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SOME NEW INEQUALITIES FOR DIFFERENTIABLE
ARITHMETIC-HARMONICALLY CONVEX FUNCTIONS

MAHIR KADAKAL!, PRAVEEN AGARWAL?34 AND IMDAT ISCAN®

ABSTRACT. In this study, by using an integral identity together with both the
Holder and the power-mean inequalities for integrals we establish several new in-
equalities for differentiable arithmetic-harmonically-convex function. Also, we give
some applications for special means.

1. PRELIMINARIES AND FUNDAMENTALS

Throughout, we denote any real interval by I C R and any functions defined on I
by f: I CR — R. Let I° denote the interior of I. Also, we denote

b

I5(a,0) = )b = fla)a~ [ f(@)da,

a

for brevity.
Definition 1.1. A function f: I C R — R is said to be convex if the inequality

flz+ 1=ty <tf(x)+1-1)f(y)

is valid for all z,y € I and ¢ € [0, 1]. If this inequality reverses, then f is said to be
concave on interval I # (). This definition is well known in the literature.

Convexity theory has appeared as a powerful technique to study a wide class of
related problems in pure and applied sciences. The following double inequality is
known in the literature as Hermite-Hadamard integral inequality for convex functions.

Key words and phrases. Convex function, arithmetic-harmonically convex function Hermite-
Hadamard’s inequality.
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670 M. KADAKAL, P. AGARWAL, AND 1. ISCAN

Theorem 1.1. Let f : I CR — R be a convex function defined on the interval I of
real numbers and a,b € I with a < b. The following inequality

(1.1) f(“;b> < bia/f(x)da:g W

holds.

See [2,4], for the results of the generalization, improvement and extention of the
famous integral inequality (1.1).

Definition 1.2 ([1,5]). A function f : I C R — (0,00) is said to be arithmetic-
harmonically (AH) convex function if for all z,y € I and ¢ € [0, 1] the equality

f(@)f(y)
1.2 fz+ (1 -1ty <
2 e =) = G+ 1 - 0@
holds. If the inequality (1.2) is reversed, then the function f is said to be arithmetic-
harmonically (AH) concave function.

In order to establish some inequalities of Hermite-Hadamard type integral inequali-
ties for AH-convex functions, we will use the following lemma obtained in the special
case of identity given in [3].

Lemma 1.1. Let f : I CR — R be a differentiable mapping on I°and f' € L{a,?],
where a,b € I° with a < b. We have the identity

b
(1.3) I¢(a,b) = / zf'(x)dx.

a

In this study, we use Holder integral inequality, power-mean integral inequality
and the identity (1.3) in order to provide some inequalities for functions whose first
derivatives in absolute value at certain power are arithmetic-harmonically convex.

Throught this paper, we will use the following notations for special means of two
nonnegative numbers a, b with b > a:

1. the arithmetic mean

A= A(a,b) = a—2|—b’ a,b >0,

2. the geometric mean
G :=G(a,b) = Vab, a,b>0,
3. the logarithmic mean
L= L(a,b) = { e @b,

a, a=Db,

b>0,

4. the p-logarithmic mean

1

pPtl_gPtl\p

Ly := Ly(a,b) = { (Groicm)”s a# 2’p SRELOEab>0
a, a=Db,
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These means are often used in numerical approximation and in other areas. However,
the following simple relationships are known in the literature:

H<G<L<I<A.
It is also known that L, is monotonically increasing over p € R, denoting Ly = I and
L,l - L
2. MAIN RESULTS FOR LEMMA

Throughout this section we will denote K, = |f'(z)| for brevity.

Theorem 2.1. Let f : I C (0,4+00) — (0,4+00) be a differentiable mapping on I°,
and a,b € I° with a < b. If |f'| is an arithmetic-harmonically convez function on the
interval [a,b], then the following inequality holds:

(b—a)G*(Ka,Kp) (bKy—aKa _ (1
(2.1) |17(a,b)| < o (Tt — 0= @)y KA K,
(b — a)KbA(a, b), Ka = Kb.
Proof. Since |f’| is an arithmetic-harmonically convex function on the interval [a, b],
we have on setting ¢t = lg:—z and 1 —¢ = =% in (1.2)
b— Cl)K Kb
2.2 "(z)] < ( -
(22) )l < G
for all = € [a,b]. Substituting (2.2) in
b
(2.3) (@b < [ w)f (@) da.
which folllows from (1.3), we have
b x
2.4 Ir(a,b <b—_mK/ dz.
(2.4) ] < 00k [ G e

We distinguish two cases. If K, = K}, then (2.1) follows. Suppose K, # Kj. Then,
by the change of variable u = (b — z) K}, + (z — a) K, the integral in (2.4) becomes

b—a)K, K, -k (bK, — aK,
(b—a) b/( b(” a —1>du

(Kp — Ka)2 b—a)K, u
(b— a) K, K, In K, — In K,
_O WD (e gk, TR )
K, - K, v a9
Substituting this in (2.4) and using the definition of the logarithmic mean, we conclude
(2.1) in this case. This completes the proof. O

Theorem 2.2. Let f : I C (0,400)— (0,+00) be a differentiable mapping on I°,
and a,b € I° with a < b. If | f'|? is an arithmetic-harmonically convex function on the
interval |a,b], then the following inequality holds:

(b_a)LP(a7b)G2(K(l7Kb)l K, # K,
(25) 1j(a,8)] < { (B3 (et
(b - a)Kpr(a, b)a Ka = Kba
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1,1 _
where;—i—a—l.

Proof. Since |f’|? is an arithmetic-harmonically convex function on the interval [a, b],
we have

1\ |4 (b — a) (K.KG)"
(26) POl K+ @ - o KT

for all z € [a,b]. By using Holder integral inequality in (2.3), we get

(2.7) I1(a,b)| < (/abmpdx>; </ab]f’(a:)|qu>;.

By combining (2.6) and (2.7) and also using the definitions of the p-logarithmic mean
and geometric mean, we obtain

b dx ‘
(2.8) |[f(a, b)| < (b — a)G2 (Ka, Kb) Lp(aa b) (/a (b _ $) Kg + (3: — a) Kg> ‘

We distinguish two cases. If K, = Kj, then (2.5) follows. Suppose K, # K;. Then,
by the change of variable u = (b — z) K} + (z — a) K4, the integral in (2.8) becomes

1

b= )G (K ) Lyfat) [ )
— S A b-a)x? (K — Kd)u
1an—1an>3z
TRI— K

=(b—a)G* (K,, K}) L,(a,b) (

Substituting this in (2.8) and using the definitions of the logarithmic mean and the
p-logarithmic mean, we conclude (2.5) in this case. This completes the proof. U

Theorem 2.3. Let f : I C (0,+00) — (0,+00) be a differentiable mapping on I°, and
a,b € I° with a <b. If |f'|*,q > 1 is an arithmetic-harmonically convex function on
the interval [a,b], then the following inequality holds:

(2.9)
(b—a)A'~ 7 (a,0)G (Ka,K) ( bIf—aK{ 0 >q
[Is(a,b)| < { (Ky-K2)T Kty ~ 0= @) Ko # K
(b - CL)K{,A(CL, b), Ka = Kb.

Proof. Since |f'|? is an arithmetic-harmonically convex function on the interval [a, b],
we have

(2.10) P < 0= O EK)

(b—2) Kl 4 (x —a) K&’

for all x € [a,b] . By using well known power-mean integral inequality in (2.3), we get

(2.11) |I¢(a,b)| < </abxdx> - (/abx|f’(x)|q dx>q.
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By combining (2.10) and (2.11) and also using the definitions of the arithmetic mean
and geometric mean, we obtain

b T

b—2) Kg+(x—a)Kng> '

We distinguish two cases. If K, = Kj, then (2.9) follows Suppose K, # K,. Then,
by the change of variable u = (b — x) K] + (x — a) KZ, the integral in (2.12) becomes

212) [0 )] < (0= 04"} @062 (1 50 |

(b— a)A' 7 (a,0) G2 (K, ) </ o-0)K{ DKJ — aK? — udu>‘11
(K¢ — K%)s (b-a) K3 u
1-1 2 q q q q i
_(b—a)A q<a,b)G (KaaKb) <(be _aKa) (anb _ana> . (b—a))q
= 1 K9 _ K4 ’
(15{ = K’ P

Substituting this in (2.12) and using the definitions of the logarithmic mean and the
p-logarithmic mean, we conclude (2.9) in this case. This completes the proof. 0

Corollary 2.1. If we take ¢ = 1 in the inequality (2.9), we get the inequality (2.1).

3. APPLICATIONS FOR SPECIAL MEANS

If p € (=1,0), then the function f(z) = 2P, x > 0, is an arithmetic harmonically-
convex [1]. Using this function we obtain following propositions.

Proposition 3.1. Let 0 < a < b and m € (—1,0). Then we have the following
inequality:

m—+1

Proof. We know that if m € (—1,0) then the function f(z) = &

T &> 0, is an
arithmetic harmonically-convex function. Therefore, the assertion follows from the

inequality (2.1), for f: (0,+00) = R, f(z) = “;::11 O

Proposition 3.2. Let a,b € (0,+00) with a < b, ¢ > 1 and m € (—1,0). Then we
have the following inequality:

Liii(a,b) < L,(a, b)G T (a,b)
/ (L (am/a, bm/q) ng (am/a, bm/q))

Qe

Proof. The assertion follows from the inequality (2.5). Let f(z) = f_x@ e

(0,+00). Then |f/(x)|? = 2™ is an arithmetic harmonically-convex on (0, +oc) and
the result follows directly from Theorem 2.2. O
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Proposition 3.3. Let a,b € (0,400) with a <b, ¢ > 1 and m € (—1,0). Then, we
have the following inequality:

. oG i 5

(32) Liab<? (% 0)G (aib)< o (mmjl)f"ﬁ(a’i)/ i/ _1>
' (mLipZi(a,b))° L (am/a,bmia) L=y (am/9,6m/9)

m g

Proof. The assertion follows from the inequality (2.9). Let f(z) = fz«™, x €
(0,400). Then |f'(z)|? = 2™ is an arithmetic harmonically-convex on (0, 4+o00) and
the result follows directly from Theorem 2.3. U

Corollary 3.1. If we take ¢ = 1 in the inequality (3.2), we get the following inequality

G*™(a,b) ((m +1)Ln(a,b) 1)

m+1 <
(33) Lm+1 (CL, b) L (am’ bm)

=~ mL""{(a,b)

which is the same as inequality (3.1).
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A STUDY OF *PRIME RINGS WITH DERIVATIONS

ADNAN ABBASI!, SHAKIR ALI?, ABDUL NADIM KHAN?,
AND MUZIBUR RAHMAN MOZUMDER*

ABSTRACT. This paper’s major goal is to describe the structure of the x-prime
ring, with the help of three different derivations «, 3 and v such that a([s1, s3]) +
[B(s1), B(s)] + [v(s1),87] € Z(x) for all s; € x. Further, some more related results
have also been discussed. As applications, classical theorems due to Bell-Daif [6]
and Herstein [12] are deduced.

1. INTRODUCTION

This research is the extension of the work done by Ali et al. in [3]. If (i) (s159)* = s5s7
and (ii) (s7)* = s; holds for all s1,s9 € X, then an additive map s; — s} of x into
itself is said to be an involution. Ring with involution, often known as *-ring or ring
with involution. () is the collection of hermitian objects (s} = s1) and () is
the collection of skew-hermitian objects (sj = —s1) of x. If characteristic different
from two, then, obviously, 7 (x) = -#(x). Thus, we will consider only *-rings y with
char(y) # 2. If Z(x) C J(x), the involution is said to be of the first kind; otherwise,
it is of the second kind. In the later case, .7 (x) N Z(x) # (0) (e.g., involution in
the case of ring of quaternions). In [11], there’s a mention of these rings as well as
additional references.

The origins of commuting and centralising maps can be traced back to 1955, when
Divinsky [9] proved that “simple Artinian ring is commutative if it has commuting
non-trivial automorphisms” In 1957, Posner [18] found that “existence of nonzero
centralizing derivation on a prime ring forces the ring to be commutative”. The study
of commuting (centralizing) derivation/additive maps/multiplicative maps and several

Key words and phrases. Prime ring, involution, derivation, central identities.
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extension of such results begins with the results of Posner [18] along with applications
to different areas like Lie theory, matrix theory, operator theory etc. For more details
of said work see (see [2,4,8-10,13] and references therein).

In [3], Ali et al. proved that “a prime ring xy must be a commutative integral domain
if it admits derivations « and f satisfying any one of the identities: (i) [a(s1), a(s])] +
B(s10sf) = 0 for all s; € x, (ii) a(s1) o a(sy) + B([s1,s]) = 0 for all s; € ¥y,
(iil) a([s1,s7]) + [a(s1), a(s7)] = 0 for all s; € x, (iv) a(s; os]) + a(s1) o a(s]) =0
for all s; € x”. Our goal in this work is to continue this line of inquiry and analyse
the structure of prime rings with involution satisfying above mentioned *-differential
identities which are central. In fact, so many results become corollaries of our results
which are in [2,3,6,8,12,16,17] and references therein.

2. THE RESULTS

Herstein [12] proved a classical result “A prime ring y of char(y) # 2 with a
derivation « # 0 satisfying the differential identity [a(s1), a(s2)] = 0 for all s, s2 € ¥,
must be commutative”. Further, Daif [7], proved that “Let x be a 2-torsion free
semiprime ring admitting a derivation « such that [a(s1), a(sz)] = 0 for all s, 85 € I,
where [ is a nonzero ideal of x and « is nonzero on I, then y contains a nonzero
central ideal”. Further, this result was extended by second author together with Dar
in [8, Theorem 3.1] in case of prime rings involving x : x +— x. Indeed, they proved
“Let x be a prime ring with involution ’+" of the second kind such that char(x) # 2
and satisfying the x-differential identity [a(s1), a(s])] = 0 for all s; € x, then y must
be commutative”. Throughout our discussion * will be of second kind and also as
when we consider more than one derivation then it is assume that at least one of them
to be nonzero. We begin our investigation with several well-known facts, which lead
to the following results repeatedly.

Fact 2.1 ([3, Lemma 2.5]). Let x be a x-prime ring and « be a derivation and «(t) =0
for all t € S(x) N Z(x). Then a(s;) = 0 for all s; € Z(x).

Fact 2.2 ([17, Lemma 2.1]). Let x be a x-prime ring and x is normal for all s; € y.
Then yx is commutative.

Fact 2.3 ([17, Lemma 2.2]). Let x be a *-prime ring and s; o s7 € £ () for all s; € x
if and only if y is commutative.

Theorem 2.4. Let x be a x-prime ring and «, 5 and v be derivations of x satisfying
the identity a([s1, s7]) + [5(s1), B(s7)] £ [v(s1), s7] € Z(x) for all s; € x. Then x is
commutative.

Proof. The proof is divided into the following cases.
Case (i) If « = 0 and 3,7 # 0, then we have

(2.1) [6(s1), B(s)l £ [7(s1), s1] € Z(x), forall sy € x.



A STUDY OF *-PRIME RINGS WITH DERIVATIONS 679

Taking ¢ for s in (2.1), where t € (), we obtain

(2.2) + [y(t),t] € Z(x), forallte (x).
Linearization of (2.2) gives
(2.3) + [y(t), h] £ [y(h1),t] € Z(x), forallt hy € F(x).

Replacing hy by hihg in (2.3) and combining (2.3), we get £[hq, t]y(ho) € Z(x) for all
hy,t € 7(x) and hy € A (x)NZ (x). Applying the primeness of the ring y, we obtain
either +[hy,t] € Z(x) for all hy,t € F(x) or v(hy) = 0 for all hy € H(x) N Z(x).
If we consider +[hy,t] € Z(x) for all hy,t € S (x), replacing hy by kh;, we have
+k,tlhy € Z(x) for all t € J(x), k € L (x) and h; € L (x) N Z(x). Since
L (x) N Z(x) # (0) and x is prime, implies that +[k,t] € Z(x) for all t € J(x)
and k € .#(x). This implies that x is commutative. Now consider v(h;) = 0 for all
hy € 7(x) N Z(x), this implies that y(hy) = 0 for all by € . (x) N Z(x). Taking
khy in place of t in (2.2), we obtain

+[v(k), klki € Z(x), forallk e .#(x)and hy €.%(x) N Z(x).
Since x is prime and we have . (x) N Z(x) # (0), we obtain
(2.4) + [v(k), k] € Z(x), forallke . (x)and hy €.7(x)NZ(x)-
By linearizing (2.2), we get

(2.5) + (@), ] £ [y(h),t] € Z(x),  forall t,hy € H(x).
Substituting khy for hy in (2.5), where k € .(x) and hy € . (x) N Z(x), we obtain
(2.6) + [v(t), k] £ [y(k),t] € Z(x), forallt,hy € F(x).

Consider 4[’7(31)’ 32] = [7(231)7 252] = [V(t + k)? t+ k] = [V(t)v t] + [’7(1{:)7 t] + [V(t)’ k] +
[v(k), k]. Using (2.2), (2.4) and (2.6), we get 4[v(s1), s2] € Z(x) for all s1,s5 € x.
Since char(y) # 2, this implies that [y(s1), 9] € Z(x) for all s; € x. Therefore, in
view of Posner’s result we done.

Case (ii) If 8 = 0 and a, 7y # 0, then we have «([s1, s}]) £ [y(s1), 7] € Z(x) for
all s; € x. Substituting ¢ for sy, we obtain +[y(t),t] € Z(x) for all t € F(x),
which is same as (2.2), following the line of proof as we did after (2.2), we get x is
commutative.

Case (iii) If Y = 0 and «, 5 # 0, then from hypothesis we obtain

aflsy, s1]) +[B(s1), B(s1)] € Z(x),  forall 5, € x.
Substituting ss; for s; in above equation, where s € Z2°(x) N % (x), we get
(2.7)  [s1, 57]2sa(s) + [a(s1), s1]sB(s) + [s1, B(s7)]sB(s) + [s1, s1](B(s))* € Z ().
Linearization of (2.7), gives us
(2.8) [s1,s5]2sa(s) + [s2, 57]2s(s) + [a(s1), s5]sa(s) + [a(s2), sT]sa(s)
+[s1,8(s5)]sB(s) + [s2, B(s1)]5B(5) + [s1, s3](B(5))” + [s2, 51](B(s))* € Z(x)-
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Now taking sys for so in (2.8), where s € Z(x) N.%(x), and combining it with the
obtained result, we find that

(29)  Alsz, si]s%a(s) + 2[B(s2), s1]sB(s)” + 2[se, s1]s(B(s))*
— [51,3]s(B(5))” + 2[s2, B(s1)]5°B(s) + [s2, 57]s(B(s))* € Z(x)-
Substituting sss for s in (2.9) and solving with the help of (2.9), we have

(2.10) 251, 55]5%(B(8))? + 2[s2,57]s(8(s))® € Z(x), forall 51,55 € X.
Again taking sgs for sp in (2.10), where s € Z(x) N.¥(x), and combining it with
(2.10), we get 4[sq, si]s*(8(s))® € Z(x) for all s1,s, € x. Replacing sy by s1, we

obtain 4[sq, s7]s*(8(s))? € Z(x), for all s; € x and s € Z(x) N (x). Since char
(x) # 2 and Z(x) N~ (x) # (0), the above relation forces that either [sq, s}] € Z(x)
for all s; € x or f(s) = 0 for all s € Z(x) N L (x). If [s1,s]] € Z(x), then by
Fact 2.2, y is commutative. On the other hand, we consider the situation §(s) = 0
for all s € Z(x) N (x). Using this in (2.7), we get 2[s1, s7]sa(s) € Z(x). By the
primeness of the ring y, we conclude that either x is commutative or «a(s) = 0 for all
s € Z(x) N (x). Linearization of a([s1, s5]) + [B(s1), B(s})] € Z(x) for all s; € ¥,
gives us

(2.11)

a([3175§]) + O‘([S%Sﬂ) + [6<81>’6(S§>] + [5(82)76(‘9;)] € ff(X)v for all S1, 82 € X

Replacing sy by ssy in (2.11) where s € Z7(x)N.¥(x) and using the fact that a(s) =0
and B(s) =0 for all s € Z(x) N.¥(x), we arrive at

2(a([s2, 1)) + [B(s2), B(s1)])s € Z(x), forall 51,59 € x.
Since char(y) # 2 and Z'(x) N ¥ (x) # (0), the above relation yields

a([s2, s1]) + [B(s2), B(s1)] € Z(x),  for all 51,52 € X
This implies that

a([se, s1]) + [B(s2), B(s1)] € Z(x), for all 1,59 € x.

Replacing s, by s? in the last relation, we get [3(s?), 5(s1)] € Z(x) for all s; € x.
This further implies that [(8(s1))?, s1] € Z(x) for all s; € x. Thus in view of [14,
Theorem 1.1], we get x is commutative. This proves the theorem.

Case (iv) If a =0, 8 = 0 and v # 0, we have £[y(s1), s}] € Z(x) for all s, € ¥,
then by [17, Theorem 3.7] x is commutative.

Case (v) Consider 8 = 0, v = 0 and a # 0, then from hypothesis, we have

a([s1, s7]) € Z(x) for all s; € x. By [16, Theorem 2.3], we obtain x is commutative.

Case (vi) Taking v = 0, & = 0 and  # 0, then by hypothesis we have [3(s1), B(s])]
€ Z(x) for all s; € x. Hence, result follows by [17, Theorem 3.1].

Case (vii) Consider the following if & = 0, 5 = 0 and v # 0. Substituting ¢ for s
in assumption, we obtain [y(t),t] € Z(x) for all s; € J(x), which is same as (2.2).
Therefore x is commutative by follow the same argument. O
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We deduce the following corollaries from Theorem 2.4.

Corollary 2.1 ([8, Theorem 3.1]). Let x be a x-prime ring and o # 0 be a derivation
of x such that [a(sy),a(s?)] =0 for all sy € x. Then x is commutative.

Corollary 2.2 (]2, Theorem 2.2]). Let x be a *-prime ring and o # 0 be a derivation
of x such that o([s1, s7]) =0 for all sy € x. Then x is commutative.

Corollary 2.3 ([3, Theorem 3.5]). Let x be a x-prime ring and o and (3 be derivations
of x satisfying the identity a([s1, s7]) + [B(s1), 5(s7)] = 0 for all sy € x. Then x is
commutative.

Corollary 2.4. Let x be a x-prime ring and o and [ be a nonzero derivation of x
satisfying a(s187) + B(s1)B(s7) € Z(x) for all sy € x. Then x is commutative.

Proof. By the assumption, we have a(s1s7) + ((s1)8(s7) € Z(x) for all s; € x.
Replace s; by s in the last expression to get a(sisy) + [(s7)5(s1) € Z(x) for all
s1 € x. Combining the last two relations, we obtain a([s1, si]) +[8(s1), 8(s7)] € Z(x)
for all s; € y. Hence, application of Case (vi) of Theorem 2.4 yields the required
result. O

Theorem 2.5. Let x be a x-prime ring and o and 3 be two derivations of x satisfying
the identity a(sy o s7) + B(s1) o B(s}) € Z(x) for all sy € x. Then x is commutative.

Proof. By the assumption, we have
(2.12) a(syosy) + B(s1)oB(s]) € Z(x), foralls €y.

Case (i) Assume that a # 0 and § = 0. Then it follows from (2.12) that a(s;0s]) €
Z(x) for all s; € x. In view of [16, Theorem 2.5|, we get x is commutative.
Case (ii) Taking a = 0 and § # 0. Then (2.12) reduces to

(2.13) B(s1)oB(s]) € Z(x), foralls; € y.

Application of [17, Theorem 3.5] gives the required result.
Case (iii) Assume that both a and 3 are nonzero. Replacing s; by s1 + s9 in
(2.12), we get

(2.14) a(s1083) +afsy 057) + B(s1) 0 B(sy) + B(s2) 0 B(s1) € Z°(x)-
Substituting sst for sy in (2.14), where t € 2(x) N (), we get
((s1085) + (s2.087))a(t) + (B(s1) 0 85 + 52 0 B(s1)) B(F) € Z(x)-

Taking s9s, for so where s, € Z(x) N (x) and combining it with the obtained
relation, we get

2((s2 0 51)s00x(t)) + (52 © B(s7))506(1)) € Z(x)-
Since char(x) # 2 and Z°(x) N (x) # (0), the above relation yields
(2.15) (sg0sy)a(t) + (sa08(s7))B(t) € Z(x), forall si,s0€ Z(x).
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This can be further written as

(89 087),ra(t) + [s2 0 B(s]),r]B(t) =0, for all s1,s9,7 € Z(x).

Replacing x by sg 087 we get [so05(s7), s20s7|3(t) = 0 for all sy, s5 € x. Then, by the
primeness of x, we get either [sq 0 5(s7), s2 0 s7] = 0 for all s1,59 € x or 5(t) = 0 for
allt € Z(x)NIH(x). If [s20B(s]),s20s7] =0 for all s1,s9 € x, then by substituting
z for sy in the last relation where z € 2(x), we obtain 2[3(s?), si]z = 0 for all s; € .
Since char(y) # 2 and Z(x) N (x) # (0), this implies that [3(s}), si] = 0 for all
s1 € x. By the application of Posner’s [18] we arrived at conclusion. Now consider the
case B(t) =0 for all t € Z(x) N (x). Then (2.15) reduces to (sz 0 s7)a(t) € Z(x)
for all s1,s9 € x and t € Z(x) N (x). By the primness of the ring x, we get either
spost € Z(x) forall s1,s9 € xor at) =0forallt € Z(x)NIH(x). lf s50s7 € Z(x)
for all s1, 9 € x by the Fact 2.3 implies that x is commutative. Finally, we consider
the case a(t) = 0 for all t € Z(x) N (x). Now replacing s, by ¢ in (2.14) where
te Z(x)NIH(x), we get

(a(s1) +a(s)))t € Z(x), foralls; € xandte Z(x)NA(x).

Thus in view of the fact Z°(x)N.7(x) # (0) and primeness of the ring y, we conclude
that a(s;) + a(s}) € Z(x) for all s; € x. This can be written as [a(s1), a(s})] = 0 for
all s; € x. Hence, x is commutative by [17, Theorem 3.1]. O

Corollary 2.5 (]2, Theorem 2.3]). Let x be a *-prime ring and o # 0 be a derivation
of x satisfying a(sy 0 s7) =0 for all s; € x. Then x is commutative.

Corollary 2.6. Let x be a x-prime ring and o # 0 be a derivation of x satisfying
a(s1s7) € Z(x) for all s; € x. Then x is commutative.

Proof. From assumption, we have «a(s15}) € Z(x) for all s; € x. For any s; € x, s}
also is an element of x. Substituting s] for s; in the given assertion, we obtain

a(sisy) € Z(x) for all s; € x. This implies that a(s; o s7) € Z(x) for all s; € .
Hence, x is commutative by Corollary 2.5. U

Corollary 2.7 ([8, Theorem 3.2]). Let x be a *-prime ring and o # 0 be a derivation
of x satisfying a(sy) o a(sy) =0 for all sy € x. Then x is commutative.
3,

Corollary 2.8 ([3, Theorem 3.6]). Let x be a *-prime ring and o # 0 be a derivation
of x satisfying 04(31 os7) 4+ a(s1)oa(st) =0 for all s; € x. Then x is commutative.

Theorem 2.6. Let x be a x-prime ring and o and 5 be derivations of x satisfying
the identity [a(s1), a(s?)] £ B(s10s7) € Z(x) for all sy € x. Then x is commutative.

Proof. We are given that «, 8 : x — x are derivations such that
(2.16) [a(s1),a(s])] + B(s10s]) € Z(x), foralls; €x.
Replacing s; by s in the last expression we get

(2.17) —la(s1),a(s))] + B(s10s7) € Z(x), foralls; €.
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Adding the last two relations and using char(y) # 2 we obtain
(2.18) B(s1os]) € Z(x), foralls €.

Hence, the result follows from [13, Theorem 2].
Similarly, we prove the other case with the help of [13, Theorem 2]. O

Corollary 2.9 ([3, Theorem 3.1]). Let x be a x-prime ring and o and (3 be derivations
of x satisfying the identity [a(s1),a(s})] & B(s1087) =0 for all s; € x. Then x is
commutative.

Theorem 2.7. Let x be a x-prime ring and o and [ be derivations of x satisfying
the identity a(s1) o a(st) & B([s1, s7]) € Z(x) for all sy € x. Then x is commutative.

Proof. First, we consider that
a(sy) oa(sy) + B([s1,s7]) € Z(x), forall s; € x.
Replacing s; by s in the last expression we get
a(sy) oal(sy) — B([s1,s]]) € Z(x), forall s; € .
Substracting the last two relation and using char(x) # 2 we obtain
B([s1,8]]) € Z(x), forall s; € yx.

Hence, the result follow from [13, Theorem 1].
Similarly, we prove the other case with the help of [13, Theorem 1]. U

Corollary 2.10. Let x be a *-prime ring and o and 3 be derivations of x satisfying the
identity a(s1) o asa) £ B([s1,$2]) € Z(x) for all s1,s2 € x. Then x is commutative.

Corollary 2.11 ([3, Theorem 3.3]). Let x be a *-prime ring and o and § be derivations
of x satisfying the identity a(s1) o a(s}) = B([s1,57]) = 0 for all sy € x. Then x is
commutative.

3. SOME EXAMPLES

The first example shows that the restriction of the second kind involution in our
theorems is not superfluous.

Example 3.1. Let x = {( b By )

B3 ba

addition and matrix multiplication is a non commutative prime ring. Define mappings
x, a, 0 :x — x such that

B B *: By —B2 o Bv B2 Y _ (0 =P
B3 s —Bs B )’ B3 s Bs 0

0 ) 0
andﬁ(gi’ gi ) = ( B, %2 > Obviously, QP(X):{<BO1 B ) 5162}.Then
s} = s for all s; € Z(x), and hence Z(x) € S (x), which shows that the involution

B, Ba, B3, By € Z} . Of course, y with matrix
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"%" is of the first kind. Moreover, « and [ are nonzero derivations of y and satisfying
the identities of the theorems. However, y is not commutative. Hence, the hypothesis
of the second kind involution is crucial in our theorems.

The next example shows that our theorems are not true for semiprime rings.

Ezample 3.2. Let S = x x C, where y is same as in Example 3.1 with involution "’
and derivations o and [ same as in Example 3.1, C is the ring of complex numbers
with conjugate involution 7. We can easily observe that S is a non commutative
semiprime ring with characteristic different from two. Now define an involution «
on S, as (s1,52)* = (s7,s3). Clearly, a is an involution of the second kind. Further,
we define the mappings « and f from S to S such that D;(s1,s2) = (a(s1),0) and
Ds(s1,82) = (B(s1),0) for all (s1,s2) € S. It can be easily checked that D; and Dy
are derivations on S and satisfying the identities of the Theorem 2.5 and Theorem 2.6
but S is not commutative. Hence, in our theorems, the hypothesis of primeness is
essential.

Conclusions. In this paper we have studied some identities involving derivations on
prime rings with involution. Purely algebraic methods have been used to describe the
structure of rings and we provide the examples, which shows that the assumptions
are not superfluous. Applications point of view some well known results are deduced.

Acknowledgements. The authors are indebted to the referee for his/her useful
suggestions.
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LUKASIEWICZ ANTI FUZZY SUBALGEBRAS OF
BCK/BCI-ALGEBRAS

JEONG GI KANG! AND HASHEM BORDBAR?

ABSTRACT. The subalgebra of BCK/BCI-algebra using Lukasiewicz anti fuzzy set
introduced by Jun is studied in this article. The concept of F.ukasiewicz anti
fuzzy subalgebra of a BCK/BCl-algebra is introduced, and several properties are
investigated. The relationship between anti fuzzy subalgebra and f.ukasiewicz anti
fuzzy subalgebra is given, and characterization of a Lukasiewicz anti fuzzy subalgebra
is discussed. Conditions are found in which a Lukasiewicz anti fuzzy set is a
Lukasiewicz anti fuzzy subalgebra Finally, conditions under which <-subset, Y-
subset, and anti-subset become subalgebra are explored.

1. INTRODUCTION

In [1], Biswas introduced the concept of anti fuzzy subgroups of groups. Modifying
Biswas’ idea, Hong and Jun [3] applied the idea to BCK-algebras. They introduced
the notions of anti fuzzy subalgebras and anti fuzzy ideals of BCK-algebras and
investigated several properties. Using anti fuzzy notion and the idea of Lukasiewicz
t-conorm, Jun [7] constructed the concept of Lukasiewicz anti fuzzy sets and applied
it to BE-algebras. He introduced the notion of Lukasiewicz anti fuzzy BE-ideal and
investigated its properties. He discussed the relationship between anti fuzzy BE-ideal
and tTukasiewicz anti fuzzy BE-ideal and provided conditions for Lukasiewicz anti
fuzzy set to be Lukasiewicz anti fuzzy BE-ideal. He also gives three types of subsets
so called <-subset, T-subset, and anti subset, and then he considered the conditions
under which they can be BE-ideals.

Key words and phrases. Anti fuzzy subalgebra, Lukasiewicz anti fuzzy set, F.ukasiewicz anti fuzzy
subalgebra, <-subset, T-subset, anti subset.
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We would like to study the subalgebra of BCK/BCI-algebra using Lukasiewicz
anti fuzzy set introduced by Jun. We introduce t.ukasiewicz anti fuzzy subalgebra
of a BCK/BCl-algebra and investigate several properties. We give the relationship
between anti fuzzy subalgebra and fukasiewicz anti fuzzy subalgebra. We discuss
a characterization of a fLukasiewicz anti fuzzy subalgebra. We find conditions for a
Lukasiewicz anti fuzzy set to be a Lukasiewicz anti fuzzy subalgebra. We finally find
the condition that <-subset, T-subset, and anti subset become subalgebra.

2. PRELIMINARIES

This section lists the known default content that will be used later.

A BCK/BCl-algebra is an important class of logical algebras introduced by K. Iséki
(see [5] and [6]) and was extensively investigated by several researchers.

We recall the definitions and basic results required in this paper. See the books
[4,8] for further information regarding BCK-algebras and BCl-algebras.

If a set X has a special element “0” and a binary operation “ *x ” satisfying the
conditions:

(1) (Ya,b,c € X) (((a %)+ (a+c)) +
(Iy) (Va,be X) ((a*(a*xb))xb=0);
(I3) (Va € X) (a*a=0);
(1) (Va,be X) (axb=0,bxa=0 = a=0»b),
then we say that X is a BCl-algebra. If a BCl-algebra X satisfies the following
identity:
(K) (Va € X) (0%a=0),
then X is called a BCK-algebra.
The order relation “<” in a BCK/BCl-algebra X is defined as follows:

(cxb) =0);

(2.1) (Va,be X)(a<b < axb=0).
Every BCK/BCl-algebra X satisfies the following conditions (see [4,8]):
(2.2) (Va € X)(ax0=a),
(2.3) (Va,b,ce X)(a<b = axc<bxc,cxb<cxa),
(2.4) (Va,b,c € X) ((a*xb)*xc=(ax*xc) D).
Every BCl-algebra X satisfies (see [4]):
(2.5) (Va,b e X) (ax(ax*x(axb)) =axb),
(2.6) (Va,b e X) (0% (a*xb) =(0xa)*(0xD)).

A subset K of a BCK/BCl-algebra X is called a subalgebra of X (see [4,8]) if it
satisfies:

(2.7) (Va,b e K)(axb e K).
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A fuzzy set g in a set X of the form

(2.8) g(b) := { h o Z;Z

is called an anti fuzzy point with support a and value s, and is denoted by ¢. A fuzzy
set g in a set X is said to be non-unit if there exists a € X such that g(a) # 1.

For a fuzzy set g in a set X, we say that an anti fuzzy point ¢ is said to

(i) beside in g, denoted by % < g (see [2]) if g(a) < s;

(ii) be non-quasi coincident with g, denoted by ¢ T g (see [2]) if g(a) + s < 1.

If <gor 2Tg (resp., ¢ <gand ¢7Tg), we say that ¢ <V g (resp., ¢ <ATg).
Given 8 € {<, T}, to indicate %Bg means that % 3 g is not established.

A fuzzy set f in a BCK/BCl-algebra X is called

e an anti fuzzy subalgebra of X (see [3]) if it satisfies:

(2.9) (Va,b € X)(f(axb) < max{f(a), f(b)});
e an anti fuzzy ideal of X (see [3]) if it satisfies:

(2.10) (Va € X)(f(0) < f(a)),

(2.11) (Va,b € X)(f(a) < max{f(axb), F(5)}).

Let € be an element of the unit interval [0, 1] and let g be a fuzzy set in a set X. A
function £ : X — [0,1], z = min{1, g(x) + €}, is called a Lukasiewicz anti fuzzy set
of g in X (see [7]).

Let L be a Lukasiewicz anti fuzzy set of a fuzzy set g in X. If ¢ = 0, then
Fo(z) = min{l, g(z) + ¢} = min{1,g(z)} = g(z) for all z € X. This shows that if
€ = 0, then the Lukasiewicz anti fuzzy set of a fuzzy set g in X is the classical fuzzy
set g itself in X. If ¢ = 1, then ¥i(z) = min{1, g(z) + e} = min{1,g(z) + 1} =1
for all z € X, that is, if € = 1, then the hLukasiewicz anti fuzzy set is the constant
function with value 1. Therefore, in handling the Lukasiewicz anti fuzzy set, the value
of € can always be considered to be in (0, 1).

Let g be a fuzzy set in a set X and € € (0,1). If g(x) + & > 1 for all x € X, then
the Lukasiewicz anti fuzzy set Lj of g in X is the constant function with value 1,
that is, £ (x) = 1 for all ¥ € X. Therefore, for the Lukasiewicz anti fuzzy set to
have a meaningful shape, a fuzzy set g in X and e € (0, 1) shall be set to satisfy the
condition “g(x) + ¢ < 1 for some x € X

Given a Lukasiewicz anti fuzzy set L of a fuzzy set g in X and s € [0, 1), consider
the sets:

(b5, s)« ={ye X [Y<bi} and (b, s)y:={ye X[LTL},

which are called the <-subset and T -subset of Lg in X'. Also, we consider the following
set

Anti (1) == {y € X | L5(y) < 1}
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and it is called the anti subset of L; in X. It is observed that

Anti (BF) ={y € X | g(y) +e < 1}.

3. LukasiEwicz ANTI Fuzzy SUBALGEBRAS

In this section, let f and v be a fuzzy set in X and an element of (0, 1), respectively,
unless otherwise specified.

Definition 3.1. A hLukasiewicz anti fuzzy set L.} in a BCK/BCl-algebra X is called
a Lukasiewicz anti fuzzy subalgebra of X if it satisfies

(3.1) (Va,y € X)(Vsq, 8 € [0,1)) (si <bj L<b} = o< L}) .

max{sa, Sp}

Ezample 3.1. Let X = {0,by, b, b3, bs} be a set with a binary operation “x” given by
the Cayley table:

* 0 b1 b2 bg b4
0 0 0 0 0 0
by b1 0 b1 0 0
by by by 0 0 0
bs bs bs bs 0 0
by by bs by by 0

Then X is a BCK-algebra (see [8]). Define a fuzzy set f in X as follows:

0.24, if z =0,
0.31, if &= by,

f:X =101, z~—< 037, if z=by,
0.43, if x = by,

0.58, if = by.

Given v := 0.58, the Lukasiewicz anti fuzzy set L} of f in X is given as follows:

0.82, if 2 =0,

0.89, if z = by,

L X —[0,1], x4 095 if z=by,
1.00, if 2 = by,

1.00, if z = by.

It is routine to verify that L.} is a Lukasiewicz anti fuzzy subalgebra of X

Theorem 3.1. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then it’s
tukasiewicz anti fuzzy set L} in X is a tukasiewicz anti fuzzy subalgebra of X.

Proof. Assume that f is an anti fuzzy subalgebra of a BCK/BCl-algebra X. Let
z,y € X and s, s € [0,1) be such that & <L} and £ < Lj. Then, Lj(z) < s, and
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L3 (y) < 5. Hence,
Li(z *y) = min{l, f(z * 2) + 7} < min{1, max{f(z), f(y)} + 7}
= min{1, max{f(z) +7, f(y) + 7}}
= max{min{1, f(z) + v}, min{1, f(y) + 7}}
= max{L}(a:), L}(y)} < max{$q, Sp},

which implies that ﬁ <L}. Therefore, L} is a Lukasiewicz anti fuzzy subalgebra

of X. O
The following example shows that the converse of Theorem 3.1 may not be true.

Ezxample 3.2. Let X = {0, by, b, bs3,bs} be a set with a binary operation “x”

Then, X is a BClI-algebra (see [4]). Define a fuzzy set f in X as follows:

0.28, if x =0,
0.32, if = = by,
f:X =101, z~—< 039, if z=by,
043, if v = bg,
0.61, if z = by.
Given v := 0.58, the y-Lukasiewicz fuzzy set L} of f in X is given as follows:
0.86, if x =0,
0.90, if = = by,
Ly X —[0,1], x4 097, if z=by,
1.00, if z = b3,
1.00, if xz = by.

It is routine to verify that L} is a fLukasiewicz anti fuzzy subalgebra of X. But f is
not an anti fuzzy subalgebra of X because of

f(by*xbs3) = f(bs) = 0.61 £ 0.43 = max{f(bs), f(b3)}
We explore a characterization of a Lukasiewicz anti fuzzy subalgebra.

Theorem 3.2. Let f be a fuzzy set in a BCK/BCl-algebra X. Then its Lukasiewicz
anti fuzzy set L} in X is a tukasiewicz anti fuzzy subalgebra of X if and only if it
satisfies

(3.2) (Va,y € X)(E} (2 *y) < max{L}(z),L}(y)}).



692 J. G. KANG AND H. BORDBAR

Proof. Suppose that L} is a Lukasiewicz anti fuzzy subalgebra of X. Let x,y € X.
Since % <L} and % < L7, it follows from (3.1) that m < L}. Hence,
E}(x +y) < max{L}(x), E}(y)}.
Conversely, assume that ¥.; satisfies (3.2). Let ,y € X and s, s, € [0, 1) be such
that > <L} and £ <L}, Then L}(z) < s, and L}(y) < sp, and so
Li(z xy) < max{bi(z),L}(y)} < max{s,, sy}

Thus, max?% < L7, and therefore, L} is a Lukasiewicz anti fuzzy subalgebra of
as b} f f

X. U

Lemma 3.1 ([7]). If f is a fuzzy set in a set X, then it’s Lukasiewicz anti fuzzy set
L} satisfies

(3.3) (Vo,y € X)(f(x) = fly) = Ly(x) = E5(y)).

Lemma 3.2. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then it’s
tukasiewicz anti fuzzy set L} satisfies

(3.4) (Vo € X)(E3(0) < Ei(w)).
Proof. If f is an anti fuzzy subalgebra of a BCK/BCl-algebra X, then

f(0) = flaxx) <max{f(z), f(z)} = f(z),
for all # € X. It follows from (3.3) that £.}(0) < L}(z) for all z € X. O

Proposition 3.1. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then it’s
tukasiewicz fuzzy set L} satisfies:

(3.5) (Vz,y € X) (L}(x) =£}(0) & Lj(z+y) <L}()).

Proof. Let f be an anti fuzzy subalgebra of a BCK/BCl-algebra X. Then L} is a
Lukasiewicz anti fuzzy subalgebra of X (see Theorem 3.1). Assume that L.}(x) = L3(0)
for all z € X. Then,

L (2 +y) < max{lj(z), Lj(y)} = max{L;(0), L;(y)} = Ej(y),

for all x,y € X, by Theorem 3.2 and Lemma 3.2.
Conversely, suppose that Lj(z * y) < Li(y) for all 2,y € X. Using (2.2) induces
Li(z) = L}(2x % 0) < E}(0), and so Li(z) = £;(0) for all z € X, by Lemma 3.2. [

Proposition 3.2. If f is an anti fuzzy subalgebra of a BCl-algebra X, then its
tukasiewicz fuzzy set L} satisfies

(3.6) (Vz € X)(E3(0xz) < Li(x)).
Proof. 1f f is an anti fuzzy subalgebra of a BCI-algebra X, then

f(0xx) <max{f(0), f(z)} = f(x),
for all z € X. Hence, L}(0* x) < L}(z) for all » € X, by Lemma 3.1. O
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Proposition 3.3. If f is an anti fuzzy subalgebra of a BCl-algebra X, then its
tukasiewicz fuzzy set L'} satisfies

(3.7) (Va,y € X) (V50,5 € [0,1)) (£ <L}, L <k} = 200 < p}).

max{sa,Sp}

Proof. Let z,y € X and s,,8, € [0.1) be such that T < L} and S% < L}. Then,
bi(r) < s, and B3 (y) < sp, and thus,

Li(z* (0% y)) = min{l, f(z * (0xy)) + 7}

< min{1, max{f(x), f(0*xy)} +~}

< min{1, max{ f(z), max{f(0), f(y)}} +~}

(@), f(y)} +7}

= min{l, max{f(x) +~, f(y) + 7}}

= max{min{1, f(x) +~}, min{1, f(y) +v}}
= max{L;(z), L3 (y)}
< max{sq, Sp}-

= min{1, max{f(z

Hence, —=0%)_] < b, O

» max{Sa,Sp}

We give conditions for a Lukasiewicz anti fuzzy set to be a Lukasiewicz anti fuzzy
subalgebra.

Theorem 3.3. Let f be a fuzzy set in a BCK/BCI-algebra X . If it’s Lukasiewicz
anti fuzzy set L} satisfies

(38)  (Va,y€ X)(¥sp,5.€[0,1)) (2 <w, L <k}, 2 <b} = <L),

max{sp,Sc}

then L} is a fukasiewicz anti fuzzy subalgebra of X .
Proof. 1t is straightforward by (/3) and (3.8). O

Proposition 3.4. Let f be a fuzzy set in a BCIl-algebra X. Then every Lukasiewicz
fuzzy subalgebra L} of X satisfies

(3.9) (Va,y € X)(Vsa, s € [0,1)) (£ <}, £ <} = 200 <L)

max{sq,Sp}
Proof. Let x,y € X and s,,s, € [0,1) be such that T < b} and i < L}. Then
bi(z) < s, and L} (y) < 5. Using Theorem 3.2 and Proposition 3.2, we have
L7 (2 (0xy)) < max{bp(z), B30+ y)} < max{bi(z), Lr(y)} < max{s,, s},

2+ (0%y) « L} [

and so, ax(sa 5]

Corollary 3.1. If f is an anti fuzzy subalgebra of a BCI-algebra X, then its Lukasie-
wicz fuzzy set L.} satisfies the condition (3.9).
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Theorem 3.4. Let L} be a Lukasiewicz anti fuzzy set of a fuzzy set f in a BCK/BCI-
algebra X. Then the <-set (L.}, s)< of L} is a subalgebra of X for all s € [0,0.5) if
and only if the following assertion is valid

(3.10) (Va,y € X) (min{L](z *y),0.5} < max{L}(x), L}(y)}).

Proof. Assume that the <-set (L}, s)< of L.} is a subalgebra of X for all s € [0,0.5).
If the condition (3.10) does not hold, then

max{L;(a),L}(0)} < min{L}(ab),0.5},
for some a,b € X. If we take s := max{L}(a),L}(b)}, then s € [0,0.5), ¢ <L} and
%<L7, ie.,a, b€ (L}, s)< Since (L}, s)< is a subalgebra of X, we have axb € (L}, 5).
But “T”‘Z’ZL} implies a * b ¢ (L}, 5)<, a contradiction. Hence,

max{L}(z), L}(y)} > min{L}(z * y),0.5},
for all z,y € X.

Conversely, suppose that L.} satisfies (3.10). Let s € [0,0.5) and z,y € X be such
that = € (L}, s)< and y € (L}, s)<. Then L}(x) < s and L}(y) < s, which imply from
(3.10) that

0.5 > s > max{bL}(z), L} (y)} > min{k}(z xy),0.5}.

Hence, =¥ < L}, ie., x xy € (L}, 5)<. Therefore, (L},s)< is a subalgebra of X for
s €[0,0.5). 0
Theorem 3.5. Let L} be a Lukasiewicz fuzzy set of a fuzzy set f in a BCK/BCI-
algebra X . If f is an anti fuzzy subalgebra of X, then the Y-set (L},S)T of L} s a
subalgebra of X for all s € [0,1).

Proof. Let s € [0,1) and v,y € (L}, s)y. Then £ T L} and £ T 1}, that is, L} (z)+s < 1
and L}(y) + s < 1. Hence,

Li(zxy) +s <max{bi(z), L}(y)} + s = max{L}(z) + s, L}(y) + s} < 1,

by Theorems 3.1 and 3.2. Thus, “* T L}, and so, v *y € (L}, s)y. Therefore, (L}, s)y
is a subalgebra of X. O

Theorem 3.6. Let [ be a fuzzy set in a BCK/BCI-algebra X. For a Lukasiewicz anti
fuzzy set L} of fin X, if the T-set (L}, s)y is a subalgebra of X, then L} satisfies

(3.11) (Va,y € X)(Vsa, s € (05,1]) (ZTE}, LTE}] = 2~ <L}).

min{sq,sp }

Proof. Let x,y € X and s,,s, € (0.5,1] be such that = TL} and sy—bTL} Then
v € (B}, sq)r C (Bf,min{s,, sp})r and y € (L}, s5)r C (B}, min{s,, sp})r. Hence,
rxy € (L}, min{s,, sp})r, and so,

Pi(zxy) <1 —min{s,, sy} < min{s,, ss},

since min{s,, s,} > 0.5. Therefore, Tr¥— < L. O
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Theorem 3.7. Let L} be a Lukasiewicz fuzzy set of a fuzzy set f in a BCK/BCI-
algebra X . If f is an anti fuzzy subalgebra of X, then the anti subset Anti (L}) of L}
is a subalgebra of X.

Proof. Let z,y € Anti (L}). Then f(z)+~ < Land f(y) +v < 1. If f is an anti fuzzy
subalgebra of X, then L} is a Lukasiewicz anti fuzzy subalgebra of X (see Theorem
3.1). It follows from Theorem 3.2 that

L (e y) <max{bp(z), EBr(y)} = max{f(z) +7, f(y) + 7} < L.
Hence, z * y € Anti (L}), and therefore, Anti (L}) is a subalgebra of X. O

Theorem 3.8. Let f be a fuzzy set in a BCK/BCIl-algebra X. If a Lukasiewicz anti
fuzzy set L} of f in X satisfies

(3.12) (Va,y € X) (V50,5 € [0,1)) (£ <1}, £ <L} = 2= TL}),

min{sa,sp}
then the anti subset Anti (L}) of L} is a subalgebra of X.
Proof. Assume that L} satisfies the condition (3.12) for all z,y € X and sq,s;, € [0,1).
Let x,y € Anti(L}). Then f(z) +~ < 1 and f(y) +v < 1. Since 7 <L} and

L(z)

f

L%(y) < L7, it follows from (3.12) that
f

. wxy g
(3.13) THERHMIR R

If 2+ y ¢ Anti (L}), then L}(z *y) = 1, and so,
L} (2 * y) + min{L}(z), L}(y)} = 1 + min{L}(z), L} (y)}
=1+ min{min{1, f(z) + 7}, min{1, f(y) +~}}
=1+ min{f(z) +, f(y) + 7}
=1+ min{f(z), f(y)} +7

>1+v>1,
which shows that (3.13) is not valid. This is a contradiction, and thus, z*y € Anti (L}).
Hence, Anti (L}) is a subalgebra of X. O
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IDEAL RELATIVE UNIFORM CONVERGENCE OF DOUBLE
SEQUENCE OF POSITIVE LINEAR FUNCTIONS

KSHETRIMAYUM RENUBEBETA DEVI! AND BINOD CHANDRA TRIPATHY?

ABSTRACT. In this article, we look into the concept of ideal relative uniform con-
vergence of a double sequence of functions. In addition, we define ideal relative
uniform Cauchy and ideal regular relative uniform convergence of a double sequence
of positive linear functions defined on a compact domain D with respect to the
scale function o(z) defined on D. We also introduced several classes of ideal relative
uniform convergent double sequences of functions and investigated their algebraic
and topological properties.

1. INTRODUCTION

Kostyrko et al. [21] introduced the concept of Z-convergence of sequences of real
numbers, where 7 is an ideal of subsets of the set N of natural numbers. Z-convergence
is a generalisation and unification of many notions of ordinary convergence. Fast [17]
and Steinhaus [29] independently introduced the concept of statistical convergence
in 1951 as a generalisation of the concept of ordinary convergence. Furthermore, in
1959, Schoenberg [28] independently investigated some basic properties of statistical
convergence. Later, it was studied from a sequence space perspective and linked with
summability theory by Fridy [18], Gokhan et al. [19], Tripathy and Sarma [31], and
many others. The concept is based on the notion of natural density of N subsets.

A subset E of N is said to have density 0(E) if

5(E) = lim kimm,

n—+oo N

Key words and phrases. Double sequence, Density, Ideal convergence, Statistical convergence,
Relative uniform convergence, Regular convergence
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exists where y g is the characteristics function of F.
A subset E of N is said to have logarithmic density d(E) if

d(E) = lim ~3 AE

n—-+00 S”k: 1

exists, where s, = % =logn+ v+ O(%), where v is the Euler’s constant.
k=1

The above expression is equivalent to

1 n
d(E) = lim X (k)
notoologniz; k

A double sequence is defined as a double infinite array of numbers (z,;). Pringsheim
[25] introduced the concept of double sequence. Bromwich [2] contains some earlier
work on double sequence spaces. Hardy [20] introduced the concept of regular con-
vergence of a double sequence. Basarir and Sonalcan [1, 2], Das et al. [4, 5|, Datta
and Tripathy [5, 6], and many others have studied the double sequence from various
perspectives.

The notion of statistical convergence for double sequences was introduced by Méricz
[22], Mursaleen and Edely [24], Tripathy [30] independently. The notion depends on
the idea of density of subsets of N x N. A subset E of N x N is said to have density

p(E) if
p(E)= lim panlkleE n, k)
exists.
Tripathy and Tripathy [39] introduced the notion of logarithmic density for subsets
of N x N.
A subset £ C N x N is said to have logarithmic density p*(F) if

p (E)= lim 1 Zp:zq:XE<n7k)

Pa—+o0 8,5, “— = nk

exists.
The above expression is equivalent to the following;:

p(E) = Jm LSy e

lim
pq—>+oo logplogqn it

A family of sets I C 2%, where 2% is the class of all subsets of non-empty set X, is
said to be ideal if and only if () € Z, for each A, B € Z, we have AU B € Z, and for
each A € 7 and each B C A, we have Be€ Z. Ifand only if ANB € F and B € F
for each instance of A € F and B D A, () ¢ F, F C 2% is said to be a filter on X. If
Z # {0} and X ¢ Z, then an ideal Z is referred to as a non-trivial ideal. If and only
if 7 = F(Z) = X — A, then it is evident that Z C 2% is a non-trivial ideal: A € 7
is a filter on X. A non-trivial ideal Z C 2% is said to be admissible if and only if
o {{z}:ze X}
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Remark 1.1. If we consider subsets A of N with §(A) = 0,d(A) = 0 then, these classes
of subsets of N will form an ideal of N. The convergence of sequences will be called as
statistical and logarithmic convergence. Similarly, on considering subsets A of N x N
with p(A) = 0 and p*(A) = 0, we will get the ideals of N x N. The corresponding
convergence of sequences are known as Pringsheim’s sense statistical and logarithmic
convergence of double sequences. Accordingly, the regular convergence can be defined.

For a detail account of Z-convergent sequence, one may refer to [11-16,27, 32-38].

Moore [23] established the idea of uniform convergence of sequence of functions
with respect to a scale function. Chittenden [3] provided the following formulation of
Moore’s definition.

Definition 1.1. If there are functions g and o(x), defined on D, and for every € > 0,
there is an integer ng = ng(e) such that for every n > ny, the inequality

l9(x) = ful(2)] <elo(z)],

holds for every element = of D, then the sequence (f,,) of real, single-valued functions
fn of a real variable x converges relatively uniformly on D. Scale function is the name
given to the function o(z). When compared to the scale function, the sequence (f,,)
is said to converge relatively uniformly.

The notion was further studied by [7-10,26] and many others. For the first time,
Yildiz [40] introduced the convergence known as ideal relative uniform convergence
for double sequences of functions.

2. DEFINITIONS AND PRELIMINARIES

Throughout the paper olo(Tu), 200(Zo, 1), 2¢(Zs, 1), 2Ty, ru), ok (Zy,mu) de-
note the classes of relatively uniformly bounded, Z,-relatively uniformly null, Z-
relatively uniformly convergent, Zo- regularly relatively uniformly convergent, Z,-
regularly relatively uniformly null of double sequences of positive linear functions,
respectively.

Definition 2.1. A sequence space E is referred to as solid or normal if (z,;) € E
implies (aupxnk) € E, for any (ay,;) with |a,e| < 1, for all n, k € N.

Definition 2.2. If a sequence space E contains the canonical pre-images of all its
step spaces, it is said to be monotone.

Remark 2.1. If a sequence space F is solid, then F is monotone.

Definition 2.3. A sequence space F is said to be symmetric if for any n,k € N x N,
() € B implies (2r(nk)) € E, where 7 is a permutation of N x N.

Definition 2.4. For all n, k € N, a sequence space E is said to be convergence free if
(k) € E and z,, = 0 implies y,x = 0 together with (y.x) € E.
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Definition 2.5. For all n, k € N, a sequence space F is said to be a sequence algebra
if (xpk © Yuk) € F whenever (x,x) and (y,x) belongs to E.

Definition 2.6 ([40]). In the class of all subsets of N x N, let Z, be an ideal of 28*N.
If there are functions g(z) and o(z) defined on D such that for every £ > 0 and for
all z € D, then the sequence of functions (fx(x)) of single, real-valued functions R is
said to be Zy-relatively uniformly convergent on D satisfying the following condition.

{(n, k) e N N:[fur(z) — g(z)| = elo(x)[} € Lo

This can also be expressed as for every € > 0, there exists M € Z, such that for any
(n,k) ¢ M,
|for(x) — f(z)] < elo(z)|, forallx € D.

Remark 2.2. We obtain the definition of Zs-relatively uniformly null of double sequence
of positive linear functions if g = 6, the zero function in the previous definition.

Definition 2.7. In the class of all subsets of N x N, let Z, be an ideal of 2N, 7,-
relatively uniformly Cauchy refers to a set of functions (f,x(z)) defined on a compact
domain D if s = s(¢), t = t(¢) and function o(x) are defined on D such that for every
e >0 and for any x € D

{(n, k) e NXN: [fur(z) — fu(z)| = elo(z)[} € Lo,

Definition 2.8. Considering the class of all subsets of N x N and N, respectively, let
T, be an ideal of 2"*Nand Z be an ideal of 2V, If there are functions g(z), fr(z), f,(z),
o(z), & (), nk(x) defined on D such that for every ¢ > 0 and for any « € D, then the
sequence of single, real-valued functions (f,x(z)) is said to be Zy-regularly relatively
uniformly convergent on D satisfying the following conditions:

{(n,k) e Nx N:|fur(x) —g(x)| > €lo(x)|} € Iy, for any n,k € N,
{k e N:|fur(x) — fu(z)| > €lén(x)|} € Z, for every n € N,
{neN:|fu(z) = fr(z)| > elm(x)|} € Z, for every k € N.

Remark 2.3. We obtain the definition of Zy-regularly relatively uniformly null of double
sequence of positive linear functions if ¢ = f, = f, = 6, the zero function in the
previous definition.

Remark 2.4. T, = I,(P) C 2" is the class of all subsets of N x N containing terms
of sequence of functions (f.x(x)) upto ng finite term for all n and k w.r.t. the scale
function o(z). Then, Z,(P) is an ideal of 2¥*N and and it corresponds to the double
sequence of functions’ relative uniform convergence with respect to o(z) on D.

On considering Z,(P) along with Ty, it corresponds to the double sequence of
functions’ regular relative uniform convergence with respect to the scale function o(z)
on D.
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Remark 2.5. Let I, = T,(p) C 2"V the class of all subsets of N x N of zero natural
density w.r.t. the scale function o(x), then, Zy(p) is an ideal of 28N and Z,(p)
corresponds to the statistical relative uniform convergence of double sequence of
functions w.r.t. o(z) on D.

On considering Zy(p) along with Zs, it corresponds to the statistical regularly

relatively uniformly convergent double sequence of functions w.r.t. the scale function
o(x) on D.

Remark 2.6. Let I, = Ty(p*) C 2N the class of all subsets of N x N of zero
logarithmic density w.r.t. the scale function o(z), then, Zy(p*) is an ideal of 2N and
Z5(p*) corresponds to the logarithmic relative uniform convergence of double sequence
of functions w.r.t. o(x) on D.

On considering Zy(p*) along with Z, it corresponds to the logarithmic regularly

relatively uniformly convergent double sequence of functions w.r.t. the scale function
o(x) on D.

Definition 2.9. Let (f.x(z)) and (gux(x)) be two double sequences of real, single-
valued functions defined on compact subset D and Z, be an ideal on 2%, Then, we say
that fur(x) = gu(x) for almost all n and k relative to Iy w.r.t. the scale function
o(z) (in short a.a.n&k.r. Zy w.r.t. the scale function o(z)) if for all x € D,

{<n7 k) € NxN: fnk(x) 7£ gnk<x)} € IQ-

Definition 2.10. Let (f.x(x)) be a sequence of real, single-valued functions defined
on compact subset D and Z, be an ideal on 2¥*N. A subset M of D, is said to contain
frr(z) for a.an&k.r. Zy w.r.t. the scale function o(z) if for all x € D,

{(n,k) e Nx N: fx(zx) & M} € I,.
We introduce the following sequence spaces:
2Co(Za, ru) No Lo (ru) =2 ' (Lo, T),  20(Zo, 1) No oo (ru) =2 ™ (Zy, Tu),
2Ty, 7u) Ny Lo (T1) =5 (T, 1), o™ (T, 1) My Log (1) = ¢™F(Ty, rur).

The double sequence f = (f,x) with elements chosen from the space of all real-valued
functions on compact domain D is considered. Let ||f||, denote the usual sup-norm
of f in D with respect to the scale function o(x), which is defined as follows.

1) 11l = 1wl = sup sup 2]

n,keNzeD |0(1’)| .

3. MAIN RESULTS

Theorem 3.1. Let I, represent a 2"*N ideal. Then, on a compact domain D, a
double sequence of functions (fux(z)) is Zy-relatively uniformly convergent if and only
if it is Iy-relatively uniformly Cauchy.
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Proof. Consider a compact domain D and a double sequence of functions (fnx(x)).
In terms of the scale function o(x) defined on D, (f.x(z)) is Zs-relatively uniformly
convergent to f(z) on D.

Then, for every € > 0 and for all x € D, there exists M € Z, such that

(3.1) farl@) = f@)| < Slo(@)], for all (n, k) ¢ M.
Similarly,
(3.2) fl@) = f@)] < o), for all (s,2) & M.

Let n, k,s,t > ng = ng(e). For every ¢ > 0 and for all x € D, there exists M € I,
such that for all (n,k) ¢ M and (s,t) ¢ M, using (3.1) and (3.2) we have

For(@) = fal@)] < |fur(e) = F@)] + () = )]
< Slo(@)| + Slo(@)
< elo(a)].

Hence, (fux(x)) is Zo-relatively uniformly Cauchy w.r.t. scale function o(x).

Conversely, let (f.x(z)) be Zy-relatively uniformly Cauchy on D. Then, there exist
G, H such that the interval U = [feu(x)—1, fou(x)+1] contains f.x(x) a.a.n&k.r. Z,
w.r.t. the scale function o(x), for all z € D.

Next, choose Gy, Hy such that U’ = [fo, m, (x) — 1, fo,.m, (x) + 1] contains  f ()
a.an&k.r. Zy w.r.t. the scale function o(z), for all z € D.

Let, Uy = UNU’ contains f,.(z) a.a.n&k.r. T, w.r.t. the scale function o(z), for
all z € D.

Evidently,

{(n,k) e NXN: fop(x) ¢UNU} ={(n, k) e Nx N: fon(z) ¢ U}
+{(n,k) e NxN: fou(z) ¢ U'}.

This implies, {(n,k) € Nx N: fu(z) ¢ UNU'} € Ty, for all 2 € D. Then, for all
x € D, Uy is a closed interval of D with length less than or equal to one that contains
fok(z) a.and&k.r. Zy w.r.t. the scale function o(x). Next, choose Gy, Hy such that
U" = [faom, (%) — 1, fa,m, (7) + 1] contains f,x(z) a.a.n&k.r. T, w.r.t. the scale fun-
ction o(x), for all x € D.

Let Uy = UyNU” contains fop,(x) a.an&k.r. Z,, for all z € D. Then, we get, Us is a
closed interval of D of length less than or equal to % that contains f,x(z) a.a.n&k.r. Z,
w.r.t. the scale function o(x), for all x € D.

Continuing inductively, we get a nested sequence (U,,) of closed intervals of D
such that for all m € N,U,, D U1, the length of U,, > 2™ and (fu(x)) €
Un, a.an&k.r. Z, w.r.t. the scale function o(z). Thus, N}, U,, will contain a func-
tion f(z), w.r.t. the scale function o(z), for all x € D.
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Let € > 0 be given and there exists ng such that ¢ > 27", Then, (f.x(z)) €
Un a.an&k.r. Zy w.r.t. the scale function o(z), for all z € D. We have

{(n, k) e NxN: |fur(z) = f(2)| 2 e} < {fur(2) ¢ Un} € Lo,

for all x € D. Hence, (f.x(2)) is Zo-relatively uniformly convergent to f(z) w.r.t. the
scale function o(x) on D. O

We state the following result without proof, since it can be established using
standard technique.

Theorem 3.2. Let T, be an ideal of 2Y*N. The classes of double sequences of functions
200(Ia, 1), 2¢(Ly, 1), o™ (Ty,1u), o (Lo, 1), 265 (Lo, T0) 0 ™ (Lo, 710) 2 ™ (T, Tur),

o B(Zy, ru) are linear spaces.

Theorem 3.3. Let T, be an ideal of 2N, The classes of double sequences of functions
ol (Lo, ru), o™(Ly, 1), o™ (Lo, mu), o (Lo, 7u) are normed linear spaces with
respect to the norm defined by (2.1).

Proof. Let a, 8 be the scalars and (fnx(2)), (gnk(x)) €2 ¢ (I3, 7u). Then, there exist
positive real numbers K; and K, such that

sup |for(x)] < Kiloy(z)] and  sup |gnk(x)| < Kaloo(z)].

n,keN n,keN
Hence,

sup |afur(2) + Bgni(2)| < [ sup | fur(2)] + (8] sup [gar(z)]

n,keN n,keN n,keN

< lalKi|oi(2)] + | 5| Kaloa ()]
Without loss of generality we can consider the same scale function, o(z)

= max{|o1(x)|, |o2(z)|}, and we get

SUp | fu (%) + Bk ()] < {al Ko + 8] Ko} o ().

Hence, the space oc{'(I5, 7u) is a linear space. Similarly, we can establish for the rest
of the spaces. Now, to verify that the linear space ocj*(l2, ru) satisfy the norm given
in (2.1), the following three conditions must hold true.

Let (fnk(x))a (gnk(x)) €2 081(1277“)'

(i) One can easily verify that ||f||, =0 < f(z) =0, for all z € D.

(i)

f+9)|lc = sup sup
17+ 9lla = sup sup === )
< sup sup |fnk(x)| + sup sup |gnk<x>|
n,keNzeD ’0'<37)’ n,keNzeD |O'(<T)|

< [Ifllo +lglle-
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(iii)

Ml = sup sup 2@
nkeNzeD |o(z)]

< |A] sup sup
n,keEN zeD ‘O’(.CC)‘

< Ao

Similarly, we can establish for the rest of the sequence spaces. O

Theorem 3.4. The classes of double sequences of functions o' (Za, ), 2¢™(Zo, T10),
o (Ty, ru), o8 (Ty, ru) are Banach spaces.

Proof. Let (f'(z)) be a relative uniform Cauchy sequence in oc™(Zy, ru) Co loo(ru),
where fi(z) = (fi, (x)). Then, (f'(z)) converges relatively uniformly in ol (ru).
There exists

.liin fio(x) = fux(z), forallz € D and n,k € N.
1—>+00

Let Z, — lim f!,(z) = g¢;(z), for all z € D and ¢ € N. Since, (f*(z)) is relatively
uniformly Cauchy, for every € > 0 and for all x € D, there exists nyg € N such that

i j € .
(3.3) [ fo(@) = far(2)] < Slo(2)l, for all 4, j = no.

Since, (f,(z)) is Zy-relatively uniformly convergent to g;(x), there exists L € T, such

that for each (n, k) ¢ L and for all x € D, we have
] € o
(3:4) | far(@) = gi(@)] < glo(x)], for all 4,5 > no.

Similarly, (f7,(z)) is Zy-relatively uniformly convergent to g;(z), there exists M € T,
such that for each (n, k) ¢ M and for all x € D, we have

(3.5) Fila) = g,(@)] < Slo()]
Using equations (3.3), (3.4), (3.5), for all x € D, we have
l9i(x) = g;(@)] = | far(@) = gi(@)] + | far(@) = g5 (@)| + | fa(@) = fr(@)]

< elo(z)].

Thus, (g;(z)) is relatively uniformly Cauchy. Then, there exists lim;_, . ¢;(x) = g(x)
(say). We can write, for every nn > 0 and for all x € D, there exists mg such that

(3.6) gi(z) — g(z)| < g|a(x)|, for all i > mo.

Since, (f,(x)) is relatively uniformly Cauchy, for every n > 0 and for all z € D, there
exists mg such that

(3.7) (@) — fan()] < g|a(:6)|, for all i > mo.
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Since, (f,.(x)) is Zy—relatively uniformly convergent to g;(z), there exists Q € Z,
such that for all (n, k) ¢ @ and for all z € D we get

(38) Fix@) = 0:(@)] < Llo()]
Without loss of generality, for all (n, k) ¢ @ and z € D, using equations (3.6), (3.7),
(3.8), we get
[far () = 9(@)| < |fur(@) = (@) + [ far(@) — gi(@)] + 1gi(x) — g(2))]
< njo(z)].

Hence, (fur(x)) is Zy-relatively uniformly convergent to g(z) w.r.t. the scale function
o(x). Thus, o¢™(Zy, ru) is a Banach space.
Similarly, we can prove for the other classes of sequences of functions. O

In view of Theorem 3.4, we state the following theorem without proof.

Theorem 3.5. The classes of double sequences of functions o' (Zy, 1), 2¢™(Za, T10),
2B (Ty, 1), o™ Ty, ru) are nowhere dense subsets of oloo(ru).

Theorem 3.6. (a) The classes of double sequences of functions oco(Zs,ru),
o (Lo, 1), 28 (Lo, 1), o0 B(Zy, ru) are solid and hence, are monotone.

(b) The classes of double sequences of functions oc(Zy,ru), oc%(Ty,ru),
o™ (Zy, ), o™ (Ly, ru) are not monotone and hence, are not solid.

Proof. The proof of the first part follows from the following inclusion relation.
Consider the class of sequences of functions o¢o(Zs, 7u).
Let (fur(2)) €2 co(Z,ru) and (ayk) be a sequence of scalars such that

lonk] <1, for all n,k € N.
Let € > 0 be given. Then, for all x € D, we have
{(n, k) € NxN:|fur(z)] = elo()]} 2 {(n, k) € Nx N [ong fur(z)| = elo()[}.

Hence, (g fuk(x)) €2 co(Za, ru). This implies, oco(Zy, ru) is solid and hence, mono-
tone.
Similarly, we can establish for the rest of the cases. OJ

The proof of the second part follows from the example below.

Ezample 3.1. Let Zy = Zy(p*), consider the double sequence of functions (f.x(z)),
Jok : [0,1] — R defined by

x, for n,k are prime,n, k € N,
fnk( ) = {

0, otherwise.

We get, (fur(x)) is logarithmically relatively uniformly convergent on [0, 1] w.r.t.
the scale function o(x) = 1. Hence, (fux(x)) € ¢(Zy, Tu).
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Let (gnx(z)) be the pre-image of the sequence of functions (f,x(z)) defined by

(2) = x, fornisodd, n,keN,
Inier L) = 0, otherwise.

One cannot get a scale function for which (g.x(x)) is logarithmically relatively uni-
formly convergent on [0,1]. This implies, (gnk(x)) €2 ¢(Zy, ru). Hence, o¢(Zy, ru) is
not monotone and therefore, not solid.

Similarly, we can prove for the other cases.

Result 3.1. The sequence spaces oco(Za, 71), oc8(Zy, 1), 208" (Za, 1), 2058 Zo, Tur),
oC(Lo, mu), 2cf(Ly,r11), oc™(Ly, 1), o¢™R(Zy, ru) are not symmetric.
The result follows from the example below.

Ezxample 3.2. Let Ty = Zy(p), consider the double sequence of functions (f,x(x)),
fok :[0,1] = R, defined by

x, forn =142 foralli€N,
fnk( ): .
0, otherwise.

This implies, (fux(x)) €2 c¢(Zy, Tu).
Let (gnx(x)) be the rearranged sequence of functions of (f,x(z)) defined by

x, forn+keven, n,keN,
gnk( )Z .
0, otherwise.

One cannot get a scale function for which (gnx(x)) is statistically relatively uniformly
convergent on [0,1]. This implies, (g.x(z)) &2 ¢(Zo,ru). Hence, 9¢(Zy, ru) is not
symmetric.

Similarly, we can establish for the rest of the classes of double sequences of functions.

Result 3.2. The sequence spaces oco(Zo, 71), ocf(Zy, 1), 208 (Za, 1), 2058 ZLy, Tu),
2C(Ly, r), o (Zy, 1), o™ (Ly, 1), oc™R(Ty, 7u) are not convergence free.
The result follows from the example below.

Ezxample 3.3. Let Zy = Zo(P). Consider the double sequences of functions (f,x(z)),
fur 2 [0,1] = R defined by

nkx
Iokl®) = T e

We get, (fur(z)) is relatively uniformly null on [0, 1] w.r.t. the scale function

1 for0<z <1,
o) = -
1, forx=0.

for each n,k € N.

Hence, (fnr(x)) €2 co(Zs, ru).
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Let us consider another class of sequences (g,x(z)) of functions g,x : [0,1] — R

defined by

nk
Ink(x) = kT for each n,k € N.

This implies, (gnx(2)) €2 co(Zs, ru). Hence, aco(Zs, ru) is not convergence free.
Similarly, we can show for the rest of the cases.

Theorem 3.7. The sequence spaces oco(To,1w), ol (Lo, ru), 208 (Ly, ru),
2B ( Ty, ru), 9c(Ty, ru), ol (Lo, 1u), o™ (Lo, 1), o™ Ly, 7u) are sequence algebra.

Proof. Let the double sequence of functions ( f,x(z)) and (g,x(z)) defined on a compact
domain D C R belong to the class of sequence of functions y¢(Zy, ru). Then, for every
e > 0, there exists M € Z, such that for all (n,k) ¢ M and x € D,

() = F@)| < gy lo @)l forall ol 2 m
Similarly,
5
|gnk(x) — g(x)] < Wb(mﬂ, for all n, k > na.

By applying reverse triangle inequality, there exists n3 such that for all n, k > n3, we
have,

| fur(@)] = [f (@) < |[frr(@)] = [f(@)]] < |far(z) = f(2)] < 1.
This implies,
| (2)]

far(@)| < |f(2)]+1, ie., 11 < 1.

For all (n,k) ¢ M, there exists ng such that for all ng > max{ny,ns,n3} and = € D,
we have

k() = frk(2)9(2) + frr(x)g(x) — f(2)g(2)|

()
— | fur(@) (gur () — 9(2)) + 9(2) (fr (@) — f())

< @) 1gor(@) — 9(@)| + [9(@)] [fur(z) — F(2)]

< |furl2) c—[o(@)] + |9(2)| = —————|o(x)]

EGOED

< é¢lo(z)].

Hence, (fur(2)gnk(2)) €2 c(Zy, ru).
Similarly, we can establish for the rest of the classes of double sequences of functions.
O

Result 3.3. On a compact domain D, if a double sequence of functions (f,x(z)) is
ZIs-uniformly convergent, it must also be Z,-relatively uniformly convergent on D but
not vice versa.

The converse of the Result 3.3 is not necessarily true, which is shown in the following
example.
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Ezxample 3.4. Let Zy = Zy(p), consider the double sequence of functions (f,x(x)),
fuk : [0,1] = R defined by

nkx’

For() = L for0<z<1n,keN,
R 0, for x = 0.

We get, (fur(x)) is statistically relatively uniformly convergent w.r.t. the scale function

(2) %, for 0 <z <1,
o(r) =
1, forx=0.

Hence, (fux(2)) is Zy-relatively uniformly convergent on [0, 1]. One can easily see that
(fur(x)) is not Zy-uniformly convergent on [0, 1].

Result 3.4. On a compact domain D, if a double sequence of functions (f,(z)) is
Is-regularly relatively uniformly convergent, it must also be Zs-relatively uniformly
convergent on D but not vice versa.

The converse of the Result 3.4 is not necessarily true, which is shown in the following
example.

Ezxample 3.5. Let Iy, = Zy(P). We consider the sequence of functions (f(z)),
fuk : [0,1] = R defined by

—x, forn=1,kiseven, k=1,niseven, n,k € N,
Jok(z) = .
x, otherwise.

Then, (fur(x)) is relatively uniformly convergent on [0, 1] w.r.t. the scale function
o(xz) = 1. Hence, (fu(x)) is Zy-relatively uniformly convergent on [0, 1].

But the first row and first column of (f,x(x)) is not relatively uniformly convergent
and hence, (f.r(x)) is not Zy-regularly relatively uniformly convergent.

4. CONCLUSIONS

In this article, we have studied ideal convergence of double sequence of functions
from the point of view of relative uniform convergence w.r.t. the scale function o(z)
defined on a compact subset D C R. We introduced the classes of double sequences
of functions oc(Zy, ru), 2co(Zo, ), 2T, 1), 28T, 1), 2¢™(To, 1), 268H(Ls, ru1),
o™ (T, ru), 2 (Zy, ru) and studied their properties like solid, monotone, sym-
metric, sequence algebra, convergence free and denseness. We also established the
relationship between Zs-relative uniform convergent and Z,- relative uniform Cauchy
as well as relationship between Zy-relative uniform convergent and Z,-regular relative
uniform convergent.
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VAGUE WEAK INTERIOR IDEALS OF I'-SEMIRINGS
YELLA BHARGAVI!, AKBAR REZAEI?, TAMMA ESWARLAL!, AND SISTLA RAGAMAYT!

ABSTRACT. The notion of a ((complete-) normal) vague weak interior ideal on a
(regular) T'-semiring is defined. It is proved that the set of all vague weak interior
ideals forms a complete lattice. Also, a characterization theorem for a regular
I'-semiring in terms of vague weak interior ideals is derived. Another interesting
consequence of the main result is that the cardinal of a non-constant maximal
element in the set of all (complete-) normal vague weak interior ideals is 2.

1. INTRODUCTION

In 1934, Vandiver [18] extended the notions of rings and distributive lattices and
defined a new algebraic structure as semirings. It is known that semiring theory has
many applications to many branches of pure and applied mathematics: functional
analysis, combinatorics, graph theory, automata theory, coding and language theory.
In 1981, Sen [17] introduced the notion of a I'-semigroup as a generalization of
semigroup. Then Rao [14, 15] generalized a semiring and I-ring by introducing I'-
semiring. Ideals play an important role in advance studies and uses of algebraic
structures (see, [6,10]). Hedayati and Shum [9] were considered the congruences and
ideals of a I'-semiring. In 1965, Zadeh [19] introduced the concept of a fuzzy set.
Then Gau and Buehrer [8] introduced the concept of vague sets as a generalization
of fuzzy sets. Moreover, Ramakrishna [12] studied vague cosets, vague products and
several properties related to them. Jun and Park [11] defined the notion of a vague
ideal in a subtraction algebra. Rao and Venkateswarlu [16] studied bi-interior ideals
of I'-semirings and get some of its properties. In 2008, Eswarlal [7] introduced the

Key words and phrases. (Vague) I'-semiring, left (resp. right) vague ideal, vague (weak) interior
ideal, ((complete-) normal) vague weak interior ideal.
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concepts of vague ideals and normal vague ideals in semirings. Bhargavi and Eswarlal
[1-5] were developed the theory of vague sets on I'-semirings. In 2019, Rao [13]
introduced weak interior ideals and fuzzy weak interior ideals of I'-semirings. The
motivation of this paper, is define the notion of a ((complete)- normal) vague weak
interior ideal of a I'-semiring. We prove that there is an isomorphism between the
set of all vague weak interior ideals and its crisp weak interior ideals. We prove that
the set of all vague weak interior ideals forms a complete lattice. Further, we give a
characterization theorem for reqular I'-semiring in terms of vague weak interior ideals,
and a condition to every vague weak interior ideal could be a normal vague weak
interior ideal is given.

2. PRELIMINARIES

We recall the basic definitions needed for this paper.

Definition 2.1 ([8]). (a) A vague set ¢ is a pair (ty, fy), where ty, fy : E — [0,1]
are mappings s.t. ty(z) + fy(x) <1forall x € E.
(b) The interval [ty (x), 1 — fy, ()] is called the vague value of = in ¢ and it is denoted

by Viy(x), i.e., Vi(z) = [ty(z),1 — fu(x)].
(c) Let D C E, the vague characteristic set of D in [0, 1] is a vague set 0p = (ts5,, f5,)
as follows:

1,1}, ifze D,
V‘;D(f):“o,o%, ifx;D.

ie.,

0, ife ¢ D, 1, ifx ¢ D.

(d) Let ¢ = (ty, fy) be a vague set. For o, § € [0, 1] with a < 3, the (a, §)-cut or
vague cut of v is the crisp subset of F is given by:

Do) = {7 € B Vy(x) 2 |a, ]},

th(x):{L %fxED, and f5D(fE):{O’ %fmGD,

ie.,
Viap ={r € E:ty(r) > aand 1 — fy(x) > S}
Denote by VS(FE) the set of all vague sets of E.
Definition 2.2 ([8]). Let ¢ = (ty, fy), ¢ = (ts, f») € VS(E). Then, for all z € E:

(a) Y° = (tye, fyc), where tye = fy, fuye =ty

(b) ¥ C ¢ if and only if ¥ (x) < ¢(x);

(¢) v U = (tyus, fyus), where tyus(x) = max{ty(z),ty(2)} and fyus(z) =
min{ fy, (), fo(z )}

(d) ¥ N @ = (tyng, fune), Where tyng(z) = min{ty(z),t4(7)} and fyng(z) =
max{ fy (), f( )}
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Definition 2.3 ([14]). Let (E, +) and (I', +) be two abelian semigroups. Then E
is called a I'-semiring if there exists a mapping E x I' x E' — FE (briefly, images of
(a, a, b) will be denoted by aab) satisfying the following axioms:

(I'SR1) ca(a + b) = caa + cab;

(I'SR2) (¢ + a)ab = cab + aab;

(I'SR3) c(a + B)a = caa + cfc;

(I'SRy) ca(apb) = (caa)fb, for all a,b,c € E, a, f € T.

In this paper, E is a ['-semiring.

Definition 2.4 ([13]). (a) E is called regular if for all e € E, exists f € E, o, B € T
s.t. e = eaffe.

(b) A sub-TI'-semiring F' of E is called a right (resp. left) weak interior ideal of E if
FTFTE C F (resp. ETFT'F C F). If F is both right and left weak interior ideal of
E, then F' is called a weak interior ideal of E.

Denote by RWII(E) (resp. LWII(E)) the set of all right (resp. left) weak interior
ideals and WII(E) the set of all weak interior ideals of E. One can see that WII(E) =
RWII(E) N LWII(E).

Definition 2.5 ([4]). Let ¢ = (¢, fy) € VS(E). Then v is called a vague I'-semiring
if it satisfies the following axioms:

(V1) Vi(a+b) = min{Vy(a), Vy(b)};

(Va) Vi(ayb) > min{Vy(a), Vi (b)} forall a,b € E, v € I

Denote by VI'(E) the set of all vague I'-semirings of FE.
Definition 2.6 ([5]). Let ¢ = (ty, fy) € VS(E). Then v is called a right (resp. left)
vague ideal of F if it satisfies (V) and

(Vs) Vi(ayb) > Viy(a) (resp. Viy(ayb) > Vi (b)), for all a,b € E, v € I
If ¢ is both left and right vague ideal of E, then v is called a vague ideal of E.

Denote by RVI(E) (resp. LVI(E)) the set of all right (resp. left) vague ideals and
VI(E) the set of all vague ideals of E. Hence, VI = RVI(E) NLVI(E).

Definition 2.7 ([2]). Let ¢ = (ty, fy), ¢ = (ts, fo) € RVI(E) (resp. € LVI(E)).
Then the sum 1 + ¢ of ¥ and ¢ are defined by:

Virole) = sup{min{Vy(f),Vs(9)} : e = f + ¢, where f,g € E},
Ve [0,0], otherwise,
ie.,
Forole) = sup{min{t,(f),ts(9)} : e = f + ¢, where f,g € E},
vie 0, otherwise,
and

f¢+¢(6) = { inf{max{f¢(f)’f¢(g)} €= f + g,where f7g c E}7

1, otherwise.
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3. VAGUE WEAK INTERIOR IDEALS IN ['-SEMIRINGS

In this section, we define the concept of vague weak interior ideal of a I'-semiring
and obtain some of the basic properties. Finally, we give a characterization theorem
for a reqular I'-semiring in terms of vague weak interior ideals.

From now on, § stands for vague characteristic set of E unless stated.

Definition 3.1. Let ¢» € VI'(F). Then v is called a right (resp. left) vague weak
interior ideal of E if YI'yYT'd C 9 (resp. oI Cah).

If ¢ is both right and left vague weak interior ideal, then it is called a vague weak
interior ideal of E.

Denote by RVWII(E) (resp. LVWII(E)) the set of all right (resp. left) vague
weak interior ideals and VWII(E) the set of all vague weak interior ideals of E.
Hence, VWII(E) = RVWII(FE) N LVWII(E).

Example 3.1. (i) Let E:=NU{0} and I := N. Define the mapping - : NU {0} x N x
NU {0} — NU{0} by -(a,b,c) = abc usual product of a,b, ¢, for all a,c € NU {0},
b € N. Hence, NU {0} is a N-semiring. Define ¢, f, : NU {0} — [0, 1] as follows:

to(z) = 0.12, ifx € 2N or x = 0,
W) = 0.13, otherwise,

and
o) = 0.18, ifx € 2N or x =0,
YA 0.16, otherwise.

Then ¢ = (,, f,) ¢ RVWII(N U {0}) ULVWII(N U {0}).

(ii) Let £ =T := Msys(N). Define the mapping May2(N) X Moyo(N) x Mayo(N) —
Moo (N) by ABC' is the matrix multiplication of A, B, C for all A, B,C € My.»(N).
Hence, Msy2(N) is a Myyo(N)-semiring. Define ¢y, f : Mayxo(N) — [0, 1] by:

. _ | P g .
£y (M) = 0.6, 1fM—l0 O],wherep,qEN,
0.5, otherwise,

and

0.1, ifM:[g ],Wherep,qu,

q
0
0.3, otherwise.

fu (M) {

Then ¢ = (ty, f5) € RVWII(Mayo(N)), but ¢ = (£, fu) & LVWII(Myyo(N)).
Now, if define ¢4, fy : Max2(N) — [0, 1] by:

0

. 0 m
to(N) = 0.72, if N = [ n 1, where m,n € N,
0.54, otherwise,
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and

0 m
0.28, if N = , where m,n € N,
fo(N) = { [ 0 n 1

0.37, otherwise.

Then ¢ = (t4, f») € LVWII(M,2(N)), but ¢ = (¢4, fs) € RVWII(M,5(N)).

(iii) Let £ := {—n : n € N} and T" := {—2n : n € N}. Define the mapping
E xT'x E — E by abc usual product of a,b,c for all a,c € F;b € I'. Hence, F is a
['-semiring. Define t,, fy : E — [0, 1] by:

0.53, ifx =1, 0.54, ifx =1,
ty(z) =4¢ 076, ifx=-2, and fy(z)=14¢ 028, ifx=-2,
0.99, if r < -2, 0.12, if r < —2.
Therefore, ¥ = (t,, f,) € RVWII(E) N LVWIL(E).
Remark 3.1. Consider Example 3.1 (iii), ¢¢ ¢ VWII(E).

Theorem 3.1. Let v € RVI(E) (resp. € LVI(E)). Then v € RVWII(E) (resp.
€ LVWII(E)).

Proof. Assume ¢ = (ty, fy) € RVI(E). Then ¢I'é C ¢. Clearly, ¢ € VI'(E). Now,
let e € E. Then

Vyryrs(e) = sup{min{Vy (f), Vyrs(9)} : e = fvg, where f,g € E; v €T’}
< sup{min{Vy(f),Vy(9)} : f,g9 € E}
< sup{Vy(e)}
< Vy(e).
Thus, ¢ = (ty, f,) € RVWIL(E). O

The following example shows that the converse of Theorem 3.1 need not be true.

Ezample 3.2. Consider Example 3.1 (ii), and define ¢y, fy : Max2(N) — [0, 1] by:

e O

0.8, if P= , wh ,f €N,

t,(P) = i [Of] where e, f
0.6, otherwise,

and

fw(P){ 0.1, ifP:[S ?C],Wheree,feN,

0.4, otherwise.
Therefore, 1 = (ty, fy) € RVWII(Ms42(N)), but not a right vague ideal of Ms,»(N),
since V,(PZQ) < Vy(P), where P,Q,Z € Msyo(N).

Proposition 3.1. Let E be reqular and 1 € VWII(E). Then ¢ € VI(E).
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Proof. Suppose E is regular and ¢ = (ty, fy) € VWII(E). Now, if ¢ € RVI(E),
then exists e € £ s.t. Vyryrs(e) > Vi(e). Since E is regular, 3f € F and o, € I s.t.
e = ea.fPe. Hence,
Vyryrs(e) = sup{min{Vy (ea f), Vyrs(e)}}
> sup{min{Vy(eaf), Vy(e)}}

= Vi (e).
This shows that Y T'WI'é D 1, which is a contraction. Thus, v € RVI(FE). Similarly,
we can prove that ¢ € LVI(E). Therefore, v € VI(E). O

In the next theorem we show that there is an isomorphism between RVWII(E)
(resp. LVWII(E)) with the set of all vague cuts.

Theorem 3.2. Let i) € VS(FE). Then v € RVWIIL(E) (resp. v € LVWII(E)) if
and only if Y(a,p € RWIL(E) (resp. € LWIL(E)) for all o, 3 € [0, 1] with a < .

Proof. Suppose ¢ = (ty, fy) € RVII(E). Using [5, Theorem 3.6], ¥, ) is a sub-I'-
semiring of F. Given e € (o5 "Y' E, we get e = fygnh st. f,9 € Yp), h € E.
Hence, Vi (f) > [a, 5] and Vi (g) > [a, 5]. Now, we have
Vis(e) = Vyrurs(e)
= sup{min{Vy(f), Vis(9), Vs(h)}
2 [a, B].
Therefore, e € 1)(q,5). This shows that 1,5 € RWII(E).

Conversely, assume v, 5 € RWII(E). Using [5, Theorem 3.9], we get ¢ € VI'(E).
Now, if ¢I'I'0 Z 1), then exists s € E s.t. Vi(s) < Vyryrs(s). Let [a, 5] C [0, 1] s.t.
Vip(s) < [o, B] < Viyryrs(s). Let s := fygnh s.t. f,g ¢ Yap forall f,ge E, v,nel.
Then Vi (f) < [a, 8], Vi(g) < o, f]. Now, we have

Viryrs(s) = sup{min{Vy(f), Vis(9), Vs(h)}}
= sup{min{Vy,(f), Vis(9)}}

<o, B].
This shows that Vyryrs(s) < [o, 8], which is a contraction. Therefore, ¢y € RVWII(E).
Similarly, we can prove that ¢ € LVWII(E). O

Corollary 3.1. Let ) € VS(E). Then ) € VWII(E) if and only if 1.5 € WII(E)
for all o, 5 € [0, 1] with o < .

Theorem 3.3. Let ) # W C E and oy be the vague characteristic set of W.
Then W € RWII(E) (resp. € LWII(E)) if and only if oy € RVWII(E) (resp.
€ LVWIL(E)).

Proof. Suppose W € RWII(E). Then WI'WTE C W. Using [5, Theorem 3.9], we get
6W = (t(sw, f(;W) € VF(E) Hence, 5WF5WF5 = 5WFWFE g (Sw It follows that 5W €
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RVWII(E). Conversely, assume oy € RVWII(E). Then oy 0w I'6 C dy. Using [5,
Theprem 3.9], W is sub I'-semiring of E. Thus, dwrwre C dw, and so WITWTE C W.
Therefore, W € RWII(E). By a similar argument W € LWII(E). O

Corollary 3.2. Let ) # W C E and 0w be the vague characteristic set of W. Then
W € WII(E) if and only if oy € VWII(E).
Theorem 3.4. Let ¢, ¢ € VWII(E). Then
(i) v N € VWII(E);
(i) v+ ¢ € VWII(E);
(iii) ¥ N C 9, ;
(iv) ¥, ¢ v+ 9.

Proof. (i) Suppose ¢ = (ty, fy), ¢ = (t4, f») € RVWII(E). Using [5, Theorem 3.13],
we get v N ¢ € VI(E). Given e € E, we have

Vigngyrs(e) = sup{min{Vynys(f), Vs(9)} : e = fag; f,g € E;a €T}
= sup{min{min{Vy (f), Vs (f)}, Vs(9)}}
= sup{min{min{V, (f), Vs(9), }, min{V5(f), Vs(g)}}}
= min{sup{min{Vy(f), Vs(g)}}, sup{min{Vy(f), Vs(g)}}}
= min{Vyrs(e), Virs(e)

Vs

Vs

}
= Viwraners) ().

This shows that (¢ N @)['6 = (YI'9) N (¢'d). Also, we have

Vigngrwners(e) = sup{min{ Vi (f), Vipngyrs(9)} 1 e = fag; f,g € E;a €T}
= sup{min{Vyny(f), Vigrsynisrs) (9) }}
= sup{min{min{Vy(f), Vo (f)}, min{Vyrs(9), Vors(9)} }}
= sup{min{min{Vy (f), Vyrs(9)}, min{Vi,(f), Vors(g)} }}
= min{sup{min{Vy(f), Vyrs(9)}, sup{min{V;(f), Virs(g)} }}
= min{Vyryrs(e), Vorers(e) }
= Vluryra)n(erers)(e).

Therefore, (¢ N @)['(¢ N P)['0 = (YI'YI'd) N (pL'pl'd). It follows that

(W NP NPTd = (¥ NP)L[(¢Id) N (¢T0)] = (YTYId) N (¢T'PLd) € ¢ N ¢.

Thus, ¥ N ¢ € RVWII(FE). Similarly, we can prove ¢ N ¢ € LVWII(E). Therefore,
YN e VWII(E).

(i) As similar to the proof of (i), ¥ + ¢ € VWII(E).

(iii) Let e € E. We have Vyn4(e) = min{Vj,(e), Vy(e)} < Viy(e). Therefore, ¢y N ¢ C
v. Similarly, ¢ N ¢ C ¢.
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(iv) Given z € E, we have
Vito(x) = sup{min{Vy(a), V,(b)} : © = a + b, where a,b € E}
> min{Vy(z), Vs(0)}
= V().
It follows that ¢ C v + ¢. Similarly, ¢ C ¢ + ¢. O

Corollary 3.3. If v; € VWII(E), where i € A. Then
(i) ()¢ € VWIL(E);
ieA
(i) Y ¢ € VWII(E).
i€A
Theorem 3.5. Let ¢, ¢ € VWII(E). Then
(i) if S :={wi : s € VWIL(E), ¢; C 0, ¢ for all i € A}, then 1 N ¢ is mazimal
of S;
(i) if T :={0; : 0; € VWII(E), ¢, ¢ C p; for alli € A}, then ¢ + ¢ is minimal
of T.

Proof. Suppose ¢ = (ty, fy), ¢ = (ty, fs) € VWII(E).
(i) Using Theorem 3.4 (i) and (iii), we get » N ¢ € VWII(E) and ¢y N ¢ C 1, ¢.
Suppose p € S s.t. ¢ C 1 and ¢ C ¢. Now, let t € E. Then
Vine(t) = min{Vy (2), Vs (£)} = min{ Vi, (£), Vi, (1) } = Voo (t).
Therefore, o C ¥ N ¢. Thus, ) N ¢ is maximal element in S.
(ii) Applying Theorem 3.4 (ii) and (iv), we get ¢ +¢ € VWII(E) and ¥, ¢ C ¢+ ¢.
Let p € Ts.t. v Cpand ¢ C . Given t € E, we have
Vipto(t) = sup{min{Vy(r), Vy(s)} : t =r + s, where r,s € E'}
< sup{min{V,,(r),V,(s)} : t =7+ s, wherer,s € E}
<sup{V,(r +s)}
=V, (¢).
Therefore, 1 + ¢ C ¢ is minimal element of T. O

Theorem 3.6. The (VWIIL(E), Q) is a complete lattice, where C is defined by:
Y C ¢ if and only if Viy(e) < Vy(e), foralle € E.

Proof. 1t is known that (VWII(E), C) is a poset. By Theorem 3.5, every pair of
elements in VWII(F) has a maximal and a minimal element. Hence, VWII(E) is
a lattice. Let S := {¢; : v € VWII(S) for i € A} be a subset of VWII(F). By
Corollary 3.3 (i), Njea ¥i € VWII(E) and it is the infimum of S. Also, by Corollary
3.3 (ii), Yiea i € VWII(E) and it is supremum of S. Thus, (VWII(E),C) is a
complete lattice. 0
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In the next example we can see that the union of two vague weak interior ideals
need not be a vague weak interior ideal.

Ezample 3.3. Let E = Zg and T' := {0,2,4}. Define - : Zg x I' x Zg — Zg by
(z,y,z) = Tyz usual product z,y,z, for all &,z € Zs, y € {0,2,4}. Then Zg is a
I'-semiring. Define ty, fy : Zs — [0, 1] by:

| Ol

0.81, ife =0, 0.22, ifé=0,
ty(e) =4 0.63, ife=1, and fy(e) =4 031, ife=1,
0.45, otherwise, 0.52, otherwise.
Further, we define t4, fs : Zs — [0, 1] by:

0.67, ife= (:), 0.32, ife= (:),
ty(e) =< 054, ife=2, and fy(e) =< 0.44, ife=2,
0.24, otherwise, 0.51, otherwise.

Therefor, ¢ = (ty, fy), ¢ = (t4,fs) € VWII(Zg), but v U ¢ ¢ VWII(Zs), since
Viwusrwug) (€) > Vyus(€) at € = 4.

Theorem 3.7. Let 1,6 € VWIL(E). Then v Ud € VWIL(E) if ) C é or ¢ C 1.
Proof. Assume ¢ = (ty, fy), ¢ = (ts, fo) € VWII(E). Suppose ¢ C ¢. Hence,
YU ¢ e VI'(E). Given x € E, we have
Viwuerrwre) (#) = sup{min{sup{min{Vyu ¢(a), Vyus(b)} }, Vs(c)} : & = aabfc,
where a,b,c € E,a,5 € '}

= sup{min{sup{min{Vy(a), Vx(b)}}, Vs(c)} : a,b,c € E}

= Vrors(z)

< Vy(x)

= max{Vy(z), Vi (2)}

= Viug ().
Therefore, (¢ U @)['(1p U@)T'§ C ¢p U . It follows that v U¢p € RVWII(E). Similarly,
U ¢ € LVWII(E). Thus, ¢ U¢ € VWII(E). O
Theorem 3.8. E is regular if and only if v» = YT'yYI'd, for all v € RVWII(E).

Proof. Suppose E' is regular and let ¢ = (ty, fy) € RVWII(E). Then ¢T'yI'§ C 9.
Let x € E. Then there exist a € F and «, f € I' s.t. x = xaafx, and so we have:
Vyryrs(z) = sup{min{Vy (z), Vyrs(afz)}}
= sup{min{V,, (), sup{min{Vy (a), Vs(z)}}
= sup{min{Vy(z), Vy(a)}}
> V().
Therefore, YT'yI'd O ¢, and so YI'YI'd = 1.
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Conversely, suppose I'I'd = ¢, and let W € RWII(E). Using Theorem 3.3, we
get (SW c RVWII(E) It follows that 5WF§WF5 = 6{/[/, and so 5W1"W1"E = (SW ThUS,
W = WI'WTE. Using [6, Theorem 4.4], we get E is regular. O

In the following example we show that, for given ¢» € VWII(E) and ¢ € VS(E)
s.t. ¢ C ¢, the extension property is not valid, i.e., maybe ¢ ¢ VWII(E).

Ezample 3.4. Let E =T := R. Define - : R* — R by -(a,b, c) = abc for all a,b,c € R.
Then R is a R-semiring. Define ¢y, fy : R — [0, 1] by:

[ 0808, ifx#0, (0241, ifx#£0,
ty(z) = { 0532, ifz—0 2nd Julz)= { 0.437, if 2 = 0.

Then ¢ = (ty, f,) € VWIL(R).
Now, if define ¢4, f, : R — [0, 1] by:

0.93, ifxe2Z, x#0, 0.13, ifx €2Z, x #0,
te(x) =4 0.85, if x € 2Z + 1, and fy(e) =< 0.25, ifze€2Z+1,
¢ é

0.66, if x =0, 0.38, if x =0.

We can see that ¢ C ¢, but ¢ = (t4, fp) € VWII(R).

4. NORMAL VAGUE WEAK INTERIOR IDEALS IN I'-SEMIRINGS

We define the notion of a (complete-) normal vague weak interior ideal, and show
that we can construct it in a I'-semiring. Additionally, we prove that the cardinal of
a maximal element, which is not constant, in the set of all normal vague weak interior
ideals of a I'-semiring is 2.

Definition 4.1. Let ¢ = (ty, fy) € VS(E). Then ¢ is called normal, if V,,(0) = [1, 1]
i.e., ty(0) =1 and f,(0) = 0.

Denote by NVS(F) the set of all normal vague sets of E.
Example 4.1. Consider Example 3.4, and define ¢, fy, : R — [0, 1] by:
0.92, if z € RT, 0.13, ifz e R,
ty(z) =4 0.75, ifx e R™, and fy(x)=< 024, ifz e R,
1, ifz=0, 0, ifax=0.
Then ¢ = (ty, fy) € NVS(R).

The following theorem we achieve a necessity condition for a vague set to be normal
vague set.

Theorem 4.1. Let ¢ = (ty, fy) € VS(E) s.t. ty(e) + fu(e) < t4(0) + fi,(0) for
all e € E. Define pt = (ty+, fy+), where ty+(e) = ty(e) + 1 —t,(0) and fy+(e) =
fu(e) — fu(0) for alle € E. Then ¢t € NVS(E).
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Proof. Assume 9 = (ty, fy) € VS(E) and e € E. Then
)

ty+(e) + fyr(e) = ty(e) +1 = 1y(0) + fy(e) = fu(0) <1
Therefore, )+ € VS(E). Also, ty+(0) = 1 and f,+(0) = 0. Thus, ™ € NVS(E). O
Proposition 4.1. Let ¢, € VWII(E). Then
() v € NVWII(E);

ii) ¢ € NVWIL(E) if and only if v =1);

(ifi) (7)" = 1;

(iv) if exists p € VWII(E) s.t. ¢t C b, then v € NVWII(E);

v) if exists p € VWII(E) s.t. o7 C b, then vt =1);

(vi) (W Ne)T =4 Net;
(vil) (Y U@)T =T UPT,
(viii) ¢ C ¢ implies Yyt C ¢T.

Proof. (i) Suppose ¥ = (ty, fy,) € RVWII(E). Given e, f € E, v € I, we have
Vir(e+ f) = Vile + f) + [1,1] = Vi(0)

min{Vy(e), Voo (f)} + [1, 1] = Vi(0)

min{Vy(e) + [1, 1] = Vi, (0), Vi (f) + [1, 1] = Vi(0)}

= min{Vy+(e), Viy+ ()}

v

and
Vo (evf) = Vi(erf) + [1,1] = V(0)
> min{Vy(e), Vi (f)} + [1, 1] = Vi(0)
= min{Vy(e) + [1,1] = V4(0), Voo (f) + [1,1] = Vi(0)}
= min{Vy+(e), V= (f) }.
Therefore, 1™ € VI'(E). Also, we have
Vy+ry+rs(e) = sup{min{sup{min{Vy+(f), Vy+(9)}}, Vs(h)} : e = faypBh,
where f,g,h € E,a,B € T}
= sup{min{Vy+ (f), Vo (9) }}
= sup{min{Vy (f) + [1,1] = Vi,(0), Vis(g) + [1,1] = Vi (0)}}
= sup{min{Vy (f), Vis(9)}} + [1, 1] — V4,(0)
= sup{min{sup{min{Vy (f), Vi(9)}}, Vs(h)} + [1,1] = V4(0)
= Vuryrs(e) + [1,1] — V(0)
< Vi(e) + [1,1] = V4(0)
= Vy+(e).
Hence, " € RVWII(E). We can see that V,+(0) = V,,(0) + [1,1] — V,,(0) = [1, 1].

1
Therefore, Y+ € NRVWII(E). Similarly, v € NLVWII(E). It follows that
vt € NVWII(E). Clearly, ¢p C ¢+,
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(ii) Assume ¢ = (ty, fy) € NVWII(E) and e € E. Then

Vi (e) = Vis(e) + [1,1] = Vi (0) = Vi (e) + [1,1] = [1,1] = Vi (e).

Thus, ) = 1. The converse is obvious.

(iii) Assume e € E. Viyry+(e) = Ve (e) + [1,1] — Vi (0) = Vi (e). Therefore,
()t =47, Since v € NVWII(E), using (ii) we get ()T = ¢ = 1.

(iv) Suppose there exists ¢ = (t4, f») € VWII(E), s.t. ¢T C ¢p. Then, [1,1] =
Vit (0) < Vi(0). This shows that V,,(0) = [1,1]. Thus, v € NVWII(E).

(v) The proof is clear by using (i) and (iv).

(vi) Suppose ¢ = (ty, fy), ® = (4, fs) € VWII(E) and e € E. Then we have

Viwney+(€) = Vang(e) + [1,1] = Vins(0)
Vs(e)} + [1,1] — min{Vy(0), V5(0)}

= min{V,(e),

= min{Vy(e) + [1,1] = V4,(0), Vg (e) + [1, 1] = V5(0)}
= min{Vy+(e), Vy+(e)}

= V¢+n¢>+( )

Hence,(¢y N )T =T Not.
(vii) Let e € E. Then we have

Vigugy+(e) = Vyug(e) + [1,1] = Vyug(0)

= max{Vy(e), Vo(e)} + [1, 1] — max{Vy(0), V4(0)}

= max{Vy(e) + [1,1] — V4 (0), Vy(e) + [1, 1] — V5(0)}
= max{Vy+ (e), Vg (e)}

- Vw+u¢>+( )

Then (Y U@)T =T UG,
(viii) Given e € E, we get

Vyr(e) = Vy(e) + [1,1] = Vi (0) < Vi(e) + [1,1] = V5(0) = Vi (e).
Therefore, ™ C ¢*. O

Theorem 4.2. Let ¢ be a maximal element in NVWII(E), which is not constant.
Then Vy(x) € {[0,0],[1,1]} for all x € E.

Proof. Assume 9 = (ty, f,) € NVWII(E). Then V,(0) = [1,1]. Let there exists
s € E s.t. Vi(s) # [1,1]. It is sufficient to show that V,(s) = [0,0]. Suppose there
exists eg € E s.t. [0,0] < Vig(eo) < [1,1]. Define a vague set ¢ = (4, f») of E by
to(e) = M and fy(e) = M for all e € E. Clearly, ¢ is well-defined.



VAGUE WEAK INTERIOR IDEALS OF I'-SEMIRINGS
Given e, f € E;vy € I', we have

V¢(6 + f + Vw(eo)

V¢,(€ -+ f) - )2
 min{Va(e), Vo)) + Vi)
= 2
- { Vis(e) + Vi(eo) Vi(f) + Vis(eo) }
9 ’ 2
= min{Vy(e), Vs(f)}

and

Volers) = PP+ Tl

o min{Vi(e), Vi (f)} + Vis(o)
o 2
— min { Vi(e) + Vip(eo) Vu(f) + Vi(eo) }

2 ’ 2
= min{Vy(e), Vs(f)}-

Therefore, ¢ € VI'(E). Also, we have

Vergrs(e) = sup{min{sup{min{é(f), ¢(g9)}},Vs(h)} : e = fagph,
where f,g,h € E,a, B € T}
= sup{min{V5(f), Vs(9)}}
- upfmin { L1400 Vel V|

2 ’ 2
= S {min{Vi(f). Vel + 225
—  sup{min{sup{min{V, (/). Vo) )}, Vi ()} + T
= ;Vwrwm(e) + V¢;eo)
+ Vy(€o)

723
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Hence ¢ € RVWII(E). By a similar way we can show that ¢ € LVWII(FE). Thus,
¢ € VWII(E). Now, we have

Vo (e) = Vi(e) + [1,1] = V5(0)
V() + Vileo)
2

Vi(e) +[1,1]
5 :
That implies Vj+ (0) = 2@ — (1 1) Thus, ¢+ € NVWIL(E). Now, Vs (0) =
[1,1] > Vi (eo). This shows that ¢ is not constant. Further, we have Vy+(eg) > Vi (eo),
which is a contraction, since ¢ is a maximal element. Hence Vi,(s) = [0, 0]. Therefore,

V¢(I) € {[070}7[171]}- ]

Corollary 4.1. If ¢ is a mazimal element in NVWII(E), which isn’t constant, then
[Vis(2)| = 2.

Definition 4.2. Let v € NVS(E). Then ¢ is called complete if there exists e € E
s.t. Vy(e) =[0,0].

Denote by CNVS(E) the set of all normal vague sets of E, resp., CNVWII(E)
the set of all complete normal vague weak interior ideals of . Then CNVWII(E) C
CNVS(E), and so (CNVWII(FE), Q) is a poset.

Ezample 4.2. Consider Example 3.3, and define ty, fy, : Zg — [0, 1] by:

Vip(0) + Vi (eo)

+[1,1] — 5

1, if z =0, 0, if z =0,
ty(z) =14 0.56, ifz =1, and fy(z) =4 045, ifz =1,
0, otherwise, 1, otherwise.

Hence, ¢ = (ty, fy) € CNVWII(E).

Theorem 4.3. If ¢ is a mazimal element in (NVWIL(E), C), which is not constant,
then it is a mazximal element in (CNVWII(E), Q).

Proof. Assume 1) = (tg, fp) is a maximal element in (NVWII(E), C), which isn’t
constant. By Theorem 4.2, Vi (z) € {[0,0],[1,1]} for all z € E, i.e., V;(0) = [1,1]
and Vj(z) = [0,0] for some z € E. It follows that v € CNVWII(E). Suppose
6 = (t;, f;) € CNVWII(E) st. ¢ C ¢. Then ¢ € NVWII(E). Since ¢ is a
maximal element in NVWII(E) and ¢ € NVWII(E) with ¢ C ¢, that gives ¢ = ¢.
Therefor, v is a maximal element in CNVWII(E). O

CONCLUSIONS AND COMMENTS

We defined the notion of a right (resp. left) vague weak interior ideal of a I'-
semiring and the characterization theorem for regular I'-semiring in terms of vague
weak interior ideals is derived. In addition, we introduced and studied (complete-)
normal vague weak interior ideals of a I'-semiring. As a consequence of the results
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is that the cardinal of a non-constant maximal element in the set of all (complete-)
normal vague weak interior ideals is 2. As a direction of this research will be study
on vague (minimal weak interior, bi-interior, quasi-interior) ideals of a I'-semiring and
investigate relations among these notions.
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ULTIMATE BOUNDEDNESS OF SOLUTIONS OF SOME SYSTEM
OF THIRD-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

AYINLA A. ABDURASID!, KEHINDE D. ADULOJU?, MUSILIU T. RAJI?,
OLUFUNKE R. VINCENT?, AND MATHEW O. OMEIKE?

ABSTRACT. This paper presents sufficient conditions for the ultimate boundedness
of solutions of some system of third-order nonlinear differential equations

X +U(X)X + (X)X + H(X)=P(t, X, X, X),

where W, @ are positive definite symmetric matrices, H, P are n—vectors continuous
in their respective arguments, X € R and ¢ € RT = [0, +0c). We do not necessarily
require H(X) differentiable to obtain our results. By using the Lyapunov’s direct
(second) method and constructing a complete Lyapunov function, earlier results are
generalized.

1. INTRODUCTION

Let R = (—o00, +00), RT = [0, +00) and let R" denote the real Euclidean n-dimensional

space furnished with the usual Euclidean norm denoted by || - ||. Consider the system
of third-order nonlinear differential equations
(1.1) X +U(X)X + (X)X + H(X) = P(t, X, X, X),

where t e R, X : Rt - R*" H:R" - R" P:RTxR*"xR*xR* - R" U &:
R™ — R™ ™ are continuous in their respective arguments, H is assumed to be not
necessarily differentiable and the dots indicate differentiation with respect to the
independent variable t. Thus, for any initial values Xy, Yy, Zy € R", there is a uniquely

Key words and phrases. Ultimate boundedness, Lyapunov function, system of third-order nonlinear
differential equations.
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defined solution X = X(t, Xo, Yo, Zo) of (1.1), continuous in ¢, Xy, Yy, Zo satisfying
the condition X (ty) = Xo, X(to) = Yo, X(t9) = Zp [21]. Equation (1.1) is the vector
version for the systems of real third-order nonlinear differential equations of the form

T+ > (@1, @)+ > Gul@r, .o, Tn)dg + hi(T, .., @)
P k=1

:pi(twrla ey Ty L1y e e oy Ty Ty e - 75671)7
where ¢ = 1,...,n, in which the functions v, ¢, h;, p; are continuous in their

respective arguments. In the case n = 1, this system reduces to the scalar ordinary
differential equations of the form

(1.2) T (L) + o(x)t + h(x) = p(t, x, &, &),
where 1, ¢, h and p are continuous in their respective arguments, see [4-6,9,10,13,16,
17,19,23-26,28,29, 34, 35] and the references cited therein. If (&) = a and ¢(z) = b,
(1.2) reduces to

T +ai + b + h(x) = p(t,z, &, %),
which has been investigated by Ezeilo [9] for ultimate boundedness and convergence
of solutions by assuming

5 ) )

with Iy = [4, kab] C (0, ab) the generalized Routh-Hurwitz interval, § > 0 and 0 <
k < 1. When v =0 in (1.3) we have

(1.3)

Ho = Hy() = X2 = h()
and
Hy = h(f) if h(0) = 0.
On the other hand, if ¥(X) = A, ®(X) = B in (1.1), we have
(1.4) X +AX +BX + H(X) = P(t, X, X, X),

where A, B are real symmetric n X n matrices. Equation (1.4) has been studied by
Afuwape [1] and Meng [12] for the ultimate boundedness and periodicity of solutions
for which H is of class C(R™), satisfying

(1.5) H(X5) = H(X,) 4+ Ch(X1, Xo)(Xo — Xy),
where Cj, (X1, Xs) is a real n x n operator for any X;, Xs in R", and having real
eigenvalues \;(Cy (X1, X3)), i = 1,2,...,n. These eigenvalues satisfy
(1.6) 0 <d. < N(Ch(Xy,X3)) <A,
with d., A. as fixed constants. Further, the matrices A, B have real positive eigenvalues
Ai(A) and \;(B) respectively, satisfying

0<da < N(A) <A,
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i =1,2,...,n, and that for some constant k(< 1) the 'generalized” Routh-Hurwitz
condition
(1.7) A < kbl

is satisfied.

In these papers mentioned above, the Lyapunov’s direct method was used to obtain
results. This entails construction of a quadratic-like function (also known as Lyapunov
function) to obtain sufficient conditions which guarantee the properties of solutions,
but the construction of this function is difficult since there is no general method to
obtaining it ([1]-[35]). Perhaps, reason (1.1) has received no attention in literature.

The present work is concerned with the ultimate boundedness of solutions of (1.1)
or its equivalent system form

X =Y,
(1.8) Y =2,
Z=-U(Y)Z-dX)Y -HX)+P(t,X,Y,2),

obtained as usual by setting X=Y,X=Zin (1.1). This problem was left open
by Ezeilo and Tejumola [7, page 284]. In this work, by using the Lyapunov’s direct
method and constructing a suitable complete Lyapunov function, we shall obtain
sufficient conditions which guarantee the ultimate boundedness of solutions of (1.1).

2. NOTATION

Our notations are similar to [3]. In this paper, §'s and A’s with or without suffixes
represent positive constants whose magnitudes depend on the matrix functions ¥, ®,
and the vector functions H, P. The §’s and A’s with numerical or alphabetical suffixes
shall retain fixed magnitudes while those without suffixes are not necessarily the
same at each occurrence. Finally, (X,Y’) shall represent the scalar product of any
vectors X, Y € R", with respective components (x1, za, ..., x,) and (Y1, Y2, .- .,Yn) by
S, wyy;. In particular, (X, X) = || X2

3. STATEMENT OF RESULTS
Our main result in this paper is the following.

Theorem 3.1. Suppose H(0) = 0, and that

(i) there exists n x n real continuous operator Cp(X1, Xa) for any vectors X1, X
such that the function H is of class C(R™), satisfy (1.5), with eigenvalues
Mi(Ch(X1, X)), i=1,2,...,n, satisfying (1.6);

(ii) the matriz functions ¥(Y'), ®(X) are continuous in their respective arguments,
with eigenvalues \;(V(Y)), \i(P(X)) satisfying

(3.1) 0 <do < A(V(Y)) < A,
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(3.2) 0 <0 < N(P(X)) < Ay,
where i =1,2,...,n;
(iii) the matrices ¥, ® and the operator Cj, are associative and commute pairwise;
and

(iv) the vector function P(t, X,Y,Z) satisfies
(33) IP(E, X, Y, Z)ll <61() + 6at) (I X2 + V2 + 1 212)

1
+ 8 (IXI2 + Y12 + 1217)?

for any X,Y,Z € R™, where §y > 0 is a constant, 01(t), 02(t) are continuous
functions int and 0 < p < 1.

Then, there exist constants Ay, Ag, Az such that every solution X (t) of (1.1) with
X(to) = Xo, X(to) = Yo, X(to) = Zo, and for any constant v, whatever in the range
% < v <1, the inequality

(|’X(t)||2 +IX0))* + HX(t)HQ)V <Ajexp{—As(t —to)}
(3.4) ey t <0$U(T) 4057 (T))
X exp{—As(t — 7)}dr
holds for all t > to, where Ay — Ay (Xo, Yo, Zo).

A number of quite important results can be deduced from Theorem 3.1. For example,
we have the following.

Corollary 3.1. If P = 0 and if all conditions of Theorem 3.1 hold, then every solution
X(t) of (1.1) satisfies

(3.5) IX@OI + IX AN+ IX@)]* — 0,
as t — +o00.
Indeed, by setting ¢; = 0 = 65 in (3.4), we have that, if 69 < Ag, then
(X2 + IX O + 1X@2)" < Arexpl-daft — to)}, 1> 1o,
from which (3.5) follows on letting ¢ — +o0.

Corollary 3.2. Assume that all conditions of Theorem 3.1 hold and let 69 < A,.
Suppose also that there are fized constants n, 1 <n <2, and pu > 0 such that

t+ T
/ g (ew) s <T>> exp{—a(t — T)}dr — 0, st — +o0.
to

Then, every solution X (t) of (1.1) satisfies (3.5).

Another interesting result which can be deduced very readily from Theorem 3.1 is
the following generalization of the boundedness results in [1,7] and [12].
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Corollary 3.3. Assume that all the conditions of Theorem 3.1 hold and let g < Ay.
Suppose further that each of the functions 6,(t), 0s(t) satisfies at least one of the
following conditions:

(1) maXp<t<+oo gl(t) < +00, m%X0§t<+oo Qg(t) < +00;
(ii) 07 (t)dt < +oo, [0, " (t)dt < +oo0,
for some constant n in the range 1 < n < 2. Then there exists a constant Ay > 0 such
that every solution X (t) of (1.1) wltimately satisfies
) Y

IX @I + X @I + X O < As.

4. PRELIMINARY RESULTS

We need a few important results to prove Theorem 3.1.

Lemma 4.1. Let D be a real symmetric n X n positive definite matriz. Then, for any
X e R™,

(4.1) 8al| X|1* < (DX, X) < A X%,
where 04, Ay are respectively the least and greatest eigenvalues of D.

Proof. See [7]. O

Lemma 4.2. Let QQ, D be any two real n X n commuting symmetric matrices. Then
the eigenvalues \;(QD), i = 1,2,...,n, of the product matrizx QD are all real and

satisfy

1<j,k<n T 1<5,k<n

where \;j(Q) and \,(D) are respectively the eigenvalues of ) and D.
Proof. See [7]. O

The main tool in the proof of Theorem 3.1 is the scalar function W = W(X,Y, Z)
defined for arbitrary vectors X, Y, Z € R" by

(4.2) 2W = B(1—=B)02|| X |IP+0p(B+ad, Y|P 4+ad, | Z|P+| Z+6,Y +(1—B)6 X |2,

where a > 0 and 0 < § < 1.
The following result is immediate from (4.2).

Lemma 4.3. Assume that all the conditions on V(Y), ®(X) and H(X) in Theorem
3.1 are satisfied. Then there are constants 6; > 0, 1 = 1,2, such that

3) o (IXI2+ VIR + 1Z2) < WX, Y, 2) < 6 (IXI2 + IV 2+ 1Z]12)
for arbitrary X,Y, Z € R".
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Proof. The proof of inequalities (4.3) follows if we use Lemma 4.1 (inequalities (4.1))
repeatedly and then choose

5 = ;min {5(1 — 5385, 0(B + 045;1)70“5;1}

and
1
52 — 5 max {:ula H2, :u3} )

where gy = (1 — B)(1 + 4 + ), pa = (B + ad; ) + 8a[1 + 0p(1 — B) + d,) and
ps =14 ad, + 61— B) + da. O

5. PROOF OF THEOREM 3.1

To prove Theorem 3.1, it suffices to show that the function W (defined in (4.2))
satisfies for any solution (X (¢),Y (t), Z(t)) of (1.8) and for any v in the range 5 <
v <1,

1
2

(6.1 W < b0 (63(6) + 077 (1)) w0

for some constants §; > 0, i = 3,4, where % = | X ()| + ||[Y (¢)||* + || Z(¢)||*>. We note
that from Lemma 4.3, (5.1) becomes

W< —65W + 6 (e‘f’V(t) +057 (t)) W),

with 05 = 0103 and dg = 920,4. If we choose U = WY, this reduces to

U < —uésU + v (9%) L6057 (t)) ,
which when solved for U yields
t o
U(E) < Ulto) exp{—vis(t — to)} + & [ (67(7) +057(7) ) exp{~vos(t — )},
to

for all t > t,.
Rewriting this with W" = U and applying Lemma 4.3, we shall get (3.4) with

Ay =6 (IX )1+ Y ()| + 1Z(t)|?) ", As =165 and Ay = A,

It follows that the proof of Theorem 3.1 is complete as soon as inequality (5.1) is
proved.

6. DERIVATIVE OF W AND PROOF OF (5.1)

Let (X(t),Y(t),Z(t)) be any solution of (1.8). The total derivative of W, with
respect to t along the solution path after simplification is

(6.1) W=-U —Uy,—Us— Uy —Us — Usg — Uy + Us,
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where

Ur =mdp(1 = B)(X, H(X)) + &0 ((P(X) — (1 = 8)0p])Y,Y)
+mad, (W(Y)Z, Z) +{(V(Y) = 61)Z, Z),
Uy =120,(1 = B)(X, H(X)) + 1208, (¥(Y)Z, Z) + (1 + ad,"){Z, H(X)),
Us =n30p(1 — B)(X, H(X)) + &0, ((2(X) — (1 = )6 ])Y,Y) + 04(Y, H(X)),
Uy =na6p(1 — B)(X, H(X)) + 300, (¥(Y)Z, Z)
+0p(1 = B)((V(Y) — 1) X, Z),
Us =n505(1 — B)(X, H(X)) + 30,((2(X) — (1 = B)dp])Y,Y)
+0p(1 = B)((P(X) — 1) X, Y),
Us =aad, (U (Y)Z, Z) + £40.{(®(X) — (1 = B)Gp])Y,Y)
+ (L4 ad, ){(@(X) — 8 ])Y, Z),
Uz =500, (W (Y)Z, Z) + £56,((®(X) — (1 — B)51)Y,Y)
+ 0 ((V(Y) — 01)Y, Z),
Us =(6(1 = B)X +6,Y + (1 +ad, 2, Pt,X,Y, 7)),

with n;, &, v, ¢ = 1,2,3,4,5, positive constants such that

5 5
Yom=1, Y &=1 and ) v =1
' izl i=1

To arrive at (5.1), we prove the following.

Lemma 6.1. Subject to a conveniently chosen value of k in (1.7), we have
Ui>0, j=2,3,4,5,6,T7,

forall X,Y,Z € R".

Proof. For some constants k; > 0, ¢ = 1,2, conveniently chosen later, we have

(1+ a8, )2, HX)) =k (1 + a6, )22 + 27 %1 (1 + a8, )2 H(X))|)?
— (k1 +a0; "2, 7Z)
— (TR (L+ ad, Y H(X), H(X))

and

(6., H(X)) =||ka0ZY + 2k 62 H(X)|?
o <k§§aya Y> o <471k2725aH(X)7 H<X>>
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On using the assumption that H(0) = 0 and the hypothesis (1.5), it follows that

Us =|kr(1+ a6, )2 Z + 27 k711 + ad, ) 2CH(X, 0) X2
+(Z, (206, " (Y) — ki(1 + ad, 1)) Z)
+ (Ch(X,0)X, (m26p(1 — B) — 47 k1 (1 4 a8, ) CL(X,0))X)

and
Us =||ka03Y + 2 ey 162 Ci (X, 0) X |
+ (V. (£200[P(X) — (1 = B)dp]] — k30.1)Y)
+ (Cu(X, 00X, (1305(1 = B) — 47 k7 10,Cn (X, 0)) X).
Thus, using (1.6), (3.1), (3.2) and Lemma 4.1 repeatedly, we obtain for all X, Z € R",
Uz >0,
if

4a(1 — 5)772’7252513

9 @0,
k < 72 a

L= a4+,

and, for all X,Y € R, Us > 0, if

with A, <

48(1 — 5)77277352_

k3 < &6,  with A, < 5

Hence, combining these inequalities (with A.), we have, for all X| Y, Z € R",
U;: >0, 1=2,3,if A, < Ekdy0p,

with

— i da(l — B)nay2da 4B8(1 — B)nansdy
k = mi { CETAE ) 52 }<1.

To complete the proof of Lemma 6.1, we need to show that
U >0, 1=4,506,7,

for all X,Y,Z € R". By (1.5), the assumption that H(0) = 0 and for constants
k; >0, 7 =3,4,5,6, conveniently chosen later, we have

<5b(1 - ﬂ)Xv (kI[(Y) - 6aI)Z>

(k382 (1 = B)F(W(Y) = 6,1)3X + 27 k567 (1 — B)3 (U(Y) — 6,1)3 Z]?
(k20,1 = BY(W(Y) = 6,1)X, X) — (47 k5 20,(1 — B)(U(Y) — 8,1)Z, Z),
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(0p(1 = B)(2(X) — 61) X, Y)
=[[kad} (1 — B)3(2(X) — 8,1)3 X+2*1k;15$<1—5>%<<1><x> — )Y |
— (k{0p(1 = B)(P(X) — & 1) X, X) — (47 k20(1 — B)(R(X) — 8,1)Y,Y),
(1 +adgH)(@(X) - &)Y, >
=[|ks(1 + a0, )2 (D(X) — 61)2Y + 27 ks (1 + ad, )2 (B(X) — 6,1)2 Z|)?
— (B3 (1 + ad, )(R(X) = 1)Y,Y) — (47 k52 (1 + ad, ) (@(X) — &) Z, Z),
<5a(\II(Y) - 5(1])va Z>
k662 (W(Y) — 6,1)FY + 27k 62 (W(Y) — 6.0) 2
— (k20a(U(Y) = 6,1)Y,Y) — (47 kg 20,(W(Y) — 6,1)Z, Z).
Then it follows that
Uy =|lksdf (1 — B)R(U(Y) — 6,1)EX + 27Uk 107 (1 — B)R(W(Y) — 8,0)% 2]
+ (X, (mady(1 = BYCA(X,0) — K3d,(1 = B)(T(Y) = 6,])) X )
+ (2, (0738, W (Y) — 47 k5 20,(1 = B)(W(Y) — 0u1)) Z) ,
Us =|ka82 (1 — B)(®(X) — 6,1)EX + 2—1/@;155(1 - 5)%@
+ (X, (ns0n(1 = B)Cu(X,0) = kZ0y(1 = B)(@(Y) = 6]

<
Y.
(

X) = &1)zY |
) X)
(&da[@(X) — (1 —mabn—4—1k425b<1—5><<1><x>—5b ))Y),
Us =|lks(1 + a0, )2 (D(X) — 81)2Y + 27 k3 (1 + a0, )2 (B(X) — 6,1)2 Z|)?
+ (Y, (&48a[@(X) = (1 = B)31] = K3(1+ ad, ) (@(X) = 6,1)) V)
+ (2, (a8, W (Y) = 47 k5 2(1 + a6, )(R(X) = 6,])) Z)

~—

and
Ur =|lks02 (W(Y) — 8,1)FY + 27 ks 162 (U(Y) — 8,0) 2|2
+ (Y, (&0,0(X) — (1= B)0]] — K20, (U (Y) — 6,1)) V')
+ (2, (0750, " W(Y) = 47 kg 26, (W(Y) = 6u1)) Z).

We then obtain the following using the estimates (1.6), (3.1), (3.2) and Lemma 4.1
repeatedly. For all X, Z € R",

o (1=8)0(Aa —0a) _ o m4de
> <k2< :
Uy >0, if T, <K<
For all X, Y € R",
o (L=B)Ay—=0) _ 5 _ 150
> f <K< .
e T AR vy
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Forall Y, Z € R,
(1 + Oééa_l)(Ab — 51,)
daryy

654 5a 5b

> if .
UG_O; 1 (1+045g1)(Ab_5b)

ks

IN
IN

For all Y, Z € R,

6555a6b
5a(Aa - 5(1) ‘
The proof of Lemma 6.1 is now complete. 0

5a(Aa - 6(1)

U; >0, if
dorys

IN

k

S
IA

We are now left with the estimates U; and Us.
From (6.1), we clearly have

(6.2) Ui 2 (1= B)modc|| X" + B&10a0[[Y]* + am|| 2]
> or(IXI1* + Y1 + 1211,

where d7 = min{(1 — 3)n100., 8E1046p, a1 }.
For the remaining part of the proof of (5.1), let us for convenience denote || X ||* +

Y]]+ || Z||* by 2. Since P(t, X,Y, Z) satisfies (3.3), Schwarz’s inequality gives Ug,
63) Ul < (1= BGIXN+ (1 +ad;Z] + &Y ) 1P X, Y, 2)]
< V305 (00v® + 02()0 7 + 01 (£)9)
where dg = max{(1 — 3)d, da, 1 + @d; '}
Now, combining (6.1) with inequalities (6.2), (6.3), we obtain
W < (87 — v/38300)* + v/305 (92(75)1?1“ + 61 (t)w) :
This we can rewrite as
(6.4) W < —8g90® + by + o,
where
309 = 67 — V30560, U1 = {S1061(t) — Get)}1)
and
Wy = 01002 ()" P — dg1®.
If we choose dy small enough such that d9 > 0 (following [7, page 306]), with the
necessary modification, we obtain
Uy < 109”6 (t)
and .
vy < o070 (1),
for any constant v in the range % <v< 1.
Thus, (6.4) reduces to

W < —601)® + b1 (e%) Loy (t)) $20)

with 512 = max{510, 511}.
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This is (51) with 53 = 59 and (54 = (512.
This completes the proof of Theorem 3.1.

7. EXAMPLE

Consider (1.1) of the form

(7.1) X +U(X)X + (X)X + H(X)=P(t, X, X,X), XecR?
with
(T - 3+1+$ 0 B OOOOO4+1Jr s 0
X - <x2> ) \IJ(X) ( O 1 1 ) (I)(X> - 0 1 3
~ {0.001 tan~! 21 + 0.000124 et
H(X) = ( 0.0001z, > Pl = (sint :
where 7%, sint are bounded continuous functions on [0, +00). A simple calculation

(with the earlier notations) gives A\ (¥(X)) =1, A (¥ (X)) =3 + 1+$12, AM(P(X)) =
1, A(®(X)) = 0.00004 + d Cu(x,0) = (00001+35s 0
A2 - e and Cn(X,0) = 0 0.0001
M (Cr(X,0)) = 0.0001, A(Ch(X,0)) = 0.0001 + $29 . Following Theorem 3.1,

0 =1, Ay =3, 0 = 1, Ab = 1.00004, ¢, = 00001 A = 0.0011. If we choose
a=3, B=13, 73 =12 =13 =+, we obtain k = min{0.015,0.04} = 0.015 < 1. Since
A, = 0.0011 < 0.015 = ko, (5b, then all the conditions of Theorem 3.1 are satisfied.
Thus the solutions of (7.1) are ultimately bounded.

8. CONCLUSION

This paper investigates the ultimate boundedness of solutions of some third-order
nonlinear differential equations. By constructing a quadratic-like function (also known
as Lyapunov function) and using the Lyapunov second (direct) method, sufficient
conditions which guarantee that solutions are ultimately bounded are established.
A particular example has been provided to demonstrate results obtained. Results
obtained in this paper revise and improve on those in the literature.

Acknowledgements. The authors wish to thank the anonymous reviewers for their
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RECONSTRUCTING THE CHARACTERISTIC (PERMANENTAL)
POLYNOMIAL OF A DIGRAPH FROM SIMILAR POLYNOMIALS
OF ITS ARC-DELETED SUBGRAPHS

VLADIMIR R. ROSENFELD!

ABSTRACT. Let D = D(V, E) be an arbitrary digraph with the set V' of vertices
and the set E of arcs (|V| =n;|E| =m); loops, if any, are considered reduced
arcs with the same head and tail. The characteristic polynomial ¢~ (D;x) (resp.
permanental polynomial (¢pT)) of D is the characteristic (permanental) polynomial of
its adjacency matrix A: ¢(D;x):=det(zI — A) (¢T(D;x):=per(xl + A)), where I is
an identity matrix. A t-arcs-deleted subgraph D; of D is the digraph D less exactly
t arcs (while all n vertices are preserved). Also, let Dy and R; (D;xz) (R (D;x))
be the collection (multiset) of all ¢-arc-deleted subgraphs of D and the sum of the
characteristic (permanental) polynomials of all subgraphs from D, respectively. We
consider the reconstruction of the characteristic polynomial ¢~ (D;z) (permanental
polynomial ¢ (D;z)) of D from the polynomial sum R, (D;z) (RS (D;x)), t €
{1,2,...,m—n+ng}, where ng is the number of zero roots of ¢~ (D;x) (¢*(D;x)).
Then, we also carry over our reasoning to the case of reconstructing both polynomials
of undirected graphs (where edges are deleted).

1. PRELIMINARIES AND THE MAIN PART

The multifaceted topic of reconstructing graph polynomials has long attracted
the attention of graphists. It complements the topic of reconstructing the graphs
themselves and, probably, in some cases, can help to carry out such a reconstruction.
Here, we will not consider the general state of that issue, which we leave for a separate
literature review; the interested reader can find quite voluminous information on
the topic in [1-9]. We will fully devote ourselves to considering a specific problem,

Key words and phrases. Characteristic polynomial, permanental polynomial, t-arcs-deleted sub-
graph.
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referring only to the information directly necessary to solve it. Each square matrix
A = |ays];,—; is the adjacency matrix of a (weighted) finite (di)graph G, where an
entry a,s (r,s € {1,2,...,n}) is the weight of an arc B3 emanating from vertex r
and heading to vertex s. The case r = s corresponds to a loop (a reduced arc whose
endpoints coincide); and a,; = 0 means that the respective arc does not exist in G. If
A is symmetric, with a,; = a, for all pairs of indices r and s, G can be regarded also
as an undirected graph having nonoriented edges rs = sr instead of pairs of opposite
arcs 7§ and §7. The case when all nonzero entries of A are equal to 1 corresponds
to an unweighted graph . In general, an entry a,, may be an arbitrary quantity
(complex number, algebraic expression, etc.). Herein, we plan to practically consider
clearly recognizable cases of graphs or digraphs. In doing so, we will use, without any
indication, information that is equally relevant for all graphs in our text.

A vertex-deleted subgraph of a graph G is a subgraph GG —v obtained by deleting the
vertex v and all edges incident to it from G; similarly, an edge-deleted (arc-deleted)
subgraph of G is a subgraph G — uv (G — @) obtained by deleting the edge uv (arc
zﬁ), while its end vertices and all other edges (arcs) incident to it are preserved as
they are and were in G. This deletion of uv (@b) is sometimes called weak deletion of
the edge uv (arc wd); while the deletion of uv (u0) with end vertices and all the edges
incident to it is called strong deletion of the edge uv (arc iﬁ) In the latter case, the
resulting subgraph, denoted by G — u — v, is the graph G less the pair v and v of its
adjacent vertices (u ~ v) and all edges (arcs) incident to them. The collection (in
general, a multiset) of all subgraphs G — v (G — w0, G —uv,G —u — v) of the graph
G is called a deck and any single element of the deck is called a card. We refer to
these four decks as D, AD, WD, and 8D, respectively. In our text, we will need two
more general decks: D; of subgraphs with ¢ (¢ = 0,1,...) vertices deleted and AD;
subgraphs with t arcs deleted (Dy = D; ADy = AD).

The characteristic polynomial ¢~ (G;x) (resp. permanental polynomial ¢™(G;x))
of a (di)graph G is the characteristic polynomial ¢~ (A;z) (permanental polynomial
¢*(G;x)) of its adjacency matrix A = [ay,]}; ,—; [10]:

(1.1)
¢ (Gyx) == ¢ (A;x) = det(z] — A) chx nioc— n—k (c; = 1),

n—ng

¢ (G z) = ¢ (A;x) = per(z] + A) = zn:ckx” e Z "t (ef = 1),
k=0

where [ is a diagonal identity matrix of the corresponding dimension; and nq is the
number of zero roots of ¢~ (A; x) or ¢1(A;x), respectively.

In what follows, we will use the combined notation ¢*(D;z) (and other (+)-
notation) wherever it is equally applicable both to the considered characteristic and
to permanent polynomials. Hereby we mean a common form of notation, but not
equality of results for the corresponding (—) and (4) cases.
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In this paper, we demonstrate that the polynomial ¢*(D;z) of an arbitrary di-
graph D (with m > n — nf, where ni is the number of zero roots of ¢*(D;x)) is
reconstructible from the following polynomial:

Rf(Diz)= Y. ¢ (Dyz)= erkx"_k (0<t<m-—n+ny),
D;€AD(D) k=0
where Dy := D — ujv] — ug03 — -+ — m is an arbitrary subgraph of D obtained by

weakly deleting its ¢ arbitrary arcs; and the sum ranges over all deck AD;(D) of D.

In order not to leave undirected graphs aside from our reasoning, we will introduce
the following terminology. A symmetric digraph S(G) of an undirected graph G
(having n vertices and ¢ edges) is obtained by substituting a pair of opposite arcs for
every edge in G. We define B = [baﬁ]i?ﬁzl to be the 2¢ x 2¢ matrix with row and
columns indexed by the set of arcs of S(G) as follows:

- - Ca |1, v=2xandeither y =uor y # u,
(12) ba,@ =0 (Oé - (uav)vﬁ - (ﬂf,y)) - { O7 otherwise.

The matrix B is the adjacency matrix of a derivative digraph I'(G) = I'[S(G)], whose
vertex set is the set of all 2¢ arcs of the symmetric digraph S(G), while the adjacency
of vertices is defined by (1.2). The digraph I'(G) is called in [11,12] the line graph
of a directed graph S(G) and is called the arc-graph of (undirected) graph G in [13].
In the latter case, the prefix (or adjective) “arc” makes it possible to directly connect
this term with the original undirected graph G, without referring to the auxiliary
digraph S(G). In what follows, D = S(G) will be automatically considered by us as a
special case of an arbitrary digraph D (with m = 2q arcs).

An interesting spectral result concerning the arc-graph I" of a digraph D is the
following theorem [11-13].

Theorem 1.1. Let ¢~ (I';x) be the characteristic polynomial of the arc-graph I'(G)
of a digraph D. Then,

(1.3) ¢ ([x)=a""¢ (D;x) = Xn: cpa™k,
k=0

where n is the number of vertices, and m is the number of arcs of a digraph D (loops,
if any, are also considered reduced arcs).

Remark 1.1. The general version of this theorem (see [11-13]) for the characteristic
polynomials remains true for an arbitrary (di)graph H instead of D, possibly with
(weighted) loops and (weighted) arcs or edges (having an arbitrary matrix M as its
adjacency matrix A in (1.1)). However, Theorem 1.1 cannot be generalized to the
case of the permanental polynomials. It is easy to consider the case D = S(G), where
G is an undirected graph with n > 2 vertices. Then, m(D) > n(D) and ¢~ [I'(D); z]
is divisible by ™", i.e., has at least m — n zero roots. However, unlike the previous
case, ¢T[I'(D); x| has no zero roots; see Proposition 6 of [13], taking into account that
S(G) is an Eulerian digraph.
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We also note an important feature of the structure I'(D), which allows us to
reconstruct the original digraph D using the adjacency matrix B of I'(D). If we
enumerate all the arcs of the digraph D in such a way that the numbers of arcs
entering one common vertex of D follow one after another, then we get the matrix B
divided into blocks. These blocks are either blocks of all zeros or contain exactly one
column of all ones. Further, if we replace each zero block by the number zero, and
each block containing ones by the number one, then we get a matrix that is exactly
the adjacency matrix of the original digraph graph D; see [13]. Here, we note that
in the case D = S(G), the adjacency matrix of the digraph D coincides with that of
an undirected graph G (A(D) = A(G)). Thus, this algorithm also reconstructs (the
adjacency matrix of) G.

The one-to-one correspondence between each digraph and its arc-graph also allows
us to consider the arc-graph I'(D) as the result of the action of the operator I" on
the digraph D, which uniquely maps D to I'. But we also know the algorithm for
converting I'(D) back to D, which we can conventionally denote by I"~*. Thus, we
can summarize what was said like this:

D = I'(D).
I“—l

The above correspondence is valid for an arbitrary digraph D, but we will be

especially interested here in its particular case:

, r
(1.4) (D —ugv] — ugvy - - —ugth) = I'(D) — a1 —ag — -+ — oy,
-1

where a vertex a; removed from the arc-graph I'(D) is an arc w0, of the digraph D

(1€{1,2,...,t}).
From what has been said, we pass to the following technical lemma.

Lemma 1.1. Let I'(D) be the arc-graph of a digraph D. Then,

67 (I = a1 —ay — - — ) = 2™ "7 (D — wiv] — ugvh — -+ — W ),
where o; = wv;, oy € V[I'(D)] and w;v; € E(D).
Proof. It follows from Theorem 1.1 (see (1.3)) and the correspondence (1.4). O
Lemma 1.1 allows us to calculate the following polynomial sum:
(15)  SArDRe= 3 o {MD)hark =2 S 0 (D)
[I(D))s-€D:[I'(D))] DteAD(D)

n
=™ "R (Dsz) =) T;kxm_t_k,
k=0

where [I'(D)];. = —a;—ag— - —ay and Dy := D — U0} — Uglh — - - - Uz0,.

Remark 1.2. The fact that Sy [I'(D); z] = 2™ " 'Ry (D;z) in (1.5) prompts us to make
some “premature” remark, which will be useful to us when we proceed to consider a
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similar method for reconstructing the permanent polynomial. As already indicated in
the second part of Remark 1, Theorem 1.1 does not work in the case of the permanent
polynomial; therefore, a similar equality for S;"[I"(D);z] and 2™ " 'R} (D;z) does
not hold, although both these polynomials exist separately. Therefore, the calculation
of S;"[I"(D); z] will be absolutely useless to us, and further we will focus on calculating
R (D;z). But we will use the derived expression 2™ "R/} (D;x).

Here, we recall the known result, whose proof, in particular, can be obtained by
multiple application of Clarke’s theorem (see Theorem 2.14 of Clarke in [10]) with the
addition of the factor 1/t!, which appears due to the fact that there are ¢! different
sequences of deletion t of vertices from a graph.

Theorem 1.2. Let G be an arbitrary (di) graph with the vertex set V- = {vy,vq, ..., v, }.

And let Gy. := G — vy —vg — -+ — vy be graph G less its t (t € {1,2,...,n}) arbitrary
vertices vy, s, ..., v, and all edges (arcs, loops) incident to it. Then,

1 d

n @éﬁ (Gyx) = Z o(Gr; ),

Gt.EDt(G)
where the sum ranges over all C* cards of the t-th deck Dy of G.

Corollary 1.1. Let G = I'(D). Then,

16 STIWDyal= Y o (IO = & o I(Dyal

|
LD emF(Dn £

The last equation allows us to get ¢~ [['(D); z] in integral form:

(7)o I0(D)a] =t [ - [S;(D)yalda’ (0t <m—n+ng),

t times

where ng is the number of zero roots of ¢~ [I'(D); z] (if ngy is not known, use t < m—n);
and the integration at each of the ¢ steps uses the zero integration constant (since the
coefficients 7, of 2™~*~% in (1.7) must obey their determination in (1.5)).

The equation (1.6) can also be solved for ¢~ [I'(D); ] by comparing the coefficients
at the same powers of x in the corresponding polynomials. First, using the last parts
(1.5) and (1.6) for an equivalent representation of S;[I'(D); x], we get

- = m—t— 1
Sy [ Zth k:a dxt¢[(> ]

1 1 "

d’ —nn —,.n— —m—
:t'dm[xm 2 k]: ZC -
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where the coefficients ¢;, belong to the expansion ¢~ (D;z) = S7_, ¢, " *. Hence,
U 1 d U (m—k)
— .m—t—k — — m—t—k
[ =— - —¢ [[Gza]=) ¢f—F "1
1;) o ¢ dat ,;) it (m —k —t)!
— Z C]:Crszxmitika
k=0

which makes it easy to compare the coefficients of the first and last sums therein:

Ty
c,;:cf’k (ke {0,1,...,n},0<t<m—n+ng).
m—k
At this point, we arrive at the following statement (which will later be generalized
later to the general case, which also includes the permanental polynomial).

Lemma 1.2. Let ¢~ (D;z) = Yj_gcp2" % and Ry (Dyx) = Sp_grga™ % (0 <
t <m —mn+ng) be the characteristic polynomial of a digraph D and the sum of the
characteristic polynomials of all its t-arcs-deleted subgraphs (from ADy), respectively.
Then, the characteristic polynomial ¢~ (D;x) is reconstructible from (the coefficients
of) the polynomial Ry (D;x) as follows

(1.8)
— = T;‘k n—k ¢! m—n—t p— t —
o) (D;x)zzct’ x :xm_n/---/x R, (D;z)dz" (0 <t<m—n+ny),
k=0 “m—k

t times

where the integration at each of the t steps uses the zero integration constant.

Lemma 1.2 can be considered as our final result for the characteristic polynomial
¢~ (D;x) of a directed graph D. Now it remains for us to show that a similar result
is also valid for a permanent polynomial ¢*(D;x). (It is “only” necessary to replace
(=) by (+) everywhere in (1.8)).

First, it is important to remember what combinatorial meaning an arbitrary coef-
ficient ¢; has in the expansion of a permanent polynomial, ¢*(D;z) = ¢ ¢ 2.
Namely, the coefficient ¢; is equal to the number of all coverings by oriented simple
p-cycles (p € {1,2,...,k}) of exactly k vertices of the digraph D, where 1-cycle and
2-cycle are a loop and a pair of opposite arcs with common endpoints, respectively.
See a discussion of the coefficients of the “simple permanent polynomial” of a directed
graph, e.g., on page 193 of [14]. But in each directed simple p-cycle, the number of
arcs is equal to the number of vertices, p. Therefore, the coefficient ¢ is also equal
to the number of coverings exactly k of arcs of the digraph D. We need the following
lemma.

Lemma 1.3. Let R (D;x) = > (p_m)ean, ¢t (D —ul; x) be the sum of the permanent
polynomials of all m subgraphs D — ub obtained by weakly deleting a single arc e
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from D. Then,
(1.9)
Rf(Dyz) =Y (m —k)cfa"* x"mﬂf [xm*"gzﬁJr(D;x)} (m—n+nd >1),
k=0 L

where ng is the number of zero roots of ¢ (D;x) (if ng is not known, use m —n > 1).

Proof. Consider an arbitrary covering of k arcs (and vertices) of the digraph D by
oriented cycles consisting of arcs ulvl,uwg, ..., u,vj, where the head of each arc
coincides with the tail of exactly one other arc, Wthh is not specified here. Remove
an arbitrary arc @0 from the digraph D. Obviously, if this is not one of the arcs
belonging to the cover under consideration, then this cover can also be realized in
the resulting subgraph D — ud, although other covers including w0 in D, become
impossible. If we consider the complete deck AD; of all m one-arc-deleted subgraphs
(cards), then among them we will find exactly k& subgraphs in which our concrete
cover cannot be realized. Since we have considered an arbitrary covering of arbitrary
k arcs of the digraph D, we can generalize what has been said to the general case of
all such cycle coverings of D. As a result, we can represent the total loss of coverings
by all cards in the complete deck AD; as the following polynomial, whose coefficients
give us the numerical loss of all cycle coverings of the corresponding number of k
(ke {1,2,...,n}) of arcs of D:

Zk.ch n— k

Using (1.9), we get

Rf(D;x) = S 6t (D —ut;x) = meT(D;x) — 5 (Dyx) = S (m — k)cfa" k.
(D—ub)eAD1 (D) k=0
Thence,

n

RT(D,I) :Z<m ]C) e k_ " m+1 chl’m k

k=0
= x"*mﬂi {xm_"gzﬁJr(D' .73)} (m—n+nd >1),
dz ’ 0
which completes the proof. O

The following statement plays an essential role in our reasoning.

Lemma 1.4. Let R (D;x) = Y p,cap, ¢ (Dy; x) be the sum of the permanent polyno-
mials of all C* subgraphs Dy obtained by weakly deleting t (t € {0,1,....,m—n+ng})
arcs from D. Then,

(1.10)
R (D;x) = Y Ch e =
k=0

n—m-+t t
x d

i .@[xm_nqur(D;I)} (Ogtgm—n_i_nar)‘
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Proof. It can be obtained by t-fold application of Lemma 1.3. In this case, as in
the case of Theorem 1.2, the multiplier 1/t! appears before the differential, since
there are t! possibilities of sequential selection of ¢ elements one by one, but we
only need one choice. (For a short check, one can consider the first coefficient C,
in the expansion of R, (D;z) in powers of z.) We will mainly focus on the more
important part of the proof regarding the first equality in (1.10), while the second
equality there is elementarily proved by simple manipulations with the coefficients.
By Lemma 1.3, we have Rf (D;x) = X7_(m — k)cf 2%, where m is the number of
all arcs of the original digraph Dy := D with 0 deleted arcs; and to unify subsequent
entries, we can formally write Ry (D;z) = ¢ (D;x), which is the initial term in the
sequence R{, R ,..., R. Thus, each stage of sequential calculating of polynomial
sums Ry (D;z), Ry (D;z),..., R (D;x) for decks ARl,AﬂQg, ..., ARy, respectively,
means sequential mult1phcat10n of the original coefficient ¢; (k: € {0,1,...,n}), of

= ¢T(D;x), first by (m — k)/1, then by (m — k — 1)/2, and so on up to the last
multiplier (m —k —t+ 1)/t in the process, to result in the coefficient

ree =" m—k)(m—k—1)---(m—k—t+1)cf =C" _,cf
of the polynomial R} (D;x) = 7o rexa™ .
Based on this, we get

R (D) =3 Cpycia™",
k=0

which proves the first equality in (1.10) and, thus, the main part of our statement.

It is technically easy to see that the third part of (1.10) is also equal to the same

polynomial R (D;z):
xn—m-l—t dt

G (2 (D) =

i m—+t dt n -
0 dat lchx kl
n—m-+t n
:x [Z EYm—k—1)--(m—k—t+ )+mk]
' 0

_” (m —k)! N
=3 i = X Cheta™™ = RHDi) = S,

which completes the proof. ([l

Now we state a generalizing theorem.

Theorem 1.3. Let ¢*(D;x) = Sp_ycxa™* and Rf(Dyz) = Yp_gripa™ 7 (0 <
t <m —n+ng) be the characteristic (=) (permanental (+)) polynomial of a digraph
D and the sum of the characteristic (permanental) polynomials of all its t-arcs-deleted
subgraphs (from AD;), respectively. Then, the polynomial ¢=(D;x) is reconstructible
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from (the coefficients of) the polynomial Ri (D;x) as follows

(1.11)
T k ¢!

¢t (D;z) = Ct’ v = min/ e /a:m_"_tRf(D;x) dz' (0 <t <m—n+ng),
k=0 “m—k L

t times

where the integration at each of the t steps uses the zero integration constant.

Proof. The (—)-case has been proven in Lemma 1.2. Now, note that it follows from
the last two equalities in (1.11) that

Ty
(1.12) c;:(ﬁi (0<t<m-—n+ng),
m—k
which is a (4)-analog of (1.8). Whence we arrive at the overall proof. O

Remark 1.3. All practical applications of Theorem 1.3 (and Lemma 1.2) are related
to the values of ¢ > 1. The last condition can always be satisfied for the case
m —n = —1, since it corresponds to the oriented tree T (m > 2), whose polynomial
ot (?, x) = 2™ has n = n zero roots and allows its formal reconstruction up to the
values t = m —n+n =n — 1. For m = n, when an arbitrarily oriented digraph D
contains exactly one cycle of length ¢ < n, 1 <t < n — ¢; in this case, we can also
reconstruct the polynomial ¢*(D;x) (for valid values of t). But in the exceptional
case, when D is a consistently oriented cycle, the reconstruction of its polynomial
¢*(D; z) is impossible, since ¢*(D;z) = 2" +£1, and m —n+ng =m—-n+0=0< 1.
For all m —n > 1, Thereom 1.3 (Lemma 1.2) works for at least ¢ = 1. Thus, the
polynomial ¢*(D;x) of a consistently oriented cycle remains the only case when its
reconstruction using Theorem 1.3 is impossible.

Now we want to move our reasoning to the area of undirected graphs. Earlier, we
have already dealt with the problem of recursion of the characteristic ¢~ (G;z) and
the permanent ¢*(G; ) polynomials [15,16] of the undirected graph G. We use two
formulae [15,16], in which we are now correcting typos made in [16]:

(1.13)
(q—n)o (Giz) =) [¢7 (G —w) + ¢ (G —u—v;z)] — x(d/dx)d™ (G;z),

uv

(@ —=n)o"(Gz) =) [67(G —wv) = ¢" (G —u —v;2)] — 2(d/dz)¢ " (G; 2),

uv

where n and ¢ are the numbers of vertices and edges, of GG, respectively, and the
combined summation ranges over the set of all edges of G and all pairs u and v of
adjacent vertices (u < v;u ~ v).
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We combine these formulae and transform them like what we did before

(1.14) (g —n)¢™(Gsa) + 2(d/dx)¢™ (Gi ) Y _[¢F (G — wvyx) F (G — u—v;2)]

=Y gl " = Uf (Ga),
k=0

where the coefficients g,it should be known by recursion. Further, transforming the
first side of (1.14), we obtain

(1.15)
Sola =)+ (0 — k)eEa™* = (g — k)efam™* = 2"+ (d/da)[29 "6 H (G )

k=0 k=0
n
_ + n—k
- Z gl;kw )
k=0
whence we arrive at the “undirected” generalization of Lemma 1.4.

Theorem 1.4. Let U (G;z) = X0y gix™F be the sum of the polynomials ¢*[(-); ]
of all “weak” subgraphs G — uv and all “strong” subgraphs G —u —v (u < v;u ~ v)
of G. Then,
(1.16)
n n +
§*(Gia) = Y et = 30 Tk gn bk — s [ UGy de (g > )
k=0 9=

k=0

where the integration uses the zero integration constant.

Proof. The second equality in (1.16) is related to the comparison of the second and
fourth sides of (1.15), while the third equality in (1.16) is a purely technical fact. [

The following corollary allows us to equate two approaches to undirected graphs G
— as such and as their symmetric directed equivalents S(G).

Corollary 1.2. Let RF[S(G);z] = X7, rik:ﬂ“k and U (G 1) = gffkas”’k (as above).
Then,

(1.17) Gk = iizrﬁk (k€ {0,1,...,n},m = 2q),
whence

(1.18) UE(Gx) = x"—qﬂiﬂ (;q [ RES(G); dx)
and

(1.19) RE[S(G); 2] = x”_2q+1d(l (xq/mq_”_lUli(G;x) dx) :

Proof. The mutual relation (1.17) of the coefficients follows from (1.12) and the second
side (1.15). The former gives, for t = 1, ¢ = ri;,/C}_), = ri;/(m — k). Substituting
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the obtained expression for ¢i on the second side of (1.15) and equating the result to
the last part of (1.15), we obtain:
n +
k

(1.20) Z(q — k;)cfa:”*k = Z 9= rlgkx"*k = Z gikx"*k,
k=0 mom—k k=0

from which, comparing the coefficients of "% on the last two sides of (1.20), we
arrive at the proof of the first part of our statement, expressed by (1.17).

Integral expressions (1.18) and (1.19), consistent with (1.17), can be obtained using
parts of expressions (1.11) and (1.16) used by theorems 1.3 and 1.4, respectively.
Prove the first of them, (1.18). First, we equate the last side of (1.16) to the third
side of (1.11), assuming that D = S(G) and t = 1 in it:

(1.21)

6(Gi) = (o777 [ a7 UGy e = i [ RES(G); 0] de
= 6*[S(G):al.

Starting from the central equality of (1.21), enclosed in brackets, we will carry out
the following sequence of its technical transformations:

—n— 1 m—n—
(1.22) /xq WUE(G;2) da :ﬁ/x 'RE[S(G); z] du,

. d /1 ;o
2 1U1i(G;x):dx< IE 1R§[S(G);x]dx),

xm—a
1
(1.23) U (G;z) :x”_qHCSE (W /xm_”_lRfc[S(G);x] d:v) .

But due to the fact that the number of arcs m of D = S(G) is equal to 2¢ (where ¢ is
the number of edges of G), (1.23) is equivalent to

UE(G:x) = x"qﬂic (Ilq [ RESG):al da:) ,

which proves (1.18).
The second integral equality (1.19) is proven in a similar way. First, we rewrite
equality (1.22) in a different form to obtain

/mm_"_lRﬂS(G);x] dz = xm_q/xq_”_lUf—L(G;m) dz.
Then, without explanation, we apply a similar sequence of transformations:

_ d ([ . e
" REIS(G); 2] =14 (a: q/xq UE(G z) dx) :

RESIG): 4] :x”mH; (a7 [ o 1UF (G ) )
T

RE[9(G); 7] :x”_zqﬂi (xq/xq_"_lUf—L(G;a:) d:v) ,

which proves (1.19) and thus completes the whole proof. O
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In addition to Remark 3 (for monocyclic digraphs) and Theorem 1.4 (for undirected
graphs), we present the following corollary to formulae (1.13), which is given here
with a correction of a typo in [16].

Proposition 1.1. Let ‘G be an undirected simple monocyclic graph (whether a cycle
or not) with ¢ = n. Then,

(120) Loy = Y [0 (€ - w) 7 65(E —u-vi)
= Y ¢*(G —wa) (g=n),
ueV(G)

where the first combined summation ranges over the set of all edges of qén and all
pairs u and v of adjacent vertices (u < v;u ~ v).

Thus, the derivative [qﬁi(qén; x)]" of the polynomial ¢i(qén; x) of a monocyclic graph
‘G is also reconstructible from the first combined sum in (1.24) (due to [16]). Earlier,
in the works on the reconstruction of the characteristic polynomial ¢~ (G;z) of an
arbitrary undirected graph G, the second sum of (1.24) was used; see, e.g., [5-8].

Special attention is paid to gzﬁ_(qén; x) in [8].
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SYMMETRIC N-ADDITIVE MAPPINGS ADMITTING SEMIPRIME
RING

KAPIL KUMAR!

ABSTRACT. Let R be a ring with centre Z(R). An n-additive map D : R" — R
is called symmetric n-additive if D(x1,...,2,) = D(2r), ..., Tx(y)) for all z; € R
and for every permutation (7(1),7(2),...,7(n)). A mapping A : R — R defined
by A(z) = D(z,x,...,z) is called the trace of D. In this paper, we prove that a
nonzero Lie ideal L of a semiprime ring R of characteristic different from (2" —2) is
central, if it satisfies any one of the following properties: (i) A([x,y]) F 2y € Z(R);
(i) Allz, y) Fly, 2] € Z(R); (iii) Alzy) FA@) F [z, y] € Z(R); (iv) Al[z,y]) Fyz €
Z(R); (v) Alzy) F AY) F [2,y] € Z(R).

1. INTRODUCTION

Throughout the paper, R always represents an associative ring, Z(R) is its centre.
Let z,y,z € R. We write the notation [y, z] for the commutator yx — xy and make
use of the identities [zy, 2| = [z, 2]y + x[y, 2] and [z, yz] = [z, y]z + y[z, z]. Recall that
R is prime if aRb = {0} implies that either a = 0 or b = 0 semiprime if aRa = {0}
implies that a = 0. Let R and 8 be abelian groups. A map ¢ : R — 8 is called the
trace of a biadditive map if there exists a biadditive map B : R x R — & such that
q(x) = B(x,z) for all x € R. Assuming further that R C R’ are rings, we say that ¢
is commuting if [¢(z), x] = ¢(x)x — xq(x) = 0 for all x € R. An example is a map of
the form ¢(z) = A\2? + pu(z)x + v(z) where A € C, the centre of 8 and p,v : R — C,
w1 is additive and v is the trace of a biadditive map. Quite often it turns out that
this obvious example is in fact the only possible example of a commuting trace of a
biadditive map of R into 8. The basic result of this type states that this is true in the

Key words and phrases. Semiprime rings, Lie ideals, Symmetric n-additive mapping, Trace.
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case when R is a prime ring with char(R) # 2 and 8 is its central closure provided,
however that R does not satisfy s4, the standard polynomial identity of degree 4 ([11],
Theorem 1). This theorem has turned out to be the key for solving different problems
and to a great extent it initiated the development of the theory of functional identities.
We studies about bidervations and the traces of mapping in articles [1,9,10, 12] for
details. A map f : R — R is centralizing on R if [f(z),z] € Z(R) for all z € R.
An additive map D : R — R is called a derivation if it satisfies the Leibnitz rule
D(zy) = D(x)y + xD(y) for all x,y € R. Let n > 2 be a fixed positive integer. A
map D : R X R x -+ x R — Ris said to be symmetric (or permuting), if the equation

n—times
D(w1,22,...,2,) = D(%r1), Tr(2), - - -, Tn(n)) for all x; € R and for every permutation
(m(1),m(2),...,m(n)). Let us consider the following maps Let n > 2 be a fixed positive
integer. An n-additive map

D:RxRx - xR—=>R

n—times

will be called an n-derivation if the relations

D(zyx1', 29, ... xn) =D (21,22, ..., 20) 21" + 21D (21 20, . . ., ),
D(xy,20x9 ;... ) =D (21, %o, . .., Tp) T2 + 2o D(xy, 29,0 1),
D(xq1, @, ... x,) =D (21,22, ..., Tp)xy + 2, D(21, 22, ..., 2),

are valid for all x;, x;/ € R. Of course, an 1-derivation is a derivation and a 2-derivation
is called a bi-derivation. If D is symmetric, then the above inequalities are equivalent
to each other. Let n > 2 be a fixed positive integer. If R is commutative, then a map

D:RXRx--xR—=R,

n—times

defined by
(x1,22,...,2,) = D(x1)D(x3) -+ D(x,), forallz; € R,i=1,2,... n,

is a symmetric n-derivation, where D is a derivation on R. Let n > 2 be a fixed positive
integer and let a map A : R — R defined by A(z) = D(z,x,...,x) forall x € R,
where

D:RXxRx-+ xR—=>R

n—times

is a symmetric map, be the trace of D. It is obvious that, in case when

D:RXxRx-+ xR—=>R

n—times
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is a symmetric map which is also n-additive, the trace A of D satisfies the relation

n—1
Az +y)=A0x)+ Ay) + Z (Z) hi(z,y), forall z,y € R,
k=1

and

hk<$7y) :D(xaxa"'axayayv"'>y)'

(n—k)—times k—times

Gy. Maksa [3] introduced the concept of a symmetric biderivation (see also [2],
where an example can be found). It was shown in [3] that symmetric biderivations are
related to general solution of some functional equations. Some results on symmetric
biderivation in prime and semiprime rings can be found in [12] and [5]. The notion of
additive commuting mappings is closely connected with the notion of biderivations.
Every commuting additive mapping f : R — R gives rise to a biderivation on R.
Namely linearizing [z, f(z)] = 0 for all z € R, we get

[f(2), 9] = [z, f(y)], forallz e,

and hence we note that the mapping (z,y) — [f(x),y] is a biderivation (moreover, all
derivations appearing are inner). Motivated by the aforementioned results we prove
that a nonzero Lie ideal L of a semiprime ring R of characteristic different from (2" —2)
is central, if it satisfies any one of the following properties: (i) A([z, y])Fxy € Z(R); (ii)
N[z, y))Fly, 2] € Z(R); (i) Alzy) FA(2)Fz, y] € Z(R); (iv) A[z, y]) Fyz € Z(R);
(v) A(ay) F DY) F [2,4] € Z(R).

2. PRELIMINARY RESULTS
We make extensive use of basic commutator identities
[zy, 2] = @, 2]y + 2[y, 2], [7,y2] = [7,y]z + ylw, 2].
Moreover, we shall require the following lemmas.

Lemma 2.1 ([5], Lemma 1.1.5). If R is a semiprime ring, then the center of a nonzero
one sided ideal is contained in the center of R. As an immediate consequence, any
commutative one sided ideal is contained in the center of R.

Lemma 2.2. Let R be a semiprime ring and L be a nonzero Lie ideal of R. If
[L,L) C Z(R), then L C Z(R).

Proof. Since xzy € Z(R) for all z,y € L, xy —yx = [z,y] € Z(R) for all z,y € L.
Using Lemma 2.1 we get the required result. O
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3. MAIN RESULTS

Theorem 3.1. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and /\
be the trace of D. If A([z,y]) Fxy € Z(R) for all z,y € L, then L C Z(R).

Proof. Let
(3.1) Az, y]) —zy € Z(R), forall z,y € L.
Replacing y by y + z in (3.1), we have
N[z, y] + [z, 2]) — 2y — 2z € Z(R), forall x,y,z € L.
This implies that
n—1
B + A + 3 (1)l 5D — o 2 € 2),

k=1
By using (3.1), we obtain
n—1 n
> <k>hk([x,y], [z,2]) € Z(R), forall z,y,z€ L.
k=1
This gives that

n

52 (T) hi([z,y), [z, 2]) + (Z) ho([z, ), [z, 2]) + <3> hs ([, 4], [z, 2]

peeet (1))l o) € 2

Substituting y for z in (3.2), we obtain

n

(T) hu([z, y), [z, 9]) + (Z) halle, v, [, y)) + (3) alle ) )

n—1

+..-+( " )hm([x,y},[x,y])ezwa.

This implies that

()P ol ool o)) + () Pl o) el )
(n—1)—times 1—times (n—2)—times 2—times
T (nﬁ 1)9(@,[95,% 2,9, ..., [z,y]) € Z(R).
1—times (n—1)—times

This shows that

<<T> (o) () e 1>>D<[‘“’y]’[x’y]’---a[ﬂ%y]) € 2(®).
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We obtain
(3.3) (2" = 2)D([x, ], [z, y], ..., [z,y]) € Z(R), forall z,y € L.
Since R is not of characteristic (2" — 2), we get

D([z,y], [z, y],...,[z,y]) € Z(R), forall z,y € L.
Applying the definition of the trace
(3.4) A([z,y]) € Z(R), forall z,y € L.

Using (3.1), we get zy € Z(R) for all z,y € L. This implies that [z,y] € Z(R). By
using Lemma 2.2, we get L C Z(R).
Similarly, we can prove the result if f([z,y]) + zy € Z(R) for all z,y € L. d

Theorem 3.2. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and /\
be the trace of D. If A([z,y]) F [y, z] € Z(R) for all z,y € L, then L C Z(R).

Proof. Using the same argument as in Theorem 3.1. U

Theorem 3.3. Let R be a semiprime ring of characteristic not (2" —2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and A
be the trace of D. If A(zy) F ANz) F [z, y] € Z(R) for all x,y € L, then L C Z(R).

Proof. Suppose
(3.5) A(zy) — AN(z) — [z,y] € Z(R), forall z,y € L.
Replacing = by = + z in (3.5), we have
A(z+2)y)+Dx+2)—[z+2,yl € Z(R), foraluzy,ze L.
This implies that
A(zy + 2zy) — Az + 2) — [z,y] — [2,y] € Z(R), forall z,y,z € L.
This gives that

Blan) + e + X () uto9) = 5(0) - 5()

- ni <n>hk(%2) — [z,y] = [2,y] € Z(R).

This implies that
Azy) — Alz) — [z,y] + D(2y) — A(2) = [2,9]

+ :2;1 (Z) hi(zy, zy) — (Z) hi(z,2) € Z(R).

n—1

k=1
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n—1 n—1
(k)hk Y, 2Y) Z( >hkxz € Z(R), forall z,y,z € L.

k=1
This shows that

(1>h1 Ty, 2y) + ( ) (zy, zy) -+ (nﬁ 1)hn_1(azy, zy)
—( )hlﬂfz ( >h2332’ —(ni1>hn_1(ﬂf,z)ez(fR)'

Substituting x for z in (3.6), we have

(g)wy,m ; (g) )+ (" st

(- G- e
We find that

(3.6)

n n
D(zy,xy,...,zy, zy )+ D(zy,xy,...,zy, zy )
(n—1)—times 1—times (n—2)—times  2—times

+...+< n )D( ry L xy,ry,...,xy) € Z(R).
n—1 ~

1-times  (n—1)—times
This implies that
(2" — 2) (D(xy, xy,...,2y) — D(z,x,...,x)) € Z(R), forall z,y € L.
Since R is not of characteristic (2" — 2),
D(zy,xy,...,zy) — D(z,x,...,x) € Z(R), forall z,y,z € L.
By definition of the trace, we get
(3.7) A(zy) — A(x) € Z(R), forall z,y € L.

Using (3.5), [z,y] € Z(R) for all x,y € L. Arguing similar manner as in the Theo-
rem 3.1, we get the result. Similarly, we can prove the result if A(xy)+A(x)+[z,y] €
Z(R) for all z,y € L. O

Theorem 3.4. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and A\
be the trace of D. If A([z,y]) F yz € Z(R) for all x,y € L, then L C Z(R).

Proof. Using the same argument as in Theorem 3.3. 0

Theorem 3.5. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero left ideal of R. Let D : R™ — R be a symmetric n-additive mapping and /\
be the trace of D. If A(zy) F Ay) F [x,y] € Z(R) for all x,y € L, then L C Z(R).
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Proof. Suppose
(3.8) AN(zy) — Aly) — [z,y] € Z(R), forall z,y € L.
Replacing y by y + z in (3.8), we obtain

ANzly+2) —Ay+2)—[r,y+ 2z € Z(R), forall z,y,z¢€ L.

This shows that

A(zy) + A(zz) + kz:l <k:> (zy,x2) — A(y)

Z ( )hk y,2) — 2, y] — [1,2] € Z(R).

We find that
n—1
AN(zy) — A(y) — [z, y] + ( )hk xy,rz) + N(xz)
k=1
n—1 n
— A(z f hi(y, z) € Z(R).
k=1
Using (3.8), we have
- n—1 n
Z ( >hk Ty, xz) — Y (k)hk(y’ z) € Z(R).
k=1 k=1

On simplifying,

(T) hi(zy, zz) + (Z) ho(zy, x2) + - + ( " )hn_l(my, xz)
(3.9)

Substituting y for z in (3.9), we get

(Yt = ()t~ (| ity € 20,

- ()t = ()atnr = (" Jtaaton € 20
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This implies that

n n
D(zy,...,zy, zy )+ D(zy,zy,...,zy, xy )
1 —_ -~ 2 ALY

(n—1)—times 1—times (n—2)—times  3—times
n n
+ -+ D( xry ,xy,:cy,...,xy)— D(y7ya"'7y7 Y )
1—times (n—1)—times (n—1)—times l—times
n n
- D(y,y,....y, y )—-— D(y ,yy,...,y) € Z(R).
(n—2)—times 2—times 1—times (n—1)—times

Now solving the above equation, we get

((1) ) () (nﬁl))puy,xy,...,xy)
. (@ N @ ' (g) R (nﬁl>)p<y,y,...,y> € Z(R).

This gives that
(2" = 2) (D(zy, zy,...,xy) — D(y,y,...,y)) € Z(R), forall z,y € L.
Since R is not characteristic (2" — 2), we find
D(zy,zy,...,zy) — D(y,y,...,y) € Z(R), forall xz,y € L.
This shows that
(3.10) A(zy) — A(y) € Z(R), forall z,y € L.

Using (3.8) and (3.10), we have [z,y] € Z(R) for all z,y € L. Arguing in similar
manner as in Theorem 3.1, we get the result. Similarly, we can prove the result if
A([z,y]) + A(y) + [z,y] € Z(R) for all z,y € L. O

4. EXAMPLES

The following examples illustrate that R to be semiprime and characteristic not
(2" — 2) for n > 1 is essential in the hypothesis of the above theorem.

Ezxample 4.1. Let R = g g | p,q,r € Z, ring of integers } and the Lie ideal

0 0
L:{(O(q))\qEZ}. ThenZ(fR):{<€p>|p€Z}. Define a map
D :

RxRx---xR—Rby

n—times

pl( P @ P2 @ Pn Gn _ [ pwp2ps---pn O
0 7 )2\ 0 g )7L 0 n, 0 0/
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Then D is symmetric n-additive with trace A defined by A : R — R such that

A((g g)) =D<<g g>’<€ g>,7<g g)) satisfying hypothesis of

the above theorems. However, L ¢ Z(R).

Example 4.2. Let R = '; 2 | x,y,2 € Z, ring of integers } and the Lie ideal
00 x 0
L—{<y0>|y€Z}. ThenZ(fR)-{(Ox>|x€Z}. Define a map
D:RxRx--+xR—=Rby
n—times

(o) o) (o 2)) =0 e e )
D : = .
Y1 2 Yo 22 Yn Zn 0 2120232,

Then D is symmetric n-additive with trace A defined by A : R — R such that

z 0 z 0 z 0 r 0 o .
A((y Z)>:D<<y z)’(y Z)""’(y Z))SatlsfymghypotheSlSOf

the above theorems. However, L € Z(R).
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ON THE HYPERBOLIC k-MERSENNE AND i-MERSENNE-LUCAS
OCTONIONS

MINE UYSAL', MUNESH KUMARI?, BAHAR KULOGLU!, KALIKA PRASAD?*,
AND ENGIN OZKAN!

ABSTRACT. In this paper, we introduce the hyperbolic k-Mersenne and k-Mersenne-
Lucas octonions and investigate their algebraic properties. We give Binet’s formula
and present several interrelations and some well-known identities such as Catalan
identity, d’Ocagne identity, Vajda identity, generating functions, etc. of these octo-
nions in closed form. Furthermore, we investigate the relations between hyperbolic
k-Mersenne octonions and hyperbolic k-Mersenne-Lucas octonions.

1. INTRODUCTION

Number sequences have been studied by researchers for a long time. In particular,
the most important and remarkable of these numbers are the Fibonacci numbers.
Until today, Fibonacci numbers have been studied and many generalizations have
been made. Lucas, Jacobsthal, Jacobsthal-Lucas, Pell, Pell-Lucas, etc. numbers can
be given as examples of these generalizations [2,5,8,14,15,19-21,23|.

One of these numbers is the Mersenne number. They are named after Marin
Mersenne, a French Minim friar, who studied them in the early 17th century. Mersenne
numbers have been studied in the literature and various generalizations such as
Mersenne-Lucas, k-Mersenne, k-Mersenne-Lucas have been studied [1,4,6,7,17,22,25—
27].

Definition 1.1. The Mersenne sequence { M, },>o is defined recursively as
Mn+2 = 3Mn+1 - 2Mn, with MO = 0, M1 = 1, n Z 0.

Key words and phrases. Hyperbolic k-Mersenne octonions, hyperbolic k-Mersenne-Lucas octo-
nions, Binet formula, Catalan identity, generating function.
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Definition 1.2. The Mersenne-Lucas sequence {m,, },>¢ is defined recursively as
Mpyo = 3Mpiq1 — 2my,, with meg=2, m; =3, n>0.

Definition 1.3. The k-Mersenne sequence { My, },>0 is given recursively as

(1.1) My g2 = 3kMy py1 — 2My, Mpo=0, M1 =1, n>0.

Definition 1.4. The k-Mersenne-Lucas sequence {my ,}n>0 is given recursively as

(1.2) Mint2 = 3kMpnt1 — 2Mpn,  Mpo =2, mp1 =3k, n>0.

The characteristic equation corresponding to the recurrence relations (1.1) and (1.2)
is a2 — 3ka + 2 = 0 and its roots are qq = kv =8 V29k2_8 = Sk=VOk®-8 V29k2_8. These
characteristics roots hold the following properties

(13) a1+ Qo = 3]{?, 109 = 2, a; — g =V 9k?2 — 8.

The Binet formulas of k-Mersenne and k-Mersenne-Lucas sequences are given, respec-
tively, by

and oy

al —al
(1.4) Mgy = +af and My, = —2.
a1 — 2

The quaternion, an algebraic structure, was first described in 1843 by William
Rowan Hamilton [11]. Hamilton defined a quaternion as the quotient of two directed
lines in a three-dimensional space, or, equivalently, as the quotient of two vectors.
Multiplication of quaternions is noncommutative. A. F. Horadam defined the nth
Fibonacci and nth Lucas quaternions and gave their some properties in 1963 [12].
Thus, Macfarlane defined the hyperbolic quaternions and studied their properties
[18]. Recently, these numbers have been examined and studies have been carried
out [10,13,24]. The hyperbolic k-Fibonacci and k-Fibonacci-Lucas, hyperbolic k-
Jacobsthal and k-Jacobsthal-Lucas quaternions were defined and given some of their
properties [10,24]. In mathematics, the octonions are a normed division algebra over
the real numbers, a kind of hypercomplex number system. Octonions have eight
dimensions; twice the number of dimensions of the quaternions, of which they are
an extension. They are noncommutative and nonassociative, but satisfy a weaker
form of associativity; namely, they are alternative. They are also power associative.
Octonions are not as well known as quaternions and complex numbers, which are
much more widely studied and used.

A. Cariow and G. Cariow defined the hyperbolic octonions [3]. A hyperbolic
octonion O has the form

O = ho + hlil + hgig + hgig + h4i4 + h5i5 + h6i6 + h7i7
- (h07 h’l? h?a h37 h’47 h57 h67 h’7)a
where i1, 19,73 are quaternion imaginary units and hg, hy, ho, hs, hy, hs, hg, h7 are the

real components, i4 (i,> = 1) is a counter imaginary unit, and the bases of hyperbolic
octonions are defined as in Table 1.
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P P P R T .
i | =1 |43 | —ia |45 |is | —i7 | s
is | —is | —1 |41 g |i7r |ia | —is
45 iz | —i1 | =1 |di7 | —ig |i5 |44
ia | —is | —ig | —i7 |1 i1 |iz |43
is | —i4 | —i7 |dg | —i1 |1 |iz | —ie
is |7 | —is | —is | —ia | —i3 |1 |4,
ir | —ig |45 | —i4 | —i3 |49 | —i; |1

Table 1: Multiplication rule for hyperbolic octonions units.

Godase A. defined the hyperbolic k-Fibonacci and k-Fibonacci-Lucas octonions and
gave some of their properties [9]. Ozkan E. et al. defined the hyperbolic k-Jacobsthal
and k-Jacobsthal-Lucas octonions and gave some of their properties [23]. Kumari
M. et al. defined the k-Mersenne, k-Mersenne-Lucas octonions and examined some
properties of these numbers [16]. As a new generalization of this study [16], we
examine the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions and give their
features.

2. HYPERBOLIC k-MERSENNE OCTONIONS

In this section, we introduce the hyperbolic k-Mersenne octonions and establish
their Binet formula. Furthermore, we study some well-known identities of them.

Definition 2.1. For n > 0, the hyperbolic k-Mersenne octonions HMj, ,, are defined
by

HMyp, = My + My i1ty + My ppyoio 4 - + My py7iy
= (M, M1, Miny2, Mings, My pga, My s, Minye, Minir)-

Definition 2.2. The sequence can be extended to negative indices n, HM;, _, is
defined by

1 1 , 1 , 1 .
fHMk,—n = - 27Mk,n - FMk,n—lll - WMk,n—QZQ - WMk,n—ﬂs
1 . .
= ons ~on s Mien—515 — ﬁMk,n—fi%‘ - FMk,n—ﬂ?-

Definition 2.3. Let the scalar and vector parts of the hyperbolic k-Mersenne octo-
nions HMj ,, be denoted by S(HMy,,) and V(HMy,,), respectively, and are defined
as follows
(j—{:Mk n) Mk,ny
V<:}(:Mk‘ ) (Mk,nJrl’ Mk,n+2> Mk,n+37 Mk,n+47 Mk,n+5> Mk,n+67 Mk:,nJr?)-

Thus, KMj.,, = S(HMj.,,) + V(HM,,).
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Definition 2.4. For n > 0, the conjugate of the hyperbolic k-Mersenne octonions
H My, is defined by

HM i = My — My iain — My yois — -+ — My pyrin
= (Mg, =My i1, =My iz, =My gz, —Mynya, =My s, =My nye, —Minir).
Theorem 2.1. The following equation is provided
HMyn + HM ., = 2S(HMy ) = 2Mp, .
Proof. From Definition 2.4, we have
HMyp + HM ., = S(HMy ) + V(HM; ) + S(HMy ) — V(HMy,)
= 25(HMy,,) = 2Mj, . O

Definition 2.5. The norm of the hyperbolic k-Mersenne octonions HMj, ,, is defined
by

N(}CMICJI) - \/Mlg,n +oeet Ml?,n—i—fi - Ml?,n+4 - M/?,n—l—S - Ml?,n—l—ﬁ - Ml?,n+7‘

Theorem 2.2. The recurrence relations of the H My, ,, and H My, are as follows:
(a) H My 1 = 3kH My, — 2H My 15
(b) HM i1 = 3kFH My, — 2H My 1.

Proof. (a) We have
HMy 41 = My 1 + My g2ty + My pqsto + My piais + My pisiq + My pi6is
+ Mg ny7ic + Minqsiv
= (3k Mo — 2M 1) + (3kMynsr — 2Mi )i + (3kMypro — 2M s )iz
b 3k Mpys — 2Mynya)is + (3kMpnis — 2Mynss)ia + (3kMynss
— 2My pya)is + (3k My 6 — 2Mp nys)is + (3k My 7 — 2My pv6)i7
= 3k(Mp, + M 101 + My pyoio + My pysis + My niaia + My pp505
+ My nt6ie + My pniriz) — 2(Mpg 1 + My nis + My pi1io + My piois
+ My oy 3ia + My pniais  + My nisie + Mynieiv)
— 3kHMy — 2H M.
The proof of (b) is similar to that of (a). O

Theorem 2.3 (Binet Formula). The Binet formulas for the hyperbolic k-Mersenne
octonions are

afa® — ﬁ*an
HM,,,, = ——"——2.
(a) FHM, o —ap
Oé*Oén _ 6*an
b) KMy, = ————2;
(b) K, p——
PP i Bt
Fmn ™ om a1 — Qo ’
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where

o =1+ aq01 + Oé%’ig + Olil)’ig + O/ll'i4 + Oé?i5 + C‘é?% + OZIZ-7
= (17 Qai, O‘%? azfv 0/117 O‘?? O‘?? O‘I)a
B* =1+ iy + a3ia + aiz + aiiy + abis + aSig + adiy
- <1a Qg, Oz%, aga a? O./g, O./g, Oég),
a*=1-— Ozﬂl — a%ig — Ozi)ig — 0/112'4 — a?i5 — O./?iG — OéI’i7
- (17 —Qi, _a%a _04?7 _0/117 —Oé?, —Oé?, _Og%
b0 =1—agt; — agig — agig — 0/212'4 - ag’zg — 0432'6 — 04;2'7
= (17 —Qg, _05%7 _agv _0/217 —Oég, —Oég, _a;>'
Proof. (a) Using Definition 2.1 and the Binet formula of M}, ,,, we have
HMpn =My + My 181 + My itz + My nisiz + My pgais + My pysis

+ M nt6te + My pyriy

Oé?—()ég a;H*l a;+1 ‘ O41L4r7 Oéng? .
=—2)+(———— )+ + | ——— )iy

a1 — Qg a1 — Qg a1 — Q2
o al
1 . 7 2 . 7.
=——— 14+ ayiy + -+ ayir) — ——(1 + agiy + - - - + ayiy)
041—042 Q1 — Qg
_0425
a1 — Qg

The proofs of (b) and (c) are similar to (a), by using Definition 2.4 and Definition 2.2,
respectively. O

Theorem 2.4. Forr,s,n € N such that s > r, the generating functions for hyperbolic
k-Mersenne octonions are given as

s HM, HMy1 — 3kHM,
S H M ot = Zk0 F (M ) L) T
= 1 —3kx + 22
> HMy — 2"HMy, s
b E HMy sz = : : .
() = Ry 1 —my v + 2522

The exponential generating functions for hyperbolic k-Mersenne octonions are
[e.e] g_ch sn:L,'fL * Oé x 5* a2rp

(€ > — 7 —= :

= n! a1 — Qo
S
2 HMy gpirx™ « o/{e"‘ 1% — B*ahe*2”

(d) > — =

= n! o — Qg

0
Proof. (a) Let G(x) = >0 g HMj, ,a™. We have

= 3" HMypz" = KMy + HMy 1z + HMyox® + HM 327 + - - |
n=0
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3kaG(x) = HMy, 03kz + H My 1 3ka® + HM, 23ka® + H My 33ka* + -+
22°G(x) = fHMk,onz + ?{Mk7123:3 + f}CMk722334 + H My 322° + - -+ .
If the necessary mathematical operations are performed, we get the following
(1 — 3kz + 22°)G () = HMyo + (H My, — 3kH My ) =,
KMy + (H My — 3kH My o) x
1 — 3kx + 222 '
The proofs of (b), (¢) and (d) are similar to that of (a).

G()

Theorem 2.5. For k # 1, we have
" 2H My, — H My 1 + HMy 1 + (1 — 3k)H My
SSHM,, = , ’ 3
= 3(1—k)

Proof. Using Theorem 2.3, we obtain

i=0 i=0 a1 — Q3
* n * n
_ .« i B
= >0 - >
a1 — Q2 ;T aqp — Qg C

o
0
(1 —ay — o™t +alfay) — (1 — g — bt + b ay)
(g —a2)(1 — (g + a2) + aqa)
ot — 6* _ a1a2(a*a;1 _ B*OZEI) _ (Oc*a?Jrl _ *ag+1)
(g —a2)3(1 — k)
aas(a’ay — fray)
(op — a9)3(1 — k)
 HMy — 2H My, 1 — H My i1 + 2H My,
B 3(1 — k)
2K My, — H My + H My + (1= 3k)H Mg
B 3(1 — k) ’

+

(from Theorem 2.3)

as required.

Lemma 2.1. We have

(a) a* — B = 6H My,

(b) a* + o =myo = 2;

(¢) a* + B* =2 + 6HMy;
(d) a** = (227, —83ay + 85ay, 1902 — 1703, —15a3 + 173 + 34as — 34ay,

—13af + 1503, 505 — 3a5 — 1003 + 1003, —af + 3a5 + 402 — 4a3,

al +ab + 208 — 205 — 403 + 4ai — 8ay + 8ap) = ay.
(e) f*a* = (227,851 — 83, —17a? + 1903, 1703 — 1503 + 34a; — 34as,

15a] — 1303, —3a3 + 5a5 + 1003 — 10a3, 308 — af — 402 + 4a2,

al +ab — 203 + 205 + 4o — 4ai + 8ay — 8ap) = ag.
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Proof. The proof of the lemma can be easily seen by substituting the values of the
roots and performing the necessary operations. 0

Theorem 2.6 (Catalan’s Identity). For any positive integers n, s such that n > s,
we have
a5 — a0
g{Mk,n—sg{Mk,n-l—s - J{Mlzn = 2n_SMk,512721
’ (a1 — az)

Proof. By using the Binet formula of the hyperbolic k-Mersenne octonions, we have

1 lo%: o
a*ﬂ*anan 1_72 _’_ﬂ*a*anan< _1>‘|

(al—ag)zl 12 ( af) 271 as

_ (003)"(af — ag) a*Fa3 — Fa*af

9-Cj\4k,n—sg—{:-Z\4.1€77z—&—s - %Mlg,n =

(1 — ap)? (ag)®
-~ ajas — a0
_= 1Y n SM - =
( 1 2) k‘,S (0{1 _ 052)
_ 2n—sMk ailag - @ai
,S
(a1 — az)

Theorem 2.7 (Cassini’s Identity). Forn > 1, we have
ajop — G200
9k2 -8
Proof. By substituting s = 1 in the Catalan Identity, we obtain the required result. [J

H My 1 H My 1 — HME, = 2

Theorem 2.8 (d’Ocagne’s Identity). Let n,s > 0, then we have

ajai " —agas "

9k? — 8

Proof. By using the Binet formula of the hyperbolic k-Mersenne octonions, we have

g{Mk,sg_CMk,nJrl - :H:Mk,s+1j{Mk,n =2"

o*frajay(ar — az) + frafasal (s — ax)

H My H M1 — HM 1 HMy o =

(a1 — ap)?
o (alaQ)n(al - 0[2) * Q% S—n % % _s—n
)
_ @At @y 0
9k2 — 8

Theorem 2.9 (Vajda Identity). For any natural numbers n,i and j, we have
aiod — apo]
9k —8

Proof. Proof is similar to Theorem 2.8 by using Binet formula of hyperbolic k-
Mersenne octonions. ]

HMy i HM g j — HMp n H M ppyiy = —2" My
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3. HYPERBOLIC k-MERSENNE-LUCAS OCTONIONS

In this section, we introduce the hyperbolic k-Mersenne-Lucas octonions and es-
tablish their Binet formula. Furthermore, we study some well-known identities of
them.

Definition 3.1. For n > 0, the hyperbolic k-Mersenne-Lucas octonions Hmy,, are
defined by

Hmpp = M + Mg 181 + Mg ngale + o 4 Mg pgrly
= (mk,n, Mg n+1, MEn+2, Mk n43, Mk ntd, Mk n+5, Mk n+6, mk,n+7)-

Definition 3.2. For n > 0, the conjugate of hyperbolic k-Mersenne-Lucas octonions
Hmy,, is defined by

Hmpp = My — Mpgpp1%1 — Mpgppale — - — Mg pyrl7
= (mk,n, —MEkn+1, —MEkn+2, Mk n+3, —MEgn+4, —Mkn+5, —TMEn+6, _mk,n+7)~

If we use Definition 1.2 in Definition 3.1, then we can define the hyperbolic k-
Mersenne-Lucas octonions recursively as

Hmypnyo = 3kHmy pp1 — 2Hmy,,, n > 0.
Theorem 3.1 (Binet Formula). The Binet formulas for the hyperbolic k-Mersenne-
Lucas octonions and their conjugate are
(a) Hmy,, = a*aof + Bray;
a%af + Frj,

=
&
3

I

o =1+ ayiy + ajis + ajis + ajis + ajis + ajis + ajir

_ 2 3 4 5 6 7
- (17041’0417041704170417a17a1)7

. 2. 3. 4. 5 - 6 - 7.
B* =1+ Q] + e 2YD) + Qo3 + Qoly + Q55 + Q5le + Qol7

_ 2 3 4 5 6 7
- (17 2, Oy, Uy, Oy, Uy, Uy, 062),

=1- Oélil — Oé%iQ - Oé?i:g - 0/112'4 — Oé?i5 — OéfliiG - Oé’lzl.7

2 3 4 5 6 7
= <1a —Qq, —Qy, —Qq, —Qy, —Qq, —Qy, _a1>7

Q
*

ﬂ* =1- O@il — O{%iQ — Of%ig — Oég’i4 — (Igls — OfgiG — O[;’i7
= (1, —g, —3, —ai3, —a3, —a5, —as, —ap).
Proof. (a) Using Definition 3.1 and the Binet formula of my_,, we have
Hmpp =mpp + My 181 + My pyolo + -+ My g7ty
=(af + o)+ (a1 + a5 )iy + (72 + a5 iy + (o + 0 ™) g

4 4\ - . .
+ <0/f+ +abt ) ig + (0/1”5 + a§+5) is + (0/1”6 + a§+6) ig
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+ ( nt7 4 an-}—?) i
=a}(1+ aqiy + iz + -+ - + afiz) + ah (1 + agit + a3iz + - - - + alir)
—a"a} + B"af
The proof of (b) is similar to (a) by using the Definition 3.2. O

Lemma 3.1. We have

(a) a* + B* = Hmyo;
(b) a* — * = Hmyo — 2.

Proof. The proof of the lemma can be easily seen by substituting the values of a* and
£* and performing the necessary operations. 0

Theorem 3.2 (Catalan’s Identity). For any positive integers n, s such that n > s,
we have

Hmg s Hmp ngs — U{mim = 2" My VIK? — 8(f " a] — o f%a3).

Proof. By using the Binet formula of the hyperbolic k-Mersenne-Lucas octonions, we
have

Hnge s Himg s — Hmi, = (a*a’f S+ Braly S) (a*a?*s + [ ”*S)
— (a”a} + B ag)’
(Oé*)2 2n+a 6* n—s n+s+6*a*a711+s n— s+(6*)2agn
— ((@")ad" + "B s + B*a"afay + (5)°03")

—Oé*ﬁ* n—s n+s + ﬂ*a*a;wrs n—s — ﬂ*&?ag ﬁ*a*a?ag

—(cnan)" [a 5 (i - 1) + Bar (ZZ _ 1)]
om0 ()

—(ma)"(af - 0f) Farat e

ajas
=2"" M}, sVIk? — 8(B a"al — a* " a3),
as required. O
Theorem 3.3 (Cassini’s Identity). Forn > 1, we have
Hmpg 1 Hmpg 1 — U-szyn =" LOk2 — 8 (f*ata; — o ).
Proof. By substituting s = 1 in the Catalan identity, we obtain the required result. [J
Theorem 3.4 (d’Ocagne’s Identity). Let n,s > 0, then we have
Hme s Hmy 1 — Homy s 1 Hmy,, = 2”\/@(5*0/‘&3 " —atfrai ).
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Proof. By using the Binet formula of the hyperbolic k-Mersenne-Lucas octonions, we
have

Homyg s Hmp p1 — Hmy g1 Homy
= (a*a + B*as) (a*a?—&-l 1 B*a n+1) _ (a*ai“ + B*a s+1> (a*af + B*al)
—(0")2aH @ Braal 4 frarattial + () 2antet
_ ((a )2an+s+1 o Bl s+1n —l—ﬁ*oz*o/fozgﬂ + (5*)20/2”3“)
=[*a"atas(og — ag) — " frajal (o — aw)
=(ao)" (1 — a2)(B 03" — a7 ")
=2"V9k2 — §(B e — o fFai ™). O
Theorem 3.5 (Vajda Identity). For any natural numbers n,i and j, we have
HmppriHmy oy — Hmp n Hmg iy = 2" Mkl\/7< B 042 5*04*04{)

Proof. Proof is similar to Theorem 3.4 by using Binet formula of hyperbolic k-
Mersenne-Lucas octonions. 0

Theorem 3.6. Forr,s,n € N such that r > s, the generating functions for hyperbolic
k-Mersenne-Lucas octonions are given as
Hmpo— x (Hmpomp s — Hmy,
(a) XnZo Hrmyana™ = o= OO 5 ’s>"

1 —my o+ 252
Hmy, ., — 2°Hmy, ,_ox
b) >0y Hm " = : : ;
( ) ano k,sn+r 1— My, 5T + 231.2

(¢) The exponential generating function is given as

oo n

S Hkon® _ e gate . grente,
n!

n=0 :

Proof. (a) Using the Theorem 3.1, we have

o0 o0 [e.9]
> Hmp ez =) (a*af" + ffas") 2" = o Z ajx)" + p* Z asz)"
n=0 n=0

. 1 1
- (1—@1:76)—'—5 (1—a§:v>

_ (a4 5) —z(Bra] + o))
1= (a5 +ad)x + (agan)sa?
(a4 ) —x(Ba] + Bras — fras + afas + afal — afaf)
B 1 — (o + a)x + (apae)sa?
_ (@ +5%) —z(a” + ) (o] + a3) — (aof + 5 a3)]
1—(af + a3)x + (aqag)s2?
Hmyo — x (Fomy omy,,s — Hmy, S)
1 —my sz + 2522
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The proofs of (b) and (c) are similar to that of (a). O

Theorem 3.7. For k # 1, we have
i 2Hmy p, — Hmpg i1 + Hmyg 1 + Hmy (1 — 3k)
S g = o ’ : , |

3(1—k)
Proof. Using Theorem 3.1, we obtain
Zﬂ{mk?i:Z(a*al—i-B ) ol 4+ 80> b
i=0 i=0 i=0 i=0

_ a?-ﬁ-l 1 +1 1
_O‘<a1—1)+ <a2—1>
aran(afal + Bray) — (a*aft + Brabth) — (afag + Bray) + (o + 3%)
ajas — (o + ag) + 1

. 29‘ka7n — J-ka,n—i-l + g{mm + J’(mk’o(l - 3k})
B 3(1 — k) '

O

4. RELATIONS BETWEEN HYPERBOLIC k-MERSENNE AND k-MERSENNE-LUCAS
OCTONIONS

In this section, we have given theorems showing the relations between hyperbolic
k-Mersenne octonions and hyperbolic k-Mersenne-Lucas octonions.

Theorem 4.1. For s,n € N, a generalization of the generating function of hyperbolic
k-Mersenne octonions is as follows

o HM, M, JH — HM,
Z FM, 2" = k0 + (M sFHmy g ks) X
= ’ 1 —my v + 2522

Proof. Using the Theorem 2.3, we have
o0 [e.9] a*asn /6* sn a* o0 /8* o0
HM;, gpx™ = ( ! )x" = asz)" — asx)"”
a* 1 5* 1

a1 — Qo ' 1—ajz a1 —a ' 1 —asx
(@ =)+ (Fai—atays

(1 —a2)(1 = (af + a3)x + (araz)*2?)
_(af =)+ (Braf + fras — fras — afaf +afal —afasy)
n (1 — o)1 — (0 + &)z + (ga0)2?)
(0= )+ (01 — ag)(0* + B") — (e’ — Bad) v

(g — o)1 — (0 + a3)z + (aran)x?)

. g{Mk,o + (Mk,sg{mk,o — g‘CMhS) xXr
a 1 — my, oz + 2522

as required. O

Y
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Theorem 4.2. For any integer t, we have

Ok? — 7)S} 5 + (9K — 9)2!(ar + @z
(a) :H‘-Ml?,t + j{m%,t _ ( ) k2t ( ) (Cl1 a2) .

(9 — ORS00 2 (9R2 2 >’
9 —9k4)Sr,, — (9k* — 7)2' (a7 + a5
(b) HM;, — Hmi, = k72t(9k2 —8) — ’

where @y and @ are given in Lemma 2.1.
Proof. (a) From the Binet formulas of the hyperbolic k-Mersenne and k-Mersenne-
Lucas octonions, we write
HM, + Hmi,
:(a*)Q(al)zt —a*fraja; — B a*ahai + (8%)*(a2)*
9k2 —
+ (") (an)" + o’ fraja; + 5*a*a§a§ (8)*(a)”
_ (14 (9% = 8))((a")*(en)* + (B")*(a2)) + ((9K* — 8) — Dajas(a”B* + Ba”)

9k%2 — 8
(9K% = T)Sf o, + (9K — 9)2" (a1 + @)
N 9k? — 8 '
The proof (b) is similar to that of (a). O

Theorem 4.3. For every integer r,s > t, there is the following equation
HMp g sHmg s — HMp o Hmy s = (@1 + @2)2" "My, 5y
Proof. We write
%Mk,r+sj—cmk,r+t - g'CMk,erHmk,rJrs

a*Brafag(ajah — ajoes) + Bratajah(ajel — ofas)

a1 — Q9
s—t s—t
_ (k% * ok r—t Q1 T Qg
=(a"B" + f*a*) (1) o o
=(ar +a2)2" " Moy O

Theorem 4.4. For any integers s and t, we have
(a) HMysmyy = H My o + 2"H My oy
(b) Hmp s My = Homg st + 2"Hmy 5.

Proof. (a) We have

o s+t B* s+t N (a1a2) (oz*o[{ t B*a;—t)

J{Mk,smk,t =
Q1 — Q2 ap — g
= %Mk,s-i—t + 2tﬂ{Mk,s—t~
The proof of (b) is similar to that of (a). O

Theorem 4.5. For any integer t > s, the following equations are true.
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( ) 28(0‘71 - @)Mk‘,tfs .
9k2 -8
(b) %mk7sﬂ{mk,t — iHmk?tf}ka’S = 28\/ 9k‘2 — 8(&71 — @)Mk,t—s;
)
)

a j‘ka,sfH:Mk,t — :H:Mk:,tj{Mk,s =

(c) FHMy FHomy, s — HMy FHmy,, = 2°(ay + @) M y—s; )

— t—=s =
(d HMy: Hmy, s — Hmy  HM, s = _9s+l 10y — ngl

Proof. (a) We have

S ) ) S T

(1 — ap)?
_ (@5 = Bat)(afog)(of — af )
N (1 — ap)?
_2%(@y — ag) My s
B o2 -8
The other equations are proved similarly to that of (a). U

5. CONCLUSION

In this study, we introduced the hyperbolic k-Mersenne and k-Mersenne-Lucas
octonions. We obtained Binet formula, Cassini identity, Catalan identity, d’Ocagne
identity, Vajda identity, ordinary and exponential generating function, etc. of these
octonions. Also, many properties were obtained and studied the relations between
hyperbolic k-Mersenne and k-Mersenne-Lucas octonions. As a consequence, for £ = 1
results hold for hyperbolic Mersenne and Mersenne-Lucas octonions.

Acknowledgements. The authors are grateful to the editor and the anonymous
reviewers for their careful reading of our manuscript and rapid review.
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THE GLOBAL BEHAVIOR OF A SECOND ORDER
EXPONENTIAL DIFFERENCE EQUATION

VAHIDIN HADZIABDIC!, JASMIN BEKTESEVIC!, AND MIDHAT MEHULJIC!

ABSTRACT. In this paper we present the Julia set and the global behavior of an
exponential second order difference equation of the type

Tp+l = ATp—1 + bxn—l exp (an—l + an) )

where a > 0, b > 0 and ¢ > 0 with non-negative initial conditions.

1. INTRODUCTION

In general, difference equations and systems of difference equations in exponential
forms have numerous applications in biology, more precisely, they can be used to
discuss population model. One of the most simple results on exponential difference
equation have been obtained in [8] for the equation of type

Tpp1 = xpexp (r(1—xz,)),

known as Ricker’s equation, which describes a population with a propensity to simple
exponential growth at low densities and tendency to decrease at high densities. In
[9] the qualitative behavior of the exponential second order difference equation of the
two-dimensional population model

Tpi1 = a+ bxr,_1exp(—x,)

is completely investigated and described. In [14] we can find results about boundedness
and asymptotic behavior of the positive solution for the difference equation of type

Tpr1 = a+ br,exp(—z,_1),

Key words and phrases. Basin of attraction, period-two solutions, Julia set, difference equation.
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where a and b are positive constants and the initial values x_;, xy are nonnegative
real numbers. In [11] are given the conditions for the global behavior of the positive
solutions for the difference equation

Tpi1 = axy + bx, 1 exp (—x,),

where a and b are positive real numbers with positive initial conditions z_1, xo. The
global stability and bounded nature of the positive solutions of the difference equation

Tpi1 = a+br,_q + cx,_1exp(—x,)

are investigated in [10]. In [7] have been obtained results for the local stability of equi-
libria, parametric conditions for transcritical bifurcation, period-doubling bifurcation
and Neimark-Sacker bifurcation of the following second-order difference equation

Tpt1 = ATy + PTp_1exp (—0x,_1),

where the initial conditions satisfy x_1 > 0, g > 0 and «, [ and o are the positive
constants. In this paper we will present very unusual results for exponential second
order difference equations. Our results are based on the theorems which hold for
monotone difference equations. Our principal tool is the theory of monotone maps,
and in particular cooperative maps, which guarantee the existence and uniqueness of
the stable and unstable invariant manifolds for the fixed points and periodic points
(see [5]). Consider the difference equation

(1.1) Tpr1 = f(xn,Tpn1), n=0,1,...,

where f is a continuous and increasing function in both variables. The following result
has been obtained in [1].

Theorem 1.1. Let I C R and let f € C[I x I,1] be a function which increases
in both variables. Then for every solution of (1.1) the subsequences {xo,}o2, and
{Zans1}52 1 of even and odd terms of the solution do exactly one of the following.

(1) Eventually they are both monotonically increasing.
(17) Eventually they are both monotonically decreasing.
(7i1) One of them is monotonically increasing and the other is monotonically de-
creasing.

As a consequence of Theorem 1.1 every bounded solution of (1.1) approaches
either an equilibrium solution or period-two solution and every unbounded solution
is asymptotic to the point at infinity in a monotonic way. Thus the major problem in
dynamics of (1.1) is the problem how to determine the basins of attraction of three
different types of attractors: the equilibrium solutions, minimal period-two solution(s)
and the point(s) at infinity. The following result can be proved by using the techniques
of proof of Theorem 11 in [5].
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Theorem 1.2. Consider (1.1) where f is increasing function in its arguments and
assume that there is no minimal period-two solution. Assume that FEi(x1,y1) and
Ex(x9,y9) are two consecutive equilibrium points in North-East ordering that satisfy

(21,Y1) Zne (T2, Y2)

and that Fy is a local attractor and Ey is a saddle point or a non-hyperbolic point
with second characteristic root in interval (—1,1), with the neighborhoods where f is
strictly increasing. Then the basin of attraction B(Ey) of Ey is the region below the
global stable manifold W*(Es). More precisely

‘B(El) = {([L’,y) D extsts Yy 0 Y < Yu, ($7yu) S WS(EQ)}

The basin of attraction B(Ey) = W*(Es) is exactly the global stable manifold of Es.
The global stable manifold extend to the boundary of the domain of (1.1). If there
exists a period-two solution, then the end points of the global stable manifold are exactly
the period-two solution.

Now, the theorems that are applied in [5] provided the two continuous curves
W? (E,) (stable manifold) and 'W* (E,) (unstable manifold), both passing through
the point Es(xs,ys) from Theorem 1.2, such that W* (E,) is a graph of decreasing
function and W (E,) is a graph of an increasing function. The curve W* (Es) splits
the first quadrant of initial conditions into two disjoint regions, but we do not know
the explicit form of the curve W* (E,). In this paper we investigate the following
difference equation

(1.2) Tpi1 = aTp_q + bx,_1exp (cx,_1 + cxy),

where a > 0, b > 0 and ¢ > 0 with non-negative initial conditions, that has infinitely
many period-two solutions and we expose the explicit form of the curve that separates
the first quadrant into two basins of attraction of a locally stable equilibrium point
and of the point at infinity. One of the major problems in the dynamics of monotonic
maps is determining the basin of attraction of the point at infinity and in particular
the boundary of the that basin known as the Julia set. We precisely determined the
Julia set of (1.2) and we obtained the global dynamics in the interior of the Julia set,
which includes all the points for which solutions are not asymptotic to the point at
infinity. It turned out that the Julia set for (1.2) is the union of the stable manifolds of
some saddle equilibrium points, nonhyperbolic equilibrium points or period-two points.
We first list some results needed for the proofs of our theorems. The main result for
studying local stability of equilibria is linearized stability theorem (see Theorem 1.1
in [12]).

Theorem 1.3 (Linearized stability). Consider the difference equation

(13) Tpy1 = f(l’ml'n—l)
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and let & be an equilibrium point of difference equation (1.3) . Let p = W and
q= % denote the partial derivatives of f(u,v) evaluated at the equilibrium x. Let
A1 and Ny roots of the quadratic equation \*> — p\ — q = 0.
a) If |[\1] <1 and |Xo| < 1, then the equilibrium Z is locally asymptotically stable
(sink).
b) If [A\i| > 1 or |Xo| > 1, then the equilibrium T is unstable.
c) || <1and|X| <1< |p| <1—q<2. Equilibrium Z is a sink.
d) M| > 1 and |Xs] > 1< |g| > 1 and |p| < |1 — q|. Equilibrium Z is a repeller.
e) |A\] > 1 and |X2| <1< |p| > |1 —q|. Equilibrium T is a saddle point.
f) Ml=1or|X|=1<|p|=|1—-¢q| orq=—1 and |p| < 2. Fquilibrium x is
called a mon-hyperbolic point.

The next theorem (Theorem 1.4.1. in [6]) is a very useful tool in establishing bounds
for the solutions of nonlinear equations in terms of the solutions of equations with
known behaviour.

Theorem 1.4. Let I be an interval of real numbers, let k be a positive integer, and
let F: I*1 — T be a function which is increasing in all its arguments. Assume that
{20300 i {yn ) and {z,}0° . are sequences of real numbers such that

Tna1 SF(ZL’H,...,‘TTL,]Q), n:O,l,...,

Yn+1 :F(yna"'7yn—k)7 n:Oa17"'7

Zni1 2F (20, 2nk), n=0,1,...
and

Tn < Yp < 2z,, forall —k<n<O0.
Then

Tn < Yp < zn, foralln > 0.

2. MAIN RESULTS

By using Theorem 1.3, we obtained the following result on local stability of the
zero equilibrium of (1.2).

Proposition 2.1. The zero equilibrium of (1.2) is one of the following:

a) locally asymptotically stable if a +b < 1;
b) non-hyperbolic a +b = 1;
c) unstable if a +b > 1.
Set f(x,y) = ay + byexp (cy + cx) and let p = afgi’f) and ¢ = %@’@ denote the
partial derivatives of f(x,y) evaluated at the equilibrium Z. The linearized equation
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at the positive equilibrium z is

Zn4+1 =PZn + qZn-1,
p =bcx exp (2cx),
qg=a+b(1l+ cx)exp (2cr).
Now, in view of Theorem 1.3 we obtain the following results on local stability of the
positive equilibrium of (1.2).
Proposition 2.2. The positive equilibrium of (1.2) is one of the following:
a) locally asymptotically stable if p+q < 1;
b) non-hyperbolic if p+q=1orq—p=1;
c) unstable if p+q > 1;
d) saddle point if p > |q¢ — 1|;
e) repeller if 1l —q <p<q—1.
Theorem 2.1. Ifa > 1 orb>1 ora+b> 1, then every solution {x,} of (1.2)
satisfies lim x,, = co.
n—oo
Proof. Let bea>1orb>1,then a+b> 1. If {x,} is a solution of (1.2), then {z,}
satisfies the inequality
Tpi1 =aT,_1 + bry,_qexp (crp_q + cxy)
>ary,1+br, 1 =(a+b)z,q, n=01,...,

which in view of the result on difference inequalities, see Theorem 1.4, implies that
Ty > Yn, n > 1, where {y,} is a solution of the initial value problem

Yns1 = (@ +0)yYn—1, y1=z_1andyy=mz9, n=0,1,...
Consequently, if xg,x_1 > 0, then yo,y_1 > 0, y, > 0 for all n, and

T2 go = MVa+b" + 2 (—Va+b)" n=12...,

where A1, Ay € R such that y,, > 0 for all n, which implies nh—>r§o T, = 00. ]

Theorem 2.2. Consider the difference equation (1.2) in the first quadrant of initial
conditions, where a,b,c > 0 and a +b < 1. Then (1.2) has a zero equilibrium and
a unique positive equilibrium T, = 2% In 177“ The line bexp (cy + cx) = 1 — a is the
Julia set and separates the first quadrant into two regions: the region below the given
line is the basin of attraction of point FEy(0,0), the region above the line is the basin
of attraction of the point at infinity and every point on the line except E,(T,,z) is

a period-two solution of (1.2).

Proof. The equilibrium points of (1.2) are the solutions of equation
z(a+ bexp (2¢cx)) = z,

that is equivalent to

(2.1) z(bexp (2cx) +a—1) =0,
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which implies that (2.1) has two equilibria: zero equilibrium and unique positive
equilibrium Z . Since a+b < 1, then by applying Proposition (2.1) the zero equilibrium
is locally asymptotically stable. Denote by f (z,y) = ay + by exp (cz + cy) and let p
and ¢ denote the partial derivatives of function f (z,y) at point F . By straightforward
calculation we obtain that the following hold:

p+q=a+b(1l+2cx)exp (2cz)

1—
=a+b(l+2c) ?

=14+2c(l—a)z >1,
1—-a
b

Hence, by applying Proposition 2.2 the positive equilibrium is an unstable non-
hyperbolic point. Period-two solution u, v satisfies the system

=1

g—p=a+bexp(2ct)=a+b-

u=(a+bexp (cu+ cw))u,
v=(a+bexp(cu+ cv))w.

Obviously, the point (0,0) is solution of the system above, but it is not minimal
period-two solution. Hence, it has to be v > 0 which implies a + bexp (cu + cv) = 1.
Therefore, every point of the set {(z,y) : a + bexp (cx + cy) = 1} is a period-two
solution of (1.2) except point E,. Clearly, the curve g (z,y) = a+bexp (cx + cy) =1
is a graph of the decreasing function in the first quadrant, more precisely that is line
y=—x+1In15% Let {z,} be a solution of (1.2) for initial condition (29,2 ) which
lies below the line g (x,y) = 1. Then

g(zo,x_1) =a+bexp (crog+cr_q) <1,
Tnt1 = G (Tny Tpo1) Tn1
and
x1 =g (0, T1) 1 < T_1,
Ty =g (71,%0) To < g (T_1,%0) To = g (To, T_1) To < To.
Thus (x9,21) and (xg,z_1) are two points in North-East ordering (x2,z1) <pe

(20, 2_1) which means that the point (z, ;) is also below the curve g (x,y) = 1 and
also holds

g (xg, 1) < 1.
Similarly we find
3 =g (T9, 1) X1 < 7,
xy =g (3, 72) T2 < g (71, 72) T2 = g (T2, 71) T2 < To.
Continuing on this way we get
(0,0) <ne -+ <pe (T4, 23) <pe (22, 21) <ne (@0, 2-1),

which implies that both subsequences {xs,} and {x,,1} are monotonically decreasing
and bounded below by 0. Since below the line g (z,y) = 1 there are no period-two
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solutions it must be x5, — 0 and x3,,17 — 0. On the other hand, if we consider solution
{z,} of (1.2) for initial condition (xg,z_;) which lies above the line g (x,y) = 1 then
g (zg,xz_1) > 1 and by applying the method shown above we obtain the following
condition:

(-1,20) <ne (21, 72) <pe (3, 24) <pe -+
Therefore, both subsequences {z,} and {xs,1} are monotonically increasing, hence
ZTop — 00 and o, — 00 as N — 0. O

Figure 1 is visual illustration of Theorem 2.2 obtained by using Mathematica 9.0,
with the boundaries of the basins of attraction obtained by using the software package
Dynamica [6].

an 04 1.0 1.5 20 25

FIGURE 1. Case: a=1—¢e¢ 2 b=e3 c=1

Theorem 2.3. Consider the difference equation (1.2), where a +b = 1 and initial
conditions x_y1,z9 > 0 such that 2%, + x2 # 0. Then (1.2) has an unique zero
equilibrium and every solution {x,} of (1.2) satisfies Jim @, = oo.

Proof. Assume that a +b = 1 and {x,} is a solution of (1.2). Since 2%, + z # 0,
then exp (c¢z,_1 + cx,) > 1, which implies exp (c¢z,,_1 + cx,) = 1 + a,, where a;, > 0
for all n € N. Then {z,} satisfies the inequality
Tn+1 = Tn-1 (CL + bexp (an—l + an))
> Ty (a+b(1+ay))
=z,1(a+b+bay,) =x,1 (1 + bay,)

> Tn-1,
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which implies that both subsequences {3, } and {xs,1} are monotonically increasing.
Since there is no positive equilibrium point or period-two solution of (1.2) by applying
Theorem 1.1 the both subsequences {xs,} and {3,.1} approache the point at infinity.

O

Now, consider the difference equation of type
(2.2) Tpr1 = Axp_1 + Br,_1exp (Cz,_q + Dxy,)

in the first quadrant of initial conditions, where the given parameters satisfy conditions
A>0,B>0,C>0,D>0and A+ B < 1. It is easy to show that (2.2) has two

equilibria: zero equilibrium and unique positive equilibrium z, = CJ%DI %.

Proposition 2.3. The zero equilibrium of (2.2) is always locally asymptotically stable.
The positive equilibrium T, = Cj%D In % of (2.2) is one of the following:

a) non-hyperbolic if C =D (or q—p=1);

b) saddle point if C < D (orp>|q—1]|);

c) repeller if C > D (orp < |1 —ql).

Proof. Denote by g (z,y) = Ay+ By exp (Cy + Dx) and let p and ¢ denote the partial
derivatives of function ¢ (x,y) at equilibrium point T of (2.2). By straightforward
calculation we obtain that the following hold:
p(Z,T) = BDZTexp ((C + D)7T),
q(z,7)=A+B(1+C7)exp((C+ D)7).
Hence, if T =0, then p(0,0) =0 and ¢ (0,0) = A+ B € (0,1) which implies |p| <
1 —¢q < 2, so by applying Theorem 1.3 the zero equilibrium is locally asymptotically
stable. If T =z, then p(z,,7,) = (lgf[))D Ini4 = (1 - A) Dz, >0 and
(1-A)C, 1-A _
1 =1 1—A 1.
Clearly, |p|+ ¢ =p+q > g > 1, which implies, by applying Theorem 1.3, the positive
equilibrium Z, is an unstable. Since A € (0,1) and

g—p=1+1-A4)(C-D)zy,

q(Z4,24) =1+

which yields
C=D=q-p=lep=qg-—1&p =[1-gq,
C>D=q—p>lep<qg-—1&|p<|l—q|,
C<D=qg—p<lep>q-—1&|p>11—q|.
The rest of proof following from Theorem 1.3. U

Proposition 2.4. (2.2) has prime period-two solution {P1 (0,%11&%),

Py (é In %,O)}. If C > D, then period-two solution is saddle and if C < D,

then the period-two solution is repeller.
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Proof. Assume that (¢,1) is a prime period-two solution of (2.2) and 0 < ¢ < 9.
Then

(2.3) ¢ = Ap + Boexp (Co+ D),
= Ay + By exp (C + Do) .
If =0, then ¢» = 5 In 122, Let ¢ > 0. From system (2.3) we find that
(C=D)(¢p—v)=0,

which implies C'= D (¢ # 1), this case has already been considered. Set u,, = z,,_1
and v, = x, and write (2.2) in the equivalent form:

Un+1 = Un,
U1 = Au, + Buy, exp (Cuy, + Duy,) .
Let T be the function on [0, 00) x [0, 00) defined by
T (u,v) = (v, Au + Buexp (Cu + Dv)).
Then (¢, 1)) is a fixed point of T2, the second iterate of T'. Furthermore,
T? (u,v) = T (T (u,v))
= (Au+ Buexp (Cu+ Dv), Av+ Bvexp (Cv + D (Au + Buexp (Cu+ Dv)))),
T2 (u,v) = (g (u,v), b (u,v)),

where g (u,v) = Au+ Buexp (Cu+ Dv) and h (u,v) = g (v, g (u,v)). Jacobian matrix
Jr2 (¢, 1) evaluated at (¢, ) = (0, %ln %) is given by

29 (1)) a‘f(qs,w))
Tre (6.0) =
= (9:9) <§§<¢,w> B (6,)

- A+B(%)6 0
(=D (A+B(IBA)3)1H1; 14 (1— A)ln 154
and
_ANZ _A

det(JT(¢,¢)):(A+B(13> <1+(1—A)lnlB >>0,
tr(Jr (6,0) =1+ A+ B 1;4)C+(1—A)1n1_A>1.

Qs /™~

If C'< D, then —1+ A+ B (%) > -1+ A+ B(15*) =0 and

tr (Jr (6,9)) — det (Jp (6,9)) = 1— (1 — A) (—H“B(l_BA)C) ml_BA <1
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which yields

[tr (Jr (¢, 4))] < |1+ det (Jr (¢, ¥))].
Then by applying Theorem 1.3 (p = tr (Jr (¢,v)) and ¢ = —det (Jr (¢,7))), the
minimal period-two solution { Py, Py} is repeller. Similarly, if C' > D, then

1—A\© 1—A
1+ A+B(—2 14+ A+B(——2) =
++(B)< ++(B)o

and
tr (Jr (¢,9)) — det (Jr (¢, ¢)) > 1,
which implies
[tr (Jr (¢, 4))| > |1+ det (Jr (¢, )]
Now, by applying Theorem 1.3 the minimal period-two solution { Py, P»} is saddle. [

Proposition 2.5. Consider the difference equation (2.2) in the first quadrant of
initial conditions, where the given parameters satisfy conditions A >0, B >0, C > 0,
D>0,C#Dand A+ B < 1. Set m = min{C, D} and M = max{C,D}. Then the

global stable manifold of the positive equilibrium is between two lines

(2.4) p1:Bexp(mz+my)=1-—A
and
(2.5) po: Bexp(Mx+ My) =1— A.

Proof. In a view of Proposition 2.3 the zero equilibrium of (2.2) is always locally
asymptotically stable. The theorems applied in [5] provided existence of global stable
manifold W* through the saddle point. If C' < D, then by applying Proposition 2.3
the positive equilibrium z, = m% In % is a saddle point and there exists a global
stable manifold which contains point ., (Z,Z). In this case global behavior of (2.2)
is described by Theorem 1.2 where end points of the global stable manifold W* (E., )
are exactly the period-two solution {P;, P,} from Proposition 2.4. If C' > D, then
by applying Proposition 2.3 the positive equilibrium z, is a repeller and in a view of
Proposition 2.4 there exists a prime period-two solution {P;, P,} which is a saddle
point. There are two global stable manifolds W* (P;) and W* (P,), guaranteed by
Theorems 1 and 4 in [13], which contain points P (¢, ) and Pa(1, ¢). In this case the
global behavior of (2.2) is described by Theorem 10 in [2]. Although the Theorems 9
and 10 in [2] have been applied on a polynomial second order difference equation they
are special cases of general Theorems in [5] applied on function f, where f is increasing
function in its arguments. So, the global dynamics of (2.2) is exactly the same as the
global dynamics of equations decribed by Theorems 9 and 10 in [2]. Furthermore,

Tpt1 = Axp_1 + Brp_exp (Cxy_y + Dxy,) > Axyy + Bxy_q exp (ma,—1 + maxy,)
and

Tpy1 = Axy_1 + Bx,_qexp (Crpo1 + Dxy,) < Axyy + Bx,_1exp(Mz,_1 + Mz,),
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for all n, by applying Theorem 1.4 for solution {x,} of (2.2) the following inequality
holds

Yn < Tp < Zp,

for all n, where {y,} is a solution of the difference equation
(2.6) Ynt1 = AYn—1 + BYyn—1xp (Myn_1 +my,)
and {z,} is a solution of the difference equation

(2.7) Znt1 = Az 1+ Bzp_1exp (Mz,_1 + Mz,).

Since (2.6) and (2.7) satisfy all conditions of Theorem 2.2 this implies that the
statement of Proposition 2.5 holds. 0

3. CONCLUSION

In this paper we restrict our attention to certain exponential second order difference
equation (1.2). It is important to mention that we have accurately determined the
Julia set of (1.2) and the basins of attractions for the zero equilibrium and the
positive equilibrium point. In general, all theoretical concepts which are very useful in
proving the results of global attractivity of equilibrium points and period-two solutions
only give us existence of global stable manifold(s) whose computation leads to very
uncomfortable calculus (see [3,4]).
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DIFFERENTIAL INVARIANTS OF COUPLED HIROTA-SATSUMA
KDV EQUATIONS

GHORBANALI HAGHIGHATDOOST!, MOSTAFA BAZGHANDI!, AND FIROOZ PASHAIE**

ABSTRACT. In this paper, we consider a generalized coupled Hirota-Satsuma KdV
(CHSK) system of equations. We apply the moving frames method to find a fi-
nite generating set of differential invariants for the Lie symmetry group of CHSK
equations. Once the generating set of differential invariants is located, we obtain
recurrence relations and syzygies among the generating differential invariants. Our
approach provides a complete characterization of the structure of algebras of differ-
ential invariants of CHSK equations.

1. INTRODUCTION

The equivalence moving frames method was introduced by E. Cartan to solve the
equivalence problems on submanifolds under the action of a transformation group. In
1974, P. A. Griffiths has paid to the uniqueness and existence problem on geometric
differential equations by using the Cartan method of Lie groups and moving frames
[25]. Later on, in the 1990s, Fels and Olver have presented the moving co-frame
method as a new formulation of the classical Cartan method for finite-dimensional
Lie group actions on manifolds [10,11]. In the last two decades, the moving frames
method has been developed in the general algorithmic and equivariant framework
which gives several new powerful tools for finding and classifying the equivalence and
symmetry properties of submanifolds, differential invariants, and their syzygies (for
instance, see [20-22]).

Key words and phrases. Differential invariants, Symmetry groups, Moving frames, Coupled Hirota-
Satsuma KdV equations.
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The equivalence and symmetries of submanifolds are subject to their differential
invariants, which have the same symmetry properties and allow us to determine the
exact solutions of differential equations [4,16]. In general, differential invariants are
used to solve a broad range of problems appearing in nonlinear theory, mathemat-
ical physics, computer science and so on. A significant step for developing these
applications is to study the structure of the algebra of differential invariants.

The KdV equations are well-known nonlinear evolution equations (NLEEs) which
are a model for many physical phenomena. The simplest form of the KdV equation is
Uy + Uy + Ugye = 0, where the uu, term models nonlinear effects and the wu,,, term
models dispersive effects of a wave propagation. The KdV equations can give a clear
interpretation of both nonlinear effects and dispersive effects of propagation of long
waves [3]. In the present paper, we consider a generalized coupled Hirota-Satsuma
KdV (CHSK) system as [31]:

Up — Uy + Uty — 3(vw), =0,
(11) Vg + Vggy — UV, = 07

Wy + Wegz — Suw, = 0,

which is the mathematical model of interactions of two long waves with different
dispersion relations [6]. Especially, when v = w, the system (1.1) gives the well-known
coupled Hirota-Satsuma KdV system.

System (1.1) has been studied via several methods such as the classical Lie group
method [1], non-local symmetries [5], collocation method with quintic b-spline method
[27]. These works mainly focused on obtaining solutions. Recently, a Lie group analysis
on the time-fractional (CHSK) system has been done to obtain exact solutions and
conservation laws [28]. In analytical works, differential invariants appeared. Indeed,
these methods reduce the system with the aid of differential invariants (e.g. [1,5,28]).
Knowledge of the algebraic structure of the differential invariants enables us to obtain
not only the reduced equations but also to construct a class of differential equations
which has the same symmetry properties, and it is significant from the physical point
of view.

As far as we know, a comprehensive structure of algebras of differential invariants
of equations (1.1) is not obtained so far. In this paper, using the moving frames
method, we consider the structure of algebras of differential invariants of System
(1.1). The advantage of our approach is that we yield the structure of the differential
invariants algebra of System (1.1) only by using the infinitesimal determining equations
and choosing a proper cross-section. Further, we do not need additional efforts for
integration. Moreover, our approach contains straightforward calculations, yet it is
more powerful since it yields the relations among the invariants.

The paper has the following organization. In Section 2, first in subsection 2.1, we
remember the concept of differential invariants and some results on them. Then, in
subsection 2.2, we explain the moving frames method and how one can apply the
method to analyze the algebraic structure of groups. In Section 3, we apply the method
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to the CHSK system and we analyze the algebraic structure of its Lie symmetry. In
fact, using the moving frames method, we locate a finite set of generating differential
invariants for the CHSK system and we obtain recurrence relations and the syzygies
among the generation of differential invariants.

2. PRELIMINARIES

In this section, we present the preliminary concepts of differential invariants and
moving frames method. We assume the reader to be familiar with the concepts of
Lie symmetry method which is described in [15] and is used in many papers (e.g.
2,12,13,28,29]).

First, we remember the concept of jet space. By definition, the jet space of order
n, J* = J"(M,p), is the equivalence classes of p-dimensional submanifolds of a
manifold M (of dimension m) under the equivalence relation of nth order contact.
For instance, let we consider the local coordinates z = (z,u) on manifold M, such
that, the components of z = (z!,...,2P) are assumed as independent variables and
the components of u = (u',... ,u?) are regarded as dependent ones. So, in these
coordinates, a p-submanifold is realized as the graph of a function u = f(x) [17]. Two
such submanifolds are equivalent at a point (xg, ug) = (g, f(xo)) if and only if they
have the same nth order Taylor polynomials at z [17]. The induced coordinates on
the jet space J" are denoted by 2™ = (x,u(™), consisting of independent variables
7', dependent variables u®, and their derivatives u, of order #J < n.

Now, let G be a local group of transformations acting on M. The induced local
action of G on the nth jet space J"(M) is called the nth prolongation of G denoted
by G™. This prolongation transforms v = f(x) and its derivatives. Studying the infin-
itesimal generators of prolonged group transformations is much easier than working
with the explicit formula for the prolonged group transformations. Therefore, we work
with the infinitesimal generators of prolonged group transformations.

If G is assumed to be a connected transformation group, then its infinitesimal
generators form the Lie algebra of vector fields as

L 0 4 0

The nth prolongation of X is

Ly 0 1 0
X(n) = Zgz(:[?u(n))ami + Z Z n?(fﬂ(n))%a

i=1 a=1#J<n J

where
p

i — D, (n“ - ZS’US‘) Y e,
=1

=1
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and Dy = D;, -+ D;,. Here D; denotes the total derivative with respect to 27 as

(2.1) Dz—iJrijZuai
' T Owd 17 ous

a=1 J

2.1. Differential Invariants. A real-valued function F' : J* — R is a differential
invariant of a group transformation G, if it is remained unchanged by the prolongation
of G, ie. F(g™.z™) = F(z), for all 2" € J* and all g € G [23].

A well-known theorem ([9, Theorem 42]) of S. Lie and S. Scheffers says that under
appropriate assumptions, all the differential invariants can be generated by a finite
number of low order invariants and their derivatives. Lie and Scheffers presented
the finite-dimensional Lie group case. Then, in 1894, A. Tress extends the theorem
to infinite-dimensional pseudo-groups [30]. Indeed, there exists a finite set of gener-
ating differential invariants, and p invariant differential operators that preserve the
differential invariant algebra, such that any other differential invariant can be locally
written as a function of the generating invariants and their invariant derivatives. The
order of differentiation is important, since the invariant differential operators need not
commute. Furthermore, the differentiated invariants are generally not functionally
independent, but are govern by certain functional relations or syzygies [24].

To have a complete investigation of the algebra of differential invariants, we need
to find a finite set of generating differential invariant, their functional relationships
or their syzygies, and the commutation relationships between invariant operators.

2.2. Moving Frames Method. In order to describe the moving frames method,
first we recall that a moving frame is an equivariant map p : J* — G from the jet
space J" to the group G satisfying p(g™ - 2™) = g - p(2™) for every 2™ € J" and
g € . However, only free actions have moving frames. To prove the necessity of
freeness, let g be an arbitrary element in the isotropy subgroup and p be a moving
frame, then p(z(™) = p(g™ - 2M) = g p(2™). Therefore, the isotropy subgroup must
be G, = {e} for each (" € J™ meaning that the action must be free.

We can make actions free by prolonging the group. A theorem, which was presented
by Ovsiannikov and improved by Olver, states that if a group acts (locally) effectively
on subsets, then there exists an integer k£ such that the prolongation of the group
action is locally free on an open and dense subset of the k-th order jet space [14,19].
In cases where GG does not act effectively, without loss of any generality, we can replace
G with the effectively acting quotient group G /G%,, where G, is the global isotropy
subgroup [17]. Therefore, in order to make a action free, we prolong the group action
to a sufficiently high order jet space. The prolongation makes it possible to apply the
moving frames method to any group.

Once the freeness is achieved, we choose a specific local cross-section to the prolonged
group orbits. Based on the chosen cross-section, we construct a moving frame. After
constructing a moving frame, we use the invariantization process to produce complete
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systems of differential invariants and invariant differential operators. So, we start
with definition of cross-section.

A cross-section is a submanifold K" C J", that intersect the prolonged group
orbits transversally. The cross-section is called regular if K™ intersects each orbit
at most once. The corresponding moving frame associates to each 2™ € J” is
the unique group element g = p™(z(™) € G that maps z™ to the cross-section
g2 = pM (=Y. o) ¢ 5 22].

For simplicity, we can choose X = {21 = ¢4,..., 2. = ¢} as coordinate cross-section,
which prescribed by setting the » = dim G coordinates to proper constants.

Given local coordinates 2™ = (z,u™) on J", let w(g, 2™) = g- 2™ be the explicit
formulae for the group action. The right moving frame g = p™(2(™) associated with
the coordinate cross-section

K={z1=c1,...,2 = ¢},
is obtained by solving the normalization equations
(2.2) wi(g,z2™) = ey, .. w,(g,2™) = ¢,

Substituting the moving frame formulae for the group parameters into the remain-
ing action rules provides a complete system of functionally independent differential
invariants [26].

I(z(”)) — w(p(n)(z(n))’z(n)) — p(n)(z(n)) .50

In particular, the normalization components (2.2) of w will be constant, which
are called the phantom differential invariants. Other components (2.2) are called
fundamental invariants.

In particular,

H(z,u™) = o(a"),  I§(z,u™) = o(uF),

will denote the normalized differential invariants.
To carry on the moving frames method, we use the concept of invariantization and
begin the invariantization process. The invariantization

v Fz,u™) = I(z,u™) = F(p™ (z,u™) - (z,u™)),

maps the differential function F to the differential invariant I = «(F') [24].
Separating the local coordinates (z,u) on M into independent and dependent

variables splits the one-forms on J* into horizontal forms, which are spanned by

dxt, ..., dxP, and vertical forms, which are spanned by the basic contact one-forms

[17]

p
j‘zdu‘}—Zu?‘Lidﬁ, a=1,...,q,#J > 0.
i=1

The pull back of the dual Maurer-Cartan forms p',..., " on G via the moving
frame map: v* = p*u* produces the invariantized Maurer-Cartan forms [8]. We split
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the invariantized Maurer-Cartan forms into horizontal forms and vertical forms:
p
oF =T RE@) + D ShTg
i=1 a,J

where RF and S%7 are certain differential invariants, @' = ((dz") denote the invari-
antized horizontal one-forms and the invariantized basis contact forms are denoted
by

T=u09), a=1,...,q,#J >0.

The Rf are called the Maurer-Cartan invariants [7]. The Maurer-Cartan invariants
will appear in the recurrence formula which will introduce later.

Though invariantization respect all algebraic operators, it does not respect differ-
entiation, i.e., D[¢(F')] # ¢[D(F)]. However, there is an explicit formula known as the
recurrence formula which determines the effect of invariantization on derivatives [11].
Given a differential function F(x,u™) and «(F) its moving frame invariantization.
Then the recurrence formula will be

(2.3) Dilu(F)] = [ Di(F)] + 3_ R{X(F)),
k=1

where R are the Maurer-Cartan invariants and X (™ are the nth prolongations of the
infinitesimal generators X, [26]. In our approach, the recurrence formula (2.3) is the
key to study the algebra of differential invariants.

The invariant differential operators D; map differential invariants to differential
invariants. In most cases, they do not commute, but they satisfy in linear commutation
relations of the form

p
(2.4) [Ds, D] = YiDi, i,j=1,...,p,
k=1

where the coefficients YZ’; are certain differential invariants called the commutator
invariants [24]. One can obtain the commutator invariants Y} by differentiating the
recurrence formula (2.3).

In general, if K = (ky,...,k;) is an ordered multi-index, then, as a result of (2.4),

(2.5) ®7r(K) =Dy + Z Yﬂ{K‘DJ,
H#I<#K

for any permutation 7 of the entries of K. For example,

p
=1
p
=1

Using the commutator formulae (2.5), we can construct an infinite number of commu-
tator syzygies by applying (2.5) on any one of our generating differential invariants.
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3. INVARIANTS OF GENERALIZED COUPLED HIROTA-SATSUMA KDV EQUATIONS

First, we consider the Lie point symmetries of System (1.1). The infinitesimal Lie
transformations for equations (1.1) are of the form:

r—=x + AN (x, t,u, v, w),
tt + Mz, t,u, v, w),
u—u + At (x, t, u, v, w),
v 4+ A (2, tu, v, w),
w—w 4+ A (x, t u, v, w),

with the symmetry generator
0 0 0 0

— ¢z 7 t u_ - v 7 wi.

X =g oo o+ o

In [1], using Lie’s method, the infinitesimal Lie transformations for equations (1.1)
are obtained by solving the following determining system:

Gog=g=t=0, &=E=g=6 =0, &=t

v v v v u 2 w ]' 4/U§t+3,r]v w

3 v
Solving (3.1) yields the following coefficients of the vector field X:
x t ( 2 v w 4
& :a1—|—§a7a4, ' =a+tay, 1 :—gua4, n' =azv ,n :—agw—a4§w.

where the aq,as,as,as are constants. Thus, the Lie algebra of the symmetries is
generated by the following four vector fields

0
X = —
1 81‘7
0
X _
2 815’
0 0
(32) Xg—/(]%—w%,
o 10,0 20 40

“ 3% o T 3% 3% 0w
The action of the symmetry group of equations (1.1) can be yielded by composing
the flows of the vector fields (3.2) and is given by

(X, T,U, V, W) = exp(A X7) o exp(A2X3) 0 exp(A3X3) 0 exp(As Xy),
(3.3)
where Ay, ..., Ay are the group parameters. Calculating (3.3) leads to

X =(z+M\)eBM T =(t4+N)eM, U=ue?3M,
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V!
V =ve, W =we Me 3M,

As noted in Section 2.2, we should choose an appropriate coordinate cross-section.
Since the dimension of group action is four, we can choose a coordinate cross-section
by setting four arbitrary coordinates equal to constants. Here, we set the coordinate
cross-section as K = {z = 1,¢ = 0,v = 1, w = 1}. Our chosen coordinate cross-
section defines the following four normalization equations

(3.4) X=1 T=0, V=1 W=1,
As a result of our choice of normalization (3.4) the phantom differential invariants are
H'=uz)=1, H*=1t)=0, Jyo=1(v)=1 Kuyp=1t(w)=1.

Using MAPLE, we found that the normalization equations (3.4) can be solved by
the following group parameters:

z (vw)t =1

35) A =-— T

)\2 = —t, )\3 = —lnv, )\4 = §ln(vw)
(vw 4

The dual implicit differential operators are defined as follow [17]
p , ‘ N\ -1
(3.6) Dyi = ; WiDy, Wi =(DuX") ,
where D,: are the total derivative and are (2.1).
From (3.6), we have
(3.7) Dx =e 3MD, Dp=e ™MD,
Substituting (3.5) into (3.7), the corresponding invariant differential operators are

D, = (vw) * D,, D, = (vw)™* D,.

A complete system of functionally independent normalized differential invariants is
yielded by invariantizing the remaining non-phantom differential invariants:

(vw)1/4

v3w3

u (vw)1/4 Uy (Uw)1/4 Ut
Ino =75 Lo=——— In=—"—"—,
(fuw vw VW
(vw)3/4 Vg (Uw)1/4 vy
Jo=——"—, Jo=—"7"""7,
vw W
(vw)>’* w, (vw)* w,
Kyjp=—7"—", n=-——-
vw vw
I 1 Vow (upvzw + ugwyv — duzzow)
20 =— —
4 v2w? ’
1/4
1 (vw
I30 = — 3 (2131)1)3 (2vmuwi2 + 2wmu$02w — 8ummv2u)2 — 3uxv923w2 — 2u$vxw$vw)
1
8

2 2 2 2
(—3uxwxv + 60U VW 4 BULr WV w) ,
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1 (vw 1/4
Jap = — 3 (2}31)03 <8vmvwi2 + 6035 We VW + 2z V02w — 3v§w2)
1 (vw 1/4
+ 3 (v31>03 (2v§wwi + 3vzw§v2 + SUmsz2w2) ,
1 (vw)1/4 2 2 2 2.3 2
Ksg :§ Sw (81} W Wygr — SV WWe Wy + VW, — 6w vxwm)
1 1/4
-3 % (2vw2wxvm — 2vwvxw§ — 3w2v§wx)
where

Lij = uig), Jij = u(vig), Kij = t(wi).

By applying the invariantization process, System (1.1) can be rewritten in terms of
the differential invariants as

Ty — 5Ts0 + 3Ioo Lo — 3(Joo K10 + J10Koo) = 0,
Jo1 + J30 — 31poJ10 = 0,
Ko + K3p — 31p0 K19 = 0.

Next, we locate the a finite generating set of differential invariants for Equation
(1.1). One can obtain higher order differential invariants by repeatedly applying the
invariant differential operators to the lower order differential invariants.

According to (2.3), the recurrence formula for the differential invariants are

(38) Dy =6+ Y (E)RY, Dyl — 6+ 3" u(€)RS,
k=1 k=1
Dilje = Liaw + il (e ?*) Ry, Dol = Tisr + XT:I (") R,
DiJjr = Jjvrk + Ei:l () RY, DaJjk = Jjksr + Ei:l v(n27*) Ry,
DiKjr = Ky ke + il WP )RE, Dok = K + il (") R,

where Rf and R are the Maurer-Cartan invariants and &7, n®i* n** and n»i* are

K
the coefficients of %, 3‘? , 8? and % in the prolongation of the infinitesimal
Z o vk Wik

generator X, respectively [26]. Solving the resulting phantom recurrence formula
produces the Maurrer-Cartan invariants

1
(3.9) R?=0, R:=-1, Ri=-1--R}, R}=—Jpy,

3
3 3
Ry =—Jn, Ri= 1K10 + ZJ107 Ry = =Ko + = Joi.



802 GH. HAGHIGHATDOOST, M. BAZGHANDI, AND F. PASHAIE

Substituting the Maurrer-Cartan invariants (3.9) back into (3.8) obtain all the non-
phantom recurrence formula.

2 3 3 2 3 3
3.10) D1loo = Io — =Ioo ( K10 + = Jio ) » Doloo = To1 — =Ioo ( S Kor + Jo1 | ,
(3.10) Di1lgo = I10 300(4 1o+410) 2Ioo = Io1 300(4 01+401)
3 3 3 3
Dil10 = —T10 ZKIO —+ ZJlO + I20, Dalro = —I10 ZKOl + ZJOl + I11,
5 3 3 5 3 3
Dilpy = I11 — =1 -K —J Dolor = Igo — = I -K —J
1{o1 11 301<4 1o+410>, 2101 02 301(4 o1+401)7
4 3 3 4 3 3
Dilao = Iz — ~Iao [ ©K10 + ~J10 ) , Dolog = In1 — =Iao | =Kot + ~Jo1 ) ,
1420 30 320(4 1o+410) 2120 21 320(4 01+401>
8 3 3 8 3 3
Dilpa = 12 — — I -K —J Dolgs = Iz — =1 - K —J s
1102 12 302(4 10+410)7 2102 03 302(4 01+401)
3 3 3 3
D1I11 = —2Ip2 ZKIO + ZJID + I21, Dali1 = —2Ip2 ZKOI + ZJOI + I12,
1 3 3 1 3 3
DiJig = Jog — J2y — =J (7K -J ), Dodio = J11 — J1oJo1 — =J <7K 7J>,
1J10 20 o~ 3 10 1 1o-i-4 10 2J10 11 10J01 3 10 1 o1+4 01
3 3 ) 3 3
D1Jo1 = —J10Jo1 — Jo1 ZKlO + ZJm + J1i1, DaJor = —J5 — Jo1 ZKOl + ZJOI + Joz2,
2 3 3 2 3 3
Di1Jag = J30 — J10 — = J. -K -J , Dadog = Jo1 — Jo1 — = J. - —Ji ,
1J20 30 10 3 20 <4 10+4 10) 2420 21 01 3 20 (4 01+4 01)
3 3 3 3
D1Joz2 = —2Jo2 ZKlO + ZJIO + Ji2 — Jio, DaJo2 = —2Jo2 ZKOl + ZJm + Jos — Jo1,
4 3 3 4 3 3
DyJi1 = Jo1 — Jio — = Joo [ K10+ J1o ), DoJi1 = Jo1 — Jo1 — =J11 | = Ko1 + = Jo1 ) ,
1J11 21 10 3 20 (4 10+4 10) 2J11 21 01 3 11 (4 01+4 01)

4 3 3 4 3 3
D1 K10 = K20 + K10J10 — §K10 (ZKlo + ZJlo) , DoKio = K11+ K10Jo1 — gKIO (ZKOI + 1J01) )

7 3 3 7 3 3
D1Ko1 = K11 + Ko1J1o — gKUI (ZKlO + ij) ,  D2Ko1 = Koz + Ko1Jo1 — §K01 (ZKOI + ZJOl) s

3 3 3 3
D1 K20 = KaoJ10 — 2K20 (ZKlO + Zho) + K3o, Do Koo = Ka0Jo1 — 2K20 (Z 01 + ZJOl) + Ko,

8 3 3 8 3 3
D1 K11 = K21 + Ki1J10 — §K11 (ZKlO + ij) , DaKyy = Ka1 + K11Jo1 — §K11 (ZKOI + ZJOI) )

10 3 3 10 3 3
D1Ko2 = K12 + K20J10 — §K11 (ZKIO + ZJm) , D2Koz = Koz + Ko2Jo1 — ?KOZ (ZKOl + 1101) .

Theorem 3.1. The entire differential invariant algebra of the CHSK equations (1.1)
is generated by the following set:

(31]‘> {IOO7J107J017K107K01}'

Proof. From the recurrence formula (3.10), we find that any differential invariants
up to third order can be generated by a function composition of Iy, J1o, Jo1, K10, Ko1
and their derivatives. By differentiating the differential invariants (3.11), one can
find that any higher order differential invariants are also generated by the generating
set (3.11). O

Finally, we obtain the commutator invariants which satisfy the commutator relation

(312) [@1, @2] - }/lﬂl + }/2‘D27
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where D, and D, are the invariant differential operators. As a result of general
recurrence formulae, [11,18], we have

T T

Yi =Y [R5uUD.EY) - RIuDE] Yo=Y [R5uUD.ER) — RiuDiEY)]

r=1 k=1
in which ¢’ is the coefficients of d,:, in the infinitesimal generator X,.
Substituting our formula (3.9) for the Maurer-Cartan invariants yields

1 3

(3.13) Y 1 (Ko1 + Jo1), YYo= 1 (K10 — J1o) -
Thus, from (3.12) and (3.13), we have

1 3
(3.14) [Dy, D] = 1 (Ko + Jo1) Dy — 1 (K10 — J10) Ds.

Indeed, the generating differential invariants {Ino, J10, Jo1, K10, Ko1}, the recurrence
formulas (3.10), along with the commutation relations (3.14), provide a complete
specification of the structure of the differential invariant algebra of CHSK equations

(1.1).
4. CONCLUSIONS

In this paper, using the moving frames method, we located a finite generating set
of differential invariants and the invariant differential operators for the Lie symmetry
group of a generalized coupled Hirota-Satsuma KdV equations (CHSK), and then we
obtained the recurrence relations as well as syzygies among the generating differential
invariants. In particular, we proved that the differential invariant algebra of CHSK
equations can be generated by five differential invariants. The main application of the
differential invariants is to construct a class of PDEs, which possess the same symmetry
properties, which is important for both mathematics and physical interpretation.
Since the CHSK system is the mathematical model of interactions of two long waves
with different dispersion relations, our results are applicable to study the invariant
properties of interactions of two long waves. In our approach, we also obtained the
Maurer-Cartan invariants.
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MATRIX FEJER AND LEVIN-STECKIN INEQUALITIES
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ABSTRACT. Fejér and Levin-Steckin inequalities treat integrals of the product of
convex functions with symmetric functions. The main goal of this article is to present
possible matrix versions of these inequalities. In particular, majorization results are
shown of Fejér type for both convex and log-convex functions. For the matrix Levin-
Steckin type, we present more rigorous results involving the partial Léewner ordering
for Hermitian matrices. Further related results involving synchronous functions are
presented, too.

1. INTRODUCTION

The theory of convex functions has played a major role in the study of mathematical
inequalities. Related to convex-type inequalities, the Levin-Steckin’s inequality states
that if the function p : [0,1] — R is symmetric about ¢ = 3, namely p (1 —t) = p(¢),

and non-decreasing on [0, %}, then for every convex function f on [0, 1], the inequality

jp(t)f(t)dtﬁjp(t)dt/lf(t)dt

holds true [6]. If p is symmetric non-negative (without any knowledge about its
monotonicity) and f : [a,b] — R is convex, Fejér inequality states that [4]

f<a*2rb> jp(t)dtgo/lp(t)f<(1—t)a+tb)dt§Wojlp(t)dt.

Key words and phrases. Levin-Steckin inequality, Fejér inequality, positive matrices.
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We notice that Fejér inequality reduces to the Hermite-Hadamard inequality [5] when
p(t) = 1. In mathematical inequalities, it is of interest to extend known inequalities
from the setting of scalars to other objects, such as matrices. In this article, we will be
interested in extending both the Levin-Steckin and Fejér inequalities to the matrices
setting.

In the sequel, M,, will denote the algebra of all n x n complex matrices. The
conjugate transpose (or adjoint) of A € M,, is denoted by A*, and then the matrix
A will be called Hermitian if A* = A. When (Az,z) > 0 for all z € C", A is said
to be positive semi-definite and is denoted as A > 0. If A > 0 and A is invertible,
then A is said to be positive (strictly positive or positive definite). When A, B € M,
are Hermitian, we say that A < B if B — A > 0. This provides a partial ordering
on the class of Hermitian matrices. The eigenvalues of a Hermitian matrix A will
be denoted by Aj(A), Aa(A), ..., A\ (A), repeated according to their multiplicity and
arranged decreasingly. That is A\j(A) > A (A) > --- > A, (A).

The relation A < B implies \;(A) < X\;(B) for any such Hermitian matrices
A, B € M,,. However, the converse is not true. This urges the need to discuss,
in some cases, the latter order. For convenience, we will write A(A) < A(B) to mean
that \;(A) < \i(B),i=1,2,...,n

Another weaker ordering among matrices is the so-called weak majorization <,
defined for the Hermitian matrices A, B as

k k
A=<, B ifandonly if Y N(A) <D N(B), k=1,...,n.
i=1 i=1
It is clear that (see [1]) A < B implies A(A) < A(B), which implies A <,, B. It
is customary to obtain one of these orders when extending a scalar inequality to a
matrix inequality. For example, in this article, we obtain

(o 452) e frovi-ssome)

as an extension of Fejér inequality, to the Hermitian matrices A, B with spectra in
the domain of f.
Further, if f is monotone, then

A(O/p(t)f((l—15)A+tB)dzf) gA((O/p(t)dt) f(f‘l);rf(B)),

as matrix inequalities of the Fejér inequality. We remark that integral inequalities
have played a key role in advancing matrix inequalities, as seen in [8,9,12], and the
references therein.

In the next section, we study the possible matrix versions of Fejér inequality, which
implies certain versions of the Hermite-Hadamard matrix inequality [10]. Then log-
convex functions will be deployed to obtain new matrix Fejér inequalities for this
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type of functions, and we conclude with the discussion of the matrix Levin-Steckin
inequality.

2. FEJER MATRIX INEQUALITIES FOR CONVEX FUNCTIONS

We begin with the following weak majorization of Fejér-type inequality.

Theorem 2.1. Let f: J — R be conver and let p : [0,1] — [0, +00) be symmetric
about t = % If A, B € M,, are Hermitian with spectra in the interval J, then

A((jp(t)dt)f<A+B>) (/p 1—tA+tB)dt)

Proof. If f is a convex function, then for any 0 <t < 1, we have

f<m> :f<<1_t)a+tb+(l—t)b+ta>

2 2
(A =tatth)+ f((1-t)b+ta)
< 5 .
Thus,
(2.1) f(a“’)<f(<1—t)a+tb)+f((1—t)b+ta)
. < 2 |

If the function p is non-negative, we get from (2.1),

a+b> Sp(t)(f((l—t)a+tb)+f((1—t)b+ta)>‘

THe: !

Integrating on ¢ € [0, 1], and using symmetry assumption on p, we get

(2.2) (jp(t)dt)f<“b> /p (1—t)a +tb) dt.

If we replace a, b by (Az,x), (Bz,x) respectively, in (2.2), we get

(2.3)
(/p(t)dt) f <<Ax’x> + (Br,x ) /p (1 —1t) (Az,x) +t (Bx,x))dt.

On the other hand, it follows from Jensen’s inequality [11, Theorem 1.2],
FU(L=t)A+tB)z,z)) < (f(1—t) A+tB)x,z).
By multiplying both sides by p (t), we get
p(&) f(((L=t)A+iB)z,x)) <p(t)(f (1 —t) A+tB)x, x).
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Therefore,

(2.4) /p(t)f((((l—t)AthB)x,x))dtg <</p(t)f((1—t)A+tB)dt> xx>

Combining inequalities (2.3) with (2.4), we obtain

(2.5) (/lp(t)dt)f<<Ax’$>;<wa> <(/p 1—tA+tB)dt> >

f A+B

Suppose that A\j, ..., A\, are the eigenvalues o with zq,..., 2, as an orthonormal
system of corresponding eigenvectors arranged such that f(Ay) > --- > f(\,). We

have, for 1 < k <n,
B (/o) (45) =& (from) ((457) s
(jp dt) f<<AxJ,arj>;<Bx],xj>>

7j=1
1
< /p (1 —1) A+tB)dt) xj,mj>
0

(b the inequality (2.5))

gf:xj (/p(t)f((l—t)A+tB)dt).

-

1

o,
Il

(AN
||M?r

o

Namely, for 1 < k < n,

i Aj ((jp(t)dt)f(A;BD gzk:Aj (jp(t)f((l—t)A—i—tB)dt),

Therefore,

A((O/lp(t)dt)f<A+B>) (/p 1—tA+tB)dt) O

3. FEJER INEQUALITIES VIA LOG-CONVEX FUNCTIONS

In this part of the paper, we show a matrix Fejér inequality for log-convex functions.

Theorem 3.1. Let f: (0,+00) — (0, +00) be log-conver and p : [0,1] — (0,400) be
symmetric and normalized in the sense that [y p(t)dt = 1. If A, B € M,, are positive,

then
A (logf (A ; B)) <w A (log/olp(t)f((l Y tB)dt) .
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Proof. When f is convex, by (2.3), we have

f (<A *2‘ Bx,x>> < /Olp(t)f (1= O)A + tB)a, ) dt,

for any unit vector x. Since f is log-convex and A, B are positive, it follows that

log f <<A —;_ B:L‘,JZ>> < /Olp(t) log f(((1 —t)A+tB)x,x)dt.

Noting that log is a concave function and that du(t) := p(t)dt is a probability measure,

we have
A+ B 1
log £ ((Z5=w.2)) < [ p(O)1og f (1= A+ tB)a,z) de
0
1
= [ tog (1 = A+ tB)z,2)) dp()
< log / (1 = YA+ tB)a, z)) du(t)
= log [ p(Of (1 =) A+ Bz, )
for any unit vector x. Now, let Ay,..., A\, be the eigenvalues of ‘”TB with orthonormal

eigenvectors i, Ta, ..., Z,, so that f(A;) > -+ > f(A,). Then, for 1 < k < n,

> (tog £ (457 =ilogf<m

i)
< ﬁ:log/ (1= t)A+ tB)ay,a;)) dt
zij (log/ (1=1) A+tB))dt).

R
Il
—

This completes the proof. [l

As a consequence, we have the following.

Corollary 3.1. Let f: (0,4+00) — (0,+00) be log-convex and p : [0,1] — (0, +00) be
symmetric and normalized. Then

lill)\j<f<A+B)>§li[ (/1 (1—t)A+tB)dt) k=1.... n

for any positive matrices A, B € M,,.
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Proof. From Theorem 3.1, we have

éAj <1ogf(A+B)) ZA (log/ 1—tA+tB))dt>,

which is equivalent to

S log (f (A + B)) <3 log ), (/Olp(t)f((l —HA +tB))dt> .
=1 j=1
Consequently,
g TT (f <A+ B)) <loe [\, (/Olp(t)f((l - t)A+tB)dt) ,
=1 =1
which implie; the desired inequality. ] O

4. LEVIN-STECKIN MATRIX INEQUALITIES

We present a new inequality of Levin-Steckin type. The significance of this inequality
is its validity for any positive function p without imposing any conditions on its
symmetry or monotony.

Theorem 4.1. Let f:[0,1] — R be convex differentiable and let p : [0,1] — [0, +00)
be continuous. Then

/ dt/ dt+(/f dt/ tp(t)dt — /1tf’(t)dt/01p(t)dt>g/olf(t)p(t)dt.

Further,
1

/lp(t) t)dt + 5 /P dt—/p(t)tf’(t)dtS/lp(t)dt/f(t)dt.

0

Proof. For the convex differentiable function f and s,t € [0, 1] we have
(4.1) f(s) + F'(s)(t —s) < f(1).
Since p(t) > 0, it follows that

p(t)f(s) +p) ' (s)(t — s) < p(t)f(t), st €[0,1].

Integrating this inequality over t € [0, 1] then over s € [0, 1] implies

f(s)ds t)dt + f'(s)ds | tpt)dt — | sf'(s)ds | p(t)dt) < 1f(t)p(t)dt
Jy s v ([t [t [Feya o) < |

which is equivalent to the first desired inequality.
For the second inequality, integrating (4.1) over ¢ € [0, 1], we obtain

ro+re (L) < [roa
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If we put s = t, we have

F0+ 10 (3-1) < 1w

Multiplying both sides by p (), we get

pOFO+p0 S 0 (3-1) <o) [0l

Again, if we take integral over ¢t € [0, 1], we infer that

jp(t)f(t)dH;O/lp(t) 0/119 )tf (t So/l / t)dt.

This completes the proof. [l

Corollary 4.1. Let f :]0,1] — R be convez differentiable and let p : [0,1] — [0, +00)
be symmetric about % and non-decreasing on {O, 2} Then

/01 f’(t)dt/ol tp(t)dt g/o tf’(t)dt/olp(t)dt

Proof. This follows from the first inequality in Theorem 4.1 because when p is sym-

1
2

/0 1 f@®)p(t)dt < /0 1 f(t)dt /0 1 p(t)dt. -

Assume that 7, and o, are two arbitrary weighted symmetric operator means with
0 <t <1. A real-valued continuous function f :.J C R — R is operator 73-0;-convex
if

metric about % and non-decreasing on [O ], we have

f(AnB) < f(A)ouf (B),

for Hermitian A, B € M,, whose spectra are contained in J. For t = %, we say f is
operator 7-0, and we write

(4:2) f(ATB) < f(A)of (B).
An important example of operator mean is the arithmetic mean, which is denoted by
V., as the weighted version, for 0 <t < 1.

To prove the next lemma, we need the following important property of the weighted
operator means:

(4.3) (AT B) 7y (AT3B) = AT1—pyatysB, o, 8,7 € [0,1].
Lemma 4.1. Let f: J CR — R be an operator 1,-04-convex and let x € C*. Then

F(t)={f(AnB) z,x)

1s conver on 0 <t < 1.
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Proof. Indeed,

r(14)-

<AT@ B) x, $>

((ATt ) (ATSB)) T, IL"> (by (43))
(An,B)of (A1sB)z,z) (by (4.2))
(

<
—
(
(f (A7B) Vf (AT, B) . 1)

/
f
/
f

since arithmetic mean is the biggest one among symmetric means)

(
<f (ATt )Z‘,l’> <f (ATSB) $,1‘>
2

_F#)+F(s)
5 )
This completes the proof. O

Theorem 4.2. Let A, B € M,, be two Hermitian matrices with spectra contained in
J, let f be operator Ty-oi-convex and p : [0,1] — [0, +00) be symmetric about t = %

72

0/1p(t)f(ATt 0/1 / (A7B) dt.

0

and non-decreasing on [0 l}. Then

Proof. Let x € M,, be a unit vector. Then

<</p f(AnB ) >/p f(ARB) z, 2) dt

< /lp(t) dt/(f (A7,B)z, z) dt

_ <</1p(t) dt/lf(ATtB) dt) m>

where we have employed Lemma 4.1. This completes the proof. O

The case 7, = 0; = V4, in Theorem 4.2, reduces to
(4.4) /p (1—1t)A+tB) dt</p dt/f (1—t)A+tB)dt.

The following theorem gives a reverse for the inequality (4.4) by employing the
Mond-Pecari¢ method [11].

Theorem 4.3. Let [ : [m, M] — R be convez and let p : [0,1] — [0, +00) be symmetric
about t = % If A, B € M,, are Hermitian with spectra in the interval [m, M|, then for
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any o > 0

1

/p / (1—t)A+tB) t<5/p dtl—i—a/p F((1—1)A+tB)dt,
0

_ _ JOD—s(m) _ MJ(m)—my(M)
where § = max {asz +bs —af (2)}, ap = SFmR™ and by = ZEHEIE

Proof. Since f () < ayx + by, we get by the functional calculus
f((l—t)A—l—tB) S&f((l—t)A—i-tB)—i-bf[.

By taking integral over 0 <t <1, we reach

/1f<<1_t)A+tB)dtgaf<A’gB)+be.
0

This implies

/1p / l—tA+tB)dt<af(/1p(t)dt>A;B—i—bf(/lp(t)dt)f.

Hence for any vector v,

<(/1p(t)dt/1f((1t)A+tB)dt> y,y>§af (/lp(t)dt)<(A—l2-B)y7y>+/p(t)dtbf.
0

0

Now, by (2.3), we can write

1

1
<(/p<t>dt/f<<1—t>A+tB>dt) y,y>—a/p<t>f<<<<1—t>A+tB>y7y>>dt
0 0

0
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Thus,
<(/p(t)dt/f((1—t)A—l—tB)dt)y,y>
<8 [pWdt+a [p@)f((1—t)A+1B)y.y)dt
<6 [pWdt+a [pE)(f(1-1)A+tB)y.y)di
(bo [11, Theore?an])
<( (/p dt)[—l—a/p 1—tA+tB)dt) >
as desired. 0

5. FURTHER INEQUALITIES VIA SYNCHRONOUS FUNCTIONS

We say that the functions f,g : J — R are synchronous (asynchronous) on the
interval J if they satisfy the following condition, for all s,t € J,

(f ()= F(s)(g(t) —g(s)) = (£)0.

It is obvious that if f, g are monotonic and have the same monotonicity on the interval
J, then they are synchronous on J while if they have opposite monotonicity, they are
asynchronous.

Related to the Levin-Steckin inequality, the celebrated Cebysev inequality [2] states
that if f and g are two functions having the same monotonicity on [0, 1], then

jf(t)dtflg(t)dtS/lf(t)g(t)dt

For some Cebysev type inequalities for Hilbert space operators, see [7].
The following result provides a refinement and a reverse of this inequality via
synchronous functions.

Theorem 5.1. Let f,g:[a,b] — R be synchronous functions on the interval |a,b.
Then

min bla/bf?(t)dt(bla/bf(t)alt)2 /b dt—(b_ /g )
ia/bfmg(t (_a/f )( /g<t>dt)

IN
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b b 2 b b 2
<max{bla/f2(t)dt (b_la/f(t)dt) ,bia g> (t)dt — (bia/g(t)dt) }

If f and g have opposite monotonicity then

b b 2 b b 2
min{bla/ﬂ(t)dt (bla/f(t)dt) ,ﬁ/gQ(t)dt— (bla/g(t)dt> }

g(bia/bf(t)dt)( /g dt)—/f
2
<max{blaa/bf2(t)dt (b_laa/f(t)dt) ,b_la/bgz(t)dt (bia/bg(t)dt) }

a a

Proof. We prove the first inequality. The second inequality goes likewise, and we omit
the details. We have

F@)gt)+f(s)g(s) = (F)g(s)+f(s)g(?))
=) =F(s)(g(t) —g(s))
=[(f () =1 () (g @) =g (s))]

=11 &) = f(s)llg (t) =g (s)

) —
>min {(f (t) = f ()" (

(9 (
=min { /() + 7 (s) - f(t)f(S),gz(t)Jrg?(S)—2g(t)g(8>}-
Therefore,

min { £2 (s) + 2 (t) = 2f (s) £ (£) ,¢* (£) + g° (s) — 29 (£) g (5)}
<f(t)g(t)+ <> (5) = (f (D) g (s)+ f(5)g (1)
Consequently,

b b
min{b a) f2 (s /f2 t)ydt—2f (s / (t)dt /gz(t)dt—i—(b—a)g?(s)—2g(s)/g(t)dt}

b

/f B dt+ (b a f(s)g(s)—9(8)/f(t)dt—f(s)/g(t)dt

Upon integration, this implies

Imn{zwcz/' cﬁ—2(/f ) ba)ij%ﬂdtQ(ig(ﬂdOz}
§2(b—a)/bf<t>g(t)dt—2/f(t)dt/g(t)dt

a



818 M. SABABHEH, S. SHEYBANI, AND H. R. MORADI

Multiplying both sides by a7 0 Ve obtain,

)

mln{ /f2 t)dt — (bla/bf(t)dtf,bla/bg?(t)dt (bla/bg(t)dt)z}
_b—a/f dt_(b— /f )(b—a/bg(t)dt)'

The second inequality is obtained from the same arguments and the following relation

max {2 (s) + /7 (t) = 2f () [ (£) , 6 () + 9° () = 29 (1) g (5) }
>f () g @)+ f(s)g(s) = (F () g(s)+ f(s)g(t)). O

In the following result, we establish a refinement and a reverse for the Levin-Steckin
inequality.

Theorem 5.2. Letp : [0,1] — R be a symmetric about t = 1, namelyp (1 —t) =p(t),

and non-decreasing on [0, 2} then for every convex function f on [0,1],

1

/p(t)f( S/p dto/f

0
1/2 2 12 1

— min 2/p()dt—(/p(t)dt),;/(f()-i-fl—t dt—(;/ )+ f(1—1t)d ) :
0 0 0 0

A similar but reversed inequality holds if we replace min with max.

Proof. If f is symmetric and convex, by Theorem 5.1, we have

1

p(t) dt/f(t) dt

0

([ fron)([rome from) < fona [ riom

0 1/2 1/2

1/2 1/2 1/2 2 12 1/2 2
>2 [ pt)f(®)dt+mind2 [ P> ()dt— |2 [ p(t)dt| .2 | fP@t)dt— |2 [ f(t)dt
(o2 [rom) s [rom-(2fsos) |
2

m o _

0

1 1/2 1 1/2 1 2
/p()f(t)dt+min{2/p2(t)dt (/p(t)dt) ,2/f2(t)dt— (/f(t)dt) }
0 0

0 0 0
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Namely,

p(t dt—i—mln{Q 1//2p (t)dt — (jp(t)dt)z,z 72f2(t)dt— (jf(t)dt)Q}
/ £) dt.

We shall now consider an arbitrary f. For convex f, the function w is convex
and symmetric so that we can use the above inequality. Hence,

O\H o—__

1
/p@f@ﬁ

Jop@f 0+ fyp(1-t) £ (1L b)de jp@f@+fﬂ—ﬂ
0

0 0 0

2 1 2 12 1
pQ(t)dt—(/p(t)dt),;/(f()—i—f1—t dt—(;/ )+ f(1—t)d )}

which yields the desired inequality. 0

We can improve the second inequality in Theorem 5.1 in the following way.

Theorem 5.3. Let f,g: J — R be synchronous functions on the interval [0,1]. Then

1
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Proof. We have
f(@)

=(f(t

=[(f () -

=|f(t

() + f (s
(s))(
(s))
—f ()l

~—
|

- =
Q —
=2

-9
t)—g
—g(s)]
P19t —g(s)°)

(PO+ )+ ) +9(5) =209 () g(s) + [ (1) [ ()

S —
/\Q
&~

IN

/N
—~
\ ~—
—~
~
~—
~
—~
Va)
~—
~—

N~ N~

Therefore,

F®) g@)+f(s)g(s) = (f(B)g(s)+ f(s)g ()
S; (f7 @)+ (5)+g* () +9° () = 2(9 (1) g (5) + f (1) f () -

The remaining part of the proof is similar to the proof of Theorem 5.1, so we omit
the details. O
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