-kernel topology, pure spec-
trum.
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terms of universal algebra, namely that any prime filter contains a unique minimal
prime filter.

Historically, this notion is rooted in a query posed by G. Birkhoff [8, Problem 70]
inspired by M. H. Stone: ”What is the most general pseudocomplemented distributive
lattice in which x∗ ∨ x∗∗ = 1 identically?“ The first solution to this problem belongs
to G. Grätzer and E. Schmidt [20] who gave the name ”Stone lattices“ to this class
of lattices. They characterized stone lattices as distributive pseudocomplemented
lattices in which any pair of incomparable minimal prime ideals is comaximal or
equivalently each prime ideal contains a unique minimal prime ideal. Motivated by
this characterization, W. Cornish [12] studied distributive lattices with zero in which
each prime ideal contains a unique minimal prime ideal under the name of ”normal

lattices“. He observed that a distributive lattice with zero, A, is normal if and only
if given x, y ∈ A such that x ∧ y = 0, x⊥ and y⊥ are comaximal. Cornish used
this terminology in light of H. Wallman [36], who proved that the lattice of closed
subsets of a T1 space satisfies the above annihilator condition if and only if the space is
normal. G. Artico and U. Marconi [5, Lemma β] showed that in a unitary commutative
reduced ring any prime ideal contains a unique minimal prime ideal if and only if
the set of its annulets is a sublattice of its ideals. E. Matlis [23, Proposition 2.1]
proved that the class of commutative PF rings, i.e., a unitary ring with the property
that every principal ideal is flat, introduced by A. Hattori [21, p. 151], is precisely
the class of reduced rings in which any prime ideal contains a unique minimal prime
ideal. P. Bhattacharjee and W. McGovern [7, Theorem 2.6] tied up the notion of PF
rings to the notion of the dual hull-kernel topology. They established that a unitary
commutative ring is a PF ring if and only if its minimal prime spectrum, with the dual
hull-kernel topology, is Hausdorff. This knot was tightened further by M. Aghajani
and A. Tarizadeh [1, Theorem 6.2]. They studied the class of unitary commutative
rings which fulfill the above universal property, under the name of ”mp-rings“. They
gave a good perspective of mp-rings and asserted that a unitary commutative ring is
mp if and only if its prime spectrum, with the dual hull-kernel topology, is normal.

Inspired by the above universal property, many authors have proposed similar
notions, under other names, for various structures over the years, see e.g., normal
lattices [9, 24], conormal lattices [6, 18, 33], normal residuated lattices [32], mp-rings
[1], mp-residuated lattices [31], mp-quantales [16,17], etc (for a discussion about this
terminology, see [33, p. 185] and [22, p. 78]).

It is known that residuated lattices play a critical role in the theory of fuzzy
logic. Lots of logical algebras such as MTL-algebras, divisible residuated lattices,
BL-algebras, MV-algebras, Heyting algebras, and Boolean algebras are subvarieties
of residuated lattices. Residuated lattices are not only important from a logical point
of view but also interesting from an algebraic point of view and have some interesting
algebraic properties.

Given the above discussions, we decided to take a deeper look at mp-residuated
lattices. So the notion of mp-residuated lattices is investigated, and some algebraic and
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topological characterizations are given. Although, the class of mp-residuated lattices
has been investigated by [32], however, here we give some more characterizations for
the class of mp-residuated lattices, which seems to give more light to the topological
situation. Our findings show that some results obtained by some above papers can also
be reproduced via residuated lattices. Also, outcomes show that mp-residuated lattices
can be considered as the dual notion of Gelfand residuated lattices, as asserted in [1]
for rings. So mp-residuated lattices can be studied both as one of the two main pillars
of Rickart residuated lattices (along with quasicomplemented residuated lattices), and
as a dual notion of Gelfand residuated lattices.

This paper is organized into four sections as follows. In Section 2, some definitions
and facts about residuated lattices are recalled, and some of their propositions ex-
tracted. We illustrate this section with some examples of residuated lattices, which
will be used in the following sections. Section 3 deals with mp-residuated lattices.
Theorem 3.1 shows that a residuated lattice is mp if and only if the bounded distribu-
tive lattice of its filters is conormal. Theorem 3.1 (Cornish’s characterization) gives
an element-wise characterization for mp-residuated lattices. Theorem 3.2 shows that
a residuated lattice A is mp if and only if γ(A) is a sublattice of F (A). Theorem 3.3
(Matlis’s characterization) establishes that a residuated lattice A is mp if and only
if A/D(p) is a domain, for any prime filter p of A. The remaining theorems of this
section demonstrate that mp-residuated lattices are strongly tied up with the dual
hull-kernel topology. Theorem 3.7 shows that a residuated lattice is mp if and only if
its prime spectrum is normal with the dual hull-kernel topology. Section 4 deals with
the pure spectrum of an mp-residuated lattice. The pure filters of an mp-residuated
lattice are characterized in Theorem 4.4. As an important result in this section in
Theorem 4.6 is expressed that a residuated lattice is mp if and only if the set of its
minimal prime filters is equal to the its purely-prime filters. Theorem 4.8 verifies that
a residuated lattice is mp if and only if the identity map between its pure spectrum
and its minimal prime spectrum, equipped with the dual hull-kernel topology, is a
homeomorphism. Finally, Corollary 4.2 implies that, like Gelfand residuated lattices,
the pure spectrum of an mp-residuated lattice is Hausdorff.

2. Preliminaries

In this section, some definitions, properties, and results relative to residuated
lattices, which will be used in the following, recalled.

An algebra A = (A; ∨, ∧, ⊙, →, 0, 1) is called a residuated lattice provided that
ℓ(A) = (A; ∨, ∧, 0, 1) is a bounded lattice, (A; ⊙, 1) is a commutative monoid, and
(⊙, →) is an adjoint pair. A residuated lattice A is called non-degenerate if 0 ̸= 1.
For a residuated lattice A, and a ∈ A we put ¬a := a → 0 and an := a ⊙ · · · ⊙ a (n
times), for any integer n. The class of residuated lattices is equational, and so forms
a variety. For a survey of residuated lattices, the reader is referred to [15].
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Remark 2.1. ([10, Proposition 2.6]). Let A be a residuated lattice. The following
conditions are satisfied for any x, y, z ∈ A:

(r1) x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z);
(r2) x ∨ (y ⊙ z) ≥ (x ∨ y) ⊙ (x ∨ z).

Example 2.1 ([34]). Let A6 = ¶0, a, b, c, d, 1♢ be a lattice whose Hasse diagram is given
by Figure 1. Routine calculation shows that A6 = (A6; ∨, ∧, ⊙, →, 0, 1) is a residuated
lattice in which the commutative operation ⊙ is given by Table 1 and the operation
→ is given by x → y =

∨
¶a ∈ A6 ♣ x ⊙ a ≤ y♢ for any x, y ∈ A6.

⊙ 0 a b c d 1
0 0 0 0 0 0 0

a a a 0 a a
b a 0 a b

c c c c
d d d

1 1

Table 1. Cayley table for “⊙” of
A6

0

c

a

b
d

1

Figure 1. Hasse diagram of A6

Example 2.2. Let A8 = ¶0, a, b, c, d, e, f, 1♢ be a lattice whose Hasse diagram is given
by Figure 2. Routine calculation shows that A8 = (A8; ∨, ∧, ⊙, →, 0, 1) is a residuated
lattice in which the commutative operation ⊙ is given by Table 2 and the operation
→ is given by x → y =

∨
¶a ∈ A8 ♣ x ⊙ a ≤ y♢ for any x, y ∈ A8.

Let A be a residuated lattice. A non-void subset F of A is called a filter of A

provided that x, y ∈ F implies x ⊙ y ∈ F , and x ∨ y ∈ F , for any x ∈ F and y ∈ A.
The set of filters of A is denoted by F (A). A filter F of A is called proper if F ≠ A.
For any subset X of A, the filter of A generated by X is denoted by F (X). For each
x ∈ A, the filter generated by ¶x♢ is denoted by F (x) and said to be principal. The set
of principal filters is denoted by PF (A). Following [19, §5.7], a join-complete lattice
A, is called a frame if it satisfies the join infinite distributive law (JID), i.e., for any
a ∈ A and S ⊆ A, a ∧

∨
S =

∨
¶a ∧ s ♣ s ∈ S♢. A frame A is called complete provided
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⊙ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0

a a 0 a a a a a
b 0 0 0 0 b b

c c a c a c
d a a d d

e c d e
f f f

1 1

Table 2. Cayley table for ⊙ of
A8

0

a b

c d

e f

1

Figure 2. Hasse diagram of A8

that A is a complete lattice. According to [15], (F (A); ∩,⊻, 1, A) is a complete frame,
in which ⊻F = F (∪F), for any F ⊆ F (A).

Example 2.3. Consider the residuated lattice A6 from Example 2.1 and the residuated
lattice A8 from Example 2.2. The sets of their filters are presented in Table 3.

Filters
A6 ¶1♢, ¶a, b, d, 1♢, ¶c, d, 1♢, ¶d, 1♢, A6

A8 ¶1♢, ¶a, c, d, e, f, 1♢, ¶c, e, 1♢, ¶f, 1♢, A8

Table 3. The sets of filters of A6 and A8

The proof of the following proposition has a routine verification, and so it is left to
the reader.

Proposition 2.1. Let A be a residuated lattice and F be a filter of A. The following

assertions hold for any x, y ∈ A:

(1) F (x) = ¶a ∈ A ♣ xn ≤ a, for some integer n♢;

(2) x ≤ y implies F (y) ⊆ F (x);
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(3) F (x) ∩ F (y) = F (x ∨ y);
(4) F (x) ⊻F (y) = F (x ⊙ y);
(5) PF (A) is a sublattice of F (A).

The following proposition gives a characterization for the comaximal filters of a
residuated lattice.

Proposition 2.2. Let A be a residuated lattice and F, G two proper filters of A. The

following assertions are equivalent:

(1) F and G are comaximal, i.e., F ⊻G = A;

(2) there exist f ∈ F and g ∈ G such that f ⊙ g = 0;

(3) there exists a ∈ A such that a ∈ F and ¬a ∈ G.

Proof. (1)⇒(2) It is evident by Proposition 2.1.
(2)⇒(3) Let f ⊙ g = 0, for some f ∈ F and g ∈ G. This implies that g ≤ ¬f , and

the result hold.
(3)⇒(1) It is evident. □

Let A be a residuated lattice. A maximal element in the set of proper filters of
A is called maximal, and the set of maximal filters of A denoted by max(A). A
meet-irreducible element in the set of proper filters of A is called prime, and the set
of prime filters of A denoted by Spec(A). Since F (A) is a distributive lattice, so
max(A) ⊆ Spec(A). Zorn’s lemma verifies that any proper filter is contained in a
maximal filter, and so in a prime filter.

A non-empty subset C of A is called ∨-closed if it is closed under the join operation,
i.e x, y ∈ C implies x ∨ y ∈ C .

Theorem 2.1. ([25, Theorem 3.18]). If C is a ∨-closed subset of A which does not

meet the filter F , then F is contained in a filter P which is maximal with respect to

the property of not meeting C ; furthermore P is prime.

A minimal element in the set of prime filters of a residuated lattice A is called
minimal prime, and the set of minimal prime filters of A denoted by min(A). For the
basic facts concerning prime filters of a residuated lattice, the reader is referred to
[25].

Example 2.4. Consider the residuated lattice A6 from Example 2.1 and the residuated
lattice A8 from Example 2.2. The sets of their maximal, prime, and minimal prime
filters are presented in Table 4.

Proposition 2.3 ([25]). Let A be a residuated lattice. The following assertions hold.

(1) A subset P of A is a minimal prime filter if and only if Ṗ
def.
= A \ P is a

∨-closed subset of A which it is maximal with respect to the property of not

containing 1.

(2) Any prime filter of a residuated lattice contains a minimal prime filter.
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Prime filters
Maximal filters Minimal prime filters

A6 ¶a, b, d, 1♢, ¶c, d, 1♢ ¶1♢
A8 ¶a, c, d, e, f, 1♢ ¶c, e, 1♢, ¶f, 1♢

Table 4. The sets of maximal, prime, and minimal prime filters of A6

and A8

(3) A prime filter P of A is minimal prime if and only if for any x ∈ A, P contains

precisely one of x or x⊥.

Let A be a residuated lattice and Π a collection of prime filters of A. For a subset
π of Π we set k(π) =

⋂
π, and for a subset X of A we set hΠ(X) = ¶P ∈ Π ♣ X ⊆ P♢

and dΠ(X) = Π \ hΠ(X). The collection Π can be topologized by taking the collection
¶hΠ(x) ♣ x ∈ A♢ as a closed (an open) basis, which is called the (dual) hull-kernel

topology on Π and denoted by Πh(d). The generated topology by τh ∪ τd on Spec(A)
is called the patch topology and denoted by τp. As usual, the Boolean lattice of all
clopen subsets of a topological space Aτ shall be denoted by Clop(Aτ ). For a detailed
discussion on the (dual) hull-kernel and patch topologies on a residuated lattice, we
refer to [29].

Proposition 2.4 ([29]). Let A be a residuated lattice. We have:

Clop(Specd(A)) = ¶h(e) ♣ e ∈ β(A)♢.

Let Π be a collection of prime filters in a residuated lattice A. In the following, for
a given subset π of Π, clΠ

h(d)(π) stands for the closure of π in the topological space

(Π, τh(d)). If π = ¶P♢ for some prime filter P of A, then clΠ
h(d)(¶P♢) is simply denoted

by clΠ
h(d)(P ). If Π is understood, it will be dropped.

Lemma 2.1. ([29, Theorem 3.14]). Let A be a residuated lattice, Π a collection of

prime filters of A and p, q ∈ Π. The following assertions are equivalent:

(1) p ⊆ q;

(2) q ∈ clh(p);
(3) p ∈ cld(q).

The following proposition characterizes the open sets of the spectrum of a residuated
lattice w.r.t the dual hull-kernel topology.

Proposition 2.5. Let A be a residuated lattice. The open sets of Specd(A) are

precisely of the form ¶p ∈ Spec(A) ♣ p ∩ X ̸= ∅♢, where X is a subset of A.

Proof. Let U be an open set in Specd(A). So U =
⋃

x∈X h(x), for some X ⊆ A. It is
clear that

⋃
x∈X h(x) = ¶p ∈ Spec(A) ♣ p ∩ X ̸= ∅♢. □

Remark 2.2. Let A be a residuated lattice. By Proposition 2.5, it follows that the
closed sets of Specd(A) are precisely of the form ¶p ∈ Spec(A) ♣ p ∩ X = ∅♢, where
X is a subset of A.
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Let Π be a collection of prime filters in a residuated lattice A. Following G. De
Marco [13, p. 290], if π is a subset of Π, its specialization (generalization) in Π, SΠ(π)
(GΠ(π)), is the set of all primes in Π, which contain (are contained in) some prime
belonging to π. One can see that S and G are closure operators on the power set of
Spec(A). A fixed point of S (G ) is called SΠ-stable (GΠ-stable). If Π is understood,
it will be dropped. Notice that for any subset B of A,

⋃
b∈B h(b)(

⋃
b∈B d(b)) is S (G )-

stable. The following theorem characterizes the closed sets of the (dual) hull-kernel
topology.

Theorem 2.2. ([29, Theorem 4.30]). Let A be a residuated lattice and π a subset

of Spec(A). π is closed under the dual hull-kernel topology if and only if it is closed

under the patch topology and G -stable.

For a residuated lattice A the hull-kernel topology on min(A) is a well-studied
structure. For example, it is known that the hull-kernel topology on min(A) is totally
disconnected [29, Corollary 5.5], and classifications of when min(A) is compact [29,
Theorem 5.10]. In the sequel, we fucose on the dual hull-kernel topology on min(A).
In particular, we characterize when mind(A) is Hausdorff.

Proposition 2.6. ([29, Theorem 4.6 (2)]). Let A be a residuated lattice. Specd(A)
and mind(A) are compact.

Let A be a residuated lattice. For any subset X of A, we set X⊥ = kd(X),
Γ(A) = ¶X⊥ ♣ X ⊆ A♢, γ(A) = ¶x⊥ ♣ x ∈ A♢, and λ(A) = ¶x⊥⊥ ♣ x ∈ A♢. Elements
of Γ(A), γ(A) and λ(A) are called coannihilators, coannulets, and dual coannulets of
A, respectively.

Let A be a ∧-semilattice with zero. Recall [19, §I.6.2] that an element a∗ ∈ A is
a pseudocomplement of a ∈ A if a ∧ a∗ = 0 and a ∧ x = 0 implies that x ≤ a∗. An
element can have at most one pseudocomplement. A is called pseudocomplemented if
every element of A has a pseudocomplement. The set S(A) = ¶a∗ ♣ a ∈ A♢ is called
the skeleton of A and we have S(A) = ¶a ∈ A ♣ a = a∗∗♢. By [19, Theorem 100],
it follows that if A is a pseudocomplemented complete ∧-semilattice, then S(A) is a
complete Boolean lattice, where the meet in S(A) is calculated in A, the join in S(A)

is given by ∨X = (∧¶x∗ ♣ x ∈ X♢)∗, for any X ⊆ S(A), and 1
def.
= 0∗.

Applying Proposition 2.11 from [27], it follows that Γ(A) is the skeleton of F (A)
and γ(A) is the skeleton of PF (A). So (Γ(A); ∨Γ, ∩, ¶1♢, A) is a complete Boolean
lattice, in which ∨Γ is the join in the skeleton, and γ(A) is a sublattice of Γ(A). A is
said to be Baer provided that Γ(A) is a sublattice of F (A), and Rickart provided that
γ(A) is a Boolean sublattice of F (A). For the basic facts concerning coannihilators
and coannulets of residuated lattices we refer to [26].

Let A be a residuated lattice. For a ∨-closed subset I of ℓ(A), set ω(I) = ¶a ∈ A ♣
a ∨ x = 1, for some x ∈ I♢, and Ω(A) = ¶ω(I) ♣ I ∈ id(ℓ(A))♢. Using Proposition 3.4
from [32], it follows that Ω(A) ⊆ F (A), and so elements of Ω(A) are called ω-filters of
A. For an ω-filter F of A, IF denoted an ideal of ℓ(A), which satisfies F = ω(IF ). [32,
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Proposition 3.7] shows that (Ω(A); ∩, ∨ω, ¶1♢, A) is a bounded distributive lattice, in
which F ∨ω G = ω(IF ⋎ IG), for any F, G ∈ Ω(A) (by ⋎, we mean the join operation
in the lattice of ideals of ℓ(A)). For any proper filter H of A we set D(H) = ω(Ḣ).
Elements of D(¶1♢) shall be called the unit divisors of A. For the basic facts concerning
ω-filters of a residuated lattice, interested readers are referred to [32].

Proposition 2.7 ([32]). Let A be residuated lattice. The following assertions hold:

(1) γ(A) is a sublattice of Ω(A);
(2) D(p) = kG (p) = k(G (p) ∩ min(A)), for any prime filter p of A;

(3) a prime filter p of A is minimal prime if and only if p = D(p).

Definition 2.1. A residuated lattice A is said to be a domain provided that it has
no unit divisors.

The following proposition has a routine verification, and so its proof is left to the
reader.

Proposition 2.8. Let A be a residuated lattice and F a filter of A. The quotient

residuated lattice A/F is a domain if and only if F is prime.

3. Mp-Residuated Lattices

In this section, the notion of an mp-residuated lattice is investigated, and some
topological characterizations of them are extracted.

Definition 3.1. A residuated lattice A is called mp provided that any prime filter of
A contains a unique minimal prime filter of A.

Example 3.1. One can see that the residuated lattice A6 from Example 2.1 is mp and
the residuated lattice A8 from Example 2.2 is not mp.

Example 3.2. The class of MTL-algebras, and so, MV-algebras, BL-algebras, and
Boolean algebras are some subclasses of mp-residuated lattices.

Let A be a bounded distributive lattice. A is said to be:

• normal provided that for all x, y ∈ A, x ∨ y = 1 implies there exist u, v ∈ A
such that u ∨ x = v ∨ y = 1 and u ∧ v = 0;

• conormal provided that for all x, y ∈ A, x ∧ y = 0 implies there exist u, v ∈ L
such that u ∧ x = v ∧ y = 0 and u ∨ v = 1.

Remark 3.1. In [12] and [24], the above nomenclatures are reversed. We have picked
the version of these definitions from [33, Definition 4.3] and [22, p. 67] because of the
author’s discussion in [22, p. 78].

The following result shows that a residuated lattice is mp if and only if the bounded
distributive lattice of its filters is conormal.

Proposition 3.1. Let A be a residuated lattice. The following assertions are equiva-

lent:
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(1) the bounded distributive lattice F (A) is conormal;

(2) the bounded distributive lattice PF (A) is conormal;

(3) A is mp.

Proof. (1)⇒(2) Let x, y ∈ A, such that F (x) ∩ F (y) = ¶1♢. Then there exist
F, G ∈ F (A) such that F ⊻ G = A and F ∩ F (x) = G ∩ F (y) = ¶1♢. Thus there
exist f ∈ F and g ∈ G such that f ⊙ g = 0. This implies that F (f) ⊻F (g) = A and
F (f) ∩ F (x) = F (g) ∩ F (y) = ¶1♢.

(2)⇒(3) Using Proposition 2.1, it is straightforward.
(3)⇒(1) Let F and G be two filters of A such that F ∩ G = ¶1♢. By distributivity

of A, with a little bit of effort, we can show that F⊥ ⊻G⊥ = A. □

The following theorem gives some algebraic criteria for mp-residuated lattices,
inspired by the one obtained for normal lattices [12, Theorem 2.4].

Theorem 3.1 (Cornish’s characterization). Let A be a residuated lattice. The follow-

ing assertions are equivalent:

(1) any two distinct minimal prime filters are comaximal;

(2) A is mp;

(3) for any prime filter p of A, D(p) is a prime filter of A;

(4) for any maximal filter m of A, D(m) is a prime filter of A;

(5) for any pairwise elements x and y in A, i.e, x ∨ y = 1, x⊥ ⊻ y⊥ = A;

(6) for any pairwise elements x and y in A, there exists a ∈ A such that a ∈ x⊥

and ¬a ∈ y⊥;

(7) for any x, y ∈ A, (x ∨ y)⊥ = x⊥ ⊻ y⊥;

(8) for any x, y ∈ A, (x ∨ y)⊥ = A implies x⊥ ⊻ y⊥ = A.

Proof. (1)⇒(2) It is evident.
(2)⇒(3) It follows by Proposition 2.7 (2).
(3)⇒(4) It is evident.
(4)⇒(5) Let x and y be two pairwise elements in A. Assume by absurdum that

x⊥ ⊻ y⊥ ⊈ A. So x⊥ ⊻ y⊥ ⊆ m, for some maximal filter m of A. Applying Proposition
2.3 (3), it verifies that x, y /∈ D(m); a contradiction.

(5)⇒(6) It follows by Proposition 2.2.
(6)⇒(7) Let a ∈ (x ∨ y)⊥. Let b = a ∨ x. Obviously, b and y are pairwise. There

exists s ∈ A such that s ∈ b⊥ and ¬s ∈ y⊥. By (r2), it follows that a ≥ (a ∨ s) ⊙ ¬s.
This establishes that a ∈ x⊥ ⊻ y⊥. The converse inclusion is evident.

(7)⇒(8) It is evident.
(8)⇒(1) Let m and n be distinct minimal prime filters of A. Consider x ∈ m \ n

and y ∈ n \ m. Using Proposition 2.3 (3), there exists z ∈ x⊥ \ m. Let a = y ∨ z. So
(a ∨ x)⊥ = A, and this implies that A = a⊥ ⊻ x⊥ ⊆ m ⊻ n. □

Theorem 3.2. Let A be a residuated lattice. The following assertions are equivalent:

(1) for any F, G ∈ Ω(A), F ∨ω G = A implies F ⊻G = A;
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(2) A is mp;

(3) for any F ⊆ Ω(A), ⊻F ∈ Ω(A);
(4) (Ω(A); ∩,⊻) is a frame;

(5) (γ(A); ∩,⊻) is a lattice.

Proof. (1)⇒(2) Let x ∨ y = 1 for some x, y ∈ A. Since γ(A) is a sublattice of Ω(A)
so we have x⊥ ∨ω y⊥ = x⊥ ∨Γ y⊥ = (x ∨ y)⊥ = A.

(2)⇒(3) Let ¶Fi♢i∈I be a family of ω-filters of A. Obviously, we have ⊻i∈IFi ⊆
ω(⋎i∈IIi). Consider a ∈ ω(⋎i∈IIi). Hence, there exists x ∈ ⋎i∈IIi such that a ∈ x⊥.
This states that x ≤ xi1

∨ · · · ∨ xin
, for some integer n and xij

∈ Iij
. We have the

following sequence of formulas:

x⊥ ⊆ (xi1
∨ · · · ∨ xin

)⊥ = x⊥i1
⊻ · · · ⊻ x⊥in

⊆ Fi1
⊻ · · · ⊻ Fin

⊆ ⊻i∈IFi.

(3)⇒(4) It is evident.
(4)⇒(5) It follows by Proposition 2.7 (1).
(5)⇒(1) Let F, G ∈ Ω(A) such that F ∨ω G = A. Since ω(IF ⋎ IG) = A, so

1 ∈ IF ⋎ IG. This establishes that f ∨ g = 1, for some f ∈ IF and g ∈ IG. Hence,
A = (f ∨ g)⊥ = f⊥ ∨Γ g⊥ = f⊥ ⊻ g⊥ ⊆ F ⊻G. □

E. Matlis [23, Proposition 2.1] gave a criterion for a ring to be PF and showed that
a unitary commutative ring A is PF if and only if for any maximal ideal m of A, Am be
an integral domain. Motivated by this, the following theorem, which is an immediate
consequence of Proposition 2.8 and Theorem 3.1, can be extracted for mp-residuated
lattices.

Theorem 3.3 (Matlis’s characterization). Let A be a residuated lattice. The following

assertions are equivalent:

(1) A is mp;

(2) A/D(p) is a domain, for any prime filter p of A;

(3) A/D(m) is a domain, for any maximal filter m of A.

The next theorem gives some necessary and sufficient conditions for the collection
of minimal prime filters in a residuated lattice to be a Hausdorff space with the dual
hull-kernel topology.

Theorem 3.4. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) mind(A) is Hausdorff.

Proof. (1)⇒(2) Let m and n be two distinct minimal prime filters of A. So, there
exist x ∈ m and y ∈ n such that x ⊙ y = 0. This follows that h(x) ∩ h(y) = ∅, and
the result holds.

(2)⇒(1) Let m and n be two distinct minimal prime filters of A. So, there exist
x, y ∈ A such that m ∈ h(x), n ∈ h(y), and h(x ⊙ y) = ∅. This shows that A =
x⊥⊥ ⊻ y⊥⊥ ⊆ m ⊻ n. □
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Remark 3.2. By Proposition 2.6 and Theorem 3.4, A is an mp-residuated lattice if
and only if mind(A) is a T4 space.

Theorem 3.5. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) h(m) is closed in Specd(A) for any m ∈ min(A).

Proof. (1)⇒(2) It follows by Proposition 2.3(2) and Theorem 2.2.
(2)⇒(1) Assume by absurdum that there exist two distinct minimal prime filters

m and n of A such that m ⊻ n ≠ A. This implies that there exists a prime filter P
containing in m and n, and so h(m) ∩ h(n) ̸= ∅. □

Recall that a retraction is a continuous mapping from a topological space into a
subspace which preserves the position of all points in that subspace.

Theorem 3.6. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) mind(A) is a retraction of Specd(A).

Proof. (1)⇒(2) Define f : Spec(A) → min(A) by f(p) = mp. Set H = ¶p ∈ Spec(A) ♣
a /∈ f(p)♢ and X = (

⋃
H)c. Consider a ∈ A. Let p ∈ f−1(dm(a)). This implies

that p ∈ H, and so p ∩ X = ∅. Conversely, suppose that p ∩ X = ∅. Let a ∈ f(p).
So for any n ∈ dm(a) there exist xn ∈ n and yn ∈ f(p) such that xn ⊙ yn = 0.
Obviously, dm(a) ⊆

⋃
n∈dm(a) h(xn). Since dm(a) is a compact subspace of mind(A),

so dm(a) ⊆
⋃

n∈ℑ h(xn) = h(
∨

n∈ℑ xn), where ℑ is a finite subset of dm(a). Letting
y =

⊙
n∈ℑ yn, we have y ∈ f(p) and x ⊙ y = 0. So, there exists a prime filter Q of A

such that Q ∩ X = ∅ and y ∈ Q. Since a /∈ f(Q), so x ∈ Q; a contradiction. This
shows that f−1(dm(a)) = ¶p ♣ p ∩ X = ∅♢. So, the result holds by Remark 2.2.

(2)⇒(1) Let f : Specd(A) → mind(A) be a retraction and m ∈ min(A). Suppose

that m ⊆ p, for some p ∈ Spec(A). By Lemma 2.1, we have m ∈ cl
Spec(A)
d (p) and by

continuity of f and T1 we obtain that

m = f(m) ∈ f(cl
Spec(A)
d (p)) ⊆ cl

min(A)
d (f(p)) = ¶f(p)♢.

This shows that m is the unique minimal prime filter of A contained in p. □

Remark 3.3. By Theorem 3.6, if A is an mp-residuated lattice, the map Spec(A)⇝
min(A), which sends any prime filter p of A to the unique minimal prime filter of A
containing in it, is the unique retraction from Specd(A) into mind(A).

The next result, which can be compared with Proposition 2.4, characterizes the
clopen subsets of mind(A) where A is an mp-residuated lattice.

Corollary 3.1. Let A be an mp-residuated lattice. We have:

Clop(min
d

(A)) = ¶h(e) ∩ min(A) ♣ e ∈ β(A)♢.
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Proof. By Theorem 3.6, there exists a retraction f : Specd(A) → mind(A). Let
U ∈ Clop(mind(A)). So f←(U) ∈ Clop(Specd(A)). Thus f←(U) = h(e), for some e ∈
β(A), due to Proposition 2.4. This implies that U = f←(U)∩min(A) = h(e)∩min(A).
The converse is evident. □

Theorem 3.7. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) Specd(A) is a normal space.

Proof. (1)⇒(2) Using Theorem 3.6 and Remark 3.3, there exists a retraction f :
Specd(A) → mind(A), which sends any prime filter of A to the unique minimal prime
filter of A contained in p, for any prime filter p of A. By Remark 3.2, min(A) is
a T4 space, and so f is a closed map. Let C1 and C2 be two disjoint closed sets
in Specd(A), so f(C1) and f(C2) are disjoint closed sets in mind(A). Since mind(A)
is normal, there exist disjoint open neighbourhoods N1 and N2 of f(C1) and f(C2)
in mind(A), respectively. One can see that f−1(N1) and f−1(N2) are disjoint open
neighbourhoods of C1 and C2 in Specd(A), respectively.

(2)⇒(1) Let m ∈ min(A). If p ∈ Cl
Spec(A)
d (m), p ⊆ m, and this yields that p = m.

This shows that ¶m♢ is a closed subset of Specd(A). Now, let m1,m2 ∈ min(A). Thus,
there exist a, b ∈ A such that h(a) and h(b) are disjoint neighborhood of m1 and m2 in
Specd(A), respectively. This shows that hm(a) and hm(b) are disjoint neighborhood
of m1 and m2 in mind(A), respectively. □

Let A be a residuated lattice. Consider the following relation ı = ¶(p, q) ∈ X2 ♣
p ⊻ q ≠ A♢ on X = Spec(A). Obviously, ı is reflexive and symmetric. Let ı be the
transitive closure of ı.

Theorem 3.8. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) for a given minimal prime filter m of A, ı(m) = h(m).

Proof. (1)⇒(2) Let m be a minimal prime filter of A. Consider p ∈ ı(m). So, there
exists a finite set ¶p1, . . . , pn♢ of elements of Spec(A) with n ≥ 2 such that p1 = p,
pn = m, and (pi, pi+1) ∈ ı, for all 1 ≤ i ≤ n − 1. If n = 2, then p ⊻ m ̸= A, and so
m ⊆ p. Assume that n > 2. We have pn−2 ⊻ pn−1 ≠ A and m ⊆ pn−1. This verifies
that (pn−2,m) ∈ ı. Hence, in the equivalency (p,m) ∈ ı, the number of the involved
primes is reduced to n − 1. Therefore by the induction hypothesis, m ⊆ p. This shows
that ı(m) ⊆ h(m). The inverse inclusion is evident.

(2)⇒(1) It is evident. □

Let Aτ be a topological space, and E be an equivalence relation on A. In the
following, by Aτ /E we mean the quotient of the space Aτ modulo E. By [14, p. 90],
the quotient map π : Aτ → Aτ /E is continuous, and a mapping f of the quotient
space Aτ /E to a topological space Bζ is continuous if and only if the composition
f ◦ π is continuous.
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Corollary 3.2. Let A be a residuated lattice. A is mp if and only if the map η :
mind(A) → Specd(A)/ı, given by m⇝ ı(m), is a homeomorphism.

Proof. Let mind(A) is a Hausdorff space. It is evident that Specd(A)/ı = ¶ı(m) ♣
m ∈ min(A)♢, and this implies that η is a surjection. The injectivity of η follows by
Theorem 3.8, and the continuity of it follows by η = π ◦ i, where i is the inclusion
map. By Remark 3.3 and Theorem 3.6, it follows that η−1 ◦ π is a retraction, and
this verifies the continuity of η−1, see [14, Proposition 4.2.4]. This shows that η is
a homeomorphism. Conversely, let η : mind(A) → Specd(A)/ı be a homeomorphism.
Obviously, η−1 ◦π is a retraction, and so mind(A) is a Hausdorff space due to Theorem
3.6. □

Let A be a residuated lattice. Consider the relation ȷ = ¶(p, q) ∈ X2 ♣ ṗ⋎ q̇ ̸= A♢
on X = Spec(A). Obviously, ȷ is reflexive and symmetric. Let ȷ be the transitive
closure of ȷ.

Remark 3.4. For prime filters p and q of a residuated lattice A. One can see that,
using [32, Proposition 3.5], ṗ⋎ q̇ = A if and only if D(p) ⊻D(q) = A.

Theorem 3.9. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) for a given minimal prime filter m of A, ȷ(m) = h(m).

Proof. (1)⇒(2) Let m be a minimal prime filter of A. Consider p ∈ ȷ(m). So there
exists a finite set ¶p1, . . . , pn♢ of elements of Spec(A) with n ≥ 2 such that p1 = P ,
pn = m, and (pi, pi+1) ∈ ȷ, for all 1 ≤ i ≤ n − 1. If n = 2, then ṗ ⋎ ṁ ̸= A, and
so m ⊆ p due to Proposition 2.3. Assume that n > 2. We have ˙pn−2 ⋎ ˙pn−1 ≠ A
and m ⊆ pn−1. Using Zorn’s lemma, it verifies that ˙pn−2 ⋎ ˙pn−1 ⊆ c, for a maximal
∨-closed set of A. Applying Proposition 2.3 and the hypothesis, it shows that m = ċ.
This verifies that (pn−2,m) ∈ ȷ. Hence, in the equivalency (p,m) ∈ ȷ, the number
of the involved primes is reduced to n − 1. Therefore, by the induction hypothesis,
m ⊆ p. This shows that ȷ(m) ⊆ h(m). The inverse inclusion is evident.

(2)⇒(1) It is evident. □

The proof of the following corollary is analogous to the proof of Corollary 3.2, and
so it is left to the reader.

Corollary 3.3. Let A be a residuated lattice. A is mp if and only if the map η :
mind(A) → Specd(A)/ȷ, given by m⇝ ȷ(m), is a homeomorphism.

4. The Pure Spectrum of an mp-Residuated Lattice

This section deals with the pure spectrum of an mp-residuated lattice. For the
basic facts concerning pure filters of a residuated lattice, the reader is referred to [28].

For any filter F of a residuated lattice A, set σ(F ) = kG h(F ).
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Proposition 4.1. ([28, Propositions 5.2 & 5.4]). Let A be a residuated lattice. The

following assertions hold:

(1) σ(F ) = ¶a ∈ A ♣ F ⊻ a⊥ = A♢, for any filter F of A;

(2) F ⊆ G implies σ(F ) ⊆ σ(G), for any filters F and G of A;

(3) σ(m) = D(m) for any maximal filter m of A;

Let A be a residuated lattice. A filter F of A is called pure provided that σ(F ) = F .
The set of pure filters of A is denoted by σ(A). It is obvious that ¶1♢, A ∈ σ(A).

Proposition 4.2. Let A be an mp-residuated lattice and F a filter of A. σ(F ) is a

pure filter of A.

Proof. Let x ∈ σ(F ). Applying Proposition 4.1 (1), it follows that F ⊻ x⊥ = A. So
f ⊙ y = 0, for some f ∈ F and y ∈ x⊥. By Proposition 3.1 there exists a ∈ A such
that a ∈ x⊥ and ¬a ∈ y⊥. This implies that ¬a ∈ σ(A), and so x ∈ σ(σ(F )). □

The following theorem gives some criteria for mp-residuated lattices by pure filters,
inspired by the one obtained for bounded distributive lattices by [11, Theorem 2.11].

Theorem 4.1. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) Ω(A) ⊆ σ(A);
(3) γ(A) ⊆ σ(A).

Proof. (1)⇒(2) Let F be an ω-filter of A. So, F = ω(I), for some ideal I of ℓ(A).
Consider x ∈ F . So x ∈ a⊥, for some a ∈ I. By Propositions 2.7 (1) and 3.1 (4), it
follows that A = x⊥ ⊻ a⊥ ⊆ x⊥ ⊻ F .

(2)⇒(3) By Propositions 2.7 (2), it is evident.
(3)⇒(1) Let x ∨ y = 1. So x ∈ y⊥ = σ(y⊥) and this implies that x⊥ ⊻ y⊥ = A.

Hence, the result holds by Proposition 3.1. □

Remark 4.1. Al-Ezeh in [2, Theorem 1] showed that a unitary commutative ring is a
PF ring if and only if any its annulet is a pure ideal. Thus, if we define PF-residuated
lattices as those ones in which any coannulet is a pure filter, Theorem 4.1 verifies that
the class of PF residuated lattices coincides with the class of mp-residuated lattices.

Lemma 4.1. Let A be a residuated lattice. Any two distinct elements of the set

Spec(A) ∩ σ(A) are comaximal.

Proof. Let p1 and p2 be two distinct elements of the set Spec(A) ∩ σ(A). Consider
x ∈ p1 \ p2. So, p1 ⊻ x⊥ = A and x⊥ ⊆ p2. □

Theorem 4.2. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) D(p) is a pure filter of A, for any prime filter p of A;

(3) D(m) is a pure filter of A, for any maximal filter m of A;

(4) min(A) ⊆ σ(A).
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Proof. (1)⇒(2) It follows by Theorem 4.1.
(2)⇒(3) It is evident.
(3)⇒(4) It follows, with a little bit of effort, by Proposition 2.7 (3).
(4)⇒(1) It follows by Proposition 3.1 and Lemma 4.1. □

Let A be a residuated lattice. Recall [28] that a proper pure filter of A is called
purely-maximal provided that it is a maximal element in the set of proper and pure
filters of A. The set of purely-maximal filters of A shall be denoted by max(σ(A)).
A proper pure filter p of A is called purely-prime provided that F1 ∩ F2 ⊆ p implies
F1 ⊆ p or F2 ⊆ p, for any F1, F2 ∈ σ(A). The set of all purely-prime filters of A

shall be denoted by Spp(A). It is obvious that max(σ(A)) ⊆ Spp(A). Zorn’s lemma
ensures that any proper pure filter is contained in a purely-maximal filter, and so in
a purely-prime filter.

Theorem 4.3. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) min(A) = max(σ(A)).

Proof. (1)⇒(2) Let m be a minimal prime filter of A. By Theorem 4.2. it follows that
m is a pure filter of A. Thus there exists n ∈ max(σ(A)) containing m. Let a ∈ n.
So there exists b ∈ a⊥ such that ¬b ∈ n. This implies that b /∈ m, and so a ∈ m.
Conversely, let p be a purely-maximal filter of A. So p ⊆ n, for some n ∈ max(A).
Using Theorem 3.1, Proposition 4.1 ((2) & (3)), and Theorem 4.2, it shows that
p = D(n) ∈ min(A).

(2)⇒(1) It is evident by Theorem 4.2. □

The following result generalized and improved [4, Theorem 1.8] to residuated lat-
tices.

Proposition 4.3. Let A be an mp-residuated lattice and F a proper pure filter of A.

We have

F = k(min(A) ∩ h(F )).

Proof. By Theorem 4.3, min(A) ∩ h(F ) ̸= ∅. Consider a ∈ k(min(A) ∩ h(F )). Assume
that a⊥ ⊻ F is proper. Thus, a⊥ ⊻ F ⊆ n, for some maximal filter n of A. Let m be
a minimal prime filter of A contained in n. This implies that F ⊆ m, and so ¬b ∈ n,
for some b ∈ a⊥ which is a contradiction. □

The pure ideals of a PF ring are characterized in [3, Theorems 2.4 and 2.5]. These
results have been improved and generalized to residuated lattices in Theorem 4.4 and
Proposition 4.6.

Theorem 4.4. Let A be an mp-residuated lattice. The pure filters of A are precisely

of the form
⋂

m∈min(A)∩Cm,where C runs over closed subsets of Specd(A).

Proof. Let a ∈ G :=
⋂

¶m ♣ m ∈ min(A) ∩ C♢, in which C is a closed subset of
Specd(A). So, for any m ∈ min(A) ∩ C, we have m ⊻ a⊥ = A. By absurdum, assume
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that G ⊻ a⊥ ̸= A. So, G ⊻ a⊥ is contained in a maximal filter n. Let o be a minimal
prime filter of A contained in m. Obviously, o /∈ C. So for any m ∈ min(A) ∩ C,
there exist xm ∈ m and ym ∈ o such that xm ⊙ ym = 0. Since C is stable under
the generalization, so C ⊆

⋃
m∈min(A)∩C h(xm). By Proposition 2.6, it follows that

C is compact. So there exist a finite number m1, . . . ,mn ∈ min(A) ∩ C such that
C ⊆

⋃n
i=1 h(xmi

). Set x =
∨n

i=1 xmi
and y =

⊙n
i=1 ymi

. Routinely, one can see that
0 = x ⊙ y ∈ G ⊻ o, which is a contradiction. The converse follows by Proposition
4.3. □

Let A be a residuated lattice. For any filter F of A, we set

ρ(F ) =
∨

¶G ∈ σ(A) ♣ G ⊆ F♢,

and it is called the pure part of F . Definitely, the pure part of a filter is the largest
pure filter contained in it.

Proposition 4.4. Let A be a residuated lattice. Then
⋂

¶ρ(m) ♣ m ∈ max(A)♢ = ¶1♢.

Proof. It is an immediate consequence of [28, Corollary 4.19]. □

Proposition 4.5. Let A be an mp-residuated lattice and a ∈ A. Then a⊥ ∩ Fa = ¶1♢,

where Fa =
⋂

m∈max(A)∩h(a) ρ(m).

Proof. With a little bit of effort, it follows by Theorem 4.1 and Proposition 4.4. □

Corollary 4.1. If m is a minimal prime filter of an mp-residuated lattice A, then

m =
∨

a∈m
Fa.

Proof. Let a ∈ m. So b ∈ a⊥, for some b /∈ m. This implies that a ∈ F¬b. The reverse
inclusion is deduced from Corollary 4.5. □

Proposition 4.6. Let A be an mp-residuated lattice. The pure filters of A are precisely

of the form
⋂

m∈max(A)∩h(F ) ρ(m), where F is a filter of A.

Proof. Let C = ¶P ∈ Spec(A) ♣ P ∩ ¬F = ∅♢. One can see that max(A) ∩ h(F ) =
min(A) ∩ C. This establishes the result due to Remark 2.2 and Theorem 4.4. □

H. Al-Ezeh [3, Theorem 3.5] proved that every purely prime ideal of a PF ring is
purely maximal. Now we provide an alternative proof to the following interesting
result.

Theorem 4.5. Let A be an mp residuated lattice. Then

Spp(A) ⊆ max(σ(A)).

Proof. Let p be a purely prime filter of A. So p ⊆ m, for some m ∈ max(σ(A)). By
Theorem 4.3 we have m ∈ min(A). Let a ∈ m. By Proposition 2.3 (3) we have a⊥ ⊈ m.
By Proposition 4.5, it follows that a⊥ ∩ Fa ⊆ P . By Theorem 4.1 and Proposition
4.6, respectively, it follows that a⊥ and Fa are pure filters. This implies that Fa ⊆ p.
Hence, by Corollary 4.1, it follows that m =

∨
a∈m

Fa ⊆ p. □
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The following theorem is a direct consequence of Theorems 4.2, 4.3 and 4.5. So its
proof is left to the reader.

Theorem 4.6. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) min(A) = Spp(A).

For each pure filter F of A we set dp(F ) = ¶P ∈ Spp(A) ♣ F ⊈ P♢. Spp(A) can be
topologized by taking the set ¶dp(F ) ♣ F ∈ σ(A)♢ as the open sets. The set Spp(A)
endowed with this topology is called the pure spectrum of A. It is obvious that the
closed subsets of the pure spectrum are precisely of the form hp(F ) = ¶P ∈ Spp(A) ♣
F ⊆ P♢, where F runs over pure filters of A.

The next result, which can be compared with Proposition 2.6, shows that the pure
spectrum of a residuated lattice is a compact space.

Theorem 4.7. ([28, Theorem 4.22]). Let A be a residuated lattice. Spp(A) is a

compact space.

The next theorem gives a criterion for a residuated lattice to be mp, inspired by
the one obtained for unitary commutative rings by [35, Theorem 5.6].

Theorem 4.8. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;

(2) the identity map ι : Spp(A) → mind(A) is a homeomorphism.

Proof. (1)⇒(2) Consider the identity map ι : Spp(A) → min(A). Using Theorem 4.3,
it follows that ι is a well-defined bijection. One can see that min(A) ∩ h(a) = dp(a⊥),
for any a ∈ A, which implies that ι is continuous. By Theorems 3.4 and 4.7, it follows
that mind(A) is Hausdorff, and Spp(A) is compact, respectively. So, the result holds
due to [14, Theorem 3.1.13].

(2)⇒(1) It is evident by Theorem 4.3. □

Using Theorem 4.7, the pure spectrum of a residuated lattice is compact (not
necessarily Hausdorff). The following result verifies that the pure spectrum of an
mp-residuated lattice is Hausdorff.

Corollary 4.2. Let A be an mp-residuated lattice. Spp(A) is a Hausdorff space.

Proof. It is an immediate consequence of Theorems 3.4 and 4.8. □
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BI-PERIODIC HYPER-FIBONACCI NUMBERS

NASSIMA BELAGGOUN1,2 AND HACÈNE BELBACHIR1,2

Abstract. In the present paper, we introduce and study a new generalization of
hyper-Fibonacci numbers, called the bi-periodic hyper-Fibonacci numbers. Further-
more, we give a combinatorial interpretation using the weighted tilings approach and
prove several identities relating these numbers. Moreover, we derive their generating
function and new identities for the classical hyper-Fibonacci numbers.

1. Introduction

The Fibonacci numbers Fn are defined, as usual, by the recurrence relation

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, for n ≥ 2.

The hyper-Fibonacci numbers denoted F (r)
n , are introduced by Dil and Mezö [10], for

n, r ∈ N ∪ ¶0♢, as entries of an infinite matrix arranged such that F (r)
n is the entry of

the rth row and nth column, satisfying

(1.1) F (0)
n = Fn, F

(r)
0 = 0 and F (r)

n = F
(r)
n−1 + F (r−1)

n , for n, r ≥ 1.

The sum of the first n + 1 elements of row r − 1 is expressed by F (r)
n , i.e.,

(1.2) F (r)
n =

n
∑

k=0

F
(r−1)
k .

They satisfy many interesting number theoretical and combinatorial properties, see
[9]. Belbachir and Belkhir [3] provided a combinatorial interpretation of the hyper-
Fibonacci numbers in terms of linear tilings and gave some combinatorial identities.

Key words and phrases. Hyper-Fibonacci numbers, bi-periodic Fibonacci numbers, bi-periodic
hyper-Fibonacci numbers, generating function.
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They also defined bivariate hyper-Fibonacci polynomials in [4], as

(1.3) F (r)
n (x, y) = xF

(r)
n−1(x, y) + yF (r−1)

n (x, y), for n, r ≥ 1,

with initial conditions F (0)
n (x, y) = Fn(x, y), F

(r)
0 (x, y) = 0, where x, y are real

parameters and Fn(x, y) is the nth bivariate Fibonacci polynomial, defined by (see
[1, 5])

F0(x, y) = 0, F1(x, y) = 1 and Fn(x, y) = xFn−1(x, y) + yFn−2(x, y).

The bivariate hyper-Fibonacci polynomials are given by the following explicit formula

(1.4) F
(r)
n+1(x, y) =

⌊n/2⌋+r
∑

k=r



n + 2r − k

k



xn+2r−2kyk.

The associated generating function is given as follows

(1.5)
∑

n≥0

F (r)
n (x, y)zn =

yrz

(1 − xz − yz2)(1 − xz)r
.

For y = 1, we denote Fn(x, y) by Fn(x).
Edson and Yayenie [12] introduced a new generalization for the Fibonacci sequence,

called as bi-periodic Fibonacci sequence, that depends on two real parameters a and
b, defined for n ⩾ 2, as follows

(1.6) qn =







aqn−1 + qn−2, if n is even,

bqn−1 + qn−2, if n is odd,

with initial values q0 = 0 and q1 = 1. These sequences are found in the study of
continued fraction expansion of the quadratic irrational numbers and combinatorics
on words or dynamical system theory [18]. Some well-known sequences, such as the
Fibonacci sequence, the Pell sequence and the k-Fibonacci sequence for some positive
integer k, are special cases of this sequence. For more results related to this sequence,
see [8, 11–18]

The generating function of qn is given by

(1.7)
∑

n≥0

qnzn =
z (1 + az − z2)

1 − (ab + 2)z2 + z4
.

Yayenie [18] gave an explicit formula of bi-periodic Fibonacci numbers, as

(1.8) qn+1 = aξ(n)
⌊n/2⌋
∑

k=0



n − k

k



(ab)⌊n/2⌋−k,

where ξ(n) = n − 2⌊n/2⌋, i.e., ξ(n) = 0 when n is even and ξ(n) = 1 when n is odd.
In this paper, we define a new generalization of hyper-Fibonacci numbers, which

we will also call bi-periodic hyper-Fibonacci numbers. We give a combinatorial in-
terpretation of these numbers using a weighted tilings approach and provide several
combinatorial proofs of some identities. We also obtain new identities for the classical
hyper-Fibonacci numbers. Moreover, by using the generating function of the bivariate
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hyper-Fibonacci polynomials, we establish the generating function of the bi-periodic
hyper-Fibonacci sequence.

Definition 1.1. For any integers n, r ≥ 1 and nonzero real numbers a and b, the
bi-periodic hyper-Fibonacci numbers, denoted by q(r)

n , are defined by

(1.9) q(r)
n =

n
∑

k=0

aξ(k)ξ(n+1)bξ(k+1)ξ(n)(ab)⌊(n−k)/2⌋q
(r−1)
k ,

with initial values q
(r)
0 = 0 and q(0)

n = qn, where qn is the nth bi-periodic Fibonacci
number.

The first few generations are as follows in Table 1.

Table 1. Sequence of bi-periodic hyper-Fibonacci numbers in the first
few generations

n 0 1 2 3 4 5 6

q(0)
n 0 1 a ab + 1 a2b + 2a a2b2 + 3ab + 1 a3b2 + 4a2b + 3a

q(1)
n 0 1 2a 3ab + 1 4a2b + 3a 5a2b2 + 6ab + 1 6a3b2 + 10a2b + 4a

q(2)
n 0 1 3a 6ab + 1 10a2b + 4a 15a2b2 + 10ab + 1 21a3b2 + 20a2b + 5a

q(3)
n 0 1 4a 10ab + 1 20a2b + 5a 35a2b2 + 15ab + 1 56a3b2 + 35a2b + 6a

q(4)
n 0 1 5a 15ab + 1 35a2b + 6a 70a2b2 + 21ab + 1 126a3b2 + 56a2b + 7a

From the definition, we have the following recurrence relation:

(1.10) q(r)
n =







aq
(r)
n−1 + q(r−1)

n , if n is even,

bq
(r)
n−1 + q(r−1)

n , if n is odd.

Note that, for a = b = 1, we obtain the classical hyper-Fibonacci sequence (1.1).

2. Combinatorial Identities

The Fibonacci numbers can be interpreted as the number of ways to tile a board
of length n (i.e., an n-board) with cells numbered 1 to n from left to right using
only squares and dominoes; see [6, 7]. We expand the results to bi-periodic Fibonacci
numbers using weighted tilings. We assign a weight to each square in a tiling based
on its position. It is assigned a weight a if it is in an odd position and a weight b if it
is in an even position. The weight of a tiling of an n-board is defined as the product
of the weights of its individual tiles. The sum of all possible weighted tilings is given
by qn+1. Furthermore, the total of all possible weighted tilings of an (n + 2r)-board

with at least r dominoes is given by the bi-periodic hyper-Fibonacci numbers q
(r)
n+1, as

shown in Theorem 2.1.
For example, Figure 1 shows the tilings and the sum of their weights of a 5-board.

We have q
(0)
6 = q6 = a3b2 + 4a2b + 3a.
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a b a b a a b a a b a a

a b a a a

aa aa2b

a3b2 a2b a2b a2b

b a

a

Figure 1. Tilings of a 5-board

Figure 2 shows the tilings and the sum of their weights of a 6-board with at least 2

dominoes, there are q
(2)
3 = 6ab + 1 dispositions.

a b a b a b a b

a b a b

ab

ab ab

ababab

1

Figure 2. Tilings of a 6-board with at least 2 dominos

Therefore, we have the following results.

Theorem 2.1. For n, r ≥ 0, q
(r)
n+1 gives the weight of all tilings of an (n + 2r)-board

having at least r dominoes.

Proof. Given (n + 2r)-board. If it ends with a square, then there are bq(r)
n ways to tile

the (n + 2r − 1)-board for n even and aq(r)
n for n odd. If it ends with a domino, then

there are q
(r−1)
n+1 ways to tile the (n + 2(r − 1))-board. When n = 0, there is one way

to tile a 2r-board with at least r dominoes and there are qn+1 ways to tile a n-board
with at least 0 dominoes. There is no way to tile an (n + 2r)-board with at least r
dominoes for n < 0. □

Let f(n, k) be the number of weighted tilings having n tiles and exactly k dominoes.
Then

f(n, k) = aξ(n+k)bξ(n+k+1)f(n − 1, k) + f(n − 1, k − 1).

In fact, if the (n + k)-board ends in a square there are aξ(n+k)bξ(n+k+1)f(n − 1, k) ways
to tile the board. If it ends with a domino, then there are f(n − 1, k − 1) ways.

Lemma 2.1. The number of weighted tilings having n tiles and exactly k dominoes is

aξ(n+k)



n

k



(ab)⌊(n−k)/2⌋.
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Proof. Let g(n, k) = aξ(n+k)


n
k



(ab)⌊(n−k)/2⌋. Then

aξ(n+k)



n

k



(ab)⌊(n−k)/2⌋ = aξ(n+k)



n − 1

k



+



n − 1

k − 1



(ab)⌊(n−k)/2⌋.

Using ⌊(n − k)/2⌋ = ⌊(n − k − 1)/2⌋ + ξ(n + k + 1), we get

aξ(n+k)



n

k



(ab)⌊(n−k)/2⌋ = aξ(n+k)(ab)ξ(n+k+1)



n − 1

k



(ab)⌊(n−k−1)/2⌋

+ aξ(n+k)



n − 1

k − 1



(ab)⌊(n−k)/2⌋

= aξ(n+k)bξ(n+k+1)g(n − 1, k) + g(n − 1, k − 1).

Since g(n, k) satisfies the same recurrence of f(n, k) and the same initial conditions,
we get result. □

In the following theorems, we establish an explicit formula for the bi-periodic
hyper-Fibonacci sequence.

Theorem 2.2. For n, r ≥ 0, we have

(2.1) q
(r)
n+1 = aξ(n)

⌊n/2⌋+r
∑

k=r



n + 2r − k

k



(ab)⌊n/2⌋+r−k.

Proof. From Theorem 2.1, q
(r)
n+1 counts the number of ways to tile an (n + 2r)-board

with at least r dominoes. On the other hand, using Lemma 2.1, the possible tilings
with exactly k dominoes contains n + 2r − 2k squares and n + 2r − k tiles, have

cardinality aξ(n)


n+2r−k
k



(ab)⌊n/2⌋+r−k. Since it contains at least r dominoes, the sum

over k ≥ r gives the identity. □

Now, we establish a double-summation formula for even-numbered bi-periodic hyper-

Fibonacci numbers q
(r)
2n+2.

Theorem 2.3. For n, r ≥ 0, we have

(2.2) q
(r)
2n+2 = a

n+r
∑

k=r

k
∑

j=0

(ab)ξ(n+r−k)



n + r − j

k − j



n + r − k + j

j



(ab)2⌊(n+r−k)/2⌋.

Proof. Consider an (n + 2r + 1)-board. Since the length of the board is odd, there
are an odd number of squares such that we have at least one in each tiling. Suppose
there are i dominoes to the left of its median square and j dominoes to its right,
whose total is at least r dominoes, i.e., i + j ≥ r. The median square contributes
an aξ(n+r−i−j+1)bξ(n+r−i−j) to the weight (according to the position of the median
square). Such tiling contains 2n + 2r − 2i − 2j + 1 squares, so there are n + r − i − j
squares on each side of the median square. The left side gives n + r − j tiles with i

dominos. Hence, there are aξ(n+r−i−j)


n+r−j
i



(ab)⌊(n+r−i−j)/2⌋ different ways. Similarly,
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we have aξ(n+r−i−j)


n+r−i
j



(ab)⌊(n+r−i−j)/2⌋ different ways to tile the right side. Thus,

the possible tilings have cardinality a(ab)ξ(n+r−i−j)


n+r−i
j



(ab)2⌊(n+r−i−j)/2⌋. Summing
over i + j ≥ r, we get

a
∑

r≤i+j≤n+r

(ab)ξ(n+r−i−j)



n + r − j

i



n + r − i

j



(ab)2⌊(n+r−i−j)/2⌋

=a
n+r
∑

k=r

∑

i+j=k

(ab)ξ(n+r−k)



n + r − j

i



n + r − i

j



(ab)2⌊(n+r−k)/2⌋

=a
n+r
∑

k=r

k
∑

j=0

(ab)ξ(n+r−k)



n + r − j

k − j



n + r − k + j

j



(ab)2⌊(n+r−k)/2⌋. □

For a = b = 1, we get the following identity.

Corollary 2.1. For n, r ≥ 0, the following identity holds

(2.3) F
(r)
2n+2 =

n+r
∑

k=r

k
∑

j=0



n + r − j

k − j



n + r − k + j

j



.

From the explicit formulas (1.8) and (2.1), we state the bi-periodic hyper-Fibonacci
sequence in terms of the bi-periodic Fibonacci sequence and binomial sum.

Theorem 2.4. Let n ≥ 0 and r ≥ 1 be integers, then we have

(2.4) q
(r)
n+1 = qn+1+2r − aξ(n)

r−1
∑

k=0



n + 2r − k

k



(ab)⌊n/2⌋+r−k.

Note that, if we take a = b = 1, we get the following identity, see [3],

F
(r)
n+1 = Fn+1+2r −

r−1
∑

k=0



n + 2r − k

k



.

Theorem 2.5. For n, r ≥ 1, we have

(2.5) q
(r)
n+1 = qn−1 +

r
∑

k=0

aξ(n)bξ(n+1)q(k)
n .

Proof. There exists q
(r)
n+1 ways to tile a board of length n + 2r containing at least r

dominoes. Consider the number of dominoes at the end of each tiling. If tiling ends in
at least r dominoes, then the final r dominoes cover cells n + 1 through n + 2r, while
the remaining tilings can be done in qn+1 ways. On the other hand, if tilings ends in
exactly r − k dominoes for some 1 ≤ k ≤ r, preceded by a square at position n + 2k
and contribute aξ(n)bξ(n+1) to the weight, then the remaining (n − 1 + 2k)-board can
be tiled with at least k dominoes in q(k)

n ways. The result follows from the sum of
over k, i.e.,

q
(r)
n+1 = qn+1 +

r
∑

k=1

aξ(n)bξ(n+1)q(k)
n = qn−1 +

r
∑

k=0

aξ(n)bξ(n+1)q(k)
n .
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□

Note that, if we take a = b = x, we get the following hyper-Fibonacci identity.

Corollary 2.2. For n, r ≥ 1, we have

(2.6) F
(r)
n+1(x) = Fn−1(x) +

r
∑

k=0

xF (k)
n (x).

For a = b = 1, we obtain the following identity, see [2],

F
(r)
n+1 = Fn−1 +

r
∑

k=0

F (k)
n .

In the following theorem, we give the recurrence relation of the bi-periodic hyper-
Fibonacci sequence.

Theorem 2.6. For n ≥ 0 and r ≥ 2, we have

(2.7) q
(r)
n+2 = abq(r)

n + 2q
(r−1)
n+2 − q

(r−2)
n+2 .

Proof. We will construct a 3-to-1 correspondence between the following two sets.

• The set of all tiled (n + 2r − 1)-boards with at least r dominoes. There are
q(r)

n ways.
• The set of all tiled (n+2r+1)-boards with at least r dominoes and (n+2r−3)-

boards with at least r − 1 dominoes. There are q
(r)
n+2 + q(r−1)

n ways.

Consider an arbitrary tiling T of length n + 2r − 1, we can do the following.

1. Add two squares at the end of T to get an (n + 2r + 1)-board ending in a
square. Then there are abq(r)

n ways.
2. Add a domino at the end of T to get an (n + 2r + 1)-board ending in a domino.

Then there are q
(r−1)
n+2 ways.

3. Condition on whether T ends in a square or a domino.
i. Suppose T ends in a square, then insert a domino immediately to the left

of the square to creates (n + 2r + 1)-board ending in a square. Then there

are aξ(n+1)bξ(n)q
(r−1)
n+1 ways to do it.

ii. Suppose T ends in a domino, we remove the domino to get an (n + 2r − 2)-
board. Then there are q(r−1)

n ways.

So, we conclude that

q
(r)
n+2 + q(r−1)

n = abq(r)
n + q

(r−1)
n+2 + aξ(n+1)bξ(n)q

(r−1)
n+1 + q(r−1)

n

= abq(r)
n + 2q

(r−1)
n+2 + q(r−1)

n − q
(r−2)
n+2 .

Therefore

q
(r)
n+2 = abq(r)

n + 2q
(r−1)
n+2 − q

(r−2)
n+2 . □

Note that, if we take a = b = 1, we get the following hyper-Fibonacci identity.
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Corollary 2.3. For n ≥ 0 and r ≥ 2, we have

(2.8) F
(r)
n+2 = F (r)

n + 2F
(r−1)
n+2 − F

(r−2)
n+2 .

The following theorem gives the nonhomogeneous recurrence relation for the bi-
periodic hyper-Fibonacci sequence.

Theorem 2.7. For n, r ≥ 1, we have

(2.9) q
(r)
n+1 = aξ(n)bξ(n+1)q(r)

n + q
(r)
n−1 + aξ(n)(ab)⌊n/2⌋



n + r − 1

r − 1



.

Proof. There are q
(r)
n+1 ways to tile a (n + 2r)-board with at least r dominoes. We

consider the last tile in a tiling, which can be either a square or a domino. If the
board ends in a square, then there are bq(r)

n ways to tile (n + 2r − 1)-boards with at
least r dominoes for n even and aq(r)

n ways to do it for n odd. If the board ends in
a domino, we separate the tilings into two disjoint sets A and B. The set A with
exactly r dominoes and the set B whose contain tilings with at least r + 1 dominoes.
Having in mind that one domino is fixed, the tilings in the set A has n + r − 1 tiles

with exactly r − 1 dominoes, then by Lemma 2.1, we have ♣A♣ = aξ(n)(ab)⌊n/2⌋


n+r−1
r−1



.

The tilings in the set B are equivalent to the tilings of an (n + 2r − 2)-boards with at

least r dominoes, i.e., ♣B♣ = q
(r)
n−1. Therefore,

q
(r)
n+1 = aξ(n)bξ(n+1)q(r)

n + ♣A♣ + ♣B♣. □

Note that, if we take a = b = x, we get the following hyper-Fibonacci identity, see

[4],

F
(r)
n+1(x) = xF (r)

n (x) + F
(r)
n−1(x) + xn



n + r − 1

r − 1



.

Theorem 2.8. For m, n ∈ N ∪ ¶0♢ with m ≤ r, we have

(2.10) q
(r)
n+m =

m
∑

k=0

aξ(n+m+1)ξ(n+k)bξ(n+m)ξ(n+k+1)



m

k



(ab)⌊(m−k)/2⌋q
(r−k)
n+k .

Proof. There exists q
(r)
n+m ways to tile a board of length (n + m + 2r − 1) containing at

least r dominoes. Consider the number of dominoes among the first m tiles. The k

dominoes can be placed among the first m tiles in


m
k



ways and the remaining tiles

which consisting of squares, contribute aξ(n+m+1)ξ(n+k)bξ(n+m)ξ(n+k+1)(ab)⌊(m−k)/2⌋ to
the weight. The remaining right board has a length of n − 1 + 2r − k, with at least

r − k dominos that can be tiled in q
(r−k)
n+k ways. Summing over all possible k completes

the proof. □

Note that, if we take a = b = x and m = r, we get the following hyper-Fibonacci
identity, see [4],

F
(r)
n+r =

r
∑

k=0



r

k



xr−kF
(r−k)
n+k .
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The bi-periodic hyper-Fibonacci sequence can be expressed in terms of the combi-
natorial sum of bi-periodic Fibonacci sequence.

Theorem 2.9. For n, r ≥ 1, we have

(2.11) q(r)
n =

n
∑

k=1

aξ(n+1)ξ(k)bξ(n)ξ(k+1)



n + r − k − 1

r − 1



(ab)⌊(n−k)/2⌋qk.

Proof. The left-hand side of this equality counts the number of ways to tile a board
of length n + 2r − 1 containing at least r dominoes.

The right-hand side is obtained by conditioning on the location of the rth domino.
Suppose that the rth domino occupies cell k and k + 1 (1 ≤ k ≤ n) (from the right).
The left part is a tiling of some section of length k − 1 which can be done in qk

ways. The rigth part is a tiling of the remaining portion of length n + 2r − 2 − k (i.e.,
cells k + 2 through n + 2r − 1) with exactly r − 1 dominos, which can be done in a

aξ(n+1)ξ(k)bξ(n)ξ(k+1)


n+r−k−1
r−1



(ab)⌊(n−k)/2⌋ ways (according to the parity of the numbers

n and k). The result follows from considering the sum of all possible locations of the
rth domino. □

Note that, if we take a = b = x, we get the following hyper-Fibonacci identity, see
[4],

F (r)
n (x) =

n
∑

k=1

xn−k



n + r − k − 1

r − 1



Fk(x).

In the following theorem, we give the alternating binomial sum of the bi-periodic
hyper-Fibonacci numbers.

Theorem 2.10. For r, m, n ∈ N ∪ ¶0♢ with m ≤ r,we have

(2.12)
m
∑

j=0

(−1)j



m

j



q
(r−j)
n+m = aξ(n)ξ(m)bξ(n+1)ξ(m)(ab)⌊m/2⌋q(r)

n .

Proof. We proceed by induction on m ≤ r. For m = 1 and m = 2, we get (1.10) and
Theorem 2.6, respectively. Suppose that the result holds for all i ≤ m. Then we can
prove it for m + 1

m+1
∑

j=0

(−1)j



m + 1

j



q
(r−j)
n+m+1 =

m+1
∑

j=0

(−1)j



m

j



+



m

j − 1



q
(r−j)
n+m+1

=
∑

j≥0

(−1)j



m

j



q
(r−j)
n+m+1 −

∑

j≥0

(−1)j



m

j



q
(r−j−1)
n+m+1 .

From (1.10), we obtain

m+1
∑

j=0

(−1)j



m + 1

j



q
(r−j)
n+m+1 =

∑

j≥0

(−1)j



m

j



aξ(n+m)bξ(n+m+1)q
(r−j)
n+m

= aξ(n+m)bξ(n+m+1)aξ(n)ξ(m)bξ(n+1)ξ(m)(ab)⌊m/2⌋q(r)
n .
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Using ξ(n + m) = ξ(n) + ξ(m) − 2ξ(n)ξ(m) and ⌊m/2⌋ = ⌊(m + 1)/2⌋ − ξ(m), we get

m+1
∑

j=0

(−1)j



m + 1

j



q
(r−j)
n+m+1 = aξ(n)ξ(m+1)bξ(n+1)ξ(m+1)(ab)⌊(m+1)/2⌋q(r)

n .

Therefore, the identity is valid for all m ≤ r. □

Note that, for a = b = x, we get the following result.

Corollary 2.4. The following equality holds for any nonnegative integers r ≥ m

(2.13)
m
∑

j=0

(−1)j



m

j



F
(r−j)
n+m = xmF (r)

n .

The bi-periodic Fibonacci sequence can be expressed in terms of the bi-periodic
hyper-Fibonacci sequence.

Theorem 2.11. For r, m ∈ N ∪ ¶0♢, we have

(2.14) qm+1 =
m
∑

k=0



r

k



(−1)kaξ(k)ξ(m)bξ(k)ξ(m+1)(ab)⌊k/2⌋q
(r)
m+1−k.

Proof. We proceed by induction on m. This is true for m = 0. Suppose that the
result holds for all i ≤ m. Then we can prove it for m + 1. From (1.10), we get

qm+2 = aξ(m+1)bξ(m)qm+1 + qm

= aξ(m+1)bξ(m)
m
∑

k=0



r

k



(−1)kaξ(k)ξ(m)bξ(k)ξ(m+1)(ab)⌊k/2⌋q
(r)
m+1−k

+
m−1
∑

k=0



r

k



(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋q
(r)
m−k.

Using ξ(m + 1) = ξ(m − k + 1) + ξ(k)ξ(m + 1) − ξ(k)ξ(m) and ξ(m) = ξ(m − k) +
ξ(k)ξ(m) − ξ(k)ξ(m + 1) we get ξ(k)ξ(m) + ξ(m + 1) = ξ(k)ξ(m + 1) + ξ(m − k + 1)
and ξ(k)ξ(m + 1) + ξ(m) = ξ(k)ξ(m) + ξ(m − k). Therefore, we have

qm+2 =
m
∑

k=0



r

k



(−1)kaξ(k)ξ(m+1)+ξ(m−k+1)bξ(k)ξ(m)+ξ(m−k)(ab)⌊k/2⌋q
(r)
m+1−k

+
m−1
∑

k=0



r

k



(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋q
(r)
m−k

=
∑

k≥0



r

k



(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋


aξ(m−k+1)bξ(m−k)q
(r)
m+1−k + q

(r)
m−k



=
m+1
∑

k=0



r

k



(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋q
(r)
m+2−k. □

Note that, for a = b = x, we get the following result.
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Corollary 2.5. The following equality holds for any integers r, m ≥ 0

(2.15) Fm+1(x) =
m
∑

k=0



r

k



(−1)kxkF
(r)
m+1−k(x).

3. Generating Function

We start by establishing the relationship between the bi-periodic hyper-Fibonacci
sequence and the hyper-Fibonacci polynomials.

Lemma 3.1. For n, r ≥ 0, we have

(3.1) q(r)
n =

1

2



1 +

√

a

b



− (−1)n


1 −
√

a

b



F (r)
n

√
ab


.

Proof. Using (1.4), (2.1) and ⌊n/2⌋ = (n − ξ(n))/2, we have

q(r)
n = aξ(n−1)

⌊(n−1)/2⌋+r
∑

k=r



n − 1 + 2r − k

k



(ab)(n−1−ξ(n−1))/2+r−k

=



a√
ab

ξ(n−1) ⌊(n−1)/2⌋+r
∑

k=r



n − 1 + 2r − k

k



√
ab
n−1+2r−2k

=

√

a

b

ξ(n−1) ⌊(n−1)/2⌋+r
∑

k=r



n − 1 + 2r − k

k



√
ab
n−1+2r−2k

=



1 +
√

a
b



− (−1)n


1 −
√

a
b



2

⌊(n−1)/2⌋+r
∑

k=r



n − 1 + 2r − k

k



√
ab
n−1+2r−2k

.□

Theorem 3.1. The generating function of the bi-periodic hyper-Fibonacci sequence

is given by
∑

n≥0

q(r)
n zn =

z



1 +
√

a
b

 

1 +
√

abz − z2
 

1 +
√

abz
r

+


1 −
√

a
b

 

1 −
√

abz − z2
 

1 −
√

abz
r

2 (1 − (ab + 2)z2 + z4) (1 − abz2)r .

Proof. Using Lemma 3.1 and (1.5), we get

∑

n≥0

q(r)
n zn =

1

2



1 +

√

a

b



∑

n≥0

F (r)
n

√
ab


zn − 1

2



1 −
√

a

b



∑

n≥0

F (r)
n

√
ab


(−z)n

=
1

2



1 +

√

a

b



z


1 −
√

abz − z2
 

1 −
√

abz
r

− 1

2



1 −
√

a

b

 −z


1 +
√

abz − z2
 

1 +
√

abz
r ,

which gives the desired result. □
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Note that, if we take r = 0, we obtain the generating function of the bi-periodic
Fibonacci sequence (1.7). If we take a = b = x, we obtain the generating function of
hyper-Fibonacci polynomials (1.5) with y = 1.
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NUMERICAL TREATMENT OF VOLTERRA-FREDHOLM
INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL

ORDER AND ITS CONVERGENCE ANALYSIS

ABHILIPSA PANDA1 AND JUGAL MOHAPATRA2

Abstract. This work deals with semi-analytical and numerical methods to solve
a class of fractional order Volterra-Fredholm integro-differential equations. First, a
semi-analytical method is proposed using the Chebyshev and Bernstein polynomials
in the Adomian decomposition method. The uniqueness of the solution and con-
vergence of the method are proved. Further, we solve the model using a numerical
scheme comparing the L1 scheme for the fractional order derivative in combination
with appropriate quadrature rules for the integral parts. Numerical experiments
are done by the proposed methods to show their efficiency through a few tabular
data and plots. Some comparisons with the existing results show that the proposed
methods are highly productive and reliable.

1. Introduction

The considerable interest in integro-differential equations (IDEs) has mainly arisen due
to its major applications in the theory of mechanical engineering, elasticity [29] and
several others. The well-known mathematician Niels Henrik Abel obtained the famous
integral equation of the first kind with kernel function K(x, t) = (x− t)−µ, for µ = 1/2
by solving the mechanical problem of Tautochrone as described in [23], which he then
generalized it for 0 < µ < 1. The theory given by Abel in [23] further paved the way for
researchers to look deep into the idea of fractional order integro-differential equations
(FracIDEs). The wide application of FracIDEs for electromagnetic waves in dielectric
media and unsteady aerodynamics have generated great interest in exploring more in

Key words and phrases. Fractional integro-differential equation, convergence analysis, Bernstein
polynomials, Chebyshev polynomials, L1 scheme.
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this field. Several analytical and numerical techniques have been introduced to obtain
the solutions of FracIDEs with singular and nonsingular kernels [12, 17]. Aghajani
et al., established the existence of solutions for FracIDEs in [2]. The operational
tau approximation method based on orthogonal polynomials was implemented on
a class of FracIDEs by Vanani and Aminataei in [30]. Heydari and Hooshmandasl
[14] used the Chebyshev wavelet method to solve the nonlinear FracIDEs on a large
interval by converting the fractional differential and integral parts of the FracIDE
to some operational matrices. Then, they obtained the solutions by solving a set of
algebraic equations. Also, based on the Haar wavelet collocation method, Marasi and
Derakhshan in [20] focused on finding a numerical method for solving the variable-
order Caputo-Prabhakar FracIDEs. Higher order FracIDEs, such as the fourth-order
FracIDEs, were solved by Amer et al. [5] using the Adomian decomposition method
(ADM) and variational iteration method (VIM), where the solution was given by an
infinite convergent series. Also, quite a few approximated techniques described in
[9, 24] have been discussed in the past to solve the linear and nonlinear FracIDEs.

But all the model problems solved have considered the source term as a polynomial
function which is comparatively easier to approximate. Thus, we propose a new mod-
ification of ADM for obtaining the solution of a class of FracIDE where the source
function is not a polynomial one. The general way of ADM was first introduced by
G. Adomian [1] to solve linear and nonlinear problems. Gradually, ADM was impro-
vised using the Chebyshev [15], Legendre [19] and Bernstein polynomials [25]. These
modified techniques are used to solve a class of ordinary and partial differential equa-
tions where the source function is exponential, trigonometric, or hyperbolic functions
rather than the polynomial one. The approximation of functions by polynomials is
extremely important as different scientific experiments rely on them, such as the study
of statistics in population dynamics [28], temperatures, and also in the approximation
theory [7]. Moreover, polynomials are the best mathematical techniques to approxi-
mate as they can be characterized, figured, separated, and incorporated effortlessly.
Orthogonal polynomials such as the Chebyshev polynomials have been widely used in
approximating functions in a wide variety of problems. These are the eigen functions
of singular Sturm-Liouville problems. It is well known that these eigen functions allow
the approximation of functions in C∞[a, b], where the truncation error approaches
zero faster than any function used in the approximation as described in [8]. Gottlieb
in [10] described this effect as the “spectral accuracy”. For more information, one may
refer [6]. In this article, we are using the first kind orthogonal Chebyshev polynomials
¶Tk♢∞

k=0 given as
√

1 − x2T ′(x) +
k2

√
1 − x2

Tk(x) = 0.

Also, we have used the Bernstein polynomials for the modification of ADM. These
polynomials approximate the function with a few terms in comparison to the approx-
imations done using the Taylor series. They are utilized in the fields of connected
arithmetic and material science as well as computer-assisted geometric outlines. They
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are also used in conjunction with other techniques like the Galerkin and collocation
methods to solve some differential and integral problems.

Though researchers have widely studied the semi-analytical approaches for solving
the mixed FracIDE, a few numerical solutions to such model problems have been
studied in the past. Certain works are done, such as Ali et al. [3] used the hybrid or-
thonormal Bernstein and block-pulse functions wavelet method, Alkan and Hatipoglu
[4] introduced the sinc-collocation method for solving the mixed FracIDE. One may
also refer to the work done in [16, 21, 26]. Keeping this literature gap in mind, this
article also proposes an efficient numerical scheme for finding the numerical solution
of a class of Volterra-Fredholm FracIDE. The novel L1 scheme is applied for the
fractional derivatives and the quadrature rule for the integral parts. The Composite
trapezoidal scheme approximates the Volterra integral whereas the Fredholm integral
is solved using the rectangular rule. The error analysis is briefly carried out. Compu-
tational data in the numerical section prove the robustness of the proposed numerical
technique.

The paper is structured as follows. Section 2 outlines some of the definitions and
properties, while the model problem is defined in Section 3. Section 4 describes the
semi-analytical approximations along with the convergence analysis. The numerical
approximation of the solution and the error analysis are described in Section 5. Some
test examples are considered in Section 6, satisfying the theoretical findings and finally,
Section 7 draws the concluding remarks.

2. Some Definitions and Properties

Definition 2.1. The Bernstein basis polynomials of degree m over the interval [0, 1]
are defined as:

Bi,m(x) =



m

i



xi(1 − x)m−i, i = 0, 1, . . . ,m.

Definition 2.2. The Riemann-Liouville fractional integral of order µ > 0 for a
function f is defined as:

I
µf(x) =

1

Γ(µ)

∫ x

0
(x− τ)µ−1f(τ)dτ.

Definition 2.3. The Caputo derivative of order µ ∈ R
+ for a function f is defined

as:

D
µf(x) =







1
Γ(n−µ)

∫ x
0 (x− τ)n−µ−1f(τ)dτ, n− 1 < µ < n,

dnf(x)
dxn , µ = n, n ∈ N.

Some of the important properties of fractional derivatives and integrals are discussed
as follows.

• D
µ
I

µf(x) = f(x) and I
µ
D

µf(x) = f(x) − f(0+), 0 < µ ≤ 1, where f(0+) =
limh→0 f(0 + h).
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• Linearity property is sustained while defining the derivative in the Caputo
sense, given as:

D
µ(ψ1m(x) + ψ2n(x)) = ψ1D

µm(x) + ψ2D
µn(x).

• For 0 < µ ≤ 1 and ϑ ∈ R, I
µxϑ = Γ(ϑ+1)

Γ(µ+ϑ+1)
, µ > 0, ϑ > −1, x > 0.

3. Model Problem

Consider the Volterra-Fredholm FracIDE of order µ described as:

{

D
µz(x) + a(x)z(x) = f(x) +

∫ x
0 K1(x, s)N1(z(s))ds+

∫ 1
0 K2(x, s)N2(z(s))ds,

z(0) = z0,

(3.1)

where 0 < µ ≤ 1 and x ∈ [0, 1]. The fractional order derivative D
µ is defined in

the Caputo sense which is assumed to be invertible. The source function f(x), a(x),
and the nonlinear operators denoted by N1 and N2 are continuous functions on [0, 1].
K1(x, s) and K2(x, s) are smooth kernel functions defined on [0, 1] × [0, 1]. The given
initial condition is symbolized as z0. Throughout this article, for a function f(x),
defined on Ω = [0, 1], we define ♣♣f(x)♣♣∞ = maxx∈Ω ♣f(x)♣ and C is defined as a
generic constant, independent of µ.

4. Semi-Analytical Approximations

4.1. Adomian decomposition method (ADM). A brief description of the mod-
ified ADM is discussed in this section. Consider the FracIDE (3.1). The nonlinear
operator is approximated using the Adomian polynomials An. One may refer to [1,24]
for the formula of An. The solution z is represented as a series solution given by
z =

∑∞
n=0 zn. Operating the inverse operator I

µ on both sides of (3.1), we get

z(x) =z(0+) + I
µ
[

f(x) − a(x)z(x) +
∫ x

0
K1(x, s)N1(z(s))ds

+
∫ 1

0
K2(x, s)N2(z(s))ds

]

.(4.1)

Following the classical ADM, the recurrence relation for the solution of (4.1) is obtained
as:































z0 = I
µ(f(x)) + z(0+),

z1 = I
µ


−a(x)z0(x) +
∫ x

0 K1(x, s)A1(z0(s))ds+
∫ 1

0 K2(x, s)A2(z0(s))ds
)

,

z2 = I
µ


−a(x)z1(x) +
∫ x

0 K1(x, s)A1(z1(s))ds+
∫ 1

0 K2(x, s)A2(z1(s))ds
)

,
...

Finally, we calculate the solution as z =
∑∞

n=0 zn, if
∑∞

n=0 zn converges.
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4.2. ADM based on Chebyshev polynomials (ADM-CP). In the usual algo-
rithm of ADM, the approximation of f is made using Taylor’s series expansion as
f(x) =

∑n
i=0

fn(0)
n!

xn for an arbitrary N. Hosseini [15] modified the ADM by expanding
f using the Chebyshev polynomial approximation

(4.2) fC(x) ≈
n
∑

i=0

CnTn(x),

where Tn(x) is the first kind of orthogonal Chebyshev polynomial. Some of the
Chebyshev polynomials are noted below:

(4.3)











































T0(x) = 1,
T1(x) = x,
T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x,
...
Tn+1(x) = 2xTn − Tn−1, n ≥ 1.

Using (4.2) and (4.3), the following approximations for the solution of (3.1) are
obtained as
(4.4)































z0 = I
µ(C0T0(x) + C1T1(x) + C2T2(x) + · · · + CnTn(x)) + z(0+),

z1 = I
µ


−a(x)z0(x) +
∫ x

0 K1(x, s)A1(z0(s))ds+
∫ 1

0 K2(x, s)A2(z0(s))ds
)

,

z2 = I
µ


−a(x)z1(x) +
∫ x

0 K1(x, s)A1(z1(s))ds+
∫ 1

0 K2(x, s)A2(z1(s))ds
)

,
...

This work will prove that the approximated solution obtained by (4.4) is more reliable
than any other existing methods. In addition, one may also approximate using the
following algorithm as described in [15]

(4.5)















zn = I
µ(CnTn(x)) + z(0+), n = 0,

zn+1 = I
µ (Cn+1Tn+1(x) − a(x)zn(x) +

∫ x
0 K1(x, s)A1(zn(s))ds)

+I
µ


∫ 1
0 K2(x, s)A2(zn(s))ds

)

, n ≥ 1.

Now, (4.2) can also be written in the standard form as f(x) ≈ p0 + p1x + p2x
2 +

· · · + prx
r,

















p0

p1

p2

...
pr

















=

















1 0 −1 0 1 0 · · ·
0 1 0 −3 0 5 · · ·
0 0 2 0 −8 0 · · ·
0 0 0 4 0 −20 · · ·
...

...
...

...
...

...
. . .

















·

















C0

C1

C2

...
Cr
















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and






















z0 = I
µ(p0) + z(0+),

z1 = I
µ (p1 − a(x)z0(x) +

∫ x
0 K1(x, s)A1(z0(s))ds) + I

µ


∫ 1
0 K2(x, s)A2(z0(s))ds)

)

,

z2 = I
µ (p2 − a(x)z1(x) +

∫ x
0 K1(x, s)A1(z1(s))ds) + I

µ


∫ 1
0 K2(x, s)A2(z1(s))ds)

)

.

Finally, using (4.5), the series solution z(x) is obtained as follows:

(4.6) z(x) = z0(x) + z1(x) + z2(x) + · · · .

4.3. ADM based on Bernstein polynomials (ADM-BP). In this segment, in
order to improve the accuracy and reliability of ADM, the source function is expressed
in the form of Bernstein polynomial approximation

(4.7) fB(x) =
n
∑

i=0

DiBi(x),

where Bi(x) are the Bernstein polynomials. Using (4.1) and (4.7), the approximated
solution for FracIDE (3.1) is obtained as follows:
(4.8)


































z0 = I
µ(D0B0(x) +D1B1(x) +D2B2(x) + · · · +DnBn(x)) + z(0+),

z1 = I
µ


−a(x)z0(x) +
∫ x

0 K1(x, s)A1(z0(s))ds+
∫ 1

0 K2(x, s)A2(z0(s))ds)
)

,

z2 = I
µ


−a(x)z1(x) +
∫ x

0 K1(x, s)A1(z1(s))ds+
∫ 1

0 K2(x, s)A2(z1(s))ds)
)

,
...

The Bernstein polynomials of degree m are obtained as Bmf(x) =
∑m

i=0



m
i

)

xi

(1−x)(m−i)f


i
m

)

. For each function f : [0, 1] → R, we have limm→+∞ Bmf(x) = f(x).

Finally using (4.8), the solution is obtained as

(4.9) z(x) = z0(x) + z1(x) + z2(x) + · · · .

4.4. Convergence analysis.

4.4.1. Existence and uniqueness of the solution. In this segment, some of the hypoth-
esies are stated, which will be further used in the analysis.

(H1) Consider two Lipschitz constants C1, C2 > 0 such that N1(z(x)) and N2(z(x))
satisfy the Lipschitz conditions given as

{ ♣♣N1(z1(x)) − N1(z2(x))♣♣ ≤ C1♣♣z1 − z2♣♣,
♣♣N2(z1(x)) − N2(z2(x))♣♣ ≤ C2♣♣z1 − z2♣♣.

(H2) Consider Q = ¶(x, t) ∈ R × R : 0 ≤ t ≤ x ≤ 1♢ and K
∗
1, K

∗
2 ∈ C(Q,R+), such

that

K
∗
1 = sup

x∈[0,1]

∫ x

0
♣K1(x, s)♣dt < +∞, K

∗
2 = sup

x∈[0,1]

∫ x

0
♣K2(x, s)♣dt < +∞.
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Theorem 4.1. Assuming that (H1) and (H2) hold, if
∥a∥∞+(K∗

1
C1+K∗

2
C2)

Γ(µ+1)
< 1, then

there exists a unique solution z(x) ∈ C[0, 1] for (3.1).

Proof. The proof of the above theorem is well explained in Theorem 7 of [13]. Here
we provide the outline of the proof in very few lines. Applying I

µ on both sides of
(3.1) we get, z(x) = Tz(x), where

(Tz)(x) =z0 + I
µ
[

−a(x)z(x) + f(x) +
∫ x

0
K1(x, s)N1(z(s))ds

−
∫ 1

0
K2(x, s)N2(z(s))ds)

]

.

Since, we know z1(x), z2(x) ∈ C[0, 1], so

♣(Tz1)(x) − (Tz2)(x)♣ ≤ 1

Γ(µ)

∫ x

0
(x− t)µ−1♣a(s)♣♣z1(s) − z2(s)♣ds

+
1

Γ(µ)

∫ x

0
(x− t)µ−1

[
∫ t

0
♣K1(t, s)♣ · ♣N1(z1(s)) − N1(z2(s))♣ds

+
∫ 1

0
♣K2(t, s)♣ · ♣N2(z1(s)) − N2(z2(s))♣ds

]

dt

≤ ∥a∥∞
Γ(µ+ 1)

♣z1 − z2♣ +
K

∗
1

Γ(µ+ 1)

∫ x

0
(x− s)µ−1

×
[
∫ t

0
♣z1(s) − z2(s)♣ds

]

dt+
K

∗
2

Γ(µ+ 1)

∫ x

0
(x− s)µ−1

×
[
∫ 1

0
♣z1(s) − z2(s)♣ds

]

dt

≤ ∥a∥∞
Γ(µ+ 1)

♣z1 − z2♣ +
K

∗
1C1 + K

∗
2C2

Γ(µ+ 1)
♣z1 − z2♣.

As
∥a∥∞+(K∗

1
C1+K∗

2
C2)

Γ(µ+1)
< 1, we have, ♣♣T (z1(x)) − T (z2(x))♣♣ ≤ ♣♣z1 − z2♣♣. This proves

that T is a contraction mapping in Banach space C([0, 1], ♣♣ · ♣♣). So, we can conclude
that (3.1) has a unique solution in C[0, 1] using the Banach contraction principle. □

Theorem 4.2. Suppose C([0, 1], ♣♣ · ♣♣) is the Banach space of all continuous functions
on Ω. Then z =

∑∞
i=0 zi(x) uniformly converges to the exact solution on [0, 1].

Proof. As proved in [12], consider ♣z1(x)♣ < +∞ for all x ∈ [0, 1]. The sequence of the
partial sum of the series is denoted as sp. Let sp and sq be arbitrary partial sums with
p ≥ q. We need to prove that sp =

∑p
i=0 zi(x) is a Cauchy sequence in C([0, 1], ♣♣ · ♣♣).

We have

∥sp − sq∥∞ = max
x∈[0,1]

♣sp − sq♣

= max
x∈[0,1]

∣

∣

∣

∣

∣

p
∑

i=0

zi(x) −
q
∑

i=0

zi(x)

∣

∣

∣

∣

∣
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= max
x∈[0,1]

∣

∣

∣

∣

∣

∣

p
∑

i=q+1

zi(x)

∣

∣

∣

∣

∣

∣

= max
x∈[0,1]

∣

∣

∣

∣

∣

∣

p
∑

i=q+1



1

Γ(µ)

∫ x

0
(x− t)µ−1

[

a(t)zi(t) +
∫ t

0
K1(t, s)A1i(s)ds

+
∫ 1

0
K2(t, s)A2i(s)ds

])

dt
∣

∣

∣

∣

= max
x∈[0,1]

∣

∣

∣

∣

∣

∣

1

Γ(µ)

∫ x

0
(x− t)µ−1



a(t)
p−1
∑

i=q

zi(t) +
∫ t

0
K1(t, s)

p−1
∑

i=q

A1i(s)ds

+
∫ 1

0
K2(t, s)

p−1
∑

i=q

A2i(s)ds



 dt

∣

∣

∣

∣

∣

∣

.

Since, we know
∑p−1

i=q A1i = N1(sp−1)−N1(sq−1),
∑p−1

i=q A2i = N2(sp−1)−N2(sq−1) and
p−1
∑

i=q

zi = z(sp−1) − z(sq−1). So, we reach at

♣♣sp − sq♣♣∞ = max
x∈[0,1]


∣

∣

∣

∣

∣

1

Γ(µ)

∫ x

0
(x− t)µ−1 [a(t)(z(sp−1) − z(sq−1))

+
∫ t

0
K1(t, s)



N1(sp−1) − N1(sq−1)
)

ds

+
∫ 1

0
K2(t, s)



N2(sp−1) − N2(sq−1)
)

ds
]

dt
∣

∣

∣

∣

)

≤ max
x∈[0,1]



1

Γ(µ)

∫ x

0
♣x− t♣µ−1 [♣a(t)♣ ♣z(sp−1) − z(sq−1)♣

+
∫ t

0
♣K1(t, s)♣ · ♣N1(sp−1) − N1(sq−1)♣ ds

+
∫ 1

0
♣K2(t, s)♣ · ♣N2(sp−1) − N2(sq−1)♣ ds

]

dt
)

≤ 1

Γ(µ+ 1)

[

∥a(t)∥∞∥sp−1 − sq−1∥∞ + K
∗
1C1♣♣sp−1 − sq−1♣♣∞

+ K
∗
2C2♣♣sp−1 − sq−1♣♣∞

]

=



∥a∥∞ + K
∗
1C1 + K

∗
2C2

Γ(µ+ 1)



♣♣sp−1 − sq−1♣♣∞ = γ1♣♣sp−1 − sq−1♣♣∞,

where

(4.10) γ1 =



∥a∥∞ + K
∗
1C1 + K

∗
2C2

Γ(µ+ 1)



.

Also, for p = q + 1,

∥sp − sq∥∞ ≤ γ1∥sq − sq−1∥∞ ≤ γ2
1∥sq−1 − sq−2∥∞ ≤ γ3

1∥sq−2 − sq−3∥∞
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≤ · · · ≤ γq
1∥s1 − s0∥∞.

So, we can write

∥sp − sq∥∞ ≤ ∥sq+1 − sq∥∞ + ♣sq+2 − sq+1∥∞ + · · · + ♣sp − sp−1∥∞

≤
[

γq
1 + γq+1

1 + · · · + γp−1
1

]

♣♣s1 − s0♣♣∞

≤ γq
1



1 − γp−q
1

1 − γ1



♣♣z1♣♣∞.

Since 0 < γ1 < 1, we have (1 − γp−q
1 ) < 1, then ♣♣sp − sq♣♣∞ ≤ γq

1

1−γ1
♣♣z1♣♣∞. As

♣♣z1(x)♣♣ < ∞ and m → ∞, we get ♣♣sp − sq♣♣∞ → 0. Hence, it can be concluded that
sp is a Cauchy sequence in C[0, 1] and z = limn→∞ zn. Thus, the series is proved to
be convergent by Weierstrass M -test. □

4.4.2. Error bound. The exact solution for (3.1) is given by z(x) = limN→∞zN and
the numerical solution can be obtained by truncating the series (4.6) and (4.9) up
to a finite number of terms. If zN gives the N terms approximated solution then,
the absolute pointwise error bound depends on the partial sum

∑N−1
n=0 zn(x) which is

bounded by
MγN

1

1−γ1
. γ1 is defined in (4.10) which satisfies 0 < γ1 < 1 and z0 ≤ M.

5. Numerical Approximation

In this section, we propose the numerical solution for (3.1). The approximation
of fractional derivative D

µ is made using the L1 scheme in [22]. The composite
trapezoidal rule is used for approximating the Volterra integral and the rectangular
rule for the Fredholm integral.

Now, to construct the mesh points, consider N to be any positive integer and
h = 1/N. Then, the mesh can be obtained as ¶xn = nh : n = 0, 1, . . . ,N♢. The
Caputo fractional order derivative is defined as

(5.1) D
µz(xn) =

1

Γ(1 − µ)

n−1
∑

i=0

∫ xi+1

p=xi

z′(p)

(xn − p)µ
dp.

Approximating D
µ in (5.1) using the L1 approach at each xn for 1 ≤ n ≤ N, we reach

at

D
µz(xn) ≈ D

µ
N
zn :=

1

Γ(1 − µ)

n−1
∑

i=0

z(xi+1) − z(xi)

h

∫ xi+1

p=xi

dp

(xn − p)µ

=
1

hµΓ(2 − µ)

n−1
∑

i=0

(z(xi+1) − z(xi))cn−i + R
(1)
n ,(5.2)

where ck = k1−µ − (c − 1)1−µ, k ≥ 1. Approximating an integral part using the
composite trapezoidal rule for the Volterra integral and rectangular rule for the
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Fredholm integral for 1 ≤ n ≤ N , we have
∫ xn

0
K1(xn, s)z(s)ds =

n−1
∑

i=0

∫ xi+1

xi

K1(xn, s)z(s)ds,

=
h

2

n−1
∑

i=0

[K1(xn, xi+1)z(xi+1) + K1(xn, xi)z(xi)] + R
(2)
n ,(5.3)

∫ l

0
K2(xn, s)z(s)ds =

n−1
∑

i=0

∫ xi+1

xi

K2(xn, s)z(s)ds

= h
n
∑

i=1

[K2(xn, xi)z(xi)] + R
(3)
n ,(5.4)

where the remainder terms R
(i)
n for i = 1, 2, 3 are given by

R
(1)
n = (Dµ − D

µ
N

)z(xn) =



1

Γ(1 − µ)

n−1
∑

i=0

xi+1 + xi − 2p

(xn − p)µ
+O(h2)

]

,(5.5)

R
(2)
n =

n−1
∑

i=0

∫ xi+1

xi

(xi+1/2 − p)
∂

∂p
[K1(xn, p)z(p)] dp+O(h2),(5.6)

R
(3)
n =

n
∑

i=1

∫ xi

xi−1

(xi−1 − p)
∂

∂p
[K2(xn, p)z(p)] dp+O(h).(5.7)

Finally, using (5.2), (5.3) and (5.4), we construct the difference scheme as

D
µ
N
z(xn) + a(xn)z(xn) +

h

2

n−1
∑

i=0

[K1(xn, xi+1)z(xi+1) + K1(xn, xi)z(xi)]

+ h
n
∑

i=1

[K2(xn, xi)z(xi)] = f(xn) + R
(i)
n , for n = 1, 2, . . .N,

z(0) = z0,

where R
(i)
n = R

(1)
n + R

(2)
n + R

(3)
n described as in (5.5), (5.6) and (5.7). Neglecting the

remainder terms for n = 1, 2, . . . ,N, we get the fully discrete scheme as

D
µ
N
zn + anzn +

h

2

n−1
∑

i=0

[K1(xn, xi+1)zi+1 + K1(xn, xi)zi] + h
n
∑

i=1

[K2(xn, xi)zi] = fn,

(5.8)

z(0) = zN
0 .

5.1. Convergence analysis. In this section, we find the error estmates for approxi-
mating (3.1) using the numerical scheme (5.8).

Lemma 5.1. For all µ ∈ [0, 1] and n ≥ 1. If

B(n) = n1−µ + 2


(n− 1)1−µ + (n− 2)1−µ + (n− 3)1−µ + · · · + 11−µ
)

− 2

2 − µ
n2−µ,

then ♣B(n)♣ ≤ C, where C is independent of n and µ.
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Proof. The detailed proof of this lemma is discussed in [18]. □

Theorem 5.1. For a constant C and fractional order derivative µ ∈ (0, 1), the
following inequality follows:

(5.9) ♣R(1)
n ♣ ≤ Ch2−µ.

Proof. Solving the L.H.S of (5.9)

1

Γ(1 − µ)

n−1
∑

i=0

xi+1 + xi − 2p

(xn − p)µ
dp

=
−1

Γ(1 − µ)

n−1
∑

i=0

1

1 − µ
(2i+ 1)h2−µ

[

(n− i− 1)1−µ − (n− i)1−µ
]

+
1

Γ(1 − µ)

n−1
∑

i=0

2

1 − µ
h2−µ

[

(i+ 1)(n− i− 1)1−µ − i(n− i)1−µ

+
1

Γ(1 − µ)

n−1
∑

i=0

2

(2 − µ)(1 − µ)
h2−µ[(n− i− 1)2−µ − (n− i)2−µ]

]

=
h2−µ

Γ(2 − µ)

[

n1−µ + 2((n− 1)1−µ + (n− 2)1−µ) + · · · + 11−µ
]

− 2h2−µ

Γ(3 − µ)
n2−µ

=
h2−µ

Γ(2 − µ)



n1−µ + 2((n− 1)1−µ + (n− 2)1−µ + · · · + 11−µ) − 2

2 − µ
n2−µ

]

.

Let B(n) = n1−µ + 2((n − 1)1−µ + (n − 2)1−µ + (n − 3)1−µ + · · · + 11−µ) − 2
2−µ

n2−µ.

From Lemma 5.1, ♣B(n)♣ is bounded for all µ ∈ [0, 1] and all n ≥ 1. So, taking into
fact that 1

Γ(2−µ)
≤ 2 for all µ ∈ [0, 1], we get

(5.10)

∣

∣

∣

∣

∣

1

Γ(1 − µ)

n−1
∑

i=0

xi+1 + xi − 2p

(xn − p)µ
dp

∣

∣

∣

∣

∣

≤ 2h2−µ.

As a result, from (5.10), we obtain R
(1)
nr ≤ CN−(2−µ). □

The above theorem proves that the solution obtained using the L1 scheme on a
uniform mesh is O(N−(2−µ)) accurate. But, when the solutions have a mild singularity
at the initial mesh point x = 0, then the order of accuracy will be O(N−µ) and O(N−1)
on any sub-domain that is bounded away from x = 0. For the analysis of such cases,
one may refer to [11, 22]. We have considered R

(1)
n = R

(1)
ns + R

(1)
nr , where R

(1)
ns is the

remainder term for the case, where there is a mild singularity at x = 0 and R
(1)
nr is

the remainder term for the case where the solution is regular. The following lemma
gives the truncation error for the Caputo order derivative due to the presence of weak
singularity at the initial mesh point.

Lemma 5.2. For each mesh point xn, n = 1, 2, . . . ,N, we have the following estimate
while there is a mild singularity at the initial mesh point x = 0

♣R(1)
ns ♣ ≤ Cn−(µ+1), for all n = 1, 2 . . . ,N.
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Proof. One may refer to [22,27] for the detailed proof of the lemma. □

Lemma 5.3. The remainder term R
(2)
n , n = 1, 2, . . . ,N, satisfies the following esti-

mate:
♣R(2)

n ♣ ≤ CN−1.

Proof. From (5.6), we get

♣R(2)
n ♣ =

∣

∣

∣

∣

∣

n−1
∑

i=0

∫ xi+1

xi

(xi+1/2 − p)
d

dp
[K(xn, p)z(p)]dp

∣

∣

∣

∣

∣

≤
n−1
∑

i=0

∫ xi+1

xi

(xi+1/2 − p)

∣

∣

∣

∣

∣

d

dp
[K(xn, p)z(p)]

∣

∣

∣

∣

∣

dp

≤
n−1
∑

i=0

∫ xi+1

xi

(xi+1/2 − p)

∣

∣

∣

∣

∣

∂

∂p
[K(xn, p)z(p)] +

∂

∂z
[K(xn, p)z(p)]z

′(p)

∣

∣

∣

∣

∣

dp

≤ Ch
∫ xn

0
(1 + z′(p))dp ≤ Ch ≤ CN−1, for all n = 1, 2, . . . ,N,

which is the desired bound. □

Lemma 5.4. Assuming that K2 is a continuous bounded function on [0, 1]. The
remainder term R

(3)
n , n = 1, 2, . . . ,N, satisfies the following estimate:

♣R(3)
n ♣ ≤ CN−1.

Proof. From (5.7), we get

♣R(3)
n ♣ =

n−1
∑

i=0

∫ xi+1

xi

(xi − p)

∣

∣

∣

∣

∣

∂

∂p
[K2(xn, p)z(p)]dp

∣

∣

∣

∣

∣

≤ h
∫ 1

0

∣

∣

∣

∣

∣

∂

∂p
[K2(xn, p)z(p)]dp

∣

∣

∣

∣

∣

≤ h
∫ 1

0

{∣

∣

∣

∣

∣

∂K2(xn, p)

∂p

∣

∣

∣

∣

∣

♣z(p)♣ + ♣K2(xn, p)♣♣z′(p)♣
}

dp

≤ Ch ≤ CN−1, for all n = 1, 2, . . . ,N.

This proves the required estimate. □

Consider en to be the error function. ¶z(xn)♢N

n=1 be the exact solution of the
continuous problem (3.1) and ¶zn♢N

n=1 be the numerical solution of (5.8), then the
error function is defined as:

en = ♣z(xn) − zn♣, e0 = 0, for n = 1, 2, . . . ,N.(5.11)

Theorem 5.2. If ¶z(xn)♢N

n=1 is the exact solution to the continuous problem (3.1)
and ¶zn♢N

n=1 is the numerical solution of (5.8), then the error bound when there exists
a weak singularity at the initial mesh point is given by

♣en♣ ≤ ♣z(xn) − zn♣ ≤ hµΓ(2 − µ)
n
∑

i=1

♣R(i)
n ♣ ≤ C

[

hxµ−1
n + hµ

N
−(1−µ)

]

.(5.12)
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Proof. From (5.11) and using Lemma 3 of [27], we have

♣en♣ ≤ ♣z(xn) − zn♣ ≤ hµΓ(2 − µ)
n
∑

i=1

γn−i♣R(i)
n ♣

≤ Chµ
n
∑

i=1

γn−i♣R(1)
ns ♣ + Chµ

n
∑

i=1

γn−i♣R(2)
n ♣ + Chµ

n
∑

i=1

γn−i♣R(3)
n ♣.(5.13)

Applying Lemma 5.2, Lemma 5.3 and Lemma 5.4, (5.13) reduces to

♣en♣ ≤ Chµ
n
∑

i=1

γn−ii
−(1+µ) + Chµ

n
∑

i=1

γn−iN
−1.

Finally employing Lemma 3 of [11] and Lemma 4.3 of [22] to the above inequality, the
desired result (5.12) is obtained. □

Theorem 5.3. If ¶z(xn)♢N

n=1is the exact solution to the continuous problem (3.1) and
¶zn♢N

n=1 is the numerical solution of (5.8), then the error bound is given by

♣en♣ ≤ ♣z(xn) − zn♣ ≤ CXµh, n = 1, 2, . . . ,N.

Proof. We have

♣z(xn) − zn♣ ≤ hµΓ(2 − µ)
n
∑

i=1

γn−i♣R(i)
n ♣

≤ Chµ
n
∑

i=1

γn−i♣R(1)
n ♣ + Chµ

n
∑

i=1

γn−i♣R(2)
n ♣ + Chµ

n
∑

i=1

γn−i♣R(3)
n ♣.

Combining Theorem 5.1, Lemma 5.3 and Lemma 5.4, we get

♣z(xn) − zn♣ ≤ CN−1 + Cγ−1
n−1h

2.

By the definition of γn, we have n−µγ−1
n−1 ≤ 1

1−µ
, n = 1, 2, . . . ,N. Consequently, for

all n such that nh ≤ X, we have

♣z(xn) − zn♣ ≤ CN−1 + Cγ−1
n−1h

2

= CN−1 + Cn−µγ−1
n−1h

2 = CN−1 + Cn−µn−µγ−1
n−1n

µh2

= CN−1 + C



1

1 − µ



(nh)µh2−µ ≤ CN−1 + CXµh2−µ,

which gives the desired result. □

EN

µ = max0≤n≤N ♣z(xn) − zn♣ denotes the pointwise error while using the numerical

scheme, while P
N

µ =
EN

µ /E2N
µ

ln 2
denotes the order of convergence.
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6. Numerical Experiments

This section consists of two numerical examples which clearly depict the efficiency
of the proposed techniques.

Example 6.1. Consider the following model

D
µz(x) + a(x)z(x) = f(x) +

∫ x

0
K1(x, s)z(s)ds+

∫ 1

0
K2(x, s)z(s)ds,

with the initial condition z(0) = 1. Here f(x) = exp(x)−1+x1−µE1,2−µ(x), E1,2−µ(x) =
∑∞

k=0
xk

Γ(k+2−µ)
, a(x) = 0, K1(x, s) = 1 and K2(x, s) = 2s − 1. The exact solution is

z(x) = exp(x).

First approximating f(x) using the Chebyshev polynomials, fC(x) =
∑5

i=0 CiTi(2x−
1), x ∈ [0, 1]. Here,

C0 =
1

π

∫ 1

−1

f(0.5x+ 0.5)T0(x)√
1 − x2

dx,

Ci =
2

π

∫ 1

−1

f(0.5x+ 0.5)Ti(x)√
1 − x2

dx, i = 0, 1, . . . , 5.

So, we get

fC(x) ≈ x1−µ

Γ(2 − µ)
+

x2−µ

Γ(3 − µ)
+

x3−µ

Γ(4 − µ)
+

x4−µ

Γ(5 − µ)
+

x5−µ

Γ(6 − µ)
+

x6−µ

Γ(7 − µ)

− 1.0002x− 0.499197x2 − 0.166489x3 − 0.0437939x4 − 0.00868682x5

− 0.00004.(6.1)

Substituting (6.1) and applying (4.4), we obtain the two term approximated solution
as follows:

z(x) =z0(x) + z1(x)

=1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
− 1.0002

x1+µ

Γ(2 + µ)
− 0.499197

(x2+µ)

Γ(3 + µ)

− 0.166489
x3+µ

Γ(4 + µ)
− 0.0437939

x4+µ

Γ(5 + µ)
− 0.0086862

x5+µ

Γ(6 + µ)

− 4.00e− 05
xµ

Γ(1 + µ)
+ 0.000198413

x7+µΓ(8)

Γ(8 + µ)
+ 0.00138889

x6+µΓ(7)

Γ(7 + µ)

+ 0.00833333
x5+µΓ(6)

Γ(6 + µ)
+ 0.0416667

x4+µΓ(5)

Γ(5 + µ)
+ 0.166667

x3+µΓ(4)

Γ(4 + µ)

+ 0.5
x2+µΓ(3)

Γ(3 + µ)
+
x1+µΓ(2)

Γ(2 + µ)
− 1.0002

x2+2µΓ(3 + µ)

Γ(3 + 2µ)(2 + µ)

− 0.499197
x3+2µΓ(4 + µ)

Γ(4 + 2µ)(3 + µ)
− 0.166489

x4+2µΓ(5 + µ)

Γ(5 + 2µ)(4 + µ)
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− 0.0437939
x5+2µΓ(6 + µ)

Γ(6 + 2µ)(5 + µ)
− 0.0086862

x6+2µΓ(7 + µ)

Γ(7 + 2µ)(6 + µ)

− 0.00004
x1+2µΓ(2 + µ)

Γ(2 + 2µ)(1 + µ)
.

Simplify, the problem using the Bernstein polynomials
∑n

i=0 DiBi(x) with i = 5 gives
the approximation for f(x) as

fB(x) ≈1 +
x1−µ

Γ(2 − µ)
+

x2−µ

Γ(3 − µ)
+

x3−µ

Γ(4 − µ)
+

x4−µ

Γ(5 − µ)
+

x5−µ

Γ(6 − µ)
+

x6−µ

Γ(7 − µ)

− 1.10701379x− 0.490191813x2 − 0.108529819x3 − 0.0120144007x4

− 0.00053200429x5.

Using (4.8), the series solution using ADM-BP is obtained. We get the two term
approximated solution as follows:

z(x) =z0(x) + z1(x)

=1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
− 1.10701

x1+µ

Γ(2 + µ)
− 0.49019

x2+µ

Γ(3 + µ)

− 0.10853
x3+µ

Γ(4 + µ)
− 0.012014

x4+µ

Γ(5 + µ)
− 0.00053

x5+µ

Γ(6 + µ)

+ 0.00019
x7+µΓ(8)

Γ(8 + µ)
+ 0.001389

x6+µΓ(7)

Γ(7 + µ)
+ 0.00833

x5+µΓ(6)

Γ(6 + µ)

+ 0.04167
x4+µΓ(5)

Γ(5 + µ)
+ 0.16667

x3+µΓ(4)

Γ(4 + µ)
+ 0.5

x2+µΓ(3)

Γ(3 + µ)
+
x1+µΓ(2)

Γ(2 + µ)

− 1.10701
x2+2µΓ(3 + µ)

Γ(3 + 2µ)(2 + µ)
− 0.49019

x3+2µΓ(4 + µ)

Γ(4 + 2µ)(3 + µ)

− 0.10853
x4+2µΓ(5 + µ)

Γ(5 + 2µ)(4 + µ)
− 0.01201

x5+2µΓ(6 + µ)

Γ(6 + 2µ)(5 + µ)

− 0.00053
x6+2µΓ(7 + µ)

Γ(7 + 2µ)(6 + µ)
.

Finally, using the classical ADM and approximating f(x) using Taylor’s polynomial
denoted as fT (x), we get

fT (x) ≈1 +
x1−µ

Γ(2 − µ)
+

x2−µ

Γ(3 − µ)
+

x3−µ

Γ(4 − µ)
+

x4−µ

Γ(5 − µ)
+

x5−µ

Γ(6 − µ)

+
x6−µ

Γ(7 − µ)
− x− x2

2!
− x3

3!
− x4

4!
− x5

5!
.

Recursively, using the scheme for ADM, the solution is obtained as

z(x) =z0(x) + z1(x)



630 A. PANDA AND J. MOHAPATRA

=1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
− x1+µ

Γ(2 + µ)
− x2+µ

Γ(3 + µ)
− x3+µ

Γ(4 + µ)

− x4+µ

Γ(5 + µ)
− x5+µ

Γ(6 + µ)
+ 0.00019

x7+µΓ(8)

Γ(8 + µ)
+ 0.00139

x6+µΓ(7)

Γ(7 + µ)

+ 0.008333
x5+µΓ(6)

Γ(6 + µ)
+ 0.041667

x4+µΓ(5)

Γ(5 + µ)
+ 0.16667

x3+µΓ(4)

Γ(4 + µ)

+ 0.5
x2+µΓ(3)

Γ(3 + µ)
+
x1+µΓ(2)

Γ(2 + µ)
− x2+2µΓ(3 + µ)

Γ(3 + 2µ)(2 + µ)
− x3+2µΓ(4 + µ)

Γ(4 + 2µ)(3 + µ)

− x4+2µΓ(5 + µ)

Γ(5 + 2µ)(4 + µ)
− x5+2µΓ(6 + µ)

Γ(6 + 2µ)(5 + µ)
− x6+2µΓ(7 + µ)

Γ(7 + 2µ)(6 + µ)
.

For the semi-analytical methods, the error is calculated using E
∞
n = ♣z(x) −∑n

i=0 zi(x)♣.
Figure 1(a) shows the error plot at µ = 0.25 using the two term expansion of the
modified ADM and the classical ADM. One can observe the robustness of ADM-BP
and ADM-CP over the classical ADM, as the decrement in error is more in the case of
our proposed techniques as compared to the classical technique. Similarly, Figure 1(b)
depicts the comparison of E∞

2 between all the three techniques. The error in the case
of ADM-CP and ADM-BP is minimal compared to the classical ADM which makes
it efficient for use when the source term in the model problem is any function rather
than a polynomial function. The solution plots are graphically shown in Figure 2 for
the proposed techniques and the classical ADM. The accuracy of the semi-analytical
methods can be seen. Table 1 shows the error computed with one term and two term
solutions. The data depicts that the error decreases gradually with the increase in
number of iterations. Tables 2 and 3 give the pointwise error for x ∈ [0, 1] at µ = 0.01
and µ = 0.95, respectively. At some points close to zero, the error in classical ADM
seems less than our proposed methods. But at rest all of the node points, the proposed
methods prove to be more accurate and efficient which clearly shows their reliability.

Example 6.2. Consider the following Volterra-Fredholm FracIDE

D
0.75z(x) +

x2ex

5
z(x) =

6

Γ(2.25)
x2.25 +

∫ x

0
exsz(s)ds+

∫ 1

0
(4 − s−3)z(s)ds,

with the initial condition z(0) = 0. The exact solution is z(x) = x3.

Here, the source function is in the form of a polynomial function. We first approxi-
mate f(x) using the Chebyshev polynomials, and then apply the recursive algorithm
to obtain the series solution.

fC(x) =
4
∑

i=0

CiTi(2x− 1), 0 ≤ x ≤ 1,

where C0 = 1
π

∫ 1
−1

f(0.5x+0.5)T0(x)√
1−x2

dx and Ci = 2
π

∫ 1
−1

f(0.5x+0.5)Ti(x)√
1−x2

dx, i = 1, 2, . . . , 6.

It implies that fC(x) ≈ −0.2293888x4 + 0.9765696x3 + 1.666256x2 − 0.0610748x +
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0.0010169. Applying (4.4), we obtain the approximated solution as

z(x) = − 0.2293888x4.75 Γ(5)

Γ(5.75)
+ 0.9765696x3.75 Γ(4)

Γ(4.75)
+ 1.666256x2.75 Γ(3)

Γ(3.75)

− 0.0610748x1.75 Γ(2)

Γ(2.75)
+ 0.0010169x0.75 Γ(1)

Γ(1.75)
.

f(x) is approximated using the Bernstein polynomials fB(x) =
∑n

i=0 DiBi(x) with
i = 10. Then applying the recursive algorithm for ADM to obtain the series solution,
we get

fB(x) ≈ − 0.0005694419493x10 + 0.006482451697x9 − 0.03408x8

+ 0.11017x7 − 0.247127x6 + 0.416952685x5 − 0.584450992x4

+ 0.9119425917x3 + 1.641949867x2 + 0.132354172x.

Substituting fB(x) in (4.8), we obtain the approximated solution, which converges
to the exact solution as shown in Figure 3(a). Also, the pointwise errors of the
proposed techniques are shown using Figure 3(b). Hamoud and Ghadle in [12] solved
this example using the classical ADM and obtained the exact solution in the first
iteration. Since, the source term is already a polynomial function (in Taylor’s series
expansion), the proposed techniques (ADM-BP and ADM-CP) do not contribute
much to decreasing the error in comparison to the solutions obtained in [12]. Table 4
shows the pointwise error obtained after the first term series solution using ADM-BP
and ADM-CP. Though the error is less, the proposed methods are still ineffective
for such model problems. Hence, one can conclude that the proposed techniques are
suitable for the model problems where the source term is any other function except
the polynomials.

We have also solved this example using the proposed numerical scheme (5.8). The
solution is regular in its considered domain. The computed results are recorded in
Table 5. One can clearly observe that the order of accuracy is almost first order
accurate over the entire domain which satisfies the theoretical estimates. Figure 4(a)
shows the solution plot for both the approximated and the exact solution at µ = 0.75.

Example 6.3. Consider the following numerical experiment:

D
µz(x) + a(x)z(x) = f(x) +

∫ x

0
sz(s)ds+

∫ 1

0
(x− s)z(s)ds,

where a(x) = 0 and the exact solution is z(x) = xµ + x.

The problem is solved using the proposed numerical scheme (5.8). Table 6 shows the
error and rate of convergence for Example 6.3. Due to the presence of weak singularity,
the order of accuracy is O(N−µ) over the entire domain. A sharp singularity is present
at the initial mesh point x = 0 which is evident from Figure 4(b) at µ = 0.1.
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Example 6.4. Consider a nonlinear model of Volterra-Fredholm FracIDE:

D
µz(x) + a(x)z(x) = f(x) +

∫ x

0
z4(s)ds−

∫ 1

0
f(x+ s)z(s)ds,

where a(x) = 0, f(x) = t4Γ(5+µ)
24

+ t5+µ − t17+4µ

17+4µ
+ t

5+µ
+ 1

6+µ
and the exact solution is

z(x) = xµ+4.

Table 7 shows the computed values of maximum pointwise error and order of
convergence for arbitrary order fractional derivatives. The tabular data proves that
the proposed numerical scheme also works well for a class of nonlinear Volterra-
Fredholm FracIDEs.

7. Conclusion

This article intends to solve the fractional order Volterra-Fredholm integro-differential
equations using semi-analytical and numerical methods. At first, we used the modi-
fied Adomian decomposition technique for the model problem where the source term
is generalized as any kind of function (other than the polynomial function). The
uniqueness and existence of the solutions are properly established and convergence
of the method is carried out. Secondly, we have developed a fully discrete scheme
for obtaining the numerical solution. Error analysis is done and it is validated with
the help of a few numerical experiments. Finally, a comparison with some existing
methods shows that the proposed methods are more efficient and robust.
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Figure 1. Error plots using semi-analytical methods for Example 6.1.
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Figure 2. Solution plots using semi-analytical methods at µ = 0.5 for
Example 6.1.
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Figure 3. Plots using semi-analytical methods for Example 6.2.
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Table 1. Absolute pointwise errors using semi-analytical methods with
µ = 0.5 for Example 6.1.

ADM-BP ADM-CP

x E
∞
1 E

∞
2 E

∞
1 E

∞
2

0.2 7.7156e-2 6.2421e-3 7.0056e-2 1.0425e-3
0.4 2.2598e-1 1.8957e-2 2.0617e-1 2.2681e-3
0.6 4.2975e-1 4.2329e-2 3.9409e-1 2.2862e-3
0.8 6.8471e-1 8.3729e-2 6.3132e-1 2.1288e-2
1.0 9.9004e-1 1.5230e-1 9.1806e-1 6.6316e-2

Table 2. Absolute pointwise errors using semi-analytical methods with
µ = 0.01 for Example 6.1.

x E
∞
2 using ADM-BP E

∞
2 using ADM-CP E

∞
2 using classical ADM

0.2 3.2232e-2 9.6072e-3 2.1724e-2
0.4 8.8292e-2 3.9878e-2 1.0156e-1
0.6 1.6813e-1 9.2759e-2 2.7822e-1
0.8 2.7053e-1 1.7013e-1 6.4637e-1
1.0 3.9279e-1 2.7399e-1 1.4248

Table 3. Absolute pointwise errors using semi-analytical methods with
µ = 0.95 for Example 6.1.

x E
∞
2 using ADM-BP E

∞
2 using ADM-CP E

∞
2 using classical ADM

0.2 1.7740e-3 6.4018e-4 1.9533e-4
0.4 5.3420e-3 4.0840e-3 3.3104e-3
0.6 1.0931e-2 1.0136e-2 1.8948e-2
0.8 2.2620e-2 1.4696e-2 7.2710e-2
1.0 4.9022e-2 8.5299e-3 2.3222e-1

Table 5. Absolute pointwise errors using numerical approximation
with µ = 0.75 for Example 6.2.

N 100 200 400 800 1600 3200

EN

µ 3.8450e-3 1.6347e-3 6.9200e-4 2.9214e-4 1.2312e-4 5.1839e-5

P
N

µ 1.234 1.240 1.244 1.246 1.248
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Table 4. Absolute pointwise errors using semi-analytical methods with
µ = 0.75 for Example 6.2.

x E
∞
1 using ADM-BP E

∞
1 using ADM-CP

0.1 1.5167e-3 7.7086e-5
0.2 5.4081e-3 1.1525e-4
0.3 1.0989e-2 4.4583e-5
0.4 1.7565e-2 2.3456e-5
0.5 2.4440e-2 2.9868e-5
0.6 3.0919e-2 1.6814e-5
0.7 3.6305e-2 6.7225e-5
0.8 3.9902e-2 7.1810e-5
0.9 4.1014e-2 2.6809e-5
1 3.8945e-2 2.2190e-5

Table 6. Absolute pointwise errors using numerical approximation for
Example 6.3.

N 100 200 400 800 1600 3200

µ = 0.2 5.3434e-2 4.8349e-2 4.2892e-2 3.7690e-2 3.2964e-2 2.8763e-2
0.144 0.173 0.186 0.193 0.197

µ = 0.4 3.1270e-2 2.4291e-2 1.8635e-2 1.4209e-2 1.0801e-2 8.1980e-3
0.364 0.382 0.391 0.396 0.398

µ = 0.6 1.2472e-2 8.4267e-3 5.6251e-3 3.7329e-3 2.4700e-3 1.6319e-3
0.566 0.583 0.592 0.596 0.598

µ = 0.8 3.5118e-3 2.1476e-3 1.2819e-3 7.5155e-4 4.3619e-4 2.5213e-4
0.709 0.744 0.770 0.785 0.791

Table 7. Absolute pointwise errors using numerical approximation for
Example 6.4.

N 100 200 400 800 1600 3200

µ = 0.5 1.9248e-2 9.7900e-3 6.8373e-3 4.8276e-3 3.4111e-3 2.4111e-3
0.975 0.518 0.502 0.501 0.501

µ = 0.7 2.3163e-2 1.1464e-2 5.6412e-3 2.7745e-3 1.3666e-3 6.7455e-4
1.015 1.023 1.024 1.022 1.019

µ = 0.9 3.2869e-2 1.6331e-2 8.0508e-3 3.9539e-3 1.9390e-3 9.5055e-4
1.009 1.020 1.026 1.028 1.028
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ALL EVEN (UNITARY) PERFECT POLYNOMIALS OVER F2

WITH ONLY MERSENNE PRIMES AS ODD DIVISORS

LUIS H. GALLARDO1 AND OLIVIER RAHAVANDRAINY1

Abstract. We address an arithmetic problem in the ring F2[x]. We prove that
the only (unitary) perfect polynomials over F2 that are products of x, x + 1 and
of Mersenne primes are precisely the nine (resp. nine “classes”) known ones. This
follows from a new result about the factorization of M2h+1 + 1, for a Mersenne
prime M and for a positive integer h.

1. Introduction

Let A ∈ F2[x] be a nonzero binary polynomial. Let σ(A) denote the sum of all
divisors of A (including 1 and A). If σ(A) = A, then one says that A is a one-ring [5]
or in other words, A is perfect [4]. In addition to polynomials of the form (x2 + x)2n−1,
with some positive integer n, E. F. Canaday [5] discovered eleven non-splitting perfect
polynomials (see Notation): T1, . . . , T9 and C1, C2. The Tj’s are divisible only by
x, x + 1 and by irreducible polynomials of the form Ua,b := xa(x + 1)b + 1, for some
positive integers a, b. The last two C1 and C2 are divisible by x4 + x + 1 which is not
of the form Ua,b. The parallel with the integer case is then natural to be considered.
We know that all perfect numbers are of the form 2m(2m − 1), where m is a prime
number and 2m − 1 is a Mersenne prime number. So, we may consider the following
notions. We say that a binary polynomial is even if it has a linear factor [6]. It is odd,
otherwise. We also define a Mersenne prime (polynomial) over F2 as an irreducible
polynomial of the above form Ua,b [9]. The name comes as an analogue of the integral
Mersenne primes, taking xa(x + 1)b as an analogue of the prime power 2a+b.

Key words and phrases. Sum of divisors, polynomials, finite fields, characteristic 2.
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Note that the notion of Mersenne prime polynomial is only useful over F2, whereas
one may consider the “parity” of a polynomial over any finite field.

Unitary perfect polynomials are defined and studied in several directions by J. T.
B. Beard Jr. et al. [1, 2, 4]. As over the integers, for A ∈ F2[x], a divisor D of A is
unitary if gcd(D, A/D) = 1. Let σ∗(A) denote the sum of all unitary divisors of A
(including 1 and A). If σ∗(A) = A, then A is unitary perfect.

We say that a (unitary) perfect polynomial is indecomposable if it is not a product
of two coprime nonconstant (unitary) perfect polynomials.

Any unitary perfect polynomial is even (Lemma 3.4). The known ones, which are
only divisible by Mersenne primes (as odd factors), belong to the equivalence classes
(see Lemma 3.5) of B1, . . . , B9 (see Notation). The other ones (which are divisible
by non-Mersenne primes) belong to several different (perhaps, infinitely many) classes
(see [2] and [11]).

Since a few moments, we would like to continue this investigation (with more or
less success). In particular, we want to find all non-splitting (unitary) perfect binary
polynomials which are only divisible by x, x + 1 and by Mersenne primes. Some
results are obtained [7, Theorems 1.1 and 1.3] but they are not complete. The main
obstacle is the fact that we cannot understand how M2h+1 + 1 = (M + 1)σ(M2h)
factors over F2, for a Mersenne prime M and a positive integer h. We have formulated
[9] a conjecture about that (Conjecture 4.1). The further we make progress on that
conjecture, the better we reach our goal. Conjecture 4.1 is already proved under some
conditions on M and h [9, Theorem 1.4]. In this paper, we continue working toward
its proof with some new conditions on M and h, where the sets M and ∆ defined
below intersect. We get Proposition 1.1 which in turn, allows us to obtain Theorems
1.1 and 1.2.

The study of Mersenne primes have some interest. For example, we have established
[9, Theorem 1.3] that if gcd(a, b) = 1, then Ua,b = xa(x + 1)b + 1 has exactly the same
number of irreducible divisors as the trinomial xa+b + xb + 1. In particular, they are
both irreducible or both not irreducible. So, they would be useful in the domain of
error-correcting codes.

It is convenient to fix some notation.
Notation.

• The set of integers (resp. of nonnegative integers, of positive integers) is denoted
by Z (resp. N, N∗).

• For S, T ∈ F2[x] and for m ∈ N∗, Sm ♣ T (resp. Sm∥T ) means that S divides
T (resp. Sm ♣ T but Sm+1 ∤ T ). We also denote by S the polynomial defined
as S(x) = S(x + 1) and by valx(S) (resp. valx+1(S)) the valuation of S, at x
(resp. at x + 1).

• We put

M1 =1 + x(x + 1), M2 = 1 + x(x + 1)2, M3 = 1 + x(x + 1)3,

T1 =x2(x + 1)M1, T3 = x4(x + 1)3M3, T2 = T1, T4 = T3,
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T5 =x4(x + 1)4M3M3 = T5, T6 = x6(x + 1)3M2M2, T7 = T6,

T8 =x4(x + 1)6M2M2M3, T9 = T8,

C1 =x2(x + 1)M2
1 (x4 + x + 1), C2 = C1,

B1 =x3(x + 1)3M2
1 , B2 = x3(x + 1)2M1, B3 = x5(x + 1)4M3,

B4 =x7(x + 1)4M2M2, B5 = x5(x + 1)6M2
1 M3, B6 = x5(x + 1)5M3M3,

B7 =x7(x + 1)7M2
2 M2

2
, B8 = x7(x + 1)6M2

1 M2M2,

B9 =x7(x + 1)5M2M2M3.

• The following sets play important roles:

M =¶M1, M2, M2, M3, M3♢,

P =¶T1, . . . , T9♢, Pu = ¶B1, . . . , B9♢,

∆1 =¶p ∈ N∗ : p is a Mersenne prime♢,

∆2 =¶p ∈ N∗ : p is prime and ordp(2) ≡ 0 mod 8♢,

∆ =∆1 ∪ ∆2,

where ordp(2) denotes the order of 2 in Fp \ ¶0♢. In particular, ∆ contains all Fermat
primes greater than 5.

Throughout this paper, we always suppose that any (unitary) perfect polynomial
is indecomposable. We have often used Maple software for computations. Our main
results are the following.

Proposition 1.1. Let h ∈ N∗ and let M ∈ F2[x] be a Mersenne prime. Then in the

following cases, σ(M2h) is divisible by a non-Mersenne prime:

(i) M ∈ ¶M1, M3, M3♢ or (M ∈ ¶M2, M2♢ and h ≥ 2);
(ii) M ̸∈ M and 2h + 1 is divisible by a prime number p lying in ∆ \ ¶7♢.

Theorem 1.1. Let A = xa(x + 1)b ∏
i∈I P hi

i ∈ F2[x] be such that each Pi is a Mersenne

prime and a, b, hi ∈ N∗. Then, A is perfect if and only if A ∈ P.

Theorem 1.2. Let A = xa(x + 1)b ∏
i∈I P hi

i ∈ F2[x] be such that each Pi is a Mersenne

prime and a, b, hi ∈ N∗. Then, A is unitary perfect if and only if A = B2n
, for some

n ∈ N and B ∈ Pu.

We first prove the two theorems before the proposition.

2. Proof of Theorem 1.1

Sufficiencies are obtained by direct computations. For the necessities, we shall apply
Lemma 2.3 and Proposition 2.1. We fix: A = xa(x + 1)b ∏

i∈I P hi
i = A1A2, where

a, b, hi ∈ N, Pi is a Mersenne prime, A1 = xa(x + 1)b ∏
Pi∈M P hi

i and A2 =
∏

Pj ̸∈M P
hj

j .

Lemma 2.1. If A is perfect, then σ(xa), σ((x + 1)b) and each σ(Pi
hi), with i ∈ I, are

only divisible by x, x + 1 or by Mersenne primes.
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Proof. Since σ is multiplicative, σ(A) = σ(xa)σ((x + 1)b)
∏

i∈I σ(Pi
hi). Any divisor of

σ(xa), σ((x + 1)b) and σ(Pi
hi) divides σ(A) = A. □

Lemma 2.2 ([4], Lemma 2). A polynomial S is perfect if and only if for any irreducible

polynomial P and for any m1, m2 ∈ N∗, we have

(P m1∥S, P m2∥σ(S)) ⇒ m1 = m2.

The following example will be useful for Proposition 2.1.

Example 2.1. S1 = x13(x + 1)2M3
1 M2

2M2
2
M3M3 is not perfect because x13∥S1 and

x7∥σ(S1).

Lemma 2.3 ([7], Theorem 1.1). If hi = 2ni − 1 for any i ∈ I, then A ∈ P.

We get from Theorem 8 in [5] and from Proposition 1.1.

Lemma 2.4. (i) If h ∈ N∗ and if σ(x2h) is only divisible by Mersenne primes,

then 2h ∈ ¶2, 4, 6♢ and all its divisors lie in M. More precisely, σ(x2) = M1 =
σ((x + 1)2), σ(x4) = M3, σ((x + 1)4) = M3 and σ(x6) = M2M2 = σ((x + 1)6).

(ii) Let M ∈ M and h ∈ N∗ be such that σ(M2h) is only divisible by Mersenne

primes, then 2h = 2, M ∈ ¶M2, M2♢ and σ(M2) ∈ ¶M1M3, M1M3♢.

We dress from Lemma 2.4, the following tables of all the forms of a, b, Pi and hi

which satisfy Lemma 2.1, if Pi ∈ M and if hi ̸= 2ni − 1.

Table 1. Some σ(xa) and σ((x + 1)b)

a σ(xa) b σ((x + 1)b)

3 · 2n − 1 (x + 1)2n−1M1
2n

3 · 2m − 1 x2m−1M1
2m

5 · 2n − 1 (x + 1)2n−1M3
2n

5 · 2m − 1 x2m−1M3
2m

7 · 2n − 1 (x + 1)2n−1M2
2n

M2
2n

7 · 2m − 1 x2m−1M2
2m

M2
2m

Table 2. Some σ(Pi
hi)

Pi hi σ(Pi
hi)

M2 3 · 2ni − 1 (1 + M2)
2ni −1M1

2ni M3
2ni

M2 3 · 2ni − 1 (1 + M2)
2ni −1M1

2ni M3
2ni

Corollary 2.1. Suppose that A1 is perfect. Then, neither M2 nor M2 divides σ(Pi
hi)

if Pi ∈ M. Moreover, M2 divides A1 whenever M2 divides A1 and their exponents (in
A1) are equal.
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Proof. The first statement follows from Lemma 2.4 (ii). Now, if M2 divides A1 =
σ(A1), then M2 divides σ(xa) σ((x + 1)b)

∏
Pi∈M σ(P hi

i ). Hence, M2 divides
σ(xa)σ((x + 1)b). Table 1 shows that a or b is of the form 7 · 2n − 1, where n ∈ N.
So, M2 divides σ(A1) = A1. It suffices to consider two cases. If a = 7 · 2n − 1 and

b = 7 · 2m − 1, then M2
ℓ∥A1 and M2

ℓ
∥A1, with ℓ = 2n + 2m. If a = 7 · 2n − 1 and

b = 3 · 2m − 1 or b = 5 · 2m − 1, then M2
ℓ∥A1 and M2

ℓ
∥A1, with ℓ = 2n. □

Lemma 2.5. If P is a Mersenne prime divisor of σ(A1), then P, P ∈ ¶M1, M2, M3♢.

Proof. One has σ(A1) = σ(xa)σ((x + 1)b)
∏

Pi∈M σ(P hi
i ). If P divides σ(xa)σ((x+1)b),

then P ∈ M, by Lemma 2.4 (i). If P divides σ(P hi
i ) with Pi ∈ M, then Pi ∈ ¶M2, M2♢,

hi = 2 or hi is of the form 3 · 2ni − 1 and P, P ∈ ¶M1, M3♢ (see Table 2). □

Lemma 2.6. If A is perfect, then A = A1.

Proof. We claim that A2 = 1. Let Pj ̸∈ M and Qi ∈ M. Then, Pj divides neither

σ(xa), σ((x + 1)b) nor σ(Qhi
i ). Thus gcd(P

hj

j , σ(A1)) = 1. Observe that P
hj

j divides

σ(A2) because P
hj

j divides A = σ(A) = σ(A1)σ(A2). Hence, A2 divides σ(A2). So,
A2 is perfect and it is equal to 1, A being indecomposable. □

Proposition 2.1. If A1 is perfect, then hj = 2nj − 1 for any Pj ∈ M.

Proof. We refer to Table 2.

(i) Suppose that Pj ̸∈ ¶M2, M2♢. If hj is even, then σ(P
hj

j ) is divisible by a non-
Mersenne prime. It contradicts Lemma 2.1. If hj = 2nj uj − 1 with uj ≥ 3 odd, then

σ(P
hj

j ) = (1+Pj)
2nj −1(1+Pj + · · ·+P

uj−1
j )2nj

. Since 1+Pj + · · ·+P
uj−1
j = σ(Pj

uj−1)
is divisible by a non-Mersenne prime, we also get a contradiction to Lemma 2.1.

(ii) If Pj ∈ ¶M2, M2♢ and hj is even or it is of the form 2nj uj − 1, with uj ≥ 3 odd
and nj ≥ 1, then Corollary 2.1 implies that there exists ℓ ∈ N∗ such that M2

ℓ∥A1 and

M2
ℓ
∥A1. Recall that σ(M2

2) = M1M3 and σ(M2
2
) = M1M3. We proceed as in the

proof of Corollary 2.1. It suffices to distinguish four cases which give contradictions.
• Case 1: a = 7 · 2n − 1 and b = 7 · 2m − 1. One has ℓ = 2n + 2m and neither M1

nor M3 divides σ(xa) σ((x + 1)b).
If hj is even, then hj = 2 = ℓ. So, n = m = 0, M1

2∥σ(A1) = A1. It contradicts the
part (i) of our proof.

If hj = 2nj uj − 1 with uj ≥ 3 odd and nj ≥ 1, then uj = 3 and M1
2·2nj

∥A1.
• Case 2: a = 7 · 2n − 1 and b = 5 · 2m − 1.
One has ℓ = 2n and M1 ∤ σ(xa)σ((x + 1)b). If hj is even, then 2n = ℓ = hj = 2. So,

n = 1 and M1
2∥A1. If hj = 2nj uj − 1, with uj ≥ 3 odd and nj ≥ 1, then uj = 3 and

2n = ℓ = hj = 3 · 2nj − 1. It is impossible.
• Case 3: a = 7 · 2n − 1, b = 3 · 2m − 1 and hj is even.
As above, 2n = ℓ = hj = 2, M1

2m

divides σ((x + 1)b) and M1
2n+2m

divides
σ(A1) = A1. So, n = 1 and M1

2m+2∥A1. Thus, the part (i) implies that m = 0.
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Hence, A1 = S1 = x13(x + 1)2M3
1 M2

2M2
2
M3M3 which is not perfect (see Example

2.1).
• Case 4: a = 7 · 2n − 1, b = 3 · 2m − 1, hj = 2nj uj − 1, uj ≥ 3 odd, nj ≥ 1.
One has uj = 3 and 2n = ℓ = hj = 3 · 2nj − 1. It is impossible. □

Lemma 2.6, Proposition 2.1 and Lemma 2.3 imply the following result.

Corollary 2.2. If A is perfect, then A = A1 ∈ P.

3. Proof of Theorem 1.2

As in Section 2, we fix A = xa(x + 1)b ∏
i∈I P hi

i = A1A2, where a, b, hi ∈ N, Pi is a

Mersenne prime, A1 = xa(x + 1)b ∏
Pi∈M P hi

i and A2 =
∏

Pj ̸∈M P
hj

j .
Sufficiencies are obtained by direct computations. For the necessities, we shall

apply Lemma 3.6 and Proposition 3.1. The latter is proved (by similar arguments) as
Lemma 2.6 and Proposition 2.1.

Lemma 3.1. If A is unitary perfect, then σ∗(xa), σ∗((x+1)b), σ∗(Pi
hi), for any i ∈ I,

are only divisible by x, x + 1 or by Mersenne primes.

Proof. Since σ∗ is multiplicative, σ∗(A) = σ∗(xa)σ∗((x + 1)b)
∏

i∈I σ∗(Pi
hi), any divisor

of σ∗(xa), σ∗((x + 1)b), σ∗(Pi
hi) divides σ∗(A) = A. □

Lemma 3.2 ([4], Lemma 2). A polynomial S is unitary perfect if and only if for any

irreducible polynomial P and for any m1, m2 ∈ N∗, we have

P m1∥S, P m2∥σ∗(S) ⇒ m1 = m2.

We shall need the example below to prove Proposition 3.1.

Example 3.1. Since x14∥S2 and x10∥σ∗(S2), the polynomial

S2 = x14(x + 1)7M1
2M2

3M2
3
M3M3

is not unitary perfect.

Lemma 3.3. Let S ∈ F2[x] be an irreducible polynomial. Then, for any n, u ∈ N with

u odd, σ∗(S2nu) = (1 + S)2n
(σ(Su−1))2n

.

Lemma 3.4. Let C ∈ F2[x] \ ¶0, 1♢ be u.p. Then C is even, C and C2r
are also u.p,

for any r ∈ N.

Proof. If D is a divisor of C, then D divides C and D2r
divides C2r

. Thus, σ∗(C) =
σ∗(C) = C and σ∗(C2r

) = (σ∗(C))2r
= C2r

. It remains to prove that C is even.
Consider an irreducible divisor P of C and k ∈ N∗ such that P k∥C. The polynomial
1 + P is even and divides 1 + P k = σ∗(P k). So, 1 + P divides σ∗(C) = C. □

Definition 3.1. We denote by ∼ the relation on F2[x] defined as: S ∼ T if there

exists ℓ ∈ Z such that S = T 2ℓ
.
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Lemma 3.5 ([3], Section 2). The relation ∼ is an equivalence relation on F2[x].
Each equivalence class contains a unique polynomial B which is not a square, with

valx(B) ≤ valx+1(B).

Lemma 3.6 ([7], Theorem 1.3). If hi = 2ni for any i ∈ I, then A (or A) is of the

form B2n
, where B ∈ Pu.

The following tables, obtained from Lemmas 2.1, 2.4 and 3.3, are useful to prove
Proposition 3.1.

Table 3. Some σ∗(xa) and σ∗((x + 1)b)

a σ∗(xa) b σ∗((x + 1)b)

3 · 2n (x + 1)2n
M1

2n

3 · 2m x2m
M1

2m

5 · 2n (x + 1)2n
M3

2n

5 · 2m x2m
M3

2m

7 · 2n (x + 1)2n
M2

2n

M2
2n

7 · 2m x2m
M2

2m

M2
2m

Table 4. Some σ∗(Pi
hi)

Pi hi σ∗(Pi
hi)

M2 3 · 2ni (1 + M2)
2ni M1

2ni M3
2ni

M2 3 · 2ni (1 + M2)
2ni M1

2ni M3
2ni

Proposition 3.1. (i) If A is u.p, then A = A1.

(ii) If A1 is u.p, then hj = 2nj for any Pj ∈ M.

(iii) If A is u.p, then A or A is of the form B2n
, where B ∈ Pu.

Proof. The proof of (i) is analogous to that of Lemma 2.6. The statement (iii) follows
from (i), (ii) and Lemma 3.6. We only sketch the proof of (ii). Set hj = 2nj uj, where

uj is odd and nj ≥ 0. Suppose that Pj ̸∈ ¶M2, M2♢. If uj ≥ 3, then σ(P
uj−1
j ) and

thus σ∗(P
hj

j ) are divisible by a non-Mersenne prime. It contradicts Lemma 2.1. Now,

if Pj ∈ ¶M2, M2♢ and if uj ≥ 3, then uj = 3 and (a or b is of the form 7 · 2n). Recall

that σ∗(M2
3) = (1 + M2)M1M3 and σ∗(M2

3
) = (1 + M2)M1M3. We consider two

cases. The first gives non unitary perfect polynomials whereas the second leads to a
contradiction.

• Case 1: a = 7 · 2n and b = 7 · 2m, with n, m ≥ 0.

One has M2
ℓ∥A1 and M2

ℓ
∥A1, with ℓ = 2n + 2m. Neither M1 nor M3 divides

σ(xa) σ((x+1)b). Thus, 3 ·2nj = hj = ℓ = 2n +2m. So, n = m+1 and nj = m or m =

n + 1 and nj = n. Therefore, (M1
2)2nj

, M3
2nj

and M3
2nj

divide σ∗(M
hj

2 )σ∗(M2
hj )

and they divide σ∗(A1) = A1. Thus, A1 = S2
2m

or A1 = S2
2n

where S2 = x14(x +

1)7M1
2M2

3M2
3
M3M3. In both cases, A1 is not unitary perfect because S2 is not u.p

(Example 3.1).
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• Case 2: a = 7 · 2n and b = 5 · 2m or b = 3 · 2m, with n, m ≥ 0.
One has ℓ = 2n. So, we get the contradiction 3 · 2nj = hj = ℓ = 2n. □

4. Proof of Proposition 1.1

That proposition partially solves [9, Conjecture 1.1], which we recall here.

Conjecture 4.1 ([9], Conjecture 1.1). Let h ∈ N∗ and let M ∈ F2[x] be a Mersenne
prime. Then, σ(M2h) is always divisible by a non-Mersenne prime, except for M ∈
¶M2, M3♢ and h = 1.

We mainly prove it by contradiction (to Corollary 4.1). Lemma 4.1 states that
σ(M2h) is square-free, for any h ∈ N∗. Recall that we set M = xa(x + 1)b + 1,
U2h = σ(σ(M2h)) and

(4.1) σ(M2h) =
∏

j∈J

Pj, Pj = 1 + xaj (x + 1)bj irreducible, Pi ̸= Pj if i ̸= j.

By Lemma 4.3, if there exists a prime divisor p of 2h + 1 such that σ(Mp−1) is
divisible by a non-Mersenne prime, then σ(M2h) is also divisible by a non-Mersenne.
Therefore, it suffices to consider that 2h + 1 = p is a prime number, except for p = 3
with M ∈ ¶M2, M2♢ (see Section 4.1).

4.1. Useful facts. For S ∈ F2[x]\¶0, 1♢, of degree s, we denote by αl(S) the coefficient
of xs−l in S, 0 ≤ l ≤ s. One has α0(S) = 1.

Lemma 4.1 ([9], Lemmas 4.6 and 4.8). The polynomial σ(M2h) is square-free and

M ̸= M1.

Lemma 4.2 ([9], Theorem 1.4). Let h ∈ N∗ be such that p = 2h + 1 is prime and let

M be a Mersenne prime such that M ̸∈ ¶M2, M2♢ and ω(σ(M2h)) = 2. Then, σ(M2h)
is divisible by a non-Mersenne prime.

The lemma below generalizes Lemma 4.10 in [9] (with an analogous proof).

Lemma 4.3. If k is a divisor (prime or not) of 2h+1, then σ(Mk−1) divides σ(M2h).

We sometimes apply Lemmas 4.4 and 4.5 without explicit mentions.

Lemma 4.4. Let S ∈ F2[x] be such that s = deg(S) ≥ 1 and l, t, r, r1, . . . , rk ∈ N be

such that r1 > · · · > rk, t ≤ k, r1 − rt ≤ l ≤ r ≤ s. Then

(i) αl[(x
r1 + · · · + xrk)S] = αl(S) + αl−(r1−r2)(S) + · · · + αl−(r1−rt)(S);

(ii) αl(σ(S)) = αl(S) if any divisor of S has degree at least r + 1.

Proof. The equality in (i) (resp. in (ii)) follows from the definition of αl (resp. from
the fact σ(S) = S + T , where deg(T ) ≤ deg(S) − r − 1). □

Corollary 4.1. (i) The integers u =
∑

j∈J aj and v =
∑

j∈J bj are both even.

(ii) The polynomial U2h splits (over F2) and it is a square.

(iii) The polynomial σ(M2h) is reducible.



EVEN (UNITARY) PERFECT BINARY POLYNOMIALS 647

Proof. (i) See [9, Corollary 4.9]. For (ii), one has U2h = σ(σ(M2h)) = σ(
∏

j∈J Pj),
from Assumption (4.1). Hence, U2h =

∏
j∈J xaj (x + 1)bj = xu(x + 1)v, where u and v

are both even.
(iii) If σ(M2h) = Q is irreducible, then U2h = 1 + Q is not a square. □

Lemma 4.5. One has αl(σ(M2h)) = αl(M
2h) if l ≤ a + b − 1 and αl(σ(M2h)) =

αl(M
2h + M2h−1) if a + b ≤ l ≤ 2(a + b) − 1.

Proof. Since σ(M2h) = M2h + M2h−1 + T , with deg(T ) ≤ (a + b)(2h − 2) = 2h(a +
b) − 2(a + b), Lemma 4.4 (ii) implies that αl(σ(M2h)) = αl(M

2h) if l ≤ a + b − 1 and
αl(σ(M2h)) = αl(M

2h + M2h−1) if a + b ≤ l ≤ 2(a + b) − 1. □

Lemma 4.6. Denote by N2(m) the number of irreducible polynomials over F2, of

degree m ≥ 1. Then

(i) N2(m) ≥ 2m−2(2m/2−1)
m

;

(ii) φ(m) < N2(m) if m ≥ 4, where φ is the Euler totient function;

(iii) for each m ≥ 4, there exists an irreducible polynomial of degree m, which is

not a Mersenne prime.

Proof. (i) See [10, Exercise 3.27, page 142].
(ii) If m ∈ ¶4, 5♢, then direct computations give φ(4) = 2, N2(4) = 3 and φ(5) =

4, N2(5) = 6. Now, suppose that m ≥ 6. Consider the function f(x) = 2x − 2(2x/2 −
1) − x2, for x ≥ 6. The derivative of f is a positive function. So, f(x) ≥ f(6) > 0 and

x < 2x−2(2x/2−1)
x

. Thus, φ(m) ≤ m < 2m−2(2m/2−1)
m

≤ N2(m).

(iii) We remark that if 1 + xc(x + 1)d is a Mersenne prime, then gcd(c, d) = 1. So,
gcd(c, c + d) = 1. Therefore, the set Mm of Mersenne primes of degree m is a subset
of ¶xc(x + 1)m−c + 1 : 1 ≤ c ≤ m, gcd(c, m) = 1♢. Thus,

#Mm ≤ #¶c : 1 ≤ c ≤ m, gcd(c, m) = 1♢ = φ(m).

Hence, there exist at least N2(m) − φ(m) irreducible non-Mersenne polynomials, with
N2(m) − φ(m) ≥ 1, by (ii). □

Lemma 4.7. For any j ∈ J , ordp(2) divides aj + bj = deg(Pj).

Proof. Set d = gcdi∈J(ai + bi). By Lemma 4.13 in [9], p divides 2d − 1. Thus, ordp(2)
divides d. □

Lemma 4.8 ([10], Chapter 2 and 3). Let q = 2r − 1 be a Mersenne prime number.

Then, any irreducible polynomial P of degree r is primitive. In particular, each root

β of P is a primitive element of the field F2r , so that β is of order q in F2r \ ¶0♢.

Lemma 4.9. Let Pi = 1+xai(x+1)bi be a prime divisor of σ(Mp−1), where 2ai+bi −1 =
pi is a prime number. Then, pi = p and σ(Mp−1) is divisible by any irreducible

polynomial of degree ai + bi. Furthermore, at least one of those divisors is not a

Mersenne prime if ai + bi ≥ 4.
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Proof. The polynomial Pi is primitive. If α is a root of Pi, then (Mp + 1)(α) = 0 and
M(α) = αr for some 1 ≤ r ≤ pi − 1. Thus, 1 = M(α)p = αrp, with ord(α) = pi. So,
pi divides rp and pi = p. Any irreducible polynomial S of degree ai + bi is primitive.
Let β be a root of S. One has ord(β) = pi = p, S(β) = 0 and M(β) = βs, for some
1 ≤ s ≤ pi − 1. Thus, M(β)p = βps = 1 and S divides Mp + 1 = xa(x + 1)bσ(Mp−1).
The third statement follows from Lemma 4.6 (iii). □

Corollary 4.2. For any i ∈ J , ai + bi ≤ 3 or 2ai+bi − 1 is not prime.

Lemma 4.10. Let P, Q ∈ F2[x] be such that deg(P ) = r, 2r −1 is prime, P ∤ Q(Q+1)
but P ♣ Qp + 1. Then 2r − 1 = p.

Proof. The polynomial P is primitive. If β is a root of P , then ord(β) = 2r − 1.
Moreover, Q(β) ̸∈ ¶0, 1♢ because P ∤ Q(Q + 1). Thus, Q(β) = βt for some 1 ≤ t ≤
2r − 2. Hence, 1 = Q(β)p = βtp. So, 2r − 1 divides tp and 2r − 1 = p. □

Corollary 4.3. Let r ∈ N∗ be such that 2r − 1 is a prime distinct from p. Then, no

irreducible polynomial of degree r divides σ(Mp−1).

Proof. If P is a prime divisor of σ(Mp−1) with deg(P ) = r, then P divides Mp + 1
and by taking Q = M in the above lemma, we get a contradiction. □

In the following lemma and two corollaries, we suppose that p is a Mersenne prime
of the form 2m − 1 (with m prime).

Lemma 4.11. Let P, Q ∈ F2[x] be such that P is irreducible of degree m and P ∤
Q(Q + 1). Then, P divides Qp + 1.

Proof. The polynomial P is primitive. If β is a root of P , then ord(β) = 2m − 1 = p,
Q(β) ̸∈ ¶0, 1♢ because P ∤ Q(Q + 1). Thus, Q(β) = βt for some 1 ≤ t ≤ p − 1. Hence,
Q(β)p = βtp = 1. So, P divides Qp + 1. □

Corollary 4.4. Any irreducible polynomial P ≠ M (Mersenne or not), of degree m,

divides σ(Mp−1).

Proof. We may apply Lemma 4.11, with Q = M , because P does not divide
xa(x + 1)bM = M(M + 1) = Q(Q + 1). So, P is odd and it divides Mp + 1 =
(M + 1) σ(Mp−1) = xa(x + 1)b σ(Mp−1). □

Corollary 4.5. The polynomial M1 (resp. M2, M2) divides σ(Mp−1) if and only if

(M ̸= M1 and p = 3) (resp. M ̸= M2 and p = 7, M ̸= M2 and p = 7).

Proof. Apply Corollary 4.4 with m ∈ ¶2, 3♢. □

In order to carry on the proof (of Proposition 1.1), we distinguish three cases.
Case I: M ∈ ¶M1, M3, M3♢.
Lemma 4.1 implies that M ̸= M1. It suffices to suppose that M = M3. We refer to

Section 5.2 in [8]. Put D = M1M2M2. By [8, Lemma 5.4], we have to consider four
situations:
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(i) gcd(σ(M2h), D) = 1;
(ii) σ(M2h) = M1B, with gcd(B, D) = 1;
(iii) σ(M2h) = M2M2B, with gcd(B, D) = 1;
(iv) σ(M2h) = DB, with gcd(B, D) = 1, where any irreducible divisor of B has

degree exceeding 5.

The following lemma contradicts the fact that U2h is a square.

Lemma 4.12. One has α3(U2h) = 1 or α5(U2h) = 1.

Proof. For (i), (iii) and (iv), use [8, Lemmas 5.9, 5.10, 5.15 and 5.17].
(ii) Since σ(M2h) = (x2+x+1)B and U2h = (x2+x)σ(B), we obtain (by Lemmas 4.4

and 4.5): 0 = α1(M2h) = α1(σ(M2h)) = α1(B)+1, α3(U2h) = α3(σ(B))+α2(σ(B)) =
α3(B) + α2(B), 0 = α3(M

2h) = α3(σ(M2h)) = α3(B) + α2(B) + α1(B).
Thus, α3(U2h) = α3(B) + α2(B) = α1(B) = 1. □

Case II: M ∈ ¶M2, M2♢ and h ≥ 2.
It suffices to consider that M = M2.

Lemma 4.13. (i) If h ≥ 4, then M1 divides σ(M2h) if and only if 3 divides 2h + 1.

(ii) If h ≥ 4, then M2 divides σ(M2h) if and only if 7 divides 2h + 1.

(iii) If h ≥ 4 and if 2h + 1 is divisible by a prime p ̸∈ ¶3, 7♢, then any irreducible

divisor of σ(M2h) is of degree at least 4.

Proof. The assertion (iii) follows from (i) and (ii) which in turn, are obtained from
Corollaries 4.3 and 4.4. □

We consider three possibilities since σ(Mp−1) = σ(M2
2) = M1M3 (product of two

Mersenne primes), if p = 3.
Case II-1: 2h + 1 is (divisible by) a prime p ∈ ¶5, 7♢.

Lemma 4.14. For p ∈ ¶5, 7♢, some non-Mersenne prime divides σ(Mp−1).

Proof. Here, h ∈ ¶2, 3♢. By direct computations, U4 = x3(x + 1)6(x3 + x + 1) and
U6 = x8(x + 1)4(x3 + x + 1)2 which do not split (despite that U6 is a square). □

Case II-2: 2h + 1 = 3w, for some w ≥ 2.
In this case, 9 divides 2h + 1 and σ(M8) divides σ(M2h) (by Lemma 4.3). But,

σ(M8) = (x2 + x + 1)(x4 + x3 + 1)(x6 + x + 1)(x12 + x8 + x7 + x4 + 1), where
x6 + x + 1 = 1 + x(x + 1)M3 is not a Mersenne prime.

Case II-3: 2h + 1 is (divisible by) a prime p ̸∈ ¶3, 5, 7♢. We may write p = 2h + 1
with h ≥ 4.

Lemma 4.15. (i) If l ∈ ¶1, 2, 3♢, then αl(U2h) = αl(σ(M2h)).
(ii) If l ∈ ¶1, 2♢, then αl(σ(M2h)) = αl(M

2h).
(iii) The coefficients α3(σ(M2h)) and α3(M

2h + M2h−1) are equal.

Proof. (i) It follows from Lemma 4.13. For l ≤ 2, 6h − l = deg(σ(M2h)) − l =
deg((M2h) − l > 3(2h − 1) = deg(M2h−1) and for 3 ≤ l ≤ 5, 6h − l > 3(2h − 2) =
deg(M2h−2). Hence, we get (ii) and (iii). □
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Corollary 4.6. The coefficient α3(U2h) equals 1.

Proof. The previous lemma implies that α3(U2h) = α3(M
2h + M2h−1) = α3[(x

3 +
x)M2h−1] = α3(M2h−1) + α1(M2h−1). But, M2h−1 = (x3 + x + 1)2h−1 = (x3 + x)2h−1 +
(x3 + x)2h−2 + · · · . The coefficient of x6h−6 (resp. of x6h−4) in M2h−1 is exactly
α3(M

2h−1) (resp. α1(M
2h−1)). So, α3(M

2h−1) = 1 and α1(M
2h−1) = 0. □

Case III: M ̸∈ M.
Here, we have two possibilities.
III-1: the prime p is such that ordp(2) ≡ 0 mod 8. Lemmas 4.16 and 4.7 imply

Corollary 4.7.

Lemma 4.16. There exists no Mersenne prime of degree multiple of 8.

Proof. If Q = 1 + xc1(x + 1)c2 with c1 + c2 = 8k, then ω(Q) is even by [9, Corollary
3.3]. So, Q is reducible. □

Corollary 4.7. If ordp(2) ≡ 0 mod 8, then σ(M2h) is divisible by a non-Mersenne

prime.

Proof. Suppose that σ(M2h) =
∏

j∈J Pj, where each Pj is a Mersenne prime. Then,
Lemma 4.7 implies that ordp(2) divides deg(Pj), for any j ∈ J . So, 8 divides deg(Pj).
It contradicts Lemma 4.16. □

III-2: p is a Mersenne prime number with p ̸= 7.
Set p = 2m − 1, with m and p are both prime. Note that there are (at present) 51

known Mersenne prime numbers (OEIS Sequences A000043 and A000668). The first
five of them are: 3, 7, 31, 127 and 8191.

Lemma 4.17. If p ≥ 31 is a Mersenne prime number, then σ(Mp−1) is divisible by

a non-Mersenne prime.

Proof. Here, a + b = deg(M) ≥ 5 since M ̸∈ M. We get our result from Corollary 4.4
and Lemma 4.6 (iii). □

It remains then the case p = 3 (since p ̸= 7, in this section). Lemma 4.2 has
already treated the case where ω(σ(M2)) = 2. So, we suppose that ω(σ(M2)) ≥ 3.
Put σ(M2) = M1 · · · Mr, r ≥ 3 and U2 = σ(σ(M2)). We shall prove that α3(U2) = 1
(Corollary 4.9), a contradiction to the fact that U2 is a square. Corollary 4.5 gives the
following lemma.

Lemma 4.18. (i) The trinomial 1 + x + x2 divides σ(M2).
(ii) No irreducible polynomial of degree r ≥ 3 such that 2r − 1 is prime, divides

σ(M2).

Corollary 4.8. The polynomial σ(M2) is of the form (1 + x + x2)B, where gcd(1 +
x + x2, B) = 1 and any prime divisor of B has degree at least 4.

Lemma 4.19. If σ(M2) = (1 + x + x2)B with gcd(1 + x + x2, B) = 1, then
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(i) α1(σ(M2)) = α1(B) + 1, α2(σ(M2)) = α2(B) + α1(B) + 1;

(ii) α3(σ(M2)) = α3(B) + α2(B) + α1(B);
(iii) α3(σ(M2)) = 0.

Proof. We directly get (i) and (ii). For (iii), σ(M2) = 1 + M + M2 = x2a(x + 1)2b +
xa(x + 1)b + 1. Moreover, 2a + 2b − 3 > a + b because a + b ≥ 4 and x2a(x + 1)2b is a
square. So, α3(σ(M2)) = α3(x

2a(x + 1)2b) = 0. □

Lemma 4.20. Some coefficients of U2 and B satisfy:

α1(U2) = α1(B) + 1, α2(U2) = α2(B) + α1(B), α3(U2) = α3(B) + α2(B).

Proof. Corollary 4.8 implies that U2 = σ(σ(M2)) = σ((1 + x + x2)B) = σ(1 + x +
x2)σ(B) = (x2 + x)σ(B). Any irreducible divisor of B has degree more than 3. Hence,
αl(σ(B)) = αl(B), for 1 ≤ l ≤ 3. One gets

α1(U2) =α1(σ(B)) + 1 = α1(B) + 1,

α2(U2) =α2(σ(B)) + α1(σ(B)) = α2(B) + α1(B),

α3(U2) =α3(σ(B)) + α2(σ(B)) = α3(B) + α2(B). □

Corollary 4.9. The coefficient α3(U2) equals 1.

Proof. The polynomial U2 is a square, so 0 = α1(U2) = α1(B) + 1 and thus α1(B) = 1.
Lemma 4.19 (iii) implies that 0 = α3(σ(M2)) = α3(B) + α2(B) + α1(B). Therefore,
α3(U2) = α3(B) + α2(B) = α1(B) = 1. □

Remark 4.1. Our method fails for p = 7. Indeed, for many M , one has α3(U6) =
α5(U6) = 0. So, we do not reach a contradiction. We should find a large enough odd
integer l such that, αl(U6) = 0. But, this does not appear always possible.
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ON THE ZEROS OF APOLAR POLYNOMIALS

ISHFAQ NAZIR1, MOHAMMAD IBRAHIM MIR2, AND IRFAN AHMAD WANI1

Abstract. The classical notion of apolarity is defined for two complex polynomials
of same degree. The main property of two apolar polynomials, f(z) and g(z) was
given by Grace’s theorem which states that “every circular domain containing all the
zeros of f(z) contains at least one zero of g(z) and vice-versa”. A. Aziz [1] dropped
the condition that f(z) and g(z) are of the same degree in case the circular domain
is a disk. In this paper, we extend the result of A. Aziz to every kind of circular
domain and hence an extension of Grace’s theorem for two arbitrary polynomials is
proved. This also allows us to generalise the results of Walsh, Szego, Takagi, Aziz
and several other results about apolar polynomials.

1. Introduction

Two polynomials

f(z) =
n
∑

ν=0



n

ν



aνzν and g(z) =
n
∑

ν=0



n

ν



bνzν

are called apolar if
n
∑

ν=0

(−1)ν



n

ν



an−νbν = 0.

Circular domain is (open or closed) interior or exterior of any circle, or (open or
closed) half plane. As to the relative location of the zeros of two apolar polynomials
f(z) and g(z), we have the following fundamental result known as Grace’s Apolarity
theorem [3].

Key words and phrases. Polynomial, apolar, zeros, circular domain.
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Theorem 1.1. If f(z) and g(z) are apolar polynomials, then any circular domain C

which contains all zeros of one of the polynomials f(z) or g(z) contains at least one

zero of the other.

In case C is a disk or complement of a disk, A. Aziz [2] proved the following
generalization of Theorem 1.1.

Theorem 1.2. Let f(z) =
∑n

ν=0



n

ν



aνzν and g(z) =
∑m

ν=0



m

ν



bνzν, where m ≤ n.

Assume

m
∑

ν=0

(−1)ν



m

ν



an−νbν = 0.

(a) If g(z) has all zeros in the disc |z| ≥ r, then f(z) has at least one zero there.

(b) If f(z) has all zeros in the region |z| ≤ r, then g(z) has at least one zero there.

Let f(z) =
∑n

ν=0 aνzν and g(z) =
∑n

ν=0 bνzν =
∏n

ν=1(z − zν) be two monic
polynomials (leading coefficient unity). Let ζ be a zero of f . Then

n
∏

ν=1

(ζ − zν) = g(ζ) − f(ζ) =
n−1
∑

ν=0

(bν − aν)ζν

and so,

min
1≤ν≤n

|ζ − zν | ≤



n−1
∑

ν=0

|bν − aν | · |ζ|ν


1

n

·

Hence, for each zero ζ of f and any ϵ > 0, there exists a δ > 0 such that every monic
polynomial g(z) =

∑n
ν=0 bνzν satisfying |bν − aν | < δ, for ν = 0, . . . , n − 1, has a zero

w with |ζ − w| < ϵ. Thus, each zero depends continously on the coefficients. This
property can be stated in the following theorem.

Theorem 1.3 (Continuity Theorem). Let

f(z) =
n
∑

ν=0

aνzν =
k
∏

ν=1

(z − zν)mν , m1 + m2 + · · · + mk = n,

be a monic polynomial of degree n with distinct zeros z1, z2, . . . , zk of multiplicities

m1, m2, . . . , mk. Then given a positive ϵ < min1≤i<j≤k
|zi−zj |

2
, there exists δ > 0 so

that any monic polynomial g(z) =
∑n

ν=0 bνzν whose coefficients satisfy |bν − aν | < δ,

for ν = 1, 2, . . . , n − 1, has exactly mj zeros in the disc

|z − zj| < ϵ, j = 1, 2, . . . , k.

Remark 1.1. If f is not monic, then its zeros depend continuosly on aν

an
for ν =

0, 1, 2, . . . , n − 1. If an → 0 while other coefficients remain fixed, then at least one zero
tends to infinity.
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2. Main Results

We first prove the following result, which extends Theorem 1.1 (Grace’s Theorem)
and Theorem 1.2 to polynomials of arbitrary degree and to every circular domain.

Theorem 2.1. Let f(z) =
∑n

ν=0



n

ν



aνzν and g(z) =
∑m

ν=0



m

ν



bνzν, where m ≤ n,

such that
m
∑

ν=0

(−1)ν



m

ν



an−νbν = 0.(2.1)

Then every circular domain C which contains all zeros of one of the polynomials

f(z) or g(z) contains at least one zero of the other.

Proof. If m = n, then the result reduces to Theorem 1.1 (Grace’s Theorem). So,
assume that m < n, where n is degree of f(z) and m is degree of g(z).

For any ϵ > 0, consider the polynomial

gϵ(z) = ϵzn +
m
∑

ν=0



m

ν



bν(ϵ)zν = c
n
∏

ν=1

(z − ζν(ϵ)) .

It is possible to choose the coefficients {bν(ϵ) : ν = 0, 1, . . . , m}, so that bν(ϵ)
approaches bν , as ϵ approaches to 0. In that case, the polynomials gϵ(z) and f(z) are
apolar.

As ϵ → 0, m of the zeros {ζ1(ϵ), ζ2(ϵ), . . . , ζn(ϵ)} approach the finite zeros of g(z)
and (n − m) zeros tend to ∞. The classical Grace’s Theorem is valid for polynomials
gϵ(z) and f(z). Hence, by continuity theorem, it is also valid for polynomials g(z)
and f(z).

This completes the proof. □

Remark 2.1. Theorem 2.1 says that zeros of two polynomials having different degrees
and satisfying condition (2.1) cannot be separated by the boundary of a circular
domain which is either a circle or a straight line.

The following special case of Theorem 2.1 is a generalisation of the result due to
Takagi [8].

Corollary 2.1. Let f(z) =
∑n

ν=0



n

ν



aνzν and g(z) =
∑m

ν=0



m

ν



bνzν, where m ≤ n,

satisfying condition (2.1), then any convex region C1 enclosing all the zeros of f(z)
must have at least one point in common with any convex region C2 enclosing all the

zeros of g(z).

Proof. Assume that two convex regions C1 and C2 have no point in common. Then
one can separate them by means of the boundary of a circle or straight line. This
would contradict Theorem 2.1. Hence, C1 must have at least one point in common
with C2. □

From Corollary 2.1, we also deduce the following result for polynomials having
only real zeros.
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Corollary 2.2. Let f(z) =
∑n

ν=0



n

ν



aνzν and g(z) =
∑m

ν=0



m

ν



bνzν, where m ≤ n,

satisfying condition (2.1), having only real zeros, then any interval I1 containing the

zeros of f(z) must have at least one point in common with any interval I2 containing

the zeros of g(z).

3. Applications of Theorem 2.1

As an application, we prove the following result, which is generalisation of Szego’s
Convolution Theorem [5, p. 108].

Theorem 3.1. Let f(z) =
∑n

ν=0



n

ν



aνzν, be a polynomial of degree n, satisfying the

following relation
m
∑

ν=0



m

ν



an−νlν = 0, m ≤ n,

then every circular domain that contains all the zeros of

g(z) =
m
∑

ν=0

(−1)ν



m

ν



lνzν

contains at least one zero of f(z).

Proof. Under the given hypothesis, the polynomials f(z) and g(z) satisfy the condition
(2.1), by Theorem 2.1, f(z) has at least one zero in every circular domain that contains
all the zeros of g(z). This completes the proof. □

Next, we obtain the following coincidence theorem, which is in fact, a generalisation
of Walsh’s Coincidence Theorem [9] and Aziz’s result [2, Theorem 2] involving convex
circular domain.

Theorem 3.2. Let ϕ(z1, z2, . . . , zn) be a symmetric n-linear form of total degree m,

m ≤ n in z1, z2, . . . , zn and let C be the convex circular domain containing n points

w1, w2, . . . , wn. Then in C there exists at least one point w such that

ϕ(w, w, . . . , w) = ϕ(w1, w2, . . . , wn).

Proof. We write

f(z) = an

n
∏

ν=1

(z − zν) =
n
∑

ν=0



n

ν



aνzν ,

so that


n

ν



an−ν = (−1)νS(n, ν)an,(3.1)

where S(n, ν) are the symmetric functions consisting of the sum of all possible products
of z1, z2, . . . , zn taken ν at a time.

Let ϕ(w, w, . . . , w) = ϕ0, then the difference ϕ(z1, z2, . . . , zn) − ϕ0 is linear, sym-
metric and of total degree m ≤ n in the variables z1, z2, . . . , zn, by the well-known
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theorem of algebra, any function linear and symmetric in the variables z1, z2, . . . , zn

may be expressed as a linear combination of the elementary symmetric functions
S(n, ν), ν = 0, 1, . . . , m, that is, we may find constants bν so that

ϕ(z1, z2, . . . , zn) − ϕ0 = b0 + S(n, 1)b1 + S(n, 2)b2 + · · · + S(n, m)bm

=
1

an



b0an −



n

1



b1an−1 + · · · + (−1)m



n

m



an−mbm



,

by using (3.1).
We define the polynomial g(z) by

g(z) =
m
∑

ν=0



m

ν





n

ν





m

ν

bνzν = ϕ(z1, z2, . . . , zn) − ϕ0.

Then the relation

ϕ(w1, w2, . . . , wn) − ϕ0 = 0

shows that the polynomials f(z) and g(z) satisfy the condition of Theorem 2.1. Since
all the zeros of f(z) lie in C, at least one zero of g(z) lies in C, i.e, there exists one
point w in C such that

ϕ(w, w, . . . , w) = ϕ(w1, w2, . . . , wn).

This completes the proof. □

Szego [7] used Grace’s Theorem to obtain following interesting result about the

zeros of the polynomial h(z) =
∑n

ν=0



n

ν



aνbνzν (obtained by certain composition of

two given polynomials f(z) and g(z)) of degree n.

Theorem 3.3. Let f(z) =
∑n

ν=0



n

ν



aνzν and g(z) =
∑n

ν=0



n

ν



bνzν. Let C be the

circular domain containing all the zeros of g(z).Then each zero γ of

h(z) =
n
∑

ν=0



n

ν



aνbνzν

is of the form γ = −αβ, α ∈ C, f(β) = 0.

By applying Theorem 2.1, we have obtained following generalisation of Theorem
3.3 and Aziz’s result [1, Theorem 2].

Theorem 3.4. Let f(z) =
∑n

ν=0



n

ν



aνzν and g(z) =
∑m

ν=0



m

ν



bνzν, where m ≤ n

and let C be the circular domain containing all the zeros of g(z). Then each zero γ of

h(z) =
m
∑

ν=0



m

ν



aνbνzν

is of the form γ = −αβ, α ∈ C, f(β) = 0.
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Proof. Let w be any zero of h(z), then

h(w) =
m
∑

ν=0



m

ν



aνbνwν = 0.(3.2)

Equation (3.2) shows that the polynomials

znf



−w

z



=



n

0



(−1)nanwn + · · · +



n

n − 2



a2w
2zn−2

−



n

n − 1



a1wzn−1 +



n

n



a0z
n

and

g(z) =



m

0



b0 +



m

1



b1z + · · · +



m

m − 1



bm−1z
m−1 +



m

m



bmzm

satisfy conditions of Theorem 2.1. Since all the zeros of g(z) lie in C, then at least

one zero of znf


−w
z



lie in C. If β1, β2, . . . , βn are the zeros of f(z), then the zeros

of znf


−w
z



are −w
β1

, −w
β2

, . . . , −w
βn

. One of these zeros must be α, where α is suitably

chosen point in C, that is, w = −αβν , for some ν. This completes the proof. □

Following application of Theorem 2.1 is generalisation of of Aziz’s result [2, Theo-
rem 5].

Theorem 3.5. From the two given polynomials

f(z) =
n
∑

ν=0



n

ν



aνzν = an

n
∏

ν=1

(z − αν)

and

g(z) =
m
∑

ν=0



m

ν



aνzν = bn

m
∏

ν=1

(z − βν)

of degree n and m, m ≤ n, form the third polynomial

h(z) =
m
∑

ν=0

(n − ν)!an−νg(ν)(z).

If all the zeros of f(z) lie in circular domain C, then every zero of h(z) has the form

w = α + β, where α is suitably point in C and β is zero of g(z).

Proof. Let w be any zero of h(z). Then

h(w) =
m
∑

ν=0

(n − ν)!an−νg(ν)(w) = 0.(3.3)

Equation (3.3) shows that the polynomials

f(z) =
n
∑

ν=0

aνzν and g(w − z) =
m
∑

ν=0

(−1)ν g(ν)(w)

ν!
zν
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of degree n and m respectively, m ≤ n, satisfy all the conditions of Theorem 2.1.
Since all the zeros of f(z) lie in C, g(w − z) has at least one zero in C. But the zeros
of g(w − z) are of the form w − β1, w − β2, . . . , w − βm. One of these zeros must be
some α, where α ∈ C, that is, we must have w = α + βν , for some ν. This completes
the proof. □
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