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NUMERICAL TREATMENT OF VOLTERRA-FREDHOLM
INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL

ORDER AND ITS CONVERGENCE ANALYSIS

ABHILIPSA PANDA1 AND JUGAL MOHAPATRA2

Abstract. This work deals with semi-analytical and numerical methods to solve
a class of fractional order Volterra-Fredholm integro-differential equations. First, a
semi-analytical method is proposed using the Chebyshev and Bernstein polynomials
in the Adomian decomposition method. The uniqueness of the solution and con-
vergence of the method are proved. Further, we solve the model using a numerical
scheme comparing the L1 scheme for the fractional order derivative in combination
with appropriate quadrature rules for the integral parts. Numerical experiments
are done by the proposed methods to show their efficiency through a few tabular
data and plots. Some comparisons with the existing results show that the proposed
methods are highly productive and reliable.

1. Introduction

The considerable interest in integro-differential equations (IDEs) has mainly arisen due
to its major applications in the theory of mechanical engineering, elasticity [29] and
several others. The well-known mathematician Niels Henrik Abel obtained the famous
integral equation of the first kind with kernel function K(x, t) = (x− t)−µ, for µ = 1/2
by solving the mechanical problem of Tautochrone as described in [23], which he then
generalized it for 0 < µ < 1. The theory given by Abel in [23] further paved the way for
researchers to look deep into the idea of fractional order integro-differential equations
(FracIDEs). The wide application of FracIDEs for electromagnetic waves in dielectric
media and unsteady aerodynamics have generated great interest in exploring more in
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this field. Several analytical and numerical techniques have been introduced to obtain
the solutions of FracIDEs with singular and nonsingular kernels [12, 17]. Aghajani
et al., established the existence of solutions for FracIDEs in [2]. The operational
tau approximation method based on orthogonal polynomials was implemented on
a class of FracIDEs by Vanani and Aminataei in [30]. Heydari and Hooshmandasl
[14] used the Chebyshev wavelet method to solve the nonlinear FracIDEs on a large
interval by converting the fractional differential and integral parts of the FracIDE
to some operational matrices. Then, they obtained the solutions by solving a set of
algebraic equations. Also, based on the Haar wavelet collocation method, Marasi and
Derakhshan in [20] focused on finding a numerical method for solving the variable-
order Caputo-Prabhakar FracIDEs. Higher order FracIDEs, such as the fourth-order
FracIDEs, were solved by Amer et al. [5] using the Adomian decomposition method
(ADM) and variational iteration method (VIM), where the solution was given by an
infinite convergent series. Also, quite a few approximated techniques described in
[9, 24] have been discussed in the past to solve the linear and nonlinear FracIDEs.

But all the model problems solved have considered the source term as a polynomial
function which is comparatively easier to approximate. Thus, we propose a new mod-
ification of ADM for obtaining the solution of a class of FracIDE where the source
function is not a polynomial one. The general way of ADM was first introduced by
G. Adomian [1] to solve linear and nonlinear problems. Gradually, ADM was impro-
vised using the Chebyshev [15], Legendre [19] and Bernstein polynomials [25]. These
modified techniques are used to solve a class of ordinary and partial differential equa-
tions where the source function is exponential, trigonometric, or hyperbolic functions
rather than the polynomial one. The approximation of functions by polynomials is
extremely important as different scientific experiments rely on them, such as the study
of statistics in population dynamics [28], temperatures, and also in the approximation
theory [7]. Moreover, polynomials are the best mathematical techniques to approxi-
mate as they can be characterized, figured, separated, and incorporated effortlessly.
Orthogonal polynomials such as the Chebyshev polynomials have been widely used in
approximating functions in a wide variety of problems. These are the eigen functions
of singular Sturm-Liouville problems. It is well known that these eigen functions allow
the approximation of functions in C∞[a, b], where the truncation error approaches
zero faster than any function used in the approximation as described in [8]. Gottlieb
in [10] described this effect as the “spectral accuracy”. For more information, one may
refer [6]. In this article, we are using the first kind orthogonal Chebyshev polynomials
{Tk}∞

k=0 given as
√

1 − x2T ′(x) + k2
√

1 − x2
Tk(x) = 0.

Also, we have used the Bernstein polynomials for the modification of ADM. These
polynomials approximate the function with a few terms in comparison to the approx-
imations done using the Taylor series. They are utilized in the fields of connected
arithmetic and material science as well as computer-assisted geometric outlines. They
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are also used in conjunction with other techniques like the Galerkin and collocation
methods to solve some differential and integral problems.

Though researchers have widely studied the semi-analytical approaches for solving
the mixed FracIDE, a few numerical solutions to such model problems have been
studied in the past. Certain works are done, such as Ali et al. [3] used the hybrid or-
thonormal Bernstein and block-pulse functions wavelet method, Alkan and Hatipoglu
[4] introduced the sinc-collocation method for solving the mixed FracIDE. One may
also refer to the work done in [16, 21, 26]. Keeping this literature gap in mind, this
article also proposes an efficient numerical scheme for finding the numerical solution
of a class of Volterra-Fredholm FracIDE. The novel L1 scheme is applied for the
fractional derivatives and the quadrature rule for the integral parts. The Composite
trapezoidal scheme approximates the Volterra integral whereas the Fredholm integral
is solved using the rectangular rule. The error analysis is briefly carried out. Compu-
tational data in the numerical section prove the robustness of the proposed numerical
technique.

The paper is structured as follows. Section 2 outlines some of the definitions and
properties, while the model problem is defined in Section 3. Section 4 describes the
semi-analytical approximations along with the convergence analysis. The numerical
approximation of the solution and the error analysis are described in Section 5. Some
test examples are considered in Section 6, satisfying the theoretical findings and finally,
Section 7 draws the concluding remarks.

2. Some Definitions and Properties

Definition 2.1. The Bernstein basis polynomials of degree m over the interval [0, 1]
are defined as:

Bi,m(x) =
(
m

i

)
xi(1 − x)m−i, i = 0, 1, . . . ,m.

Definition 2.2. The Riemann-Liouville fractional integral of order µ > 0 for a
function f is defined as:

Iµf(x) = 1
Γ(µ)

∫ x

0
(x− τ)µ−1f(τ)dτ.

Definition 2.3. The Caputo derivative of order µ ∈ R+ for a function f is defined
as:

Dµf(x) =


1

Γ(n−µ)
∫ x

0 (x− τ)n−µ−1f(τ)dτ, n− 1 < µ < n,

dnf(x)
dxn , µ = n, n ∈ N.

Some of the important properties of fractional derivatives and integrals are discussed
as follows.

• DµIµf(x) = f(x) and IµDµf(x) = f(x) − f(0+), 0 < µ ≤ 1, where f(0+) =
limh→0 f(0 + h).
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• Linearity property is sustained while defining the derivative in the Caputo
sense, given as:

Dµ(ψ1m(x) + ψ2n(x)) = ψ1Dµm(x) + ψ2Dµn(x).

• For 0 < µ ≤ 1 and ϑ ∈ R, Iµxϑ = Γ(ϑ+1)
Γ(µ+ϑ+1) , µ > 0, ϑ > −1, x > 0.

3. Model Problem

Consider the Volterra-Fredholm FracIDE of order µ described as:

{
Dµz(x) + a(x)z(x) = f(x) +

∫ x
0 K1(x, s)N1(z(s))ds+

∫ 1
0 K2(x, s)N2(z(s))ds,

z(0) = z0,

(3.1)

where 0 < µ ≤ 1 and x ∈ [0, 1]. The fractional order derivative Dµ is defined in
the Caputo sense which is assumed to be invertible. The source function f(x), a(x),
and the nonlinear operators denoted by N1 and N2 are continuous functions on [0, 1].
K1(x, s) and K2(x, s) are smooth kernel functions defined on [0, 1] × [0, 1]. The given
initial condition is symbolized as z0. Throughout this article, for a function f(x),
defined on Ω = [0, 1], we define ||f(x)||∞ = maxx∈Ω |f(x)| and C is defined as a
generic constant, independent of µ.

4. Semi-Analytical Approximations

4.1. Adomian decomposition method (ADM). A brief description of the mod-
ified ADM is discussed in this section. Consider the FracIDE (3.1). The nonlinear
operator is approximated using the Adomian polynomials An. One may refer to [1,24]
for the formula of An. The solution z is represented as a series solution given by
z = ∑∞

n=0 zn. Operating the inverse operator Iµ on both sides of (3.1), we get

z(x) =z(0+) + Iµ
[
f(x) − a(x)z(x) +

∫ x

0
K1(x, s)N1(z(s))ds

+
∫ 1

0
K2(x, s)N2(z(s))ds

]
.(4.1)

Following the classical ADM, the recurrence relation for the solution of (4.1) is obtained
as:

z0 = Iµ(f(x)) + z(0+),
z1 = Iµ

(
−a(x)z0(x) +

∫ x
0 K1(x, s)A1(z0(s))ds+

∫ 1
0 K2(x, s)A2(z0(s))ds

)
,

z2 = Iµ
(
−a(x)z1(x) +

∫ x
0 K1(x, s)A1(z1(s))ds+

∫ 1
0 K2(x, s)A2(z1(s))ds

)
,

...

Finally, we calculate the solution as z = ∑∞
n=0 zn, if ∑∞

n=0 zn converges.
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4.2. ADM based on Chebyshev polynomials (ADM-CP). In the usual algo-
rithm of ADM, the approximation of f is made using Taylor’s series expansion as
f(x) = ∑n

i=0
fn(0)

n! xn for an arbitrary N. Hosseini [15] modified the ADM by expanding
f using the Chebyshev polynomial approximation

(4.2) fC(x) ≈
n∑

i=0
CnTn(x),

where Tn(x) is the first kind of orthogonal Chebyshev polynomial. Some of the
Chebyshev polynomials are noted below:

(4.3)



T0(x) = 1,
T1(x) = x,
T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x,
...
Tn+1(x) = 2xTn − Tn−1, n ≥ 1.

Using (4.2) and (4.3), the following approximations for the solution of (3.1) are
obtained as
(4.4)

z0 = Iµ(C0T0(x) + C1T1(x) + C2T2(x) + · · · + CnTn(x)) + z(0+),
z1 = Iµ

(
−a(x)z0(x) +

∫ x
0 K1(x, s)A1(z0(s))ds+

∫ 1
0 K2(x, s)A2(z0(s))ds

)
,

z2 = Iµ
(
−a(x)z1(x) +

∫ x
0 K1(x, s)A1(z1(s))ds+

∫ 1
0 K2(x, s)A2(z1(s))ds

)
,

...

This work will prove that the approximated solution obtained by (4.4) is more reliable
than any other existing methods. In addition, one may also approximate using the
following algorithm as described in [15]

(4.5)


zn = Iµ(CnTn(x)) + z(0+), n = 0,
zn+1 = Iµ (Cn+1Tn+1(x) − a(x)zn(x) +

∫ x
0 K1(x, s)A1(zn(s))ds)

+Iµ
(∫ 1

0 K2(x, s)A2(zn(s))ds
)
, n ≥ 1.

Now, (4.2) can also be written in the standard form as f(x) ≈ p0 + p1x + p2x
2 +

· · · + prx
r, 

p0
p1
p2
...
pr

 =


1 0 −1 0 1 0 · · ·
0 1 0 −3 0 5 · · ·
0 0 2 0 −8 0 · · ·
0 0 0 4 0 −20 · · ·
... ... ... ... ... ... . . .

 ·


C0
C1
C2
...
Cr
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and
z0 = Iµ(p0) + z(0+),
z1 = Iµ (p1 − a(x)z0(x) +

∫ x
0 K1(x, s)A1(z0(s))ds) + Iµ

(∫ 1
0 K2(x, s)A2(z0(s))ds)

)
,

z2 = Iµ (p2 − a(x)z1(x) +
∫ x

0 K1(x, s)A1(z1(s))ds) + Iµ
(∫ 1

0 K2(x, s)A2(z1(s))ds)
)
.

Finally, using (4.5), the series solution z(x) is obtained as follows:
(4.6) z(x) = z0(x) + z1(x) + z2(x) + · · · .

4.3. ADM based on Bernstein polynomials (ADM-BP). In this segment, in
order to improve the accuracy and reliability of ADM, the source function is expressed
in the form of Bernstein polynomial approximation

(4.7) fB(x) =
n∑

i=0
DiBi(x),

where Bi(x) are the Bernstein polynomials. Using (4.1) and (4.7), the approximated
solution for FracIDE (3.1) is obtained as follows:
(4.8)

z0 = Iµ(D0B0(x) +D1B1(x) +D2B2(x) + · · · +DnBn(x)) + z(0+),
z1 = Iµ

(
−a(x)z0(x) +

∫ x
0 K1(x, s)A1(z0(s))ds+

∫ 1
0 K2(x, s)A2(z0(s))ds)

)
,

z2 = Iµ
(
−a(x)z1(x) +

∫ x
0 K1(x, s)A1(z1(s))ds+

∫ 1
0 K2(x, s)A2(z1(s))ds)

)
,

...

The Bernstein polynomials of degree m are obtained as Bmf(x) = ∑m
i=0

(
m
i

)
xi

(1−x)(m−i)f
(

i
m

)
. For each function f : [0, 1] → R, we have limm→+∞ Bmf(x) = f(x).

Finally using (4.8), the solution is obtained as
(4.9) z(x) = z0(x) + z1(x) + z2(x) + · · · .

4.4. Convergence analysis.

4.4.1. Existence and uniqueness of the solution. In this segment, some of the hypoth-
esies are stated, which will be further used in the analysis.
(H1) Consider two Lipschitz constants C1, C2 > 0 such that N1(z(x)) and N2(z(x))

satisfy the Lipschitz conditions given as{
||N1(z1(x)) − N1(z2(x))|| ≤ C1||z1 − z2||,
||N2(z1(x)) − N2(z2(x))|| ≤ C2||z1 − z2||.

(H2) Consider Q = {(x, t) ∈ R × R : 0 ≤ t ≤ x ≤ 1} and K∗
1, K

∗
2 ∈ C(Q,R+), such

that

K∗
1 = sup

x∈[0,1]

∫ x

0
|K1(x, s)|dt < +∞, K∗

2 = sup
x∈[0,1]

∫ x

0
|K2(x, s)|dt < +∞.
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Theorem 4.1. Assuming that (H1) and (H2) hold, if ∥a∥∞+(K∗
1C1+K∗

2C2)
Γ(µ+1) < 1, then

there exists a unique solution z(x) ∈ C[0, 1] for (3.1).

Proof. The proof of the above theorem is well explained in Theorem 7 of [13]. Here
we provide the outline of the proof in very few lines. Applying Iµ on both sides of
(3.1) we get, z(x) = Tz(x), where

(Tz)(x) =z0 + Iµ
[
−a(x)z(x) + f(x) +

∫ x

0
K1(x, s)N1(z(s))ds

−
∫ 1

0
K2(x, s)N2(z(s))ds)

]
.

Since, we know z1(x), z2(x) ∈ C[0, 1], so

|(Tz1)(x) − (Tz2)(x)| ≤ 1
Γ(µ)

∫ x

0
(x− t)µ−1|a(s)||z1(s) − z2(s)|ds

+ 1
Γ(µ)

∫ x

0
(x− t)µ−1

[∫ t

0
|K1(t, s)| · |N1(z1(s)) − N1(z2(s))|ds

+
∫ 1

0
|K2(t, s)| · |N2(z1(s)) − N2(z2(s))|ds

]
dt

≤ ∥a∥∞

Γ(µ+ 1) |z1 − z2| + K∗
1

Γ(µ+ 1)

∫ x

0
(x− s)µ−1

×
[∫ t

0
|z1(s) − z2(s)|ds

]
dt+ K∗

2
Γ(µ+ 1)

∫ x

0
(x− s)µ−1

×
[∫ 1

0
|z1(s) − z2(s)|ds

]
dt

≤ ∥a∥∞

Γ(µ+ 1) |z1 − z2| + K∗
1C1 + K∗

2C2

Γ(µ+ 1) |z1 − z2|.

As ∥a∥∞+(K∗
1C1+K∗

2C2)
Γ(µ+1) < 1, we have, ||T (z1(x)) − T (z2(x))|| ≤ ||z1 − z2||. This proves

that T is a contraction mapping in Banach space C([0, 1], || · ||). So, we can conclude
that (3.1) has a unique solution in C[0, 1] using the Banach contraction principle. □

Theorem 4.2. Suppose C([0, 1], || · ||) is the Banach space of all continuous functions
on Ω. Then z = ∑∞

i=0 zi(x) uniformly converges to the exact solution on [0, 1].

Proof. As proved in [12], consider |z1(x)| < +∞ for all x ∈ [0, 1]. The sequence of the
partial sum of the series is denoted as sp. Let sp and sq be arbitrary partial sums with
p ≥ q. We need to prove that sp = ∑p

i=0 zi(x) is a Cauchy sequence in C([0, 1], || · ||).
We have

∥sp − sq∥∞ = max
x∈[0,1]

|sp − sq|

= max
x∈[0,1]

∣∣∣∣∣
p∑

i=0
zi(x) −

q∑
i=0

zi(x)
∣∣∣∣∣
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= max
x∈[0,1]

∣∣∣∣∣∣
p∑

i=q+1
zi(x)

∣∣∣∣∣∣
= max

x∈[0,1]

∣∣∣∣∣∣
p∑

i=q+1

(
1

Γ(µ)

∫ x

0
(x− t)µ−1

[
a(t)zi(t) +

∫ t

0
K1(t, s)A1i(s)ds

+
∫ 1

0
K2(t, s)A2i(s)ds

])
dt
∣∣∣∣

= max
x∈[0,1]

∣∣∣∣∣∣ 1
Γ(µ)

∫ x

0
(x− t)µ−1

a(t)
p−1∑
i=q

zi(t) +
∫ t

0
K1(t, s)

p−1∑
i=q

A1i(s)ds

+
∫ 1

0
K2(t, s)

p−1∑
i=q

A2i(s)ds
 dt

∣∣∣∣∣∣ .
Since, we know ∑p−1

i=q A1i = N1(sp−1)−N1(sq−1), ∑p−1
i=q A2i = N2(sp−1)−N2(sq−1) and

p−1∑
i=q

zi = z(sp−1) − z(sq−1). So, we reach at

||sp − sq||∞ = max
x∈[0,1]

(∣∣∣∣∣ 1
Γ(µ)

∫ x

0
(x− t)µ−1 [a(t)(z(sp−1) − z(sq−1))

+
∫ t

0
K1(t, s)

(
N1(sp−1) − N1(sq−1)

)
ds

+
∫ 1

0
K2(t, s)

(
N2(sp−1) − N2(sq−1)

)
ds
]
dt
∣∣∣∣)

≤ max
x∈[0,1]

(
1

Γ(µ)

∫ x

0
|x− t|µ−1 [|a(t)| |z(sp−1) − z(sq−1)|

+
∫ t

0
|K1(t, s)| · |N1(sp−1) − N1(sq−1)| ds

+
∫ 1

0
|K2(t, s)| · |N2(sp−1) − N2(sq−1)| ds

]
dt
)

≤ 1
Γ(µ+ 1)

[
∥a(t)∥∞∥sp−1 − sq−1∥∞ + K∗

1C1||sp−1 − sq−1||∞

+ K∗
2C2||sp−1 − sq−1||∞

]
=
(

∥a∥∞ + K∗
1C1 + K∗

2C2

Γ(µ+ 1)

)
||sp−1 − sq−1||∞ = γ1||sp−1 − sq−1||∞,

where

(4.10) γ1 =
(

∥a∥∞ + K∗
1C1 + K∗

2C2

Γ(µ+ 1)

)
.

Also, for p = q + 1,
∥sp − sq∥∞ ≤ γ1∥sq − sq−1∥∞ ≤ γ2

1∥sq−1 − sq−2∥∞ ≤ γ3
1∥sq−2 − sq−3∥∞
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≤ · · · ≤ γq
1∥s1 − s0∥∞.

So, we can write

∥sp − sq∥∞ ≤ ∥sq+1 − sq∥∞ + |sq+2 − sq+1∥∞ + · · · + |sp − sp−1∥∞

≤
[
γq

1 + γq+1
1 + · · · + γp−1

1

]
||s1 − s0||∞

≤ γq
1

(
1 − γp−q

1
1 − γ1

)
||z1||∞.

Since 0 < γ1 < 1, we have (1 − γp−q
1 ) < 1, then ||sp − sq||∞ ≤ γq

1
1−γ1

||z1||∞. As
||z1(x)|| < ∞ and m → ∞, we get ||sp − sq||∞ → 0. Hence, it can be concluded that
sp is a Cauchy sequence in C[0, 1] and z = limn→∞ zn. Thus, the series is proved to
be convergent by Weierstrass M -test. □

4.4.2. Error bound. The exact solution for (3.1) is given by z(x) = limN→∞zN and
the numerical solution can be obtained by truncating the series (4.6) and (4.9) up
to a finite number of terms. If zN gives the N terms approximated solution then,
the absolute pointwise error bound depends on the partial sum ∑N−1

n=0 zn(x) which is
bounded by MγN

1
1−γ1

. γ1 is defined in (4.10) which satisfies 0 < γ1 < 1 and z0 ≤ M.

5. Numerical Approximation

In this section, we propose the numerical solution for (3.1). The approximation
of fractional derivative Dµ is made using the L1 scheme in [22]. The composite
trapezoidal rule is used for approximating the Volterra integral and the rectangular
rule for the Fredholm integral.

Now, to construct the mesh points, consider N to be any positive integer and
h = 1/N. Then, the mesh can be obtained as {xn = nh : n = 0, 1, . . . ,N}. The
Caputo fractional order derivative is defined as

(5.1) Dµz(xn) = 1
Γ(1 − µ)

n−1∑
i=0

∫ xi+1

p=xi

z′(p)
(xn − p)µ

dp.

Approximating Dµ in (5.1) using the L1 approach at each xn for 1 ≤ n ≤ N, we reach
at

Dµz(xn) ≈ Dµ
Nzn := 1

Γ(1 − µ)

n−1∑
i=0

z(xi+1) − z(xi)
h

∫ xi+1

p=xi

dp

(xn − p)µ

= 1
hµΓ(2 − µ)

n−1∑
i=0

(z(xi+1) − z(xi))cn−i + R(1)
n ,(5.2)

where ck = k1−µ − (c − 1)1−µ, k ≥ 1. Approximating an integral part using the
composite trapezoidal rule for the Volterra integral and rectangular rule for the
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Fredholm integral for 1 ≤ n ≤ N , we have∫ xn

0
K1(xn, s)z(s)ds =

n−1∑
i=0

∫ xi+1

xi

K1(xn, s)z(s)ds,

= h

2

n−1∑
i=0

[K1(xn, xi+1)z(xi+1) + K1(xn, xi)z(xi)] + R(2)
n ,(5.3)

∫ l

0
K2(xn, s)z(s)ds =

n−1∑
i=0

∫ xi+1

xi

K2(xn, s)z(s)ds

= h
n∑

i=1
[K2(xn, xi)z(xi)] + R(3)

n ,(5.4)

where the remainder terms R(i)
n for i = 1, 2, 3 are given by

R(1)
n = (Dµ − Dµ

N)z(xn) =
[

1
Γ(1 − µ)

n−1∑
i=0

xi+1 + xi − 2p
(xn − p)µ

+O(h2)
]
,(5.5)

R(2)
n =

n−1∑
i=0

∫ xi+1

xi

(xi+1/2 − p) ∂
∂p

[K1(xn, p)z(p)] dp+O(h2),(5.6)

R(3)
n =

n∑
i=1

∫ xi

xi−1
(xi−1 − p) ∂

∂p
[K2(xn, p)z(p)] dp+O(h).(5.7)

Finally, using (5.2), (5.3) and (5.4), we construct the difference scheme as

Dµ
Nz(xn) + a(xn)z(xn) + h

2

n−1∑
i=0

[K1(xn, xi+1)z(xi+1) + K1(xn, xi)z(xi)]

+ h
n∑

i=1
[K2(xn, xi)z(xi)] = f(xn) + R(i)

n , for n = 1, 2, . . .N,

z(0) = z0,

where R(i)
n = R(1)

n + R(2)
n + R(3)

n described as in (5.5), (5.6) and (5.7). Neglecting the
remainder terms for n = 1, 2, . . . ,N, we get the fully discrete scheme as

Dµ
Nzn + anzn + h

2

n−1∑
i=0

[K1(xn, xi+1)zi+1 + K1(xn, xi)zi] + h
n∑

i=1
[K2(xn, xi)zi] = fn,

(5.8)

z(0) = zN
0 .

5.1. Convergence analysis. In this section, we find the error estmates for approxi-
mating (3.1) using the numerical scheme (5.8).

Lemma 5.1. For all µ ∈ [0, 1] and n ≥ 1. If

B(n) = n1−µ + 2
(
(n− 1)1−µ + (n− 2)1−µ + (n− 3)1−µ + · · · + 11−µ

)
− 2

2 − µ
n2−µ,

then |B(n)| ≤ C, where C is independent of n and µ.
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Proof. The detailed proof of this lemma is discussed in [18]. □

Theorem 5.1. For a constant C and fractional order derivative µ ∈ (0, 1), the
following inequality follows:
(5.9) |R(1)

n | ≤ Ch2−µ.

Proof. Solving the L.H.S of (5.9)
1

Γ(1 − µ)

n−1∑
i=0

xi+1 + xi − 2p
(xn − p)µ

dp

= −1
Γ(1 − µ)

n−1∑
i=0

1
1 − µ

(2i+ 1)h2−µ
[
(n− i− 1)1−µ − (n− i)1−µ

]

+ 1
Γ(1 − µ)

n−1∑
i=0

2
1 − µ

h2−µ
[
(i+ 1)(n− i− 1)1−µ − i(n− i)1−µ

+ 1
Γ(1 − µ)

n−1∑
i=0

2
(2 − µ)(1 − µ)h

2−µ[(n− i− 1)2−µ − (n− i)2−µ]
]

= h2−µ

Γ(2 − µ)
[
n1−µ + 2((n− 1)1−µ + (n− 2)1−µ) + · · · + 11−µ

]
− 2h2−µ

Γ(3 − µ)n
2−µ

= h2−µ

Γ(2 − µ)

[
n1−µ + 2((n− 1)1−µ + (n− 2)1−µ + · · · + 11−µ) − 2

2 − µ
n2−µ

]
.

Let B(n) = n1−µ + 2((n − 1)1−µ + (n − 2)1−µ + (n − 3)1−µ + · · · + 11−µ) − 2
2−µ

n2−µ.

From Lemma 5.1, |B(n)| is bounded for all µ ∈ [0, 1] and all n ≥ 1. So, taking into
fact that 1

Γ(2−µ) ≤ 2 for all µ ∈ [0, 1], we get

(5.10)
∣∣∣∣∣ 1
Γ(1 − µ)

n−1∑
i=0

xi+1 + xi − 2p
(xn − p)µ

dp

∣∣∣∣∣ ≤ 2h2−µ.

As a result, from (5.10), we obtain R(1)
nr ≤ CN−(2−µ). □

The above theorem proves that the solution obtained using the L1 scheme on a
uniform mesh is O(N−(2−µ)) accurate. But, when the solutions have a mild singularity
at the initial mesh point x = 0, then the order of accuracy will be O(N−µ) and O(N−1)
on any sub-domain that is bounded away from x = 0. For the analysis of such cases,
one may refer to [11, 22]. We have considered R(1)

n = R(1)
ns + R(1)

nr , where R(1)
ns is the

remainder term for the case, where there is a mild singularity at x = 0 and R(1)
nr is

the remainder term for the case where the solution is regular. The following lemma
gives the truncation error for the Caputo order derivative due to the presence of weak
singularity at the initial mesh point.

Lemma 5.2. For each mesh point xn, n = 1, 2, . . . ,N, we have the following estimate
while there is a mild singularity at the initial mesh point x = 0

|R(1)
ns | ≤ Cn−(µ+1), for all n = 1, 2 . . . ,N.
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Proof. One may refer to [22,27] for the detailed proof of the lemma. □

Lemma 5.3. The remainder term R(2)
n , n = 1, 2, . . . ,N, satisfies the following esti-

mate:
|R(2)

n | ≤ CN−1.

Proof. From (5.6), we get

|R(2)
n | =

∣∣∣∣∣
n−1∑
i=0

∫ xi+1

xi

(xi+1/2 − p) d
dp

[K(xn, p)z(p)]dp
∣∣∣∣∣

≤
n−1∑
i=0

∫ xi+1

xi

(xi+1/2 − p)
∣∣∣∣∣ ddp [K(xn, p)z(p)]

∣∣∣∣∣ dp
≤

n−1∑
i=0

∫ xi+1

xi

(xi+1/2 − p)
∣∣∣∣∣ ∂∂p [K(xn, p)z(p)] + ∂

∂z
[K(xn, p)z(p)]z′(p)

∣∣∣∣∣ dp
≤ Ch

∫ xn

0
(1 + z′(p))dp ≤ Ch ≤ CN−1, for all n = 1, 2, . . . ,N,

which is the desired bound. □

Lemma 5.4. Assuming that K2 is a continuous bounded function on [0, 1]. The
remainder term R(3)

n , n = 1, 2, . . . ,N, satisfies the following estimate:
|R(3)

n | ≤ CN−1.

Proof. From (5.7), we get

|R(3)
n | =

n−1∑
i=0

∫ xi+1

xi

(xi − p)
∣∣∣∣∣ ∂∂p [K2(xn, p)z(p)]dp

∣∣∣∣∣
≤ h

∫ 1

0

∣∣∣∣∣ ∂∂p [K2(xn, p)z(p)]dp
∣∣∣∣∣

≤ h
∫ 1

0

{∣∣∣∣∣∂K2(xn, p)
∂p

∣∣∣∣∣ |z(p)| + |K2(xn, p)||z′(p)|
}
dp

≤ Ch ≤ CN−1, for all n = 1, 2, . . . ,N.
This proves the required estimate. □

Consider en to be the error function. {z(xn)}N
n=1 be the exact solution of the

continuous problem (3.1) and {zn}N
n=1 be the numerical solution of (5.8), then the

error function is defined as:
en = |z(xn) − zn|, e0 = 0, for n = 1, 2, . . . ,N.(5.11)

Theorem 5.2. If {z(xn)}N
n=1 is the exact solution to the continuous problem (3.1)

and {zn}N
n=1 is the numerical solution of (5.8), then the error bound when there exists

a weak singularity at the initial mesh point is given by

|en| ≤ |z(xn) − zn| ≤ hµΓ(2 − µ)
n∑

i=1
|R(i)

n | ≤ C
[
hxµ−1

n + hµN−(1−µ)
]
.(5.12)
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Proof. From (5.11) and using Lemma 3 of [27], we have

|en| ≤ |z(xn) − zn| ≤ hµΓ(2 − µ)
n∑

i=1
γn−i|R(i)

n |

≤ Chµ
n∑

i=1
γn−i|R(1)

ns | + Chµ
n∑

i=1
γn−i|R(2)

n | + Chµ
n∑

i=1
γn−i|R(3)

n |.(5.13)

Applying Lemma 5.2, Lemma 5.3 and Lemma 5.4, (5.13) reduces to

|en| ≤ Chµ
n∑

i=1
γn−ii

−(1+µ) + Chµ
n∑

i=1
γn−iN

−1.

Finally employing Lemma 3 of [11] and Lemma 4.3 of [22] to the above inequality, the
desired result (5.12) is obtained. □

Theorem 5.3. If {z(xn)}N
n=1is the exact solution to the continuous problem (3.1) and

{zn}N
n=1 is the numerical solution of (5.8), then the error bound is given by

|en| ≤ |z(xn) − zn| ≤ CXµh, n = 1, 2, . . . ,N.

Proof. We have

|z(xn) − zn| ≤ hµΓ(2 − µ)
n∑

i=1
γn−i|R(i)

n |

≤ Chµ
n∑

i=1
γn−i|R(1)

n | + Chµ
n∑

i=1
γn−i|R(2)

n | + Chµ
n∑

i=1
γn−i|R(3)

n |.

Combining Theorem 5.1, Lemma 5.3 and Lemma 5.4, we get

|z(xn) − zn| ≤ CN−1 + Cγ−1
n−1h

2.

By the definition of γn, we have n−µγ−1
n−1 ≤ 1

1−µ
, n = 1, 2, . . . ,N. Consequently, for

all n such that nh ≤ X, we have

|z(xn) − zn| ≤ CN−1 + Cγ−1
n−1h

2

= CN−1 + Cn−µγ−1
n−1h

2 = CN−1 + Cn−µn−µγ−1
n−1n

µh2

= CN−1 + C

(
1

1 − µ

)
(nh)µh2−µ ≤ CN−1 + CXµh2−µ,

which gives the desired result. □

EN
µ = max0≤n≤N |z(xn) − zn| denotes the pointwise error while using the numerical

scheme, while PN
µ = EN

µ /E2N
µ

ln 2 denotes the order of convergence.
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6. Numerical Experiments

This section consists of two numerical examples which clearly depict the efficiency
of the proposed techniques.

Example 6.1. Consider the following model

Dµz(x) + a(x)z(x) = f(x) +
∫ x

0
K1(x, s)z(s)ds+

∫ 1

0
K2(x, s)z(s)ds,

with the initial condition z(0) = 1. Here f(x) = exp(x)−1+x1−µE1,2−µ(x), E1,2−µ(x) =∑∞
k=0

xk

Γ(k+2−µ) , a(x) = 0, K1(x, s) = 1 and K2(x, s) = 2s − 1. The exact solution is
z(x) = exp(x).

First approximating f(x) using the Chebyshev polynomials, fC(x) = ∑5
i=0 CiTi(2x−

1), x ∈ [0, 1]. Here,

C0 = 1
π

∫ 1

−1

f(0.5x+ 0.5)T0(x)√
1 − x2

dx,

Ci = 2
π

∫ 1

−1

f(0.5x+ 0.5)Ti(x)√
1 − x2

dx, i = 0, 1, . . . , 5.

So, we get

fC(x) ≈ x1−µ

Γ(2 − µ) + x2−µ

Γ(3 − µ) + x3−µ

Γ(4 − µ) + x4−µ

Γ(5 − µ) + x5−µ

Γ(6 − µ) + x6−µ

Γ(7 − µ)
− 1.0002x− 0.499197x2 − 0.166489x3 − 0.0437939x4 − 0.00868682x5

− 0.00004.(6.1)

Substituting (6.1) and applying (4.4), we obtain the two term approximated solution
as follows:

z(x) =z0(x) + z1(x)

=1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! − 1.0002 x1+µ

Γ(2 + µ) − 0.499197 (x2+µ)
Γ(3 + µ)

− 0.166489 x3+µ

Γ(4 + µ) − 0.0437939 x4+µ

Γ(5 + µ) − 0.0086862 x5+µ

Γ(6 + µ)

− 4.00e− 05 xµ

Γ(1 + µ) + 0.000198413x
7+µΓ(8)

Γ(8 + µ) + 0.00138889x
6+µΓ(7)

Γ(7 + µ)

+ 0.00833333x
5+µΓ(6)

Γ(6 + µ) + 0.0416667x
4+µΓ(5)

Γ(5 + µ) + 0.166667x
3+µΓ(4)

Γ(4 + µ)

+ 0.5x
2+µΓ(3)

Γ(3 + µ) + x1+µΓ(2)
Γ(2 + µ) − 1.0002 x2+2µΓ(3 + µ)

Γ(3 + 2µ)(2 + µ)

− 0.499197 x3+2µΓ(4 + µ)
Γ(4 + 2µ)(3 + µ) − 0.166489 x4+2µΓ(5 + µ)

Γ(5 + 2µ)(4 + µ)
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− 0.0437939 x5+2µΓ(6 + µ)
Γ(6 + 2µ)(5 + µ) − 0.0086862 x6+2µΓ(7 + µ)

Γ(7 + 2µ)(6 + µ)

− 0.00004 x1+2µΓ(2 + µ)
Γ(2 + 2µ)(1 + µ) .

Simplify, the problem using the Bernstein polynomials ∑n
i=0 DiBi(x) with i = 5 gives

the approximation for f(x) as

fB(x) ≈1 + x1−µ

Γ(2 − µ) + x2−µ

Γ(3 − µ) + x3−µ

Γ(4 − µ) + x4−µ

Γ(5 − µ) + x5−µ

Γ(6 − µ) + x6−µ

Γ(7 − µ)
− 1.10701379x− 0.490191813x2 − 0.108529819x3 − 0.0120144007x4

− 0.00053200429x5.

Using (4.8), the series solution using ADM-BP is obtained. We get the two term
approximated solution as follows:

z(x) =z0(x) + z1(x)

=1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! − 1.10701 x1+µ

Γ(2 + µ) − 0.49019 x2+µ

Γ(3 + µ)

− 0.10853 x3+µ

Γ(4 + µ) − 0.012014 x4+µ

Γ(5 + µ) − 0.00053 x5+µ

Γ(6 + µ)

+ 0.00019x
7+µΓ(8)

Γ(8 + µ) + 0.001389x
6+µΓ(7)

Γ(7 + µ) + 0.00833x
5+µΓ(6)

Γ(6 + µ)

+ 0.04167x
4+µΓ(5)

Γ(5 + µ) + 0.16667x
3+µΓ(4)

Γ(4 + µ) + 0.5x
2+µΓ(3)

Γ(3 + µ) + x1+µΓ(2)
Γ(2 + µ)

− 1.10701 x2+2µΓ(3 + µ)
Γ(3 + 2µ)(2 + µ) − 0.49019 x3+2µΓ(4 + µ)

Γ(4 + 2µ)(3 + µ)

− 0.10853 x4+2µΓ(5 + µ)
Γ(5 + 2µ)(4 + µ) − 0.01201 x5+2µΓ(6 + µ)

Γ(6 + 2µ)(5 + µ)

− 0.00053 x6+2µΓ(7 + µ)
Γ(7 + 2µ)(6 + µ) .

Finally, using the classical ADM and approximating f(x) using Taylor’s polynomial
denoted as fT (x), we get

fT (x) ≈1 + x1−µ

Γ(2 − µ) + x2−µ

Γ(3 − µ) + x3−µ

Γ(4 − µ) + x4−µ

Γ(5 − µ) + x5−µ

Γ(6 − µ)

+ x6−µ

Γ(7 − µ) − x− x2

2! − x3

3! − x4

4! − x5

5! .

Recursively, using the scheme for ADM, the solution is obtained as

z(x) =z0(x) + z1(x)
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=1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! − x1+µ

Γ(2 + µ) − x2+µ

Γ(3 + µ) − x3+µ

Γ(4 + µ)

− x4+µ

Γ(5 + µ) − x5+µ

Γ(6 + µ) + 0.00019x
7+µΓ(8)

Γ(8 + µ) + 0.00139x
6+µΓ(7)

Γ(7 + µ)

+ 0.008333x
5+µΓ(6)

Γ(6 + µ) + 0.041667x
4+µΓ(5)

Γ(5 + µ) + 0.16667x
3+µΓ(4)

Γ(4 + µ)

+ 0.5x
2+µΓ(3)

Γ(3 + µ) + x1+µΓ(2)
Γ(2 + µ) − x2+2µΓ(3 + µ)

Γ(3 + 2µ)(2 + µ) − x3+2µΓ(4 + µ)
Γ(4 + 2µ)(3 + µ)

− x4+2µΓ(5 + µ)
Γ(5 + 2µ)(4 + µ) − x5+2µΓ(6 + µ)

Γ(6 + 2µ)(5 + µ) − x6+2µΓ(7 + µ)
Γ(7 + 2µ)(6 + µ) .

For the semi-analytical methods, the error is calculated using E∞
n = |z(x) −∑n

i=0 zi(x)|.
Figure 1(a) shows the error plot at µ = 0.25 using the two term expansion of the
modified ADM and the classical ADM. One can observe the robustness of ADM-BP
and ADM-CP over the classical ADM, as the decrement in error is more in the case of
our proposed techniques as compared to the classical technique. Similarly, Figure 1(b)
depicts the comparison of E∞

2 between all the three techniques. The error in the case
of ADM-CP and ADM-BP is minimal compared to the classical ADM which makes
it efficient for use when the source term in the model problem is any function rather
than a polynomial function. The solution plots are graphically shown in Figure 2 for
the proposed techniques and the classical ADM. The accuracy of the semi-analytical
methods can be seen. Table 1 shows the error computed with one term and two term
solutions. The data depicts that the error decreases gradually with the increase in
number of iterations. Tables 2 and 3 give the pointwise error for x ∈ [0, 1] at µ = 0.01
and µ = 0.95, respectively. At some points close to zero, the error in classical ADM
seems less than our proposed methods. But at rest all of the node points, the proposed
methods prove to be more accurate and efficient which clearly shows their reliability.

Example 6.2. Consider the following Volterra-Fredholm FracIDE

D0.75z(x) + x2ex

5 z(x) = 6
Γ(2.25)x

2.25 +
∫ x

0
exsz(s)ds+

∫ 1

0
(4 − s−3)z(s)ds,

with the initial condition z(0) = 0. The exact solution is z(x) = x3.

Here, the source function is in the form of a polynomial function. We first approxi-
mate f(x) using the Chebyshev polynomials, and then apply the recursive algorithm
to obtain the series solution.

fC(x) =
4∑

i=0
CiTi(2x− 1), 0 ≤ x ≤ 1,

where C0 = 1
π

∫ 1
−1

f(0.5x+0.5)T0(x)√
1−x2 dx and Ci = 2

π

∫ 1
−1

f(0.5x+0.5)Ti(x)√
1−x2 dx, i = 1, 2, . . . , 6.

It implies that fC(x) ≈ −0.2293888x4 + 0.9765696x3 + 1.666256x2 − 0.0610748x +
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0.0010169. Applying (4.4), we obtain the approximated solution as

z(x) = − 0.2293888x4.75 Γ(5)
Γ(5.75) + 0.9765696x3.75 Γ(4)

Γ(4.75) + 1.666256x2.75 Γ(3)
Γ(3.75)

− 0.0610748x1.75 Γ(2)
Γ(2.75) + 0.0010169x0.75 Γ(1)

Γ(1.75) .

f(x) is approximated using the Bernstein polynomials fB(x) = ∑n
i=0 DiBi(x) with

i = 10. Then applying the recursive algorithm for ADM to obtain the series solution,
we get

fB(x) ≈ − 0.0005694419493x10 + 0.006482451697x9 − 0.03408x8

+ 0.11017x7 − 0.247127x6 + 0.416952685x5 − 0.584450992x4

+ 0.9119425917x3 + 1.641949867x2 + 0.132354172x.

Substituting fB(x) in (4.8), we obtain the approximated solution, which converges
to the exact solution as shown in Figure 3(a). Also, the pointwise errors of the
proposed techniques are shown using Figure 3(b). Hamoud and Ghadle in [12] solved
this example using the classical ADM and obtained the exact solution in the first
iteration. Since, the source term is already a polynomial function (in Taylor’s series
expansion), the proposed techniques (ADM-BP and ADM-CP) do not contribute
much to decreasing the error in comparison to the solutions obtained in [12]. Table 4
shows the pointwise error obtained after the first term series solution using ADM-BP
and ADM-CP. Though the error is less, the proposed methods are still ineffective
for such model problems. Hence, one can conclude that the proposed techniques are
suitable for the model problems where the source term is any other function except
the polynomials.

We have also solved this example using the proposed numerical scheme (5.8). The
solution is regular in its considered domain. The computed results are recorded in
Table 5. One can clearly observe that the order of accuracy is almost first order
accurate over the entire domain which satisfies the theoretical estimates. Figure 4(a)
shows the solution plot for both the approximated and the exact solution at µ = 0.75.

Example 6.3. Consider the following numerical experiment:

Dµz(x) + a(x)z(x) = f(x) +
∫ x

0
sz(s)ds+

∫ 1

0
(x− s)z(s)ds,

where a(x) = 0 and the exact solution is z(x) = xµ + x.

The problem is solved using the proposed numerical scheme (5.8). Table 6 shows the
error and rate of convergence for Example 6.3. Due to the presence of weak singularity,
the order of accuracy is O(N−µ) over the entire domain. A sharp singularity is present
at the initial mesh point x = 0 which is evident from Figure 4(b) at µ = 0.1.



632 A. PANDA AND J. MOHAPATRA

Example 6.4. Consider a nonlinear model of Volterra-Fredholm FracIDE:

Dµz(x) + a(x)z(x) = f(x) +
∫ x

0
z4(s)ds−

∫ 1

0
f(x+ s)z(s)ds,

where a(x) = 0, f(x) = t4Γ(5+µ)
24 + t5+µ − t17+4µ

17+4µ
+ t

5+µ
+ 1

6+µ
and the exact solution is

z(x) = xµ+4.

Table 7 shows the computed values of maximum pointwise error and order of
convergence for arbitrary order fractional derivatives. The tabular data proves that
the proposed numerical scheme also works well for a class of nonlinear Volterra-
Fredholm FracIDEs.

7. Conclusion

This article intends to solve the fractional order Volterra-Fredholm integro-differential
equations using semi-analytical and numerical methods. At first, we used the modi-
fied Adomian decomposition technique for the model problem where the source term
is generalized as any kind of function (other than the polynomial function). The
uniqueness and existence of the solutions are properly established and convergence
of the method is carried out. Secondly, we have developed a fully discrete scheme
for obtaining the numerical solution. Error analysis is done and it is validated with
the help of a few numerical experiments. Finally, a comparison with some existing
methods shows that the proposed methods are more efficient and robust.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

E
r
r
o
r

Error using classical ADM

Error using ADM-CP

Error using ADM-BP

0 0.2 0.4 0.6 0.8 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
r
r
o
r

Error using classical ADM

Error using ADM-CP

Error using ADM-BP

(a) µ = 0.25 (b) µ = 0.75

Figure 1. Error plots using semi-analytical methods for Example 6.1.
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Table 1. Absolute pointwise errors using semi-analytical methods with
µ = 0.5 for Example 6.1.

ADM-BP ADM-CP

x E∞
1 E∞

2 E∞
1 E∞

2

0.2 7.7156e-2 6.2421e-3 7.0056e-2 1.0425e-3
0.4 2.2598e-1 1.8957e-2 2.0617e-1 2.2681e-3
0.6 4.2975e-1 4.2329e-2 3.9409e-1 2.2862e-3
0.8 6.8471e-1 8.3729e-2 6.3132e-1 2.1288e-2
1.0 9.9004e-1 1.5230e-1 9.1806e-1 6.6316e-2

Table 2. Absolute pointwise errors using semi-analytical methods with
µ = 0.01 for Example 6.1.

x E∞
2 using ADM-BP E∞

2 using ADM-CP E∞
2 using classical ADM

0.2 3.2232e-2 9.6072e-3 2.1724e-2
0.4 8.8292e-2 3.9878e-2 1.0156e-1
0.6 1.6813e-1 9.2759e-2 2.7822e-1
0.8 2.7053e-1 1.7013e-1 6.4637e-1
1.0 3.9279e-1 2.7399e-1 1.4248

Table 3. Absolute pointwise errors using semi-analytical methods with
µ = 0.95 for Example 6.1.

x E∞
2 using ADM-BP E∞

2 using ADM-CP E∞
2 using classical ADM

0.2 1.7740e-3 6.4018e-4 1.9533e-4
0.4 5.3420e-3 4.0840e-3 3.3104e-3
0.6 1.0931e-2 1.0136e-2 1.8948e-2
0.8 2.2620e-2 1.4696e-2 7.2710e-2
1.0 4.9022e-2 8.5299e-3 2.3222e-1

Table 5. Absolute pointwise errors using numerical approximation
with µ = 0.75 for Example 6.2.

N 100 200 400 800 1600 3200

EN
µ 3.8450e-3 1.6347e-3 6.9200e-4 2.9214e-4 1.2312e-4 5.1839e-5

PN
µ 1.234 1.240 1.244 1.246 1.248
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Table 4. Absolute pointwise errors using semi-analytical methods with
µ = 0.75 for Example 6.2.

x E∞
1 using ADM-BP E∞

1 using ADM-CP
0.1 1.5167e-3 7.7086e-5
0.2 5.4081e-3 1.1525e-4
0.3 1.0989e-2 4.4583e-5
0.4 1.7565e-2 2.3456e-5
0.5 2.4440e-2 2.9868e-5
0.6 3.0919e-2 1.6814e-5
0.7 3.6305e-2 6.7225e-5
0.8 3.9902e-2 7.1810e-5
0.9 4.1014e-2 2.6809e-5
1 3.8945e-2 2.2190e-5

Table 6. Absolute pointwise errors using numerical approximation for
Example 6.3.

N 100 200 400 800 1600 3200
µ = 0.2 5.3434e-2 4.8349e-2 4.2892e-2 3.7690e-2 3.2964e-2 2.8763e-2

0.144 0.173 0.186 0.193 0.197
µ = 0.4 3.1270e-2 2.4291e-2 1.8635e-2 1.4209e-2 1.0801e-2 8.1980e-3

0.364 0.382 0.391 0.396 0.398
µ = 0.6 1.2472e-2 8.4267e-3 5.6251e-3 3.7329e-3 2.4700e-3 1.6319e-3

0.566 0.583 0.592 0.596 0.598
µ = 0.8 3.5118e-3 2.1476e-3 1.2819e-3 7.5155e-4 4.3619e-4 2.5213e-4

0.709 0.744 0.770 0.785 0.791

Table 7. Absolute pointwise errors using numerical approximation for
Example 6.4.

N 100 200 400 800 1600 3200
µ = 0.5 1.9248e-2 9.7900e-3 6.8373e-3 4.8276e-3 3.4111e-3 2.4111e-3

0.975 0.518 0.502 0.501 0.501
µ = 0.7 2.3163e-2 1.1464e-2 5.6412e-3 2.7745e-3 1.3666e-3 6.7455e-4

1.015 1.023 1.024 1.022 1.019
µ = 0.9 3.2869e-2 1.6331e-2 8.0508e-3 3.9539e-3 1.9390e-3 9.5055e-4

1.009 1.020 1.026 1.028 1.028
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