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ULTIMATE BOUNDEDNESS OF SOLUTIONS OF SOME SYSTEM
OF THIRD-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

AYINLA A. ABDURASID1, KEHINDE D. ADULOJU2, MUSILIU T. RAJI2,
OLUFUNKE R. VINCENT3, AND MATHEW O. OMEIKE2

Abstract. This paper presents sufficient conditions for the ultimate boundedness
of solutions of some system of third-order nonlinear differential equations

...

X +Ψ(Ẋ)Ẍ + Φ(X)Ẋ +H(X) = P (t,X, Ẋ, Ẍ),
where Ψ,Φ are positive definite symmetric matrices, H,P are n−vectors continuous
in their respective arguments, X ∈ Rn and t ∈ R+ = [0,+∞). We do not necessarily
require H(X) differentiable to obtain our results. By using the Lyapunov’s direct
(second) method and constructing a complete Lyapunov function, earlier results are
generalized.

1. Introduction

Let R = (−∞,+∞), R+ = [0,+∞) and let Rn denote the real Euclidean n-dimensional
space furnished with the usual Euclidean norm denoted by ∥ · ∥. Consider the system
of third-order nonlinear differential equations
(1.1)

...

X +Ψ(Ẋ)Ẍ + Φ(X)Ẋ +H(X) = P (t,X, Ẋ, Ẍ),
where t ∈ R+, X : R+ → Rn, H : Rn → Rn, P : R+ × Rn × Rn × Rn → Rn, Ψ,Φ :
Rn → Rn×n are continuous in their respective arguments, H is assumed to be not
necessarily differentiable and the dots indicate differentiation with respect to the
independent variable t. Thus, for any initial values X0, Y0, Z0 ∈ Rn, there is a uniquely
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defined solution X = X(t,X0, Y0, Z0) of (1.1), continuous in t, X0, Y0, Z0 satisfying
the condition X(t0) = X0, Ẋ(t0) = Y0, Ẍ(t0) = Z0 [21]. Equation (1.1) is the vector
version for the systems of real third-order nonlinear differential equations of the form

...
xi +

n∑
k=1

ψik(ẋ1, . . . , ẋn)ẍk +
n∑

k=1
ϕik(x1, . . . , xn)ẋk + hi(x1, . . . , xn)

=pi(t, x1, . . . , xn, ẋ1, . . . , ẋn, ẍ1, . . . , ẍn),
where i = 1, . . . , n, in which the functions ψik, ϕik, hi, pi are continuous in their
respective arguments. In the case n = 1, this system reduces to the scalar ordinary
differential equations of the form
(1.2) ...

x +ψ(ẋ)ẍ+ ϕ(x)ẋ+ h(x) = p(t, x, ẋ, ẍ),
where ψ, ϕ, h and p are continuous in their respective arguments, see [4–6,9,10,13,16,
17,19,23–26,28,29,34,35] and the references cited therein. If ψ(ẋ) = a and ϕ(x) = b,
(1.2) reduces to

...
x +aẍ+ bẋ+ h(x) = p(t, x, ẋ, ẍ),

which has been investigated by Ezeilo [9] for ultimate boundedness and convergence
of solutions by assuming

(1.3) h(ξ + γ) − h(γ)
ξ

∈ I0, ξ ̸= 0,

with I0 ≡ [δ, kab] ⊂ (0, ab) the generalized Routh-Hurwitz interval, δ > 0 and 0 <
k < 1. When γ = 0 in (1.3) we have

H0 = H0(ξ) ≡ h(ξ + γ) − h(γ)
ξ

and
H0 = h(ξ)

ξ
, if h(0) = 0.

On the other hand, if Ψ(Ẋ) = A,Φ(X) = B in (1.1), we have
(1.4)

...

X +AẌ +BẊ +H(X) = P (t,X, Ẋ, Ẍ),
where A, B are real symmetric n × n matrices. Equation (1.4) has been studied by
Afuwape [1] and Meng [12] for the ultimate boundedness and periodicity of solutions
for which H is of class C(Rn), satisfying
(1.5) H(X2) = H(X1) + Ch(X1, X2)(X2 −X1),
where Ch(X1, X2) is a real n × n operator for any X1, X2 in Rn, and having real
eigenvalues λi(Ch(X1, X2)), i = 1, 2, . . . , n. These eigenvalues satisfy
(1.6) 0 < δc ≤ λi(Ch(X1, X2)) ≤ ∆c,

with δc,∆c as fixed constants. Further, the matrices A, B have real positive eigenvalues
λi(A) and λi(B) respectively, satisfying

0 < δa ≤ λi(A) ≤ ∆a,
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0 < δb ≤ λi(B) ≤ ∆b,

i = 1, 2, . . . , n, and that for some constant k(< 1) the ’generalized’ Routh-Hurwitz
condition
(1.7) ∆c ≤ kδaδb

is satisfied.
In these papers mentioned above, the Lyapunov’s direct method was used to obtain

results. This entails construction of a quadratic-like function (also known as Lyapunov
function) to obtain sufficient conditions which guarantee the properties of solutions,
but the construction of this function is difficult since there is no general method to
obtaining it ([1]-[35]). Perhaps, reason (1.1) has received no attention in literature.

The present work is concerned with the ultimate boundedness of solutions of (1.1)
or its equivalent system form

Ẋ = Y,

Ẏ = Z,(1.8)
Ż = −Ψ(Y )Z − Φ(X)Y −H(X) + P (t,X, Y, Z),

obtained as usual by setting Ẋ = Y , Ẍ = Z in (1.1). This problem was left open
by Ezeilo and Tejumola [7, page 284]. In this work, by using the Lyapunov’s direct
method and constructing a suitable complete Lyapunov function, we shall obtain
sufficient conditions which guarantee the ultimate boundedness of solutions of (1.1).

2. Notation

Our notations are similar to [3]. In this paper, δ′s and ∆′s with or without suffixes
represent positive constants whose magnitudes depend on the matrix functions Ψ,Φ,
and the vector functions H,P. The δ′s and ∆′s with numerical or alphabetical suffixes
shall retain fixed magnitudes while those without suffixes are not necessarily the
same at each occurrence. Finally, ⟨X, Y ⟩ shall represent the scalar product of any
vectors X, Y ∈ Rn, with respective components (x1, x2, . . . , xn) and (y1, y2, . . . , yn) by∑n

i=1 xiyi. In particular, ⟨X,X⟩ = ∥X∥2.

3. Statement of Results

Our main result in this paper is the following.

Theorem 3.1. Suppose H(0) = 0, and that
(i) there exists n× n real continuous operator Ch(X1, X2) for any vectors X1, X2

such that the function H is of class C(Rn), satisfy (1.5), with eigenvalues
λi(Ch(X1, X2)), i = 1, 2, . . . , n, satisfying (1.6);

(ii) the matrix functions Ψ(Y ), Φ(X) are continuous in their respective arguments,
with eigenvalues λi(Ψ(Y )), λi(Φ(X)) satisfying

(3.1) 0 < δa ≤ λi(Ψ(Y )) ≤ ∆a,
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(3.2) 0 < δb ≤ λi(Φ(X)) ≤ ∆b,

where i = 1, 2, . . . , n;
(iii) the matrices Ψ, Φ and the operator Ch are associative and commute pairwise;

and
(iv) the vector function P (t,X, Y, Z) satisfies

∥P (t,X, Y, Z)∥ ≤θ1(t) + θ2(t)
(
∥X∥2 + ∥Y ∥2 + ∥Z∥2

) ρ
2(3.3)

+ δ0
(
∥X∥2 + ∥Y ∥2 + ∥Z∥2

) 1
2 ,

for any X, Y, Z ∈ Rn, where δ0 > 0 is a constant, θ1(t), θ2(t) are continuous
functions in t and 0 ≤ ρ < 1.

Then, there exist constants ∆1, ∆2, ∆3 such that every solution X(t) of (1.1) with
X(t0) = X0, Ẋ(t0) = Y0, Ẍ(t0) = Z0, and for any constant ν, whatever in the range
1
2 ≤ ν ≤ 1, the inequality(

∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2
)ν

≤∆1 exp{−∆2(t− t0)}

+ ∆3

∫ t

t0

(
θ2ν

1 (τ) + θ
2ν

1−ρ

2 (τ)
)

(3.4)

× exp{−∆2(t− τ)}dτ
holds for all t ≥ t0, where ∆1 = ∆1(X0, Y0, Z0).

A number of quite important results can be deduced from Theorem 3.1. For example,
we have the following.

Corollary 3.1. If P ≡ 0 and if all conditions of Theorem 3.1 hold, then every solution
X(t) of (1.1) satisfies
(3.5) ∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2 → 0,
as t → +∞.

Indeed, by setting θ1 = 0 = θ2 in (3.4), we have that, if δ0 ≤ ∆0, then(
∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2

)ν
≤ ∆1 exp{−∆2(t− t0)}, t ≥ t0,

from which (3.5) follows on letting t → +∞.

Corollary 3.2. Assume that all conditions of Theorem 3.1 hold and let δ0 ≤ ∆0.
Suppose also that there are fixed constants η, 1 ≤ η ≤ 2, and µ > 0 such that∫ t+µ

t0

(
θη

1(τ) + θ
η

1−ρ

2 (τ)
)

exp{−∆2(t− τ)}dτ → 0, as t → +∞.

Then, every solution X(t) of (1.1) satisfies (3.5).

Another interesting result which can be deduced very readily from Theorem 3.1 is
the following generalization of the boundedness results in [1, 7] and [12].
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Corollary 3.3. Assume that all the conditions of Theorem 3.1 hold and let δ0 ≤ ∆0.
Suppose further that each of the functions θ1(t), θ2(t) satisfies at least one of the
following conditions:

(i) max0≤t<+∞ θ1(t) < +∞, max0≤t<+∞ θ2(t) < +∞;
(ii)

∫+∞
t0

θη
1(t)dt < +∞,

∫+∞
t0

θ
η

1−ρ

2 (t)dt < +∞,

for some constant η in the range 1 ≤ η ≤ 2. Then there exists a constant ∆4 > 0 such
that every solution X(t) of (1.1) ultimately satisfies

∥X(t)∥2 + ∥Ẋ(t)∥2 + ∥Ẍ(t)∥2 ≤ ∆4.

4. Preliminary Results

We need a few important results to prove Theorem 3.1.

Lemma 4.1. Let D be a real symmetric n×n positive definite matrix. Then, for any
X ∈ Rn,

(4.1) δd∥X∥2 ≤ ⟨DX,X⟩ ≤ ∆d∥X∥2,

where δd, ∆d are respectively the least and greatest eigenvalues of D.

Proof. See [7]. □

Lemma 4.2. Let Q,D be any two real n× n commuting symmetric matrices. Then
the eigenvalues λi(QD), i = 1, 2, . . . , n, of the product matrix QD are all real and
satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D),

where λj(Q) and λk(D) are respectively the eigenvalues of Q and D.

Proof. See [7]. □

The main tool in the proof of Theorem 3.1 is the scalar function W = W (X, Y, Z)
defined for arbitrary vectors X, Y, Z ∈ Rn by

(4.2) 2W = β(1−β)δ2
b ∥X∥2+δb(β+αδ−1

a )∥Y ∥2+αδ−1
a ∥Z∥2+∥Z+δaY +(1−β)δbX∥2,

where α > 0 and 0 < β < 1.
The following result is immediate from (4.2).

Lemma 4.3. Assume that all the conditions on Ψ(Y ), Φ(X) and H(X) in Theorem
3.1 are satisfied. Then there are constants δi > 0, i = 1, 2, such that

(4.3) δ1
(
∥X∥2 + ∥Y ∥2 + ∥Z∥2

)
≤ W (X, Y, Z) ≤ δ2

(
∥X∥2 + ∥Y ∥2 + ∥Z∥2

)
,

for arbitrary X, Y, Z ∈ Rn.
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Proof. The proof of inequalities (4.3) follows if we use Lemma 4.1 (inequalities (4.1))
repeatedly and then choose

δ1 = 1
2 min

{
β(1 − β)δ2

b , δb(β + αδ−1
a ), αδ−1

a

}
and

δ2 = 1
2 max {µ1, µ2, µ3} ,

where µ1 = δb(1 − β)(1 + δa + δb), µ2 = δb(β + αδ−1
a ) + δa[1 + δb(1 − β) + δa] and

µ3 = 1 + αδ−1
a + δb(1 − β) + δa. □

5. Proof of Theorem 3.1

To prove Theorem 3.1, it suffices to show that the function W (defined in (4.2))
satisfies for any solution (X(t), Y (t), Z(t)) of (1.8) and for any ν in the range 1

2 ≤
ν ≤ 1,

(5.1) Ẇ ≤ −δ3ψ
2 + δ4

(
θ2ν

1 (t) + θ
2ν

1−ρ

2 (t)
)
ψ2(1−ν),

for some constants δi > 0, i = 3, 4, where ψ2 = ∥X(t)∥2 + ∥Y (t)∥2 + ∥Z(t)∥2. We note
that from Lemma 4.3, (5.1) becomes

Ẇ ≤ −δ5W + δ6

(
θ2ν

1 (t) + θ
2ν

1−ρ

2 (t)
)
W (1−ν),

with δ5 = δ1δ3 and δ6 = δ2δ4. If we choose U = W ν , this reduces to

U̇ ≤ −νδ5U + νδ6

(
θ2ν

1 (t) + θ
2ν

1−ρ

2 (t)
)
,

which when solved for U yields

U(t) ≤ U(t0) exp{−νδ5(t− t0)} + ∆5

∫ t

t0

(
θ2ν

1 (τ) + θ
2ν

1−ρ

2 (τ)
)

exp{−νδ5(t− τ)}dτ,

for all t ≥ t0.
Rewriting this with W ν = U and applying Lemma 4.3, we shall get (3.4) with

∆1 = δ
(
∥X(t0)∥2 + ∥Y (t0)∥2 + ∥Z(t0)∥2

)ν
, ∆2 = νδ5 and ∆3 = δ∆5.

It follows that the proof of Theorem 3.1 is complete as soon as inequality (5.1) is
proved.

6. Derivative of W and Proof of (5.1)

Let (X(t), Y (t), Z(t)) be any solution of (1.8). The total derivative of W, with
respect to t along the solution path after simplification is

(6.1) Ẇ = −U1 − U2 − U3 − U4 − U5 − U6 − U7 + U8,
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where

U1 =η1δb(1 − β)⟨X,H(X)⟩ + ξ1δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩
+ γ1αδ

−1
a ⟨Ψ(Y )Z,Z⟩ + ⟨(Ψ(Y ) − δaI)Z,Z⟩,

U2 =η2δb(1 − β)⟨X,H(X)⟩ + γ2αδ
−1
a ⟨Ψ(Y )Z,Z⟩ + (1 + αδ−1

a )⟨Z,H(X)⟩,
U3 =η3δb(1 − β)⟨X,H(X)⟩ + ξ2δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩ + δa⟨Y,H(X)⟩,
U4 =η4δb(1 − β)⟨X,H(X)⟩ + γ3αδ

−1
a ⟨Ψ(Y )Z,Z⟩

+ δb(1 − β)⟨(Ψ(Y ) − δaI)X,Z⟩,
U5 =η5δb(1 − β)⟨X,H(X)⟩ + ξ3δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩

+ δb(1 − β)⟨(Φ(X) − δbI)X, Y ⟩,
U6 =γ4αδ

−1
a ⟨Ψ(Y )Z,Z⟩ + ξ4δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩

+ (1 + αδ−1
a )⟨(Φ(X) − δbI)Y, Z⟩,

U7 =γ5αδ
−1
a ⟨Ψ(Y )Z,Z⟩ + ξ5δa⟨(Φ(X) − (1 − β)δbI)Y, Y ⟩

+ δa⟨(Ψ(Y ) − δaI)Y, Z⟩,
U8 =⟨δb(1 − β)X + δaY + (1 + αδ−1

a )Z, P (t,X, Y, Z)⟩,

with ηi, ξi, γi, i = 1, 2, 3, 4, 5, positive constants such that

5∑
i=1

ηi = 1,
5∑

i=1
ξi = 1 and

5∑
i=1

γi = 1.

To arrive at (5.1), we prove the following.

Lemma 6.1. Subject to a conveniently chosen value of k in (1.7), we have

Uj ≥ 0, j = 2, 3, 4, 5, 6, 7,

for all X, Y, Z ∈ Rn.

Proof. For some constants ki > 0, i = 1, 2, conveniently chosen later, we have

⟨(1 + αδ−1
a )Z,H(X)⟩ =∥k1(1 + αδ−1

a ) 1
2Z + 2−1k−1

1 (1 + αδ−1
a ) 1

2H(X)∥2

− ⟨k2
1(1 + αδ−1

a )Z,Z⟩
− ⟨4−1k−2

1 (1 + αδ−1
a )H(X), H(X)⟩

and

⟨δaY,H(X)⟩ =∥k2δ
1
2
a Y + 2−1k−1

2 δ
1
2
a H(X)∥2

− ⟨k2
2δaY, Y ⟩ − ⟨4−1k−2

2 δaH(X), H(X)⟩.
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On using the assumption that H(0) = 0 and the hypothesis (1.5), it follows that

U2 =∥k1(1 + αδ−1
a ) 1

2Z + 2−1k−1
1 (1 + αδ−1

a ) 1
2Ch(X, 0)X∥2

+ ⟨Z, (γ2αδ
−1
a Ψ(Y ) − k2

1(1 + αδ−1
a ))Z⟩

+ ⟨Ch(X, 0)X, (η2δb(1 − β) − 4−1k−1
1 (1 + αδ−1

a )Ch(X, 0))X⟩

and

U3 =∥k2δ
1
2
a Y + 2−1k−1

2 δ
1
2
a Ch(X, 0)X∥2

+ ⟨Y, (ξ2δa[Φ(X) − (1 − β)δbI] − k2
2δaI)Y ⟩

+ ⟨Ch(X, 0)X, (η3δb(1 − β) − 4−1k−1
1 δaCh(X, 0))X⟩.

Thus, using (1.6), (3.1), (3.2) and Lemma 4.1 repeatedly, we obtain for all X,Z ∈ Rn,

U2 ≥ 0,

if

k2
1 ≤ γ2αδa

α + δa

, with ∆c ≤ 4α(1 − β)η2γ2δ
2
aδb

(α + δa)2 ,

and, for all X, Y ∈ Rn, U3 ≥ 0, if

k2
2 ≤ βξ2δb, with ∆c ≤ 4β(1 − β)η2η3δ

2
b

δa

.

Hence, combining these inequalities (with ∆c), we have, for all X, Y, Z ∈ Rn,

Ui ≥ 0, i = 2, 3, if ∆c ≤ kδaδb,

with

k = min
{

4α(1 − β)η2γ2δa

(α + δa)2 ,
4β(1 − β)η2η3δb

δ2
a

}
< 1.

To complete the proof of Lemma 6.1, we need to show that

Ui ≥ 0, i = 4, 5, 6, 7,

for all X, Y, Z ∈ Rn. By (1.5), the assumption that H(0) = 0 and for constants
kj > 0, j = 3, 4, 5, 6, conveniently chosen later, we have

⟨δb(1 − β)X, (Ψ(Y ) − δaI)Z⟩

=∥k3δ
1
2
b (1 − β) 1

2 (Ψ(Y ) − δaI) 1
2X + 2−1k−1

3 δ
1
2
b (1 − β) 1

2 (Ψ(Y ) − δaI) 1
2Z∥2

− ⟨k2
3δb(1 − β)(Ψ(Y ) − δaI)X,X⟩ − ⟨4−1k−2

3 δb(1 − β)(Ψ(Y ) − δaI)Z,Z⟩,
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⟨δb(1 − β)(Φ(X) − δbI)X, Y ⟩

=∥k4δ
1
2
b (1 − β) 1

2 (Φ(X) − δbI) 1
2X + 2−1k−1

4 δ
1
2
b (1 − β) 1

2 (Φ(X) − δbI) 1
2Y ∥2

− ⟨k2
4δb(1 − β)(Φ(X) − δbI)X,X⟩ − ⟨4−1k−2

4 δb(1 − β)(Φ(X) − δbI)Y, Y ⟩,
⟨(1 + αδ−1

a )(Φ(X) − δbI)Y, Z⟩

=∥k5(1 + αδ−1
a ) 1

2 (Φ(X) − δbI) 1
2Y + 2−1k−1

5 (1 + αδ−1
a ) 1

2 (Φ(X) − δbI) 1
2Z∥2

− ⟨k2
5(1 + αδ−1

a )(Φ(X) − δbI)Y, Y ⟩ − ⟨4−1k−2
5 (1 + αδ−1

a )(Φ(X) − δbI)Z,Z⟩,
⟨δa(Ψ(Y ) − δaI)Y, Z⟩

=∥k6δ
1
2
a (Ψ(Y ) − δaI) 1

2Y + 2−1k−1
6 δ

1
2
a (Ψ(Y ) − δaI) 1

2Z∥2

− ⟨k2
6δa(Ψ(Y ) − δaI)Y, Y ⟩ − ⟨4−1k−2

6 δa(Ψ(Y ) − δaI)Z,Z⟩.

Then it follows that

U4 =∥k3δ
1
2
b (1 − β) 1

2 (Ψ(Y ) − δaI) 1
2X + 2−1k−1

3 δ
1
2
b (1 − β) 1

2 (Ψ(Y ) − δaI) 1
2Z∥2

+
〈
X,
(
η4δb(1 − β)Ch(X, 0) − k2

3δb(1 − β)(Ψ(Y ) − δaI)
)
X
〉

+
〈
Z,
(
αγ3δ

−1
a Ψ(Y ) − 4−1k−2

3 δb(1 − β)(Ψ(Y ) − δaI)
)
Z
〉
,

U5 =∥k4δ
1
2
b (1 − β) 1

2 (Φ(X) − δbI) 1
2X + 2−1k−1

4 δ
1
2
b (1 − β) 1

2 (Φ(X) − δbI) 1
2Y ∥2

+
〈
X,
(
η5δb(1 − β)Ch(X, 0) − k2

4δb(1 − β)(Φ(Y ) − δbI)
)
X
〉

+
〈
Y,
(
ξ3δa[Φ(X) − (1 − β)δbI] − 4−1k−2

4 δb(1 − β)(Φ(X) − δbI)
)
Y
〉
,

U6 =∥k5(1 + αδ−1
a ) 1

2 (Φ(X) − δbI) 1
2Y + 2−1k−1

5 (1 + αδ−1
a ) 1

2 (Φ(X) − δbI) 1
2Z∥2

+
〈
Y,
(
ξ4δa[Φ(X) − (1 − β)δbI] − k2

5(1 + αδ−1
a )(Φ(X) − δbI)

)
Y
〉

+
〈
Z,
(
αγ4δ

−1
a Ψ(Y ) − 4−1k−2

5 (1 + αδ−1
a )(Φ(X) − δbI)

)
Z
〉

and

U7 =∥k6δ
1
2
a (Ψ(Y ) − δaI) 1

2Y + 2−1k−1
6 δ

1
2
a (Ψ(Y ) − δaI) 1

2Z∥2

+
〈
Y,
(
ξ5δa[Φ(X) − (1 − β)δbI] − k2

6δa(Ψ(Y ) − δaI)
)
Y
〉

+
〈
Z,
(
αγ5δ

−1
a Ψ(Y ) − 4−1k−2

6 δa(Ψ(Y ) − δaI)
)
Z
〉
.

We then obtain the following using the estimates (1.6), (3.1), (3.2) and Lemma 4.1
repeatedly. For all X,Z ∈ Rn,

U4 ≥ 0, if (1 − β)δb(∆a − δa)
4αη3

≤ k2
3 ≤ η4δc

∆a − δa

.

For all X, Y ∈ Rn,

U5 ≥ 0, if (1 − β)(∆b − δb)
4βξ3δa

≤ k2
4 ≤ η5δc

∆b − δb

.
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For all Y, Z ∈ Rn,

U6 ≥ 0, if (1 + αδ−1
a )(∆b − δb)
4αγ4

≤ k2
5 ≤ βξ4δaδb

(1 + αδ−1
a )(∆b − δb)

.

For all Y, Z ∈ Rn,

U7 ≥ 0, if δa(∆a − δa)
4αγ5

≤ k2
6 ≤ βξ5δaδb

δa(∆a − δa) .

The proof of Lemma 6.1 is now complete. □

We are now left with the estimates U1 and U8.
From (6.1), we clearly have

U1 ≥ (1 − β)η1δbδc∥X∥2 + βξ1δaδb∥Y ∥2 + αγ1∥Z∥2(6.2)
≥ δ7(∥X∥2 + ∥Y ∥2 + ∥Z∥2),

where δ7 = min{(1 − β)η1δbδc, βξ1δaδb, αγ1}.
For the remaining part of the proof of (5.1), let us for convenience denote ∥X∥2 +

∥Y ∥2 + ∥Z∥2 by ψ2. Since P (t,X, Y, Z) satisfies (3.3), Schwarz’s inequality gives U8,

|U8| ≤
(
(1 − β)δb∥X∥ + (1 + αδ−1

a )∥Z∥ + δa∥Y ∥
)

∥P (t,X, Y, Z)∥(6.3)

≤
√

3δ8
(
δ0ψ

2 + θ2(t)ψ1+ρ + θ1(t)ψ
)
,

where δ8 = max{(1 − β)δb, δa, 1 + αδ−1
a }.

Now, combining (6.1) with inequalities (6.2), (6.3), we obtain
Ẇ ≤ −(δ7 −

√
3δ8δ0)ψ2 +

√
3δ8

(
θ2(t)ψ1+ρ + θ1(t)ψ

)
.

This we can rewrite as
(6.4) Ẇ ≤ −δ9ψ

2 + ψ1 + ψ2,

where
3δ9 = δ7 −

√
3δ8δ0, ψ1 = {δ10θ1(t) − δ9ψ}ψ

and
ψ2 = δ10θ2(t)ψ1+ρ − δ9ψ

2.

If we choose δ0 small enough such that δ9 > 0 (following [7, page 306]), with the
necessary modification, we obtain

ψ1 ≤ δ10ψ
2(1−ν)θ2ν

1 (t)
and

ψ2 ≤ δ11ψ
2(1−ν)θ

2ν
1−ρ

2 (t),
for any constant ν in the range 1

2 ≤ ν ≤ 1.
Thus, (6.4) reduces to

Ẇ ≤ −δ9ψ
2 + δ12

(
θ2ν

1 (t) + θ
2ν

1−ρ

2 (t)
)
ψ2(1−ν),

with δ12 = max{δ10, δ11}.
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This is (5.1) with δ3 = δ9 and δ4 = δ12.
This completes the proof of Theorem 3.1.

7. Example

Consider (1.1) of the form

(7.1)
...

X +Ψ(Ẋ)Ẍ + Φ(X)Ẋ +H(X) = P (t,X, Ẋ, Ẍ), X ∈ R2,

with

X =
(
x1
x2

)
, Ψ(Ẋ) =

(
3 + 1

1+ẋ12 0
0 1

)
, Φ(X) =

(
0.00004 + 1

1+x12 0
0 1

)
,

H(X) =
(

0.001 tan−1 x1 + 0.0001x1
0.0001x2

)
, P (t) =

(
e−t

sin t

)
,

where e−t, sin t are bounded continuous functions on [0,+∞). A simple calculation
(with the earlier notations) gives λ1(Ψ(Ẋ)) = 1, λ2(Ψ(Ẋ)) = 3 + 1

1+ẋ12 , λ1(Φ(X)) =

1, λ2(Φ(X)) = 0.00004 + 1
1+x12 and Ch(X, 0) =

(
0.0001 + 0.0001

1+x12 0
0 0.0001

)
,

λ1(Ch(X, 0)) = 0.0001, λ2(Ch(X, 0)) = 0.0001 + 0.0001
1+x12 . Following Theorem 3.1,

δa = 1, ∆a = 3, δb = 1, ∆b = 1.00004, δc = 0.0001, ∆c = 0.0011. If we choose
α = 3, β = 1

2 , γ3 = η2 = η3 = 1
5 , we obtain k = min{0.015, 0.04} = 0.015 < 1. Since

∆c = 0.0011 < 0.015 = kδaδb, then all the conditions of Theorem 3.1 are satisfied.
Thus the solutions of (7.1) are ultimately bounded.

8. Conclusion

This paper investigates the ultimate boundedness of solutions of some third-order
nonlinear differential equations. By constructing a quadratic-like function (also known
as Lyapunov function) and using the Lyapunov second (direct) method, sufficient
conditions which guarantee that solutions are ultimately bounded are established.
A particular example has been provided to demonstrate results obtained. Results
obtained in this paper revise and improve on those in the literature.

Acknowledgements. The authors wish to thank the anonymous reviewers for their
invaluable suggestions for improvement.
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