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SOME NEW INEQUALITIES FOR DIFFERENTIABLE

ARITHMETIC-HARMONICALLY CONVEX FUNCTIONS

MAHIR KADAKAL1, PRAVEEN AGARWAL2,3,4, AND İMDAT İŞCAN5

Abstract. In this study, by using an integral identity together with both the
Hölder and the power-mean inequalities for integrals we establish several new in-
equalities for differentiable arithmetic-harmonically-convex function. Also, we give
some applications for special means.

1. Preliminaries and Fundamentals

Throughout, we denote any real interval by I ⊆ R and any functions defined on I

by f : I ⊆ R → R. Let I◦ denote the interior of I. Also, we denote

If (a, b) = f(b)b − f(a)a −
∫ b

a
f(x)dx,

for brevity.

Definition 1.1. A function f : I ⊆ R → R is said to be convex if the inequality

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y)

is valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then f is said to be
concave on interval I ̸= ∅. This definition is well known in the literature.

Convexity theory has appeared as a powerful technique to study a wide class of
related problems in pure and applied sciences. The following double inequality is
known in the literature as Hermite-Hadamard integral inequality for convex functions.

Key words and phrases. Convex function, arithmetic-harmonically convex function Hermite-
HadamardŠs inequality.
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Theorem 1.1. Let f : I ⊆ R → R be a convex function defined on the interval I of

real numbers and a, b ∈ I with a < b. The following inequality

(1.1) f



a + b

2



≤ 1

b − a

b
∫

a

f(x)dx ≤ f(a) + f(b)

2

holds.

See [2, 4], for the results of the generalization, improvement and extention of the
famous integral inequality (1.1).

Definition 1.2 ([1, 5]). A function f : I ⊂ R → (0, ∞) is said to be arithmetic-
harmonically (AH) convex function if for all x, y ∈ I and t ∈ [0, 1] the equality

(1.2) f (tx + (1 − t)y) ≤ f(x)f(y)

tf(y) + (1 − t)f(x)

holds. If the inequality (1.2) is reversed, then the function f is said to be arithmetic-
harmonically (AH) concave function.

In order to establish some inequalities of Hermite-Hadamard type integral inequali-
ties for AH-convex functions, we will use the following lemma obtained in the special
case of identity given in [3].

Lemma 1.1. Let f : I ⊆ R → R be a differentiable mapping on I◦and f ′ ∈ L [a, b] ,

where a, b ∈ I◦ with a < b. We have the identity

(1.3) If (a, b) =
∫ b

a
xf ′(x)dx.

In this study, we use Hölder integral inequality, power-mean integral inequality
and the identity (1.3) in order to provide some inequalities for functions whose first
derivatives in absolute value at certain power are arithmetic-harmonically convex.

Throught this paper, we will use the following notations for special means of two
nonnegative numbers a, b with b > a:

1. the arithmetic mean

A := A(a, b) =
a + b

2
, a, b > 0,

2. the geometric mean

G := G(a, b) =
√

ab, a, b ≥ 0,

3. the logarithmic mean

L := L(a, b) =

{

b−a
ln b−ln a

, a ̸= b,

a, a = b,
b > 0,

4. the p-logarithmic mean

Lp := Lp(a, b) =









bp+1
−ap+1

(p+1)(b−a)


1

p
, a ̸= b, p ∈ R\ ¶−1, 0♢ ,

a, a = b,
a, b > 0.
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These means are often used in numerical approximation and in other areas. However,
the following simple relationships are known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and
L−1 = L.

2. Main Results for Lemma

Throughout this section we will denote Kx = ♣f ′(x)♣ for brevity.

Theorem 2.1. Let f : I ⊂ (0, +∞) → (0, +∞) be a differentiable mapping on I◦,

and a, b ∈ I◦ with a < b. If ♣f ′♣ is an arithmetic-harmonically convex function on the

interval [a, b], then the following inequality holds:

(2.1) ♣If (a, b)♣ ≤
{

(b−a)G2(Ka,Kb)
Kb−Ka



bKb−aKa

L(Ka,Kb)
− (b − a)



, Ka ̸= Kb,

(b − a)KbA(a, b), Ka = Kb.

Proof. Since ♣f ′♣ is an arithmetic-harmonically convex function on the interval [a, b],
we have on setting t = b−x

b−a
and 1 − t = x−a

b−a
in (1.2)

(2.2) ♣f ′(x)♣ ≤ (b − a)KaKb

(b − x) Kb + (x − a) Ka

,

for all x ∈ [a, b] . Substituting (2.2) in

(2.3) ♣If (a, b)♣ ≤
∫ b

a
x ♣f ′(x)♣ dx,

which folllows from (1.3), we have

(2.4) ♣If (a, b)♣ ≤ (b − a)KaKb

∫ b

a

x

(b − x) Kb + (x − a) Ka

dx.

We distinguish two cases. If Ka = Kb, then (2.1) follows. Suppose Ka ≠ Kb. Then,
by the change of variable u = (b − x) Kb + (x − a) Ka, the integral in (2.4) becomes

(b − a)KaKb

(Kb − Ka)2

∫ (b−a)Kb

(b−a)Ka



bKb − aKa

u
− 1



du

=
(b − a)KaKb

Kb − Ka



bKb − aKa
ln Kb − ln Ka

Kb − Ka

− (b − a)



.

Substituting this in (2.4) and using the definition of the logarithmic mean, we conclude
(2.1) in this case. This completes the proof. □

Theorem 2.2. Let f : I ⊂ (0, +∞) → (0, +∞) be a differentiable mapping on I◦,

and a, b ∈ I◦ with a < b. If ♣f ′♣q is an arithmetic-harmonically convex function on the

interval [a, b], then the following inequality holds:

(2.5) ♣If (a, b)♣ ≤






(b−a)Lp(a,b)G2(Ka,Kb)

(L(Ka,Kb)Lq−1

q−1
(Ka,Kb))

1
q
, Ka ̸= Kb,

(b − a)KbLp(a, b), Ka = Kb,
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where 1
p

+ 1
q

= 1.

Proof. Since ♣f ′♣q is an arithmetic-harmonically convex function on the interval [a, b],
we have

(2.6) ♣f ′(x)♣q ≤ (b − a) (KaKb)
q

(b − x) K
q
b + (x − a) K

q
a
,

for all x ∈ [a, b] . By using Hölder integral inequality in (2.3), we get

(2.7) ♣If (a, b)♣ ≤


∫ b

a
xpdx


1

p


∫ b

a
♣f ′(x)♣q dx


1

q

.

By combining (2.6) and (2.7) and also using the definitions of the p-logarithmic mean
and geometric mean, we obtain

(2.8) ♣If (a, b)♣ ≤ (b − a)G2 (Ka, Kb) Lp(a, b)



∫ b

a

dx

(b − x) K
q
b + (x − a) K

q
a


1

q

.

We distinguish two cases. If Ka = Kb, then (2.5) follows. Suppose Ka ≠ Kb. Then,
by the change of variable u = (b − x) K

q
b + (x − a) Kq

a, the integral in (2.8) becomes

(b − a)G2 (Ka, Kb) Lp(a, b)



∫ (b−a)Kq

b

(b−a)Kq
a

du

(Kq
b − K

q
a) u


1

q

=(b − a)G2 (Ka, Kb) Lp(a, b)



ln K
q
b − ln Kq

a

K
q
b − K

q
a


1

q

.

Substituting this in (2.8) and using the definitions of the logarithmic mean and the
p-logarithmic mean, we conclude (2.5) in this case. This completes the proof. □

Theorem 2.3. Let f : I ⊂ (0, +∞) → (0, +∞) be a differentiable mapping on I◦, and

a, b ∈ I◦ with a < b. If ♣f ′♣q , q ≥ 1 is an arithmetic-harmonically convex function on

the interval [a, b], then the following inequality holds:

(2.9)

♣If (a, b)♣ ≤











(b−a)A
1−

1
q (a,b)G2(Ka,Kb)

(Kq

b
−Kq

a)
1
q



bKq

b
−aKq

a

L(Ka,Kb)Lq−1

q−1
(Ka,Kb)

− (b − a)


1

q

, Ka ̸= Kb,

(b − a)KbA(a, b), Ka = Kb.

Proof. Since ♣f ′♣q is an arithmetic-harmonically convex function on the interval [a, b],
we have

(2.10) ♣f ′(x)♣q ≤ (b − a) (KaKb)
q

(b − x) K
q
b + (x − a) K

q
a
,

for all x ∈ [a, b] . By using well known power-mean integral inequality in (2.3), we get

(2.11) ♣If (a, b)♣ ≤


∫ b

a
xdx

1−
1

q


∫ b

a
x ♣f ′(x)♣q dx


1

q

.



INEQUALITIES 673

By combining (2.10) and (2.11) and also using the definitions of the arithmetic mean
and geometric mean, we obtain

(2.12) ♣If (a, b)♣ ≤ (b − a)A1−
1

q (a, b)G2 (Ka, Kb)



∫ b

a

x

(b − x) K
q
b + (x − a) K

q
a
dx


1

q

.

We distinguish two cases. If Ka = Kb, then (2.9) follows. Suppose Ka ≠ Kb. Then,
by the change of variable u = (b − x) K

q
b + (x − a) Kq

a, the integral in (2.12) becomes

(b − a)A1−
1

q (a, b)G2 (Ka, Kb)

(Kq
b − K

q
a)

2

q



∫ (b−a)Kq

b

(b−a)Kq
a

bK
q
b − aKq

a − u

u
du


1

q

=
(b − a)A1−

1

q (a, b)G2 (Ka, Kb)

(Kq
b − K

q
a)

1

q



(bKq
b − aKq

a) (ln K
q
b − ln Kq

a)

K
q
b − K

q
a

− (b − a)


1

q

.

Substituting this in (2.12) and using the definitions of the logarithmic mean and the
p-logarithmic mean, we conclude (2.9) in this case. This completes the proof. □

Corollary 2.1. If we take q = 1 in the inequality (2.9), we get the inequality (2.1).

3. Applications for Special Means

If p ∈ (−1, 0), then the function f(x) = xp, x > 0, is an arithmetic harmonically-
convex [1]. Using this function we obtain following propositions.

Proposition 3.1. Let 0 < a < b and m ∈ (−1, 0). Then we have the following

inequality:

(3.1) Lm+1
m+1(a, b) ≤ 1

m
· G2m (a, b)

Lm−1
m−1(a, b)



(m + 1)
Lm

m(a, b)

L (am, bm)
− 1



.

Proof. We know that if m ∈ (−1, 0) then the function f(x) = xm+1

m+1
, x > 0, is an

arithmetic harmonically-convex function. Therefore, the assertion follows from the
inequality (2.1), for f : (0, +∞) → R, f(x) = xm+1

m+1
. □

Proposition 3.2. Let a, b ∈ (0, +∞) with a < b, q > 1 and m ∈ (−1, 0). Then we

have the following inequality:

L
m
q

+1
m
q

+1(a, b) ≤ Lp(a, b)G
2m
q (a, b)



L (am/q, bm/q) L
q−1
q−1 (am/q, bm/q)


1

q

.

Proof. The assertion follows from the inequality (2.5). Let f(x) = q
m+q

x
m
q

+1, x ∈
(0, +∞). Then ♣f ′(x)♣q = xm is an arithmetic harmonically-convex on (0, +∞) and
the result follows directly from Theorem 2.2. □
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Proposition 3.3. Let a, b ∈ (0, +∞) with a < b, q > 1 and m ∈ (−1, 0). Then, we

have the following inequality:

(3.2) L
m
q

+1
m
q

+1(a, b) ≤ A
1−

1

q (a, b)G
2m
q (a, b)



mLm−1
m−1(a, b)


1

q



(m + 1)Lm
m(a, b)

L (am/q, bm/q) L
q−1
q−1 (am/q, bm/q)

− 1


1

q

.

Proof. The assertion follows from the inequality (2.9). Let f(x) = q
m+q

x
m
q

+1, x ∈
(0, +∞). Then ♣f ′(x)♣q = xm is an arithmetic harmonically-convex on (0, +∞) and
the result follows directly from Theorem 2.3. □

Corollary 3.1. If we take q = 1 in the inequality (3.2), we get the following inequality

(3.3) Lm+1
m+1(a, b) ≤ G2m(a, b)

mLm−1
m−1(a, b)



(m + 1)Lm
m(a, b)

L (am, bm)
− 1



,

which is the same as inequality (3.1).
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A STUDY OF ∗-PRIME RINGS WITH DERIVATIONS

ADNAN ABBASI1, SHAKIR ALI2, ABDUL NADIM KHAN3,
AND MUZIBUR RAHMAN MOZUMDER4

Abstract. This paper’s major goal is to describe the structure of the ∗-prime
ring, with the help of three different derivations α, β and γ such that α([s1, s∗

1
]) +

[β(s1), β(s∗

1
)] + [γ(s1), s∗

1
] ∈ Z (χ) for all s1 ∈ χ. Further, some more related results

have also been discussed. As applications, classical theorems due to Bell-Daif [6]
and Herstein [12] are deduced.

1. Introduction

This research is the extension of the work done by Ali et al. in [3]. If (i) (s1s2)∗ = s∗

2
s∗

1

and (ii) (s∗

1
)∗ = s1 holds for all s1, s2 ∈ χ, then an additive map s1 7→ s∗

1
of χ into

itself is said to be an involution. Ring with involution, often known as ∗-ring or ring
with involution. H (χ) is the collection of hermitian objects (s∗

1
= s1) and S (χ) is

the collection of skew-hermitian objects (s∗

1
= −s1) of χ. If characteristic different

from two, then, obviously, H (χ) = S (χ). Thus, we will consider only ∗-rings χ with
char(χ) ̸= 2. If Z (χ) ⊆ H (χ), the involution is said to be of the first kind; otherwise,
it is of the second kind. In the later case, S (χ) ∩ Z (χ) ̸= (0) (e.g., involution in
the case of ring of quaternions). In [11], there’s a mention of these rings as well as
additional references.

The origins of commuting and centralising maps can be traced back to 1955, when
Divinsky [9] proved that “simple Artinian ring is commutative if it has commuting
non-trivial automorphisms”. In 1957, Posner [18] found that “existence of nonzero
centralizing derivation on a prime ring forces the ring to be commutative”. The study
of commuting (centralizing) derivation/additive maps/multiplicative maps and several

Key words and phrases. Prime ring, involution, derivation, central identities.
2020 Mathematics Subject Classification. Primary: 16N60. Secondary: 16W10, 16W25.
DOI 10.46793/KgJMat2505.677A
Received: June 02, 2022.
Accepted: November 10, 2022.

677



678 A. ABBASI, S. ALI, A. N. KHAN, AND M. R. MOZUMDER

extension of such results begins with the results of Posner [18] along with applications
to different areas like Lie theory, matrix theory, operator theory etc. For more details
of said work see (see [2, 4, 8–10,13] and references therein).

In [3], Ali et al. proved that “a prime ring χ must be a commutative integral domain
if it admits derivations α and β satisfying any one of the identities: (i) [α(s1), α(s∗

1
)] +

β(s1 ◦ s∗

1
) = 0 for all s1 ∈ χ, (ii) α(s1) ◦ α(s∗

1
) + β([s1, s∗

1
]) = 0 for all s1 ∈ χ,

(iii) α([s1, s∗

1
]) + [α(s1), α(s∗

1
)] = 0 for all s1 ∈ χ, (iv) α(s1 ◦ s∗

1
) + α(s1) ◦ α(s∗

1
) = 0

for all s1 ∈ χ”. Our goal in this work is to continue this line of inquiry and analyse
the structure of prime rings with involution satisfying above mentioned ∗-differential
identities which are central. In fact, so many results become corollaries of our results
which are in [2, 3, 6, 8, 12,16,17] and references therein.

2. The Results

Herstein [12] proved a classical result “A prime ring χ of char(χ) ̸= 2 with a
derivation α ≠ 0 satisfying the differential identity [α(s1), α(s2)] = 0 for all s1, s2 ∈ χ,
must be commutative”. Further, Daif [7], proved that “Let χ be a 2-torsion free
semiprime ring admitting a derivation α such that [α(s1), α(s2)] = 0 for all s1, s2 ∈ I,
where I is a nonzero ideal of χ and α is nonzero on I, then χ contains a nonzero
central ideal”. Further, this result was extended by second author together with Dar
in [8, Theorem 3.1] in case of prime rings involving ∗ : χ 7→ χ. Indeed, they proved
“Let χ be a prime ring with involution ′∗′ of the second kind such that char(χ) ̸= 2
and satisfying the ∗-differential identity [α(s1), α(s∗

1
)] = 0 for all s1 ∈ χ, then χ must

be commutative”. Throughout our discussion ∗ will be of second kind and also as
when we consider more than one derivation then it is assume that at least one of them
to be nonzero. We begin our investigation with several well-known facts, which lead
to the following results repeatedly.

Fact 2.1 ([3, Lemma 2.5]). Let χ be a ∗-prime ring and α be a derivation and α(t) = 0
for all t ∈ H (χ) ∩ Z (χ). Then α(s1) = 0 for all s1 ∈ Z (χ).

Fact 2.2 ([17, Lemma 2.1]). Let χ be a ∗-prime ring and χ is normal for all s1 ∈ χ.
Then χ is commutative.

Fact 2.3 ([17, Lemma 2.2]). Let χ be a ∗-prime ring and s1 ◦ s∗

1
∈ Z (χ) for all s1 ∈ χ

if and only if χ is commutative.

Theorem 2.4. Let χ be a ∗-prime ring and α, β and γ be derivations of χ satisfying

the identity α([s1, s∗

1
]) + [β(s1), β(s∗

1
)] ± [γ(s1), s∗

1
] ∈ Z (χ) for all s1 ∈ χ. Then χ is

commutative.

Proof. The proof is divided into the following cases.
Case (i) If α = 0 and β, γ ̸= 0, then we have

(2.1) [β(s1), β(s∗

1
)] ± [γ(s1), s∗

1
] ∈ Z (χ), for all s1 ∈ χ.
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Taking t for s1 in (2.1), where t ∈ H (χ), we obtain

(2.2) ± [γ(t), t] ∈ Z (χ), for all t ∈ H (χ).

Linearization of (2.2) gives

(2.3) ± [γ(t), h1] ± [γ(h1), t] ∈ Z (χ), for all t, h1 ∈ H (χ).

Replacing h1 by h1h0 in (2.3) and combining (2.3), we get ±[h1, t]γ(h0) ∈ Z (χ) for all
h1, t ∈ H (χ) and h1 ∈ H (χ)∩Z (χ). Applying the primeness of the ring χ, we obtain
either ±[h1, t] ∈ Z (χ) for all h1, t ∈ H (χ) or γ(h1) = 0 for all h1 ∈ H (χ) ∩ Z (χ).
If we consider ±[h1, t] ∈ Z (χ) for all h1, t ∈ H (χ), replacing h1 by kh1, we have
±[k, t]h1 ∈ Z (χ) for all t ∈ H (χ), k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ). Since
S (χ) ∩ Z (χ) ̸= (0) and χ is prime, implies that ±[k, t] ∈ Z (χ) for all t ∈ H (χ)
and k ∈ S (χ). This implies that χ is commutative. Now consider γ(h1) = 0 for all
h1 ∈ H (χ) ∩ Z (χ), this implies that γ(h1) = 0 for all h1 ∈ S (χ) ∩ Z (χ). Taking
kh1 in place of t in (2.2), we obtain

±[γ(k), k]k2

0
∈ Z (χ), for all k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ).

Since χ is prime and we have S (χ) ∩ Z (χ) ̸= (0), we obtain

(2.4) ± [γ(k), k] ∈ Z (χ), for all k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ).

By linearizing (2.2), we get

(2.5) ± [γ(t), h1] ± [γ(h1), t] ∈ Z (χ), for all t, h1 ∈ H (χ).

Substituting kh1 for h1 in (2.5), where k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ), we obtain

(2.6) ± [γ(t), k] ± [γ(k), t] ∈ Z (χ), for all t, h1 ∈ H (χ).

Consider 4[γ(s1), s2] = [γ(2s1), 2s2] = [γ(t + k), t + k] = [γ(t), t] + [γ(k), t] + [γ(t), k] +
[γ(k), k]. Using (2.2), (2.4) and (2.6), we get 4[γ(s1), s2] ∈ Z (χ) for all s1, s2 ∈ χ.
Since char(χ) ̸= 2, this implies that [γ(s1), s2] ∈ Z (χ) for all s1 ∈ χ. Therefore, in
view of Posner’s result we done.

Case (ii) If β = 0 and α, γ ̸= 0, then we have α([s1, s∗

1
]) ± [γ(s1), s∗

1
] ∈ Z (χ) for

all s1 ∈ χ. Substituting t for s1, we obtain ±[γ(t), t] ∈ Z (χ) for all t ∈ H (χ),
which is same as (2.2), following the line of proof as we did after (2.2), we get χ is
commutative.

Case (iii) If γ = 0 and α, β ̸= 0, then from hypothesis we obtain

α([s1, s∗

1
]) + [β(s1), β(s∗

1
)] ∈ Z (χ), for all s1 ∈ χ.

Substituting ss1 for s1 in above equation, where s ∈ Z (χ) ∩ S (χ), we get

(2.7) [s1, s∗

1
]2sα(s) + [α(s1), s∗

1
]sβ(s) + [s1, β(s∗

1
)]sβ(s) + [s1, s∗

1
](β(s))2 ∈ Z (χ).

Linearization of (2.7), gives us

[s1, s∗

2
]2sα(s) + [s2, s∗

1
]2sα(s) + [α(s1), s∗

2
]sα(s) + [α(s2), s∗

1
]sα(s)(2.8)

+ [s1, β(s∗

2
)]sβ(s) + [s2, β(s∗

1
)]sβ(s) + [s1, s∗

2
](β(s))2 + [s2, s∗

1
](β(s))2 ∈ Z (χ).
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Now taking s2s for s2 in (2.8), where s ∈ Z (χ) ∩ S (χ), and combining it with the
obtained result, we find that

4[s2, s∗

1
]s2α(s) + 2[β(s2), s∗

1
]sβ(s)2 + 2[s2, s∗

1
]s(β(s))2(2.9)

− [s1, s∗

2
]s(β(s))2 + 2[s2, β(s∗

1
)]s2β(s) + [s2, s∗

1
]s(β(s))2 ∈ Z (χ).

Substituting s2s for s2 in (2.9) and solving with the help of (2.9), we have

(2.10) 2[s1, s∗

2
]s2(β(s))2 + 2[s2, s∗

1
]s(β(s))3 ∈ Z (χ), for all s1, s2 ∈ χ.

Again taking s2s for s2 in (2.10), where s ∈ Z (χ) ∩ S (χ), and combining it with
(2.10), we get 4[s2, s∗

1
]s2(β(s))3 ∈ Z (χ) for all s1, s2 ∈ χ. Replacing s2 by s1, we

obtain 4[s1, s∗

1
]s2(β(s))2 ∈ Z (χ), for all s1 ∈ χ and s ∈ Z (χ) ∩ S (χ). Since char

(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), the above relation forces that either [s1, s∗

1
] ∈ Z (χ)

for all s1 ∈ χ or β(s) = 0 for all s ∈ Z (χ) ∩ S (χ). If [s1, s∗

1
] ∈ Z (χ), then by

Fact 2.2, χ is commutative. On the other hand, we consider the situation β(s) = 0
for all s ∈ Z (χ) ∩ S (χ). Using this in (2.7), we get 2[s1, s∗

1
]sα(s) ∈ Z (χ). By the

primeness of the ring χ, we conclude that either χ is commutative or α(s) = 0 for all
s ∈ Z (χ) ∩ S (χ). Linearization of α([s1, s∗

1
]) + [β(s1), β(s∗

1
)] ∈ Z (χ) for all s1 ∈ χ,

gives us
(2.11)

α([s1, s∗

2
]) + α([s2, s∗

1
]) + [β(s1), β(s∗

2
)] + [β(s2), β(s∗

1
)] ∈ Z (χ), for all s1, s2 ∈ χ.

Replacing s2 by ss2 in (2.11) where s ∈ Z (χ)∩S (χ) and using the fact that α(s) = 0
and β(s) = 0 for all s ∈ Z (χ) ∩ S (χ), we arrive at

2(α([s2, s∗

1
]) + [β(s2), β(s∗

1
)])s ∈ Z (χ), for all s1, s2 ∈ χ.

Since char(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), the above relation yields

α([s2, s∗

1
]) + [β(s2), β(s∗

1
)] ∈ Z (χ), for all s1, s2 ∈ χ.

This implies that

α([s2, s1]) + [β(s2), β(s1)] ∈ Z (χ), for all s1, s2 ∈ χ.

Replacing s2 by s2

1
in the last relation, we get [β(s2

1
), β(s1)] ∈ Z (χ) for all s1 ∈ χ.

This further implies that [(β(s1))
2, s1] ∈ Z (χ) for all s1 ∈ χ. Thus in view of [14,

Theorem 1.1], we get χ is commutative. This proves the theorem.
Case (iv) If α = 0, β = 0 and γ ̸= 0, we have ±[γ(s1), s∗

1
] ∈ Z (χ) for all s1 ∈ χ,

then by [17, Theorem 3.7] χ is commutative.
Case (v) Consider β = 0, γ = 0 and α ̸= 0, then from hypothesis, we have

α([s1, s∗

1
]) ∈ Z (χ) for all s1 ∈ χ. By [16, Theorem 2.3], we obtain χ is commutative.

Case (vi) Taking γ = 0, α = 0 and β ≠ 0, then by hypothesis we have [β(s1), β(s∗

1
)]

∈ Z (χ) for all s1 ∈ χ. Hence, result follows by [17, Theorem 3.1].
Case (vii) Consider the following if α = 0, β = 0 and γ ̸= 0. Substituting t for s1

in assumption, we obtain [γ(t), t] ∈ Z (χ) for all s1 ∈ H (χ), which is same as (2.2).
Therefore χ is commutative by follow the same argument. □
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We deduce the following corollaries from Theorem 2.4.

Corollary 2.1 ([8, Theorem 3.1]). Let χ be a ∗-prime ring and α ≠ 0 be a derivation

of χ such that [α(s1), α(s∗

1
)] = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.2 ([2, Theorem 2.2]). Let χ be a ∗-prime ring and α ≠ 0 be a derivation

of χ such that α([s1, s∗

1
]) = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.3 ([3, Theorem 3.5]). Let χ be a ∗-prime ring and α and β be derivations

of χ satisfying the identity α([s1, s∗

1
]) + [β(s1), β(s∗

1
)] = 0 for all s1 ∈ χ. Then χ is

commutative.

Corollary 2.4. Let χ be a ∗-prime ring and α and β be a nonzero derivation of χ

satisfying α(s1s
∗

1
) + β(s1)β(s∗

1
) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. By the assumption, we have α(s1s
∗

1
) + β(s1)β(s∗

1
) ∈ Z (χ) for all s1 ∈ χ.

Replace s1 by s∗

1
in the last expression to get α(s∗

1
s1) + β(s∗

1
)β(s1) ∈ Z (χ) for all

s1 ∈ χ. Combining the last two relations, we obtain α([s1, s∗

1
]) + [β(s1), β(s∗

1
)] ∈ Z (χ)

for all s1 ∈ χ. Hence, application of Case (vi) of Theorem 2.4 yields the required
result. □

Theorem 2.5. Let χ be a ∗-prime ring and α and β be two derivations of χ satisfying

the identity α(s1 ◦ s∗

1
) + β(s1) ◦ β(s∗

1
) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. By the assumption, we have

(2.12) α(s1 ◦ s∗

1
) + β(s1) ◦ β(s∗

1
) ∈ Z (χ), for all s1 ∈ χ.

Case (i) Assume that α ≠ 0 and β = 0. Then it follows from (2.12) that α(s1◦s∗

1
) ∈

Z (χ) for all s1 ∈ χ. In view of [16, Theorem 2.5], we get χ is commutative.
Case (ii) Taking α = 0 and β ̸= 0. Then (2.12) reduces to

(2.13) β(s1) ◦ β(s∗

1
) ∈ Z (χ), for all s1 ∈ χ.

Application of [17, Theorem 3.5] gives the required result.
Case (iii) Assume that both α and β are nonzero. Replacing s1 by s1 + s2 in

(2.12), we get

(2.14) α(s1 ◦ s∗

2
) + α(s2 ◦ s∗

1
) + β(s1) ◦ β(s∗

2
) + β(s2) ◦ β(s∗

1
) ∈ Z (χ).

Substituting s2t for s2 in (2.14), where t ∈ Z (χ) ∩ H (χ), we get

((s1 ◦ s∗

2
) + (s2 ◦ s∗

1
))α(t) + (β(s1) ◦ s∗

2
+ s2 ◦ β(s∗

1
))β(t) ∈ Z (χ).

Taking s2so for s2 where so ∈ Z (χ) ∩ S (χ) and combining it with the obtained
relation, we get

2((s2 ◦ s∗

1
)soα(t)) + (s2 ◦ β(s∗

1
))soβ(t)) ∈ Z (χ).

Since char(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), the above relation yields

(2.15) (s2 ◦ s∗

1
)α(t) + (s2 ◦ β(s∗

1
))β(t) ∈ Z (χ), for all s1, s2 ∈ Z (χ).



682 A. ABBASI, S. ALI, A. N. KHAN, AND M. R. MOZUMDER

This can be further written as

[(s2 ◦ s∗

1
), r]α(t) + [s2 ◦ β(s∗

1
), r]β(t) = 0, for all s1, s2, r ∈ Z (χ).

Replacing χ by s2 ◦s∗

1
we get [s2 ◦β(s∗

1
), s2 ◦s∗

1
]β(t) = 0 for all s1, s2 ∈ χ. Then, by the

primeness of χ, we get either [s2 ◦ β(s∗

1
), s2 ◦ s∗

1
] = 0 for all s1, s2 ∈ χ or β(t) = 0 for

all t ∈ Z (χ) ∩ H (χ). If [s2 ◦ β(s∗

1
), s2 ◦ s∗

1
] = 0 for all s1, s2 ∈ χ, then by substituting

z for s2 in the last relation where z ∈ Z (χ), we obtain 2[β(s∗

1
), s∗

1
]z = 0 for all s1 ∈ χ.

Since char(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), this implies that [β(s∗

1
), s∗

1
] = 0 for all

s1 ∈ χ. By the application of Posner’s [18] we arrived at conclusion. Now consider the
case β(t) = 0 for all t ∈ Z (χ) ∩ H (χ). Then (2.15) reduces to (s2 ◦ s∗

1
)α(t) ∈ Z (χ)

for all s1, s2 ∈ χ and t ∈ Z (χ) ∩ H (χ). By the primness of the ring χ, we get either
s2 ◦s∗

1
∈ Z (χ) for all s1, s2 ∈ χ or α(t) = 0 for all t ∈ Z (χ)∩H (χ). If s2 ◦s∗

1
∈ Z (χ)

for all s1, s2 ∈ χ by the Fact 2.3 implies that χ is commutative. Finally, we consider
the case α(t) = 0 for all t ∈ Z (χ) ∩ H (χ). Now replacing s2 by t in (2.14) where
t ∈ Z (χ) ∩ H (χ), we get

(α(s1) + α(s∗

1
))t ∈ Z (χ), for all s1 ∈ χ and t ∈ Z (χ) ∩ H (χ).

Thus in view of the fact Z (χ) ∩S (χ) ̸= (0) and primeness of the ring χ, we conclude
that α(s1) + α(s∗

1
) ∈ Z (χ) for all s1 ∈ χ. This can be written as [α(s1), α(s∗

1
)] = 0 for

all s1 ∈ χ. Hence, χ is commutative by [17, Theorem 3.1]. □

Corollary 2.5 ([2, Theorem 2.3]). Let χ be a ∗-prime ring and α ≠ 0 be a derivation

of χ satisfying α(s1 ◦ s∗

1
) = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.6. Let χ be a ∗-prime ring and α ̸= 0 be a derivation of χ satisfying

α(s1s
∗

1
) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. From assumption, we have α(s1s
∗

1
) ∈ Z (χ) for all s1 ∈ χ. For any s1 ∈ χ, s∗

1

also is an element of χ. Substituting s∗

1
for s1 in the given assertion, we obtain

α(s∗

1
s1) ∈ Z (χ) for all s1 ∈ χ. This implies that α(s1 ◦ s∗

1
) ∈ Z (χ) for all s1 ∈ χ.

Hence, χ is commutative by Corollary 2.5. □

Corollary 2.7 ([8, Theorem 3.2]). Let χ be a ∗-prime ring and α ≠ 0 be a derivation

of χ satisfying α(s1) ◦ α(s∗

1
) = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.8 ([3, Theorem 3.6]). Let χ be a ∗-prime ring and α ≠ 0 be a derivation

of χ satisfying α(s1 ◦ s∗

1
) + α(s1) ◦ α(s∗

1
) = 0 for all s1 ∈ χ. Then χ is commutative.

Theorem 2.6. Let χ be a ∗-prime ring and α and β be derivations of χ satisfying

the identity [α(s1), α(s∗

1
)] ± β(s1 ◦ s∗

1
) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. We are given that α, β : χ → χ are derivations such that

[α(s1), α(s∗

1
)] + β(s1 ◦ s∗

1
) ∈ Z (χ), for all s1 ∈ χ.(2.16)

Replacing s1 by s∗

1
in the last expression we get

−[α(s1), α(s∗

1
)] + β(s1 ◦ s∗

1
) ∈ Z (χ), for all s1 ∈ χ.(2.17)
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Adding the last two relations and using char(χ) ̸= 2 we obtain

β(s1 ◦ s∗

1
) ∈ Z (χ), for all s1 ∈ χ.(2.18)

Hence, the result follows from [13, Theorem 2].
Similarly, we prove the other case with the help of [13, Theorem 2]. □

Corollary 2.9 ([3, Theorem 3.1]). Let χ be a ∗-prime ring and α and β be derivations

of χ satisfying the identity [α(s1), α(s∗

1
)] ± β(s1 ◦ s∗

1
) = 0 for all s1 ∈ χ. Then χ is

commutative.

Theorem 2.7. Let χ be a ∗-prime ring and α and β be derivations of χ satisfying

the identity α(s1) ◦ α(s∗

1
) ± β([s1, s∗

1
]) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. First, we consider that

α(s1) ◦ α(s∗

1
) + β([s1, s∗

1
]) ∈ Z (χ), for all s1 ∈ χ.

Replacing s1 by s∗

1
in the last expression we get

α(s1) ◦ α(s∗

1
) − β([s1, s∗

1
]) ∈ Z (χ), for all s1 ∈ χ.

Substracting the last two relation and using char(χ) ̸= 2 we obtain

β([s1, s∗

1
]) ∈ Z (χ), for all s1 ∈ χ.

Hence, the result follow from [13, Theorem 1].
Similarly, we prove the other case with the help of [13, Theorem 1]. □

Corollary 2.10. Let χ be a ∗-prime ring and α and β be derivations of χ satisfying the

identity α(s1) ◦ α(s2) ± β([s1, s2]) ∈ Z (χ) for all s1, s2 ∈ χ. Then χ is commutative.

Corollary 2.11 ([3, Theorem 3.3]). Let χ be a ∗-prime ring and α and β be derivations

of χ satisfying the identity α(s1) ◦ α(s∗

1
) ± β([s1, s∗

1
]) = 0 for all s1 ∈ χ. Then χ is

commutative.

3. Some Examples

The first example shows that the restriction of the second kind involution in our
theorems is not superfluous.

Example 3.1. Let χ =

{

β1 β2

β3 β4



∣

∣

∣

∣

β1, β2, β3, β4 ∈ Z

}

. Of course, χ with matrix

addition and matrix multiplication is a non commutative prime ring. Define mappings
∗, α, β : χ → χ such that



β1 β2

β3 β4



∗

=



β4 −β2

−β3 β1



, α



β1 β2

β3 β4



=



0 −β2

β3 0



and β



β1 β2

β3 β4



=



0 β2

−β3 0



. Obviously, Z (χ) =

{

β1 0
0 β1



∣

∣

∣

∣

β1 ∈ Z

}

. Then

s∗

1
= s1 for all s1 ∈ Z (χ), and hence Z (χ) ⊆ H (χ), which shows that the involution
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′∗′ is of the first kind. Moreover, α and β are nonzero derivations of χ and satisfying
the identities of the theorems. However, χ is not commutative. Hence, the hypothesis
of the second kind involution is crucial in our theorems.

The next example shows that our theorems are not true for semiprime rings.

Example 3.2. Let S = χ × C, where χ is same as in Example 3.1 with involution ′∗′

and derivations α and β same as in Example 3.1, C is the ring of complex numbers
with conjugate involution τ . We can easily observe that S is a non commutative
semiprime ring with characteristic different from two. Now define an involution α

on S, as (s1, s2)
α = (s∗

1
, sτ

2
). Clearly, α is an involution of the second kind. Further,

we define the mappings α and β from S to S such that D1(s1, s2) = (α(s1), 0) and
D2(s1, s2) = (β(s1), 0) for all (s1, s2) ∈ S. It can be easily checked that D1 and D2

are derivations on S and satisfying the identities of the Theorem 2.5 and Theorem 2.6
but S is not commutative. Hence, in our theorems, the hypothesis of primeness is
essential.

Conclusions. In this paper we have studied some identities involving derivations on
prime rings with involution. Purely algebraic methods have been used to describe the
structure of rings and we provide the examples, which shows that the assumptions
are not superfluous. Applications point of view some well known results are deduced.

Acknowledgements. The authors are indebted to the referee for his/her useful
suggestions.
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ŁUKASIEWICZ ANTI FUZZY SUBALGEBRAS OF
BCK/BCI-ALGEBRAS

JEONG GI KANG1 AND HASHEM BORDBAR2

Abstract. The subalgebra of BCK/BCI-algebra using Łukasiewicz anti fuzzy set
introduced by Jun is studied in this article. The concept of Łukasiewicz anti
fuzzy subalgebra of a BCK/BCI-algebra is introduced, and several properties are
investigated. The relationship between anti fuzzy subalgebra and Łukasiewicz anti
fuzzy subalgebra is given, and characterization of a Łukasiewicz anti fuzzy subalgebra
is discussed. Conditions are found in which a Lukasiewicz anti fuzzy set is a
Lukasiewicz anti fuzzy subalgebra Finally, conditions under which ⋖-subset, Υ-
subset, and anti-subset become subalgebra are explored.

1. Introduction

In [1], Biswas introduced the concept of anti fuzzy subgroups of groups. Modifying
Biswas’ idea, Hong and Jun [3] applied the idea to BCK-algebras. They introduced
the notions of anti fuzzy subalgebras and anti fuzzy ideals of BCK-algebras and
investigated several properties. Using anti fuzzy notion and the idea of Łukasiewicz
t-conorm, Jun [7] constructed the concept of Łukasiewicz anti fuzzy sets and applied
it to BE-algebras. He introduced the notion of Łukasiewicz anti fuzzy BE-ideal and
investigated its properties. He discussed the relationship between anti fuzzy BE-ideal
and Łukasiewicz anti fuzzy BE-ideal and provided conditions for Łukasiewicz anti
fuzzy set to be Łukasiewicz anti fuzzy BE-ideal. He also gives three types of subsets
so called ⋖-subset, Υ-subset, and anti subset, and then he considered the conditions
under which they can be BE-ideals.

Key words and phrases. Anti fuzzy subalgebra, Łukasiewicz anti fuzzy set, Łukasiewicz anti fuzzy
subalgebra, ⋖-subset, Υ-subset, anti subset.
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We would like to study the subalgebra of BCK/BCI-algebra using Łukasiewicz
anti fuzzy set introduced by Jun. We introduce Łukasiewicz anti fuzzy subalgebra
of a BCK/BCI-algebra and investigate several properties. We give the relationship
between anti fuzzy subalgebra and Łukasiewicz anti fuzzy subalgebra. We discuss
a characterization of a Łukasiewicz anti fuzzy subalgebra. We find conditions for a
Lukasiewicz anti fuzzy set to be a Lukasiewicz anti fuzzy subalgebra. We finally find
the condition that ⋖-subset, Υ-subset, and anti subset become subalgebra.

2. Preliminaries

This section lists the known default content that will be used later.
A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki

(see [5] and [6]) and was extensively investigated by several researchers.
We recall the definitions and basic results required in this paper. See the books

[4, 8] for further information regarding BCK-algebras and BCI-algebras.
If a set X has a special element “0” and a binary operation “ ∗ ” satisfying the

conditions:

(I1) (∀a, b, c ∈ X) (((a ∗ b) ∗ (a ∗ c)) ∗ (c ∗ b) = 0);
(I2) (∀a, b ∈ X) ((a ∗ (a ∗ b)) ∗ b = 0);
(I3) (∀a ∈ X) (a ∗ a = 0);
(I4) (∀a, b ∈ X) (a ∗ b = 0, b ∗ a = 0 ⇒ a = b),

then we say that X is a BCI-algebra. If a BCI-algebra X satisfies the following
identity:

(K) (∀a ∈ X) (0 ∗ a = 0),

then X is called a BCK-algebra.
The order relation “≤” in a BCK/BCI-algebra X is defined as follows:

(∀a, b ∈ X)(a ≤ b ⇔ a ∗ b = 0).(2.1)

Every BCK/BCI-algebra X satisfies the following conditions (see [4, 8]):

(∀a ∈ X) (a ∗ 0 = a) ,(2.2)

(∀a, b, c ∈ X) (a ≤ b ⇒ a ∗ c ≤ b ∗ c, c ∗ b ≤ c ∗ a) ,(2.3)

(∀a, b, c ∈ X) ((a ∗ b) ∗ c = (a ∗ c) ∗ b) .(2.4)

Every BCI-algebra X satisfies (see [4]):

(∀a, b ∈ X) (a ∗ (a ∗ (a ∗ b)) = a ∗ b) ,(2.5)

(∀a, b ∈ X) (0 ∗ (a ∗ b) = (0 ∗ a) ∗ (0 ∗ b)) .(2.6)

A subset K of a BCK/BCI-algebra X is called a subalgebra of X (see [4, 8]) if it
satisfies:

(∀a, b ∈ K)(a ∗ b ∈ K).(2.7)
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A fuzzy set g in a set X of the form

g(b) :=

{

s ∈ [0, 1), if b = a,
1, if b ̸= a,

(2.8)

is called an anti fuzzy point with support a and value s, and is denoted by a
s
. A fuzzy

set g in a set X is said to be non-unit if there exists a ∈ X such that g(a) ̸= 1.
For a fuzzy set g in a set X, we say that an anti fuzzy point a

s
is said to

(i) beside in g, denoted by a
s
⋖ g (see [2]) if g(a) ≤ s;

(ii) be non-quasi coincident with g, denoted by a
s

Υ g (see [2]) if g(a) + s < 1.

If a
s
⋖ g or a

s
Υ g (resp., a

s
⋖ g and a

s
Υ g), we say that a

s
⋖∨Υ g (resp., a

s
⋖∧Υ g).

Given β ∈ ¶⋖, Υ♢, to indicate a
s

β g means that a
s

β g is not established.
A fuzzy set f in a BCK/BCI-algebra X is called

• an anti fuzzy subalgebra of X (see [3]) if it satisfies:

(∀a, b ∈ X)(f(a ∗ b) ≤ max¶f(a), f(b)♢);(2.9)

• an anti fuzzy ideal of X (see [3]) if it satisfies:

(∀a ∈ X)(f(0) ≤ f(a)),(2.10)

(∀a, b ∈ X)(f(a) ≤ max¶f(a ∗ b), f(b)♢).(2.11)

Let ε be an element of the unit interval [0, 1] and let g be a fuzzy set in a set X. A
function Łε

g : X → [0, 1], x 7→ min¶1, g(x) + ε♢, is called a Łukasiewicz anti fuzzy set
of g in X (see [7]).

Let Łε
g be a Łukasiewicz anti fuzzy set of a fuzzy set g in X. If ε = 0, then

Łε
g(x) = min¶1, g(x) + ε♢ = min¶1, g(x)♢ = g(x) for all x ∈ X. This shows that if

ε = 0, then the Łukasiewicz anti fuzzy set of a fuzzy set g in X is the classical fuzzy
set g itself in X. If ε = 1, then Łε

g(x) = min¶1, g(x) + ε♢ = min¶1, g(x) + 1♢ = 1
for all x ∈ X, that is, if ε = 1, then the Łukasiewicz anti fuzzy set is the constant
function with value 1. Therefore, in handling the Łukasiewicz anti fuzzy set, the value
of ε can always be considered to be in (0, 1).

Let g be a fuzzy set in a set X and ε ∈ (0, 1). If g(x) + ε ≥ 1 for all x ∈ X, then
the Łukasiewicz anti fuzzy set Łε

g of g in X is the constant function with value 1,
that is, Łε

g(x) = 1 for all x ∈ X. Therefore, for the Łukasiewicz anti fuzzy set to
have a meaningful shape, a fuzzy set g in X and ε ∈ (0, 1) shall be set to satisfy the
condition “g(x) + ε < 1 for some x ∈ X”.

Given a Łukasiewicz anti fuzzy set Łε
g of a fuzzy set g in X and s ∈ [0, 1), consider

the sets:

(Łε
g, s)⋖ := ¶y ∈ X ♣ y

s
⋖ Łε

g♢ and (Łε
g, s)Υ := ¶y ∈ X ♣ y

s
Υ Łε

g♢,

which are called the ⋖-subset and Υ-subset of Łε
g in X. Also, we consider the following

set

Anti (Łε
g) := ¶y ∈ X ♣ Łε

g(y) < 1♢



690 J. G. KANG AND H. BORDBAR

and it is called the anti subset of Łε
g in X. It is observed that

Anti (Łε
g) = ¶y ∈ X ♣ g(y) + ε < 1♢.

3. Łukasiewicz Anti Fuzzy Subalgebras

In this section, let f and γ be a fuzzy set in X and an element of (0, 1), respectively,
unless otherwise specified.

Definition 3.1. A Łukasiewicz anti fuzzy set Łγ
f in a BCK/BCI-algebra X is called

a Łukasiewicz anti fuzzy subalgebra of X if it satisfies

(∀x, y ∈ X)(∀sa, sb ∈ [0, 1))


x
sa

⋖ Łγ
f , y

sb
⋖ Łγ

f ⇒ x∗y

max{sa, sb}
⋖ Łγ

f



.(3.1)

Example 3.1. Let X = ¶0, b1, b2, b3, b4♢ be a set with a binary operation “∗” given by
the Cayley table:

∗ 0 b1 b2 b3 b4

0 0 0 0 0 0
b1 b1 0 b1 0 0
b2 b2 b2 0 0 0
b3 b3 b3 b3 0 0
b4 b4 b3 b4 b1 0

.

Then X is a BCK-algebra (see [8]). Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→



























0.24, if x = 0,
0.31, if x = b1,
0.37, if x = b2,
0.43, if x = b3,
0.58, if x = b4.

Given γ := 0.58, the Łukasiewicz anti fuzzy set Łγ
f of f in X is given as follows:

Łγ
f : X → [0, 1], x 7→



























0.82, if x = 0,
0.89, if x = b1,
0.95, if x = b2,
1.00, if x = b3,
1.00, if x = b4.

It is routine to verify that Łγ
f is a Łukasiewicz anti fuzzy subalgebra of X.

Theorem 3.1. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then it’s
Łukasiewicz anti fuzzy set Łγ

f in X is a Łukasiewicz anti fuzzy subalgebra of X.

Proof. Assume that f is an anti fuzzy subalgebra of a BCK/BCI-algebra X. Let
x, y ∈ X and sa, sb ∈ [0, 1) be such that x

sa
⋖ Łγ

f and y

sb
⋖ Łγ

f . Then, Łγ
f (x) ≤ sa and
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Łγ
f (y) ≤ sb. Hence,

Łγ
f (x ∗ y) = min¶1, f(x ∗ z) + γ♢ ≤ min¶1, max¶f(x), f(y)♢ + γ♢

= min¶1, max¶f(x) + γ, f(y) + γ♢♢

= max¶min¶1, f(x) + γ♢, min¶1, f(y) + γ♢♢

= max¶Łγ
f (x), Łγ

f (y)♢ ≤ max¶sa, sb♢,

which implies that x∗y

max{sa, sb}
⋖Łγ

f . Therefore, Łγ
f is a Łukasiewicz anti fuzzy subalgebra

of X. □

The following example shows that the converse of Theorem 3.1 may not be true.

Example 3.2. Let X = ¶0, b1, b2, b3, b4♢ be a set with a binary operation “∗”

∗ 0 b1 b2 b3 b4

0 0 0 b2 b3 b4

b1 b1 0 b2 b3 b4

b2 b2 b2 0 b4 b3

b3 b3 b3 b4 0 b2

b4 b4 b4 b3 b2 0

.

Then, X is a BCI-algebra (see [4]). Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→



























0.28, if x = 0,
0.32, if x = b1,
0.39, if x = b2,
0.43, if x = b3,
0.61, if x = b4.

Given γ := 0.58, the γ-Łukasiewicz fuzzy set Łγ
f of f in X is given as follows:

Łγ
f : X → [0, 1], x 7→



























0.86, if x = 0,
0.90, if x = b1,
0.97, if x = b2,
1.00, if x = b3,
1.00, if x = b4.

It is routine to verify that Łγ
f is a Łukasiewicz anti fuzzy subalgebra of X. But f is

not an anti fuzzy subalgebra of X because of

f(b2 ∗ b3) = f(b4) = 0.61 ≰ 0.43 = max¶f(b2), f(b3)♢.

We explore a characterization of a Łukasiewicz anti fuzzy subalgebra.

Theorem 3.2. Let f be a fuzzy set in a BCK/BCI-algebra X. Then its Łukasiewicz
anti fuzzy set Łγ

f in X is a Łukasiewicz anti fuzzy subalgebra of X if and only if it
satisfies

(∀x, y ∈ X)(Łγ
f (x ∗ y) ≤ max¶Łγ

f (x), Łγ
f (y)♢).(3.2)
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Proof. Suppose that Łγ
f is a Łukasiewicz anti fuzzy subalgebra of X. Let x, y ∈ X.

Since x
Łγ

f
(x)

⋖ Łγ
f and y

Łγ

f
(y)

⋖ Łγ
f , it follows from (3.1) that x∗y

max{Łγ

f
(x), Łγ

f
(y)}

⋖ Łγ
f . Hence,

Łγ
f (x ∗ y) ≤ max¶Łγ

f (x), Łγ
f (y)♢.

Conversely, assume that Łγ
f satisfies (3.2). Let x, y ∈ X and sa, sb ∈ [0, 1) be such

that x
sa

⋖ Łγ
f and y

sb
⋖ Łγ

f . Then Łγ
f (x) ≤ sa and Łγ

f (y) ≤ sb, and so

Łγ
f (x ∗ y) ≤ max¶Łγ

f (x), Łγ
f (y)♢ ≤ max¶sa, sb♢.

Thus, x∗y

max{sa, sb}
⋖ Łγ

f , and therefore, Łγ
f is a Łukasiewicz anti fuzzy subalgebra of

X. □

Lemma 3.1 ([7]). If f is a fuzzy set in a set X, then it’s Łukasiewicz anti fuzzy set
Łγ

f satisfies

(∀x, y ∈ X)(f(x) ≥ f(y) ⇒ Łγ
g(x) ≥ Łγ

g(y)).(3.3)

Lemma 3.2. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then it’s
Łukasiewicz anti fuzzy set Łγ

f satisfies

(∀x ∈ X)(Łγ
f (0) ≤ Łγ

f (x)).(3.4)

Proof. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then

f(0) = f(x ∗ x) ≤ max¶f(x), f(x)♢ = f(x),

for all x ∈ X. It follows from (3.3) that Łγ
f (0) ≤ Łγ

f (x) for all x ∈ X. □

Proposition 3.1. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then it’s
Łukasiewicz fuzzy set Łγ

f satisfies:

(∀x, y ∈ X)


Łγ
f (x) = Łγ

f (0) ⇔ Łγ
f (x ∗ y) ≤ Łγ

f (y)


.(3.5)

Proof. Let f be an anti fuzzy subalgebra of a BCK/BCI-algebra X. Then Łγ
f is a

Łukasiewicz anti fuzzy subalgebra of X (see Theorem 3.1). Assume that Łγ
f (x) = Łγ

f (0)
for all x ∈ X. Then,

Łγ
f (x ∗ y) ≤ max¶Łγ

f (x), Łγ
f (y)♢ = max¶Łγ

f (0), Łγ
f (y)♢ = Łγ

f (y),

for all x, y ∈ X, by Theorem 3.2 and Lemma 3.2.
Conversely, suppose that Łγ

f (x ∗ y) ≤ Łγ
f (y) for all x, y ∈ X. Using (2.2) induces

Łγ
f (x) = Łγ

f (x ∗ 0) ≤ Łγ
f (0), and so Łγ

f (x) = Łγ
f (0) for all x ∈ X, by Lemma 3.2. □

Proposition 3.2. If f is an anti fuzzy subalgebra of a BCI-algebra X, then its
Łukasiewicz fuzzy set Łγ

f satisfies

(∀x ∈ X)(Łγ
f (0 ∗ x) ≤ Łγ

f (x)).(3.6)

Proof. If f is an anti fuzzy subalgebra of a BCI-algebra X, then

f(0 ∗ x) ≤ max¶f(0), f(x)♢ = f(x),

for all x ∈ X. Hence, Łγ
f (0 ∗ x) ≤ Łγ

f (x) for all x ∈ X, by Lemma 3.1. □
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Proposition 3.3. If f is an anti fuzzy subalgebra of a BCI-algebra X, then its
Łukasiewicz fuzzy set Łγ

f satisfies

(∀x, y ∈ X)(∀sa, sb ∈ [0, 1))


x
sa

⋖ Łγ
f , y

sb
⋖ Łγ

f ⇒ x∗(0∗y)
max{sa,sb}

] ⋖ Łγ
f



.(3.7)

Proof. Let x, y ∈ X and sa, sb ∈ [0.1) be such that x
sa

⋖ Łγ
f and y

sb
⋖ Łγ

f . Then,

Łγ
f (x) ≤ sa and Łγ

f (y) ≤ sb, and thus,

Łγ
f (x ∗ (0 ∗ y)) = min¶1, f(x ∗ (0 ∗ y)) + γ♢

≤ min¶1, max¶f(x), f(0 ∗ y)♢ + γ♢

≤ min¶1, max¶f(x), max¶f(0), f(y)♢♢ + γ♢

= min¶1, max¶f(x), f(y)♢ + γ♢

= min¶1, max¶f(x) + γ, f(y) + γ♢♢

= max¶min¶1, f(x) + γ♢, min¶1, f(y) + γ♢♢

= max¶Łγ
f (x), Łγ

f (y)♢

≤ max¶sa, sb♢.

Hence, x∗(0∗y)
max{sa,sb}

] ⋖ Łγ
f . □

We give conditions for a Lukasiewicz anti fuzzy set to be a Lukasiewicz anti fuzzy
subalgebra.

Theorem 3.3. Let f be a fuzzy set in a BCK/BCI-algebra X. If it’s Łukasiewicz
anti fuzzy set Łγ

f satisfies

(∀x, y ∈ X)(∀sb, sc ∈ [0, 1))


z ≤ x, y

sb
⋖ Łγ

f , z
sc
⋖ Łγ

f ⇒ x∗y

max{sb,sc}
⋖ Łγ

f



,(3.8)

then Łγ
f is a Łukasiewicz anti fuzzy subalgebra of X.

Proof. It is straightforward by (I3) and (3.8). □

Proposition 3.4. Let f be a fuzzy set in a BCI-algebra X. Then every Łukasiewicz
fuzzy subalgebra Łγ

f of X satisfies

(∀x, y ∈ X)(∀sa, sb ∈ [0, 1))


x
sa

⋖ Łγ
f , y

sb
⋖ Łγ

f ⇒ x∗(0∗y)
max{sa,sb}

⋖ Łγ
f



.(3.9)

Proof. Let x, y ∈ X and sa, sb ∈ [0, 1) be such that x
sa

⋖ Łγ
f and y

sb
⋖ Łγ

f . Then

Łγ
f (x) ≤ sa and Łγ

f (y) ≤ sb. Using Theorem 3.2 and Proposition 3.2, we have

Łγ
f (x ∗ (0 ∗ y)) ≤ max¶Łγ

f (x), Łγ
f (0 ∗ y)♢ ≤ max¶Łγ

f (x), Łγ
f (y)♢ ≤ max¶sa, sb♢,

and so, x∗(0∗y)
max{sa,sb}

⋖ Łγ
f . □

Corollary 3.1. If f is an anti fuzzy subalgebra of a BCI-algebra X, then its Łukasie-
wicz fuzzy set Łγ

f satisfies the condition (3.9).
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Theorem 3.4. Let Łγ
f be a Łukasiewicz anti fuzzy set of a fuzzy set f in a BCK/BCI-

algebra X. Then the ⋖-set (Łγ
f , s)⋖ of Łγ

f is a subalgebra of X for all s ∈ [0, 0.5) if
and only if the following assertion is valid

(∀x, y ∈ X)


min¶Łγ
f (x ∗ y), 0.5♢ ≤ max¶Łγ

f (x), Łγ
f (y)♢



.(3.10)

Proof. Assume that the ⋖-set (Łγ
f , s)⋖ of Łγ

f is a subalgebra of X for all s ∈ [0, 0.5).
If the condition (3.10) does not hold, then

max¶Łγ
f (a), Łγ

f (b)♢ < min¶Łγ
f (a ∗ b), 0.5♢,

for some a, b ∈ X. If we take s := max¶Łγ
f (a), Łγ

f (b)♢, then s ∈ [0, 0.5), a
s
⋖ Łγ

f and
b
s
⋖Łγ

f , i.e., a, b ∈ (Łγ
f , s)⋖. Since (Łγ

f , s)⋖ is a subalgebra of X, we have a∗b ∈ (Łγ
f , s)⋖.

But a∗b
s
⋖Łγ

f implies a ∗ b /∈ (Łγ
f , s)⋖, a contradiction. Hence,

max¶Łγ
f (x), Łγ

f (y)♢ ≥ min¶Łγ
f (x ∗ y), 0.5♢,

for all x, y ∈ X.
Conversely, suppose that Łγ

f satisfies (3.10). Let s ∈ [0, 0.5) and x, y ∈ X be such
that x ∈ (Łγ

f , s)⋖ and y ∈ (Łγ
f , s)⋖. Then Łγ

f (x) ≤ s and Łγ
f (y) ≤ s, which imply from

(3.10) that

0.5 > s ≥ max¶Łγ
f (x), Łγ

f (y)♢ ≥ min¶Łγ
f (x ∗ y), 0.5♢.

Hence, x∗y

s
⋖ Łγ

f , i.e., x ∗ y ∈ (Łγ
f , s)⋖. Therefore, (Łγ

f , s)⋖ is a subalgebra of X for
s ∈ [0, 0.5). □

Theorem 3.5. Let Łγ
f be a Łukasiewicz fuzzy set of a fuzzy set f in a BCK/BCI-

algebra X. If f is an anti fuzzy subalgebra of X, then the Υ-set (Łγ
f , s)Υ of Łγ

f is a
subalgebra of X for all s ∈ [0, 1).

Proof. Let s ∈ [0, 1) and x, y ∈ (Łγ
f , s)Υ. Then x

s
Υ Łγ

f and y

s
Υ Łγ

f , that is, Łγ
f (x)+s < 1

and Łγ
f (y) + s < 1. Hence,

Łγ
f (x ∗ y) + s ≤ max¶Łγ

f (x), Łγ
f (y)♢ + s = max¶Łγ

f (x) + s, Łγ
f (y) + s♢ < 1,

by Theorems 3.1 and 3.2. Thus, x∗y

s
Υ Łγ

f , and so, x ∗ y ∈ (Łγ
f , s)Υ. Therefore, (Łγ

f , s)Υ

is a subalgebra of X. □

Theorem 3.6. Let f be a fuzzy set in a BCK/BCI-algebra X. For a Łukasiewicz anti
fuzzy set Łγ

f of f in X, if the Υ-set (Łγ
f , s)Υ is a subalgebra of X, then Łγ

f satisfies

(∀x, y ∈ X)(∀sa, sb ∈ (0.5, 1])


x
sa

Υ Łγ
f , y

sb
Υ Łγ

f ⇒ x∗y

min{sa,sb}
⋖ Łγ

f



.(3.11)

Proof. Let x, y ∈ X and sa, sb ∈ (0.5, 1] be such that x
sa

Υ Łγ
f and y

sb
Υ Łγ

f . Then

x ∈ (Łγ
f , sa)Υ ⊆ (Łγ

f , min¶sa, sb♢)Υ and y ∈ (Łγ
f , sb)Υ ⊆ (Łγ

f , min¶sa, sb♢)Υ. Hence,
x ∗ y ∈ (Łγ

f , min¶sa, sb♢)Υ, and so,

Łγ
f (x ∗ y) < 1 − min¶sa, sb♢ ≤ min¶sa, sb♢,

since min¶sa, sb♢ > 0.5. Therefore, x∗y

min{sa,sb}
⋖ Łγ

f . □
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Theorem 3.7. Let Łγ
f be a Łukasiewicz fuzzy set of a fuzzy set f in a BCK/BCI-

algebra X. If f is an anti fuzzy subalgebra of X, then the anti subset Anti (Łγ
f ) of Łγ

f

is a subalgebra of X.

Proof. Let x, y ∈ Anti (Łγ
f ). Then f(x) + γ < 1 and f(y) + γ < 1. If f is an anti fuzzy

subalgebra of X, then Łγ
f is a Łukasiewicz anti fuzzy subalgebra of X (see Theorem

3.1). It follows from Theorem 3.2 that

Łγ
f (x ∗ y) ≤ max¶Łγ

f (x), Łγ
f (y)♢ = max¶f(x) + γ, f(y) + γ♢ < 1.

Hence, x ∗ y ∈ Anti (Łγ
f ), and therefore, Anti (Łγ

f ) is a subalgebra of X. □

Theorem 3.8. Let f be a fuzzy set in a BCK/BCI-algebra X. If a Łukasiewicz anti
fuzzy set Łγ

f of f in X satisfies

(∀x, y ∈ X)(∀sa, sb ∈ [0, 1))


x
sa

⋖ Łγ
f , y

sb
⋖ Łγ

f ⇒ x∗y

min{sa,sb}
Υ Łγ

f



,(3.12)

then the anti subset Anti (Łγ
f ) of Łγ

f is a subalgebra of X.

Proof. Assume that Łγ
f satisfies the condition (3.12) for all x, y ∈ X and sa, sb ∈ [0, 1).

Let x, y ∈ Anti (Łγ
f ). Then f(x) + γ < 1 and f(y) + γ < 1. Since x

Łγ

f
(x)

⋖ Łγ
f and

y

Łγ

f
(y)

⋖ Łγ
f , it follows from (3.12) that

x∗y

min{Łγ

f
(x),Łγ

f
(y)}

Υ Łγ
f .(3.13)

If x ∗ y /∈ Anti (Łγ
f ), then Łγ

f (x ∗ y) = 1, and so,

Łγ
f (x ∗ y) + min¶Łγ

f (x), Łγ
f (y)♢ = 1 + min¶Łγ

f (x), Łγ
f (y)♢

= 1 + min¶min¶1, f(x) + γ♢, min¶1, f(y) + γ♢♢

= 1 + min¶f(x) + γ, f(y) + γ♢

= 1 + min¶f(x), f(y)♢ + γ

≥ 1 + γ > 1,

which shows that (3.13) is not valid. This is a contradiction, and thus, x∗y ∈ Anti (Łγ
f ).

Hence, Anti (Łγ
f ) is a subalgebra of X. □

References

[1] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35(1) (1990),
121–124. https://doi.org/10.1016/0165-0114(90)90025-2

[2] A. B. Saeid and Y. B. Jun, Redefined fuzzy subalgebras of BCK/BCI-algebras, Iran. J. Fuzzy Syst.
5(2) (2008), 63–70. https://doi.org/10.22111/ijfs.2008.334

[3] S. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK-algebras, Kyungpook Math. J. 38(1) (1998),
145–150.

[4] Y. S. Huang, BCI-Algebra, Science Press, Beijing, China, 2006.
[5] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8(1) (1980), 125–130.
[6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica

23(1) (1978), 121–124. https://doi.org/10.1016/0165-0114(90)90025-2

https://doi.org/10.1016/0165-0114(90)90025-2
https://doi.org/10.22111/ijfs.2008.334
https://doi.org/10.1016/0165-0114(90)90025-2


696 J. G. KANG AND H. BORDBAR

[7] Y. B. Jun, Łukasiewicz anti fuzzy set and its application in BE-algebras, Transactions on Fuzzy
Sets and Systems 1(2) (2022), 37–45. http://doi.org/10.30495/tfss.2022.1960391.1037

[8] J. Meng and Y. B. Jun, BCK-Algebras, Kyungmoonsa Co., Seoul, Korea, 1994.

1Department of Mathematics Education,
Gyeongsang National University,
Jinju 52828, Korea
Email address: jeonggikang@gmail.com

2Center for Information Technologies and Applied Mathematics,
University of Nova Gorica,
Nova Gorica 5000, Slovenia
Email address: hashem.bordbar@ung.si

http://doi.org/10.30495/tfss.2022.1960391.1037


Kragujevac Journal of Mathematics

Volume 49(5) (2025), Pages 697–710.

IDEAL RELATIVE UNIFORM CONVERGENCE OF DOUBLE

SEQUENCE OF POSITIVE LINEAR FUNCTIONS

KSHETRIMAYUM RENUBEBETA DEVI1 AND BINOD CHANDRA TRIPATHY2

Abstract. In this article, we look into the concept of ideal relative uniform con-
vergence of a double sequence of functions. In addition, we deĄne ideal relative
uniform Cauchy and ideal regular relative uniform convergence of a double sequence
of positive linear functions deĄned on a compact domain D with respect to the
scale function σ(x) deĄned on D. We also introduced several classes of ideal relative
uniform convergent double sequences of functions and investigated their algebraic
and topological properties.

1. Introduction

Kostyrko et al. [21] introduced the concept of I-convergence of sequences of real
numbers, where I is an ideal of subsets of the set N of natural numbers. I-convergence
is a generalisation and unification of many notions of ordinary convergence. Fast [17]
and Steinhaus [29] independently introduced the concept of statistical convergence
in 1951 as a generalisation of the concept of ordinary convergence. Furthermore, in
1959, Schoenberg [28] independently investigated some basic properties of statistical
convergence. Later, it was studied from a sequence space perspective and linked with
summability theory by Fridy [18], Gökhan et al. [19], Tripathy and Sarma [31], and
many others. The concept is based on the notion of natural density of N subsets.

A subset E of N is said to have density δ(E) if

δ(E) = lim
n→+∞

1

n

n
∑

k=1

χE(k),

Key words and phrases. Double sequence, Density, Ideal convergence, Statistical convergence,
Relative uniform convergence, Regular convergence
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exists where χE is the characteristics function of E.
A subset E of N is said to have logarithmic density d(E) if

d(E) = lim
n→+∞

1

sn

n
∑

k=1

χE(k)

k
,

exists, where sn =
n
∑

k=1

1
k

= log n + γ + O( 1
n
), where γ is the Euler’s constant.

The above expression is equivalent to

d(E) = lim
n→+∞

1

log n

n
∑

k=1

χE(k)

k
.

A double sequence is defined as a double infinite array of numbers (xnk). Pringsheim
[25] introduced the concept of double sequence. Bromwich [2] contains some earlier
work on double sequence spaces. Hardy [20] introduced the concept of regular con-
vergence of a double sequence. Basarır and Sonalcan [1, 2], Das et al. [4, 5], Datta
and Tripathy [5, 6], and many others have studied the double sequence from various
perspectives.

The notion of statistical convergence for double sequences was introduced by Móricz
[22], Mursaleen and Edely [24], Tripathy [30] independently. The notion depends on
the idea of density of subsets of N × N. A subset E of N × N is said to have density
ρ(E) if

ρ(E) = lim
p,q→+∞

1

pq

p
∑

n=1

q
∑

k=1

χE(n, k)

exists.
Tripathy and Tripathy [39] introduced the notion of logarithmic density for subsets

of N × N.
A subset E ⊂ N × N is said to have logarithmic density ρ∗(E) if

ρ∗(E) = lim
p,q→+∞

1

spsq

p
∑

n=1

q
∑

k=1

χE(n, k)

nk

exists.
The above expression is equivalent to the following:

ρ∗(E) = lim
p,q→+∞

1

log p log q

p
∑

n=1

q
∑

k=1

χE(n, k)

nk
.

A family of sets I ⊆ 2X , where 2X is the class of all subsets of non-empty set X, is
said to be ideal if and only if ∅ ∈ I, for each A, B ∈ I, we have A ∪ B ∈ I, and for
each A ∈ I and each B ⊆ A, we have B ∈ I. If and only if A ∩ B ∈ F and B ∈ F
for each instance of A ∈ F and B ⊃ A, ∅ /∈ F , F ⊆ 2X is said to be a filter on X. If
I ≠ ¶∅♢ and X /∈ I, then an ideal I is referred to as a non-trivial ideal. If and only
if F = F(I) = X − A, then it is evident that I ⊆ 2X is a non-trivial ideal: A ∈ I
is a filter on X. A non-trivial ideal I ⊆ 2X is said to be admissible if and only if
I ⊃ ¶¶x♢ : x ∈ X♢.
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Remark 1.1. If we consider subsets A of N with δ(A) = 0, d(A) = 0 then, these classes
of subsets of N will form an ideal of N. The convergence of sequences will be called as
statistical and logarithmic convergence. Similarly, on considering subsets A of N × N

with ρ(A) = 0 and ρ∗(A) = 0, we will get the ideals of N × N. The corresponding
convergence of sequences are known as Pringsheim’s sense statistical and logarithmic
convergence of double sequences. Accordingly, the regular convergence can be defined.

For a detail account of I-convergent sequence, one may refer to [11–16,27,32–38].
Moore [23] established the idea of uniform convergence of sequence of functions

with respect to a scale function. Chittenden [3] provided the following formulation of
Moore’s definition.

Definition 1.1. If there are functions g and σ(x), defined on D, and for every ε > 0,
there is an integer n0 = n0(ε) such that for every n ≥ n0, the inequality

♣g(x) − fn(x)♣ < ε♣σ(x)♣,

holds for every element x of D, then the sequence (fn) of real, single-valued functions
fn of a real variable x converges relatively uniformly on D. Scale function is the name
given to the function σ(x). When compared to the scale function, the sequence (fn)
is said to converge relatively uniformly.

The notion was further studied by [7–10, 26] and many others. For the first time,
Yıldız [40] introduced the convergence known as ideal relative uniform convergence
for double sequences of functions.

2. Definitions and Preliminaries

Throughout the paper 2ℓ∞(ru), 2c0(I2, ru), 2c(I2, ru), 2c
R(I2, ru), 2c

R
0 (I2, ru) de-

note the classes of relatively uniformly bounded, I2-relatively uniformly null, I2-
relatively uniformly convergent, I2- regularly relatively uniformly convergent, I2-
regularly relatively uniformly null of double sequences of positive linear functions,
respectively.

Definition 2.1. A sequence space E is referred to as solid or normal if (xnk) ∈ E
implies (αnkxnk) ∈ E, for any (αnk) with ♣αnk♣ ≤ 1, for all n, k ∈ N.

Definition 2.2. If a sequence space E contains the canonical pre-images of all its
step spaces, it is said to be monotone.

Remark 2.1. If a sequence space E is solid, then E is monotone.

Definition 2.3. A sequence space E is said to be symmetric if for any n, k ∈ N × N,
(xnk) ∈ E implies (xπ(n,k)) ∈ E, where π is a permutation of N × N.

Definition 2.4. For all n, k ∈ N, a sequence space E is said to be convergence free if
(xnk) ∈ E and xnk = 0 implies ynk = 0 together with (ynk) ∈ E.
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Definition 2.5. For all n, k ∈ N, a sequence space E is said to be a sequence algebra

if (xnk ◦ ynk) ∈ E whenever (xnk) and (ynk) belongs to E.

Definition 2.6 ([40]). In the class of all subsets of N × N, let I2 be an ideal of 2N×N.
If there are functions g(x) and σ(x) defined on D such that for every ε > 0 and for
all x ∈ D, then the sequence of functions (fnk(x)) of single, real-valued functions R is
said to be I2-relatively uniformly convergent on D satisfying the following condition.

¶(n, k) ∈ N × N : ♣fnk(x) − g(x)♣ ≥ ε♣σ(x)♣♢ ∈ I2.

This can also be expressed as for every ε > 0, there exists M ∈ I2 such that for any
(n, k) /∈ M ,

♣fnk(x) − f(x)♣ < ε♣σ(x)♣, for all x ∈ D.

Remark 2.2. We obtain the definition of I2-relatively uniformly null of double sequence
of positive linear functions if g = θ, the zero function in the previous definition.

Definition 2.7. In the class of all subsets of N × N, let I2 be an ideal of 2N×N. I2-
relatively uniformly Cauchy refers to a set of functions (fnk(x)) defined on a compact
domain D if s = s(ε), t = t(ε) and function σ(x) are defined on D such that for every
ε > 0 and for any x ∈ D

¶(n, k) ∈ N × N : ♣fnk(x) − fst(x)♣ ≥ ε♣σ(x)♣♢ ∈ I2.

Definition 2.8. Considering the class of all subsets of N × N and N, respectively, let
I2 be an ideal of 2N×N and I be an ideal of 2N. If there are functions g(x), fk(x), fn(x),
σ(x), ξn(x), ηk(x) defined on D such that for every ε > 0 and for any x ∈ D, then the
sequence of single, real-valued functions (fnk(x)) is said to be I2-regularly relatively
uniformly convergent on D satisfying the following conditions:

¶(n, k) ∈ N × N : ♣fnk(x) − g(x)♣ ≥ ε♣σ(x)♣♢ ∈ I2, for any n, k ∈ N,

¶k ∈ N : ♣fnk(x) − fn(x)♣ ≥ ε♣ξn(x)♣♢ ∈ I, for every n ∈ N,

¶n ∈ N : ♣fnk(x) − fk(x)♣ ≥ ε♣ηk(x)♣♢ ∈ I, for every k ∈ N.

Remark 2.3. We obtain the definition of I2-regularly relatively uniformly null of double
sequence of positive linear functions if g = fk = fn = θ, the zero function in the
previous definition.

Remark 2.4. I2 = I2(P ) ⊂ 2N×N is the class of all subsets of N × N containing terms
of sequence of functions (fnk(x)) upto n0 finite term for all n and k w.r.t. the scale
function σ(x). Then, I2(P ) is an ideal of 2N×N and and it corresponds to the double
sequence of functions’ relative uniform convergence with respect to σ(x) on D.

On considering I2(P ) along with If , it corresponds to the double sequence of
functions’ regular relative uniform convergence with respect to the scale function σ(x)
on D.
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Remark 2.5. Let I2 = I2(ρ) ⊂ 2N×N, the class of all subsets of N × N of zero natural
density w.r.t. the scale function σ(x), then, I2(ρ) is an ideal of 2N×N and I2(ρ)
corresponds to the statistical relative uniform convergence of double sequence of
functions w.r.t. σ(x) on D.

On considering I2(ρ) along with Iδ, it corresponds to the statistical regularly
relatively uniformly convergent double sequence of functions w.r.t. the scale function
σ(x) on D.

Remark 2.6. Let I2 = I2(ρ
∗) ⊂ 2N×N, the class of all subsets of N × N of zero

logarithmic density w.r.t. the scale function σ(x), then, I2(ρ∗) is an ideal of 2N×N and
I2(ρ∗) corresponds to the logarithmic relative uniform convergence of double sequence
of functions w.r.t. σ(x) on D.

On considering I2(ρ
∗) along with Id, it corresponds to the logarithmic regularly

relatively uniformly convergent double sequence of functions w.r.t. the scale function
σ(x) on D.

Definition 2.9. Let (fnk(x)) and (gnk(x)) be two double sequences of real, single-
valued functions defined on compact subset D and I2 be an ideal on 2N×N. Then, we say
that fnk(x) = gnk(x) for almost all n and k relative to I2 w.r.t. the scale function
σ(x) (in short a.a.n&k.r. I2 w.r.t. the scale function σ(x)) if for all x ∈ D,

¶(n, k) ∈ N × N : fnk(x) ̸= gnk(x)♢ ∈ I2.

Definition 2.10. Let (fnk(x)) be a sequence of real, single-valued functions defined
on compact subset D and I2 be an ideal on 2N×N. A subset M of D, is said to contain
fnk(x) for a.a.n&k.r. I2 w.r.t. the scale function σ(x) if for all x ∈ D,

¶(n, k) ∈ N × N : fnk(x) /∈ M♢ ∈ I2.

We introduce the following sequence spaces:

2c0(I2, ru) ∩2 ℓ∞(ru) =2 cm
0 (I2, ru), 2c(I2, ru) ∩2 ℓ∞(ru) =2 cm(I2, ru),

2c
R
0 (I2, ru) ∩2 ℓ∞(ru) =2 cmR

0 (I2, ru), 2c
R(I2, ru) ∩2 ℓ∞(ru) =2 cmR(I2, ru).

The double sequence f = (fnk) with elements chosen from the space of all real-valued
functions on compact domain D is considered. Let ♣♣f ♣♣σ denote the usual sup-norm
of f in D with respect to the scale function σ(x), which is defined as follows.

(2.1) ♣♣f ♣♣σ = ♣♣(fnk)♣♣σ = sup
n,k∈N

sup
x∈D

♣fnk(x)♣

♣σ(x)♣
.

3. Main Results

Theorem 3.1. Let I2 represent a 2N×N ideal. Then, on a compact domain D, a

double sequence of functions (fnk(x)) is I2-relatively uniformly convergent if and only

if it is I2-relatively uniformly Cauchy.
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Proof. Consider a compact domain D and a double sequence of functions (fnk(x)).
In terms of the scale function σ(x) defined on D, (fnk(x)) is I2-relatively uniformly
convergent to f(x) on D.

Then, for every ε > 0 and for all x ∈ D, there exists M ∈ I2 such that

(3.1) ♣fnk(x) − f(x)♣ ≤
ε

2
♣σ(x)♣, for all (n, k) /∈ M.

Similarly,

(3.2) ♣fst(x) − f(x)♣ ≤
ε

2
♣σ(x)♣, for all (s, t) /∈ M.

Let n, k, s, t ≥ n0 = n0(ε). For every ε > 0 and for all x ∈ D, there exists M ∈ I2

such that for all (n, k) /∈ M and (s, t) /∈ M , using (3.1) and (3.2) we have

♣fnk(x) − fst(x)♣ ≤ ♣fnk(x) − f(x)♣ + ♣fst(x) − f(x)♣

≤
ε

2
♣σ(x)♣ +

ε

2
♣σ(x)♣

≤ ε♣σ(x)♣.

Hence, (fnk(x)) is I2-relatively uniformly Cauchy w.r.t. scale function σ(x).
Conversely, let (fnk(x)) be I2-relatively uniformly Cauchy on D. Then, there exist

G, H such that the interval U = [fGH(x)−1, fGH(x)+1] contains fnk(x) a.a.n&k.r. I2

w.r.t. the scale function σ(x), for all x ∈ D.
Next, choose G1, H1 such that U

′

= [fG1,H1
(x) − 1, fG1,H1

(x) + 1] contains fnk(x)
a.a.n&k.r. I2 w.r.t. the scale function σ(x), for all x ∈ D.

Let, U1 = U ∩ U
′

contains fnk(x) a.a.n&k.r. I2 w.r.t. the scale function σ(x), for
all x ∈ D.

Evidently,

¶(n, k) ∈ N × N : fnk(x) /∈ U ∩ U
′

♢ =¶(n, k) ∈ N × N : fnk(x) /∈ U♢

+ ¶(n, k) ∈ N × N : fnk(x) /∈ U
′

♢.

This implies, ¶(n, k) ∈ N × N : fnk(x) /∈ U ∩ U
′

♢ ∈ I2, for all x ∈ D. Then, for all
x ∈ D, U1 is a closed interval of D with length less than or equal to one that contains
fnk(x) a.a.n&k.r. I2 w.r.t. the scale function σ(x). Next, choose G2, H2 such that
U

′′

= [fG2H2
(x) − 1, fG2H2

(x) + 1] contains fnk(x) a.a.n&k.r. I2 w.r.t. the scale fun-
ction σ(x), for all x ∈ D.

Let U2 = U1 ∩U
′′

contains fnk(x) a.a.n&k.r. I2, for all x ∈ D. Then, we get, U2 is a
closed interval of D of length less than or equal to 1

2
that contains fnk(x) a.a.n&k.r. I2

w.r.t. the scale function σ(x), for all x ∈ D.
Continuing inductively, we get a nested sequence (Um) of closed intervals of D

such that for all m ∈ N, Um ⊇ Um+1, the length of Um ≥ 21−m, and (fnk(x)) ∈
Um, a.a.n&k.r. I2 w.r.t. the scale function σ(x). Thus,

⋂+∞

m=1 Um will contain a func-
tion f(x), w.r.t. the scale function σ(x), for all x ∈ D.



IDEAL RELATIVE UNIFORM CONVERGENCE OF DOUBLE SEQUENCE... 703

Let ε > 0 be given and there exists n0 such that ε > 21−n0 . Then, (fnk(x)) ∈
Um a.a.n&k.r. I2 w.r.t. the scale function σ(x), for all x ∈ D. We have

¶(n, k) ∈ N × N : ♣fnk(x) − f(x)♣ ≥ ε♢ ≤ ¶fnk(x) /∈ Um♢ ∈ I2,

for all x ∈ D. Hence, (fnk(x)) is I2-relatively uniformly convergent to f(x) w.r.t. the
scale function σ(x) on D. □

We state the following result without proof, since it can be established using
standard technique.

Theorem 3.2. Let I2 be an ideal of 2N×N. The classes of double sequences of functions

2c0(I2, ru), 2c(I2, ru), 2c
R(I2, ru), 2c

R
0 (I2, ru), 2c

m
0 (I2, ru),2 cm(I2, ru),2 cmR(I2, ru),

2c
mR
0 (I2, ru) are linear spaces.

Theorem 3.3. Let I2 be an ideal of 2N×N. The classes of double sequences of functions

2c
m
0 (I2, ru), 2c

m(I2, ru), 2c
mR(I2, ru), 2c

mR
0 (I2, ru) are normed linear spaces with

respect to the norm defined by (2.1).

Proof. Let α, β be the scalars and (fnk(x)), (gnk(x)) ∈2 cm
0 (I2, ru). Then, there exist

positive real numbers K1 and K2 such that

sup
n,k∈N

♣fnk(x)♣ < K1♣σ1(x)♣ and sup
n,k∈N

♣gnk(x)♣ < K2♣σ2(x)♣.

Hence,

sup
n,k∈N

♣αfnk(x) + βgnk(x)♣ ≤ ♣α♣ sup
n,k∈N

♣fnk(x)♣ + ♣β♣ sup
n,k∈N

♣gnk(x)♣

≤ ♣α♣K1♣σ1(x)♣ + ♣β♣K2♣σ2(x)♣.

Without loss of generality we can consider the same scale function, σ(x)
= max¶♣σ1(x)♣, ♣σ2(x)♣♢, and we get

sup
n,k∈N

♣αfnk(x) + βgnk(x)♣ ≤ ¶♣α♣K1 + ♣β♣K2♢σ(x).

Hence, the space 2c
m
0 (I2, ru) is a linear space. Similarly, we can establish for the rest

of the spaces. Now, to verify that the linear space 2c
m
0 (I2, ru) satisfy the norm given

in (2.1), the following three conditions must hold true.
Let (fnk(x)), (gnk(x)) ∈2 cm

0 (I2, ru).
(i) One can easily verify that ♣♣f ♣♣σ = 0 ⇔ f(x) = 0, for all x ∈ D.
(ii)

♣♣(f + g)♣♣σ = sup
n,k∈N

sup
x∈D

♣fnk(x) + gnk(x)♣

♣σ(x)♣

≤ sup
n,k∈N

sup
x∈D

♣fnk(x)♣

♣σ(x)♣
+ sup

n,k∈N

sup
x∈D

♣gnk(x)♣

♣σ(x)♣

≤ ♣♣f ♣♣σ + ♣♣g♣♣σ.
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(iii)

♣♣λf ♣♣σ = sup
n,k∈N

sup
x∈D

♣λfnk(x)♣

♣σ(x)♣

≤ ♣λ♣ sup
n,k∈N

sup
x∈D

♣fnk(x)♣

♣σ(x)♣

≤ ♣λ♣ ♣♣f ♣♣σ.

Similarly, we can establish for the rest of the sequence spaces. □

Theorem 3.4. The classes of double sequences of functions 2c
m
0 (I2, ru), 2c

m(I2, ru),

2c
mR(I2, ru), 2c

mR
0 (I2, ru) are Banach spaces.

Proof. Let (f i(x)) be a relative uniform Cauchy sequence in 2c
m(I2, ru) ⊂2 ℓ∞(ru),

where f i(x) = (f i
nk(x)). Then, (f i(x)) converges relatively uniformly in 2ℓ∞(ru).

There exists

lim
i→+∞

f i
nk(x) = fnk(x), for all x ∈ D and n, k ∈ N.

Let I2 − lim f i
nk(x) = gi(x), for all x ∈ D and i ∈ N. Since, (f i(x)) is relatively

uniformly Cauchy, for every ε > 0 and for all x ∈ D, there exists n0 ∈ N such that

(3.3) ♣f i
nk(x) − f j

nk(x)♣ <
ε

3
♣σ(x)♣, for all i, j ≥ n0.

Since, (f i
nk(x)) is I2-relatively uniformly convergent to gi(x), there exists L ∈ I2 such

that for each (n, k) /∈ L and for all x ∈ D, we have

(3.4) ♣f i
nk(x) − gi(x)♣ ≤

ε

3
♣σ(x)♣, for all i, j ≥ n0.

Similarly, (f j
nk(x)) is I2-relatively uniformly convergent to gj(x), there exists M ∈ I2

such that for each (n, k) /∈ M and for all x ∈ D, we have

(3.5) ♣f j
nk(x) − gj(x)♣ ≤

ε

3
♣σ(x)♣.

Using equations (3.3), (3.4), (3.5), for all x ∈ D, we have

♣gi(x) − gj(x)♣ = ♣f i
nk(x) − gi(x)♣ + ♣f j

nk(x) − gj(x)♣ + ♣f i
nk(x) − f j

nk(x)♣

≤ ε♣σ(x)♣.

Thus, (gi(x)) is relatively uniformly Cauchy. Then, there exists limi→+∞ gi(x) = g(x)
(say). We can write, for every η > 0 and for all x ∈ D, there exists m0 such that

(3.6) ♣gi(x) − g(x)♣ <
η

3
♣σ(x)♣, for all i ≥ m0.

Since, (f i
nk(x)) is relatively uniformly Cauchy, for every η > 0 and for all x ∈ D, there

exists m0 such that

(3.7) ♣f i
nk(x) − fnk(x)♣ <

η

3
♣σ(x)♣, for all i ≥ m0.
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Since, (f i
nk(x)) is I2−relatively uniformly convergent to gi(x), there exists Q ∈ I2

such that for all (n, k) /∈ Q and for all x ∈ D we get

(3.8) ♣f i
nk(x) − gi(x)♣ <

η

3
♣σ(x)♣.

Without loss of generality, for all (n, k) /∈ Q and x ∈ D, using equations (3.6), (3.7),
(3.8), we get

♣fnk(x) − g(x)♣ ≤ ♣fnk(x) − f i
nk(x)♣ + ♣f i

nk(x) − gi(x)♣ + ♣gi(x) − g(x)♣

< η♣σ(x)♣.

Hence, (fnk(x)) is I2-relatively uniformly convergent to g(x) w.r.t. the scale function
σ(x). Thus, 2c

m(I2, ru) is a Banach space.
Similarly, we can prove for the other classes of sequences of functions. □

In view of Theorem 3.4, we state the following theorem without proof.

Theorem 3.5. The classes of double sequences of functions 2c
m
0 (I2, ru), 2c

m(I2, ru),

2c
mR
0 (I2, ru), 2c

mR(I2, ru) are nowhere dense subsets of 2ℓ∞(ru).

Theorem 3.6. (a) The classes of double sequences of functions 2c0(I2, ru),

2c
R
0 (I2, ru), 2c

m
0 (I2, ru), 2c

mR
0 (I2, ru) are solid and hence, are monotone.

(b) The classes of double sequences of functions 2c(I2, ru), 2c
R(I2, ru),

2c
m(I2, ru), 2c

mR(I2, ru) are not monotone and hence, are not solid.

Proof. The proof of the first part follows from the following inclusion relation.
Consider the class of sequences of functions 2c0(I2, ru).
Let (fnk(x)) ∈2 c0(I2, ru) and (αnk) be a sequence of scalars such that

♣αnk♣ ≤ 1, for all n, k ∈ N.

Let ε > 0 be given. Then, for all x ∈ D, we have

¶(n, k) ∈ N × N : ♣fnk(x)♣ ≥ ε♣σ(x)♣♢ ⊇ ¶(n, k) ∈ N × N : ♣αnkfnk(x)♣ ≥ ε♣σ(x)♣♢.

Hence, (αnkfnk(x)) ∈2 c0(I2, ru). This implies, 2c0(I2, ru) is solid and hence, mono-
tone.

Similarly, we can establish for the rest of the cases. □

The proof of the second part follows from the example below.

Example 3.1. Let I2 = I2(ρ
∗), consider the double sequence of functions (fnk(x)),

fnk : [0, 1] → R defined by

fnk(x) =







x, for n, k are prime, n, k ∈ N,

0, otherwise.

We get, (fnk(x)) is logarithmically relatively uniformly convergent on [0, 1] w.r.t.
the scale function σ(x) = 1. Hence, (fnk(x)) ∈2 c(I2, ru).
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Let (gnk(x)) be the pre-image of the sequence of functions (fnk(x)) defined by

gnk(x) =







x, for n is odd, n, k ∈ N,

0, otherwise.

One cannot get a scale function for which (gnk(x)) is logarithmically relatively uni-
formly convergent on [0, 1]. This implies, (gnk(x)) /∈2 c(I2, ru). Hence, 2c(I2, ru) is
not monotone and therefore, not solid.

Similarly, we can prove for the other cases.

Result 3.1. The sequence spaces 2c0(I2, ru), 2c
R
0 (I2, ru), 2c

m
0 (I2, ru), 2c

mR
0 (I2, ru),

2c(I2, ru), 2c
R(I2, ru), 2c

m(I2, ru), 2c
mR(I2, ru) are not symmetric.

The result follows from the example below.

Example 3.2. Let I2 = I2(ρ), consider the double sequence of functions (fnk(x)),
fnk : [0, 1] → R, defined by

fnk(x) =







x, for n = i2, for all i ∈ N,

0, otherwise.

This implies, (fnk(x)) ∈2 c(I2, ru).
Let (gnk(x)) be the rearranged sequence of functions of (fnk(x)) defined by

gnk(x) =







x, for n + k even , n, k ∈ N,

0, otherwise.

One cannot get a scale function for which (gnk(x)) is statistically relatively uniformly
convergent on [0, 1]. This implies, (gnk(x)) /∈2 c(I2, ru). Hence, 2c(I2, ru) is not
symmetric.

Similarly, we can establish for the rest of the classes of double sequences of functions.

Result 3.2. The sequence spaces 2c0(I2, ru), 2c
R
0 (I2, ru), 2c

m
0 (I2, ru), 2c

mR
0 (I2, ru),

2c(I2, ru), 2c
R(I2, ru), 2c

m(I2, ru), 2c
mR(I2, ru) are not convergence free.

The result follows from the example below.

Example 3.3. Let I2 = I2(P ). Consider the double sequences of functions (fnk(x)),
fnk : [0, 1] → R defined by

fnk(x) =
nkx

1 + n2k2x2
, for each n, k ∈ N.

We get, (fnk(x)) is relatively uniformly null on [0, 1] w.r.t. the scale function

σ(x) =







1
x
, for 0 < x ≤ 1,

1, for x = 0.

Hence, (fnk(x)) ∈2 c0(I2, ru).
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Let us consider another class of sequences (gnk(x)) of functions gnk : [0, 1] → R

defined by

gnk(x) =
nk

nk + x
, for each n, k ∈ N.

This implies, (gnk(x)) /∈2 c0(I2, ru). Hence, 2c0(I2, ru) is not convergence free.
Similarly, we can show for the rest of the cases.

Theorem 3.7. The sequence spaces 2c0(I2, ru), 2c
R
0 (I2, ru), 2c

m
0 (I2, ru),

2c
mR
0 (I2, ru), 2c(I2, ru), 2c

R(I2, ru), 2c
m(I2, ru), 2c

mR(I2, ru) are sequence algebra.

Proof. Let the double sequence of functions (fnk(x)) and (gnk(x)) defined on a compact
domain D ⊆ R belong to the class of sequence of functions 2c(I2, ru). Then, for every
ε > 0, there exists M ∈ I2 such that for all (n, k) /∈ M and x ∈ D,

♣fnk(x) − f(x)♣ <
ε

2(♣f(x)♣ + 1)
♣σ(x)♣, for all n, k ≥ n1.

Similarly,

♣gnk(x) − g(x)♣ <
ε

2(♣g(x)♣ + 1)
♣σ(x)♣, for all n, k ≥ n2.

By applying reverse triangle inequality, there exists n3 such that for all n, k ≥ n3, we
have,

♣fnk(x)♣ − ♣f(x)♣ ≤ ♣♣fnk(x)♣ − ♣f(x)♣♣ ≤ ♣fnk(x) − f(x)♣ ≤ 1.

This implies,

fnk(x)♣ < ♣f(x)♣ + 1, i.e.,
♣fnk(x)♣

♣f(x)♣ + 1
< 1.

For all (n, k) /∈ M , there exists n0 such that for all n0 > max¶n1, n2, n3♢ and x ∈ D,
we have

♣fnk(x)gnk(x) − f(x)g(x)♣ = ♣fnk(x)gnk(x) − fnk(x)g(x) + fnk(x)g(x) − f(x)g(x)♣

= ♣fnk(x)(gnk(x) − g(x)) + g(x)(fnk(x) − f(x))♣

≤ ♣fnk(x)♣ ♣gnk(x) − g(x)♣ + ♣g(x)♣ ♣fnk(x) − f(x)♣

≤ ♣fnk(x)♣
ε

2(♣(f(x)♣ + 1)
♣σ(x)♣ + ♣g(x)♣

ε

2(♣g(x)♣ + 1)
♣σ(x)♣

≤ ε♣σ(x)♣.

Hence, (fnk(x)gnk(x)) ∈2 c(I2, ru).
Similarly, we can establish for the rest of the classes of double sequences of functions.

□

Result 3.3. On a compact domain D, if a double sequence of functions (fnk(x)) is
I2-uniformly convergent, it must also be I2-relatively uniformly convergent on D but
not vice versa.

The converse of the Result 3.3 is not necessarily true, which is shown in the following
example.
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Example 3.4. Let I2 = I2(ρ), consider the double sequence of functions (fnk(x)),
fnk : [0, 1] → R defined by

fnk(x) =







1
nkx

, for 0 < x ≤ 1, n, k ∈ N,

0, for x = 0.

We get, (fnk(x)) is statistically relatively uniformly convergent w.r.t. the scale function

σ(x) =







1
x
, for 0 < x ≤ 1,

1, for x = 0.

Hence, (fnk(x)) is I2-relatively uniformly convergent on [0, 1]. One can easily see that
(fnk(x)) is not I2-uniformly convergent on [0, 1].

Result 3.4. On a compact domain D, if a double sequence of functions (fnk(x)) is
I2-regularly relatively uniformly convergent, it must also be I2-relatively uniformly
convergent on D but not vice versa.

The converse of the Result 3.4 is not necessarily true, which is shown in the following
example.

Example 3.5. Let I2 = I2(P ). We consider the sequence of functions (fnk(x)),
fnk : [0, 1] → R defined by

fnk(x) =







−x, for n = 1, k is even, k = 1, n is even, n, k ∈ N,

x, otherwise.

Then, (fnk(x)) is relatively uniformly convergent on [0, 1] w.r.t. the scale function
σ(x) = 1. Hence, (fnk(x)) is I2-relatively uniformly convergent on [0, 1].

But the first row and first column of (fnk(x)) is not relatively uniformly convergent
and hence, (fnk(x)) is not I2-regularly relatively uniformly convergent.

4. Conclusions

In this article, we have studied ideal convergence of double sequence of functions
from the point of view of relative uniform convergence w.r.t. the scale function σ(x)
defined on a compact subset D ⊆ R. We introduced the classes of double sequences
of functions 2c(I2, ru), 2c0(I2, ru), 2c

R(I2, ru), 2c
R
0 (I2, ru), 2c

m(I2, ru), 2c
m
0 (I2, ru),

2c
mR(I2, ru), 2c

mR
0 (I2, ru) and studied their properties like solid, monotone, sym-

metric, sequence algebra, convergence free and denseness. We also established the
relationship between I2-relative uniform convergent and I2- relative uniform Cauchy
as well as relationship between I2-relative uniform convergent and I2-regular relative
uniform convergent.

References

[1] M. Basarır and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math. 21(2)
(1999), 193Ű200.



IDEAL RELATIVE UNIFORM CONVERGENCE OF DOUBLE SEQUENCE... 709

[2] T. J. I’a. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan & Co. Ltd.,
New York, 1965.

[3] E. W. Chittenden, Relatively uniform convergence of sequences of functions, Trans. Amer. Math.
Soc. 15 (1914), 197Ű201. https://doi.org/10.2307/1988752

[4] B. Das, B. C. Tripathy, P. Debnath and B. Bhattacharya, Characterization of statistical

convergence of complex uncertain double sequence, Anal. Math. Phys. 10(4) (2020), 1Ű20.
https://doi.org/10.1007/s13324-020-00419-7

[5] D. Datta and B. C. Tripathy, Convergence of complex uncertain double sequences, New
Mathematics and Natural Computation 16(3) (2020), 447-459. https://doi.org/10.1142/

S1793005720500271

[6] D. Datta and B. C. Tripathy, Double sequences of complex uncertain variables defined by Orlicz

function, New Mathematics and Natural Computation 16(3) (2020), 541Ű550. https://doi.org/

10.1142/S1793005720500325

[7] K. Demirci and S. Orhan, Statistically relatively uniform convergence of positive linear operators,
Results Math. 69 (2016), 359Ű367. https://doi.org/10.1007/s00025-015-0484-9

[8] K. Demirci and S. Orhan, Statistical relative approximation on modular spaces, Results Math. 71

(2017), 1167Ű1184. https://doi.org/10.1007/s00025-016-0548-5

[9] K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference double sequence of

positive linear functions, Ric. Mat. (2021). https://doi.org/10.1007/s11587-021-00613-0

[10] K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference sequence of positive

linear functions, Trans. A. Razmadze Math. Inst. 176(1) (2022), 37Ű43.
[11] E. Dündar and B. Altay, On some properties of I2-convergence and I2-Cauchy of double se-

quences, Gen. Math. Notes 7(1) (2011), 1Ű12.
[12] E. Dündar, Regularly (I2, I)-convergence and (I2, I)-Cauchy double sequences of functions,

Pioneer Journal of Algebra, Number Theory and its Applications 1(2) (2011), 85Ű98.
[13] E. Dündar and B. Altay, I2-convergence and I2-Cauchy of double sequences, Acta Math. Sci.

Ser. B (Engl. Ed.) 34(2) (2014), 343Ű353. https://doi.org/10.1016/S0252-9602(14)60009-6

[14] E. Dündar and B. Altay, I2-convergence of double sequences of functions, Electron. J. Math.
Anal. Appl. 3(1) (2015), 111Ű121.

[15] E. Dündar and B. Altay, I2-uniform convergence of double sequences of functions, Filomat 30(5)
(2016), 1273Ű1281. https://doi.org/10.2298/FIL1605273D

[16] E. Dündar and N. P. Akın, Wijsman regularly ideal convergence of double sequences of sets,
Journal of Intelligent and Fuzzy Systems 37(6) (2019), 8159Ű8166. https://doi.org/10.3233/

JIFS-190626

[17] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241Ű244.
[18] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301Ű313.
[19] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real val-

ued functions, International Mathematical Forum 2(8) (2007), 365Ű374. https://doi.org/10.

12988/IMF.2007.07033

[20] G. H. Hardy, On the convergence of certain multiple series, Proc. Lond. Math. Soc. (3) s2-1

(1)(1904), 124Ű128. https://doi.org/10.1112/plms/s2-1.1.124

[21] P. Kostyrko, T. Šalát and W. Wilczynski, I-convergence, Real Anal. Exchange 26(2) (2000/2001),
669Ű686.

[22] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. 81 (2003), 82Ű89. https:

//doi.org/10.1007/s00013-003-0506-9

[23] E. H. Moore, An introduction to a Form of General Analysis, The New Haven Mathematical
Colloquium, Yale University Press, New Haven, 1910.

[24] Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl.
288 (2003), 223Ű231. https://doi.org/10.1016/j.jmaa.2003.08.004

https://doi.org/10.2307/1988752
https://doi.org/10.1007/s13324-020-00419-7
https://doi.org/10.1142/S1793005720500271
https://doi.org/10.1142/S1793005720500271
https://doi.org/10.1142/S1793005720500325
https://doi.org/10.1142/S1793005720500325
https://doi.org/ 10.1007/s00025-015-0484-9
https://doi.org/ 10.1007/s00025-016-0548-5
https://doi.org/10.1007/s11587-021-00613-0
https://doi.org/10.1016/S0252-9602(14)60009-6
https://doi.org/ 10.2298/FIL1605273D
https://doi.org/10.3233/JIFS-190626
https://doi.org/10.3233/JIFS-190626
https://doi.org/10.12988/IMF.2007.07033
https://doi.org/10.12988/IMF.2007.07033
https://doi.org/10.1112/plms/s2-1.1.124
https://doi.org/10.1007/s00013-003-0506-9
https://doi.org/10.1007/s00013-003-0506-9
https://doi.org/10.1016/j.jmaa.2003.08.004


710 K. R. DEVI AND B. C. TRIPATHY

[25] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53 (1900), 289Ű
321.

[26] P. Okçu Şahin and F. Dirik, Statistical relative uniform convergence of double sequences of

positive linear operators, Appl. Math. E-Notes 17 (2017), 207Ű220.
[27] T. Šalát, B. C. Tripathy and M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. 17

(2005), 45Ű54.
[28] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer.

Math. Monthly 66(5) (1959), 361Ű375. https://doi.org/10.1080/00029890.1959.11989303

[29] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math. 2

(1951), 73Ű74.
[30] B. C. Tripathy, Statistically convergent double sequences, Tamkang J. Math. 34(3) (2003),

231Ű237. https://doi.org/10.5556/j.tkjm.34.2003.314

[31] B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta
Math. Sin. (Engl. Ser.) 24(5) (2008), 737Ű742. https://doi.org/10.1007/s10114-007-6648-0

[32] B. C. Tripathy and B. Hazarika, I-convergent sequence spaces associated with multiplier sequence

spaces, Math. Inequal. Appl. 11(3) (2008), 543Ű548. https://doi.org/10.7153/mia-11-43

[33] B. C. Tripathy and S. Mahanta, On I-acceleration convergence of sequences, J. Franklin Inst.
347(3) (2010), 591Ű598. https://doi.org/10.1016/j.jfranklin.2010.02.001

[34] B. C. Tripathy and B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. J.
51 (2011), 233Ű239. https://doi.org/10.5666/KMJ.2011.51.2.233

[35] B. C. Tripathy, M. Sen and S. Nath, I-convergence in probabilistic n-normed space, Soft Com-
puting 16 (2012), 1021Ű1027. https://doi.org/10.1007/s00500-011-0799-8

[36] B. C. Tripathy and B. Sarma, On I-convergent double sequences of fuzzy real numbers, Kyung-
pook Math. J. 52(2) (2012), 189Ű200. https://doi.org/10.5666/KMJ.2012.52.2.189

[37] B. C. Tripathy and M. Sen, On fuzzy I-convergent difference sequence space, Journal of Intelligent
& Fuzzy Systems 25 (2013), 643Ű647. https://doi.org/10.3233/IFS-120671

[38] B. C. Tripathy and M. Sen, Paranormed I-convergent double sequence spaces associated with

multiplier sequences, Kyungpook Math. J. 54(2) (2014), 321Ű332. https://doi.org/10.5666/

KMJ.2014.54.2.321

[39] B. K. Tripathy and B. C. Tripathy, On I-convergent double sequences, Soochow Journal of
Mathematics 31(4) (2005), 549Ű560.

[40] S. Yıldız, I2-relative uniform convergence and Korovkin type approximation, Acta Comment.
Univ. Tartu. Math. 25(2) (2021), 189Ű200.

1Department of Mathematics,
Tripura University ,
Agartala-799022 INDIA
Email address: renu.ksh11@gmail.com

2Department of Mathematics,
Tripura University ,
Agartala-799022 INDIA
Email address: tripathybc@yahoo.com and binodtripathy@tripurauniv.in

https://doi.org/10.1080/00029890.1959.11989303
https://doi.org/10.5556/j.tkjm.34.2003.314
https://doi.org/ 10.1007/s10114-007-6648-0
https://doi.org/10.7153/mia-11-43
https://doi.org/10.1016/j.jfranklin.2010.02.001
https://doi.org/10.5666/KMJ.2011.51.2.233
https://doi.org/10.1007/s00500-011-0799-8
https://doi.org/ 10.5666/KMJ.2012.52.2.189
https://doi.org/10.3233/IFS-120671
https://doi.org/ 10.5666/KMJ.2014.54.2.321
https://doi.org/ 10.5666/KMJ.2014.54.2.321


Kragujevac Journal of Mathematics

Volume 49(5) (2025), Pages 711–726.

VAGUE WEAK INTERIOR IDEALS OF Γ-SEMIRINGS

YELLA BHARGAVI1, AKBAR REZAEI2, TAMMA ESWARLAL1, AND SISTLA RAGAMAYI1

Abstract. The notion of a ((complete-) normal) vague weak interior ideal on a
(regular) Γ-semiring is defined. It is proved that the set of all vague weak interior
ideals forms a complete lattice. Also, a characterization theorem for a regular
Γ-semiring in terms of vague weak interior ideals is derived. Another interesting
consequence of the main result is that the cardinal of a non-constant maximal
element in the set of all (complete-) normal vague weak interior ideals is 2.

1. Introduction

In 1934, Vandiver [18] extended the notions of rings and distributive lattices and
defined a new algebraic structure as semirings. It is known that semiring theory has
many applications to many branches of pure and applied mathematics: functional
analysis, combinatorics, graph theory, automata theory, coding and language theory.
In 1981, Sen [17] introduced the notion of a Γ-semigroup as a generalization of
semigroup. Then Rao [14, 15] generalized a semiring and Γ-ring by introducing Γ-
semiring. Ideals play an important role in advance studies and uses of algebraic
structures (see, [6, 10]). Hedayati and Shum [9] were considered the congruences and
ideals of a Γ-semiring. In 1965, Zadeh [19] introduced the concept of a fuzzy set.
Then Gau and Buehrer [8] introduced the concept of vague sets as a generalization
of fuzzy sets. Moreover, Ramakrishna [12] studied vague cosets, vague products and
several properties related to them. Jun and Park [11] defined the notion of a vague
ideal in a subtraction algebra. Rao and Venkateswarlu [16] studied bi-interior ideals
of Γ-semirings and get some of its properties. In 2008, Eswarlal [7] introduced the

Key words and phrases. (Vague) Γ-semiring, left (resp. right) vague ideal, vague (weak) interior
ideal, ((complete-) normal) vague weak interior ideal.
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concepts of vague ideals and normal vague ideals in semirings. Bhargavi and Eswarlal
[1–5] were developed the theory of vague sets on Γ-semirings. In 2019, Rao [13]
introduced weak interior ideals and fuzzy weak interior ideals of Γ-semirings. The
motivation of this paper, is define the notion of a ((complete)- normal) vague weak

interior ideal of a Γ-semiring. We prove that there is an isomorphism between the
set of all vague weak interior ideals and its crisp weak interior ideals. We prove that
the set of all vague weak interior ideals forms a complete lattice. Further, we give a
characterization theorem for regular Γ-semiring in terms of vague weak interior ideals,
and a condition to every vague weak interior ideal could be a normal vague weak
interior ideal is given.

2. Preliminaries

We recall the basic definitions needed for this paper.

Definition 2.1 ([8]). (a) A vague set ψ is a pair (tψ, fψ), where tψ, fψ : E → [0, 1]
are mappings s.t. tψ(x) + fψ(x) ≤ 1 for all x ∈ E.

(b) The interval [tψ(x), 1−fψ(x)] is called the vague value of x in ψ and it is denoted
by Vψ(x), i.e., Vψ(x) = [tψ(x), 1 − fψ(x)].

(c) Let D ⊆ E, the vague characteristic set of D in [0, 1] is a vague set δD = (tδD , fδD)
as follows:

VδD(f) =

{

[1, 1] , if x ∈ D,
[0, 0], if x /∈ D.

i.e.,

tδD(x) =

{

1, if x ∈ D,
0, if x /∈ D,

and fδD(x) =

{

0, if x ∈ D,
1, if x /∈ D.

(d) Let ψ = (tψ, fψ) be a vague set. For α, β ∈ [0, 1] with α ≤ β, the (α, β)-cut or
vague cut of ψ is the crisp subset of E is given by:

ψ(α,β) = ¶x ∈ E : Vψ(x) ≥ [α, β]♢,

i.e.,

ψ(α,β) = ¶x ∈ E : tψ(x) ≥ α and 1 − fψ(x) ≥ β♢.

Denote by VS(E) the set of all vague sets of E.

Definition 2.2 ([8]). Let ψ = (tψ, fψ), ϕ = (tφ, fφ) ∈ VS(E). Then, for all x ∈ E:
(a) ψc = (tψc , fψc), where tψc = fψ, fψc = tψ;
(b) ψ ⊆ ϕ if and only if ψ(x) ≤ ϕ(x);
(c) ψ ∪ ϕ := (tψ∪φ, fψ∪φ), where tψ∪φ(x) = max¶tψ(x), tφ(x)♢ and fψ∪φ(x) =

min¶fψ(x), fφ(x)♢;
(d) ψ ∩ ϕ := (tψ∩φ, fψ∩φ), where tψ∩φ(x) = min¶tψ(x), tφ(x)♢ and fψ∩φ(x) =

max¶fψ(x), fφ(x)♢.



VAGUE WEAK INTERIOR IDEALS OF Γ-SEMIRINGS 713

Definition 2.3 ([14]). Let (E, + ) and (Γ, + ) be two abelian semigroups. Then E
is called a Γ-semiring if there exists a mapping E × Γ × E → E (briefly, images of
(a, α, b) will be denoted by aαb) satisfying the following axioms:

(ΓSR1) cα(a+ b) = cαa+ cαb;
(ΓSR2) (c+ a)αb = cαb+ aαb;
(ΓSR3) c(α+ β)a = cαa+ cβc;
(ΓSR4) cα(aβb) = (cαa)βb, for all a, b, c ∈ E, α, β ∈ Γ.

In this paper, E is a Γ-semiring.

Definition 2.4 ([13]). (a) E is called regular if for all e ∈ E, exists f ∈ E, α, β ∈ Γ
s.t. e = eαfβe.

(b) A sub-Γ-semiring F of E is called a right (resp. left) weak interior ideal of E if
FΓFΓE ⊆ F (resp. EΓFΓF ⊆ F ). If F is both right and left weak interior ideal of
E, then F is called a weak interior ideal of E.

Denote by RWII(E) (resp. LWII(E)) the set of all right (resp. left) weak interior
ideals and WII(E) the set of all weak interior ideals of E. One can see that WII(E) =
RWII(E) ∩ LWII(E).

Definition 2.5 ([4]). Let ψ = (tψ, fψ) ∈ VS(E). Then ψ is called a vague Γ-semiring
if it satisfies the following axioms:

(V1) Vψ(a+ b) ≥ min¶Vψ(a), Vψ(b)♢;
(V2) Vψ(aγb) ≥ min¶Vψ(a), Vψ(b)♢ fora ll a, b ∈ E, γ ∈ Γ.

Denote by VΓ(E) the set of all vague Γ-semirings of E.

Definition 2.6 ([5]). Let ψ = (tψ, fψ) ∈ VS(E). Then ψ is called a right (resp. left)
vague ideal of E if it satisfies (V1) and

(V3) Vψ(aγb) ≥ Vψ(a) (resp. Vψ(aγb) ≥ Vψ(b)), for all a, b ∈ E, γ ∈ Γ.

If ψ is both left and right vague ideal of E, then ψ is called a vague ideal of E.

Denote by RVI(E) (resp. LVI(E)) the set of all right (resp. left) vague ideals and
VI(E) the set of all vague ideals of E. Hence, VI = RVI(E) ∩ LVI(E).

Definition 2.7 ([2]). Let ψ = (tψ, fψ), ϕ = (tφ, fφ) ∈ RVI(E) (resp. ∈ LVI(E)).
Then the sum ψ + ϕ of ψ and ϕ are defined by:

Vψ+φ(e) =

{

sup¶min¶Vψ(f), Vφ(g)♢ : e = f + g, where f, g ∈ E♢,
[0,0], otherwise,

i.e.,

tψ+φ(e) =

{

sup¶min¶tψ(f), tφ(g)♢ : e = f + g, where f, g ∈ E♢,
0, otherwise,

and

fψ+φ(e) =

{

inf¶max¶fψ(f), fφ(g)♢ : e = f + g,where f, g ∈ E♢,
1, otherwise.
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3. Vague Weak Interior Ideals in Γ-semirings

In this section, we define the concept of vague weak interior ideal of a Γ-semiring
and obtain some of the basic properties. Finally, we give a characterization theorem
for a regular Γ-semiring in terms of vague weak interior ideals.

From now on, δ stands for vague characteristic set of E unless stated.

Definition 3.1. Let ψ ∈ VΓ(E). Then ψ is called a right (resp. left) vague weak

interior ideal of E if ψΓψΓδ ⊆ ψ (resp. δΓψΓψ ⊆ ψ).

If ψ is both right and left vague weak interior ideal, then it is called a vague weak

interior ideal of E.
Denote by RVWII(E) (resp. LVWII(E)) the set of all right (resp. left) vague

weak interior ideals and VWII(E) the set of all vague weak interior ideals of E.
Hence, VWII(E) = RVWII(E) ∩ LVWII(E).

Example 3.1. (i) Let E := N∪ ¶0♢ and Γ := N. Define the mapping · : N∪ ¶0♢ ×N×
N ∪ ¶0♢ → N ∪ ¶0♢ by ·(a, b, c) = abc usual product of a, b, c, for all a, c ∈ N ∪ ¶0♢,
b ∈ N. Hence, N ∪ ¶0♢ is a N-semiring. Define tψ, fψ : N ∪ ¶0♢ → [0, 1] as follows:

tψ(x) =

{

0.12, if x ∈ 2N or x = 0,
0.13, otherwise,

and

fψ(x) =

{

0.18, if x ∈ 2N or x = 0,
0.16, otherwise.

Then ψ = (tψ, fψ) ̸∈ RVWII(N ∪ ¶0♢) ∪ LVWII(N ∪ ¶0♢).
(ii) Let E = Γ := M2×2(N). Define the mapping M2×2(N) ×M2×2(N) ×M2×2(N) →

M2×2(N) by ABC is the matrix multiplication of A,B,C for all A,B,C ∈ M2×2(N).
Hence, M2×2(N) is a M2×2(N)-semiring. Define tψ, fψ : M2×2(N) → [0, 1] by:

tψ(M) =











0.6, if M =



p q
0 0

]

, where p, q ∈ N;

0.5, otherwise,

and

fψ(M) =











0.1, if M =



p q
0 0

]

, where p, q ∈ N,

0.3, otherwise.

Then ψ = (tψ, fψ) ∈ RVWII(M2×2(N)), but ψ = (tψ, fψ) ̸∈ LVWII(M2×2(N)).
Now, if define tφ, fφ : M2×2(N) → [0, 1] by:

tφ(N) =











0.72, if N =



0 m
0 n

]

, where m,n ∈ N,

0.54, otherwise,
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and

fφ(N) =











0.28, if N =



0 m
0 n

]

, where m,n ∈ N,

0.37, otherwise.

Then ϕ = (tφ, fφ) ∈ LVWII(M2×2(N)), but ϕ = (tφ, fφ) ̸∈ RVWII(M2×2(N)).
(iii) Let E := ¶−n : n ∈ N♢ and Γ := ¶−2n : n ∈ N♢. Define the mapping

E × Γ × E → E by abc usual product of a, b, c for all a, c ∈ E; b ∈ Γ. Hence, E is a
Γ-semiring. Define tψ, fψ : E → [0, 1] by:

tψ(x) =











0.53, if x = −1,
0.76, if x = −2,
0.99, if x < −2,

and fψ(x) =











0.54, if x = −1,
0.28, if x = −2,
0.12, if x < −2.

Therefore, ψ = (tψ, fψ) ∈ RVWII(E) ∩ LVWII(E).

Remark 3.1. Consider Example 3.1 (iii), ψc ̸∈ VWII(E).

Theorem 3.1. Let ψ ∈ RVI(E) (resp. ∈ LVI(E)). Then ψ ∈ RVWII(E) (resp.

∈ LVWII(E)).

Proof. Assume ψ = (tψ, fψ) ∈ RVI(E). Then ψΓδ ⊆ ψ. Clearly, ψ ∈ VΓ(E). Now,
let e ∈ E. Then

VψΓψΓδ(e) = sup¶min¶Vψ(f), VψΓδ(g)♢ : e = fγg, where f, g ∈ E; γ ∈ Γ♢

≤ sup¶min¶Vψ(f), Vψ(g)♢ : f, g ∈ E♢

≤ sup¶Vψ(e)♢

≤ Vψ(e).

Thus, ψ = (tψ, fψ) ∈ RVWII(E). □

The following example shows that the converse of Theorem 3.1 need not be true.

Example 3.2. Consider Example 3.1 (ii), and define tψ, fψ : M2×2(N) → [0, 1] by:

tψ(P ) =











0.8, if P =



e 0
0 f

]

, where e, f ∈ N,

0.6, otherwise,

and

fψ(P ) =











0.1, if P =



e 0
0 f

]

, where e, f ∈ N,

0.4, otherwise.

Therefore, ψ = (tψ, fψ) ∈ RVWII(M2×2(N)), but not a right vague ideal of M2×2(N),
since Vψ(PZQ) < Vψ(P ), where P,Q, Z ∈ M2×2(N).

Proposition 3.1. Let E be regular and ψ ∈ VWII(E). Then ψ ∈ VI(E).
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Proof. Suppose E is regular and ψ = (tψ, fψ) ∈ VWII(E). Now, if ψ ̸∈ RVI(E),
then exists e ∈ E s.t. VψΓψΓδ(e) > Vψ(e). Since E is regular, ∃f ∈ E and α, β ∈ Γ s.t.
e = eαfβe. Hence,

VψΓψΓδ(e) = sup¶min¶Vψ(eαf), VψΓδ(e)♢♢

> sup¶min¶Vψ(eαf), Vψ(e)♢♢

= Vψ(e).

This shows that ψΓψΓδ ⊃ ψ, which is a contraction. Thus, ψ ∈ RVI(E). Similarly,
we can prove that ψ ∈ LVI(E). Therefore, ψ ∈ VI(E). □

In the next theorem we show that there is an isomorphism between RVWII(E)
(resp. LVWII(E)) with the set of all vague cuts.

Theorem 3.2. Let ψ ∈ VS(E). Then ψ ∈ RVWII(E) (resp. ψ ∈ LVWII(E)) if

and only if ψ(α,β) ∈ RWII(E) (resp. ∈ LWII(E)) for all α, β ∈ [0, 1] with α ≤ β.

Proof. Suppose ψ = (tψ, fψ) ∈ RVII(E). Using [5, Theorem 3.6], ψ(α,β) is a sub-Γ-
semiring of E. Given e ∈ ψ(α,β)Γψ(α,β)ΓE, we get e = fγgηh s.t. f, g ∈ ψ(α,β), h ∈ E.
Hence, Vψ(f) ≥ [α, β] and Vψ(g) ≥ [α, β]. Now, we have

Vψ(e) ≥ VψΓψΓδ(e)

= sup¶min¶Vψ(f), Vψ(g), Vδ(h)♢

≥ [α, β].

Therefore, e ∈ ψ(α,β). This shows that ψ(α,β) ∈ RWII(E).
Conversely, assume ψ(α,β) ∈ RWII(E). Using [5, Theorem 3.9], we get ψ ∈ VΓ(E).

Now, if ψΓψΓδ ̸⊆ ψ, then exists s ∈ E s.t. Vψ(s) < VψΓψΓδ(s). Let [α, β] ⊆ [0, 1] s.t.
Vψ(s) < [α, β] < VψΓψΓδ(s). Let s := fγgηh s.t. f, g /∈ ψ(α,β) for all f, g ∈ E, γ, η ∈ Γ.
Then Vψ(f) < [α, β], Vψ(g) < [α, β]. Now, we have

VψΓψΓδ(s) = sup¶min¶Vψ(f), Vψ(g), Vδ(h)♢♢

= sup¶min¶Vψ(f), Vψ(g)♢♢

< [α, β].

This shows that VψΓψΓδ(s) < [α, β], which is a contraction. Therefore, ψ ∈ RVWII(E).
Similarly, we can prove that ψ ∈ LVWII(E). □

Corollary 3.1. Let ψ ∈ VS(E). Then ψ ∈ VWII(E) if and only if ψ(α,β) ∈ WII(E)
for all α, β ∈ [0, 1] with α ≤ β.

Theorem 3.3. Let ∅ ≠ W ⊆ E and δW be the vague characteristic set of W .

Then W ∈ RWII(E) (resp. ∈ LWII(E)) if and only if δW ∈ RVWII(E) (resp.

∈ LVWII(E)).

Proof. Suppose W ∈ RWII(E). Then WΓWΓE ⊆ W . Using [5, Theorem 3.9], we get
δW = (tδW , fδW ) ∈ VΓ(E). Hence, δWΓδWΓδ = δWΓWΓE ⊆ δW . It follows that δW ∈
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RVWII(E). Conversely, assume δW ∈ RVWII(E). Then δWΓδWΓδ ⊆ δW . Using [5,
Theprem 3.9], W is sub Γ-semiring of E. Thus, δWΓWΓE ⊆ δW , and so WΓWΓE ⊆ W .
Therefore, W ∈ RWII(E). By a similar argument W ∈ LWII(E). □

Corollary 3.2. Let ∅ ≠ W ⊆ E and δW be the vague characteristic set of W . Then

W ∈ WII(E) if and only if δW ∈ VWII(E).

Theorem 3.4. Let ψ, ϕ ∈ VWII(E). Then

(i) ψ ∩ ϕ ∈ VWII(E);
(ii) ψ + ϕ ∈ VWII(E);
(iii) ψ ∩ ϕ ⊆ ψ, ϕ;

(iv) ψ, ϕ ⊆ ψ + ϕ.

Proof. (i) Suppose ψ = (tψ, fψ), ϕ = (tφ, fφ) ∈ RVWII(E). Using [5, Theorem 3.13],
we get ψ ∩ ϕ ∈ VΓ(E). Given e ∈ E, we have

V(ψ∩φ)Γδ(e) = sup¶min¶Vψ∩φ(f), Vδ(g)♢ : e = fαg; f, g ∈ E;α ∈ Γ♢

= sup¶min¶min¶Vψ(f), Vφ(f)♢, Vδ(g)♢♢

= sup¶min¶min¶Vψ(f), Vδ(g), ♢,min¶Vφ(f), Vδ(g)♢♢♢

= min¶sup¶min¶Vψ(f), Vδ(g)♢♢, sup¶min¶Vφ(f), Vδ(g)♢♢♢

= min¶VψΓδ(e), VφΓδ(e)♢

= V(ψΓδ)∩(φΓδ)(e).

This shows that (ψ ∩ ϕ)Γδ = (ψΓδ) ∩ (ϕΓδ). Also, we have

V(ψ∩φ)Γ(ψ∩φ)Γδ(e) = sup¶min¶Vψ∩φ(f), V(ψ∩φ)Γδ(g)♢ : e = fαg; f, g ∈ E;α ∈ Γ♢

= sup¶min¶Vψ∩φ(f), V(ψΓδ)∩(φΓδ)(g)♢♢

= sup¶min¶min¶Vψ(f), Vφ(f)♢,min¶VψΓδ(g), VφΓδ(g)♢♢♢

= sup¶min¶min¶Vψ(f), VψΓδ(g)♢,min¶Vφ(f), VφΓδ(g)♢♢♢

= min¶sup¶min¶Vψ(f), VψΓδ(g)♢, sup¶min¶Vφ(f), VφΓδ(g)♢♢♢

= min¶VψΓψΓδ(e), VφΓφΓδ(e)♢

= V(ψΓψΓδ)∩(φΓφΓδ)(e).

Therefore, (ψ ∩ ϕ)Γ(ψ ∩ ϕ)Γδ = (ψΓψΓδ) ∩ (ϕΓϕΓδ). It follows that

(ψ ∩ ϕ)Γ(ψ ∩ ϕ)Γδ = (ψ ∩ ϕ)Γ[(ψΓδ) ∩ (ϕΓδ)] = (ψΓψΓδ) ∩ (ϕΓϕΓδ) ⊆ ψ ∩ ϕ.

Thus, ψ ∩ ϕ ∈ RVWII(E). Similarly, we can prove ψ ∩ ϕ ∈ LVWII(E). Therefore,
ψ ∩ ϕ ∈ VWII(E).

(ii) As similar to the proof of (i), ψ + ϕ ∈ VWII(E).
(iii) Let e ∈ E. We have Vψ∩φ(e) = min¶Vψ(e), Vφ(e)♢ ≤ Vψ(e). Therefore, ψ ∩ ϕ ⊆

ψ. Similarly, ψ ∩ ϕ ⊆ ϕ.
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(iv) Given x ∈ E, we have

Vψ+φ(x) = sup¶min¶Vψ(a), Vφ(b)♢ : x = a+ b, where a, b ∈ E♢

≥ min¶Vψ(x), Vφ(0)♢

= Vψ(x).

It follows that ψ ⊆ ψ + ϕ. Similarly, ϕ ⊆ ψ + ϕ. □

Corollary 3.3. If ψi ∈ VWII(E), where i ∈ Λ. Then

(i)
⋂

i∈Λ

ψi ∈ VWII(E);

(ii)
∑

i∈Λ

ψi ∈ VWII(E).

Theorem 3.5. Let ψ, ϕ ∈ VWII(E). Then

(i) if S := ¶φi : φi ∈ VWII(E), φi ⊆ ψ, ϕ for all i ∈ Λ♢, then ψ ∩ ϕ is maximal

of S;

(ii) if T := ¶ϱi : ϱi ∈ VWII(E), ψ, ϕ ⊆ ϱi for all i ∈ Λ♢, then ψ + ϕ is minimal

of T.

Proof. Suppose ψ = (tψ, fψ), ϕ = (tφ, fφ) ∈ VWII(E).
(i) Using Theorem 3.4 (i) and (iii), we get ψ ∩ ϕ ∈ VWII(E) and ψ ∩ ϕ ⊆ ψ, ϕ.

Suppose φ ∈ S s.t. φ ⊆ ψ and φ ⊆ ϕ. Now, let t ∈ E. Then

Vψ∩φ(t) = min¶Vψ(t), Vφ(t)♢ ≥ min¶Vϕ(t), Vϕ(t)♢ = Vϕ(t).

Therefore, φ ⊆ ψ ∩ ϕ. Thus, ψ ∩ ϕ is maximal element in S.
(ii) Applying Theorem 3.4 (ii) and (iv), we get ψ+ϕ ∈ VWII(E) and ψ, ϕ ⊆ ψ+ϕ.

Let φ ∈ T s.t. ψ ⊆ φ and ϕ ⊆ φ. Given t ∈ E, we have

Vψ+φ(t) = sup¶min¶Vψ(r), Vφ(s)♢ : t = r + s, where r, s ∈ E♢

≤ sup¶min¶Vϕ(r), Vϕ(s)♢ : t = r + s, where r, s ∈ E♢

≤ sup¶Vϕ(r + s)♢

= Vϕ(t).

Therefore, ψ + ϕ ⊆ φ is minimal element of T. □

Theorem 3.6. The (VWII(E),⊆) is a complete lattice, where ⊆ is defined by:

ψ ⊆ ϕ if and only if Vψ(e) ≤ Vφ(e), for all e ∈ E.

Proof. It is known that (VWII(E),⊆) is a poset. By Theorem 3.5, every pair of
elements in VWII(E) has a maximal and a minimal element. Hence, VWII(E) is
a lattice. Let S := ¶ψi : ψ ∈ VWII(S) for i ∈ Λ♢ be a subset of VWII(E). By
Corollary 3.3 (i),

⋂

i∈Λ ψi ∈ VWII(E) and it is the infimum of S. Also, by Corollary
3.3 (ii),

∑

i∈Λ ψi ∈ VWII(E) and it is supremum of S. Thus, (VWII(E),⊆) is a
complete lattice. □
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In the next example we can see that the union of two vague weak interior ideals
need not be a vague weak interior ideal.

Example 3.3. Let E := Z8 and Γ := ¶0̄, 2̄, 4̄♢. Define · : Z8 × Γ × Z8 → Z8 by
·(x̄, ȳ, z̄) = xyz usual product x̄, ȳ, z̄, for all x̄, z̄ ∈ Z8, ȳ ∈ ¶0̄, 2̄, 4̄♢. Then Z8 is a
Γ-semiring. Define tψ, fψ : Z8 → [0, 1] by:

tψ(ē) =











0.81, if ē = 0̄,
0.63, if ē = 1̄,
0.45, otherwise,

and fψ(ē) =











0.22, if ē = 0̄,
0.31, if ē = 1̄,
0.52, otherwise.

Further, we define tφ, fφ : Z8 → [0, 1] by:

tψ(ē) =











0.67, if ē = 0̄,
0.54, if ē = 2̄,
0.24, otherwise,

and fφ(ē) =











0.32, if ē = 0̄,
0.44, if ē = 2̄,
0.51, otherwise.

Therefor, ψ = (tψ, fψ), ϕ = (tφ, fφ) ∈ VWII(Z8), but ψ ∪ ϕ ̸∈ VWII(Z8), since
V(ψ∪φ)Γ(ψ∪φ)(ē) > Vψ∪φ(ē) at ē = 4̄.

Theorem 3.7. Let ψ, ϕ ∈ VWII(E). Then ψ ∪ ϕ ∈ VWII(E) if ψ ⊆ ϕ or ϕ ⊆ ψ.

Proof. Assume ψ = (tψ, fψ), ϕ = (tφ, fφ) ∈ VWII(E). Suppose ψ ⊆ ϕ. Hence,
ψ ∪ ϕ ∈ VΓ(E). Given x ∈ E, we have

V(ψ∪φ)Γ(ψΓφ)(x) = sup¶min¶sup¶min¶Vψ∪ φ(a), Vψ∪φ(b)♢♢, Vδ(c)♢ : x = aαbβc,

where a, b, c ∈ E,α, β ∈ Γ♢

= sup¶min¶sup¶min¶Vφ(a), Vφ(b)♢♢, Vδ(c)♢ : a, b, c ∈ E♢

= VφΓφΓδ(x)

≤ Vφ(x)

= max¶Vψ(x), Vφ(x)♢

= Vψ∪φ(x).

Therefore, (ψ ∪ ϕ)Γ(ψ ∪ ϕ)Γδ ⊆ ψ ∪ ϕ. It follows that ψ ∪ ϕ ∈ RVWII(E). Similarly,
ψ ∪ ϕ ∈ LVWII(E). Thus, ψ ∪ ϕ ∈ VWII(E). □

Theorem 3.8. E is regular if and only if ψ = ψΓψΓδ, for all ψ ∈ RVWII(E).

Proof. Suppose E is regular and let ψ = (tψ, fψ) ∈ RVWII(E). Then ψΓψΓδ ⊆ ψ.
Let x ∈ E. Then there exist a ∈ E and α, β ∈ Γ s.t. x = xαaβx, and so we have:

VψΓψΓδ(x) = sup¶min¶Vψ(x), VψΓδ(aβx)♢♢

= sup¶min¶Vψ(x), sup¶min¶Vψ(a), Vδ(x)♢♢

= sup¶min¶Vψ(x), Vψ(a)♢♢

≥ Vψ(x).

Therefore, ψΓψΓδ ⊇ ψ, and so ψΓψΓδ = ψ.
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Conversely, suppose ψΓψΓδ = ψ, and let W ∈ RWII(E). Using Theorem 3.3, we
get δW ∈ RVWII(E). It follows that δWΓδWΓδ = δW , and so δWΓWΓE = δW . Thus,
W = WΓWΓE. Using [6, Theorem 4.4], we get E is regular. □

In the following example we show that, for given ψ ∈ VWII(E) and ϕ ∈ VS(E)
s.t. ψ ⊆ ϕ, the extension property is not valid, i.e., maybe ϕ ̸∈ VWII(E).

Example 3.4. Let E = Γ := R. Define · : R3 → R by ·(a, b, c) = abc for all a, b, c ∈ R.
Then R is a R-semiring. Define tψ, fψ : R → [0, 1] by:

tψ(x) =

{

0.898, if x ̸= 0,
0.532, if x = 0,

and fψ(x) =

{

0.241, if x ̸= 0,
0.437, if x = 0.

Then ψ = (tψ, fψ) ∈ VWII(R).
Now, if define tφ, fφ : R → [0, 1] by:

tφ(x) =











0.93, if x ∈ 2Z, x ̸= 0,
0.85, if x ∈ 2Z + 1,
0.66, if x = 0,

and fφ(e) =











0.13, if x ∈ 2Z, x ̸= 0,
0.25, if x ∈ 2Z + 1,
0.38, if x = 0.

We can see that ψ ⊆ ϕ, but ϕ = (tφ, fφ) ̸∈ VWII(R).

4. Normal Vague Weak Interior Ideals in Γ-Semirings

We define the notion of a (complete-) normal vague weak interior ideal, and show
that we can construct it in a Γ-semiring. Additionally, we prove that the cardinal of
a maximal element, which is not constant, in the set of all normal vague weak interior
ideals of a Γ-semiring is 2.

Definition 4.1. Let ψ = (tψ, fψ) ∈ VS(E). Then ψ is called normal, if Vψ(0) = [1, 1]
i.e., tψ(0) = 1 and fψ(0) = 0.

Denote by NVS(E) the set of all normal vague sets of E.

Example 4.1. Consider Example 3.4, and define tψ, fψ : R → [0, 1] by:

tψ(x) =











0.92, if x ∈ R
+,

0.75, if x ∈ R
−,

1, if x = 0,
and fψ(x) =











0.13, if x ∈ R
+,

0.24, if x ∈ R
−,

0, if x = 0.

Then ψ = (tψ, fψ) ∈ NVS(R).

The following theorem we achieve a necessity condition for a vague set to be normal
vague set.

Theorem 4.1. Let ψ = (tψ, fψ) ∈ VS(E) s.t. tψ(e) + fψ(e) ≤ tψ(0) + fψ(0) for

all e ∈ E. Define ψ+ = (tψ+ , fψ+), where tψ+(e) = tψ(e) + 1 − tψ(0) and fψ+(e) =
fψ(e) − fψ(0) for all e ∈ E. Then ψ+ ∈ NVS(E).
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Proof. Assume ψ = (tψ, fψ) ∈ VS(E) and e ∈ E. Then

tψ+(e) + fψ+(e) = tψ(e) + 1 − tψ(0) + fψ(e) − fψ(0) ≤ 1.

Therefore, ψ+ ∈ VS(E). Also, tψ+(0) = 1 and fψ+(0) = 0. Thus, ψ+ ∈ NVS(E). □

Proposition 4.1. Let ψ, ϕ ∈ VWII(E). Then

(i) ψ+ ∈ NVWII(E);
(ii) ψ ∈ NVWII(E) if and only if ψ+ = ψ;

(iii) (ψ+)+ = ψ;

(iv) if exists ϕ ∈ VWII(E) s.t. ϕ+ ⊆ ψ, then ψ ∈ NVWII(E);
(v) if exists ϕ ∈ VWII(E) s.t. ϕ+ ⊆ ψ, then ψ+ = ψ;

(vi) (ψ ∩ ϕ)+ = ψ+ ∩ ϕ+;

(vii) (ψ ∪ ϕ)+ = ψ+ ∪ ϕ+;

(viii) ψ ⊆ ϕ implies ψ+ ⊆ ϕ+.

Proof. (i) Suppose ψ = (tψ, fψ) ∈ RVWII(E). Given e, f ∈ E, γ ∈ Γ, we have

Vψ+(e+ f) = Vψ(e+ f) + [1, 1] − Vψ(0)

≥ min¶Vψ(e), Vψ(f)♢ + [1, 1] − Vψ(0)

= min¶Vψ(e) + [1, 1] − Vψ(0), Vψ(f) + [1, 1] − Vψ(0)♢

= min¶Vψ+(e), Vψ+(f)♢

and

Vψ+(eγf) = Vψ(eγf) + [1, 1] − Vψ(0)

≥ min¶Vψ(e), Vψ(f)♢ + [1, 1] − Vψ(0)

= min¶Vψ(e) + [1, 1] − Vψ(0), Vψ(f) + [1, 1] − Vψ(0)♢

= min¶Vψ+(e), Vψ+(f)♢.

Therefore, ψ+ ∈ VΓ(E). Also, we have

Vψ+Γψ+Γδ(e) = sup¶min¶sup¶min¶Vψ+(f), Vψ+(g)♢♢, Vδ(h)♢ : e = fαgβh,

where f, g, h ∈ E,α, β ∈ Γ♢

= sup¶min¶Vψ+(f), Vψ+(g)♢♢

= sup¶min¶Vψ(f) + [1, 1] − Vψ(0), Vψ(g) + [1, 1] − Vψ(0)♢♢

= sup¶min¶Vψ(f), Vψ(g)♢♢ + [1, 1] − Vψ(0)

= sup¶min¶sup¶min¶Vψ(f), Vψ(g)♢♢, Vδ(h)♢ + [1, 1] − Vψ(0)

= VψΓψΓδ(e) + [1, 1] − Vψ(0)

≤ Vψ(e) + [1, 1] − Vψ(0)

= Vψ+(e).

Hence, ψ+ ∈ RVWII(E). We can see that Vψ+(0) = Vψ(0) + [1, 1] − Vψ(0) = [1, 1].
Therefore, ψ+ ∈ NRVWII(E). Similarly, ψ+ ∈ NLVWII(E). It follows that
ψ+ ∈ NVWII(E). Clearly, ψ ⊆ ψ+.
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(ii) Assume ψ = (tψ, fψ) ∈ NVWII(E) and e ∈ E. Then

Vψ+(e) = Vψ(e) + [1, 1] − Vψ(0) = Vψ(e) + [1, 1] − [1, 1] = Vψ(e).

Thus, ψ+ = ψ. The converse is obvious.
(iii) Assume e ∈ E. V(ψ+)+(e) = Vψ+(e) + [1, 1] − Vψ+(0) = Vψ+(e). Therefore,

(ψ+)+ = ψ+. Since ψ ∈ NVWII(E), using (ii) we get (ψ+)+ = ψ+ = ψ.
(iv) Suppose there exists ϕ = (tφ, fφ) ∈ VWII(E), s.t. ϕ+ ⊆ ψ. Then, [1, 1] =

Vφ+(0) ≤ Vψ(0). This shows that Vψ(0) = [1, 1]. Thus, ψ ∈ NVWII(E).
(v) The proof is clear by using (i) and (iv).
(vi) Suppose ψ = (tψ, fψ), ϕ = (tφ, fφ) ∈ VWII(E) and e ∈ E. Then we have

V(ψ∩φ)+(e) = Vψ∩φ(e) + [1, 1] − Vψ∩φ(0)

= min¶Vψ(e), Vφ(e)♢ + [1, 1] − min¶Vψ(0), Vφ(0)♢

= min¶Vψ(e) + [1, 1] − Vψ(0), Vφ(e) + [1, 1] − Vφ(0)♢

= min¶Vψ+(e), Vφ+(e)♢

= Vψ+∩φ+(e).

Hence,(ψ ∩ ϕ)+ = ψ+ ∩ ϕ+.
(vii) Let e ∈ E. Then we have

V(ψ∪φ)+(e) = Vψ∪φ(e) + [1, 1] − Vψ∪φ(0)

= max¶Vψ(e), Vφ(e)♢ + [1, 1] − max¶Vψ(0), Vφ(0)♢

= max¶Vψ(e) + [1, 1] − Vψ(0), Vφ(e) + [1, 1] − Vφ(0)♢

= max¶Vψ+(e), Vφ+(e)♢

= Vψ+∪φ+(e).

Then (ψ ∪ ϕ)+ = ψ+ ∪ ϕ+.
(viii) Given e ∈ E, we get

Vψ+(e) = Vψ(e) + [1, 1] − Vψ(0) ≤ Vφ(e) + [1, 1] − Vφ(0) = Vφ+(e).

Therefore, ψ+ ⊆ ϕ+. □

Theorem 4.2. Let ψ be a maximal element in NVWII(E), which is not constant.

Then Vψ(x) ∈ ¶[0, 0], [1, 1]♢ for all x ∈ E.

Proof. Assume ψ = (tψ, fψ) ∈ NVWII(E). Then Vψ(0) = [1, 1]. Let there exists
s ∈ E s.t. Vψ(s) ̸= [1, 1]. It is sufficient to show that Vψ(s) = [0, 0]. Suppose there
exists e0 ∈ E s.t. [0, 0] < Vψ(e0) < [1, 1]. Define a vague set ϕ = (tφ, fφ) of E by

tφ(e) =
tψ(e)+tψ(e0)

2
and fψ(e) =

fψ(e)+fψ(e0)

2
for all e ∈ E. Clearly, ϕ is well-defined.
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Given e, f ∈ E; γ ∈ Γ, we have

Vφ(e+ f) =
Vψ(e+ f) + Vψ(e0)

2

≥
min¶Vψ(e), Vψ(f)♢ + Vψ(e0)

2

= min

{

Vψ(e) + Vψ(e0)

2
,
Vψ(f) + Vψ(e0)

2

}

= min¶Vφ(e), Vφ(f)♢

and

Vφ(eγf) =
Vψ(eγf) + Vψ(e0)

2

≥
min¶Vψ(e), Vψ(f)♢ + Vψ(e0)

2

= min

{

Vψ(e) + Vψ(e0)

2
,
Vψ(f) + Vψ(e0)

2

}

= min¶Vφ(e), Vφ(f)♢.

Therefore, ϕ ∈ VΓ(E). Also, we have

VφΓφΓδ(e) = sup¶min¶sup¶min¶ϕ(f), ϕ(g)♢♢, Vδ(h)♢ : e = fαgβh,

where f, g, h ∈ E,α, β ∈ Γ♢

= sup¶min¶Vφ(f), Vφ(g)♢♢

= sup

{

min

{

Vψ(f) + Vψ(e0)

2
,
Vψ(g) + Vψ(e0)

2

}}

=
1

2
sup¶min¶Vψ(f), Vψ(g)♢♢ +

Vψ(e0)

2

=
1

2
sup¶min¶sup¶min¶Vψ(f), V ψ(g)♢♢, Vδ(h)♢♢ +

Vψ(e0)

2

=
1

2
VψΓψΓδ(e) +

Vψ(e0)

2

≤
1

2
Vψ(e) +

Vψ(e0)

2
= Vφ(e).
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Hence ϕ ∈ RVWII(E). By a similar way we can show that ϕ ∈ LVWII(E). Thus,
ϕ ∈ VWII(E). Now, we have

Vφ+(e) = Vφ(e) + [1, 1] − Vφ(0)

=
Vψ(e) + Vψ(e0)

2
+ [1, 1] −

Vψ(0) + Vψ(e0)

2

=
Vψ(e) + [1, 1]

2
.

That implies Vφ+(0) =
Vψ(0)+[1,1]

2
= [1, 1]. Thus, ϕ+ ∈ NVWII(E). Now, Vφ+(0) =

[1, 1] > Vψ(e0). This shows that ϕ+ is not constant. Further, we have Vφ+(e0) > Vψ(e0),
which is a contraction, since ψ is a maximal element. Hence Vψ(s) = [0, 0]. Therefore,
Vψ(x) ∈ ¶[0, 0], [1, 1]♢. □

Corollary 4.1. If ψ is a maximal element in NVWII(E), which isn’t constant, then

♣Vψ(x)♣ = 2.

Definition 4.2. Let ψ ∈ NVS(E). Then ψ is called complete if there exists e ∈ E
s.t. Vψ(e) = [0, 0].

Denote by CNVS(E) the set of all normal vague sets of E, resp., CNVWII(E)
the set of all complete normal vague weak interior ideals of E. Then CNVWII(E) ⊆
CNVS(E), and so (CNVWII(E),⊆) is a poset.

Example 4.2. Consider Example 3.3, and define tψ, fψ : Z8 → [0, 1] by:

tψ(x̄) =











1, if x̄ = 0̄,
0.56, if x̄ = 1̄,
0, otherwise,

and fψ(x̄) =











0, if x̄ = 0̄,
0.45, if x̄ = 1̄,
1, otherwise.

Hence, ψ = (tψ, fψ) ∈ CNVWII(E).

Theorem 4.3. If ψ is a maximal element in (NVWII(E),⊆), which is not constant,

then it is a maximal element in (CNVWII(E),⊆).

Proof. Assume ψ̄ = (tψ̄, fψ̄) is a maximal element in (NVWII(E),⊆), which isn’t
constant. By Theorem 4.2, Vψ̄(x) ∈ ¶[0, 0], [1, 1]♢ for all x ∈ E, i.e., Vψ̄(0) = [1, 1]

and Vψ̄(x) = [0, 0] for some x ∈ E. It follows that ψ̄ ∈ CNVWII(E). Suppose

ϕ̄ = (tφ̄, fφ̄) ∈ CNVWII(E) s.t. ψ̄ ⊆ ϕ̄. Then ϕ̄ ∈ NVWII(E). Since ϕ̄ is a

maximal element in NVWII(E) and ϕ̄ ∈ NVWII(E) with ψ̄ ⊆ ϕ̄, that gives ψ̄ = ϕ̄.
Therefor, ψ̄ is a maximal element in CNVWII(E). □

Conclusions and Comments

We defined the notion of a right (resp. left) vague weak interior ideal of a Γ-
semiring and the characterization theorem for regular Γ-semiring in terms of vague
weak interior ideals is derived. In addition, we introduced and studied (complete-)
normal vague weak interior ideals of a Γ-semiring. As a consequence of the results
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is that the cardinal of a non-constant maximal element in the set of all (complete-)
normal vague weak interior ideals is 2. As a direction of this research will be study
on vague (minimal weak interior, bi-interior, quasi-interior) ideals of a Γ-semiring and
investigate relations among these notions.
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ULTIMATE BOUNDEDNESS OF SOLUTIONS OF SOME SYSTEM

OF THIRD-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

AYINLA A. ABDURASID1, KEHINDE D. ADULOJU2, MUSILIU T. RAJI2,
OLUFUNKE R. VINCENT3, AND MATHEW O. OMEIKE2

Abstract. This paper presents sufficient conditions for the ultimate boundedness
of solutions of some system of third-order nonlinear differential equations

...

X +Ψ(Ẋ)Ẍ + Φ(X)Ẋ +H(X) = P (t,X, Ẋ, Ẍ),

where Ψ,Φ are positive definite symmetric matrices, H,P are n−vectors continuous
in their respective arguments, X ∈ R

n and t ∈ R
+ = [0,+∞). We do not necessarily

require H(X) differentiable to obtain our results. By using the Lyapunov’s direct
(second) method and constructing a complete Lyapunov function, earlier results are
generalized.

1. Introduction

Let R = (−∞,+∞), R+ = [0,+∞) and let Rn denote the real Euclidean n-dimensional
space furnished with the usual Euclidean norm denoted by ∥ · ∥. Consider the system
of third-order nonlinear differential equations

(1.1)
...

X +Ψ(Ẋ)Ẍ + Φ(X)Ẋ +H(X) = P (t,X, Ẋ, Ẍ),

where t ∈ R
+, X : R+ → R

n, H : Rn → R
n, P : R+ × R

n × R
n × R

n → R
n, Ψ,Φ :

R
n → R

n×n are continuous in their respective arguments, H is assumed to be not
necessarily differentiable and the dots indicate differentiation with respect to the
independent variable t. Thus, for any initial values X0, Y0, Z0 ∈ R

n, there is a uniquely

Key words and phrases. Ultimate boundedness, Lyapunov function, system of third-order nonlinear
differential equations.
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defined solution X = X(t,X0, Y0, Z0) of (1.1), continuous in t, X0, Y0, Z0 satisfying
the condition X(t0) = X0, Ẋ(t0) = Y0, Ẍ(t0) = Z0 [21]. Equation (1.1) is the vector
version for the systems of real third-order nonlinear differential equations of the form

...
xi +

n
∑

k=1

ψik(ẋ1, . . . , ẋn)ẍk +
n
∑

k=1

ϕik(x1, . . . , xn)ẋk + hi(x1, . . . , xn)

=pi(t, x1, . . . , xn, ẋ1, . . . , ẋn, ẍ1, . . . , ẍn),

where i = 1, . . . , n, in which the functions ψik, ϕik, hi, pi are continuous in their
respective arguments. In the case n = 1, this system reduces to the scalar ordinary
differential equations of the form

(1.2)
...
x +ψ(ẋ)ẍ+ ϕ(x)ẋ+ h(x) = p(t, x, ẋ, ẍ),

where ψ, ϕ, h and p are continuous in their respective arguments, see [4–6,9,10,13,16,
17,19,23–26,28,29,34,35] and the references cited therein. If ψ(ẋ) = a and ϕ(x) = b,
(1.2) reduces to

...
x +aẍ+ bẋ+ h(x) = p(t, x, ẋ, ẍ),

which has been investigated by Ezeilo [9] for ultimate boundedness and convergence
of solutions by assuming

(1.3)
h(ξ + γ) − h(γ)

ξ
∈ I0, ξ ̸= 0,

with I0 ≡ [δ, kab] ⊂ (0, ab) the generalized Routh-Hurwitz interval, δ > 0 and 0 <
k < 1. When γ = 0 in (1.3) we have

H0 = H0(ξ) ≡ h(ξ + γ) − h(γ)

ξ

and

H0 =
h(ξ)

ξ
, if h(0) = 0.

On the other hand, if Ψ(Ẋ) = A,Φ(X) = B in (1.1), we have

(1.4)
...

X +AẌ +BẊ +H(X) = P (t,X, Ẋ, Ẍ),

where A, B are real symmetric n × n matrices. Equation (1.4) has been studied by
Afuwape [1] and Meng [12] for the ultimate boundedness and periodicity of solutions
for which H is of class C(Rn), satisfying

(1.5) H(X2) = H(X1) + Ch(X1, X2)(X2 −X1),

where Ch(X1, X2) is a real n × n operator for any X1, X2 in R
n, and having real

eigenvalues λi(Ch(X1, X2)), i = 1, 2, . . . , n. These eigenvalues satisfy

(1.6) 0 < δc ≤ λi(Ch(X1, X2)) ≤ ∆c,

with δc,∆c as fixed constants. Further, the matrices A, B have real positive eigenvalues
λi(A) and λi(B) respectively, satisfying

0 < δa ≤ λi(A) ≤ ∆a,
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0 < δb ≤ λi(B) ≤ ∆b,

i = 1, 2, . . . , n, and that for some constant k(< 1) the ’generalized’ Routh-Hurwitz
condition

(1.7) ∆c ≤ kδaδb

is satisfied.
In these papers mentioned above, the Lyapunov’s direct method was used to obtain

results. This entails construction of a quadratic-like function (also known as Lyapunov
function) to obtain sufficient conditions which guarantee the properties of solutions,
but the construction of this function is difficult since there is no general method to
obtaining it ([1]-[35]). Perhaps, reason (1.1) has received no attention in literature.

The present work is concerned with the ultimate boundedness of solutions of (1.1)
or its equivalent system form

Ẋ = Y,

Ẏ = Z,(1.8)

Ż = −Ψ(Y )Z − Φ(X)Y −H(X) + P (t,X, Y, Z),

obtained as usual by setting Ẋ = Y , Ẍ = Z in (1.1). This problem was left open
by Ezeilo and Tejumola [7, page 284]. In this work, by using the Lyapunov’s direct
method and constructing a suitable complete Lyapunov function, we shall obtain
sufficient conditions which guarantee the ultimate boundedness of solutions of (1.1).

2. Notation

Our notations are similar to [3]. In this paper, δ′s and ∆′s with or without suffixes
represent positive constants whose magnitudes depend on the matrix functions Ψ,Φ,
and the vector functions H,P. The δ′s and ∆′s with numerical or alphabetical suffixes
shall retain fixed magnitudes while those without suffixes are not necessarily the
same at each occurrence. Finally, ⟨X, Y ⟩ shall represent the scalar product of any
vectors X, Y ∈ R

n, with respective components (x1, x2, . . . , xn) and (y1, y2, . . . , yn) by
∑n

i=1 xiyi. In particular, ⟨X,X⟩ = ∥X∥2.

3. Statement of Results

Our main result in this paper is the following.

Theorem 3.1. Suppose H(0) = 0, and that

(i) there exists n× n real continuous operator Ch(X1, X2) for any vectors X1, X2

such that the function H is of class C(Rn), satisfy (1.5), with eigenvalues

λi(Ch(X1, X2)), i = 1, 2, . . . , n, satisfying (1.6);
(ii) the matrix functions Ψ(Y ), Φ(X) are continuous in their respective arguments,

with eigenvalues λi(Ψ(Y )), λi(Φ(X)) satisfying

(3.1) 0 < δa ≤ λi(Ψ(Y )) ≤ ∆a,
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(3.2) 0 < δb ≤ λi(Φ(X)) ≤ ∆b,

where i = 1, 2, . . . , n;
(iii) the matrices Ψ, Φ and the operator Ch are associative and commute pairwise;

and

(iv) the vector function P (t,X, Y, Z) satisfies

∥P (t,X, Y, Z)∥ ≤θ1(t) + θ2(t)


∥X∥2 + ∥Y ∥2 + ∥Z∥2


ρ

2(3.3)

+ δ0



∥X∥2 + ∥Y ∥2 + ∥Z∥2


1

2

,

for any X, Y, Z ∈ R
n, where δ0 > 0 is a constant, θ1(t), θ2(t) are continuous

functions in t and 0 ≤ ρ < 1.

Then, there exist constants ∆1, ∆2, ∆3 such that every solution X(t) of (1.1) with

X(t0) = X0, Ẋ(t0) = Y0, Ẍ(t0) = Z0, and for any constant ν, whatever in the range
1
2

≤ ν ≤ 1, the inequality


∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2
ν ≤∆1 exp¶−∆2(t− t0)♢

+ ∆3

∫ t

t0



θ2ν
1 (τ) + θ

2ν

1−ρ

2 (τ)


(3.4)

× exp¶−∆2(t− τ)♢dτ
holds for all t ≥ t0, where ∆1 = ∆1(X0, Y0, Z0).

A number of quite important results can be deduced from Theorem 3.1. For example,
we have the following.

Corollary 3.1. If P ≡ 0 and if all conditions of Theorem 3.1 hold, then every solution

X(t) of (1.1) satisfies

(3.5) ∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2 → 0,

as t → +∞.

Indeed, by setting θ1 = 0 = θ2 in (3.4), we have that, if δ0 ≤ ∆0, then


∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2
ν ≤ ∆1 exp¶−∆2(t− t0)♢, t ≥ t0,

from which (3.5) follows on letting t → +∞.

Corollary 3.2. Assume that all conditions of Theorem 3.1 hold and let δ0 ≤ ∆0.

Suppose also that there are fixed constants η, 1 ≤ η ≤ 2, and µ > 0 such that
∫ t+µ

t0



θ
η
1(τ) + θ

η

1−ρ

2 (τ)


exp¶−∆2(t− τ)♢dτ → 0, as t → +∞.

Then, every solution X(t) of (1.1) satisfies (3.5).

Another interesting result which can be deduced very readily from Theorem 3.1 is
the following generalization of the boundedness results in [1, 7] and [12].
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Corollary 3.3. Assume that all the conditions of Theorem 3.1 hold and let δ0 ≤ ∆0.

Suppose further that each of the functions θ1(t), θ2(t) satisfies at least one of the

following conditions:

(i) max0≤t<+∞ θ1(t) < +∞, max0≤t<+∞ θ2(t) < +∞;

(ii)
∫+∞

t0
θ

η
1(t)dt < +∞,

∫+∞

t0
θ

η

1−ρ

2 (t)dt < +∞,

for some constant η in the range 1 ≤ η ≤ 2. Then there exists a constant ∆4 > 0 such

that every solution X(t) of (1.1) ultimately satisfies

∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2 ≤ ∆4.

4. Preliminary Results

We need a few important results to prove Theorem 3.1.

Lemma 4.1. Let D be a real symmetric n×n positive definite matrix. Then, for any

X ∈ R
n,

(4.1) δd∥X∥2 ≤ ⟨DX,X⟩ ≤ ∆d∥X∥2,

where δd, ∆d are respectively the least and greatest eigenvalues of D.

Proof. See [7]. □

Lemma 4.2. Let Q,D be any two real n× n commuting symmetric matrices. Then

the eigenvalues λi(QD), i = 1, 2, . . . , n, of the product matrix QD are all real and

satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D),

where λj(Q) and λk(D) are respectively the eigenvalues of Q and D.

Proof. See [7]. □

The main tool in the proof of Theorem 3.1 is the scalar function W = W (X, Y, Z)
defined for arbitrary vectors X, Y, Z ∈ R

n by

(4.2) 2W = β(1−β)δ2
b ∥X∥2+δb(β+αδ−1

a )∥Y ∥2+αδ−1
a ∥Z∥2+∥Z+δaY +(1−β)δbX∥2,

where α > 0 and 0 < β < 1.
The following result is immediate from (4.2).

Lemma 4.3. Assume that all the conditions on Ψ(Y ), Φ(X) and H(X) in Theorem

3.1 are satisfied. Then there are constants δi > 0, i = 1, 2, such that

(4.3) δ1



∥X∥2 + ∥Y ∥2 + ∥Z∥2


≤ W (X, Y, Z) ≤ δ2



∥X∥2 + ∥Y ∥2 + ∥Z∥2


,

for arbitrary X, Y, Z ∈ R
n.



732 A. A. ABDURASID, K. D. ADULOJU, M. T. RAJI, O. R. VINCENT, AND M. O. OMEIKE

Proof. The proof of inequalities (4.3) follows if we use Lemma 4.1 (inequalities (4.1))
repeatedly and then choose

δ1 =
1

2
min

{

β(1 − β)δ2
b , δb(β + αδ−1

a ), αδ−1
a

}

and

δ2 =
1

2
max ¶µ1, µ2, µ3♢ ,

where µ1 = δb(1 − β)(1 + δa + δb), µ2 = δb(β + αδ−1
a ) + δa[1 + δb(1 − β) + δa] and

µ3 = 1 + αδ−1
a + δb(1 − β) + δa. □

5. Proof of Theorem 3.1

To prove Theorem 3.1, it suffices to show that the function W (defined in (4.2))
satisfies for any solution (X(t), Y (t), Z(t)) of (1.8) and for any ν in the range 1

2
≤

ν ≤ 1,

(5.1) Ẇ ≤ −δ3ψ
2 + δ4



θ2ν
1 (t) + θ

2ν

1−ρ

2 (t)


ψ2(1−ν),

for some constants δi > 0, i = 3, 4, where ψ2 = ∥X(t)∥2 + ∥Y (t)∥2 + ∥Z(t)∥2. We note
that from Lemma 4.3, (5.1) becomes

Ẇ ≤ −δ5W + δ6



θ2ν
1 (t) + θ

2ν

1−ρ

2 (t)


W (1−ν),

with δ5 = δ1δ3 and δ6 = δ2δ4. If we choose U = W ν , this reduces to

U̇ ≤ −νδ5U + νδ6



θ2ν
1 (t) + θ

2ν

1−ρ

2 (t)


,

which when solved for U yields

U(t) ≤ U(t0) exp¶−νδ5(t− t0)♢ + ∆5

∫ t

t0



θ2ν
1 (τ) + θ

2ν

1−ρ

2 (τ)


exp¶−νδ5(t− τ)♢dτ,

for all t ≥ t0.

Rewriting this with W ν = U and applying Lemma 4.3, we shall get (3.4) with

∆1 = δ


∥X(t0)∥2 + ∥Y (t0)∥2 + ∥Z(t0)∥2
ν
, ∆2 = νδ5 and ∆3 = δ∆5.

It follows that the proof of Theorem 3.1 is complete as soon as inequality (5.1) is
proved.

6. Derivative of W and Proof of (5.1)

Let (X(t), Y (t), Z(t)) be any solution of (1.8). The total derivative of W, with
respect to t along the solution path after simplification is

(6.1) Ẇ = −U1 − U2 − U3 − U4 − U5 − U6 − U7 + U8,
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where

U1 =η1δb(1 − β)⟨X,H(X)⟩ + ξ1δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩
+ γ1αδ

−1
a ⟨Ψ(Y )Z,Z⟩ + ⟨(Ψ(Y ) − δaI)Z,Z⟩,

U2 =η2δb(1 − β)⟨X,H(X)⟩ + γ2αδ
−1
a ⟨Ψ(Y )Z,Z⟩ + (1 + αδ−1

a )⟨Z,H(X)⟩,
U3 =η3δb(1 − β)⟨X,H(X)⟩ + ξ2δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩ + δa⟨Y,H(X)⟩,
U4 =η4δb(1 − β)⟨X,H(X)⟩ + γ3αδ

−1
a ⟨Ψ(Y )Z,Z⟩

+ δb(1 − β)⟨(Ψ(Y ) − δaI)X,Z⟩,
U5 =η5δb(1 − β)⟨X,H(X)⟩ + ξ3δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩

+ δb(1 − β)⟨(Φ(X) − δbI)X, Y ⟩,
U6 =γ4αδ

−1
a ⟨Ψ(Y )Z,Z⟩ + ξ4δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩

+ (1 + αδ−1
a )⟨(Φ(X) − δbI)Y, Z⟩,

U7 =γ5αδ
−1
a ⟨Ψ(Y )Z,Z⟩ + ξ5δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩

+ δa⟨(Ψ(Y ) − δaI)Y, Z⟩,
U8 =⟨δb(1 − β)X + δaY + (1 + αδ−1

a )Z, P (t,X, Y, Z)⟩,

with ηi, ξi, γi, i = 1, 2, 3, 4, 5, positive constants such that

5
∑

i=1

ηi = 1,
5
∑

i=1

ξi = 1 and
5
∑

i=1

γi = 1.

To arrive at (5.1), we prove the following.

Lemma 6.1. Subject to a conveniently chosen value of k in (1.7), we have

Uj ≥ 0, j = 2, 3, 4, 5, 6, 7,

for all X, Y, Z ∈ R
n.

Proof. For some constants ki > 0, i = 1, 2, conveniently chosen later, we have

⟨(1 + αδ−1
a )Z,H(X)⟩ =∥k1(1 + αδ−1

a )
1

2Z + 2−1k−1
1 (1 + αδ−1

a )
1

2H(X)∥2

− ⟨k2
1(1 + αδ−1

a )Z,Z⟩
− ⟨4−1k−2

1 (1 + αδ−1
a )H(X), H(X)⟩

and

⟨δaY,H(X)⟩ =∥k2δ
1

2
a Y + 2−1k−1

2 δ
1

2
a H(X)∥2

− ⟨k2
2δaY, Y ⟩ − ⟨4−1k−2

2 δaH(X), H(X)⟩.
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On using the assumption that H(0) = 0 and the hypothesis (1.5), it follows that

U2 =∥k1(1 + αδ−1
a )

1

2Z + 2−1k−1
1 (1 + αδ−1

a )
1

2Ch(X, 0)X∥2

+ ⟨Z, (γ2αδ
−1
a Ψ(Y ) − k2

1(1 + αδ−1
a ))Z⟩

+ ⟨Ch(X, 0)X, (η2δb(1 − β) − 4−1k−1
1 (1 + αδ−1

a )Ch(X, 0))X⟩

and

U3 =∥k2δ
1

2
a Y + 2−1k−1

2 δ
1

2
a Ch(X, 0)X∥2

+ ⟨Y, (ξ2δa[Φ(X) − (1 − β)δbI] − k2
2δaI)Y ⟩

+ ⟨Ch(X, 0)X, (η3δb(1 − β) − 4−1k−1
1 δaCh(X, 0))X⟩.

Thus, using (1.6), (3.1), (3.2) and Lemma 4.1 repeatedly, we obtain for all X,Z ∈ R
n,

U2 ≥ 0,

if

k2
1 ≤ γ2αδa

α+ δa

, with ∆c ≤ 4α(1 − β)η2γ2δ
2
aδb

(α+ δa)2
,

and, for all X, Y ∈ R
n, U3 ≥ 0, if

k2
2 ≤ βξ2δb, with ∆c ≤ 4β(1 − β)η2η3δ

2
b

δa

.

Hence, combining these inequalities (with ∆c), we have, for all X, Y, Z ∈ R
n,

Ui ≥ 0, i = 2, 3, if ∆c ≤ kδaδb,

with

k = min

{

4α(1 − β)η2γ2δa

(α+ δa)2
,
4β(1 − β)η2η3δb

δ2
a

}

< 1.

To complete the proof of Lemma 6.1, we need to show that

Ui ≥ 0, i = 4, 5, 6, 7,

for all X, Y, Z ∈ R
n. By (1.5), the assumption that H(0) = 0 and for constants

kj > 0, j = 3, 4, 5, 6, conveniently chosen later, we have

⟨δb(1 − β)X, (Ψ(Y ) − δaI)Z⟩

=∥k3δ
1

2

b (1 − β)
1

2 (Ψ(Y ) − δaI)
1

2X + 2−1k−1
3 δ

1

2

b (1 − β)
1

2 (Ψ(Y ) − δaI)
1

2Z∥2

− ⟨k2
3δb(1 − β)(Ψ(Y ) − δaI)X,X⟩ − ⟨4−1k−2

3 δb(1 − β)(Ψ(Y ) − δaI)Z,Z⟩,
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⟨δb(1 − β)(Φ(X) − δbI)X, Y ⟩

=∥k4δ
1

2

b (1 − β)
1

2 (Φ(X) − δbI)
1

2X + 2−1k−1
4 δ

1

2

b (1 − β)
1

2 (Φ(X) − δbI)
1

2Y ∥2

− ⟨k2
4δb(1 − β)(Φ(X) − δbI)X,X⟩ − ⟨4−1k−2

4 δb(1 − β)(Φ(X) − δbI)Y, Y ⟩,
⟨(1 + αδ−1

a )(Φ(X) − δbI)Y, Z⟩
=∥k5(1 + αδ−1

a )
1

2 (Φ(X) − δbI)
1

2Y + 2−1k−1
5 (1 + αδ−1

a )
1

2 (Φ(X) − δbI)
1

2Z∥2

− ⟨k2
5(1 + αδ−1

a )(Φ(X) − δbI)Y, Y ⟩ − ⟨4−1k−2
5 (1 + αδ−1

a )(Φ(X) − δbI)Z,Z⟩,
⟨δa(Ψ(Y ) − δaI)Y, Z⟩

=∥k6δ
1

2
a (Ψ(Y ) − δaI)

1

2Y + 2−1k−1
6 δ

1

2
a (Ψ(Y ) − δaI)

1

2Z∥2

− ⟨k2
6δa(Ψ(Y ) − δaI)Y, Y ⟩ − ⟨4−1k−2

6 δa(Ψ(Y ) − δaI)Z,Z⟩.
Then it follows that

U4 =∥k3δ
1

2

b (1 − β)
1

2 (Ψ(Y ) − δaI)
1

2X + 2−1k−1
3 δ

1

2

b (1 − β)
1

2 (Ψ(Y ) − δaI)
1

2Z∥2

+
〈

X,


η4δb(1 − β)Ch(X, 0) − k2
3δb(1 − β)(Ψ(Y ) − δaI)



X
〉

+
〈

Z,


αγ3δ
−1
a Ψ(Y ) − 4−1k−2

3 δb(1 − β)(Ψ(Y ) − δaI)


Z
〉

,

U5 =∥k4δ
1

2

b (1 − β)
1

2 (Φ(X) − δbI)
1

2X + 2−1k−1
4 δ

1

2

b (1 − β)
1

2 (Φ(X) − δbI)
1

2Y ∥2

+
〈

X,


η5δb(1 − β)Ch(X, 0) − k2
4δb(1 − β)(Φ(Y ) − δbI)



X
〉

+
〈

Y,


ξ3δa[Φ(X) − (1 − β)δbI] − 4−1k−2
4 δb(1 − β)(Φ(X) − δbI)



Y
〉

,

U6 =∥k5(1 + αδ−1
a )

1

2 (Φ(X) − δbI)
1

2Y + 2−1k−1
5 (1 + αδ−1

a )
1

2 (Φ(X) − δbI)
1

2Z∥2

+
〈

Y,


ξ4δa[Φ(X) − (1 − β)δbI] − k2
5(1 + αδ−1

a )(Φ(X) − δbI)


Y
〉

+
〈

Z,


αγ4δ
−1
a Ψ(Y ) − 4−1k−2

5 (1 + αδ−1
a )(Φ(X) − δbI)



Z
〉

and

U7 =∥k6δ
1

2
a (Ψ(Y ) − δaI)

1

2Y + 2−1k−1
6 δ

1

2
a (Ψ(Y ) − δaI)

1

2Z∥2

+
〈

Y,


ξ5δa[Φ(X) − (1 − β)δbI] − k2
6δa(Ψ(Y ) − δaI)



Y
〉

+
〈

Z,


αγ5δ
−1
a Ψ(Y ) − 4−1k−2

6 δa(Ψ(Y ) − δaI)


Z
〉

.

We then obtain the following using the estimates (1.6), (3.1), (3.2) and Lemma 4.1
repeatedly. For all X,Z ∈ R

n,

U4 ≥ 0, if
(1 − β)δb(∆a − δa)

4αη3

≤ k2
3 ≤ η4δc

∆a − δa

.

For all X, Y ∈ R
n,

U5 ≥ 0, if
(1 − β)(∆b − δb)

4βξ3δa

≤ k2
4 ≤ η5δc

∆b − δb

.
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For all Y, Z ∈ R
n,

U6 ≥ 0, if
(1 + αδ−1

a )(∆b − δb)

4αγ4

≤ k2
5 ≤ βξ4δaδb

(1 + αδ−1
a )(∆b − δb)

.

For all Y, Z ∈ R
n,

U7 ≥ 0, if
δa(∆a − δa)

4αγ5

≤ k2
6 ≤ βξ5δaδb

δa(∆a − δa)
.

The proof of Lemma 6.1 is now complete. □

We are now left with the estimates U1 and U8.

From (6.1), we clearly have

U1 ≥ (1 − β)η1δbδc∥X∥2 + βξ1δaδb∥Y ∥2 + αγ1∥Z∥2(6.2)

≥ δ7(∥X∥2 + ∥Y ∥2 + ∥Z∥2),

where δ7 = min¶(1 − β)η1δbδc, βξ1δaδb, αγ1♢.
For the remaining part of the proof of (5.1), let us for convenience denote ∥X∥2 +

∥Y ∥2 + ∥Z∥2 by ψ2. Since P (t,X, Y, Z) satisfies (3.3), Schwarz’s inequality gives U8,

♣U8♣ ≤


(1 − β)δb∥X∥ + (1 + αδ−1
a )∥Z∥ + δa∥Y ∥



∥P (t,X, Y, Z)∥(6.3)

≤
√

3δ8



δ0ψ
2 + θ2(t)ψ

1+ρ + θ1(t)ψ


,

where δ8 = max¶(1 − β)δb, δa, 1 + αδ−1
a ♢.

Now, combining (6.1) with inequalities (6.2), (6.3), we obtain

Ẇ ≤ −(δ7 −
√

3δ8δ0)ψ
2 +

√
3δ8



θ2(t)ψ
1+ρ + θ1(t)ψ



.

This we can rewrite as

(6.4) Ẇ ≤ −δ9ψ
2 + ψ1 + ψ2,

where
3δ9 = δ7 −

√
3δ8δ0, ψ1 = ¶δ10θ1(t) − δ9ψ♢ψ

and
ψ2 = δ10θ2(t)ψ

1+ρ − δ9ψ
2.

If we choose δ0 small enough such that δ9 > 0 (following [7, page 306]), with the
necessary modification, we obtain

ψ1 ≤ δ10ψ
2(1−ν)θ2ν

1 (t)

and

ψ2 ≤ δ11ψ
2(1−ν)θ

2ν

1−ρ

2 (t),

for any constant ν in the range 1
2

≤ ν ≤ 1.
Thus, (6.4) reduces to

Ẇ ≤ −δ9ψ
2 + δ12



θ2ν
1 (t) + θ

2ν

1−ρ

2 (t)


ψ2(1−ν),

with δ12 = max¶δ10, δ11♢.
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This is (5.1) with δ3 = δ9 and δ4 = δ12.

This completes the proof of Theorem 3.1.

7. Example

Consider (1.1) of the form

(7.1)
...

X +Ψ(Ẋ)Ẍ + Φ(X)Ẋ +H(X) = P (t,X, Ẋ, Ẍ), X ∈ R
2,

with

X =



x1

x2



, Ψ(Ẋ) =



3 + 1
1+ẋ1

2 0

0 1



, Φ(X) =



0.00004 + 1
1+x1

2 0

0 1



,

H(X) =



0.001 tan−1 x1 + 0.0001x1

0.0001x2



, P (t) =



e−t

sin t



,

where e−t, sin t are bounded continuous functions on [0,+∞). A simple calculation
(with the earlier notations) gives λ1(Ψ(Ẋ)) = 1, λ2(Ψ(Ẋ)) = 3 + 1

1+ẋ1
2 , λ1(Φ(X)) =

1, λ2(Φ(X)) = 0.00004 + 1
1+x1

2 and Ch(X, 0) =



0.0001 + 0.0001
1+x1

2 0

0 0.0001



,

λ1(Ch(X, 0)) = 0.0001, λ2(Ch(X, 0)) = 0.0001 + 0.0001
1+x1

2 . Following Theorem 3.1,
δa = 1, ∆a = 3, δb = 1, ∆b = 1.00004, δc = 0.0001, ∆c = 0.0011. If we choose
α = 3, β = 1

2
, γ3 = η2 = η3 = 1

5
, we obtain k = min¶0.015, 0.04♢ = 0.015 < 1. Since

∆c = 0.0011 < 0.015 = kδaδb, then all the conditions of Theorem 3.1 are satisfied.
Thus the solutions of (7.1) are ultimately bounded.

8. Conclusion

This paper investigates the ultimate boundedness of solutions of some third-order
nonlinear differential equations. By constructing a quadratic-like function (also known
as Lyapunov function) and using the Lyapunov second (direct) method, sufficient
conditions which guarantee that solutions are ultimately bounded are established.
A particular example has been provided to demonstrate results obtained. Results
obtained in this paper revise and improve on those in the literature.

Acknowledgements. The authors wish to thank the anonymous reviewers for their
invaluable suggestions for improvement.
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RECONSTRUCTING THE CHARACTERISTIC (PERMANENTAL)
POLYNOMIAL OF A DIGRAPH FROM SIMILAR POLYNOMIALS

OF ITS ARC-DELETED SUBGRAPHS

VLADIMIR R. ROSENFELD1

Abstract. Let D = D(V, E) be an arbitrary digraph with the set V of vertices
and the set E of arcs (♣V ♣ = n; ♣E♣ = m); loops, if any, are considered reduced
arcs with the same head and tail. The characteristic polynomial ϕ−(D; x) (resp.

permanental polynomial (ϕ+)) of D is the characteristic (permanental) polynomial of
its adjacency matrix A: ϕ(D; x):= det(xI−A) (ϕ+(D; x):=per(xI + A)), where I is
an identity matrix. A t-arcs-deleted subgraph Dt of D is the digraph D less exactly
t arcs (while all n vertices are preserved). Also, let Dt and R−

t
(D; x)

(

R+
t

(D; x)
)

be the collection (multiset) of all t-arc-deleted subgraphs of D and the sum of the
characteristic (permanental) polynomials of all subgraphs from Dt, respectively. We
consider the reconstruction of the characteristic polynomial ϕ−(D; x) (permanental
polynomial ϕ+(D; x)) of D from the polynomial sum R−

t
(D; x)

(

R+
t

(D; x)
)

, t ∈
¶1, 2, . . . , m−n + n0♢, where n0 is the number of zero roots of ϕ−(D; x) (ϕ+(D; x)).
Then, we also carry over our reasoning to the case of reconstructing both polynomials
of undirected graphs (where edges are deleted).

1. Preliminaries and the Main Part

The multifaceted topic of reconstructing graph polynomials has long attracted
the attention of graphists. It complements the topic of reconstructing the graphs
themselves and, probably, in some cases, can help to carry out such a reconstruction.
Here, we will not consider the general state of that issue, which we leave for a separate
literature review; the interested reader can find quite voluminous information on
the topic in [1–9]. We will fully devote ourselves to considering a specific problem,

Key words and phrases. Characteristic polynomial, permanental polynomial, t-arcs-deleted sub-
graph.
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referring only to the information directly necessary to solve it. Each square matrix
A = [ars]

n
r,s=1 is the adjacency matrix of a (weighted) finite (di)graph G, where an

entry ars (r, s ∈ ¶1, 2, . . . , n♢) is the weight of an arc −→rs emanating from vertex r
and heading to vertex s. The case r = s corresponds to a loop (a reduced arc whose
endpoints coincide); and ars = 0 means that the respective arc does not exist in G. If
A is symmetric, with ars = asr for all pairs of indices r and s, G can be regarded also
as an undirected graph having nonoriented edges rs = sr instead of pairs of opposite
arcs −→rs and ←−sr. The case when all nonzero entries of A are equal to 1 corresponds
to an unweighted graph G. In general, an entry ars may be an arbitrary quantity
(complex number, algebraic expression, etc.). Herein, we plan to practically consider
clearly recognizable cases of graphs or digraphs. In doing so, we will use, without any
indication, information that is equally relevant for all graphs in our text.

A vertex-deleted subgraph of a graph G is a subgraph G−v obtained by deleting the
vertex v and all edges incident to it from G; similarly, an edge-deleted (arc-deleted)
subgraph of G is a subgraph G− uv (G−−→uv) obtained by deleting the edge uv (arc
−→uv), while its end vertices and all other edges (arcs) incident to it are preserved as
they are and were in G. This deletion of uv (−→uv) is sometimes called weak deletion of
the edge uv (arc −→uv); while the deletion of uv (−→uv) with end vertices and all the edges
incident to it is called strong deletion of the edge uv (arc −→uv). In the latter case, the
resulting subgraph, denoted by G− u− v, is the graph G less the pair u and v of its
adjacent vertices (u ∼ v) and all edges (arcs) incident to them. The collection (in
general, a multiset) of all subgraphs G− v (G−−→uv, G− uv, G− u− v) of the graph
G is called a deck and any single element of the deck is called a card. We refer to
these four decks as D, AD, WD, and SD, respectively. In our text, we will need two
more general decks: Dt of subgraphs with t (t = 0, 1, . . .) vertices deleted and ADt

subgraphs with t arcs deleted (D0 = D;AD0 = AD).
The characteristic polynomial ϕ−(G; x) (resp. permanental polynomial ϕ+(G; x))

of a (di)graph G is the characteristic polynomial ϕ−(A; x) (permanental polynomial
ϕ+(G; x)) of its adjacency matrix A = [au,v]nu,v=1 [10]:

ϕ−(G; x) := ϕ−(A; x) = det(xI − A) =
n

∑

k=0

c−

k xn−k =
n−n0
∑

k=0

c−

k xn−k (c−

0 = 1),

(1.1)

ϕ+(G; x) := ϕ+(A; x) = per(xI + A) =
n

∑

k=0

c+
k xn−k =

n−n0
∑

k=0

c+
k xn−k (c+

0 = 1),

where I is a diagonal identity matrix of the corresponding dimension; and n0 is the
number of zero roots of ϕ−(A; x) or ϕ+(A; x), respectively.

In what follows, we will use the combined notation ϕ±(D; x) (and other (±)-
notation) wherever it is equally applicable both to the considered characteristic and
to permanent polynomials. Hereby we mean a common form of notation, but not
equality of results for the corresponding (−) and (+) cases.
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In this paper, we demonstrate that the polynomial ϕ±(D; x) of an arbitrary di-
graph D (with m ≥ n − n±

0 , where n±

0 is the number of zero roots of ϕ±(D; x)) is
reconstructible from the following polynomial:

R±

t (D; x) =
∑

Dt∈ADt(D)

ϕ± (Dt; x) =
n

∑

k=0

r±

t;kxn−k (0 ≤ t ≤ m− n + n±

0 ),

where Dt := D −−−→u1v1 −
−−→u2v2 − · · · −

−−→utvt is an arbitrary subgraph of D obtained by
weakly deleting its t arbitrary arcs; and the sum ranges over all deck ADt(D) of D.

In order not to leave undirected graphs aside from our reasoning, we will introduce
the following terminology. A symmetric digraph S(G) of an undirected graph G
(having n vertices and q edges) is obtained by substituting a pair of opposite arcs for
every edge in G. We define B = [bαβ]2q

α,β=1 to be the 2q × 2q matrix with row and
columns indexed by the set of arcs of S(G) as follows:

(1.2) bαβ = b (α = (u, v); β = (x, y)) =

{

1, v = x and either y = u or y ̸= u,
0, otherwise.

The matrix B is the adjacency matrix of a derivative digraph Γ (G) = Γ [S(G)], whose
vertex set is the set of all 2q arcs of the symmetric digraph S(G), while the adjacency
of vertices is defined by (1.2). The digraph Γ (G) is called in [11, 12] the line graph
of a directed graph S(G) and is called the arc-graph of (undirected) graph G in [13].
In the latter case, the prefix (or adjective) “arc” makes it possible to directly connect
this term with the original undirected graph G, without referring to the auxiliary
digraph S(G). In what follows, D = S(G) will be automatically considered by us as a
special case of an arbitrary digraph D (with m = 2q arcs).

An interesting spectral result concerning the arc-graph Γ of a digraph D is the
following theorem [11–13].

Theorem 1.1. Let ϕ−(Γ ; x) be the characteristic polynomial of the arc-graph Γ (G)
of a digraph D. Then,

(1.3) ϕ−(Γ ; x) = xm−nϕ−(D; x) =
n

∑

k=0

c−

k xm−k,

where n is the number of vertices, and m is the number of arcs of a digraph D (loops,
if any, are also considered reduced arcs).

Remark 1.1. The general version of this theorem (see [11–13]) for the characteristic
polynomials remains true for an arbitrary (di)graph H instead of D, possibly with
(weighted) loops and (weighted) arcs or edges (having an arbitrary matrix M as its
adjacency matrix A in (1.1)). However, Theorem 1.1 cannot be generalized to the
case of the permanental polynomials. It is easy to consider the case D = S(G), where
G is an undirected graph with n > 2 vertices. Then, m(D) > n(D) and ϕ−[Γ (D); x]
is divisible by xm−n, i.e., has at least m− n zero roots. However, unlike the previous
case, ϕ+[Γ (D); x] has no zero roots; see Proposition 6 of [13], taking into account that
S(G) is an Eulerian digraph.
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We also note an important feature of the structure Γ (D), which allows us to
reconstruct the original digraph D using the adjacency matrix B of Γ (D). If we
enumerate all the arcs of the digraph D in such a way that the numbers of arcs
entering one common vertex of D follow one after another, then we get the matrix B
divided into blocks. These blocks are either blocks of all zeros or contain exactly one
column of all ones. Further, if we replace each zero block by the number zero, and
each block containing ones by the number one, then we get a matrix that is exactly
the adjacency matrix of the original digraph graph D; see [13]. Here, we note that
in the case D = S(G), the adjacency matrix of the digraph D coincides with that of
an undirected graph G (A(D) = A(G)). Thus, this algorithm also reconstructs (the
adjacency matrix of) G.

The one-to-one correspondence between each digraph and its arc-graph also allows
us to consider the arc-graph Γ (D) as the result of the action of the operator Γ on
the digraph D, which uniquely maps D to Γ . But we also know the algorithm for
converting Γ (D) back to D, which we can conventionally denote by Γ −1. Thus, we
can summarize what was said like this:

D
Γ

⇄
Γ −1

Γ (D).

The above correspondence is valid for an arbitrary digraph D, but we will be
especially interested here in its particular case:

(1.4) (D −−−→u1v1 −
−−→u2v2 · · · −

−−→utvt)
Γ

⇄
Γ −1

Γ (D)− α1 − α2 − · · · − αt,

where a vertex αi removed from the arc-graph Γ (D) is an arc −−→uivi of the digraph D
(i ∈ ¶1, 2, . . . , t♢).

From what has been said, we pass to the following technical lemma.

Lemma 1.1. Let Γ (D) be the arc-graph of a digraph D. Then,

ϕ−(Γ − α1 − α2 − · · · − αt; x) = xm−n−tϕ−(D −−−→u1v1 −
−−→u2v2 − · · · −

−−→utvt; x),

where αi = −−→uivi, αi ∈ V [Γ (D)] and −−→uivi ∈ E(D).

Proof. It follows from Theorem 1.1 (see (1.3)) and the correspondence (1.4). □

Lemma 1.1 allows us to calculate the following polynomial sum:

S−

t [Γ (D); x] =
∑

[Γ (D)]t·
∈Dt[Γ (D)]

ϕ− ¶[Γ (D)]t·; x♢ = xm−n−t
n

∑

Dt∈ADt(D)

ϕ−(Dt; x)(1.5)

= xm−n−tR−

t (D; x) =
n

∑

k=0

r−

t;kxm−t−k,

where [Γ (D)]t· := Γ − α1 − α2 − · · · − αt and Dt := D −−−→u1v1 −
−−→u2v2 − · · ·

−−→utvt.

Remark 1.2. The fact that S−
t [Γ (D); x] = xm−n−tR−

t (D; x) in (1.5) prompts us to make
some “premature” remark, which will be useful to us when we proceed to consider a
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similar method for reconstructing the permanent polynomial. As already indicated in
the second part of Remark 1, Theorem 1.1 does not work in the case of the permanent
polynomial; therefore, a similar equality for S+

t [Γ (D); x] and xm−n−tR+
t (D; x) does

not hold, although both these polynomials exist separately. Therefore, the calculation
of S+

t [Γ (D); x] will be absolutely useless to us, and further we will focus on calculating
R+

t (D; x). But we will use the derived expression xm−n−tR+
t (D; x).

Here, we recall the known result, whose proof, in particular, can be obtained by
multiple application of Clarke’s theorem (see Theorem 2.14 of Clarke in [10]) with the
addition of the factor 1/t!, which appears due to the fact that there are t! different
sequences of deletion t of vertices from a graph.

Theorem 1.2. Let G be an arbitrary (di)graph with the vertex set V = ¶v1, v2, . . . , vn♢.
And let Gt· := G− v1 − v2 − · · · − vt be graph G less its t (t ∈ ¶1, 2, . . . , n♢) arbitrary
vertices v1, v2, . . . , vt and all edges (arcs, loops) incident to it. Then,

1

t!
·

dt

dxt
ϕ−(G; x) =

∑

Gt·
∈Dt(G)

ϕ(Gt·; x),

where the sum ranges over all Ct
n cards of the t-th deck Dt of G.

Corollary 1.1. Let G = Γ (D). Then,

(1.6) S−

t [Γ (D); x] =
∑

[Γ (D)]t·
∈Dt[Γ (D)]

ϕ− ¶[Γ (D)]t·; x♢ =
1

t!
·

dt

dxt
ϕ−[Γ (D); x].

The last equation allows us to get ϕ−[Γ (D); x] in integral form:

(1.7) ϕ−[Γ (D); x] = t!
∫

· · ·
∫

t times

S−

t [Γ (D); x] dxt (0 ≤ t ≤ m− n + n−

0 ),

where n−

0 is the number of zero roots of ϕ−[Γ (D); x] (if n−

0 is not known, use t ≤ m−n);
and the integration at each of the t steps uses the zero integration constant (since the
coefficients r−

t;k of xm−t−k in (1.7) must obey their determination in (1.5)).
The equation (1.6) can also be solved for ϕ−[Γ (D); x] by comparing the coefficients

at the same powers of x in the corresponding polynomials. First, using the last parts
(1.5) and (1.6) for an equivalent representation of St[Γ (D); x], we get

S−

t [Γ (D); x] =
n

∑

k=0

r−

t;kxm−t−k =
1

t!
·

dt

dxt
ϕ−[Γ (G); x]

=
1

t!
·

dt

dxt



xm−n
n

∑

k=0

c−

k xn−k

]

=
1

t!
·

dt

dxt

n
∑

k=0

c−

k xm−k,
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where the coefficients c−

k belong to the expansion ϕ−(D; x) =
∑n

k=0 c−

k xn−k. Hence,

n
∑

k=0

r−

t;kxm−t−k =
1

t!
·

dt

dxt
ϕ−[Γ (G); x] =

n
∑

k=0

c−

k

(m− k)

t!(m− k − t)!
xm−t−k

=
n

∑

k=0

c−

k Ct
m−kxm−t−k,

which makes it easy to compare the coefficients of the first and last sums therein:

c−

k =
r−

t;k

Ct
m−k

(k ∈ ¶0, 1, . . . , n♢, 0 ≤ t ≤ m− n + n−

0 ).

At this point, we arrive at the following statement (which will later be generalized
later to the general case, which also includes the permanental polynomial).

Lemma 1.2. Let ϕ−(D; x) =
∑n

k=0 c−

k xn−k and R−
t (D; x) =

∑n
k=0 r−

t;kxn−t−k (0 ≤

t ≤ m− n + n−

0 ) be the characteristic polynomial of a digraph D and the sum of the
characteristic polynomials of all its t-arcs-deleted subgraphs (from ADt), respectively.
Then, the characteristic polynomial ϕ−(D; x) is reconstructible from (the coefficients
of) the polynomial R−

t (D; x) as follows
(1.8)

ϕ−(D; x) =
n

∑

k=0

r−

t;k

Ct
m−k

xn−k =
t!

xm−n

∫

· · ·
∫

t times

xm−n−tR−

t (D; x) dxt (0 ≤ t ≤ m−n+n−

0 ),

where the integration at each of the t steps uses the zero integration constant.

Lemma 1.2 can be considered as our final result for the characteristic polynomial
ϕ−(D; x) of a directed graph D. Now it remains for us to show that a similar result
is also valid for a permanent polynomial ϕ+(D; x). (It is “only” necessary to replace
(−) by (+) everywhere in (1.8)).

First, it is important to remember what combinatorial meaning an arbitrary coef-
ficient c+

k has in the expansion of a permanent polynomial, ϕ+(D; x) =
∑n

0 c+
k xn−k.

Namely, the coefficient c+
k is equal to the number of all coverings by oriented simple

p-cycles (p ∈ ¶1, 2, . . . , k♢) of exactly k vertices of the digraph D, where 1-cycle and
2-cycle are a loop and a pair of opposite arcs with common endpoints, respectively.
See a discussion of the coefficients of the “simple permanent polynomial” of a directed
graph, e.g., on page 193 of [14]. But in each directed simple p-cycle, the number of
arcs is equal to the number of vertices, p. Therefore, the coefficient c+

k is also equal
to the number of coverings exactly k of arcs of the digraph D. We need the following
lemma.

Lemma 1.3. Let R+
1 (D; x) =

∑

(D−
−→uv)∈AD1

ϕ+(D−−→uv; x) be the sum of the permanent

polynomials of all m subgraphs D − −→uv obtained by weakly deleting a single arc −→uv
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from D. Then,
(1.9)

R+
1 (D; x) =

n
∑

k=0

(m− k)c+
k xn−k = xn−m+1 d

dx

[

xm−nϕ+(D; x)
]

(m− n + n+
0 ≥ 1),

where n+
0 is the number of zero roots of ϕ+(D; x) (if n+

0 is not known, use m−n ≥ 1).

Proof. Consider an arbitrary covering of k arcs (and vertices) of the digraph D by
oriented cycles consisting of arcs −−→u1v1,

−−→u2v2, . . . ,−−→ukvk, where the head of each arc
coincides with the tail of exactly one other arc, which is not specified here. Remove
an arbitrary arc −→uv from the digraph D. Obviously, if this is not one of the arcs
belonging to the cover under consideration, then this cover can also be realized in
the resulting subgraph D − −→uv, although other covers including −→uv in D, become
impossible. If we consider the complete deck AD1 of all m one-arc-deleted subgraphs
(cards), then among them we will find exactly k subgraphs in which our concrete
cover cannot be realized. Since we have considered an arbitrary covering of arbitrary
k arcs of the digraph D, we can generalize what has been said to the general case of
all such cycle coverings of D. As a result, we can represent the total loss of coverings
by all cards in the complete deck AD1 as the following polynomial, whose coefficients
give us the numerical loss of all cycle coverings of the corresponding number of k
(k ∈ ¶1, 2, . . . , n♢) of arcs of D:

δ+(D, x) :=
n

∑

k=0

kc+
k xn−k.

Using (1.9), we get

R+
1 (D; x) =

∑

(D−
−→uv)∈AD1(D)

ϕ+ (D −−→uv; x) = mϕ+(D; x)− δ+(D; x) =
n

∑

k=0

(m− k)c+
k xn−k.

Thence,

R+
1 (D; x) =

n
∑

k=0

(m− k)c+
k xn−k = xn−m+1 d

dx

n
∑

k=0

c+
k xm−k

= xn−m+1 d

dx

[

xm−nϕ+(D; x)
]

(m− n + n+
0 ≥ 1),

which completes the proof. □

The following statement plays an essential role in our reasoning.

Lemma 1.4. Let R+
t (D; x) =

∑

Dt∈ADt
ϕ+(Dt; x) be the sum of the permanent polyno-

mials of all Ct
m subgraphs Dt obtained by weakly deleting t (t ∈ ¶0, 1, . . . , m−n+n+

0 ♢)
arcs from D. Then,
(1.10)

R+
t (D; x) =

n
∑

k=0

Ct
m−kc+

k xn−k =
xn−m+t

t!
·

dt

dxt

[

xm−nϕ+(D; x)
] 

0 ≤ t ≤ m− n + n+
0



.
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Proof. It can be obtained by t-fold application of Lemma 1.3. In this case, as in
the case of Theorem 1.2, the multiplier 1/t! appears before the differential, since
there are t! possibilities of sequential selection of t elements one by one, but we
only need one choice. (For a short check, one can consider the first coefficient Ct

m

in the expansion of R+(D; x) in powers of x.) We will mainly focus on the more
important part of the proof regarding the first equality in (1.10), while the second
equality there is elementarily proved by simple manipulations with the coefficients.
By Lemma 1.3, we have R+

1 (D; x) =
∑n

k=0(m− k)c+
k xn−k, where m is the number of

all arcs of the original digraph D0 := D with 0 deleted arcs; and to unify subsequent
entries, we can formally write R+

0 (D; x) ≡ ϕ+(D; x), which is the initial term in the
sequence R+

0 , R+
1 , . . . , R+

t . Thus, each stage of sequential calculating of polynomial
sums R+

1 (D; x), R+
2 (D; x), . . . , R+

t (D; x) for decks AR1,AR2, . . . ,ARt, respectively,
means sequential multiplication of the original coefficient c+

k (k ∈ ¶0, 1, . . . , n♢), of
R+

0 = ϕ+(D; x), first by (m− k)/1, then by (m− k − 1)/2, and so on up to the last
multiplier (m− k − t + 1)/t in the process, to result in the coefficient

rt;k = (t!)−1(m− k)(m− k − 1) · · · (m− k − t + 1)c+
k = Ct

m−kc+
k

of the polynomial R+
t (D; x) =

∑n
k=0 rt;kxn−k.

Based on this, we get

R+
t (D; x) =

n
∑

k=0

Ct
m−kc+

k xn−k,

which proves the first equality in (1.10) and, thus, the main part of our statement.
It is technically easy to see that the third part of (1.10) is also equal to the same
polynomial R+

t (D; x):

xn−m+t

t!

dt

dxt

[

xm−nϕ+(D; x)
]

=
xn−m+t

t!

dt

dxt



n
∑

0

c+
k xm−k

]

=
xn−m+t

t!



n
∑

0

(m− k)(m− k − 1) · · · (m− k − t + 1)c+
k xm−k

]

=
n

∑

k=0

(m− k)!

(t!)(m− k − t)!
c+

k xn−k =
n

∑

k=0

Ct
m−kc+

k xn−k = R+
t (D; x) =

n
∑

k=0

r+
t;kxn−k,

which completes the proof. □

Now we state a generalizing theorem.

Theorem 1.3. Let ϕ±(D; x) =
∑n

k=0 c±

k xn−k and R±
t (D; x) =

∑n
k=0 r±

t;kxn−t−k (0 ≤

t ≤ m− n + n±

0 ) be the characteristic (−) (permanental (+)) polynomial of a digraph
D and the sum of the characteristic (permanental) polynomials of all its t-arcs-deleted
subgraphs (from ADt), respectively. Then, the polynomial ϕ±(D; x) is reconstructible
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from (the coefficients of) the polynomial R±
t (D; x) as follows

(1.11)

ϕ±(D; x) =
n

∑

k=0

r±

t;k

Ct
m−k

xn−k =
t!

xm−n

∫

· · ·
∫

t times

xm−n−tR±

t (D; x) dxt (0 ≤ t ≤ m−n+n±

0 ),

where the integration at each of the t steps uses the zero integration constant.

Proof. The (−)-case has been proven in Lemma 1.2. Now, note that it follows from
the last two equalities in (1.11) that

(1.12) c+
k =

r+
t;k

Ct
m−k

(0 ≤ t ≤ m− n + n+
0 ),

which is a (+)-analog of (1.8). Whence we arrive at the overall proof. □

Remark 1.3. All practical applications of Theorem 1.3 (and Lemma 1.2) are related
to the values of t ≥ 1. The last condition can always be satisfied for the case

m− n = −1, since it corresponds to the oriented tree
−→
T (m ≥ 2), whose polynomial

ϕ±
−→

T ; x


≡ xn has n±

0 = n zero roots and allows its formal reconstruction up to the

values t = m − n + n = n − 1. For m = n, when an arbitrarily oriented digraph D
contains exactly one cycle of length c < n, 1 ≤ t ≤ n − c; in this case, we can also
reconstruct the polynomial ϕ±(D; x) (for valid values of t). But in the exceptional
case, when D is a consistently oriented cycle, the reconstruction of its polynomial
ϕ±(D; x) is impossible, since ϕ±(D; x) = xn± 1, and m−n + n±

0 = m−n + 0 = 0 < 1.
For all m − n ≥ 1, Thereom 1.3 (Lemma 1.2) works for at least t = 1. Thus, the
polynomial ϕ±(D; x) of a consistently oriented cycle remains the only case when its
reconstruction using Theorem 1.3 is impossible.

Now we want to move our reasoning to the area of undirected graphs. Earlier, we
have already dealt with the problem of recursion of the characteristic ϕ−(G; x) and
the permanent ϕ+(G; x) polynomials [15,16] of the undirected graph G. We use two
formulae [15,16], in which we are now correcting typos made in [16]:

(q − n)ϕ−(G; x) =
∑

uv

[ϕ−(G− uv) + ϕ−(G− u− v; x)]− x(d/dx)ϕ−(G; x),

(1.13)

(q − n)ϕ+(G; x) =
∑

uv

[ϕ+(G− uv)− ϕ+(G− u− v; x)]− x(d/dx)ϕ+(G; x),

where n and q are the numbers of vertices and edges, of G, respectively, and the
combined summation ranges over the set of all edges of G and all pairs u and v of
adjacent vertices (u < v; u ∼ v).
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We combine these formulae and transform them like what we did before

(q − n)ϕ±(G; x) + x(d/dx)ϕ±(G; x)
∑

uv

[ϕ±(G− uv; x)∓ ϕ±(G− u− v; x)](1.14)

=
n

∑

k=0

g±

1;kxn−k = U±

1 (G;x),

where the coefficients g±

k should be known by recursion. Further, transforming the
first side of (1.14), we obtain

n
∑

k=0

[(q − n) + (n− k)]c±

k xn−k =
n

∑

k=0

(q − k)c±

k xn−k = xn−q+1(d/dx)[xq−nϕ±(G; x)]

(1.15)

=
n

∑

k=0

g±

1;kxn−k,

whence we arrive at the “undirected” generalization of Lemma 1.4.

Theorem 1.4. Let U±

1 (G; x) =
∑n

k=0 g±

k xn−k be the sum of the polynomials ϕ±[(·); x]
of all “weak” subgraphs G− uv and all “strong” subgraphs G− u− v (u < v; u ∼ v)
of G. Then,
(1.16)

ϕ±(G; x) =
n

∑

k=0

c±

k xn−k =
n

∑

k=0

g±

1;k

q − k
xn−k = xn−q

∫

xq−n−1U±

1 (G; x) dx (q > n),

where the integration uses the zero integration constant.

Proof. The second equality in (1.16) is related to the comparison of the second and
fourth sides of (1.15), while the third equality in (1.16) is a purely technical fact. □

The following corollary allows us to equate two approaches to undirected graphs G
– as such and as their symmetric directed equivalents S(G).

Corollary 1.2. Let R±

1 [S(G); x] =
∑n

k=0 r±

1;kxn−k and U±

1 (G; x) = g±

1;kxn−k (as above).
Then,

(1.17) g±

1;k =
q − k

m− k
r±

1;k (k ∈ ¶0, 1, . . . , n♢, m = 2q) ,

whence

(1.18) U±

1 (G; x) = xn−q+1 d

dx



1

xq

∫

x2q−n−1R±

1 [S(G); x] dx


and

(1.19) R±

1 [S(G); x] = xn−2q+1 d

dx



xq

∫

xq−n−1U±

1 (G; x) dx


.

Proof. The mutual relation (1.17) of the coefficients follows from (1.12) and the second
side (1.15). The former gives, for t = 1, c±

k = r±

1,k/C1
m−k = r±

1;k/(m− k). Substituting
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the obtained expression for c±

k on the second side of (1.15) and equating the result to
the last part of (1.15), we obtain:

(1.20)
n

∑

k=0

(q − k)c±

k xn−k =
±

∑

k=0

q − k

m− k
r1;kxn−k =

n
∑

k=0

g±

1;kxn−k,

from which, comparing the coefficients of xn−k on the last two sides of (1.20), we
arrive at the proof of the first part of our statement, expressed by (1.17).

Integral expressions (1.18) and (1.19), consistent with (1.17), can be obtained using
parts of expressions (1.11) and (1.16) used by theorems 1.3 and 1.4, respectively.
Prove the first of them, (1.18). First, we equate the last side of (1.16) to the third
side of (1.11), assuming that D = S(G) and t = 1 in it:

ϕ±(G; x) =


xn−q

∫

xq−n−1U±

1 (G; x) dx =
1

xm−n

∫

xm−n−1R±

t [S(G); x] dx


(1.21)

= ϕ±[S(G); x].

Starting from the central equality of (1.21), enclosed in brackets, we will carry out
the following sequence of its technical transformations:

∫

xq−n−1U±

1 (G; x) dx =
1

xm−q

∫

xm−n−1R±

t [S(G); x] dx,(1.22)

xq−n−1U±

1 (G; x) =
d

dx



1

xm−q

∫

xm−n−1R±

t [S(G); x] dx


,

U±

1 (G; x) =xn−q+1 d

dx



1

xm−q

∫

xm−n−1R±

t [S(G); x] dx


.(1.23)

But due to the fact that the number of arcs m of D = S(G) is equal to 2q (where q is
the number of edges of G), (1.23) is equivalent to

U±

1 (G; x) = xn−q+1 d

dx



1

xq

∫

x2q−n−1R±

t [S(G); x] dx


,

which proves (1.18).
The second integral equality (1.19) is proven in a similar way. First, we rewrite

equality (1.22) in a different form to obtain
∫

xm−n−1R±

1 [S(G); x] dx = xm−q

∫

xq−n−1U±

1 (G; x) dx.

Then, without explanation, we apply a similar sequence of transformations:

xn−q+1R±

1 [S(G); x] =
d

dx



xm−q

∫

xq−n−1U±

1 (G; x) dx


,

R±

1 [S(G); x] =xn−m+1 d

dx



xm−q

∫

xq−n−1U±

1 (G; x) dx


,

R±

1 [S(G); x] =xn−2q+1 d

dx



xq

∫

xq−n−1U±

1 (G; x) dx


,

which proves (1.19) and thus completes the whole proof. □
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In addition to Remark 3 (for monocyclic digraphs) and Theorem 1.4 (for undirected
graphs), we present the following corollary to formulae (1.13), which is given here
with a correction of a typo in [16].

Proposition 1.1. Let
q=n

G be an undirected simple monocyclic graph (whether a cycle
or not) with q = n. Then,

d

dx
ϕ±(

q=n

G ; x) =x−1
∑

uv

[

ϕ±
q=n

G − uv


∓ ϕ±(
q=n

G − u− v; x)
]

(1.24)

=
∑

u∈V (G)

ϕ±(
q=n

G − u; x) (q = n),

where the first combined summation ranges over the set of all edges of
q=n

G and all
pairs u and v of adjacent vertices (u < v; u ∼ v).

Thus, the derivative [ϕ±(
q=n

G ; x)]′ of the polynomial ϕ±(
q=n

G ; x) of a monocyclic graph
q=n

G is also reconstructible from the first combined sum in (1.24) (due to [16]). Earlier,
in the works on the reconstruction of the characteristic polynomial ϕ−(G; x) of an
arbitrary undirected graph G, the second sum of (1.24) was used; see, e.g., [5–8].

Special attention is paid to ϕ−(
q=n

G ; x) in [8].
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SYMMETRIC N-ADDITIVE MAPPINGS ADMITTING SEMIPRIME

RING

KAPIL KUMAR1

Abstract. Let R be a ring with centre Z(R). An n-additive map D : Rn → R

is called symmetric n-additive if D(x1, . . . , xn) = D(xπ(1), . . . , xπ(n)) for all xi ∈ R

and for every permutation (π(1), π(2), . . . , π(n)). A mapping △ : R → R defined
by △(x) = D(x, x, . . . , x) is called the trace of D. In this paper, we prove that a
nonzero Lie ideal L of a semiprime ring R of characteristic different from (2n − 2) is
central, if it satisfies any one of the following properties: (i) △([x, y]) ∓ xy ∈ Z(R);
(ii) △([x, y])∓ [y, x] ∈ Z(R); (iii) △(xy)∓△(x)∓ [x, y] ∈ Z(R); (iv) △([x, y])∓yx ∈
Z(R); (v) △(xy) ∓ △(y) ∓ [x, y] ∈ Z(R).

1. Introduction

Throughout the paper, R always represents an associative ring, Z(R) is its centre.
Let x, y, z ∈ R. We write the notation [y, x] for the commutator yx − xy and make
use of the identities [xy, z] = [x, z]y + x[y, z] and [x, yz] = [x, y]z + y[x, z]. Recall that
R is prime if aRb = ¶0♢ implies that either a = 0 or b = 0 semiprime if aRa = ¶0♢
implies that a = 0. Let R and S be abelian groups. A map q : R → S is called the
trace of a biadditive map if there exists a biadditive map B : R × R → S such that
q(x) = B(x, x) for all x ∈ R. Assuming further that R ⊆ R

′ are rings, we say that q

is commuting if [q(x), x] = q(x)x − xq(x) = 0 for all x ∈ R. An example is a map of
the form q(x) = λx2 + µ(x)x + ν(x) where λ ∈ C, the centre of S and µ, ν : R → C,
µ is additive and ν is the trace of a biadditive map. Quite often it turns out that
this obvious example is in fact the only possible example of a commuting trace of a
biadditive map of R into S. The basic result of this type states that this is true in the

Key words and phrases. Semiprime rings, Lie ideals, Symmetric n-additive mapping, Trace.
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case when R is a prime ring with char(R) ̸= 2 and S is its central closure provided,
however that R does not satisfy s4, the standard polynomial identity of degree 4 ([11],
Theorem 1). This theorem has turned out to be the key for solving different problems
and to a great extent it initiated the development of the theory of functional identities.
We studies about bidervations and the traces of mapping in articles [1, 9, 10, 12] for
details. A map f : R → R is centralizing on R if [f(x), x] ∈ Z(R) for all x ∈ R.
An additive map D : R → R is called a derivation if it satisfies the Leibnitz rule
D(xy) = D(x)y + xD(y) for all x, y ∈ R. Let n ≥ 2 be a fixed positive integer. A
map D : R × R × · · · × R

︸ ︷︷ ︸

n−times

→ R is said to be symmetric (or permuting), if the equation

D(x1, x2, . . . , xn) = D(xπ(1), xπ(2), . . . , xπ(n)) for all xi ∈ R and for every permutation
(π(1), π(2), . . . , π(n)). Let us consider the following maps Let n ≥ 2 be a fixed positive
integer. An n-additive map

D : R × R × · · · × R
︸ ︷︷ ︸

n−times

→ R

will be called an n-derivation if the relations

D(x1x1
′, x2, . . . , xn) =D(x1, x2, . . . , xn)x1

′ + x1D(x1
′, x2, . . . , xn),

D(x1, x2x2
′, . . . , xn) =D(x1, x2, . . . , xn)x2

′ + x2D(x1, x2
′, . . . , xn),

...

D(x1, x2, . . . , xn
′) =D(x1, x2, . . . , xn)xn

′ + xnD(x1, x2, . . . , xn
′),

are valid for all xi, xi
′ ∈ R. Of course, an 1-derivation is a derivation and a 2-derivation

is called a bi-derivation. If D is symmetric, then the above inequalities are equivalent
to each other. Let n ≥ 2 be a fixed positive integer. If R is commutative, then a map

D : R × R × · · · × R
︸ ︷︷ ︸

n−times

→ R,

defined by

(x1, x2, . . . , xn) → D(x1)D(x2) · · · D(xn), for all xi ∈ R, i = 1, 2, . . . , n,

is a symmetric n-derivation, where D is a derivation on R. Let n ≥ 2 be a fixed positive
integer and let a map △ : R → R defined by △(x) = D(x, x, . . . , x) for all x ∈ R,
where

D : R × R × · · · × R
︸ ︷︷ ︸

n−times

→ R

is a symmetric map, be the trace of D. It is obvious that, in case when

D : R × R × · · · × R
︸ ︷︷ ︸

n−times

→ R
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is a symmetric map which is also n-additive, the trace △ of D satisfies the relation

△(x + y) = △(x) + △(y) +
n−1∑

k=1

(

n

k



hk(x, y), for all x, y ∈ R,

and

hk(x, y) = D(x, x, . . . , x
︸ ︷︷ ︸

(n−k)−times

, y, y, . . . , y
︸ ︷︷ ︸

k−times

).

Gy. Maksa [3] introduced the concept of a symmetric biderivation (see also [2],
where an example can be found). It was shown in [3] that symmetric biderivations are
related to general solution of some functional equations. Some results on symmetric
biderivation in prime and semiprime rings can be found in [12] and [5]. The notion of
additive commuting mappings is closely connected with the notion of biderivations.
Every commuting additive mapping f : R → R gives rise to a biderivation on R.
Namely linearizing [x, f(x)] = 0 for all x ∈ R, we get

[f(x), y] = [x, f(y)], for all x ∈ R,

and hence we note that the mapping (x, y) → [f(x), y] is a biderivation (moreover, all
derivations appearing are inner). Motivated by the aforementioned results we prove
that a nonzero Lie ideal L of a semiprime ring R of characteristic different from (2n−2)
is central, if it satisfies any one of the following properties: (i) △([x, y])∓xy ∈ Z(R); (ii)
△([x, y])∓[y, x] ∈ Z(R); (iii) △(xy)∓△(x)∓[x, y] ∈ Z(R); (iv) △([x, y])∓yx ∈ Z(R);
(v) △(xy) ∓ △(y) ∓ [x, y] ∈ Z(R).

2. Preliminary Results

We make extensive use of basic commutator identities

[xy, z] = [x, z]y + x[y, z], [x, yz] = [x, y]z + y[x, z].

Moreover, we shall require the following lemmas.

Lemma 2.1 ([5], Lemma 1.1.5). If R is a semiprime ring, then the center of a nonzero

one sided ideal is contained in the center of R. As an immediate consequence, any

commutative one sided ideal is contained in the center of R.

Lemma 2.2. Let R be a semiprime ring and L be a nonzero Lie ideal of R. If

[L, L] ⊆ Z(R), then L ⊆ Z(R).

Proof. Since xy ∈ Z(R) for all x, y ∈ L, xy − yx = [x, y] ∈ Z(R) for all x, y ∈ L.

Using Lemma 2.1 we get the required result. □



758 K. KUMAR

3. Main Results

Theorem 3.1. Let R be a semiprime ring of characteristic not (2n − 2) and L be a

nonzero Lie ideal of R. Let D : Rn → R be a symmetric n-additive mapping and △
be the trace of D. If △([x, y]) ∓ xy ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof. Let

△([x, y]) − xy ∈ Z(R), for all x, y ∈ L.(3.1)

Replacing y by y + z in (3.1), we have

△([x, y] + [x, z]) − xy − xz ∈ Z(R), for all x, y, z ∈ L.

This implies that

△([x, y]) + △([x, z]) +
n−1∑

k=1

(

n

k



hk([x, y], [x, z]) − xy − xz ∈ Z(R).

By using (3.1), we obtain

n−1∑

k=1

(

n

k



hk([x, y], [x, z]) ∈ Z(R), for all x, y, z ∈ L.

This gives that
(

n

1



h1([x, y], [x, z]) +

(

n

2



h2([x, y], [x, z]) +

(

n

3



h3([x, y], [x, z])

+ · · · +

(

n

n − 1



hn−1([x, y], [x, z]) ∈ Z(R).

(3.2)

Substituting y for z in (3.2), we obtain
(

n

1



h1([x, y], [x, y]) +

(

n

2



h2([x, y], [x, y]) +

(

n

3



h3([x, y], [x, y])

+ · · · +

(

n

n − 1



hn−1([x, y], [x, y]) ∈ Z(R).

This implies that
(

n

1



D([x, y], [x, y], . . . , [x, y]
︸ ︷︷ ︸

(n−1)−times

, [x, y]
︸ ︷︷ ︸

1−times

) +

(

n

2



D([x, y], [x, y], . . . , [x, y]
︸ ︷︷ ︸

(n−2)−times

, [x, y]
︸ ︷︷ ︸

2−times

)

+ · · · +

(

n

n − 1



D( [x, y]
︸ ︷︷ ︸

1−times

, [x, y], [x, y], . . . , [x, y]
︸ ︷︷ ︸

(n−1)−times

) ∈ Z(R).

This shows that




(

n

1



+

(

n

2



+

(

n

3



+ · · · +

(

n

n − 1



D([x, y], [x, y], . . . , [x, y]) ∈ Z(R).
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We obtain

(2n − 2)D([x, y], [x, y], . . . , [x, y]) ∈ Z(R), for all x, y ∈ L.(3.3)

Since R is not of characteristic (2n − 2), we get

D([x, y], [x, y], . . . , [x, y]) ∈ Z(R), for all x, y ∈ L.

Applying the definition of the trace

△([x, y]) ∈ Z(R), for all x, y ∈ L.(3.4)

Using (3.1), we get xy ∈ Z(R) for all x, y ∈ L. This implies that [x, y] ∈ Z(R). By
using Lemma 2.2, we get L ⊆ Z(R).

Similarly, we can prove the result if f([x, y]) + xy ∈ Z(R) for all x, y ∈ L. □

Theorem 3.2. Let R be a semiprime ring of characteristic not (2n − 2) and L be a

nonzero Lie ideal of R. Let D : Rn → R be a symmetric n-additive mapping and △
be the trace of D. If △([x, y]) ∓ [y, x] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof. Using the same argument as in Theorem 3.1. □

Theorem 3.3. Let R be a semiprime ring of characteristic not (2n − 2) and L be a

nonzero Lie ideal of R. Let D : Rn → R be a symmetric n-additive mapping and △
be the trace of D. If △(xy) ∓ △(x) ∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof. Suppose

△(xy) − △(x) − [x, y] ∈ Z(R), for all x, y ∈ L.(3.5)

Replacing x by x + z in (3.5), we have

△((x + z)y) + △(x + z) − [x + z, y] ∈ Z(R), for all x, y, z ∈ L.

This implies that

△(xy + zy) − △(x + z) − [x, y] − [z, y] ∈ Z(R), for all x, y, z ∈ L.

This gives that

△(xy) + △(zy) +
n−1∑

k=1

(

n

k



hk(xy, zy) − △(x) − △(z)

−
n−1∑

k=1

(

n

k



hk(x, z) − [x, y] − [z, y] ∈ Z(R).

This implies that

△(xy) − △(x) − [x, y] + △(zy) − △(z) − [z, y]

+
n−1∑

k=1

(

n

k



hk(xy, zy) −
n−1∑

k=1

(

n

k



hk(x, z) ∈ Z(R).
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Using (3.5), we get

n−1∑

k=1

(

n

k



hk(xy, zy) −
n−1∑

k=1

(

n

k



hk(x, z) ∈ Z(R), for all x, y, z ∈ L.

This shows that
(

n

1



h1(xy, zy) +

(

n

2



h2(xy, zy) + · · · +

(

n

n − 1



hn−1(xy, zy)

−

(

n

1



h1(x, z) −

(

n

2



h2(x, z) − · · · −

(

n

n − 1



hn−1(x, z) ∈ Z(R).

(3.6)

Substituting x for z in (3.6), we have
(

n

1



h1(xy, xy) +

(

n

2



h2(xy, xy) + · · · +

(

n

n − 1



hn−1(xy, xy)

−

(

n

1



h1(x, x) −

(

n

2



h2(x, x) − · · · −

(

n

n − 1



hn−1(x, x) ∈ Z(R).

We find that
(

n

1



D(xy, xy, . . . , xy
︸ ︷︷ ︸

(n−1)−times

, xy
︸︷︷︸

1−times

) +

(

n

2



D(xy, xy, . . . , xy
︸ ︷︷ ︸

(n−2)−times

, xy
︸︷︷︸

2−times

)

+ · · · +

(

n

n − 1



D( xy
︸︷︷︸

1−times

, xy, xy, . . . , xy
︸ ︷︷ ︸

(n−1)−times

) ∈ Z(R).

This implies that

(2n − 2) (D(xy, xy, . . . , xy) − D(x, x, . . . , x)) ∈ Z(R), for all x, y ∈ L.

Since R is not of characteristic (2n − 2),

D(xy, xy, . . . , xy) − D(x, x, . . . , x) ∈ Z(R), for all x, y, z ∈ L.

By definition of the trace, we get

△(xy) − △(x) ∈ Z(R), for all x, y ∈ L.(3.7)

Using (3.5), [x, y] ∈ Z(R) for all x, y ∈ L. Arguing similar manner as in the Theo-
rem 3.1, we get the result. Similarly, we can prove the result if △(xy)+△(x)+[x, y] ∈
Z(R) for all x, y ∈ L. □

Theorem 3.4. Let R be a semiprime ring of characteristic not (2n − 2) and L be a

nonzero Lie ideal of R. Let D : Rn → R be a symmetric n-additive mapping and △
be the trace of D. If △([x, y]) ∓ yx ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof. Using the same argument as in Theorem 3.3. □

Theorem 3.5. Let R be a semiprime ring of characteristic not (2n − 2) and L be a

nonzero left ideal of R. Let D : Rn → R be a symmetric n-additive mapping and △
be the trace of D. If △(xy) ∓ △(y) ∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).
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Proof. Suppose

△(xy) − △(y) − [x, y] ∈ Z(R), for all x, y ∈ L.(3.8)

Replacing y by y + z in (3.8), we obtain

△(x(y + z)) − △(y + z) − [x, y + z] ∈ Z(R), for all x, y, z ∈ L.

This shows that

△(xy) + △(xz) +
n−1∑

k=1

(

n

k



hk(xy, xz) − △(y)

− △(z) −
n−1∑

k=1

(

n

k



hk(y, z) − [x, y] − [x, z] ∈ Z(R).

We find that

△(xy) − △(y) − [x, y] +
n−1∑

k=1

(

n

k



hk(xy, xz) + △(xz)

− △(z) − [x, z] −
n−1∑

k=1

(

n

k



hk(y, z) ∈ Z(R).

Using (3.8), we have

n−1∑

k=1

(

n

k



hk(xy, xz) −
n−1∑

k=1

(

n

k



hk(y, z) ∈ Z(R).

On simplifying,

(

n

1



h1(xy, xz) +

(

n

2



h2(xy, xz) + · · · +

(

n

n − 1



hn−1(xy, xz)

−

(

n

1



h1(y, z) −

(

n

2



h2(y, z) − · · · −

(

n

n − 1



hn−1(y, z) ∈ Z(R).

(3.9)

Substituting y for z in (3.9), we get

(

n

1



h1(xy, xy) +

(

n

2



h2(xy, xy) + · · · +

(

n

n − 1



hn−1(xy, xy)

−

(

n

1



h1(y, y) −

(

n

2



h2(y, y) − · · · −

(

n

n − 1



hn−1(y, y) ∈ Z(R).
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This implies that
(

n

1



D(xy, . . . , xy
︸ ︷︷ ︸

(n−1)−times

, xy
︸︷︷︸

1−times

) +

(

n

2



D(xy, xy, . . . , xy
︸ ︷︷ ︸

(n−2)−times

, xy
︸︷︷︸

3−times

)

+ · · · +

(

n

n − 1



D( xy
︸︷︷︸

1−times

, xy, xy, . . . , xy
︸ ︷︷ ︸

(n−1)−times

) −

(

n

1



D(y, y, . . . , y
︸ ︷︷ ︸

(n−1)−times

, y
︸︷︷︸

1−times

)

−

(

n

2



D(y, y, . . . , y
︸ ︷︷ ︸

(n−2)−times

, y
︸︷︷︸

2−times

) − · · · −

(

n

n − 1



D( y
︸︷︷︸

1−times

, y, y, . . . , y
︸ ︷︷ ︸

(n−1)−times

) ∈ Z(R).

Now solving the above equation, we get




(

n

1



+

(

n

2



+

(

n

3



+ · · · +

(

n

n − 1



D(xy, xy, . . . , xy)

−





(

n

1



+

(

n

2



+

(

n

3



+ · · · +

(

n

n − 1



D(y, y, . . . , y) ∈ Z(R).

This gives that

(2n − 2) (D(xy, xy, . . . , xy) − D(y, y, . . . , y)) ∈ Z(R), for all x, y ∈ L.

Since R is not characteristic (2n − 2), we find

D(xy, xy, . . . , xy) − D(y, y, . . . , y) ∈ Z(R), for all x, y ∈ L.

This shows that

△(xy) − △(y) ∈ Z(R), for all x, y ∈ L.(3.10)

Using (3.8) and (3.10), we have [x, y] ∈ Z(R) for all x, y ∈ L. Arguing in similar
manner as in Theorem 3.1, we get the result. Similarly, we can prove the result if
△([x, y]) + △(y) + [x, y] ∈ Z(R) for all x, y ∈ L. □

4. Examples

The following examples illustrate that R to be semiprime and characteristic not
(2n − 2) for n > 1 is essential in the hypothesis of the above theorem.

Example 4.1. Let R =

{(

p q

0 r



♣ p, q, r ∈ Z, ring of integers

}

and the Lie ideal

L =

{(

0 q

0 0



♣ q ∈ Z

}

. Then Z(R) =

{(

p 0
0 p



♣ p ∈ Z

}

. Define a map

D : R × R × · · · × R
︸ ︷︷ ︸

n−times

→ R by

D

((

p1 q1

0 r1



,

(

p2 q2

0 r2



, . . . ,

(

pn qn

0 rn



=

(

p1p2p3 · · · pn 0
0 0



.
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Then D is symmetric n-additive with trace △ defined by △ : R → R such that

△

((

p q

0 r



= D

((

p q

0 r



,

(

p q

0 r



, . . . ,

(

p q

0 r



satisfying hypothesis of

the above theorems. However, L ⊈ Z(R).

Example 4.2. Let R =

{(

x 0
y z



♣ x, y, z ∈ Z, ring of integers

}

and the Lie ideal

L =

{(

0 0
y 0



♣ y ∈ Z

}

. Then Z(R) =

{(

x 0
0 x



♣ x ∈ Z

}

. Define a map

D : R × R × · · · × R
︸ ︷︷ ︸

n−times

→ R by

D

((

x1 0
y1 z1



,

(

x2 0
y2 z2



, . . . ,

(

xn 0
yn zn



=

(

0 0
0 z1z2z3 · · · zn



.

Then D is symmetric n-additive with trace △ defined by △ : R → R such that

△

((

x 0
y z



= D

((

x 0
y z



,

(

x 0
y z



, . . . ,

(

x 0
y z



satisfying hypothesis of

the above theorems. However, L ⊈ Z(R).
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ON THE HYPERBOLIC k-MERSENNE AND k-MERSENNE-LUCAS

OCTONIONS

MINE UYSAL1, MUNESH KUMARI2, BAHAR KULOĞLU1, KALIKA PRASAD2,∗,
AND ENGIN ÖZKAN1

Abstract. In this paper, we introduce the hyperbolic k-Mersenne and k-Mersenne-
Lucas octonions and investigate their algebraic properties. We give BinetŠs formula
and present several interrelations and some well-known identities such as Catalan
identity, dŠOcagne identity, Vajda identity, generating functions, etc. of these octo-
nions in closed form. Furthermore, we investigate the relations between hyperbolic
k-Mersenne octonions and hyperbolic k-Mersenne-Lucas octonions.

1. Introduction

Number sequences have been studied by researchers for a long time. In particular,
the most important and remarkable of these numbers are the Fibonacci numbers.
Until today, Fibonacci numbers have been studied and many generalizations have
been made. Lucas, Jacobsthal, Jacobsthal-Lucas, Pell, Pell-Lucas, etc. numbers can
be given as examples of these generalizations [2, 5, 8, 14,15,19–21,23].

One of these numbers is the Mersenne number. They are named after Marin
Mersenne, a French Minim friar, who studied them in the early 17th century. Mersenne
numbers have been studied in the literature and various generalizations such as
Mersenne-Lucas, k-Mersenne, k-Mersenne-Lucas have been studied [1,4,6,7,17,22,25–
27].

Definition 1.1. The Mersenne sequence ¶Mn♢n≥0 is defined recursively as

Mn+2 = 3Mn+1 − 2Mn, with M0 = 0, M1 = 1, n ≥ 0.

Key words and phrases. Hyperbolic k-Mersenne octonions, hyperbolic k-Mersenne-Lucas octo-
nions, Binet formula, Catalan identity, generating function.
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Definition 1.2. The Mersenne-Lucas sequence ¶mn♢n≥0 is defined recursively as

mn+2 = 3mn+1 − 2mn, with m0 = 2, m1 = 3, n ≥ 0.

Definition 1.3. The k-Mersenne sequence ¶Mk,n♢n≥0 is given recursively as

(1.1) Mk,n+2 = 3kMk,n+1 − 2Mk,n, Mk,0 = 0, Mk,1 = 1, n ≥ 0.

Definition 1.4. The k-Mersenne-Lucas sequence ¶mk,n♢n≥0 is given recursively as

(1.2) mk,n+2 = 3kmk,n+1 − 2mk,n, mk,0 = 2, mk,1 = 3k, n ≥ 0.

The characteristic equation corresponding to the recurrence relations (1.1) and (1.2)

is α2 − 3kα + 2 = 0 and its roots are α1 = 3k+
√

9k2−8

2
and α2 = 3k−

√
9k2−8

2
. These

characteristics roots hold the following properties

α1 + α2 = 3k, α1α2 = 2, α1 − α2 =
√

9k2 − 8.(1.3)

The Binet formulas of k-Mersenne and k-Mersenne-Lucas sequences are given, respec-
tively, by

mk,n = αn
1 + αn

2 and Mk,n =
αn

1 − αn
2

α1 − α2

.(1.4)

The quaternion, an algebraic structure, was first described in 1843 by William
Rowan Hamilton [11]. Hamilton defined a quaternion as the quotient of two directed
lines in a three-dimensional space, or, equivalently, as the quotient of two vectors.
Multiplication of quaternions is noncommutative. A. F. Horadam defined the nth
Fibonacci and nth Lucas quaternions and gave their some properties in 1963 [12].
Thus, Macfarlane defined the hyperbolic quaternions and studied their properties
[18]. Recently, these numbers have been examined and studies have been carried
out [10, 13, 24]. The hyperbolic k-Fibonacci and k-Fibonacci-Lucas, hyperbolic k-
Jacobsthal and k-Jacobsthal-Lucas quaternions were defined and given some of their
properties [10, 24]. In mathematics, the octonions are a normed division algebra over
the real numbers, a kind of hypercomplex number system. Octonions have eight
dimensions; twice the number of dimensions of the quaternions, of which they are
an extension. They are noncommutative and nonassociative, but satisfy a weaker
form of associativity; namely, they are alternative. They are also power associative.
Octonions are not as well known as quaternions and complex numbers, which are
much more widely studied and used.

A. Cariow and G. Cariow defined the hyperbolic octonions [3]. A hyperbolic
octonion O has the form

O = h0 + h1i1 + h2i2 + h3i3 + h4i4 + h5i5 + h6i6 + h7i7

= (h0, h1, h2, h3, h4, h5, h6, h7),

where i1, i2, i3 are quaternion imaginary units and h0, h1, h2, h3, h4, h5, h6, h7 are the
real components, i4 (i4

2 = 1) is a counter imaginary unit, and the bases of hyperbolic
octonions are defined as in Table 1.
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. i1 i2 i3 i4 i5 i6 i7

i1 −1 i3 −i2 i5 i4 −i7 i6

i2 −i3 −1 i1 i6 i7 i4 −i5

i3 i2 −i1 −1 i7 −i6 i5 i4

i4 −i5 −i6 −i7 1 i1 i2 i3

i5 −i4 −i7 i6 −i1 1 i3 −i2

i6 i7 −i4 −i5 −i2 −i3 1 i1

i7 −i6 i5 −i4 −i3 i2 −i1 1

Table 1: Multiplication rule for hyperbolic octonions units.

Godase A. defined the hyperbolic k-Fibonacci and k-Fibonacci-Lucas octonions and
gave some of their properties [9]. Özkan E. et al. defined the hyperbolic k-Jacobsthal
and k-Jacobsthal-Lucas octonions and gave some of their properties [23]. Kumari
M. et al. defined the k-Mersenne, k-Mersenne-Lucas octonions and examined some
properties of these numbers [16]. As a new generalization of this study [16], we
examine the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions and give their
features.

2. Hyperbolic k-Mersenne Octonions

In this section, we introduce the hyperbolic k-Mersenne octonions and establish
their Binet formula. Furthermore, we study some well-known identities of them.

Definition 2.1. For n ≥ 0, the hyperbolic k-Mersenne octonions HMk,n are defined
by

HMk,n = Mk,n + Mk,n+1i1 + Mk,n+2i2 + · · · + Mk,n+7i7

= (Mk,n, Mk,n+1, Mk,n+2, Mk,n+3, Mk,n+4, Mk,n+5, Mk,n+6, Mk,n+7).

Definition 2.2. The sequence can be extended to negative indices n, HMk,−n is
defined by

HMk,−n = − 1

2n
Mk,n − 1

2n−1
Mk,n−1i1 − 1

2n−2
Mk,n−2i2 − 1

2n−3
Mk,n−3i3

− 1

2n−4
Mk,n−4i4 − 1

2n−5
Mk,n−5i5 − 1

2n−6
Mk,n−6i6 − 1

2n−7
Mk,n−7i7.

Definition 2.3. Let the scalar and vector parts of the hyperbolic k-Mersenne octo-
nions HMk,n be denoted by S(HMk,n) and V (HMk,n), respectively, and are defined
as follows

S(HMk,n) = Mk,n,

V (HMk,n) = (Mk,n+1, Mk,n+2, Mk,n+3, Mk,n+4, Mk,n+5, Mk,n+6, Mk,n+7).

Thus, HMk,n = S(HMk,n) + V (HMk,n).
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Definition 2.4. For n ≥ 0, the conjugate of the hyperbolic k-Mersenne octonions
HMk,n is defined by

HMk,n = Mk,n − Mk,n+1i1 − Mk,n+2i2 − · · · − Mk,n+7i7

= (Mk,n, −Mk,n+1, −Mk,n+2, −Mk,n+3, −Mk,n+4, −Mk,n+5, −Mk,n+6, −Mk,n+7).

Theorem 2.1. The following equation is provided

HMk,n + HMk,n = 2S(HMk,n) = 2Mk,n.

Proof. From Definition 2.4, we have

HMk,n + HMk,n = S(HMk,n) + V (HMk,n) + S(HMk,n) − V (HMk,n)

= 2S(HMk,n) = 2Mk,n. □

Definition 2.5. The norm of the hyperbolic k-Mersenne octonions HMk,n is defined
by

N(HMk,n) =
√

M2
k,n + · · · + M2

k,n+3 − M2
k,n+4 − M2

k,n+5 − M2
k,n+6 − M2

k,n+7.

Theorem 2.2. The recurrence relations of the HMk,n and HMk,n are as follows:

(a) HMk,n+1 = 3kHMk,n − 2HMk,n−1;

(b) HMk,n+1 = 3kHMk,n − 2HMk,n−1.

Proof. (a) We have

HMk,n+1 = Mk,n+1 + Mk,n+2i1 + Mk,n+3i2 + Mk,n+4i3 + Mk,n+5i4 + Mk,n+6i5

+ Mk,n+7i6 + Mk,n+8i7

= (3kMk,n − 2Mk,n−1) + (3kMk,n+1 − 2Mk,n)i1 + (3kMk,n+2 − 2Mk,n+1)i2

+ (3kMk,n+3 − 2Mk,n+2)i3 + (3kMk,n+4 − 2Mk,n+3)i4 + (3kMk,n+5

− 2Mk,n+4)i5 + (3kMk,n+6 − 2Mk,n+5)i6 + (3kMk,n+7 − 2Mk,n+6)i7

= 3k(Mk,n + Mk,n+1i1 + Mk,n+2i2 + Mk,n+3i3 + Mk,n+4i4 + Mk,n+5i5

+ Mk,n+6i6 + Mk,n+7i7) − 2(Mk,n−1 + Mk,ni1 + Mk,n+1i2 + Mk,n+2i3

+ Mk,n+3i4 + Mk,n+4i5 + Mk,n+5i6 + Mk,n+6i7)

= 3kHMk,n − 2HMk,n−1.

The proof of (b) is similar to that of (a). □

Theorem 2.3 (Binet Formula). The Binet formulas for the hyperbolic k-Mersenne

octonions are

(a) HMk,n =
α∗αn

1 − β∗αn
2

α1 − α2

;

(b) HMk,n =
α∗αn

1 − β∗αn
2

α1 − α2

;

(c) HMk,−n =
1

2n



α∗αn
2 − β∗αn

1

α1 − α2



,
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where

α∗ = 1 + α1i1 + α2

1i2 + α3

1i3 + α4

1i4 + α5

1i5 + α6

1i6 + α7

1i7

= (1, α1, α2

1, α3

1, α4

1, α5

1, α6

1, α7

1),

β∗ = 1 + α2i1 + α2

2i2 + α3

2i3 + α4

2i4 + α5

2i5 + α6

2i6 + α7

2i7

= (1, α2, α2

2, α3

2, α4

2, α5

2, α6

2, α7

2),

α∗ = 1 − α1i1 − α2

1i2 − α3

1i3 − α4

1i4 − α5

1i5 − α6

1i6 − α7

1i7

= (1, −α1, −α2

1, −α3

1, −α4

1, −α5

1, −α6

1, −α7

1),

β∗ = 1 − α2i1 − α2

2i2 − α3

2i3 − α4

2i4 − α5

2i5 − α6

2i6 − α7

2i7

= (1, −α2, −α2

2, −α3

2, −α4

2, −α5

2, −α6

2, −α7

2).

Proof. (a) Using Definition 2.1 and the Binet formula of Mk,n, we have

HMk,n =Mk,n + Mk,n+1i1 + Mk,n+2i2 + Mk,n+3i3 + Mk,n+4i4 + Mk,n+5i5

+ Mk,n+6i6 + Mk,n+7i7

=


αn
1 − αn

2

α1 − α2



+


αn+1
1 − αn+1

2

α1 − α2



i1 + · · · +


αn+7
1 − αn+7

2

α1 − α2



i7

=
αn

1

α1 − α2

(1 + α1i1 + · · · + α7

1i7) − αn
2

α1 − α2

(1 + α2i1 + · · · + α7

2i7)

=
αn

1 α∗ − αn
2 β∗

α1 − α2

.

The proofs of (b) and (c) are similar to (a), by using Definition 2.4 and Definition 2.2,
respectively. □

Theorem 2.4. For r, s, n ∈ N such that s ≥ r, the generating functions for hyperbolic

k-Mersenne octonions are given as

(a)
∞
∑

n=0

HMk,nxn =
HMk,0 + (HMk,1 − 3kHMk,0) x

1 − 3kx + 2x2
;

(b)
∞
∑

n=0

HMk,sn+rx
n =

HMk,r − 2r
HMk,s−rx

1 − mk,sx + 2sx2
.

The exponential generating functions for hyperbolic k-Mersenne octonions are

(c)
∞
∑

n=0

HMk,snxn

n!
=

α∗eαs

1
x − β∗eαs

2
x

α1 − α2

;

(d)
∞
∑

n=0

HMk,sn+rx
n

n!
=

α∗αr
1e

αs

1
x − β∗αr

2e
αs

2
x

α1 − α2

.

Proof. (a) Let G(x) =
∑∞

n=0 HMk,nxn. We have

G(x) =
∞
∑

n=0

HMk,nxn = HMk,0 + HMk,1x + HMk,2x
2 + HMk,3x

3 + · · · ,
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3kxG(x) = HMk,03kx + HMk,13kx2 + HMk,23kx3 + HMk,33kx4 + · · · ,

2x2G(x) = HMk,02x2 + HMk,12x3 + HMk,22x4 + HMk,32x5 + · · · .

If the necessary mathematical operations are performed, we get the following

(1 − 3kx + 2x2)G(x) = HMk,0 + (HMk,1 − 3kHMk,0) x,

G(x) =
HMk,0 + (HMk,1 − 3kHMk,0) x

1 − 3kx + 2x2
.

The proofs of (b), (c) and (d) are similar to that of (a). □

Theorem 2.5. For k ̸= 1, we have
n
∑

i=0

HMk,i =
2HMk,n − HMk,n+1 + HMk,1 + (1 − 3k)HMk,0

3(1 − k)
.

Proof. Using Theorem 2.3, we obtain
n
∑

i=0

HMk,i =
n
∑

i=0



α∗αi
1 − β∗αi

2

α1 − α2



=
α∗

α1 − α2

n
∑

i=0

αi
1 − β∗

α1 − α2

n
∑

i=0

αi
2

=
α∗(1 − α2 − αn+1

1 + αn+1
1 α2) − β∗(1 − α1 − αn+1

2 + αn+1
2 α1)

(α1 − α2)(1 − (α1 + α2) + α1α2)

=
α∗ − β∗ − α1α2(α∗α−1

1 − β∗α−1
2 ) − (α∗αn+1

1 − β∗αn+1
2 )

(α1 − α2)3(1 − k)

+
α1α2(α∗αn

1 − β∗αn
2 )

(α1 − α2)3(1 − k)

=
HMk,0 − 2HMk,−1 − HMk,n+1 + 2HMk,n

3(1 − k)
(from Theorem 2.3)

=
2HMk,n − HMk,n+1 + HMk,1 + (1 − 3k)HMk,0

3(1 − k)
,

as required. □

Lemma 2.1. We have

(a) α∗ − β∗ = δHMk,0;

(b) α∗ + α∗ = mk,0 = 2;

(c) α∗ + β∗ = 2 + δHMk,0;

(d) α∗β∗ = (227, −83α1 + 85α2, 19α2
1 − 17α2

2, −15α3
1 + 17α3

2 + 34α2 − 34α1,

−13α4
1 + 15α4

2, 5α5
1 − 3α5

2 − 10α3
1 + 10α3

2, −α6
1 + 3α6

2 + 4α2
1 − 4α2

2,

α7
1 + α7

2 + 2α5
1 − 2α5

2 − 4α3
1 + 4α3

2 − 8α1 + 8α2) = a1.

(e) β∗α∗ = (227, 85α1 − 83α2, −17α2
1 + 19α2

2, 17α3
1 − 15α3

2 + 34α1 − 34α2,

15α4
1 − 13α4

2, −3α5
1 + 5α5

2 + 10α3
1 − 10α3

2, 3α6
1 − α6

2 − 4α2
1 + 4α2

2,

α7
1 + α7

2 − 2α5
1 + 2α5

2 + 4α3
1 − 4α3

2 + 8α1 − 8α2) = a2.
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Proof. The proof of the lemma can be easily seen by substituting the values of the
roots and performing the necessary operations. □

Theorem 2.6 (Catalan’s Identity). For any positive integers n, s such that n ≥ s,

we have

HMk,n−sHMk,n+s − HM2

k,n = 2n−sMk,s

a1α
s
2 − a2α

s
1

(α1 − α2)
.

Proof. By using the Binet formula of the hyperbolic k-Mersenne octonions, we have

HMk,n−sHMk,n+s−HM2

k,n =
1

(α1 − α2)2



α∗β∗αn
1 αn

2



1 − αs
2

αs
1



+β∗α∗αn
2 αn

1



1− αs
1

αs
2

]

=
(α1α2)n(αs

1 − αs
2)

(α1 − α2)2
· α∗β∗αs

2 − β∗α∗αs
1

(α1α2)s

= (α1α2)
n−sMk,s

a1α
s
2 − a2α

s
1

(α1 − α2)

= 2n−sMk,s

a1α
s
2 − a2α

s
1

(α1 − α2)
. □

Theorem 2.7 (Cassini’s Identity). For n ≥ 1, we have

HMk,n−1HMk,n+1 − HM2

k,n = 2n−1
a1α2 − a2α1√

9k2 − 8
.

Proof. By substituting s = 1 in the Catalan Identity, we obtain the required result. □

Theorem 2.8 (d’Ocagne’s Identity). Let n, s ≥ 0, then we have

HMk,sHMk,n+1 − HMk,s+1HMk,n = 2n a1α
s−n
1 − a2α

s−n
2√

9k2 − 8
.

Proof. By using the Binet formula of the hyperbolic k-Mersenne octonions, we have

HMk,sHMk,n+1 − HMk,s+1HMk,n =
α∗β∗αs

1α
n
2 (α1 − α2) + β∗α∗αs

2α
n
1 (α2 − α1)

(α1 − α2)2

=
(α1α2)n(α1 − α2)

(α1 − α2)2



α∗β∗αs−n
1 − β∗α∗αs−n

2



= 2n a1α
s−n
1 − a2α

s−n
2√

9k2 − 8
. □

Theorem 2.9 (Vajda Identity). For any natural numbers n, i and j, we have

HMk,n+iHMk,n+j − HMk,nHMk,n+i+j = −2nMk,i

a1α
j
2 − a2α

j
1√

9k2 − 8
.

Proof. Proof is similar to Theorem 2.8 by using Binet formula of hyperbolic k-
Mersenne octonions. □
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3. Hyperbolic k-Mersenne-Lucas Octonions

In this section, we introduce the hyperbolic k-Mersenne-Lucas octonions and es-
tablish their Binet formula. Furthermore, we study some well-known identities of
them.

Definition 3.1. For n ≥ 0, the hyperbolic k-Mersenne-Lucas octonions Hmk,n are
defined by

Hmk,n = mk,n + mk,n+1i1 + mk,n+2i2 + · · · + mk,n+7i7

= (mk,n, mk,n+1, mk,n+2, mk,n+3, mk,n+4, mk,n+5, mk,n+6, mk,n+7).

Definition 3.2. For n ≥ 0, the conjugate of hyperbolic k-Mersenne-Lucas octonions
Hmk,n is defined by

Hmk,n = mk,n − mk,n+1i1 − mk,n+2i2 − · · · − mk,n+7i7

= (mk,n, −mk,n+1, −mk,n+2, −mk,n+3, −mk,n+4, −mk,n+5, −mk,n+6, −mk,n+7).

If we use Definition 1.2 in Definition 3.1, then we can define the hyperbolic k-
Mersenne-Lucas octonions recursively as

Hmk,n+2 = 3kHmk,n+1 − 2Hmk,n, n ≥ 0.

Theorem 3.1 (Binet Formula). The Binet formulas for the hyperbolic k-Mersenne-

Lucas octonions and their conjugate are

(a) Hmk,n = α∗αn
1 + β∗αn

2 ;
(b) Hmk,n = α∗αn

1 + β∗αn
2 ,

where

α∗ = 1 + α1i1 + α2

1i2 + α3

1i3 + α4

1i4 + α5

1i5 + α6

1i6 + α7

1i7

= (1, α1, α2

1, α3

1, α4

1, α5

1, α6

1, α7

1),

β∗ = 1 + α2i1 + α2

2i2 + α3

2i3 + α4

2i4 + α5

2i5 + α6

2i6 + α7

2i7

= (1, α2, α2

2, α3

2, α4

2, α5

2, α6

2, α7

2),

α∗ = 1 − α1i1 − α2

1i2 − α3

1i3 − α4

1i4 − α5

1i5 − α6

1i6 − α7

1i7

= (1, −α1, −α2

1, −α3

1, −α4

1, −α5

1, −α6

1, −α7

1),

β∗ = 1 − α2i1 − α2

2i2 − α3

2i3 − α4

2i4 − α5

2i5 − α6

2i6 − α7

2i7

= (1, −α2, −α2

2, −α3

2, −α4

2, −α5

2, −α6

2, −α7

2).

Proof. (a) Using Definition 3.1 and the Binet formula of mk,n, we have

Hmk,n =mk,n + mk,n+1i1 + mk,n+2i2 + · · · + mk,n+7i7

= (αn
1 + αn

2 ) +


αn+1

1 + αn+1

2



i1 +


αn+2

1 + αn+2

2



i2 +


αn+3

1 + αn+3

2



i3

+


αn+4

1 + αn+4

2



i4 +


αn+5

1 + αn+5

2



i5 +


αn+6

1 + αn+6

2



i6
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+


αn+7

1 + αn+7

2



i7

=αn
1 (1 + α1i1 + α2

1i2 + · · · + α7

1i7) + αn
2 (1 + α2i1 + α2

2i2 + · · · + α7

2i7)

=α∗αn
1 + β∗αn

2 .

The proof of (b) is similar to (a) by using the Definition 3.2. □

Lemma 3.1. We have

(a) α∗ + β∗ = Hmk,0;

(b) α∗ − β∗ = Hmk,0 − 2.

Proof. The proof of the lemma can be easily seen by substituting the values of α∗ and
β∗ and performing the necessary operations. □

Theorem 3.2 (Catalan’s Identity). For any positive integers n, s such that n ≥ s,

we have

Hmk,n−sHmk,n+s − Hm2

k,n = 2n−sMk,s

√
9k2 − 8(β∗α∗αs

1 − α∗β∗αs
2).

Proof. By using the Binet formula of the hyperbolic k-Mersenne-Lucas octonions, we
have

Hmk,n−sHmk,n+s − Hm2

k,n =


α∗αn−s
1 + β∗αn−s

2

 

α∗αn+s
1 + β∗αn+s

2



− (α∗αn
1 + β∗αn

2 )2

=(α∗)2α2n
1 + α∗β∗αn−s

1 αn+s
2 + β∗α∗αn+s

1 αn−s
2 + (β∗)2α2n

2

−


(α∗)2α2n
1 + α∗β∗αn

1 αn
2 + β∗α∗αn

1 αn
2 + (β∗)2α2n

2



=α∗β∗αn−s
1 αn+s

2 + β∗α∗αn+s
1 αn−s

2 − α∗β∗αn
1 αn

2 −β∗α∗αn
1 αn

2

=(α1α2)
n



α∗β∗


αs
2

αs
1

− 1



+ β∗α∗


αs
1

αs
2

− 1

]

=(α1α2)
n(αs

1 − αs
2)



β∗α∗

αs
2

− α∗β∗

αs
1



=(α1α2)
n(αs

1 − αs
2)

β∗α∗αs
1 − α∗β∗αs

2

αs
1α

s
2

=2n−sMk,s

√
9k2 − 8(β∗α∗αs

1 − α∗β∗αs
2),

as required. □

Theorem 3.3 (Cassini’s Identity). For n ≥ 1, we have

Hmk,n−1Hmk,n+1 − Hm2

k,n = 2n−1
√

9k2 − 8 (β∗α∗α1 − α∗β∗α2) .

Proof. By substituting s = 1 in the Catalan identity, we obtain the required result. □

Theorem 3.4 (d’Ocagne’s Identity). Let n, s ≥ 0, then we have

Hmk,sHmk,n+1 − Hmk,s+1Hmk,n = 2n
√

9k2 − 8(β∗α∗αs−n
2 − α∗β∗αs−n

1 ).
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Proof. By using the Binet formula of the hyperbolic k-Mersenne-Lucas octonions, we
have

Hmk,sHmk,n+1 − Hmk,s+1Hmk,n

= (α∗αs
1 + β∗αs

2)


α∗αn+1

1 + β∗αn+1

2



−


α∗αs+1

1 + β∗αs+1

2



(α∗αn
1 + β∗αn

2 )

=(α∗)2αn+s+1

1 + α∗β∗αs
1α

n+1

2 + β∗α∗αn+1

1 αs
2 + (β∗)2αn+s+1

2

−


(α∗)2αn+s+1

1 + α∗β∗αs+1

1 αn
2 + β∗α∗αn

1 αs+1

2 + (β∗)2αn+s+1

2



=β∗α∗αn
1 αs

2(α1 − α2) − α∗β∗αs
1α

n
2 (α1 − α2)

=(α1α2)
n(α1 − α2)(β

∗α∗αs−n
2 − α∗β∗αs−n

1 )

=2n
√

9k2 − 8(β∗α∗αs−n
2 − α∗β∗αs−n

1 ). □

Theorem 3.5 (Vajda Identity). For any natural numbers n, i and j, we have

Hmk,n+iHmk,n+j − Hmk,nHmk,n+i+j = 2nMk,i

√
9k2 − 8(α∗β∗α

j
2 − β∗α∗α

j
1).

Proof. Proof is similar to Theorem 3.4 by using Binet formula of hyperbolic k-
Mersenne-Lucas octonions. □

Theorem 3.6. For r, s, n ∈ N such that r ≥ s, the generating functions for hyperbolic

k-Mersenne-Lucas octonions are given as

(a)
∑∞

n=0 Hmk,snxn =
Hmk,0 − x (Hmk,0mk,s − Hmk,s)

1 − mk,sx + 2sx2
;

(b)
∑∞

n=0 Hmk,sn+rx
n =

Hmk,r − 2s
Hmk,r−sx

1 − mk,sx + 2sx2
;

(c) The exponential generating function is given as
∞
∑

n=0

Hmk,snxn

n!
= α∗eαs

1
x + β∗eαs

2
x.

Proof. (a) Using the Theorem 3.1, we have
∞
∑

n=0

Hmk,snxn =
∞
∑

n=0

(α∗αsn
1 + β∗αsn

2 ) xn = α∗
∞
∑

n=0

(αs
1x)n + β∗

∞
∑

n=0

(αs
2x)n

= α∗


1

1 − αs
1x



+ β∗


1

1 − αs
2x



=
(α∗ + β∗) − x (β∗αs

1 + α∗αs
2)

1 − (αs
1 + αs

2)x + (α1α2)sx2

=
(α∗ + β∗) − x (β∗αs

1 + β∗αs
2 − β∗αs

2 + α∗αs
2 + α∗αs

1 − α∗αs
1)

1 − (αs
1 + αs

2)x + (α1α2)sx2

=
(α∗ + β∗) − x [(α∗ + β∗)(αs

1 + αs
2) − (α∗αs

1 + β∗αs
2)]

1 − (αs
1 + αs

2)x + (α1α2)sx2

=
Hmk,0 − x (Hmk,0mk,s − Hmk,s)

1 − mk,sx + 2sx2
.
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The proofs of (b) and (c) are similar to that of (a). □

Theorem 3.7. For k ̸= 1, we have
n
∑

i=0

Hmk,i =
2Hmk,n − Hmk,n+1 + Hmk,1 + Hmk,0(1 − 3k)

3(1 − k)
.

Proof. Using Theorem 3.1, we obtain
n
∑

i=0

Hmk,i =
n
∑

i=0



α∗αi
1 + β∗αi

2



= α∗
n
∑

i=0

αi
1 + β∗

n
∑

i=0

αi
2

= α∗


αn+1
1 − 1

α1 − 1



+ β∗


αn+1
2 − 1

α2 − 1



=
α1α2(α∗αn

1 + β∗αn
2 ) − (α∗αn+1

1 + β∗αn+1
2 ) − (α∗α2 + β∗α1) + (α∗ + β∗)

α1α2 − (α1 + α2) + 1

=
2Hmk,n − Hmk,n+1 + Hmk,1 + Hmk,0(1 − 3k)

3(1 − k)
. □

4. Relations Between Hyperbolic k-Mersenne and k-Mersenne-Lucas
Octonions

In this section, we have given theorems showing the relations between hyperbolic
k-Mersenne octonions and hyperbolic k-Mersenne-Lucas octonions.

Theorem 4.1. For s, n ∈ N, a generalization of the generating function of hyperbolic

k-Mersenne octonions is as follows
∞
∑

n=0

HMk,snxn =
HMk,0 + (Mk,sHmk,0 − HMk,s) x

1 − mk,sx + 2sx2
.

Proof. Using the Theorem 2.3, we have
∞
∑

n=0

HMk,snxn =
∞
∑

n=0



α∗αsn
1 − β∗αsn

2

α1 − α2



xn =
α∗

α1 − α2

∞
∑

n=0

(αs
1x)n − β∗

α1 − α2

∞
∑

n=0

(αs
2x)n

=
α∗

α1 − α2

· 1

1 − αs
1x

− β∗

α1 − α2

· 1

1 − αs
2x

=
(α∗ − β∗) + (β∗αs

1 − α∗αs
2) x

(α1 − α2)(1 − (αs
1 + αs

2)x + (α1α2)sx2)

=
(α∗ − β∗) + (β∗αs

1 + β∗αs
2 − β∗αs

2 − α∗αs
1 + α∗αs

1 − α∗αs
2) x

(α1 − α2)(1 − (αs
1 + αs

2)x + (α1α2)sx2)

=
(α∗ − β∗) + ((αs

1 − αs
2)(α

∗ + β∗) − (α∗αs
1 − β∗αs

2)) x

(α1 − α2)(1 − (αs
1 + αs

2)x + (α1α2)sx2)

=
HMk,0 + (Mk,sHmk,0 − HMk,s) x

1 − mk,sx + 2sx2
,

as required. □
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Theorem 4.2. For any integer t, we have

(a) HM2
k,t + Hm2

k,t =
(9k2 − 7)S∗

k,2t + (9k2 − 9)2t(a1 + a2)

9k2 − 8
;

(b) HM2
k,t − Hm2

k,t =
(9 − 9k2)S∗

k,2t − (9k2 − 7)2t(a1 + a2)

(9k2 − 8)
,

where a1 and a2 are given in Lemma 2.1.

Proof. (a) From the Binet formulas of the hyperbolic k-Mersenne and k-Mersenne-
Lucas octonions, we write

HM2

k,t + Hm2

k,t

=
(α∗)2(α1)2t − α∗β∗αt

1α
t
2 − β∗α∗αt

2α
t
1 + (β∗)2(α2)2t

9k2 − 8
+ (α∗)2(α1)

2t + α∗β∗αt
1α

t
2 + β∗α∗αt

2α
t
1 + (β∗)2(α2)

2t

=
(1 + (9k2 − 8))((α∗)2(α1)2t + (β∗)2(α2)2t) + ((9k2 − 8) − 1)αt

1α
t
2(α

∗β∗ + β∗α∗)

9k2 − 8

=
(9k2 − 7)S∗

k,2t + (9k2 − 9)2t(a1 + a2)

9k2 − 8
.

The proof (b) is similar to that of (a). □

Theorem 4.3. For every integer r, s ≥ t, there is the following equation

HMk,r+sHmk,r+t − HMk,r+tHmk,r+s = (a1 + a2)2
r−tMk,s−t.

Proof. We write

HMk,r+sHmk,r+t − HMk,r+tHmk,r+s

=
α∗β∗αr

1α
r
2(α

s
1α

t
2 − αt

1α
s
2) + β∗α∗αr

1α
r
2(α

s
1α

t
2 − αt

1α
s
2)

α1 − α2

=(α∗β∗ + β∗α∗)(α1α2)
r−t αs−t

1 − αs−t
2

α1 − α2

=(a1 + a2)2
r−tMk,s−t. □

Theorem 4.4. For any integers s and t, we have

(a) HMk,smk,t = HMk,s+t + 2t
HMk,s−t;

(b) Hmk,sMk,t = Hmk,s+t + 2t
Hmk,s−t.

Proof. (a) We have

HMk,smk,t =
α∗αs+t

1 − β∗αs+t
2

α1 − α2

+
(α1α2)t(α∗αs−t

1 − β∗αs−t
2 )

α1 − α2

= HMk,s+t + 2t
HMk,s−t.

The proof of (b) is similar to that of (a). □

Theorem 4.5. For any integer t ≥ s, the following equations are true.
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(a) HMk,sHMk,t − HMk,tHMk,s =
2s(a1 − a2)Mk,t−s√

9k2 − 8
;

(b) Hmk,sHmk,t − Hmk,tHmk,s = 2s
√

9k2 − 8(a1 − a2)Mk,t−s;

(c) HMk,tHmk,s − HMk,sHmk,t = 2s(a1 + a2)Mk,t−s;

(d) HMk,tHmk,s − Hmk,tHMk,s = −2s+1
a1α

t−s
2 − a2α

t−s
1√

9k2 − 8
.

Proof. (a) We have

HMk,sHMk,t − HMk,tHMk,s =
α∗β∗αs

1α
s
2(α

t−s
1 − αt−s

2 ) − β∗α∗αs
1α

s
2(α

t−s
1 − αt−s

2 )

(α1 − α2)2

=
(α∗β∗ − β∗α∗)(αs

1α
s
2)(α

t−s
1 − αt−s

2 )

(α1 − α2)2

=
2s(a1 − a2)Mk,t−s√

9k2 − 8
.

The other equations are proved similarly to that of (a). □

5. Conclusion

In this study, we introduced the hyperbolic k-Mersenne and k-Mersenne-Lucas
octonions. We obtained Binet formula, Cassini identity, Catalan identity, d’Ocagne
identity, Vajda identity, ordinary and exponential generating function, etc. of these
octonions. Also, many properties were obtained and studied the relations between
hyperbolic k-Mersenne and k-Mersenne-Lucas octonions. As a consequence, for k = 1
results hold for hyperbolic Mersenne and Mersenne-Lucas octonions.

Acknowledgements. The authors are grateful to the editor and the anonymous
reviewers for their careful reading of our manuscript and rapid review.
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THE GLOBAL BEHAVIOR OF A SECOND ORDER

EXPONENTIAL DIFFERENCE EQUATION

VAHIDIN HADŽIABDIĆ1, JASMIN BEKTEŠEVIĆ1, AND MIDHAT MEHULJIĆ1

Abstract. In this paper we present the Julia set and the global behavior of an
exponential second order difference equation of the type

xn+1 = axn−1 + bxn−1 exp (cxn−1 + cxn) ,

where a ≥ 0, b > 0 and c > 0 with non-negative initial conditions.

1. Introduction

In general, difference equations and systems of difference equations in exponential
forms have numerous applications in biology, more precisely, they can be used to
discuss population model. One of the most simple results on exponential difference
equation have been obtained in [8] for the equation of type

xn+1 = xn exp (r (1 − xn)) ,

known as Ricker’s equation, which describes a population with a propensity to simple
exponential growth at low densities and tendency to decrease at high densities. In
[9] the qualitative behavior of the exponential second order difference equation of the
two-dimensional population model

xn+1 = a+ bxn−1 exp (−xn)

is completely investigated and described. In [14] we can find results about boundedness
and asymptotic behavior of the positive solution for the difference equation of type

xn+1 = a+ bxn exp (−xn−1) ,

Key words and phrases. Basin of attraction, period-two solutions, Julia set, difference equation.
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where a and b are positive constants and the initial values x−1, x0 are nonnegative
real numbers. In [11] are given the conditions for the global behavior of the positive
solutions for the difference equation

xn+1 = axn + bxn−1 exp (−xn) ,

where a and b are positive real numbers with positive initial conditions x−1, x0. The
global stability and bounded nature of the positive solutions of the difference equation

xn+1 = a+ bxn−1 + cxn−1 exp (−xn)

are investigated in [10]. In [7] have been obtained results for the local stability of equi-
libria, parametric conditions for transcritical bifurcation, period-doubling bifurcation
and Neimark-Sacker bifurcation of the following second-order difference equation

xn+1 = αxn + βxn−1 exp (−σxn−1) ,

where the initial conditions satisfy x−1 > 0, x0 > 0 and α, β and σ are the positive
constants. In this paper we will present very unusual results for exponential second
order difference equations. Our results are based on the theorems which hold for
monotone difference equations. Our principal tool is the theory of monotone maps,
and in particular cooperative maps, which guarantee the existence and uniqueness of
the stable and unstable invariant manifolds for the fixed points and periodic points
(see [5]). Consider the difference equation

(1.1) xn+1 = f(xn, xn−1), n = 0, 1, . . . ,

where f is a continuous and increasing function in both variables. The following result
has been obtained in [1].

Theorem 1.1. Let I ⊆ R and let f ∈ C[I × I, I] be a function which increases

in both variables. Then for every solution of (1.1) the subsequences ¶x2n♢∞

n=0 and

¶x2n+1♢∞

n=−1 of even and odd terms of the solution do exactly one of the following.

(i) Eventually they are both monotonically increasing.

(ii) Eventually they are both monotonically decreasing.

(iii) One of them is monotonically increasing and the other is monotonically de-

creasing.

As a consequence of Theorem 1.1 every bounded solution of (1.1) approaches
either an equilibrium solution or period-two solution and every unbounded solution
is asymptotic to the point at infinity in a monotonic way. Thus the major problem in
dynamics of (1.1) is the problem how to determine the basins of attraction of three
different types of attractors: the equilibrium solutions, minimal period-two solution(s)
and the point(s) at infinity. The following result can be proved by using the techniques
of proof of Theorem 11 in [5].
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Theorem 1.2. Consider (1.1) where f is increasing function in its arguments and

assume that there is no minimal period-two solution. Assume that E1(x1, y1) and

E2(x2, y2) are two consecutive equilibrium points in North-East ordering that satisfy

(x1, y1) ⪯ne (x2, y2)

and that E1 is a local attractor and E2 is a saddle point or a non-hyperbolic point

with second characteristic root in interval (−1, 1), with the neighborhoods where f is

strictly increasing. Then the basin of attraction B(E1) of E1 is the region below the

global stable manifold W
s(E2). More precisely

B(E1) = ¶(x, y) : exists yu : y < yu, (x, yu) ∈ W
s(E2)♢.

The basin of attraction B(E2) = W
s(E2) is exactly the global stable manifold of E2.

The global stable manifold extend to the boundary of the domain of (1.1). If there

exists a period-two solution, then the end points of the global stable manifold are exactly

the period-two solution.

Now, the theorems that are applied in [5] provided the two continuous curves
W

s (E2) (stable manifold) and W
u (E2) (unstable manifold), both passing through

the point E2(x2, y2) from Theorem 1.2, such that W
s (E2) is a graph of decreasing

function and W
u (E2) is a graph of an increasing function. The curve W

s (E2) splits
the first quadrant of initial conditions into two disjoint regions, but we do not know
the explicit form of the curve W

s (E2). In this paper we investigate the following
difference equation

(1.2) xn+1 = axn−1 + bxn−1 exp (cxn−1 + cxn) ,

where a ≥ 0, b > 0 and c > 0 with non-negative initial conditions, that has infinitely
many period-two solutions and we expose the explicit form of the curve that separates
the first quadrant into two basins of attraction of a locally stable equilibrium point
and of the point at infinity. One of the major problems in the dynamics of monotonic
maps is determining the basin of attraction of the point at infinity and in particular
the boundary of the that basin known as the Julia set. We precisely determined the
Julia set of (1.2) and we obtained the global dynamics in the interior of the Julia set,
which includes all the points for which solutions are not asymptotic to the point at
infinity. It turned out that the Julia set for (1.2) is the union of the stable manifolds of
some saddle equilibrium points, nonhyperbolic equilibrium points or period-two points.
We first list some results needed for the proofs of our theorems. The main result for
studying local stability of equilibria is linearized stability theorem (see Theorem 1.1
in [12]).

Theorem 1.3 (Linearized stability). Consider the difference equation

(1.3) xn+1 = f(xn, xn−1)
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and let x̄ be an equilibrium point of difference equation (1.3) . Let p = ∂f(x̄,x̄)
∂u

and

q = ∂f(x̄,x̄)
∂v

denote the partial derivatives of f(u, v) evaluated at the equilibrium x̄. Let

λ1 and λ2 roots of the quadratic equation λ2 − pλ− q = 0.

a) If ♣λ1♣ < 1 and ♣λ2♣ < 1, then the equilibrium x̄ is locally asymptotically stable

(sink).
b) If ♣λ1♣ > 1 or ♣λ2♣ > 1, then the equilibrium x̄ is unstable.

c) ♣λ1♣ < 1 and ♣λ2♣ < 1 ⇔ ♣p♣ < 1 − q < 2. Equilibrium x̄ is a sink.

d) ♣λ1♣ > 1 and ♣λ2♣ > 1 ⇔ ♣q♣ > 1 and ♣p♣ < ♣1 − q♣. Equilibrium x̄ is a repeller.

e) ♣λ1♣ > 1 and ♣λ2♣ < 1 ⇔ ♣p♣ > ♣1 − q♣. Equilibrium x̄ is a saddle point.

f) ♣λ1♣ = 1 or ♣λ2♣ = 1 ⇔ ♣p♣ = ♣1 − q♣ or q = −1 and ♣p♣ ≤ 2. Equilibrium x̄ is

called a non-hyperbolic point.

The next theorem (Theorem 1.4.1. in [6]) is a very useful tool in establishing bounds
for the solutions of nonlinear equations in terms of the solutions of equations with
known behaviour.

Theorem 1.4. Let I be an interval of real numbers, let k be a positive integer, and

let F : Ik+1 → I be a function which is increasing in all its arguments. Assume that

¶xn♢∞

n=−k, ¶yn♢∞

n=−k and ¶zn♢∞

n=−k are sequences of real numbers such that

xn+1 ≤F (xn, . . . , xn−k), n = 0, 1, . . . ,

yn+1 =F (yn, . . . , yn−k), n = 0, 1, . . . ,

zn+1 ≥F (zn, . . . , zn−k), n = 0, 1, . . .

and

xn ≤ yn ≤ zn, for all − k ≤ n ≤ 0.

Then

xn ≤ yn ≤ zn, for all n > 0.

2. Main Results

By using Theorem 1.3, we obtained the following result on local stability of the
zero equilibrium of (1.2).

Proposition 2.1. The zero equilibrium of (1.2) is one of the following:

a) locally asymptotically stable if a+ b < 1;
b) non-hyperbolic a+ b = 1;

c) unstable if a+ b > 1.

Set f (x, y) = ay + by exp (cy + cx) and let p = ∂f(x̄,x̄)
∂x

and q = ∂f(x̄,x̄)
∂y

denote the

partial derivatives of f(x, y) evaluated at the equilibrium x̄. The linearized equation
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at the positive equilibrium x̄ is

zn+1 =pzn + qzn−1,

p =bcx̄ exp (2cx̄) ,

q =a+ b (1 + cx̄) exp (2cx̄) .

Now, in view of Theorem 1.3 we obtain the following results on local stability of the
positive equilibrium of (1.2).

Proposition 2.2. The positive equilibrium of (1.2) is one of the following:

a) locally asymptotically stable if p+ q < 1;

b) non-hyperbolic if p+ q = 1 or q − p = 1;

c) unstable if p+ q > 1;

d) saddle point if p > ♣q − 1♣;
e) repeller if 1 − q < p < q − 1.

Theorem 2.1. If a ≥ 1 or b ≥ 1 or a + b > 1, then every solution ¶xn♢ of (1.2)
satisfies lim

n→∞

xn = ∞.

Proof. Let be a ≥ 1 or b ≥ 1, then a+ b > 1. If ¶xn♢ is a solution of (1.2), then ¶xn♢
satisfies the inequality

xn+1 =axn−1 + bxn−1 exp (cxn−1 + cxn)

≥axn−1 + bxn−1 = (a+ b)xn−1, n = 0, 1, . . . ,

which in view of the result on difference inequalities, see Theorem 1.4, implies that
xn ≥ yn, n ≥ 1, where ¶yn♢ is a solution of the initial value problem

yn+1 = (a+ b) yn−1, y−1 = x−1 and y0 = x0, n = 0, 1, . . .

Consequently, if x0, x−1 > 0, then y0, y−1 > 0, yn ≥ 0 for all n, and

xn ≥ yn = λ1

√
a+ b

n
+ λ2

(

−
√
a+ b

n
, n = 1, 2, . . . ,

where λ1, λ2 ∈ R such that yn ≥ 0 for all n, which implies lim
n→∞

xn = ∞. □

Theorem 2.2. Consider the difference equation (1.2) in the first quadrant of initial

conditions, where a, b, c > 0 and a + b < 1. Then (1.2) has a zero equilibrium and

a unique positive equilibrium x̄+ = 1
2c

ln 1−a
b

. The line b exp (cy + cx) = 1 − a is the

Julia set and separates the first quadrant into two regions: the region below the given

line is the basin of attraction of point E0(0, 0), the region above the line is the basin

of attraction of the point at infinity and every point on the line except E+(x̄+, x̄+) is

a period-two solution of (1.2).

Proof. The equilibrium points of (1.2) are the solutions of equation

x (a+ b exp (2cx)) = x,

that is equivalent to

(2.1) x (b exp (2cx) + a− 1) = 0,
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which implies that (2.1) has two equilibria: zero equilibrium and unique positive
equilibrium x̄+. Since a+b < 1, then by applying Proposition (2.1) the zero equilibrium
is locally asymptotically stable. Denote by f (x, y) = ay + by exp (cx+ cy) and let p
and q denote the partial derivatives of function f (x, y) at point E+. By straightforward
calculation we obtain that the following hold:

p+ q = a+ b (1 + 2cx̄) exp (2cx̄)

= a+ b (1 + 2cx̄)
1 − a

b
= 1 + 2c (1 − a) x̄ > 1,

q − p = a+ b exp (2cx̄) = a+ b · 1 − a

b
= 1.

Hence, by applying Proposition 2.2 the positive equilibrium is an unstable non-
hyperbolic point. Period-two solution u, v satisfies the system

u = (a+ b exp (cu+ cv))u,

v = (a+ b exp (cu+ cv)) v.

Obviously, the point (0, 0) is solution of the system above, but it is not minimal
period-two solution. Hence, it has to be v > 0 which implies a+ b exp (cu+ cv) = 1.
Therefore, every point of the set ¶(x, y) : a + b exp (cx+ cy) = 1♢ is a period-two
solution of (1.2) except point E+. Clearly, the curve g (x, y) = a+ b exp (cx+ cy) = 1
is a graph of the decreasing function in the first quadrant, more precisely that is line
y = −x+ 1

c
ln 1−a

b
. Let ¶xn♢ be a solution of (1.2) for initial condition (x0, x−1) which

lies below the line g (x, y) = 1. Then

g (x0, x−1) = a+ b exp (cx0 + cx−1) < 1,

xn+1 = g (xn, xn−1)xn−1

and

x1 =g (x0, x−1)x−1 < x−1,

x2 =g (x1, x0)x0 < g (x−1, x0)x0 = g (x0, x−1)x0 < x0.

Thus (x2, x1) and (x0, x−1) are two points in North-East ordering (x2, x1) ≤ne

(x0, x−1) which means that the point (x2, x1) is also below the curve g (x, y) = 1 and
also holds

g (x2, x1) < 1.

Similarly we find

x3 =g (x2, x1)x1 < x1,

x4 =g (x3, x2)x2 < g (x1, x2)x2 = g (x2, x1)x2 < x2.

Continuing on this way we get

(0, 0) ≤ne · · · ≤ne (x4, x3) ≤ne (x2, x1) ≤ne (x0, x−1),

which implies that both subsequences ¶x2n♢ and ¶x2n+1♢ are monotonically decreasing
and bounded below by 0. Since below the line g (x, y) = 1 there are no period-two
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solutions it must be x2n → 0 and x2n+1 → 0. On the other hand, if we consider solution
¶xn♢ of (1.2) for initial condition (x0, x−1) which lies above the line g (x, y) = 1 then
g (x0, x−1) > 1 and by applying the method shown above we obtain the following
condition:

(x−1, x0) ≤ne (x1, x2) ≤ne (x3, x4) ≤ne · · ·
Therefore, both subsequences ¶x2n♢ and ¶x2n+1♢ are monotonically increasing, hence
x2n → ∞ and x2n+1 → ∞ as n → ∞. □

Figure 1 is visual illustration of Theorem 2.2 obtained by using Mathematica 9.0,
with the boundaries of the basins of attraction obtained by using the software package
Dynamica [6].

Figure 1. Case: a = 1 − e−2, b = e−3, c = 1
2

Theorem 2.3. Consider the difference equation (1.2), where a + b = 1 and initial

conditions x−1, x0 ≥ 0 such that x2
−1 + x2

0 ≠ 0. Then (1.2) has an unique zero

equilibrium and every solution ¶xn♢ of (1.2) satisfies lim
n→∞

xn = ∞.

Proof. Assume that a + b = 1 and ¶xn♢ is a solution of (1.2). Since x2
−1 + x2

0 ̸= 0,
then exp (cxn−1 + cxn) > 1, which implies exp (cxn−1 + cxn) = 1 + αn, where αn > 0
for all n ∈ N. Then ¶xn♢ satisfies the inequality

xn+1 = xn−1 (a+ b exp (cxn−1 + cxn))

≥ xn−1 (a+ b (1 + αn))

= xn−1 (a+ b+ bαn) = xn−1 (1 + bαn)

> xn−1,
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which implies that both subsequences ¶x2n♢ and ¶x2n+1♢ are monotonically increasing.
Since there is no positive equilibrium point or period-two solution of (1.2) by applying
Theorem 1.1 the both subsequences ¶x2n♢ and ¶x2n+1♢ approache the point at infinity.

□

Now, consider the difference equation of type

(2.2) xn+1 = Axn−1 +Bxn−1 exp (Cxn−1 +Dxn)

in the first quadrant of initial conditions, where the given parameters satisfy conditions
A > 0, B > 0, C > 0, D > 0 and A + B < 1. It is easy to show that (2.2) has two
equilibria: zero equilibrium and unique positive equilibrium x̄+ = 1

C+D
ln 1−A

B
.

Proposition 2.3. The zero equilibrium of (2.2) is always locally asymptotically stable.

The positive equilibrium x̄+ = 1
C+D

ln 1−A
B

of (2.2) is one of the following:

a) non-hyperbolic if C = D (or q − p = 1);
b) saddle point if C < D (or p > ♣q − 1♣);
c) repeller if C > D (or p < ♣1 − q♣).

Proof. Denote by g (x, y) = Ay+By exp (Cy +Dx) and let p and q denote the partial
derivatives of function g (x, y) at equilibrium point x of (2.2). By straightforward
calculation we obtain that the following hold:

p (x, x) = BDx exp ((C +D)x) ,

q (x, x) = A+B (1 + Cx) exp ((C +D)x) .

Hence, if x = 0, then p (0, 0) = 0 and q (0, 0) = A+B ∈ (0, 1) which implies ♣p♣ <
1 − q < 2, so by applying Theorem 1.3 the zero equilibrium is locally asymptotically
stable. If x = x̄+, then p (x̄+, x̄+) = (1−A)D

C+D
ln 1−A

B
= (1 − A)Dx̄+ > 0 and

q (x̄+, x̄+) = 1 +
(1 − A)C

C +D
ln

1 − A

B
= 1 + (1 − A)Cx̄+ > 1.

Clearly, ♣p♣ + q = p+ q > q > 1, which implies, by applying Theorem 1.3, the positive
equilibrium x̄+ is an unstable. Since A ∈ (0, 1) and

q − p = 1 + (1 − A) (C −D) x̄+,

which yields

C = D ⇒ q − p = 1 ⇔ p = q − 1 ⇔ ♣p♣ = ♣1 − q♣ ,
C > D ⇒ q − p > 1 ⇔ p < q − 1 ⇔ ♣p♣ < ♣1 − q♣ ,
C < D ⇒ q − p < 1 ⇔ p > q − 1 ⇔ ♣p♣ > ♣1 − q♣ .

The rest of proof following from Theorem 1.3. □

Proposition 2.4. (2.2) has prime period-two solution
{

P1

(

0, 1
C

ln 1−A
B



,

P2

(

1
C

ln 1−A
B
, 0
}

. If C > D, then period-two solution is saddle and if C < D,

then the period-two solution is repeller.
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Proof. Assume that (ϕ, ψ) is a prime period-two solution of (2.2) and 0 ≤ ϕ < ψ.
Then

ϕ = Aϕ+Bϕ exp (Cϕ+Dψ) ,(2.3)

ψ = Aψ +Bψ exp (Cψ +Dϕ) .

If ϕ = 0, then ψ = 1
C

ln 1−A
B

. Let ϕ > 0. From system (2.3) we find that

(C −D) (ϕ− ψ) = 0,

which implies C = D (ϕ ̸= ψ), this case has already been considered. Set un = xn−1

and vn = xn and write (2.2) in the equivalent form:

un+1 = vn,

vn+1 = Aun +Bun exp (Cun +Dvn) .

Let T be the function on [0,∞) × [0,∞) defined by

T (u, v) = (v, Au+Bu exp (Cu+Dv)) .

Then (ϕ, ψ) is a fixed point of T 2, the second iterate of T . Furthermore,

T 2 (u, v) = T (T (u, v))

= (Au+Bu exp (Cu+Dv) , Av +Bv exp (Cv +D (Au+Bu exp (Cu+Dv)))) ,

T 2 (u, v) = (g (u, v) , h (u, v)) ,

where g (u, v) = Au+Bu exp (Cu+Dv) and h (u, v) = g (v, g (u, v)). Jacobian matrix

JT 2 (ϕ, ψ) evaluated at (ϕ, ψ) =
(

0, 1
C

ln 1−A
B



is given by

JT 2 (ϕ, ψ) =

(

∂g

∂u
(ϕ, ψ) ∂g

∂v
(ϕ, ψ)

∂h
∂u

(ϕ, ψ) ∂h
∂v

(ϕ, ψ)

)

=









A+B
(

1−A
B


D

C 0

(1−A)D
C



A+B
(

1−A
B


D

C



ln 1−A
B

1 + (1 − A) ln 1−A
B









and

det (JT (ϕ, ψ)) =



A+B



1 − A

B



D

C







1 + (1 − A) ln
1 − A

B



> 0,

tr (JT (ϕ, ψ)) = 1 + A+B



1 − A

B



D

C

+ (1 − A) ln
1 − A

B
> 1.

If C < D, then −1 + A+B
(

1−A
B


D

C

> −1 + A+B
(

1−A
B



= 0 and

tr (JT (ϕ, ψ)) − det (JT (ϕ, ψ)) = 1 − (1 − A)



−1 + A+B



1 − A

B



D

C



 ln
1 − A

B
< 1,
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which yields

♣tr (JT (ϕ, ψ))♣ < ♣1 + det (JT (ϕ, ψ))♣ .
Then by applying Theorem 1.3 (p = tr (JT (ϕ, ψ)) and q = − det (JT (ϕ, ψ))), the
minimal period-two solution ¶P1, P2♢ is repeller. Similarly, if C > D, then

−1 + A+B



1 − A

B



D

C

< −1 + A+B



1 − A

B



= 0

and

tr (JT (ϕ, ψ)) − det (JT (ϕ, ψ)) > 1,

which implies

♣tr (JT (ϕ, ψ))♣ > ♣1 + det (JT (ϕ, ψ))♣ .
Now, by applying Theorem 1.3 the minimal period-two solution ¶P1, P2♢ is saddle. □

Proposition 2.5. Consider the difference equation (2.2) in the first quadrant of

initial conditions, where the given parameters satisfy conditions A > 0, B > 0, C > 0,

D > 0, C ≠ D and A+B < 1. Set m = min¶C,D♢ and M = max ¶C,D♢. Then the

global stable manifold of the positive equilibrium is between two lines

(2.4) p1 : B exp (mx+my) = 1 − A

and

(2.5) p2 : B exp (Mx+My) = 1 − A.

Proof. In a view of Proposition 2.3 the zero equilibrium of (2.2) is always locally
asymptotically stable. The theorems applied in [5] provided existence of global stable
manifold W

s through the saddle point. If C < D, then by applying Proposition 2.3
the positive equilibrium x̄+ = 1

C+D
ln 1−A

B
is a saddle point and there exists a global

stable manifold which contains point E+(x̄+, x̄+). In this case global behavior of (2.2)
is described by Theorem 1.2 where end points of the global stable manifold W

s (E+)
are exactly the period-two solution ¶P1, P2♢ from Proposition 2.4. If C > D, then
by applying Proposition 2.3 the positive equilibrium x̄+ is a repeller and in a view of
Proposition 2.4 there exists a prime period-two solution ¶P1, P2♢ which is a saddle
point. There are two global stable manifolds W

s (P1) and W
s (P2), guaranteed by

Theorems 1 and 4 in [13], which contain points P1(ϕ, ψ) and P2(ψ, ϕ). In this case the
global behavior of (2.2) is described by Theorem 10 in [2]. Although the Theorems 9
and 10 in [2] have been applied on a polynomial second order difference equation they
are special cases of general Theorems in [5] applied on function f , where f is increasing
function in its arguments. So, the global dynamics of (2.2) is exactly the same as the
global dynamics of equations decribed by Theorems 9 and 10 in [2]. Furthermore,

xn+1 = Axn−1 +Bxn−1 exp (Cxn−1 +Dxn) ≥ Axn−1 +Bxn−1 exp (mxn−1 +mxn)

and

xn+1 = Axn−1 +Bxn−1 exp (Cxn−1 +Dxn) ≤ Axn−1 +Bxn−1 exp (Mxn−1 +Mxn) ,
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for all n, by applying Theorem 1.4 for solution ¶xn♢ of (2.2) the following inequality
holds

yn ≤ xn ≤ zn,

for all n, where ¶yn♢ is a solution of the difference equation

(2.6) yn+1 = Ayn−1 +Byn−1 exp (myn−1 +myn)

and ¶zn♢ is a solution of the difference equation

(2.7) zn+1 = Azn−1 +Bzn−1 exp (Mzn−1 +Mzn) .

Since (2.6) and (2.7) satisfy all conditions of Theorem 2.2 this implies that the
statement of Proposition 2.5 holds. □

3. Conclusion

In this paper we restrict our attention to certain exponential second order difference
equation (1.2). It is important to mention that we have accurately determined the
Julia set of (1.2) and the basins of attractions for the zero equilibrium and the
positive equilibrium point. In general, all theoretical concepts which are very useful in
proving the results of global attractivity of equilibrium points and period-two solutions
only give us existence of global stable manifold(s) whose computation leads to very
uncomfortable calculus (see [3, 4]).

Acknowledgements. The authors are very grateful to anonymous reviewers who
read the entire paper with great care and whose corrections and suggestions have
improved this paper.
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DIFFERENTIAL INVARIANTS OF COUPLED HIROTA-SATSUMA

KDV EQUATIONS

GHORBANALI HAGHIGHATDOOST1, MOSTAFA BAZGHANDI1, AND FIROOZ PASHAIE2∗

Abstract. In this paper, we consider a generalized coupled Hirota-Satsuma KdV
(CHSK) system of equations. We apply the moving frames method to find a fi-
nite generating set of differential invariants for the Lie symmetry group of CHSK
equations. Once the generating set of differential invariants is located, we obtain
recurrence relations and syzygies among the generating differential invariants. Our
approach provides a complete characterization of the structure of algebras of differ-
ential invariants of CHSK equations.

1. Introduction

The equivalence moving frames method was introduced by E. Cartan to solve the
equivalence problems on submanifolds under the action of a transformation group. In
1974, P. A. Griffiths has paid to the uniqueness and existence problem on geometric
differential equations by using the Cartan method of Lie groups and moving frames
[25]. Later on, in the 1990s, Fels and Olver have presented the moving co-frame
method as a new formulation of the classical Cartan method for finite-dimensional
Lie group actions on manifolds [10, 11]. In the last two decades, the moving frames
method has been developed in the general algorithmic and equivariant framework
which gives several new powerful tools for finding and classifying the equivalence and
symmetry properties of submanifolds, differential invariants, and their syzygies (for
instance, see [20–22]).

Key words and phrases. Differential invariants, Symmetry groups, Moving frames, Coupled Hirota-
Satsuma KdV equations.
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The equivalence and symmetries of submanifolds are subject to their differential
invariants, which have the same symmetry properties and allow us to determine the
exact solutions of differential equations [4, 16]. In general, differential invariants are
used to solve a broad range of problems appearing in nonlinear theory, mathemat-
ical physics, computer science and so on. A significant step for developing these
applications is to study the structure of the algebra of differential invariants.

The KdV equations are well-known nonlinear evolution equations (NLEEs) which
are a model for many physical phenomena. The simplest form of the KdV equation is
ut + uux + uxxx = 0, where the uux term models nonlinear effects and the uxxx term
models dispersive effects of a wave propagation. The KdV equations can give a clear
interpretation of both nonlinear effects and dispersive effects of propagation of long
waves [3]. In the present paper, we consider a generalized coupled Hirota-Satsuma
KdV (CHSK) system as [31]:

(1.1)















ut − 1
2
uxxx + 3uux − 3(vw)x = 0,

vt + vxxx − 3uvx = 0,

wt + wxxx − 3uwx = 0,

which is the mathematical model of interactions of two long waves with different
dispersion relations [6]. Especially, when v = w, the system (1.1) gives the well-known
coupled Hirota-Satsuma KdV system.

System (1.1) has been studied via several methods such as the classical Lie group
method [1], non-local symmetries [5], collocation method with quintic b-spline method
[27]. These works mainly focused on obtaining solutions. Recently, a Lie group analysis
on the time-fractional (CHSK) system has been done to obtain exact solutions and
conservation laws [28]. In analytical works, differential invariants appeared. Indeed,
these methods reduce the system with the aid of differential invariants (e.g. [1, 5, 28]).
Knowledge of the algebraic structure of the differential invariants enables us to obtain
not only the reduced equations but also to construct a class of differential equations
which has the same symmetry properties, and it is significant from the physical point
of view.

As far as we know, a comprehensive structure of algebras of differential invariants
of equations (1.1) is not obtained so far. In this paper, using the moving frames
method, we consider the structure of algebras of differential invariants of System
(1.1). The advantage of our approach is that we yield the structure of the differential
invariants algebra of System (1.1) only by using the infinitesimal determining equations
and choosing a proper cross-section. Further, we do not need additional efforts for
integration. Moreover, our approach contains straightforward calculations, yet it is
more powerful since it yields the relations among the invariants.

The paper has the following organization. In Section 2, first in subsection 2.1, we
remember the concept of differential invariants and some results on them. Then, in
subsection 2.2, we explain the moving frames method and how one can apply the
method to analyze the algebraic structure of groups. In Section 3, we apply the method
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to the CHSK system and we analyze the algebraic structure of its Lie symmetry. In
fact, using the moving frames method, we locate a finite set of generating differential
invariants for the CHSK system and we obtain recurrence relations and the syzygies
among the generation of differential invariants.

2. Preliminaries

In this section, we present the preliminary concepts of differential invariants and
moving frames method. We assume the reader to be familiar with the concepts of
Lie symmetry method which is described in [15] and is used in many papers (e.g.
[2, 12, 13,28,29]).

First, we remember the concept of jet space. By definition, the jet space of order

n, Jn = Jn(M, p), is the equivalence classes of p-dimensional submanifolds of a
manifold M (of dimension m) under the equivalence relation of nth order contact.
For instance, let we consider the local coordinates z = (x, u) on manifold M , such
that, the components of x = (x1, . . . , xp) are assumed as independent variables and
the components of u = (u1, . . . , uq) are regarded as dependent ones. So, in these
coordinates, a p-submanifold is realized as the graph of a function u = f(x) [17]. Two
such submanifolds are equivalent at a point (x0, u0) = (x0, f(x0)) if and only if they
have the same nth order Taylor polynomials at x0 [17]. The induced coordinates on
the jet space Jn are denoted by z(n) = (x, u(n)), consisting of independent variables
xi, dependent variables uα, and their derivatives uα

J , of order #J ≤ n.
Now, let G be a local group of transformations acting on M . The induced local

action of G on the nth jet space Jn(M) is called the nth prolongation of G denoted
by Gn. This prolongation transforms u = f(x) and its derivatives. Studying the infin-
itesimal generators of prolonged group transformations is much easier than working
with the explicit formula for the prolonged group transformations. Therefore, we work
with the infinitesimal generators of prolonged group transformations.

If G is assumed to be a connected transformation group, then its infinitesimal
generators form the Lie algebra of vector fields as

X =
p
∑

i=1

ξi(x, u)
∂

∂xi
+

q
∑

α=1

ηα(x, u)
∂

∂uα
.

The nth prolongation of X is

X(n) =
p
∑

i=1

ξi(x, u(n))
∂

∂xi
+

q
∑

α=1

∑

#J≤n

ηα
J (x, u(n))

∂

∂uα
J

,

where

ηα
J = DJ



ηα −
p
∑

i=1

ξiuα
i



+
p
∑

i=1

ξiuα
J,i,
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and DJ = Dj1 · · · Djn
. Here Dj denotes the total derivative with respect to xj as

(2.1) Dj =
∂

∂xj
+

q
∑

α=1

∑

J

uα
J,j

∂

∂uα
J

.

2.1. Differential Invariants. A real-valued function F : Jn → R is a differential

invariant of a group transformation G, if it is remained unchanged by the prolongation
of G, i.e. F (g(n).z(n)) = F (z(n)), for all z(n) ∈ Jn and all g ∈ G [23].

A well-known theorem ([9, Theorem 42]) of S. Lie and S. Scheffers says that under
appropriate assumptions, all the differential invariants can be generated by a finite
number of low order invariants and their derivatives. Lie and Scheffers presented
the finite-dimensional Lie group case. Then, in 1894, A. Tress extends the theorem
to infinite-dimensional pseudo-groups [30]. Indeed, there exists a finite set of gener-
ating differential invariants, and p invariant differential operators that preserve the
differential invariant algebra, such that any other differential invariant can be locally
written as a function of the generating invariants and their invariant derivatives. The
order of differentiation is important, since the invariant differential operators need not
commute. Furthermore, the differentiated invariants are generally not functionally
independent, but are govern by certain functional relations or syzygies [24].

To have a complete investigation of the algebra of differential invariants, we need
to find a finite set of generating differential invariant, their functional relationships
or their syzygies, and the commutation relationships between invariant operators.

2.2. Moving Frames Method. In order to describe the moving frames method,
first we recall that a moving frame is an equivariant map ρ : Jn → G from the jet
space Jn to the group G satisfying ρ(g(n) · z(n)) = g · ρ(z(n)) for every z(n) ∈ Jn and
g ∈ G. However, only free actions have moving frames. To prove the necessity of
freeness, let g be an arbitrary element in the isotropy subgroup and ρ be a moving
frame, then ρ(z(n)) = ρ(g(n) · z(n)) = g · ρ(z(n)). Therefore, the isotropy subgroup must
be Gz(n) = ¶e♢ for each z(n) ∈ J (n), meaning that the action must be free.

We can make actions free by prolonging the group. A theorem, which was presented
by Ovsiannikov and improved by Olver, states that if a group acts (locally) effectively
on subsets, then there exists an integer k such that the prolongation of the group
action is locally free on an open and dense subset of the k-th order jet space [14,19].
In cases where G does not act effectively, without loss of any generality, we can replace
G with the effectively acting quotient group G/G∗

M , where G∗
M is the global isotropy

subgroup [17]. Therefore, in order to make a action free, we prolong the group action
to a sufficiently high order jet space. The prolongation makes it possible to apply the
moving frames method to any group.

Once the freeness is achieved, we choose a specific local cross-section to the prolonged
group orbits. Based on the chosen cross-section, we construct a moving frame. After
constructing a moving frame, we use the invariantization process to produce complete



COUPLED HIROTA-SATSUMA KDV EQUATIONS 797

systems of differential invariants and invariant differential operators. So, we start
with definition of cross-section.

A cross-section is a submanifold K
n ⊂ Jn, that intersect the prolonged group

orbits transversally. The cross-section is called regular if K
n intersects each orbit

at most once. The corresponding moving frame associates to each z(n) ∈ Jn is
the unique group element g = ρ(n)(z(n)) ∈ G that maps z(n) to the cross-section
g · zn = ρ(n)(z(n)) · z(n) ∈ K [22].

For simplicity, we can choose K = ¶z1 = c1, . . . , zr = cr♢ as coordinate cross-section,
which prescribed by setting the r = dim G coordinates to proper constants.

Given local coordinates z(n) = (z, u(n)) on Jn, let w(g, z(n)) = g · z(n) be the explicit
formulae for the group action. The right moving frame g = ρ(n)(z(n)) associated with
the coordinate cross-section

K = ¶z1 = c1, . . . , zr = cr♢,

is obtained by solving the normalization equations

(2.2) w1(g, z(n)) = c1, . . . , wr(g, z(n)) = cr.

Substituting the moving frame formulae for the group parameters into the remain-
ing action rules provides a complete system of functionally independent differential
invariants [26].

I(z(n)) = w(ρ(n)(z(n)), z(n)) = ρ(n)(z(n)) · z(n).

In particular, the normalization components (2.2) of w will be constant, which
are called the phantom differential invariants. Other components (2.2) are called
fundamental invariants.

In particular,

H i(x, u(n)) = ι(xi), Iα
J (x, u(n)) = ι(uα

J),

will denote the normalized differential invariants.
To carry on the moving frames method, we use the concept of invariantization and

begin the invariantization process. The invariantization

ι : F (x, u(n)) → I(x, u(n)) = F (ρ(n)(x, u(n)) · (x, u(n))),

maps the differential function F to the differential invariant I = ι(F ) [24].
Separating the local coordinates (x, u) on M into independent and dependent

variables splits the one-forms on J∞ into horizontal forms, which are spanned by
dx1, . . . , dxp, and vertical forms, which are spanned by the basic contact one-forms
[17]

θα
J = duα

J −
p
∑

i=1

uα
J,idxi, α = 1, . . . , q, #J ≥ 0.

The pull back of the dual Maurer-Cartan forms µ1, . . . , µr on G via the moving
frame map: vk = ρ∗µk produces the invariantized Maurer-Cartan forms [8]. We split
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the invariantized Maurer-Cartan forms into horizontal forms and vertical forms:

vk =
p
∑

i=1

Rκ
i (ω̄)i +

∑

α,J

Sκ,J
α ϑα

j ,

where Rκ
i and Sκ,J

α are certain differential invariants, ω̄i = ι(dxi) denote the invari-
antized horizontal one-forms and the invariantized basis contact forms are denoted
by

ϑα
J = ι(θα

J ), α = 1, . . . , q, #J ≥ 0.

The Rκ
i are called the Maurer-Cartan invariants [7]. The Maurer-Cartan invariants

will appear in the recurrence formula which will introduce later.
Though invariantization respect all algebraic operators, it does not respect differ-

entiation, i.e., D[ι(F )] ̸= ι[D(F )]. However, there is an explicit formula known as the
recurrence formula which determines the effect of invariantization on derivatives [11].
Given a differential function F (x, u(n)) and ι(F ) its moving frame invariantization.
Then the recurrence formula will be

(2.3) Di[ι(F )] = ι[Di(F )] +
r
∑

κ=1

Rκ
i ι[X(n)

κ (F )],

where Rκ
i are the Maurer-Cartan invariants and X(n)

κ are the nth prolongations of the
infinitesimal generators Xκ [26]. In our approach, the recurrence formula (2.3) is the
key to study the algebra of differential invariants.

The invariant differential operators Di map differential invariants to differential
invariants. In most cases, they do not commute, but they satisfy in linear commutation
relations of the form

(2.4) [Di,Dj] =
p
∑

k=1

Y k
ijDk, i, j = 1, . . . , p,

where the coefficients Y k
ij are certain differential invariants called the commutator

invariants [24]. One can obtain the commutator invariants Y k
ij by differentiating the

recurrence formula (2.3).
In general, if K = (k1, . . . , kl) is an ordered multi-index, then, as a result of (2.4),

(2.5) Dπ(K) = DK +
∑

#J<#K

Y J
π,KDJ ,

for any permutation π of the entries of K. For example,

DiDjDk = Di



DkDj +
p
∑

l=1

Y l
jkDl



= DkDiDj +
p
∑

l=1

[

Y l
ikDlDj + Y l

jkDiDl + (DiY
l

jk)Dl

]

.

Using the commutator formulae (2.5), we can construct an infinite number of commu-

tator syzygies by applying (2.5) on any one of our generating differential invariants.
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3. Invariants of Generalized Coupled Hirota-Satsuma KdV Equations

First, we consider the Lie point symmetries of System (1.1). The infinitesimal Lie
transformations for equations (1.1) are of the form:

x 7→x + λξx(x, t, u, v, w),

t7→t + λξt(x, t, u, v, w),

u 7→u + ληu(x, t, u, v, w),

v 7→v + ληv(x, t, u, v, w),

w 7→w + ληw(x, t, u, v, w),

with the symmetry generator

X = ξx ∂

∂x
+ ξt ∂

∂t
+ ηu ∂

∂u
+ ηv ∂

∂v
+ ηw ∂

∂w
.

In [1], using Lie’s method, the infinitesimal Lie transformations for equations (1.1)
are obtained by solving the following determining system:

ξx
t = ξx

u = ξx
v = ξx

w = 0, ξt
x = ξt

u = ξt
v = ξt

w = 0, ξx
x =

1

3
ξt

t ,

ηv
x = ηv

t = ηv
u = ηv

w = 0, ηu = −2

3
ξt

tu, ηw = −1

3
· (4vξt

t + 3ηv)w

v
.(3.1)

Solving (3.1) yields the following coefficients of the vector field X:

ξx = a1 +
1

3
xa4, ξt = a1 + t a4, ηu = −2

3
u a4, ηv = a3 v , ηw = −a3 w − a4

4

3
w.

where the a1, a2, a3, a4 are constants. Thus, the Lie algebra of the symmetries is
generated by the following four vector fields

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = v
∂

∂v
− w

∂

∂w
,(3.2)

X4 =
1

3
x

∂

∂x
+ t

∂

∂t
− 2

3
u

∂

∂u
− 4

3
w

∂

∂w
.

The action of the symmetry group of equations (1.1) can be yielded by composing
the flows of the vector fields (3.2) and is given by

(X, T, U, V, W ) = exp(λ1X1) ◦ exp(λ2X2) ◦ exp(λ3X3) ◦ exp(λ4X4),

(3.3)

where λ1, . . . , λ4 are the group parameters. Calculating (3.3) leads to

X = (x + λ1) e1/3 λ4 , T = (t + λ2) eλ4 , U = ue−2/3 λ4 ,
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V = veλ3 , W = we−λ3e− 4
3

λ4 .

As noted in Section 2.2, we should choose an appropriate coordinate cross-section.
Since the dimension of group action is four, we can choose a coordinate cross-section
by setting four arbitrary coordinates equal to constants. Here, we set the coordinate
cross-section as K = ¶x = 1, t = 0 , v = 1, w = 1♢. Our chosen coordinate cross-
section defines the following four normalization equations

(3.4) X = 1, T = 0, V = 1, W = 1,

As a result of our choice of normalization (3.4) the phantom differential invariants are

H1 = ι(x) = 1, H2 = ι(t) = 0, J00 = ι(v) = 1, K00 = ι(w) = 1.

Using Maple, we found that the normalization equations (3.4) can be solved by
the following group parameters:

(3.5) λ1 = −x (vw)1/4 − 1

(vw)1/4
, λ2 = −t, λ3 = − ln v, λ4 =

3

4
ln(vw).

The dual implicit differential operators are defined as follow [17]

(3.6) DXi =
p
∑

j=1

W i
j Dxj , W j

i =


Dxj X i
−1

,

where Dxi are the total derivative and are (2.1).
From (3.6), we have

(3.7) DX = e− 1
3

λ4Dx, DT = e−λ4 Dt.

Substituting (3.5) into (3.7), the corresponding invariant differential operators are

Dx = (vw)−1/4 Dx, Dt = (vw)−3/4 Dt.

A complete system of functionally independent normalized differential invariants is
yielded by invariantizing the remaining non-phantom differential invariants:

I00 =
u

(vw)1/2
, I10 =

(vw)1/4
ux

vw
, I01 =

(vw)1/4
ut

vw
,

J10 =
(vw)3/4

vx

vw
, J01 =

(vw)1/4
vt

vw
,

K10 =
(vw)3/4

wx

vw
, K01 =

(vw)1/4
wt

vw
,

I20 = − 1

4
·

√
vw (uxvxw + uxwxv − 4uxxvw)

v2w2
,

I30 = − 1

8
· (vw)1/4

v3w3



2vxxuxvw2 + 2wxxuxv2w − 8uxxxv2w2 − 3uxv2
xw2 − 2uxvxwxvw



+
1

8
· (vw)1/4

v3w3



−3uxw2
xv2 + 6uxxvxvw2 + 6uxxwxv2w



,
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J30 = − 1

8
· (vw)1/4

v3w3



8vxxvxvw2 + 6vxxwxv2w + 2wxxvxv2w − 3v3
xw2



+
1

8
· (vw)1/4

v3w3



2v2
xwxvw + 3vxw2

xv2 + 8vxxxv2w2


,

K30 =
1

8
· (vw)1/4

v3w3



8v2w2wxxx − 8v2wwxwxx + 3v2w3
x − 6vw2vxwxx



− 1

8
· (vw)1/4

v3w3



2vw2wxvxx − 2vwvxw2
x − 3w2v2

xwx



...

where

Iij = ι(ui,j), Jij = ι(vi,j), Kij = ι(wi,j).

By applying the invariantization process, System (1.1) can be rewritten in terms of
the differential invariants as















I01 − 1
2
I30 + 3I00I10 − 3(J00K10 + J10K00) = 0,

J01 + J30 − 3I00J10 = 0,

K01 + K30 − 3I00K10 = 0.

Next, we locate the a finite generating set of differential invariants for Equation
(1.1). One can obtain higher order differential invariants by repeatedly applying the
invariant differential operators to the lower order differential invariants.

According to (2.3), the recurrence formula for the differential invariants are

D1H
j = δj

1 +
r
∑

κ=1

ι(ξj
κ)Rκ

1 , D2H
j = δj

2 +
r
∑

κ=1

ι(ξj
κ)Rκ

2 ,(3.8)

D1Ijk = Ij+1,k +
r
∑

κ=1

ι(ηu,jk
κ )Rκ

1 , D2Ijk = Ij,k+1 +
r
∑

κ=1

ι(ηu,jk
κ )Rκ

2 ,

D1Jjk = Jj+1,k +
r
∑

κ=1

ι(ηv,jk
κ )Rκ

1 , D2Jjk = Jj,k+1 +
r
∑

κ=1

ι(ηv,jk
κ )Rκ

2 ,

D1Kjk = Kj+1,k +
r
∑

κ=1

ι(ηw,jk
κ )Rκ

1 , D2Kjk = Kj,k+1 +
r
∑

κ=1

ι(ηw,jk
κ )Rκ

2 ,

where Rκ
1 and Rκ

2 are the Maurer-Cartan invariants and ξj, ηu,jk
κ , ηv,jk

κ and ηw,jk
κ are

the coefficients of ∂
∂xj

, ∂
∂ujk

, ∂
∂vjk

and ∂
∂wjk

in the prolongation of the infinitesimal

generator Xκ respectively [26]. Solving the resulting phantom recurrence formula
produces the Maurrer-Cartan invariants

R2
1 = 0, R2

2 = −1, R1
1 = −1 − 1

3
R4

1, R3
1 = −J10,(3.9)

R3
2 = −J01, R4

1 =
3

4
K10 +

3

4
J10, R4

2 =
3

4
K01 +

3

4
J01.
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Substituting the Maurrer-Cartan invariants (3.9) back into (3.8) obtain all the non-
phantom recurrence formula.

D1I00 = I10 −
2

3
I00



3

4
K10 +

3

4
J10



, D2I00 = I01 −
2

3
I00



3

4
K01 +

3

4
J01



,(3.10)

D1I10 = −I10



3

4
K10 +

3

4
J10



+ I20, D2I10 = −I10



3

4
K01 +

3

4
J01



+ I11,

D1I01 = I11 −
5

3
I01



3

4
K10 +

3

4
J10



, D2I01 = I02 −
5

3
I01



3

4
K01 +

3

4
J01



,

D1I20 = I30 −
4

3
I20



3

4
K10 +

3

4
J10



, D2I20 = I21 −
4

3
I20



3

4
K01 +

3

4
J01



,

D1I02 = I12 −
8

3
I02



3

4
K10 +

3

4
J10



, D2I02 = I03 −
8

3
I02



3

4
K01 +

3

4
J01



,

D1I11 = −2I02



3

4
K10 +

3

4
J10



+ I21, D2I11 = −2I02



3

4
K01 +

3

4
J01



+ I12,

D1J10 = J20 − J2
10 −

1

3
J10



3

4
K10 +

3

4
J10



, D2J10 = J11 − J10J01 −
1

3
J10



3

4
K01 +

3

4
J01



,

D1J01 = −J10J01 − J01



3

4
K10 +

3

4
J10



+ J11, D2J01 = −J2
01 − J01



3

4
K01 +

3

4
J01



+ J02,

D1J20 = J30 − J10 −
2

3
J20



3

4
K10 +

3

4
J10



, D2J20 = J21 − J01 −
2

3
J20



3

4
K01 +

3

4
J01



,

D1J02 = −2J02



3

4
K10 +

3

4
J10



+ J12 − J10, D2J02 = −2J02



3

4
K01 +

3

4
J01



+ J03 − J01,

D1J11 = J21 − J10 −
4

3
J20



3

4
K10 +

3

4
J10



, D2J11 = J21 − J01 −
4

3
J11



3

4
K01 +

3

4
J01



,

D1K10 = K20 + K10J10 −
4

3
K10



3

4
K10 +

3

4
J10



, D2K10 = K11 + K10J01 −
4

3
K10



3

4
K01 +

3

4
J01



,

D1K01 = K11 + K01J10 −
7

3
K01



3

4
K10 +

3

4
J10



, D2K01 = K02 + K01J01 −
7

3
K01



3

4
K01 +

3

4
J01



,

D1K20 = K20J10 − 2K20



3

4
K10 +

3

4
J10



+ K30, D2K20 = K20J01 − 2K20



3

4
K01 +

3

4
J01



+ K21,

D1K11 = K21 + K11J10 −
8

3
K11



3

4
K10 +

3

4
J10



, D2K11 = K21 + K11J01 −
8

3
K11



3

4
K01 +

3

4
J01



,

D1K02 = K12 + K20J10 −
10

3
K11



3

4
K10 +

3

4
J10



, D2K02 = K03 + K02J01 −
10

3
K02



3

4
K01 +

3

4
J01



.

Theorem 3.1. The entire differential invariant algebra of the CHSK equations (1.1)
is generated by the following set:

(3.11) ¶I00, J10, J01, K10, K01♢.

Proof. From the recurrence formula (3.10), we find that any differential invariants
up to third order can be generated by a function composition of I00, J10, J01, K10, K01

and their derivatives. By differentiating the differential invariants (3.11), one can
find that any higher order differential invariants are also generated by the generating
set (3.11). □

Finally, we obtain the commutator invariants which satisfy the commutator relation

(3.12) [D1,D2] = Y1D1 + Y2D2,
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where D1 and D2 are the invariant differential operators. As a result of general
recurrence formulae, [11,18], we have

Y1 =
r
∑

κ=1

[

Rκ
2 ι(Dxξ1

κ) − Rκ
1 ι(Dtξ

1
κ)
]

, Y2 =
r
∑

κ=1

[

Rκ
2 ι(Dxξ2

κ) − Rκ
1 ι(Dtξ

2
κ)
]

,

in which ξi
κ is the coefficients of ∂xi , in the infinitesimal generator Xκ.

Substituting our formula (3.9) for the Maurer-Cartan invariants yields

(3.13) Y1 =
1

4
(K01 + J01) , Y2 = −3

4
(K10 − J10) .

Thus, from (3.12) and (3.13), we have

(3.14) [D1,D2] =
1

4
(K01 + J01)D1 − 3

4
(K10 − J10)D2.

Indeed, the generating differential invariants ¶I00, J10, J01, K10, K01♢, the recurrence
formulas (3.10), along with the commutation relations (3.14), provide a complete
specification of the structure of the differential invariant algebra of CHSK equations
(1.1).

4. Conclusions

In this paper, using the moving frames method, we located a finite generating set
of differential invariants and the invariant differential operators for the Lie symmetry
group of a generalized coupled Hirota-Satsuma KdV equations (CHSK), and then we
obtained the recurrence relations as well as syzygies among the generating differential
invariants. In particular, we proved that the differential invariant algebra of CHSK
equations can be generated by five differential invariants. The main application of the
differential invariants is to construct a class of PDEs, which possess the same symmetry
properties, which is important for both mathematics and physical interpretation.
Since the CHSK system is the mathematical model of interactions of two long waves
with different dispersion relations, our results are applicable to study the invariant
properties of interactions of two long waves. In our approach, we also obtained the
Maurer-Cartan invariants.
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MATRIX FEJÉR AND LEVIN-STEČKIN INEQUALITIES

MOHAMMAD SABABHEH1, SHIVA SHEYBANI2, AND HAMID REZA MORADI3

Abstract. Fejér and Levin-Stečkin inequalities treat integrals of the product of
convex functions with symmetric functions. The main goal of this article is to present
possible matrix versions of these inequalities. In particular, majorization results are
shown of Fejér type for both convex and log-convex functions. For the matrix Levin-
Stečkin type, we present more rigorous results involving the partial Löewner ordering
for Hermitian matrices. Further related results involving synchronous functions are
presented, too.

1. Introduction

The theory of convex functions has played a major role in the study of mathematical
inequalities. Related to convex-type inequalities, the Levin-Stečkin’s inequality states
that if the function p : [0, 1] → R is symmetric about t = 1

2
, namely p (1 − t) = p (t) ,

and non-decreasing on
[

0, 1
2

]

, then for every convex function f on [0, 1], the inequality

1
∫

0

p (t) f (t) dt ≤

1
∫

0

p (t) dt

1
∫

0

f (t) dt

holds true [6]. If p is symmetric non-negative (without any knowledge about its
monotonicity) and f : [a, b] → R is convex, Fejér inequality states that [4]

f

(

a + b

2

) 1
∫

0

p (t) dt ≤

1
∫

0

p (t) f ((1 − t) a + tb) dt ≤
f (a) + f (b)

2

1
∫

0

p (t) dt.

Key words and phrases. Levin-Stečkin inequality, Fejér inequality, positive matrices.
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We notice that Fejér inequality reduces to the Hermite-Hadamard inequality [5] when
p(t) = 1. In mathematical inequalities, it is of interest to extend known inequalities
from the setting of scalars to other objects, such as matrices. In this article, we will be
interested in extending both the Levin-Stečkin and Fejér inequalities to the matrices
setting.

In the sequel, Mn will denote the algebra of all n × n complex matrices. The
conjugate transpose (or adjoint) of A ∈ Mn is denoted by A∗, and then the matrix
A will be called Hermitian if A∗ = A. When ⟨Ax, x⟩ ≥ 0 for all x ∈ C

n, A is said
to be positive semi-deĄnite and is denoted as A ≥ 0. If A ≥ 0 and A is invertible,
then A is said to be positive (strictly positive or positive deĄnite). When A, B ∈ Mn

are Hermitian, we say that A ≤ B if B − A ≥ 0. This provides a partial ordering
on the class of Hermitian matrices. The eigenvalues of a Hermitian matrix A will
be denoted by λ1(A), λ2(A), . . . , λn(A), repeated according to their multiplicity and
arranged decreasingly. That is λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

The relation A ≤ B implies λi(A) ≤ λi(B) for any such Hermitian matrices
A, B ∈ Mn. However, the converse is not true. This urges the need to discuss,
in some cases, the latter order. For convenience, we will write λ(A) ≤ λ(B) to mean
that λi(A) ≤ λi(B), i = 1, 2, . . . , n.

Another weaker ordering among matrices is the so-called weak majorization ≺w,
deĄned for the Hermitian matrices A, B as

A ≺w B if and only if
k
∑

i=1

λi(A) ≤
k
∑

i=1

λi(B), k = 1, . . . , n.

It is clear that (see [1]) A ≤ B implies λ(A) ≤ λ(B), which implies A ≺w B. It
is customary to obtain one of these orders when extending a scalar inequality to a
matrix inequality. For example, in this article, we obtain

λ









1
∫

0

p (t) dt



 f



A + B

2





 ≤ λ





1
∫

0

p (t) f ((1 − t) A + tB) dt



 ,

as an extension of Fejér inequality, to the Hermitian matrices A, B with spectra in
the domain of f .

Further, if f is monotone, then

λ





1
∫

0

p (t) f ((1 − t) A + tB) dt



 ≤ λ









1
∫

0

p (t) dt





f (A) + f (B)
2



 ,

as matrix inequalities of the Fejér inequality. We remark that integral inequalities
have played a key role in advancing matrix inequalities, as seen in [8, 9, 12], and the
references therein.

In the next section, we study the possible matrix versions of Fejér inequality, which
implies certain versions of the Hermite-Hadamard matrix inequality [10]. Then log-
convex functions will be deployed to obtain new matrix Fejér inequalities for this
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type of functions, and we conclude with the discussion of the matrix Levin-Stečkin
inequality.

2. Fejér Matrix Inequalities for Convex Functions

We begin with the following weak majorization of Fejér-type inequality.

Theorem 2.1. Let f : J → R be convex and let p : [0, 1] → [0, +∞) be symmetric

about t = 1
2
. If A, B ∈ Mn are Hermitian with spectra in the interval J , then

λ









1
∫

0

p (t) dt



 f



A + B

2





≺wλ





1
∫

0

p (t) f ((1 − t) A + tB) dt



 .

Proof. If f is a convex function, then for any 0 ≤ t ≤ 1, we have

f

(

a + b

2

)

= f

(

(1 − t) a + tb + (1 − t) b + ta

2

)

≤
f ((1 − t) a + tb) + f ((1 − t) b + ta)

2
.

Thus,

(2.1) f

(

a + b

2

)

≤
f ((1 − t) a + tb) + f ((1 − t) b + ta)

2
.

If the function p is non-negative, we get from (2.1),

p (t) f

(

a + b

2

)

≤ p (t)

(

f ((1 − t) a + tb) + f ((1 − t) b + ta)
2

)

.

Integrating on t ∈ [0, 1], and using symmetry assumption on p, we get

(2.2)





1
∫

0

p (t)dt



 f

(

a + b

2

)

≤

1
∫

0

p (t) f ((1 − t) a + tb) dt.

If we replace a, b by ⟨Ax, x⟩, ⟨Bx, x⟩ respectively, in (2.2), we get
(2.3)





1
∫

0

p (t) dt



 f

(

⟨Ax, x⟩ + ⟨Bx, x⟩

2

)

≤

1
∫

0

p (t) f ((1 − t) ⟨Ax, x⟩ + t ⟨Bx, x⟩) dt.

On the other hand, it follows from Jensen’s inequality [11, Theorem 1.2],

f (⟨((1 − t) A + tB) x, x⟩) ≤ ⟨f ((1 − t) A + tB) x, x⟩ .

By multiplying both sides by p (t), we get

p (t) f (⟨((1 − t) A + tB) x, x⟩) ≤ p (t) ⟨f ((1 − t) A + tB) x, x⟩ .
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Therefore,

(2.4)
1
∫

0

p (t) f (⟨((1 − t) A + tB) x, x⟩) dt ≤

〈





1
∫

0

p (t) f ((1 − t) A + tB) dt



x, x

〉

.

Combining inequalities (2.3) with (2.4), we obtain

(2.5)





1
∫

0

p (t) dt



 f

(

⟨Ax, x⟩ + ⟨Bx, x⟩

2

)

≤

〈





1
∫

0

p (t) f ((1 − t) A + tB) dt



x, x

〉

.

Suppose that λ1, . . . , λn are the eigenvalues of A+B
2

with x1, . . . , xn as an orthonormal
system of corresponding eigenvectors arranged such that f (λ1) ≥ · · · ≥ f (λn). We
have, for 1 ≤ k ≤ n,

k
∑

j=1

λj









1
∫

0

p (t) dt



 f



A + B

2





 =
k
∑

j=1





1
∫

0

p (t) dt



 f

〈

A + B

2



xj, xj

〉

=
k
∑

j=1





1
∫

0

p (t) dt



 f

(

⟨Axj, xj⟩ + ⟨Bxj, xj⟩

2

)

≤
k
∑

j=1

〈





1
∫

0

p (t) f ((1 − t) A + tB) dt



xj, xj

〉

(by the inequality (2.5))

≤
k
∑

j=1

λj





1
∫

0

p (t) f ((1 − t) A + tB) dt



.

Namely, for 1 ≤ k ≤ n,

k
∑

j=1

λj









1
∫

0

p (t) dt



 f



A + B

2





 ≤
k
∑

j=1

λj





1
∫

0

p (t) f ((1 − t) A + tB) dt



.

Therefore,

λ









1
∫

0

p (t) dt



 f



A + B

2





≺wλ





1
∫

0

p (t) f ((1 − t) A + tB) dt



 .. □

3. Fejér Inequalities via Log-convex Functions

In this part of the paper, we show a matrix Fejér inequality for log-convex functions.

Theorem 3.1. Let f : (0, +∞) → (0, +∞) be log-convex and p : [0, 1] → (0, +∞) be

symmetric and normalized in the sense that
∫ 1

0 p(t)dt = 1. If A, B ∈ Mn are positive,

then

λ



log f



A + B

2



≺w λ



log
∫ 1

0
p(t)f((1 − t)A + tB)dt



.
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Proof. When f is convex, by (2.3), we have

f

〈

A + B

2
x, x

〉

≤
∫ 1

0
p(t)f (⟨((1 − t)A + tB)x, x⟩) dt,

for any unit vector x. Since f is log-convex and A, B are positive, it follows that

log f

〈

A + B

2
x, x

〉

≤
∫ 1

0
p(t) log f ⟨((1 − t)A + tB)x, x⟩ dt.

Noting that log is a concave function and that dµ(t) := p(t)dt is a probability measure,
we have

log f

〈

A + B

2
x, x

〉

≤
∫ 1

0
p(t) log f (⟨((1 − t)A + tB)x, x⟩) dt

=
∫ 1

0
log f (⟨((1 − t)A + tB)x, x⟩) dµ(t)

≤ log
∫ 1

0
f (⟨((1 − t)A + tB)x, x⟩) dµ(t)

= log
∫ 1

0
p(t)f (⟨((1 − t)A + tB)x, x⟩) dt,

for any unit vector x. Now, let λ1, . . . , λn be the eigenvalues of A+B
2

with orthonormal
eigenvectors x1, x2, . . . , xn, so that f(λ1) ≥ · · · ≥ f(λn). Then, for 1 ≤ k ≤ n,

k
∑

j=1

λj



log f



A + B

2



=
k
∑

j=1

log f(λj)

=
k
∑

j=1

log f

〈

A + B

2
xj, xj

〉

≤
k
∑

j=1

log
∫ 1

0
p(t)f (⟨((1 − t)A + tB)xj, xj⟩) dt

≤
k
∑

j=1

λj



log
∫ 1

0
p(t)f((1 − t)A + tB))dt



.

This completes the proof. □

As a consequence, we have the following.

Corollary 3.1. Let f : (0, +∞) → (0, +∞) be log-convex and p : [0, 1] → (0, +∞) be

symmetric and normalized. Then

k
∏

j=1

λj



f



A + B

2



≤
k
∏

j=1

λj

∫ 1

0
p(t)f((1 − t)A + tB)dt



, k = 1, . . . , n,

for any positive matrices A, B ∈ Mn.
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Proof. From Theorem 3.1, we have
k
∑

j=1

λj



log f



A + B

2



≤
k
∑

j=1

λj



log
∫ 1

0
p(t)f((1 − t)A + tB))dt



,

which is equivalent to
k
∑

j=1

log λj



f



A + B

2



≤
k
∑

j=1

log λj

∫ 1

0
p(t)f((1 − t)A + tB))dt



.

Consequently,

log
k
∏

j=1

λj



f



A + B

2



≤ log
k
∏

j=1

λj

∫ 1

0
p(t)f((1 − t)A + tB)dt



,

which implies the desired inequality. □

4. Levin-Stečkin Matrix Inequalities

We present a new inequality of Levin-Stečkin type. The signiĄcance of this inequality
is its validity for any positive function p without imposing any conditions on its
symmetry or monotony.

Theorem 4.1. Let f : [0, 1] → R be convex differentiable and let p : [0, 1] → [0, +∞)
be continuous. Then
∫ 1

0
f(t)dt

∫ 1

0
p(t)dt +

∫ 1

0
f ′(t)dt

∫ 1

0
tp(t)dt −

∫ 1

0
tf ′(t)dt

∫ 1

0
p(t)dt



≤
∫ 1

0
f(t)p(t)dt.

Further,

1
∫

0

p (t) f (t) dt +
1
2

1
∫

0

p (t) f ′ (t) dt −

1
∫

0

p (t) tf ′ (t) dt ≤

1
∫

0

p (t) dt

1
∫

0

f (t) dt.

Proof. For the convex differentiable function f and s, t ∈ [0, 1] we have

(4.1) f(s) + f ′(s)(t − s) ≤ f(t).

Since p(t) ≥ 0, it follows that

p(t)f(s) + p(t)f ′(s)(t − s) ≤ p(t)f(t), s, t ∈ [0, 1].

Integrating this inequality over t ∈ [0, 1] then over s ∈ [0, 1] implies
∫ 1

0
f(s)ds

∫ 1

0
p(t)dt +

∫ 1

0
f ′(s)ds

∫ 1

0
tp(t)dt −

∫ 1

0
sf ′(s)ds

∫ 1

0
p(t)dt



≤

∫ 1

0
f(t)p(t)dt,

which is equivalent to the Ąrst desired inequality.
For the second inequality, integrating (4.1) over t ∈ [0, 1], we obtain

f (s) + f ′ (s)
1

2
− s



≤

1
∫

0

f (t) dt.
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If we put s = t, we have

f (t) + f ′ (t)
1

2
− t



≤

1
∫

0

f (t) dt.

Multiplying both sides by p (t), we get

p (t) f (t) + p (t) f ′ (t)
1

2
− t



≤ p (t)
1
∫

0

f (t) dt.

Again, if we take integral over t ∈ [0, 1], we infer that
1
∫

0

p (t) f (t) dt +
1
2

1
∫

0

p (t) f ′ (t) dt −

1
∫

0

p (t) tf ′ (t) dt ≤

1
∫

0

p (t) dt

1
∫

0

f (t) dt.

This completes the proof. □

Corollary 4.1. Let f : [0, 1] → R be convex differentiable and let p : [0, 1] → [0, +∞)
be symmetric about 1

2
and non-decreasing on

[

0, 1
2

]

. Then

∫ 1

0
f ′(t)dt

∫ 1

0
tp(t)dt ≤

∫ 1

0
tf ′(t)dt

∫ 1

0
p(t)dt.

Proof. This follows from the Ąrst inequality in Theorem 4.1 because when p is sym-
metric about 1

2
and non-decreasing on

[

0, 1
2

]

, we have
∫ 1

0
f(t)p(t)dt ≤

∫ 1

0
f(t)dt

∫ 1

0
p(t)dt. □

Assume that τt and σt are two arbitrary weighted symmetric operator means with
0 ≤ t ≤ 1. A real-valued continuous function f : J ⊆ R → R is operator τt-σt-convex
if

f (AτtB) ≤ f (A) σtf (B) ,

for Hermitian A, B ∈ Mn whose spectra are contained in J . For t = 1
2
, we say f is

operator τ -σ, and we write

(4.2) f (AτB) ≤ f (A) σf (B) .

An important example of operator mean is the arithmetic mean, which is denoted by
∇t, as the weighted version, for 0 ≤ t ≤ 1.

To prove the next lemma, we need the following important property of the weighted
operator means:

(4.3) (AταB) τγ (AτβB) = Aτ(1−γ)α+γβB, α, β, γ ∈ [0, 1] .

Lemma 4.1. Let f : J ⊆ R → R be an operator τt-σt-convex and let x ∈ C
n. Then

F (t) = ⟨f (AτtB) x, x⟩

is convex on 0 ≤ t ≤ 1.



814 M. SABABHEH, S. SHEYBANI, AND H. R. MORADI

Proof. Indeed,

F



t + s

2



=
〈

f
(

Aτ t+s

2

B


x, x
〉

= ⟨f ((AτtB) τ (AτsB)) x, x⟩ (by (4.3))

≤ ⟨f (AτtB) σf (AτsB) x, x⟩ (by (4.2))

≤ ⟨f (AτtB) ∇f (AτsB) x, x⟩

(since arithmetic mean is the biggest one among symmetric means)

=
⟨f (AτtB) x, x⟩ + ⟨f (AτsB) x, x⟩

2

=
F (t) + F (s)

2
.

This completes the proof. □

Theorem 4.2. Let A, B ∈ Mn be two Hermitian matrices with spectra contained in

J , let f be operator τt-σt-convex and p : [0, 1] → [0, +∞) be symmetric about t = 1
2

and non-decreasing on
[

0, 1
2

]

. Then

1
∫

0

p (t) f (AτtB) dt ≤

1
∫

0

p (t) dt

1
∫

0

f (AτtB) dt.

Proof. Let x ∈ Mn be a unit vector. Then
〈





1
∫

0

p (t) f (AτtB) dt



x, x

〉

=
1
∫

0

p (t) ⟨f (AτtB) x, x⟩ dt

≤

1
∫

0

p (t) dt

1
∫

0

⟨f (AτtB) x, x⟩ dt

=

〈





1
∫

0

p (t) dt

1
∫

0

f (AτtB) dt



x, x

〉

where we have employed Lemma 4.1. This completes the proof. □

The case τt = σt = ∇t, in Theorem 4.2, reduces to

(4.4)
1
∫

0

p (t) f ((1 − t) A + tB) dt ≤

1
∫

0

p (t) dt

1
∫

0

f ((1 − t) A + tB) dt.

The following theorem gives a reverse for the inequality (4.4) by employing the
Mond-Pečarić method [11].

Theorem 4.3. Let f : [m, M ] → R be convex and let p : [0, 1] → [0, +∞) be symmetric

about t = 1
2
. If A, B ∈ Mn are Hermitian with spectra in the interval [m, M ], then for
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any α ≥ 0

1
∫

0

p (t) dt

1
∫

0

f ((1 − t) A + tB) dt ≤ β

1
∫

0

p (t) dtI + α

1
∫

0

p (t) f ((1 − t) A + tB) dt,

where β = max
m≤x≤M

¶afx + bf − αf (x)♢, af = f(M)−f(m)
M−m

and bf = Mf(m)−mf(M)
M−m

.

Proof. Since f (x) ≤ afx + bf , we get by the functional calculus

f ((1 − t) A + tB) ≤ af ((1 − t) A + tB) + bfI.

By taking integral over 0 ≤ t ≤ 1 , we reach

1
∫

0

f ((1 − t) A + tB) dt ≤ af



A + B

2



+ bfI.

This implies

1
∫

0

p (t) dt

1
∫

0

f ((1 − t) A + tB) dt ≤ af





1
∫

0

p (t) dt





A + B

2
+ bf





1
∫

0

p (t) dt



 I.

Hence for any vector y,

〈





1
∫

0

p (t) dt

1
∫

0

f ((1 − t) A + tB) dt



 y, y

〉

≤ af





1
∫

0

p (t) dt





〈

A + B

2



y, y

〉

+

1
∫

0

p (t) dtbf .

Now, by (2.3), we can write

〈





1
∫

0

p (t) dt

1
∫

0

f ((1 − t) A + tB) dt



 y, y

〉

− α

1
∫

0

p (t) f (⟨((1 − t) A + tB) y, y⟩) dt

≤af





1
∫

0

p (t) dt





〈

A + B

2



y, y

〉

+ bf

1
∫

0

p (t) dt − α

1
∫

0

p (t) f (⟨((1 − t) A + tB) y, y⟩) dt

≤af





1
∫

0

p (t) dt





〈

A + B

2



y, y

〉

+ bf

1
∫

0

p (t) dt − α





1
∫

0

p (t) dt



 f

〈

A + B

2



y, y

〉

=





1
∫

0

p (t) dt







af

〈

A + B

2



y, y

〉

+ bf − αf

〈

A + B

2



y, y

〉

≤





1
∫

0

p (t) dt



 max
m≤x≤M

¶af x + bf − αf (x)♢ .
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Thus,
〈





1
∫

0

p (t) dt

1
∫

0

f ((1 − t) A + tB) dt



 y, y

〉

≤β

1
∫

0

p (t) dt + α

1
∫

0

p (t) f (⟨((1 − t) A + tB) y, y⟩) dt

≤β

1
∫

0

p (t) dt + α

1
∫

0

p (t) ⟨f ((1 − t) A + tB) y, y⟩ dt

(by [11, Theorem 1.2])

=

〈



β





1
∫

0

p (t) dt



 I + α

1
∫

0

p (t) f ((1 − t) A + tB) dt



 y, y

〉

as desired. □

5. Further inequalities via synchronous functions

We say that the functions f, g : J → R are synchronous (asynchronous) on the
interval J if they satisfy the following condition, for all s, t ∈ J,

(f (t) − f (s)) (g (t) − g (s)) ≥ (≤) 0.

It is obvious that if f, g are monotonic and have the same monotonicity on the interval
J , then they are synchronous on J while if they have opposite monotonicity, they are
asynchronous.

Related to the Levin-Stečkin inequality, the celebrated Čebyšev inequality [2] states
that if f and g are two functions having the same monotonicity on [0, 1], then

1
∫

0

f (t) dt

1
∫

0

g (t) dt ≤

1
∫

0

f (t) g (t) dt.

For some Čebyšev type inequalities for Hilbert space operators, see [7].
The following result provides a reĄnement and a reverse of this inequality via

synchronous functions.

Theorem 5.1. Let f, g: [a, b] → R be synchronous functions on the interval [a, b].
Then

min











1

b − a

b
∫

a

f2 (t) dt −





1

b − a

b
∫

a

f (t) dt





2

,
1

b − a

b
∫

a

g2 (t) dt −





1

b − a

b
∫

a

g (t) dt





2










≤
1

b − a

b
∫

a

f (t) g (t) dt −





1

b − a

b
∫

a

f (t) dt









1

b − a

b
∫

a

g (t) dt




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≤ max











1

b − a

b
∫

a

f2 (t) dt −





1

b − a

b
∫

a

f (t) dt





2

,
1

b − a

b
∫

a

g2 (t) dt −





1

b − a

b
∫

a

g (t) dt





2










.

If f and g have opposite monotonicity then

min











1

b − a

b
∫

a

f2 (t) dt −





1

b − a

b
∫

a

f (t) dt





2

,
1

b − a

b
∫

a

g2 (t) dt −





1

b − a

b
∫

a

g (t) dt





2










≤





1

b − a

b
∫

a

f (t) dt









1

b − a

b
∫

a

g (t) dt



−
1

b − a

b
∫

a

f (t) g (t) dt

≤ max











1

b − a

b
∫

a

f2 (t) dt −





1

b − a

b
∫

a

f (t) dt





2

,
1

b − a

b
∫

a

g2 (t) dt −





1

b − a

b
∫

a

g (t) dt





2










.

Proof. We prove the Ąrst inequality. The second inequality goes likewise, and we omit
the details. We have

f (t) g (t) + f (s) g (s) − (f (t) g (s) + f (s) g (t))

= (f (t) − f (s)) (g (t) − g (s))

= ♣(f (t) − f (s)) (g (t) − g (s))♣

= ♣f (t) − f (s)♣ ♣g (t) − g (s)♣

≥ min
{

(f (t) − f (s))2
, (g (t) − g (s))2

}

= min
{

f 2 (t) + f 2 (s) − 2f (t) f (s) , g2 (t) + g2 (s) − 2g (t) g (s)
}

.

Therefore,

min
{

f 2 (s) + f 2 (t) − 2f (s) f (t) , g2 (t) + g2 (s) − 2g (t) g (s)
}

≤f (t) g (t) + f (s) g (s) − (f (t) g (s) + f (s) g (t)) .

Consequently,

min







(b − a) f2 (s) +

b
∫

a

f2 (t) dt − 2f (s)

b
∫

a

f (t) dt,

b
∫

a

g2 (t) dt + (b − a) g2 (s) − 2g (s)

b
∫

a

g (t) dt







≤

b
∫

a

f (t) g (t) dt + (b − a) f (s) g (s) − g (s)

b
∫

a

f (t) dt − f (s)

b
∫

a

g (t) dt.

Upon integration, this implies

min











2 (b − a)
b
∫

a

f 2 (t) dt − 2





b
∫

a

f (t) dt





2

, 2 (b − a)
b
∫

a

g2 (t) dt − 2





b
∫

a

g (t) dt





2










≤2 (b − a)
b
∫

a

f (t) g (t) dt − 2
b
∫

a

f (t) dt

b
∫

a

g (t) dt.
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Multiplying both sides by 1
2(b−a)2 , we obtain,

min











1

b − a

b
∫

a

f2 (t) dt −





1

b − a

b
∫

a

f (t) dt





2

,
1

b − a

b
∫

a

g2 (t) dt −





1

b − a

b
∫

a

g (t) dt





2










≤
1

b − a

b
∫

a

f (t) g (t) dt −





1

b − a

b
∫

a

f (t) dt









1

b − a

b
∫

a

g (t) dt



 .

The second inequality is obtained from the same arguments and the following relation

max
{

f 2 (s) + f 2 (t) − 2f (s) f (t) , g2 (t) + g2 (s) − 2g (t) g (s)
}

≥f (t) g (t) + f (s) g (s) − (f (t) g (s) + f (s) g (t)) . □

In the following result, we establish a reĄnement and a reverse for the Levin-Stečkin
inequality.

Theorem 5.2. Let p : [0, 1] → R be a symmetric about t = 1
2
, namely p (1 − t) = p (t) ,

and non-decreasing on
[

0, 1
2

]

, then for every convex function f on [0, 1],

1
∫

0

p (t) f (t) dt ≤

1
∫

0

p (t) dt

1
∫

0

f (t) dt

− min











2

1/2
∫

0

p2 (t) dt −





1
∫

0

p (t) dt





2

,
1

2

1/2
∫

0

(f (t) + f (1 − t))
2
dt −





1

2

1
∫

0

(f (t) + f (1 − t))dt





2










.

A similar but reversed inequality holds if we replace min with max.

Proof. If f is symmetric and convex, by Theorem 5.1, we have

1
∫

0

p (t) dt

1
∫

0

f (t) dt

=







1/2
∫

0

p (t) dt +

1
∫

1/2

p (t) dt













1/2
∫

0

f (t) dt +

1
∫

1/2

f (t) dt






= 4

1/2
∫

0

p (t) dt

1/2
∫

0

f (t) dt

≥2

1/2
∫

0

p (t) f (t) dt + min











2

1/2
∫

0

p2 (t) dt −






2

1/2
∫

0

p (t) dt







2

, 2

1/2
∫

0

f2 (t) dt −






2

1/2
∫

0

f (t) dt







2








=

1
∫

0

p (t) f (t) dt+ min











2

1/2
∫

0

p2 (t) dt −





1
∫

0

p (t) dt





2

, 2

1/2
∫

0

f2 (t) dt −





1
∫

0

f (t) dt





2










.
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Namely,

1
∫

0

p (t) f (t) dt + min











2

1/2
∫

0

p2 (t) dt −





1
∫

0

p (t) dt





2

, 2

1/2
∫

0

f 2 (t) dt −





1
∫

0

f (t) dt





2










≤

1
∫

0

p (t) dt

1
∫

0

f (t) dt.

We shall now consider an arbitrary f . For convex f , the function f(x)+f(1−x)
2

is convex
and symmetric so that we can use the above inequality. Hence,

1
∫

0

p (t) f (t) dt

=

∫

1

0
p (t) f (t) dt +

∫

1

0
p (1 − t) f (1 − t) dt

2
=

1
∫

0

p (t)
f (t) + f (1 − t)

2
dt

≤

1
∫

0

p (t) dt

1
∫

0

f (t) + f (1 − t)

2
dt

− min











2

1/2
∫

0

p2 (t) dt −





1
∫

0

p (t) dt





2

,
1

2

1/2
∫

0

(f (t) + f (1 − t))
2
dt −





1

2

1
∫

0

(f (t) + f (1 − t))dt





2










=

1
∫

0

p (t) dt

1
∫

0

f (t) dt

− min











2

1/2
∫

0

p2 (t) dt −





1
∫

0

p (t) dt





2

,
1

2

1/2
∫

0

(f (t) + f (1 − t))
2
dt −





1

2

1
∫

0

(f (t) + f (1 − t))dt





2










,

which yields the desired inequality. □

We can improve the second inequality in Theorem 5.1 in the following way.

Theorem 5.3. Let f, g : J → R be synchronous functions on the interval [0, 1]. Then

1
∫

0

f (t) g (t) dt −

1
∫

0

f (t) dt

1
∫

0

g (t) dt

≤
1
2







1
∫

0

f 2 (t) dt −





1
∫

0

f (t) dt





2

+
1
∫

0

g2 (t) dt −





1
∫

0

g (t) dt





2




 .
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Proof. We have

f (t) g (t) + f (s) g (s) − (f (t) g (s) + f (s) g (t))

= (f (t) − f (s)) (g (t) − g (s))

= ♣(f (t) − f (s)) (g (t) − g (s))♣

= ♣f (t) − f (s)♣ ♣g (t) − g (s)♣

≤
1
2

(

(f (t) − f (s))2 + (g (t) − g (s))2


=
1
2

(

f 2 (t) + f 2 (s) + g2 (t) + g2 (s) − 2 (g (t) g (s) + f (t) f (s))


.

Therefore,

f (t) g (t) + f (s) g (s) − (f (t) g (s) + f (s) g (t))

≤
1
2

(

f 2 (t) + f 2 (s) + g2 (t) + g2 (s) − 2 (g (t) g (s) + f (t) f (s))


.

The remaining part of the proof is similar to the proof of Theorem 5.1, so we omit
the details. □
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