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A STUDY OF ∗-PRIME RINGS WITH DERIVATIONS

ADNAN ABBASI1, SHAKIR ALI2, ABDUL NADIM KHAN3,
AND MUZIBUR RAHMAN MOZUMDER4

Abstract. This paper’s major goal is to describe the structure of the ∗-prime
ring, with the help of three different derivations α, β and γ such that α([s1, s∗

1]) +
[β(s1), β(s∗

1)] + [γ(s1), s∗
1] ∈ Z (χ) for all s1 ∈ χ. Further, some more related results

have also been discussed. As applications, classical theorems due to Bell-Daif [6]
and Herstein [12] are deduced.

1. Introduction

This research is the extension of the work done by Ali et al. in [3]. If (i) (s1s2)∗ = s∗
2s

∗
1

and (ii) (s∗
1)∗ = s1 holds for all s1, s2 ∈ χ, then an additive map s1 7→ s∗

1 of χ into
itself is said to be an involution. Ring with involution, often known as ∗-ring or ring
with involution. H (χ) is the collection of hermitian objects (s∗

1 = s1) and S (χ) is
the collection of skew-hermitian objects (s∗

1 = −s1) of χ. If characteristic different
from two, then, obviously, H (χ) = S (χ). Thus, we will consider only ∗-rings χ with
char(χ) ̸= 2. If Z (χ) ⊆ H (χ), the involution is said to be of the first kind; otherwise,
it is of the second kind. In the later case, S (χ) ∩ Z (χ) ̸= (0) (e.g., involution in
the case of ring of quaternions). In [11], there’s a mention of these rings as well as
additional references.

The origins of commuting and centralising maps can be traced back to 1955, when
Divinsky [9] proved that “simple Artinian ring is commutative if it has commuting
non-trivial automorphisms”. In 1957, Posner [18] found that “existence of nonzero
centralizing derivation on a prime ring forces the ring to be commutative”. The study
of commuting (centralizing) derivation/additive maps/multiplicative maps and several
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extension of such results begins with the results of Posner [18] along with applications
to different areas like Lie theory, matrix theory, operator theory etc. For more details
of said work see (see [2, 4, 8–10,13] and references therein).

In [3], Ali et al. proved that “a prime ring χ must be a commutative integral domain
if it admits derivations α and β satisfying any one of the identities: (i) [α(s1), α(s∗

1)] +
β(s1 ◦ s∗

1) = 0 for all s1 ∈ χ, (ii) α(s1) ◦ α(s∗
1) + β([s1, s∗

1]) = 0 for all s1 ∈ χ,
(iii) α([s1, s∗

1]) + [α(s1), α(s∗
1)] = 0 for all s1 ∈ χ, (iv) α(s1 ◦ s∗

1) + α(s1) ◦ α(s∗
1) = 0

for all s1 ∈ χ”. Our goal in this work is to continue this line of inquiry and analyse
the structure of prime rings with involution satisfying above mentioned ∗-differential
identities which are central. In fact, so many results become corollaries of our results
which are in [2, 3, 6, 8, 12,16,17] and references therein.

2. The Results

Herstein [12] proved a classical result “A prime ring χ of char(χ) ̸= 2 with a
derivation α ≠ 0 satisfying the differential identity [α(s1), α(s2)] = 0 for all s1, s2 ∈ χ,
must be commutative”. Further, Daif [7], proved that “Let χ be a 2-torsion free
semiprime ring admitting a derivation α such that [α(s1), α(s2)] = 0 for all s1, s2 ∈ I,
where I is a nonzero ideal of χ and α is nonzero on I, then χ contains a nonzero
central ideal”. Further, this result was extended by second author together with Dar
in [8, Theorem 3.1] in case of prime rings involving ∗ : χ 7→ χ. Indeed, they proved
“Let χ be a prime ring with involution ′∗′ of the second kind such that char(χ) ̸= 2
and satisfying the ∗-differential identity [α(s1), α(s∗

1)] = 0 for all s1 ∈ χ, then χ must
be commutative”. Throughout our discussion ∗ will be of second kind and also as
when we consider more than one derivation then it is assume that at least one of them
to be nonzero. We begin our investigation with several well-known facts, which lead
to the following results repeatedly.

Fact 2.1 ([3, Lemma 2.5]). Let χ be a ∗-prime ring and α be a derivation and α(t) = 0
for all t ∈ H (χ) ∩ Z (χ). Then α(s1) = 0 for all s1 ∈ Z (χ).

Fact 2.2 ([17, Lemma 2.1]). Let χ be a ∗-prime ring and χ is normal for all s1 ∈ χ.
Then χ is commutative.

Fact 2.3 ([17, Lemma 2.2]). Let χ be a ∗-prime ring and s1 ◦ s∗
1 ∈ Z (χ) for all s1 ∈ χ

if and only if χ is commutative.

Theorem 2.4. Let χ be a ∗-prime ring and α, β and γ be derivations of χ satisfying
the identity α([s1, s∗

1]) + [β(s1), β(s∗
1)] ± [γ(s1), s∗

1] ∈ Z (χ) for all s1 ∈ χ. Then χ is
commutative.

Proof. The proof is divided into the following cases.
Case (i) If α = 0 and β, γ ̸= 0, then we have

(2.1) [β(s1), β(s∗
1)] ± [γ(s1), s∗

1] ∈ Z (χ), for all s1 ∈ χ.
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Taking t for s1 in (2.1), where t ∈ H (χ), we obtain
(2.2) ± [γ(t), t] ∈ Z (χ), for all t ∈ H (χ).
Linearization of (2.2) gives
(2.3) ± [γ(t), h1] ± [γ(h1), t] ∈ Z (χ), for all t, h1 ∈ H (χ).
Replacing h1 by h1h0 in (2.3) and combining (2.3), we get ±[h1, t]γ(h0) ∈ Z (χ) for all
h1, t ∈ H (χ) and h1 ∈ H (χ)∩Z (χ). Applying the primeness of the ring χ, we obtain
either ±[h1, t] ∈ Z (χ) for all h1, t ∈ H (χ) or γ(h1) = 0 for all h1 ∈ H (χ) ∩ Z (χ).
If we consider ±[h1, t] ∈ Z (χ) for all h1, t ∈ H (χ), replacing h1 by kh1, we have
±[k, t]h1 ∈ Z (χ) for all t ∈ H (χ), k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ). Since
S (χ) ∩ Z (χ) ̸= (0) and χ is prime, implies that ±[k, t] ∈ Z (χ) for all t ∈ H (χ)
and k ∈ S (χ). This implies that χ is commutative. Now consider γ(h1) = 0 for all
h1 ∈ H (χ) ∩ Z (χ), this implies that γ(h1) = 0 for all h1 ∈ S (χ) ∩ Z (χ). Taking
kh1 in place of t in (2.2), we obtain

±[γ(k), k]k2
0 ∈ Z (χ), for all k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ).

Since χ is prime and we have S (χ) ∩ Z (χ) ̸= (0), we obtain
(2.4) ± [γ(k), k] ∈ Z (χ), for all k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ).
By linearizing (2.2), we get
(2.5) ± [γ(t), h1] ± [γ(h1), t] ∈ Z (χ), for all t, h1 ∈ H (χ).
Substituting kh1 for h1 in (2.5), where k ∈ S (χ) and h1 ∈ S (χ) ∩ Z (χ), we obtain
(2.6) ± [γ(t), k] ± [γ(k), t] ∈ Z (χ), for all t, h1 ∈ H (χ).
Consider 4[γ(s1), s2] = [γ(2s1), 2s2] = [γ(t + k), t + k] = [γ(t), t] + [γ(k), t] + [γ(t), k] +
[γ(k), k]. Using (2.2), (2.4) and (2.6), we get 4[γ(s1), s2] ∈ Z (χ) for all s1, s2 ∈ χ.
Since char(χ) ̸= 2, this implies that [γ(s1), s2] ∈ Z (χ) for all s1 ∈ χ. Therefore, in
view of Posner’s result we done.

Case (ii) If β = 0 and α, γ ≠ 0, then we have α([s1, s∗
1]) ± [γ(s1), s∗

1] ∈ Z (χ) for
all s1 ∈ χ. Substituting t for s1, we obtain ±[γ(t), t] ∈ Z (χ) for all t ∈ H (χ),
which is same as (2.2), following the line of proof as we did after (2.2), we get χ is
commutative.

Case (iii) If γ = 0 and α, β ̸= 0, then from hypothesis we obtain
α([s1, s∗

1]) + [β(s1), β(s∗
1)] ∈ Z (χ), for all s1 ∈ χ.

Substituting ss1 for s1 in above equation, where s ∈ Z (χ) ∩ S (χ), we get
(2.7) [s1, s∗

1]2sα(s) + [α(s1), s∗
1]sβ(s) + [s1, β(s∗

1)]sβ(s) + [s1, s∗
1](β(s))2 ∈ Z (χ).

Linearization of (2.7), gives us
[s1, s∗

2]2sα(s) + [s2, s∗
1]2sα(s) + [α(s1), s∗

2]sα(s) + [α(s2), s∗
1]sα(s)(2.8)

+ [s1, β(s∗
2)]sβ(s) + [s2, β(s∗

1)]sβ(s) + [s1, s∗
2](β(s))2 + [s2, s∗

1](β(s))2 ∈ Z (χ).
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Now taking s2s for s2 in (2.8), where s ∈ Z (χ) ∩ S (χ), and combining it with the
obtained result, we find that

4[s2, s∗
1]s2α(s) + 2[β(s2), s∗

1]sβ(s)2 + 2[s2, s∗
1]s(β(s))2(2.9)

− [s1, s∗
2]s(β(s))2 + 2[s2, β(s∗

1)]s2β(s) + [s2, s∗
1]s(β(s))2 ∈ Z (χ).

Substituting s2s for s2 in (2.9) and solving with the help of (2.9), we have
(2.10) 2[s1, s∗

2]s2(β(s))2 + 2[s2, s∗
1]s(β(s))3 ∈ Z (χ), for all s1, s2 ∈ χ.

Again taking s2s for s2 in (2.10), where s ∈ Z (χ) ∩ S (χ), and combining it with
(2.10), we get 4[s2, s∗

1]s2(β(s))3 ∈ Z (χ) for all s1, s2 ∈ χ. Replacing s2 by s1, we
obtain 4[s1, s∗

1]s2(β(s))2 ∈ Z (χ), for all s1 ∈ χ and s ∈ Z (χ) ∩ S (χ). Since char
(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), the above relation forces that either [s1, s∗

1] ∈ Z (χ)
for all s1 ∈ χ or β(s) = 0 for all s ∈ Z (χ) ∩ S (χ). If [s1, s∗

1] ∈ Z (χ), then by
Fact 2.2, χ is commutative. On the other hand, we consider the situation β(s) = 0
for all s ∈ Z (χ) ∩ S (χ). Using this in (2.7), we get 2[s1, s∗

1]sα(s) ∈ Z (χ). By the
primeness of the ring χ, we conclude that either χ is commutative or α(s) = 0 for all
s ∈ Z (χ) ∩ S (χ). Linearization of α([s1, s∗

1]) + [β(s1), β(s∗
1)] ∈ Z (χ) for all s1 ∈ χ,

gives us
(2.11)

α([s1, s∗
2]) + α([s2, s∗

1]) + [β(s1), β(s∗
2)] + [β(s2), β(s∗

1)] ∈ Z (χ), for all s1, s2 ∈ χ.

Replacing s2 by ss2 in (2.11) where s ∈ Z (χ)∩S (χ) and using the fact that α(s) = 0
and β(s) = 0 for all s ∈ Z (χ) ∩ S (χ), we arrive at

2(α([s2, s∗
1]) + [β(s2), β(s∗

1)])s ∈ Z (χ), for all s1, s2 ∈ χ.

Since char(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), the above relation yields
α([s2, s∗

1]) + [β(s2), β(s∗
1)] ∈ Z (χ), for all s1, s2 ∈ χ.

This implies that
α([s2, s1]) + [β(s2), β(s1)] ∈ Z (χ), for all s1, s2 ∈ χ.

Replacing s2 by s2
1 in the last relation, we get [β(s2

1), β(s1)] ∈ Z (χ) for all s1 ∈ χ.
This further implies that [(β(s1))2, s1] ∈ Z (χ) for all s1 ∈ χ. Thus in view of [14,
Theorem 1.1], we get χ is commutative. This proves the theorem.

Case (iv) If α = 0, β = 0 and γ ̸= 0, we have ±[γ(s1), s∗
1] ∈ Z (χ) for all s1 ∈ χ,

then by [17, Theorem 3.7] χ is commutative.
Case (v) Consider β = 0, γ = 0 and α ̸= 0, then from hypothesis, we have

α([s1, s∗
1]) ∈ Z (χ) for all s1 ∈ χ. By [16, Theorem 2.3], we obtain χ is commutative.

Case (vi) Taking γ = 0, α = 0 and β ̸= 0, then by hypothesis we have [β(s1), β(s∗
1)]

∈ Z (χ) for all s1 ∈ χ. Hence, result follows by [17, Theorem 3.1].
Case (vii) Consider the following if α = 0, β = 0 and γ ̸= 0. Substituting t for s1

in assumption, we obtain [γ(t), t] ∈ Z (χ) for all s1 ∈ H (χ), which is same as (2.2).
Therefore χ is commutative by follow the same argument. □
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We deduce the following corollaries from Theorem 2.4.

Corollary 2.1 ([8, Theorem 3.1]). Let χ be a ∗-prime ring and α ̸= 0 be a derivation
of χ such that [α(s1), α(s∗

1)] = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.2 ([2, Theorem 2.2]). Let χ be a ∗-prime ring and α ̸= 0 be a derivation
of χ such that α([s1, s∗

1]) = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.3 ([3, Theorem 3.5]). Let χ be a ∗-prime ring and α and β be derivations
of χ satisfying the identity α([s1, s∗

1]) + [β(s1), β(s∗
1)] = 0 for all s1 ∈ χ. Then χ is

commutative.

Corollary 2.4. Let χ be a ∗-prime ring and α and β be a nonzero derivation of χ
satisfying α(s1s

∗
1) + β(s1)β(s∗

1) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. By the assumption, we have α(s1s
∗
1) + β(s1)β(s∗

1) ∈ Z (χ) for all s1 ∈ χ.
Replace s1 by s∗

1 in the last expression to get α(s∗
1s1) + β(s∗

1)β(s1) ∈ Z (χ) for all
s1 ∈ χ. Combining the last two relations, we obtain α([s1, s∗

1]) + [β(s1), β(s∗
1)] ∈ Z (χ)

for all s1 ∈ χ. Hence, application of Case (vi) of Theorem 2.4 yields the required
result. □

Theorem 2.5. Let χ be a ∗-prime ring and α and β be two derivations of χ satisfying
the identity α(s1 ◦ s∗

1) + β(s1) ◦ β(s∗
1) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. By the assumption, we have
(2.12) α(s1 ◦ s∗

1) + β(s1) ◦ β(s∗
1) ∈ Z (χ), for all s1 ∈ χ.

Case (i) Assume that α ̸= 0 and β = 0. Then it follows from (2.12) that α(s1◦s∗
1) ∈

Z (χ) for all s1 ∈ χ. In view of [16, Theorem 2.5], we get χ is commutative.
Case (ii) Taking α = 0 and β ̸= 0. Then (2.12) reduces to

(2.13) β(s1) ◦ β(s∗
1) ∈ Z (χ), for all s1 ∈ χ.

Application of [17, Theorem 3.5] gives the required result.
Case (iii) Assume that both α and β are nonzero. Replacing s1 by s1 + s2 in

(2.12), we get
(2.14) α(s1 ◦ s∗

2) + α(s2 ◦ s∗
1) + β(s1) ◦ β(s∗

2) + β(s2) ◦ β(s∗
1) ∈ Z (χ).

Substituting s2t for s2 in (2.14), where t ∈ Z (χ) ∩ H (χ), we get
((s1 ◦ s∗

2) + (s2 ◦ s∗
1))α(t) + (β(s1) ◦ s∗

2 + s2 ◦ β(s∗
1))β(t) ∈ Z (χ).

Taking s2so for s2 where so ∈ Z (χ) ∩ S (χ) and combining it with the obtained
relation, we get

2((s2 ◦ s∗
1)soα(t)) + (s2 ◦ β(s∗

1))soβ(t)) ∈ Z (χ).
Since char(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), the above relation yields
(2.15) (s2 ◦ s∗

1)α(t) + (s2 ◦ β(s∗
1))β(t) ∈ Z (χ), for all s1, s2 ∈ Z (χ).
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This can be further written as
[(s2 ◦ s∗

1), r]α(t) + [s2 ◦ β(s∗
1), r]β(t) = 0, for all s1, s2, r ∈ Z (χ).

Replacing χ by s2 ◦s∗
1 we get [s2 ◦β(s∗

1), s2 ◦s∗
1]β(t) = 0 for all s1, s2 ∈ χ. Then, by the

primeness of χ, we get either [s2 ◦ β(s∗
1), s2 ◦ s∗

1] = 0 for all s1, s2 ∈ χ or β(t) = 0 for
all t ∈ Z (χ) ∩ H (χ). If [s2 ◦ β(s∗

1), s2 ◦ s∗
1] = 0 for all s1, s2 ∈ χ, then by substituting

z for s2 in the last relation where z ∈ Z (χ), we obtain 2[β(s∗
1), s∗

1]z = 0 for all s1 ∈ χ.
Since char(χ) ̸= 2 and Z (χ) ∩ S (χ) ̸= (0), this implies that [β(s∗

1), s∗
1] = 0 for all

s1 ∈ χ. By the application of Posner’s [18] we arrived at conclusion. Now consider the
case β(t) = 0 for all t ∈ Z (χ) ∩ H (χ). Then (2.15) reduces to (s2 ◦ s∗

1)α(t) ∈ Z (χ)
for all s1, s2 ∈ χ and t ∈ Z (χ) ∩ H (χ). By the primness of the ring χ, we get either
s2 ◦s∗

1 ∈ Z (χ) for all s1, s2 ∈ χ or α(t) = 0 for all t ∈ Z (χ)∩H (χ). If s2 ◦s∗
1 ∈ Z (χ)

for all s1, s2 ∈ χ by the Fact 2.3 implies that χ is commutative. Finally, we consider
the case α(t) = 0 for all t ∈ Z (χ) ∩ H (χ). Now replacing s2 by t in (2.14) where
t ∈ Z (χ) ∩ H (χ), we get

(α(s1) + α(s∗
1))t ∈ Z (χ), for all s1 ∈ χ and t ∈ Z (χ) ∩ H (χ).

Thus in view of the fact Z (χ) ∩S (χ) ̸= (0) and primeness of the ring χ, we conclude
that α(s1) + α(s∗

1) ∈ Z (χ) for all s1 ∈ χ. This can be written as [α(s1), α(s∗
1)] = 0 for

all s1 ∈ χ. Hence, χ is commutative by [17, Theorem 3.1]. □

Corollary 2.5 ([2, Theorem 2.3]). Let χ be a ∗-prime ring and α ̸= 0 be a derivation
of χ satisfying α(s1 ◦ s∗

1) = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.6. Let χ be a ∗-prime ring and α ̸= 0 be a derivation of χ satisfying
α(s1s

∗
1) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. From assumption, we have α(s1s
∗
1) ∈ Z (χ) for all s1 ∈ χ. For any s1 ∈ χ, s∗

1
also is an element of χ. Substituting s∗

1 for s1 in the given assertion, we obtain
α(s∗

1s1) ∈ Z (χ) for all s1 ∈ χ. This implies that α(s1 ◦ s∗
1) ∈ Z (χ) for all s1 ∈ χ.

Hence, χ is commutative by Corollary 2.5. □

Corollary 2.7 ([8, Theorem 3.2]). Let χ be a ∗-prime ring and α ̸= 0 be a derivation
of χ satisfying α(s1) ◦ α(s∗

1) = 0 for all s1 ∈ χ. Then χ is commutative.

Corollary 2.8 ([3, Theorem 3.6]). Let χ be a ∗-prime ring and α ̸= 0 be a derivation
of χ satisfying α(s1 ◦ s∗

1) + α(s1) ◦ α(s∗
1) = 0 for all s1 ∈ χ. Then χ is commutative.

Theorem 2.6. Let χ be a ∗-prime ring and α and β be derivations of χ satisfying
the identity [α(s1), α(s∗

1)] ± β(s1 ◦ s∗
1) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. We are given that α, β : χ → χ are derivations such that
[α(s1), α(s∗

1)] + β(s1 ◦ s∗
1) ∈ Z (χ), for all s1 ∈ χ.(2.16)

Replacing s1 by s∗
1 in the last expression we get

−[α(s1), α(s∗
1)] + β(s1 ◦ s∗

1) ∈ Z (χ), for all s1 ∈ χ.(2.17)
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Adding the last two relations and using char(χ) ̸= 2 we obtain
β(s1 ◦ s∗

1) ∈ Z (χ), for all s1 ∈ χ.(2.18)
Hence, the result follows from [13, Theorem 2].

Similarly, we prove the other case with the help of [13, Theorem 2]. □

Corollary 2.9 ([3, Theorem 3.1]). Let χ be a ∗-prime ring and α and β be derivations
of χ satisfying the identity [α(s1), α(s∗

1)] ± β(s1 ◦ s∗
1) = 0 for all s1 ∈ χ. Then χ is

commutative.

Theorem 2.7. Let χ be a ∗-prime ring and α and β be derivations of χ satisfying
the identity α(s1) ◦ α(s∗

1) ± β([s1, s∗
1]) ∈ Z (χ) for all s1 ∈ χ. Then χ is commutative.

Proof. First, we consider that
α(s1) ◦ α(s∗

1) + β([s1, s∗
1]) ∈ Z (χ), for all s1 ∈ χ.

Replacing s1 by s∗
1 in the last expression we get

α(s1) ◦ α(s∗
1) − β([s1, s∗

1]) ∈ Z (χ), for all s1 ∈ χ.

Substracting the last two relation and using char(χ) ̸= 2 we obtain
β([s1, s∗

1]) ∈ Z (χ), for all s1 ∈ χ.

Hence, the result follow from [13, Theorem 1].
Similarly, we prove the other case with the help of [13, Theorem 1]. □

Corollary 2.10. Let χ be a ∗-prime ring and α and β be derivations of χ satisfying the
identity α(s1) ◦ α(s2) ± β([s1, s2]) ∈ Z (χ) for all s1, s2 ∈ χ. Then χ is commutative.

Corollary 2.11 ([3, Theorem 3.3]). Let χ be a ∗-prime ring and α and β be derivations
of χ satisfying the identity α(s1) ◦ α(s∗

1) ± β([s1, s∗
1]) = 0 for all s1 ∈ χ. Then χ is

commutative.

3. Some Examples

The first example shows that the restriction of the second kind involution in our
theorems is not superfluous.

Example 3.1. Let χ =
{(

β1 β2
β3 β4

) ∣∣∣∣ β1, β2, β3, β4 ∈ Z
}

. Of course, χ with matrix

addition and matrix multiplication is a non commutative prime ring. Define mappings
∗, α, β : χ → χ such that(

β1 β2
β3 β4

)∗

=
(

β4 −β2
−β3 β1

)
, α

(
β1 β2
β3 β4

)
=
(

0 −β2
β3 0

)

and β

(
β1 β2
β3 β4

)
=
(

0 β2
−β3 0

)
. Obviously, Z (χ) =

{(
β1 0
0 β1

) ∣∣∣∣ β1 ∈ Z
}

. Then

s∗
1 = s1 for all s1 ∈ Z (χ), and hence Z (χ) ⊆ H (χ), which shows that the involution
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′∗′ is of the first kind. Moreover, α and β are nonzero derivations of χ and satisfying
the identities of the theorems. However, χ is not commutative. Hence, the hypothesis
of the second kind involution is crucial in our theorems.

The next example shows that our theorems are not true for semiprime rings.

Example 3.2. Let S = χ × C, where χ is same as in Example 3.1 with involution ′∗′

and derivations α and β same as in Example 3.1, C is the ring of complex numbers
with conjugate involution τ . We can easily observe that S is a non commutative
semiprime ring with characteristic different from two. Now define an involution α
on S, as (s1, s2)α = (s∗

1, sτ
2). Clearly, α is an involution of the second kind. Further,

we define the mappings α and β from S to S such that D1(s1, s2) = (α(s1), 0) and
D2(s1, s2) = (β(s1), 0) for all (s1, s2) ∈ S. It can be easily checked that D1 and D2
are derivations on S and satisfying the identities of the Theorem 2.5 and Theorem 2.6
but S is not commutative. Hence, in our theorems, the hypothesis of primeness is
essential.

Conclusions. In this paper we have studied some identities involving derivations on
prime rings with involution. Purely algebraic methods have been used to describe the
structure of rings and we provide the examples, which shows that the assumptions
are not superfluous. Applications point of view some well known results are deduced.

Acknowledgements. The authors are indebted to the referee for his/her useful
suggestions.
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