Kragujevac Journal of Mathematics Volume 49(5) (2025), Pages 687–696.

ŁUKASIEWICZ ANTI FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

JEONG GI KANG¹ AND HASHEM BORDBAR²

ABSTRACT. The subalgebra of BCK/BCI-algebra using Łukasiewicz anti fuzzy set introduced by Jun is studied in this article. The concept of Łukasiewicz anti fuzzy subalgebra of a BCK/BCI-algebra is introduced, and several properties are investigated. The relationship between anti fuzzy subalgebra and Łukasiewicz anti fuzzy subalgebra is given, and characterization of a Łukasiewicz anti fuzzy subalgebra is discussed. Conditions are found in which a Lukasiewicz anti fuzzy set is a Lukasiewicz anti fuzzy subalgebra Finally, conditions under which <-subset, Υ -subset, and anti-subset become subalgebra are explored.

1. Introduction

In [1], Biswas introduced the concept of anti fuzzy subgroups of groups. Modifying Biswas' idea, Hong and Jun [3] applied the idea to BCK-algebras. They introduced the notions of anti fuzzy subalgebras and anti fuzzy ideals of BCK-algebras and investigated several properties. Using anti fuzzy notion and the idea of Łukasiewicz t-conorm, Jun [7] constructed the concept of Łukasiewicz anti fuzzy sets and applied it to BE-algebras. He introduced the notion of Łukasiewicz anti fuzzy BE-ideal and investigated its properties. He discussed the relationship between anti fuzzy BE-ideal and Łukasiewicz anti fuzzy BE-ideal and provided conditions for Łukasiewicz anti fuzzy set to be Łukasiewicz anti fuzzy BE-ideal. He also gives three types of subsets so called ≪-subset, Υ-subset, and anti subset, and then he considered the conditions under which they can be BE-ideals.

Key words and phrases. Anti fuzzy subalgebra, Łukasiewicz anti fuzzy set, Łukasiewicz anti fuzzy subalgebra, \prec -subset, Υ -subset, anti subset.

²⁰²⁰ Mathematics Subject Classification. Primary: 03G25. Secondary: 06F35, 08A72.

DOI 10.46793/KgJMat2505.687K

Received: August 05, 2022. Accepted: December 01, 2022.

We would like to study the subalgebra of BCK/BCI-algebra using Łukasiewicz anti fuzzy set introduced by Jun. We introduce Łukasiewicz anti fuzzy subalgebra of a BCK/BCI-algebra and investigate several properties. We give the relationship between anti fuzzy subalgebra and Łukasiewicz anti fuzzy subalgebra. We discuss a characterization of a Łukasiewicz anti fuzzy subalgebra. We find conditions for a Lukasiewicz anti fuzzy subalgebra. We finally find the condition that \leq -subset, Υ -subset, and anti subset become subalgebra.

2. Preliminaries

This section lists the known default content that will be used later.

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki (see [5] and [6]) and was extensively investigated by several researchers.

We recall the definitions and basic results required in this paper. See the books [4,8] for further information regarding BCK-algebras and BCI-algebras.

If a set X has a special element "0" and a binary operation " * " satisfying the conditions:

- $(I_1) \ (\forall a, b, c \in X) \ (((a * b) * (a * c)) * (c * b) = 0);$
- $(I_2) \ (\forall a, b \in X) \ ((a * (a * b)) * b = 0);$
- $(I_3) \ (\forall a \in X) \ (a * a = 0);$
- $(I_4) \ (\forall a, b \in X) \ (a * b = 0, b * a = 0 \Rightarrow a = b),$

then we say that X is a BCI-algebra. If a BCI-algebra X satisfies the following identity:

$$(K) \ (\forall a \in X) \ (0 * a = 0),$$

then X is called a BCK-algebra.

The order relation " \leq " in a BCK/BCI-algebra X is defined as follows:

$$(2.1) (\forall a, b \in X)(a \le b \Leftrightarrow a * b = 0).$$

Every BCK/BCI-algebra X satisfies the following conditions (see [4,8]):

$$(2.2) \qquad (\forall a \in X) (a * 0 = a),$$

$$(2.3) \qquad (\forall a, b, c \in X) (a \le b \Rightarrow a * c \le b * c, c * b \le c * a),$$

$$(2.4) (\forall a, b, c \in X) ((a * b) * c = (a * c) * b).$$

Every BCI-algebra X satisfies (see [4]):

$$(2.5) (\forall a, b \in X) (a * (a * (a * b)) = a * b),$$

$$(2.6) \qquad (\forall a, b \in X) (0 * (a * b) = (0 * a) * (0 * b)).$$

A subset K of a BCK/BCI-algebra X is called a *subalgebra* of X (see [4,8]) if it satisfies:

$$(2.7) (\forall a, b \in K)(a * b \in K).$$

A fuzzy set g in a set X of the form

(2.8)
$$g(b) := \begin{cases} s \in [0,1), & \text{if } b = a, \\ 1, & \text{if } b \neq a, \end{cases}$$

is called an *anti fuzzy point* with support a and value s, and is denoted by $\frac{a}{s}$. A fuzzy set g in a set X is said to be *non-unit* if there exists $a \in X$ such that $g(a) \neq 1$.

For a fuzzy set g in a set X, we say that an anti fuzzy point $\frac{a}{s}$ is said to

- (i) beside in g, denoted by $\frac{a}{s} \leqslant g$ (see [2]) if $g(a) \le s$;
- (ii) be non-quasi coincident with g, denoted by $\frac{a}{s} \Upsilon g$ (see [2]) if g(a) + s < 1.

If $\frac{a}{s} \leqslant g$ or $\frac{a}{s} \Upsilon g$ (resp., $\frac{a}{s} \leqslant g$ and $\frac{a}{s} \Upsilon g$), we say that $\frac{a}{s} \leqslant \vee \Upsilon g$ (resp., $\frac{a}{s} \leqslant \wedge \Upsilon g$). Given $\beta \in \{\leqslant, \Upsilon\}$, to indicate $\frac{a}{s} \overline{\beta} g$ means that $\frac{a}{s} \beta g$ is not established.

A fuzzy set f in a BCK/BCI-algebra X is called

• an anti fuzzy subalgebra of X (see [3]) if it satisfies:

(2.9)
$$(\forall a, b \in X)(f(a * b) \le \max\{f(a), f(b)\});$$

• an anti fuzzy ideal of X (see [3]) if it satisfies:

$$(2.10) \qquad (\forall a \in X)(f(0) \le f(a)),$$

$$(2.11) (\forall a, b \in X)(f(a) \le \max\{f(a*b), f(b)\}).$$

Let ε be an element of the unit interval [0,1] and let g be a fuzzy set in a set X. A function $\mathcal{L}_g^{\varepsilon}: X \to [0,1], x \mapsto \min\{1, g(x) + \varepsilon\}$, is called a *Lukasiewicz anti fuzzy set* of g in X (see [7]).

Let $\mathcal{L}_g^{\varepsilon}$ be a Łukasiewicz anti fuzzy set of a fuzzy set g in X. If $\varepsilon=0$, then $\mathcal{L}_g^{\varepsilon}(x)=\min\{1,g(x)+\varepsilon\}=\min\{1,g(x)\}=g(x)$ for all $x\in X$. This shows that if $\varepsilon=0$, then the Łukasiewicz anti fuzzy set of a fuzzy set g in X is the classical fuzzy set g itself in X. If $\varepsilon=1$, then $\mathcal{L}_g^{\varepsilon}(x)=\min\{1,g(x)+\varepsilon\}=\min\{1,g(x)+1\}=1$ for all $x\in X$, that is, if $\varepsilon=1$, then the Łukasiewicz anti fuzzy set is the constant function with value 1. Therefore, in handling the Łukasiewicz anti fuzzy set, the value of ε can always be considered to be in (0,1).

Let g be a fuzzy set in a set X and $\varepsilon \in (0,1)$. If $g(x) + \varepsilon \ge 1$ for all $x \in X$, then the Łukasiewicz anti fuzzy set $\mathcal{L}_g^{\varepsilon}$ of g in X is the constant function with value 1, that is, $\mathcal{L}_g^{\varepsilon}(x) = 1$ for all $x \in X$. Therefore, for the Łukasiewicz anti fuzzy set to have a meaningful shape, a fuzzy set g in X and $\varepsilon \in (0,1)$ shall be set to satisfy the condition " $g(x) + \varepsilon < 1$ for some $x \in X$ ".

Given a Łukasiewicz anti fuzzy set $\mathcal{E}_g^{\varepsilon}$ of a fuzzy set g in X and $s \in [0, 1)$, consider the sets:

$$(\mathbb{E}_g^\varepsilon,s)_{\lessdot}:=\{y\in X\mid \tfrac{y}{s}\lessdot \mathbb{E}_g^\varepsilon\}\quad \text{ and }\quad (\mathbb{E}_g^\varepsilon,s)_{\Upsilon}:=\{y\in X\mid \tfrac{y}{s}\Upsilon \,\mathbb{E}_g^\varepsilon\},$$

which are called the \lessdot -subset and Υ -subset of $\mathcal{E}_g^{\varepsilon}$ in X. Also, we consider the following set

$$\operatorname{Anti}\left(\mathbf{E}_g^\varepsilon\right) := \{y \in X \mid \mathbf{E}_g^\varepsilon(y) < 1\}$$

and it is called the *anti subset* of $\mathcal{L}_g^{\varepsilon}$ in X. It is observed that

$$\mathrm{Anti}\left(\mathrm{L}_g^\varepsilon\right)=\{y\in X\mid g(y)+\varepsilon<1\}.$$

3. Łukasiewicz Anti Fuzzy Subalgebras

In this section, let f and γ be a fuzzy set in X and an element of (0,1), respectively, unless otherwise specified.

Definition 3.1. A Łukasiewicz anti fuzzy set \mathcal{E}_f^{γ} in a BCK/BCI-algebra X is called a Łukasiewicz anti fuzzy subalgebra of X if it satisfies

$$(3.1) \qquad (\forall x, y \in X)(\forall s_a, s_b \in [0, 1)) \left(\frac{x}{s_a} \lessdot \mathcal{E}_f^{\gamma}, \frac{y}{s_b} \lessdot \mathcal{E}_f^{\gamma} \right) \Rightarrow \frac{x * y}{\max\{s_a, s_b\}} \lessdot \mathcal{E}_f^{\gamma} \right).$$

Example 3.1. Let $X = \{0, b_1, b_2, b_3, b_4\}$ be a set with a binary operation "*" given by the Cayley table:

*	0	b_1	b_2	b_3	b_4
0	0	0	0	0	0
b_1	b_1	0	b_1	0	0
b_2	b_2	b_2	0	0	0.
b_3	b_3	b_3	b_3	0	0
b_4	b_4	b_3	b_4	b_1	0

Then X is a BCK-algebra (see [8]). Define a fuzzy set f in X as follows:

$$f: X \to [0, 1], \quad x \mapsto \begin{cases} 0.24, & \text{if } x = 0, \\ 0.31, & \text{if } x = b_1, \\ 0.37, & \text{if } x = b_2, \\ 0.43, & \text{if } x = b_3, \\ 0.58, & \text{if } x = b_4. \end{cases}$$

Given $\gamma := 0.58$, the Łukasiewicz anti fuzzy set \mathcal{L}_f^{γ} of f in X is given as follows:

$$\mathbb{E}_f^{\gamma}: X \to [0,1], \quad x \mapsto \left\{ \begin{array}{ll} 0.82, & \text{if } x = 0, \\ 0.89, & \text{if } x = b_1, \\ 0.95, & \text{if } x = b_2, \\ 1.00, & \text{if } x = b_3, \\ 1.00, & \text{if } x = b_4. \end{array} \right.$$

It is routine to verify that \mathcal{L}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X.

Theorem 3.1. If f is an anti-fuzzy subalgebra of a BCK/BCI-algebra X, then it's Lukasiewicz anti-fuzzy set \mathcal{L}_f^{γ} in X is a Lukasiewicz anti-fuzzy subalgebra of X.

Proof. Assume that f is an anti fuzzy subalgebra of a BCK/BCI-algebra X. Let $x, y \in X$ and $s_a, s_b \in [0, 1)$ be such that $\frac{x}{s_a} \lessdot \mathbb{E}_f^{\gamma}$ and $\frac{y}{s_b} \lessdot \mathbb{E}_f^{\gamma}$. Then, $\mathbb{E}_f^{\gamma}(x) \leq s_a$ and

$$\mathcal{L}_f^{\gamma}(y) \leq s_b$$
. Hence,

$$\begin{split} \mathbf{E}_f^{\gamma}(x*y) &= \min\{1, f(x*z) + \gamma\} \leq \min\{1, \max\{f(x), f(y)\} + \gamma\} \\ &= \min\{1, \max\{f(x) + \gamma, f(y) + \gamma\}\} \\ &= \max\{\min\{1, f(x) + \gamma\}, \min\{1, f(y) + \gamma\}\} \\ &= \max\{\mathbf{E}_f^{\gamma}(x), \mathbf{E}_f^{\gamma}(y)\} \leq \max\{s_a, s_b\}, \end{split}$$

which implies that $\frac{x*y}{\max\{s_a, s_b\}} \leq \mathbb{E}_f^{\gamma}$. Therefore, \mathbb{E}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X.

The following example shows that the converse of Theorem 3.1 may not be true.

Example 3.2. Let $X = \{0, b_1, b_2, b_3, b_4\}$ be a set with a binary operation "*"

*	0	b_1	b_2	b_3	b_4
0	0	0	b_2	b_3	b_4
b_1	b_1	0	b_2	b_3	b_4
b_2	b_2	b_2	0	b_4	b_3
b_3	b_3	b_3	b_4	0	b_2
b_4	b_4	b_4	b_3	b_2	0

Then, X is a BCI-algebra (see [4]). Define a fuzzy set f in X as follows:

$$f: X \to [0,1], \quad x \mapsto \begin{cases} 0.28, & \text{if } x = 0, \\ 0.32, & \text{if } x = b_1, \\ 0.39, & \text{if } x = b_2, \\ 0.43, & \text{if } x = b_3, \\ 0.61, & \text{if } x = b_4. \end{cases}$$

Given $\gamma:=0.58$, the γ -Łukasiewicz fuzzy set \mathbbm{E}_f^γ of f in X is given as follows:

$$\mathbb{E}_f^{\gamma}: X \to [0, 1], \quad x \mapsto \left\{ \begin{array}{ll} 0.86, & \text{if } x = 0, \\ 0.90, & \text{if } x = b_1, \\ 0.97, & \text{if } x = b_2, \\ 1.00, & \text{if } x = b_3, \\ 1.00, & \text{if } x = b_4. \end{array} \right.$$

It is routine to verify that \mathcal{L}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X. But f is not an anti fuzzy subalgebra of X because of

$$f(b_2 * b_3) = f(b_4) = 0.61 \nleq 0.43 = \max\{f(b_2), f(b_3)\}.$$

We explore a characterization of a Łukasiewicz anti fuzzy subalgebra.

Theorem 3.2. Let f be a fuzzy set in a BCK/BCI-algebra X. Then its Łukasiewicz anti fuzzy set \mathcal{E}_f^{γ} in X is a Łukasiewicz anti fuzzy subalgebra of X if and only if it satisfies

$$(3.2) \qquad (\forall x, y \in X)(\mathcal{L}_f^{\gamma}(x * y) \le \max\{\mathcal{L}_f^{\gamma}(x), \mathcal{L}_f^{\gamma}(y)\}).$$

Proof. Suppose that \mathcal{L}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X. Let $x, y \in X$. Since $\frac{x}{\mathcal{L}_f^{\gamma}(x)} \lessdot \mathcal{L}_f^{\gamma}$ and $\frac{y}{\mathcal{L}_f^{\gamma}(y)} \lessdot \mathcal{L}_f^{\gamma}$, it follows from (3.1) that $\frac{x*y}{\max\{\mathcal{L}_f^{\gamma}(x),\mathcal{L}_f^{\gamma}(y)\}} \lessdot \mathcal{L}_f^{\gamma}$. Hence, $\mathcal{L}_f^{\gamma}(x*y) \leq \max\{\mathcal{L}_f^{\gamma}(x),\mathcal{L}_f^{\gamma}(y)\}$.

Conversely, assume that \mathcal{E}_f^{γ} satisfies (3.2). Let $x, y \in X$ and $s_a, s_b \in [0, 1)$ be such that $\frac{x}{s_a} \lessdot \mathcal{E}_f^{\gamma}$ and $\frac{y}{s_b} \lessdot \mathcal{E}_f^{\gamma}$. Then $\mathcal{E}_f^{\gamma}(x) \leq s_a$ and $\mathcal{E}_f^{\gamma}(y) \leq s_b$, and so

$$\mathcal{L}_f^{\gamma}(x * y) \le \max\{\mathcal{L}_f^{\gamma}(x), \mathcal{L}_f^{\gamma}(y)\} \le \max\{s_a, s_b\}.$$

Thus, $\frac{x*y}{\max\{s_a, s_b\}} \leq \mathcal{L}_f^{\gamma}$, and therefore, \mathcal{L}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X.

Lemma 3.1 ([7]). If f is a fuzzy set in a set X, then it's Łukasiewicz anti fuzzy set \mathcal{E}_f^{γ} satisfies

$$(3.3) \qquad (\forall x, y \in X)(f(x) \ge f(y) \implies \mathbf{L}_g^{\gamma}(x) \ge \mathbf{L}_g^{\gamma}(y)).$$

Lemma 3.2. If f is an anti-fuzzy subalgebra of a BCK/BCI-algebra X, then it's Łukasiewicz anti-fuzzy set \mathcal{E}_f^{γ} satisfies

$$(3.4) \qquad (\forall x \in X)(\mathbb{E}_f^{\gamma}(0) \le \mathbb{E}_f^{\gamma}(x)).$$

Proof. If f is an anti fuzzy subalgebra of a BCK/BCI-algebra X, then

$$f(0) = f(x * x) \le \max\{f(x), f(x)\} = f(x),$$

for all $x \in X$. It follows from (3.3) that $\mathcal{E}_f^{\gamma}(0) \leq \mathcal{E}_f^{\gamma}(x)$ for all $x \in X$.

Proposition 3.1. If f is an anti-fuzzy subalgebra of a BCK/BCI-algebra X, then it's Łukasiewicz fuzzy set \mathcal{L}_f^{γ} satisfies:

$$(3.5) \qquad (\forall x, y \in X) \left(\mathcal{E}_f^{\gamma}(x) = \mathcal{E}_f^{\gamma}(0) \iff \mathcal{E}_f^{\gamma}(x * y) \le \mathcal{E}_f^{\gamma}(y) \right).$$

Proof. Let f be an anti fuzzy subalgebra of a BCK/BCI-algebra X. Then \mathcal{E}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X (see Theorem 3.1). Assume that $\mathcal{E}_f^{\gamma}(x) = \mathcal{E}_f^{\gamma}(0)$ for all $x \in X$. Then,

$$\mathcal{L}_f^{\gamma}(x*y) \le \max\{\mathcal{L}_f^{\gamma}(x), \mathcal{L}_f^{\gamma}(y)\} = \max\{\mathcal{L}_f^{\gamma}(0), \mathcal{L}_f^{\gamma}(y)\} = \mathcal{L}_f^{\gamma}(y),$$

for all $x, y \in X$, by Theorem 3.2 and Lemma 3.2.

Conversely, suppose that $\mathcal{E}_f^{\gamma}(x * y) \leq \mathcal{E}_f^{\gamma}(y)$ for all $x, y \in X$. Using (2.2) induces $\mathcal{E}_f^{\gamma}(x) = \mathcal{E}_f^{\gamma}(x * 0) \leq \mathcal{E}_f^{\gamma}(0)$, and so $\mathcal{E}_f^{\gamma}(x) = \mathcal{E}_f^{\gamma}(0)$ for all $x \in X$, by Lemma 3.2. \square

Proposition 3.2. If f is an anti-fuzzy subalgebra of a BCI-algebra X, then its Łukasiewicz fuzzy set \mathcal{L}_f^{γ} satisfies

$$(3.6) \qquad (\forall x \in X)(\mathcal{E}_f^{\gamma}(0 * x) \le \mathcal{E}_f^{\gamma}(x)).$$

Proof. If f is an anti-fuzzy subalgebra of a BCI-algebra X, then

$$f(0*x) \le \max\{f(0), f(x)\} = f(x),$$

for all $x \in X$. Hence, $L_f^{\gamma}(0 * x) \leq L_f^{\gamma}(x)$ for all $x \in X$, by Lemma 3.1.

Proposition 3.3. If f is an anti-fuzzy subalgebra of a BCI-algebra X, then its Lukasiewicz fuzzy set \mathcal{L}_f^{γ} satisfies

$$(3.7) \qquad (\forall x, y \in X)(\forall s_a, s_b \in [0, 1)) \left(\frac{x}{s_a} \lessdot \mathcal{L}_f^{\gamma}, \frac{y}{s_b} \lessdot \mathcal{L}_f^{\gamma} \Rightarrow \frac{x*(0*y)}{\max\{s_a, s_b\}}\right] \lessdot \mathcal{L}_f^{\gamma}\right).$$

Proof. Let $x, y \in X$ and $s_a, s_b \in [0.1)$ be such that $\frac{x}{s_a} \lessdot \mathcal{E}_f^{\gamma}$ and $\frac{y}{s_b} \lessdot \mathcal{E}_f^{\gamma}$. Then $\mathcal{E}_f^{\gamma}(x) \leq s_a$ and $\mathcal{E}_f^{\gamma}(y) \leq s_b$, and thus,

$$\begin{split} & \mathbb{E}_{f}^{\gamma}(x*(0*y)) = \min\{1, f(x*(0*y)) + \gamma\} \\ & \leq \min\{1, \max\{f(x), f(0*y)\} + \gamma\} \\ & \leq \min\{1, \max\{f(x), \max\{f(0), f(y)\}\} + \gamma\} \\ & = \min\{1, \max\{f(x), f(y)\} + \gamma\} \\ & = \min\{1, \max\{f(x) + \gamma, f(y) + \gamma\}\} \\ & = \max\{\min\{1, f(x) + \gamma\}, \min\{1, f(y) + \gamma\}\} \\ & = \max\{\mathbb{E}_{f}^{\gamma}(x), \mathbb{E}_{f}^{\gamma}(y)\} \\ & \leq \max\{s_{a}, s_{b}\}. \end{split}$$

Hence,
$$\frac{x*(0*y)}{\max\{s_n,s_k\}}$$
] $\leq \mathbf{L}_f^{\gamma}$.

We give conditions for a Lukasiewicz anti fuzzy set to be a Lukasiewicz anti fuzzy subalgebra.

Theorem 3.3. Let f be a fuzzy set in a BCK/BCI-algebra X. If it's Łukasiewicz anti fuzzy set \mathcal{L}_f^{γ} satisfies

$$(3.8) \quad (\forall x, y \in X)(\forall s_b, s_c \in [0, 1)) \left(z \le x, \frac{y}{s_b} \lessdot \mathbf{L}_f^{\gamma}, \frac{z}{s_c} \lessdot \mathbf{L}_f^{\gamma} \Rightarrow \frac{x * y}{\max\{s_b, s_c\}} \lessdot \mathbf{L}_f^{\gamma}\right),$$

then \mathcal{E}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X.

Proof. It is straightforward by
$$(I_3)$$
 and (3.8) .

Proposition 3.4. Let f be a fuzzy set in a BCI-algebra X. Then every Łukasiewicz fuzzy subalgebra \mathcal{L}_f^{γ} of X satisfies

$$(3.9) \qquad (\forall x, y \in X)(\forall s_a, s_b \in [0, 1)) \left(\frac{x}{s_a} \lessdot \mathcal{E}_f^{\gamma}, \frac{y}{s_b} \lessdot \mathcal{E}_f^{\gamma} \right) \Rightarrow \frac{x*(0*y)}{\max\{s_a, s_b\}} \lessdot \mathcal{E}_f^{\gamma}.$$

Proof. Let $x, y \in X$ and $s_a, s_b \in [0, 1)$ be such that $\frac{x}{s_a} \lessdot \mathbb{E}_f^{\gamma}$ and $\frac{y}{s_b} \lessdot \mathbb{E}_f^{\gamma}$. Then $\mathbb{E}_f^{\gamma}(x) \leq s_a$ and $\mathbb{E}_f^{\gamma}(y) \leq s_b$. Using Theorem 3.2 and Proposition 3.2, we have

Corollary 3.1. If f is an anti-fuzzy subalgebra of a BCI-algebra X, then its Łukasie-wicz fuzzy set \mathcal{L}_f^{γ} satisfies the condition (3.9).

Theorem 3.4. Let \mathcal{L}_f^{γ} be a Lukasiewicz anti fuzzy set of a fuzzy set f in a BCK/BCI-algebra X. Then the \lessdot -set $(\mathcal{L}_f^{\gamma}, s)_{\lessdot}$ of \mathcal{L}_f^{γ} is a subalgebra of X for all $s \in [0, 0.5)$ if and only if the following assertion is valid

$$(3.10) \qquad (\forall x, y \in X) \left(\min\{ \mathcal{L}_f^{\gamma}(x * y), 0.5 \} \le \max\{ \mathcal{L}_f^{\gamma}(x), \mathcal{L}_f^{\gamma}(y) \} \right).$$

Proof. Assume that the \leq -set $(\mathbb{E}_f^{\gamma}, s)_{\leq}$ of \mathbb{E}_f^{γ} is a subalgebra of X for all $s \in [0, 0.5)$. If the condition (3.10) does not hold, then

$$\max\{\mathcal{E}_f^{\gamma}(a), \mathcal{E}_f^{\gamma}(b)\} < \min\{\mathcal{E}_f^{\gamma}(a*b), 0.5\},\$$

for some $a,b \in X$. If we take $s := \max\{\mathbb{E}_f^{\gamma}(a), \mathbb{E}_f^{\gamma}(b)\}$, then $s \in [0,0.5)$, $\frac{a}{s} \lessdot \mathbb{E}_f^{\gamma}$ and $\frac{b}{s} \lessdot \mathbb{E}_f^{\gamma}$, i.e., $a,b \in (\mathbb{E}_f^{\gamma},s)_{\lessdot}$. Since $(\mathbb{E}_f^{\gamma},s)_{\lessdot}$ is a subalgebra of X, we have $a*b \in (\mathbb{E}_f^{\gamma},s)_{\lessdot}$. But $\frac{a*b}{s} \lessdot \mathbb{E}_f^{\gamma}$ implies $a*b \notin (\mathbb{E}_f^{\gamma},s)_{\lessdot}$, a contradiction. Hence,

$$\max\{\mathcal{E}_f^{\gamma}(x), \mathcal{E}_f^{\gamma}(y)\} \ge \min\{\mathcal{E}_f^{\gamma}(x*y), 0.5\},$$

for all $x, y \in X$.

Conversely, suppose that \mathcal{E}_f^{γ} satisfies (3.10). Let $s \in [0, 0.5)$ and $x, y \in X$ be such that $x \in (\mathcal{E}_f^{\gamma}, s)_{\leq}$ and $y \in (\mathcal{E}_f^{\gamma}, s)_{\leq}$. Then $\mathcal{E}_f^{\gamma}(x) \leq s$ and $\mathcal{E}_f^{\gamma}(y) \leq s$, which imply from (3.10) that

$$0.5 > s \ge \max\{\mathcal{E}_f^{\gamma}(x), \mathcal{E}_f^{\gamma}(y)\} \ge \min\{\mathcal{E}_f^{\gamma}(x * y), 0.5\}.$$

Hence, $\frac{x*y}{s} \leqslant \mathcal{L}_f^{\gamma}$, i.e., $x*y \in (\mathcal{L}_f^{\gamma}, s)_{\leqslant}$. Therefore, $(\mathcal{L}_f^{\gamma}, s)_{\leqslant}$ is a subalgebra of X for $s \in [0, 0.5)$.

Theorem 3.5. Let \mathcal{L}_f^{γ} be a Lukasiewicz fuzzy set of a fuzzy set f in a BCK/BCI-algebra X. If f is an anti-fuzzy subalgebra of X, then the Υ -set $(\mathcal{L}_f^{\gamma}, s)_{\Upsilon}$ of \mathcal{L}_f^{γ} is a subalgebra of X for all $s \in [0, 1)$.

Proof. Let $s \in [0,1)$ and $x,y \in (\mathbb{E}_f^{\gamma},s)_{\Upsilon}$. Then $\frac{x}{s} \Upsilon \mathbb{E}_f^{\gamma}$ and $\frac{y}{s} \Upsilon \mathbb{E}_f^{\gamma}$, that is, $\mathbb{E}_f^{\gamma}(x) + s < 1$ and $\mathbb{E}_f^{\gamma}(y) + s < 1$. Hence,

$$\mathbf{E}_f^\gamma(x*y) + s \leq \max\{\mathbf{E}_f^\gamma(x), \mathbf{E}_f^\gamma(y)\} + s = \max\{\mathbf{E}_f^\gamma(x) + s, \mathbf{E}_f^\gamma(y) + s\} < 1,$$

by Theorems 3.1 and 3.2. Thus, $\frac{x*y}{s} \Upsilon \mathcal{L}_f^{\gamma}$, and so, $x*y \in (\mathcal{L}_f^{\gamma}, s)_{\Upsilon}$. Therefore, $(\mathcal{L}_f^{\gamma}, s)_{\Upsilon}$ is a subalgebra of X.

Theorem 3.6. Let f be a fuzzy set in a BCK/BCI-algebra X. For a Łukasiewicz anti fuzzy set \mathcal{L}_f^{γ} of f in X, if the Υ -set $(\mathcal{L}_f^{\gamma}, s)_{\Upsilon}$ is a subalgebra of X, then \mathcal{L}_f^{γ} satisfies

$$(3.11) \qquad (\forall x, y \in X)(\forall s_a, s_b \in (0.5, 1]) \left(\frac{x}{s_a} \Upsilon \operatorname{L}_f^{\gamma}, \frac{y}{s_b} \Upsilon \operatorname{L}_f^{\gamma} \right) \Rightarrow \frac{x * y}{\min\{s_a, s_b\}} \lessdot \operatorname{L}_f^{\gamma} \right).$$

Proof. Let $x, y \in X$ and $s_a, s_b \in (0.5, 1]$ be such that $\frac{x}{s_a} \Upsilon \, \mathcal{L}_f^{\gamma}$ and $\frac{y}{s_b} \Upsilon \, \mathcal{L}_f^{\gamma}$. Then $x \in (\mathcal{L}_f^{\gamma}, s_a)_{\Upsilon} \subseteq (\mathcal{L}_f^{\gamma}, \min\{s_a, s_b\})_{\Upsilon}$ and $y \in (\mathcal{L}_f^{\gamma}, s_b)_{\Upsilon} \subseteq (\mathcal{L}_f^{\gamma}, \min\{s_a, s_b\})_{\Upsilon}$. Hence, $x * y \in (\mathcal{L}_f^{\gamma}, \min\{s_a, s_b\})_{\Upsilon}$, and so,

$$\mathcal{E}_f^{\gamma}(x * y) < 1 - \min\{s_a, s_b\} \le \min\{s_a, s_b\},\,$$

since $\min\{s_a, s_b\} > 0.5$. Therefore, $\frac{x*y}{\min\{s_a, s_b\}} \leq \mathcal{E}_f^{\gamma}$.

Theorem 3.7. Let \mathcal{L}_f^{γ} be a Łukasiewicz fuzzy set of a fuzzy set f in a BCK/BCI-algebra X. If f is an anti-fuzzy subalgebra of X, then the anti-subset $\operatorname{Anti}(\mathcal{L}_f^{\gamma})$ of \mathcal{L}_f^{γ} is a subalgebra of X.

Proof. Let $x, y \in \text{Anti}(\mathbb{E}_f^{\gamma})$. Then $f(x) + \gamma < 1$ and $f(y) + \gamma < 1$. If f is an anti fuzzy subalgebra of X, then \mathbb{E}_f^{γ} is a Łukasiewicz anti fuzzy subalgebra of X (see Theorem 3.1). It follows from Theorem 3.2 that

$$\mathsf{L}_f^\gamma(x*y) \leq \max\{\mathsf{L}_f^\gamma(x),\mathsf{L}_f^\gamma(y)\} = \max\{f(x) + \gamma, f(y) + \gamma\} < 1.$$

Hence, $x * y \in \text{Anti}(\mathbb{L}_f^{\gamma})$, and therefore, Anti(\mathbb{L}_f^{γ}) is a subalgebra of X.

Theorem 3.8. Let f be a fuzzy set in a BCK/BCI-algebra X. If a Łukasiewicz anti fuzzy set \mathcal{E}_f^{γ} of f in X satisfies

$$(3.12) \qquad (\forall x, y \in X)(\forall s_a, s_b \in [0, 1)) \left(\frac{x}{s_a} \lessdot \mathcal{E}_f^{\gamma}, \frac{y}{s_b} \lessdot \mathcal{E}_f^{\gamma} \right) \Rightarrow \frac{x * y}{\min\{s_a, s_b\}} \Upsilon \mathcal{E}_f^{\gamma} \right),$$

then the anti subset Anti (\mathbb{L}_f^{γ}) of \mathbb{L}_f^{γ} is a subalgebra of X.

Proof. Assume that \mathcal{E}_f^{γ} satisfies the condition (3.12) for all $x, y \in X$ and $s_a, s_b \in [0, 1)$. Let $x, y \in \text{Anti}(\mathcal{E}_f^{\gamma})$. Then $f(x) + \gamma < 1$ and $f(y) + \gamma < 1$. Since $\frac{x}{\mathcal{E}_f^{\gamma}(x)} \lessdot \mathcal{E}_f^{\gamma}$ and $\frac{y}{\mathcal{E}_f^{\gamma}(y)} \lessdot \mathcal{E}_f^{\gamma}$, it follows from (3.12) that

$$\frac{x*y}{\min\{\mathbb{E}_{f}^{\gamma}(x),\mathbb{E}_{f}^{\gamma}(y)\}} \Upsilon \mathbb{E}_{f}^{\gamma}.$$

If $x * y \notin \text{Anti}(\mathcal{E}_f^{\gamma})$, then $\mathcal{E}_f^{\gamma}(x * y) = 1$, and so,

$$\begin{split} \mathbb{E}_{f}^{\gamma}(x*y) + \min\{\mathbb{E}_{f}^{\gamma}(x), \mathbb{E}_{f}^{\gamma}(y)\} &= 1 + \min\{\mathbb{E}_{f}^{\gamma}(x), \mathbb{E}_{f}^{\gamma}(y)\} \\ &= 1 + \min\{\min\{1, f(x) + \gamma\}, \min\{1, f(y) + \gamma\}\} \\ &= 1 + \min\{f(x) + \gamma, f(y) + \gamma\} \\ &= 1 + \min\{f(x), f(y)\} + \gamma \\ &\geq 1 + \gamma > 1, \end{split}$$

which shows that (3.13) is not valid. This is a contradiction, and thus, $x*y \in \text{Anti}(\mathbb{E}_f^{\gamma})$. Hence, Anti (\mathbb{E}_f^{γ}) is a subalgebra of X.

References

- [1] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems **35**(1) (1990), 121–124. https://doi.org/10.1016/0165-0114(90)90025-2
- [2] A. B. Saeid and Y. B. Jun, Redefined fuzzy subalgebras of BCK/BCI-algebras, Iran. J. Fuzzy Syst. 5(2) (2008), 63–70. https://doi.org/10.22111/ijfs.2008.334
- [3] S. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK-algebras, Kyungpook Math. J. 38(1) (1998), 145–150
- [4] Y. S. Huang, BCI-Algebra, Science Press, Beijing, China, 2006.
- [5] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8(1) (1980), 125–130.
- [6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica 23(1) (1978), 121–124. https://doi.org/10.1016/0165-0114(90)90025-2

- [7] Y. B. Jun, Lukasiewicz anti fuzzy set and its application in BE-algebras, Transactions on Fuzzy Sets and Systems 1(2) (2022), 37–45. http://doi.org/10.30495/tfss.2022.1960391.1037
- [8] J. Meng and Y. B. Jun, BCK-Algebras, Kyungmoonsa Co., Seoul, Korea, 1994.

¹DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, JINJU 52828, KOREA Email address: jeonggikang@gmail.com

 $^2\mathrm{Center}$ for Information Technologies and Applied Mathematics, University of Nova Gorica, Nova Gorica 5000, Slovenia

 $Email\ address: \verb|hashem.bordbar@ung.si||$