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DIFFERENTIAL INVARIANTS OF COUPLED HIROTA-SATSUMA
KDV EQUATIONS

GHORBANALI HAGHIGHATDOOST1, MOSTAFA BAZGHANDI1, AND FIROOZ PASHAIE2∗

Abstract. In this paper, we consider a generalized coupled Hirota-Satsuma KdV
(CHSK) system of equations. We apply the moving frames method to find a fi-
nite generating set of differential invariants for the Lie symmetry group of CHSK
equations. Once the generating set of differential invariants is located, we obtain
recurrence relations and syzygies among the generating differential invariants. Our
approach provides a complete characterization of the structure of algebras of differ-
ential invariants of CHSK equations.

1. Introduction

The equivalence moving frames method was introduced by E. Cartan to solve the
equivalence problems on submanifolds under the action of a transformation group. In
1974, P. A. Griffiths has paid to the uniqueness and existence problem on geometric
differential equations by using the Cartan method of Lie groups and moving frames
[25]. Later on, in the 1990s, Fels and Olver have presented the moving co-frame
method as a new formulation of the classical Cartan method for finite-dimensional
Lie group actions on manifolds [10, 11]. In the last two decades, the moving frames
method has been developed in the general algorithmic and equivariant framework
which gives several new powerful tools for finding and classifying the equivalence and
symmetry properties of submanifolds, differential invariants, and their syzygies (for
instance, see [20–22]).
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The equivalence and symmetries of submanifolds are subject to their differential
invariants, which have the same symmetry properties and allow us to determine the
exact solutions of differential equations [4, 16]. In general, differential invariants are
used to solve a broad range of problems appearing in nonlinear theory, mathemat-
ical physics, computer science and so on. A significant step for developing these
applications is to study the structure of the algebra of differential invariants.

The KdV equations are well-known nonlinear evolution equations (NLEEs) which
are a model for many physical phenomena. The simplest form of the KdV equation is
ut + uux + uxxx = 0, where the uux term models nonlinear effects and the uxxx term
models dispersive effects of a wave propagation. The KdV equations can give a clear
interpretation of both nonlinear effects and dispersive effects of propagation of long
waves [3]. In the present paper, we consider a generalized coupled Hirota-Satsuma
KdV (CHSK) system as [31]:

(1.1)


ut − 1

2uxxx + 3uux − 3(vw)x = 0,

vt + vxxx − 3uvx = 0,

wt + wxxx − 3uwx = 0,

which is the mathematical model of interactions of two long waves with different
dispersion relations [6]. Especially, when v = w, the system (1.1) gives the well-known
coupled Hirota-Satsuma KdV system.

System (1.1) has been studied via several methods such as the classical Lie group
method [1], non-local symmetries [5], collocation method with quintic b-spline method
[27]. These works mainly focused on obtaining solutions. Recently, a Lie group analysis
on the time-fractional (CHSK) system has been done to obtain exact solutions and
conservation laws [28]. In analytical works, differential invariants appeared. Indeed,
these methods reduce the system with the aid of differential invariants (e.g. [1, 5, 28]).
Knowledge of the algebraic structure of the differential invariants enables us to obtain
not only the reduced equations but also to construct a class of differential equations
which has the same symmetry properties, and it is significant from the physical point
of view.

As far as we know, a comprehensive structure of algebras of differential invariants
of equations (1.1) is not obtained so far. In this paper, using the moving frames
method, we consider the structure of algebras of differential invariants of System
(1.1). The advantage of our approach is that we yield the structure of the differential
invariants algebra of System (1.1) only by using the infinitesimal determining equations
and choosing a proper cross-section. Further, we do not need additional efforts for
integration. Moreover, our approach contains straightforward calculations, yet it is
more powerful since it yields the relations among the invariants.

The paper has the following organization. In Section 2, first in subsection 2.1, we
remember the concept of differential invariants and some results on them. Then, in
subsection 2.2, we explain the moving frames method and how one can apply the
method to analyze the algebraic structure of groups. In Section 3, we apply the method



COUPLED HIROTA-SATSUMA KDV EQUATIONS 795

to the CHSK system and we analyze the algebraic structure of its Lie symmetry. In
fact, using the moving frames method, we locate a finite set of generating differential
invariants for the CHSK system and we obtain recurrence relations and the syzygies
among the generation of differential invariants.

2. Preliminaries

In this section, we present the preliminary concepts of differential invariants and
moving frames method. We assume the reader to be familiar with the concepts of
Lie symmetry method which is described in [15] and is used in many papers (e.g.
[2, 12, 13,28,29]).

First, we remember the concept of jet space. By definition, the jet space of order
n, Jn = Jn(M, p), is the equivalence classes of p-dimensional submanifolds of a
manifold M (of dimension m) under the equivalence relation of nth order contact.
For instance, let we consider the local coordinates z = (x, u) on manifold M , such
that, the components of x = (x1, . . . , xp) are assumed as independent variables and
the components of u = (u1, . . . , uq) are regarded as dependent ones. So, in these
coordinates, a p-submanifold is realized as the graph of a function u = f(x) [17]. Two
such submanifolds are equivalent at a point (x0, u0) = (x0, f(x0)) if and only if they
have the same nth order Taylor polynomials at x0 [17]. The induced coordinates on
the jet space Jn are denoted by z(n) = (x, u(n)), consisting of independent variables
xi, dependent variables uα, and their derivatives uα

J , of order #J ≤ n.
Now, let G be a local group of transformations acting on M . The induced local

action of G on the nth jet space Jn(M) is called the nth prolongation of G denoted
by Gn. This prolongation transforms u = f(x) and its derivatives. Studying the infin-
itesimal generators of prolonged group transformations is much easier than working
with the explicit formula for the prolonged group transformations. Therefore, we work
with the infinitesimal generators of prolonged group transformations.

If G is assumed to be a connected transformation group, then its infinitesimal
generators form the Lie algebra of vector fields as

X =
p∑

i=1
ξi(x, u) ∂

∂xi
+

q∑
α=1

ηα(x, u) ∂

∂uα
.

The nth prolongation of X is

X(n) =
p∑

i=1
ξi(x, u(n)) ∂

∂xi
+

q∑
α=1

∑
#J≤n

ηα
J (x, u(n)) ∂

∂uα
J

,

where

ηα
J = DJ

(
ηα −

p∑
i=1

ξiuα
i

)
+

p∑
i=1

ξiuα
J,i,
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and DJ = Dj1 · · · Djn . Here Dj denotes the total derivative with respect to xj as

(2.1) Dj = ∂

∂xj
+

q∑
α=1

∑
J

uα
J,j

∂

∂uα
J

.

2.1. Differential Invariants. A real-valued function F : Jn → R is a differential
invariant of a group transformation G, if it is remained unchanged by the prolongation
of G, i.e. F (g(n).z(n)) = F (z(n)), for all z(n) ∈ Jn and all g ∈ G [23].

A well-known theorem ([9, Theorem 42]) of S. Lie and S. Scheffers says that under
appropriate assumptions, all the differential invariants can be generated by a finite
number of low order invariants and their derivatives. Lie and Scheffers presented
the finite-dimensional Lie group case. Then, in 1894, A. Tress extends the theorem
to infinite-dimensional pseudo-groups [30]. Indeed, there exists a finite set of gener-
ating differential invariants, and p invariant differential operators that preserve the
differential invariant algebra, such that any other differential invariant can be locally
written as a function of the generating invariants and their invariant derivatives. The
order of differentiation is important, since the invariant differential operators need not
commute. Furthermore, the differentiated invariants are generally not functionally
independent, but are govern by certain functional relations or syzygies [24].

To have a complete investigation of the algebra of differential invariants, we need
to find a finite set of generating differential invariant, their functional relationships
or their syzygies, and the commutation relationships between invariant operators.

2.2. Moving Frames Method. In order to describe the moving frames method,
first we recall that a moving frame is an equivariant map ρ : Jn → G from the jet
space Jn to the group G satisfying ρ(g(n) · z(n)) = g · ρ(z(n)) for every z(n) ∈ Jn and
g ∈ G. However, only free actions have moving frames. To prove the necessity of
freeness, let g be an arbitrary element in the isotropy subgroup and ρ be a moving
frame, then ρ(z(n)) = ρ(g(n) · z(n)) = g · ρ(z(n)). Therefore, the isotropy subgroup must
be Gz(n) = {e} for each z(n) ∈ J (n), meaning that the action must be free.

We can make actions free by prolonging the group. A theorem, which was presented
by Ovsiannikov and improved by Olver, states that if a group acts (locally) effectively
on subsets, then there exists an integer k such that the prolongation of the group
action is locally free on an open and dense subset of the k-th order jet space [14,19].
In cases where G does not act effectively, without loss of any generality, we can replace
G with the effectively acting quotient group G/G∗

M , where G∗
M is the global isotropy

subgroup [17]. Therefore, in order to make a action free, we prolong the group action
to a sufficiently high order jet space. The prolongation makes it possible to apply the
moving frames method to any group.

Once the freeness is achieved, we choose a specific local cross-section to the prolonged
group orbits. Based on the chosen cross-section, we construct a moving frame. After
constructing a moving frame, we use the invariantization process to produce complete
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systems of differential invariants and invariant differential operators. So, we start
with definition of cross-section.

A cross-section is a submanifold Kn ⊂ Jn, that intersect the prolonged group
orbits transversally. The cross-section is called regular if Kn intersects each orbit
at most once. The corresponding moving frame associates to each z(n) ∈ Jn is
the unique group element g = ρ(n)(z(n)) ∈ G that maps z(n) to the cross-section
g · zn = ρ(n)(z(n)) · z(n) ∈ K [22].

For simplicity, we can choose K = {z1 = c1, . . . , zr = cr} as coordinate cross-section,
which prescribed by setting the r = dim G coordinates to proper constants.

Given local coordinates z(n) = (z, u(n)) on Jn, let w(g, z(n)) = g · z(n) be the explicit
formulae for the group action. The right moving frame g = ρ(n)(z(n)) associated with
the coordinate cross-section

K = {z1 = c1, . . . , zr = cr},

is obtained by solving the normalization equations

(2.2) w1(g, z(n)) = c1, . . . , wr(g, z(n)) = cr.

Substituting the moving frame formulae for the group parameters into the remain-
ing action rules provides a complete system of functionally independent differential
invariants [26].

I(z(n)) = w(ρ(n)(z(n)), z(n)) = ρ(n)(z(n)) · z(n).

In particular, the normalization components (2.2) of w will be constant, which
are called the phantom differential invariants. Other components (2.2) are called
fundamental invariants.

In particular,
H i(x, u(n)) = ι(xi), Iα

J (x, u(n)) = ι(uα
J),

will denote the normalized differential invariants.
To carry on the moving frames method, we use the concept of invariantization and

begin the invariantization process. The invariantization

ι : F (x, u(n)) → I(x, u(n)) = F (ρ(n)(x, u(n)) · (x, u(n))),

maps the differential function F to the differential invariant I = ι(F ) [24].
Separating the local coordinates (x, u) on M into independent and dependent

variables splits the one-forms on J∞ into horizontal forms, which are spanned by
dx1, . . . , dxp, and vertical forms, which are spanned by the basic contact one-forms
[17]

θα
J = duα

J −
p∑

i=1
uα

J,idxi, α = 1, . . . , q, #J ≥ 0.

The pull back of the dual Maurer-Cartan forms µ1, . . . , µr on G via the moving
frame map: vk = ρ∗µk produces the invariantized Maurer-Cartan forms [8]. We split
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the invariantized Maurer-Cartan forms into horizontal forms and vertical forms:

vk =
p∑

i=1
Rκ

i (ω̄)i +
∑
α,J

Sκ,J
α ϑα

j ,

where Rκ
i and Sκ,J

α are certain differential invariants, ω̄i = ι(dxi) denote the invari-
antized horizontal one-forms and the invariantized basis contact forms are denoted
by

ϑα
J = ι(θα

J ), α = 1, . . . , q, #J ≥ 0.

The Rκ
i are called the Maurer-Cartan invariants [7]. The Maurer-Cartan invariants

will appear in the recurrence formula which will introduce later.
Though invariantization respect all algebraic operators, it does not respect differ-

entiation, i.e., D[ι(F )] ̸= ι[D(F )]. However, there is an explicit formula known as the
recurrence formula which determines the effect of invariantization on derivatives [11].
Given a differential function F (x, u(n)) and ι(F ) its moving frame invariantization.
Then the recurrence formula will be

(2.3) Di[ι(F )] = ι[Di(F )] +
r∑

κ=1
Rκ

i ι[X(n)
κ (F )],

where Rκ
i are the Maurer-Cartan invariants and X(n)

κ are the nth prolongations of the
infinitesimal generators Xκ [26]. In our approach, the recurrence formula (2.3) is the
key to study the algebra of differential invariants.

The invariant differential operators Di map differential invariants to differential
invariants. In most cases, they do not commute, but they satisfy in linear commutation
relations of the form

(2.4) [Di,Dj] =
p∑

k=1
Y k

ijDk, i, j = 1, . . . , p,

where the coefficients Y k
ij are certain differential invariants called the commutator

invariants [24]. One can obtain the commutator invariants Y k
ij by differentiating the

recurrence formula (2.3).
In general, if K = (k1, . . . , kl) is an ordered multi-index, then, as a result of (2.4),

(2.5) Dπ(K) = DK +
∑

#J<#K

Y J
π,KDJ ,

for any permutation π of the entries of K. For example,

DiDjDk = Di

(
DkDj +

p∑
l=1

Y l
jkDl

)

= DkDiDj +
p∑

l=1

[
Y l

ikDlDj + Y l
jkDiDl + (DiY

l
jk)Dl

]
.

Using the commutator formulae (2.5), we can construct an infinite number of commu-
tator syzygies by applying (2.5) on any one of our generating differential invariants.
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3. Invariants of Generalized Coupled Hirota-Satsuma KdV Equations

First, we consider the Lie point symmetries of System (1.1). The infinitesimal Lie
transformations for equations (1.1) are of the form:

x 7→x + λξx(x, t, u, v, w),
t7→t + λξt(x, t, u, v, w),
u7→u + ληu(x, t, u, v, w),
v 7→v + ληv(x, t, u, v, w),
w 7→w + ληw(x, t, u, v, w),

with the symmetry generator

X = ξx ∂

∂x
+ ξt ∂

∂t
+ ηu ∂

∂u
+ ηv ∂

∂v
+ ηw ∂

∂w
.

In [1], using Lie’s method, the infinitesimal Lie transformations for equations (1.1)
are obtained by solving the following determining system:

ξx
t = ξx

u = ξx
v = ξx

w = 0, ξt
x = ξt

u = ξt
v = ξt

w = 0, ξx
x = 1

3ξt
t ,

ηv
x = ηv

t = ηv
u = ηv

w = 0, ηu = −2
3ξt

tu, ηw = −1
3 · (4vξt

t + 3ηv)w
v

.(3.1)

Solving (3.1) yields the following coefficients of the vector field X:

ξx = a1 + 1
3xa4, ξt = a1 + t a4, ηu = −2

3u a4, ηv = a3 v , ηw = −a3 w − a4
4
3w.

where the a1, a2, a3, a4 are constants. Thus, the Lie algebra of the symmetries is
generated by the following four vector fields

X1 = ∂

∂x
,

X2 = ∂

∂t
,

X3 = v
∂

∂v
− w

∂

∂w
,(3.2)

X4 = 1
3x

∂

∂x
+ t

∂

∂t
− 2

3u
∂

∂u
− 4

3w
∂

∂w
.

The action of the symmetry group of equations (1.1) can be yielded by composing
the flows of the vector fields (3.2) and is given by

(X, T, U, V, W ) = exp(λ1X1) ◦ exp(λ2X2) ◦ exp(λ3X3) ◦ exp(λ4X4),
(3.3)

where λ1, . . . , λ4 are the group parameters. Calculating (3.3) leads to

X = (x + λ1) e1/3 λ4 , T = (t + λ2) eλ4 , U = ue−2/3 λ4 ,
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V = veλ3 , W = we−λ3e− 4
3 λ4 .

As noted in Section 2.2, we should choose an appropriate coordinate cross-section.
Since the dimension of group action is four, we can choose a coordinate cross-section
by setting four arbitrary coordinates equal to constants. Here, we set the coordinate
cross-section as K = {x = 1, t = 0 , v = 1, w = 1}. Our chosen coordinate cross-
section defines the following four normalization equations

(3.4) X = 1, T = 0, V = 1, W = 1,

As a result of our choice of normalization (3.4) the phantom differential invariants are

H1 = ι(x) = 1, H2 = ι(t) = 0, J00 = ι(v) = 1, K00 = ι(w) = 1.

Using Maple, we found that the normalization equations (3.4) can be solved by
the following group parameters:

(3.5) λ1 = −x (vw)1/4 − 1
(vw)1/4 , λ2 = −t, λ3 = − ln v, λ4 = 3

4 ln(vw).

The dual implicit differential operators are defined as follow [17]

(3.6) DXi =
p∑

j=1
W i

j Dxj , W j
i =

(
Dxj X i

)−1
,

where Dxi are the total derivative and are (2.1).
From (3.6), we have

(3.7) DX = e− 1
3 λ4Dx, DT = e−λ4 Dt.

Substituting (3.5) into (3.7), the corresponding invariant differential operators are

Dx = (vw)−1/4 Dx, Dt = (vw)−3/4 Dt.

A complete system of functionally independent normalized differential invariants is
yielded by invariantizing the remaining non-phantom differential invariants:

I00 = u

(vw)1/2 , I10 = (vw)1/4 ux

vw
, I01 = (vw)1/4 ut

vw
,

J10 =(vw)3/4 vx

vw
, J01 = (vw)1/4 vt

vw
,

K10 =(vw)3/4 wx

vw
, K01 = (vw)1/4 wt

vw
,

I20 = − 1
4 ·

√
vw (uxvxw + uxwxv − 4uxxvw)

v2w2 ,

I30 = − 1
8 · (vw)1/4

v3w3

(
2vxxuxvw2 + 2wxxuxv2w − 8uxxxv2w2 − 3uxv2

xw2 − 2uxvxwxvw
)

+ 1
8 · (vw)1/4

v3w3

(
−3uxw2

xv2 + 6uxxvxvw2 + 6uxxwxv2w
)

,
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J30 = − 1
8 · (vw)1/4

v3w3

(
8vxxvxvw2 + 6vxxwxv2w + 2wxxvxv2w − 3v3

xw2
)

+ 1
8 · (vw)1/4

v3w3

(
2v2

xwxvw + 3vxw2
xv2 + 8vxxxv2w2

)
,

K30 =1
8 · (vw)1/4

v3w3

(
8v2w2wxxx − 8v2wwxwxx + 3v2w3

x − 6vw2vxwxx

)
− 1

8 · (vw)1/4

v3w3

(
2vw2wxvxx − 2vwvxw2

x − 3w2v2
xwx

)
...

where
Iij = ι(ui,j), Jij = ι(vi,j), Kij = ι(wi,j).

By applying the invariantization process, System (1.1) can be rewritten in terms of
the differential invariants as

I01 − 1
2I30 + 3I00I10 − 3(J00K10 + J10K00) = 0,

J01 + J30 − 3I00J10 = 0,

K01 + K30 − 3I00K10 = 0.

Next, we locate the a finite generating set of differential invariants for Equation
(1.1). One can obtain higher order differential invariants by repeatedly applying the
invariant differential operators to the lower order differential invariants.

According to (2.3), the recurrence formula for the differential invariants are

D1H
j = δj

1 +
r∑

κ=1
ι(ξj

κ)Rκ
1 , D2H

j = δj
2 +

r∑
κ=1

ι(ξj
κ)Rκ

2 ,(3.8)

D1Ijk = Ij+1,k +
r∑

κ=1
ι(ηu,jk

κ )Rκ
1 , D2Ijk = Ij,k+1 +

r∑
κ=1

ι(ηu,jk
κ )Rκ

2 ,

D1Jjk = Jj+1,k +
r∑

κ=1
ι(ηv,jk

κ )Rκ
1 , D2Jjk = Jj,k+1 +

r∑
κ=1

ι(ηv,jk
κ )Rκ

2 ,

D1Kjk = Kj+1,k +
r∑

κ=1
ι(ηw,jk

κ )Rκ
1 , D2Kjk = Kj,k+1 +

r∑
κ=1

ι(ηw,jk
κ )Rκ

2 ,

where Rκ
1 and Rκ

2 are the Maurer-Cartan invariants and ξj, ηu,jk
κ , ηv,jk

κ and ηw,jk
κ are

the coefficients of ∂
∂xj

, ∂
∂ujk

, ∂
∂vjk

and ∂
∂wjk

in the prolongation of the infinitesimal
generator Xκ respectively [26]. Solving the resulting phantom recurrence formula
produces the Maurrer-Cartan invariants

R2
1 = 0, R2

2 = −1, R1
1 = −1 − 1

3R4
1, R3

1 = −J10,(3.9)

R3
2 = −J01, R4

1 = 3
4K10 + 3

4J10, R4
2 = 3

4K01 + 3
4J01.
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Substituting the Maurrer-Cartan invariants (3.9) back into (3.8) obtain all the non-
phantom recurrence formula.

D1I00 = I10 −
2
3

I00

(3
4

K10 +
3
4

J10

)
, D2I00 = I01 −

2
3

I00

(3
4

K01 +
3
4

J01

)
,(3.10)

D1I10 = −I10

(3
4

K10 +
3
4

J10

)
+ I20, D2I10 = −I10

(3
4

K01 +
3
4

J01

)
+ I11,

D1I01 = I11 −
5
3

I01

(3
4

K10 +
3
4

J10

)
, D2I01 = I02 −

5
3

I01

(3
4

K01 +
3
4

J01

)
,

D1I20 = I30 −
4
3

I20

(3
4

K10 +
3
4

J10

)
, D2I20 = I21 −

4
3

I20

(3
4

K01 +
3
4

J01

)
,

D1I02 = I12 −
8
3

I02

(3
4

K10 +
3
4

J10

)
, D2I02 = I03 −

8
3

I02

(3
4

K01 +
3
4

J01

)
,

D1I11 = −2I02

(3
4

K10 +
3
4

J10

)
+ I21, D2I11 = −2I02

(3
4

K01 +
3
4

J01

)
+ I12,

D1J10 = J20 − J2
10 −

1
3

J10

(3
4

K10 +
3
4

J10

)
, D2J10 = J11 − J10J01 −

1
3

J10

(3
4

K01 +
3
4

J01

)
,

D1J01 = −J10J01 − J01

(3
4

K10 +
3
4

J10

)
+ J11, D2J01 = −J2

01 − J01

(3
4

K01 +
3
4

J01

)
+ J02,

D1J20 = J30 − J10 −
2
3

J20

(3
4

K10 +
3
4

J10

)
, D2J20 = J21 − J01 −

2
3

J20

(3
4

K01 +
3
4

J01

)
,

D1J02 = −2J02

(3
4

K10 +
3
4

J10

)
+ J12 − J10, D2J02 = −2J02

(3
4

K01 +
3
4

J01

)
+ J03 − J01,

D1J11 = J21 − J10 −
4
3

J20

(3
4

K10 +
3
4

J10

)
, D2J11 = J21 − J01 −

4
3

J11

(3
4

K01 +
3
4

J01

)
,

D1K10 = K20 + K10J10 −
4
3

K10

(3
4

K10 +
3
4

J10

)
, D2K10 = K11 + K10J01 −

4
3

K10

(3
4

K01 +
3
4

J01

)
,

D1K01 = K11 + K01J10 −
7
3

K01

(3
4

K10 +
3
4

J10

)
, D2K01 = K02 + K01J01 −

7
3

K01

(3
4

K01 +
3
4

J01

)
,

D1K20 = K20J10 − 2K20

(3
4

K10 +
3
4

J10

)
+ K30, D2K20 = K20J01 − 2K20

(3
4

K01 +
3
4

J01

)
+ K21,

D1K11 = K21 + K11J10 −
8
3

K11

(3
4

K10 +
3
4

J10

)
, D2K11 = K21 + K11J01 −

8
3

K11

(3
4

K01 +
3
4

J01

)
,

D1K02 = K12 + K20J10 −
10
3

K11

(3
4

K10 +
3
4

J10

)
, D2K02 = K03 + K02J01 −

10
3

K02

(3
4

K01 +
3
4

J01

)
.

Theorem 3.1. The entire differential invariant algebra of the CHSK equations (1.1)
is generated by the following set:

(3.11) {I00, J10, J01, K10, K01}.

Proof. From the recurrence formula (3.10), we find that any differential invariants
up to third order can be generated by a function composition of I00, J10, J01, K10, K01
and their derivatives. By differentiating the differential invariants (3.11), one can
find that any higher order differential invariants are also generated by the generating
set (3.11). □

Finally, we obtain the commutator invariants which satisfy the commutator relation

(3.12) [D1,D2] = Y1D1 + Y2D2,
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where D1 and D2 are the invariant differential operators. As a result of general
recurrence formulae, [11,18], we have

Y1 =
r∑

κ=1

[
Rκ

2 ι(Dxξ1
κ) − Rκ

1 ι(Dtξ
1
κ)
]

, Y2 =
r∑

κ=1

[
Rκ

2 ι(Dxξ2
κ) − Rκ

1 ι(Dtξ
2
κ)
]

,

in which ξi
κ is the coefficients of ∂xi , in the infinitesimal generator Xκ.

Substituting our formula (3.9) for the Maurer-Cartan invariants yields

(3.13) Y1 = 1
4 (K01 + J01) , Y2 = −3

4 (K10 − J10) .

Thus, from (3.12) and (3.13), we have

(3.14) [D1,D2] = 1
4 (K01 + J01)D1 − 3

4 (K10 − J10)D2.

Indeed, the generating differential invariants {I00, J10, J01, K10, K01}, the recurrence
formulas (3.10), along with the commutation relations (3.14), provide a complete
specification of the structure of the differential invariant algebra of CHSK equations
(1.1).

4. Conclusions

In this paper, using the moving frames method, we located a finite generating set
of differential invariants and the invariant differential operators for the Lie symmetry
group of a generalized coupled Hirota-Satsuma KdV equations (CHSK), and then we
obtained the recurrence relations as well as syzygies among the generating differential
invariants. In particular, we proved that the differential invariant algebra of CHSK
equations can be generated by five differential invariants. The main application of the
differential invariants is to construct a class of PDEs, which possess the same symmetry
properties, which is important for both mathematics and physical interpretation.
Since the CHSK system is the mathematical model of interactions of two long waves
with different dispersion relations, our results are applicable to study the invariant
properties of interactions of two long waves. In our approach, we also obtained the
Maurer-Cartan invariants.
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