Kragujevac Journal of Mathematics Volume 49(5) (2025), Pages 755–764.

$\begin{array}{c} \textbf{SYMMETRIC} \ \textit{N-}\textbf{ADDITIVE} \ \ \textbf{MAPPINGS} \ \ \textbf{ADMITTING} \ \ \textbf{SEMIPRIME} \\ \textbf{RING} \end{array}$

KAPIL KUMAR¹

ABSTRACT. Let \mathcal{R} be a ring with centre $Z(\mathcal{R})$. An n-additive map $D: \mathcal{R}^n \to \mathcal{R}$ is called symmetric n-additive if $D(x_1,\ldots,x_n)=D(x_{\pi(1)},\ldots,x_{\pi(n)})$ for all $x_i\in\mathcal{R}$ and for every permutation $(\pi(1),\pi(2),\ldots,\pi(n))$. A mapping $\Delta:\mathcal{R}\to\mathcal{R}$ defined by $\Delta(x)=D(x,x,\ldots,x)$ is called the trace of D. In this paper, we prove that a nonzero Lie ideal L of a semiprime ring \mathcal{R} of characteristic different from (2^n-2) is central, if it satisfies any one of the following properties: (i) $\Delta([x,y]) \mp xy \in Z(\mathcal{R})$; (ii) $\Delta([x,y]) \mp [y,x] \in Z(\mathcal{R})$; (iii) $\Delta(xy) \mp \Delta(x) \mp [x,y] \in Z(\mathcal{R})$; (iv) $\Delta([x,y]) \mp yx \in Z(\mathcal{R})$; (v) $\Delta(xy) \mp \Delta(y) \mp [x,y] \in Z(\mathcal{R})$.

1. Introduction

Throughout the paper, \mathcal{R} always represents an associative ring, $Z(\mathcal{R})$ is its centre. Let $x,y,z\in\mathcal{R}$. We write the notation [y,x] for the commutator yx-xy and make use of the identities [xy,z]=[x,z]y+x[y,z] and [x,yz]=[x,y]z+y[x,z]. Recall that \mathcal{R} is prime if $a\mathcal{R}b=\{0\}$ implies that either a=0 or b=0 semiprime if $a\mathcal{R}a=\{0\}$ implies that a=0. Let \mathcal{R} and \mathcal{S} be abelian groups. A map $q:\mathcal{R}\to\mathcal{S}$ is called the trace of a biadditive map if there exists a biadditive map $B:\mathcal{R}\times\mathcal{R}\to\mathcal{S}$ such that q(x)=B(x,x) for all $x\in\mathcal{R}$. Assuming further that $\mathcal{R}\subseteq\mathcal{R}'$ are rings, we say that q is commuting if [q(x),x]=q(x)x-xq(x)=0 for all $x\in\mathcal{R}$. An example is a map of the form $q(x)=\lambda x^2+\mu(x)x+\nu(x)$ where $\lambda\in C$, the centre of \mathcal{S} and $\mu,\nu:\mathcal{R}\to C$, μ is additive and ν is the trace of a biadditive map. Quite often it turns out that this obvious example is in fact the only possible example of a commuting trace of a biadditive map of \mathcal{R} into \mathcal{S} . The basic result of this type states that this is true in the

 $\label{eq:keywords} \textit{Key words and phrases}. \text{ Semiprime rings, Lie ideals, Symmetric } \textit{n-} \text{additive mapping, Trace.} \\ 2020 \textit{ Mathematics Subject Classification}. \text{ Primary: } 16\text{W}25. \text{ Secondary: } 16\text{R}50, 16\text{N}60. \\$

DOI 10.46793/KgJMat2505.755K

Received: September 06, 2022. Accepted: January 18, 2023.

case when \Re is a prime ring with $char(\Re) \neq 2$ and \Im is its central closure provided, however that \Re does not satisfy s_4 , the standard polynomial identity of degree 4 ([11], Theorem 1). This theorem has turned out to be the key for solving different problems and to a great extent it initiated the development of the theory of functional identities. We studies about bidervations and the traces of mapping in articles [1,9,10,12] for details. A map $f: \Re \to \Re$ is centralizing on \Re if $[f(x),x] \in Z(\Re)$ for all $x \in \Re$. An additive map $D: \Re \to \Re$ is called a derivation if it satisfies the Leibnitz rule D(xy) = D(x)y + xD(y) for all $x,y \in \Re$. Let $n \geq 2$ be a fixed positive integer. A map $D: \underbrace{\Re \times \Re \times \cdots \times \Re}_{n-\text{times}} \to \Re$ is said to be symmetric (or permuting), if the equation $D(x_1, x_2, \ldots, x_n) = D(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})$ for all $x_i \in \Re$ and for every permutation

 $D(x_1, x_2, \ldots, x_n) = D(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})$ for all $x_i \in \mathcal{R}$ and for every permutation $(\pi(1), \pi(2), \ldots, \pi(n))$. Let us consider the following maps Let $n \geq 2$ be a fixed positive integer. An n-additive map

$$D: \underbrace{\mathcal{R} \times \mathcal{R} \times \cdots \times \mathcal{R}}_{n-\text{times}} \to \mathcal{R}$$

will be called an n-derivation if the relations

$$D(x_1x_1', x_2, \dots, x_n) = D(x_1, x_2, \dots, x_n)x_1' + x_1D(x_1', x_2, \dots, x_n),$$

$$D(x_1, x_2x_2', \dots, x_n) = D(x_1, x_2, \dots, x_n)x_2' + x_2D(x_1, x_2', \dots, x_n),$$

$$\vdots$$

$$D(x_1, x_2, \dots, x_n') = D(x_1, x_2, \dots, x_n)x_n' + x_nD(x_1, x_2, \dots, x_n'),$$

are valid for all $x_i, x_i' \in \mathcal{R}$. Of course, an 1-derivation is a derivation and a 2-derivation is called a bi-derivation. If D is symmetric, then the above inequalities are equivalent to each other. Let $n \geq 2$ be a fixed positive integer. If \mathcal{R} is commutative, then a map

$$D: \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n-\text{times}} \to \mathbb{R},$$

defined by

$$(x_1, x_2, \dots, x_n) \to D(x_1)D(x_2) \cdots D(x_n)$$
, for all $x_i \in \mathbb{R}, i = 1, 2, \dots, n$,

is a symmetric *n*-derivation, where D is a derivation on \Re . Let $n \geq 2$ be a fixed positive integer and let a map $\Delta : \Re \to \Re$ defined by $\Delta(x) = D(x, x, ..., x)$ for all $x \in \Re$, where

$$D: \underbrace{\mathcal{R} \times \mathcal{R} \times \cdots \times \mathcal{R}}_{n-\text{times}} \to \mathcal{R}$$

is a symmetric map, be the trace of D. It is obvious that, in case when

$$D: \underbrace{\mathcal{R} \times \mathcal{R} \times \cdots \times \mathcal{R}}_{n-\text{times}} \to \mathcal{R}$$

is a symmetric map which is also n-additive, the trace \triangle of D satisfies the relation

$$\triangle(x+y) = \triangle(x) + \triangle(y) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(x,y), \text{ for all } x, y \in \mathcal{R},$$

and

$$h_k(x,y) = D(\underbrace{x,x,\ldots,x}_{(n-k)-\text{times}},\underbrace{y,y,\ldots,y}_{k-\text{times}}).$$

Gy. Maksa [3] introduced the concept of a symmetric biderivation (see also [2], where an example can be found). It was shown in [3] that symmetric biderivations are related to general solution of some functional equations. Some results on symmetric biderivation in prime and semiprime rings can be found in [12] and [5]. The notion of additive commuting mappings is closely connected with the notion of biderivations. Every commuting additive mapping $f: \mathcal{R} \to \mathcal{R}$ gives rise to a biderivation on \mathcal{R} . Namely linearizing [x, f(x)] = 0 for all $x \in \mathcal{R}$, we get

$$[f(x), y] = [x, f(y)], \text{ for all } x \in \mathcal{R},$$

and hence we note that the mapping $(x,y) \to [f(x),y]$ is a biderivation (moreover, all derivations appearing are inner). Motivated by the aforementioned results we prove that a nonzero Lie ideal L of a semiprime ring $\mathcal R$ of characteristic different from (2^n-2) is central, if it satisfies any one of the following properties: (i) $\Delta([x,y]) \mp xy \in Z(\mathcal R)$; (ii) $\Delta([x,y]) \mp [y,x] \in Z(\mathcal R)$; (iii) $\Delta(xy) \mp \Delta(x) \mp [x,y] \in Z(\mathcal R)$; (iv) $\Delta([x,y]) \mp yx \in Z(\mathcal R)$; (v) $\Delta(xy) \mp \Delta(y) \mp [x,y] \in Z(\mathcal R)$.

2. Preliminary Results

We make extensive use of basic commutator identities

$$[xy, z] = [x, z]y + x[y, z], \quad [x, yz] = [x, y]z + y[x, z].$$

Moreover, we shall require the following lemmas.

Lemma 2.1 ([5], Lemma 1.1.5). If \Re is a semiprime ring, then the center of a nonzero one sided ideal is contained in the center of \Re . As an immediate consequence, any commutative one sided ideal is contained in the center of \Re .

Lemma 2.2. Let \mathcal{R} be a semiprime ring and L be a nonzero Lie ideal of \mathcal{R} . If $[L, L] \subseteq Z(\mathcal{R})$, then $L \subseteq Z(\mathcal{R})$.

Proof. Since $xy \in Z(\mathcal{R})$ for all $x, y \in L$, $xy - yx = [x, y] \in Z(\mathcal{R})$ for all $x, y \in L$. Using Lemma 2.1 we get the required result.

3. Main Results

Theorem 3.1. Let \mathcal{R} be a semiprime ring of characteristic not $(2^n - 2)$ and L be a nonzero Lie ideal of \mathcal{R} . Let $D: \mathcal{R}^n \to \mathcal{R}$ be a symmetric n-additive mapping and \triangle be the trace of D. If $\triangle([x,y]) \mp xy \in Z(\mathcal{R})$ for all $x,y \in L$, then $L \subseteq Z(\mathcal{R})$.

Proof. Let

(3.1)
$$\Delta([x,y]) - xy \in Z(\mathcal{R}), \text{ for all } x, y \in L.$$

Replacing y by y + z in (3.1), we have

$$\triangle([x,y]+[x,z])-xy-xz\in Z(\Re), \text{ for all } x,y,z\in L.$$

This implies that

$$\triangle([x,y]) + \triangle([x,z]) + \sum_{k=1}^{n-1} \binom{n}{k} h_k([x,y],[x,z]) - xy - xz \in Z(\mathcal{R}).$$

By using (3.1), we obtain

$$\sum_{k=1}^{n-1} \binom{n}{k} h_k([x,y],[x,z]) \in Z(\mathcal{R}), \quad \text{for all } x,y,z \in L.$$

This gives that

(3.2)
$$\binom{n}{1} h_1([x,y],[x,z]) + \binom{n}{2} h_2([x,y],[x,z]) + \binom{n}{3} h_3([x,y],[x,z]) + \dots + \binom{n}{n-1} h_{n-1}([x,y],[x,z]) \in Z(\mathbb{R}).$$

Substituting y for z in (3.2), we obtain

$$\binom{n}{1}h_1([x,y],[x,y]) + \binom{n}{2}h_2([x,y],[x,y]) + \binom{n}{3}h_3([x,y],[x,y]) + \cdots + \binom{n}{n-1}h_{n-1}([x,y],[x,y]) \in Z(\mathbb{R}).$$

This implies that

$$\binom{n}{1}D(\underbrace{[x,y],[x,y],\ldots,[x,y]}_{(n-1)-\text{times}},\underbrace{[x,y]}_{1-\text{times}}) + \binom{n}{2}D(\underbrace{[x,y],[x,y],\ldots,[x,y]}_{(n-2)-\text{times}},\underbrace{[x,y]}_{2-\text{times}}) + \cdots + \binom{n}{n-1}D(\underbrace{[x,y]}_{1-\text{times}},\underbrace{[x,y],[x,y],\ldots,[x,y]}_{(n-1)-\text{times}}) \in Z(\mathbb{R}).$$

This shows that

$$\left(\binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n-1}\right) D([x,y],[x,y],\dots,[x,y]) \in Z(\mathcal{R}).$$

We obtain

$$(3.3) (2n - 2)D([x, y], [x, y], \dots, [x, y]) \in Z(\mathcal{R}), \text{for all } x, y \in L.$$

Since \Re is not of characteristic (2^n-2) , we get

$$D([x, y], [x, y], \dots, [x, y]) \in Z(\mathcal{R}), \text{ for all } x, y \in L.$$

Applying the definition of the trace

(3.4)
$$\triangle([x,y]) \in Z(\mathcal{R}), \text{ for all } x,y \in L.$$

Using (3.1), we get $xy \in Z(\mathbb{R})$ for all $x, y \in L$. This implies that $[x, y] \in Z(\mathbb{R})$. By using Lemma 2.2, we get $L \subseteq Z(\mathbb{R})$.

Similarly, we can prove the result if
$$f([x,y]) + xy \in Z(\mathcal{R})$$
 for all $x,y \in L$.

Theorem 3.2. Let \mathbb{R} be a semiprime ring of characteristic not $(2^n - 2)$ and L be a nonzero Lie ideal of \mathbb{R} . Let $D: \mathbb{R}^n \to \mathbb{R}$ be a symmetric n-additive mapping and \triangle be the trace of D. If $\triangle([x,y]) \mp [y,x] \in Z(\mathbb{R})$ for all $x,y \in L$, then $L \subseteq Z(\mathbb{R})$.

Theorem 3.3. Let \mathcal{R} be a semiprime ring of characteristic not $(2^n - 2)$ and L be a nonzero Lie ideal of \mathcal{R} . Let $D: \mathcal{R}^n \to \mathcal{R}$ be a symmetric n-additive mapping and \triangle be the trace of D. If $\triangle(xy) \mp \triangle(x) \mp [x,y] \in Z(\mathcal{R})$ for all $x,y \in L$, then $L \subseteq Z(\mathcal{R})$.

Proof. Suppose

$$(3.5) \Delta(xy) - \Delta(x) - [x, y] \in Z(\mathcal{R}), \text{for all } x, y \in L.$$

Replacing x by x + z in (3.5), we have

$$\triangle((x+z)y) + \triangle(x+z) - [x+z,y] \in Z(\mathcal{R}), \text{ for all } x,y,z \in L.$$

This implies that

$$\triangle(xy+zy)-\triangle(x+z)-[x,y]-[z,y]\in Z(\mathcal{R}), \text{ for all } x,y,z\in L.$$

This gives that

$$\triangle(xy) + \triangle(zy) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(xy, zy) - \triangle(x) - \triangle(z)$$
$$-\sum_{k=1}^{n-1} \binom{n}{k} h_k(x, z) - [x, y] - [z, y] \in Z(\mathcal{R}).$$

This implies that

$$\triangle(xy) - \triangle(x) - [x, y] + \triangle(zy) - \triangle(z) - [z, y]$$
$$+ \sum_{k=1}^{n-1} \binom{n}{k} h_k(xy, zy) - \sum_{k=1}^{n-1} \binom{n}{k} h_k(x, z) \in Z(\mathbb{R}).$$

Using (3.5), we get

$$\sum_{k=1}^{n-1} \binom{n}{k} h_k(xy, zy) - \sum_{k=1}^{n-1} \binom{n}{k} h_k(x, z) \in Z(\mathcal{R}), \quad \text{for all } x, y, z \in L.$$

This shows that

(3.6)
$$\binom{n}{1} h_1(xy, zy) + \binom{n}{2} h_2(xy, zy) + \dots + \binom{n}{n-1} h_{n-1}(xy, zy) \\ - \binom{n}{1} h_1(x, z) - \binom{n}{2} h_2(x, z) - \dots - \binom{n}{n-1} h_{n-1}(x, z) \in Z(\mathbb{R}).$$

Substituting x for z in (3.6), we have

$$\binom{n}{1}h_1(xy,xy) + \binom{n}{2}h_2(xy,xy) + \dots + \binom{n}{n-1}h_{n-1}(xy,xy) - \binom{n}{1}h_1(x,x) - \binom{n}{2}h_2(x,x) - \dots - \binom{n}{n-1}h_{n-1}(x,x) \in Z(\mathbb{R}).$$

We find that

$$\binom{n}{1}D(\underbrace{xy, xy, \dots, xy}_{(n-1)-\text{times}}, \underbrace{xy}_{1-\text{times}}) + \binom{n}{2}D(\underbrace{xy, xy, \dots, xy}_{(n-2)-\text{times}}, \underbrace{xy}_{2-\text{times}}) + \dots + \binom{n}{n-1}D(\underbrace{xy}_{1-\text{times}}, \underbrace{xy, xy, \dots, xy}_{(n-1)-\text{times}}) \in Z(\mathbb{R}).$$

This implies that

$$(2^n-2)(D(xy,xy,\ldots,xy)-D(x,x,\ldots,x))\in Z(\mathcal{R}), \text{ for all } x,y\in L.$$

Since \mathcal{R} is not of characteristic (2^n-2) ,

$$D(xy, xy, \dots, xy) - D(x, x, \dots, x) \in Z(\mathcal{R}), \text{ for all } x, y, z \in L.$$

By definition of the trace, we get

(3.7)
$$\triangle(xy) - \triangle(x) \in Z(\mathcal{R}), \text{ for all } x, y \in L.$$

Using (3.5), $[x, y] \in Z(\mathcal{R})$ for all $x, y \in L$. Arguing similar manner as in the Theorem 3.1, we get the result. Similarly, we can prove the result if $\Delta(xy) + \Delta(x) + [x, y] \in Z(\mathcal{R})$ for all $x, y \in L$.

Theorem 3.4. Let \mathbb{R} be a semiprime ring of characteristic not $(2^n - 2)$ and L be a nonzero Lie ideal of \mathbb{R} . Let $D: \mathbb{R}^n \to \mathbb{R}$ be a symmetric n-additive mapping and \triangle be the trace of D. If $\triangle([x,y]) \mp yx \in Z(\mathbb{R})$ for all $x,y \in L$, then $L \subseteq Z(\mathbb{R})$.

Proof. Using the same argument as in Theorem 3.3.

Theorem 3.5. Let \mathcal{R} be a semiprime ring of characteristic not $(2^n - 2)$ and L be a nonzero left ideal of \mathcal{R} . Let $D: \mathcal{R}^n \to \mathcal{R}$ be a symmetric n-additive mapping and \triangle be the trace of D. If $\triangle(xy) \mp \triangle(y) \mp [x,y] \in Z(\mathcal{R})$ for all $x, y \in L$, then $L \subseteq Z(\mathcal{R})$.

Proof. Suppose

(3.8)
$$\Delta(xy) - \Delta(y) - [x, y] \in Z(\mathcal{R}), \text{ for all } x, y \in L.$$

Replacing y by y + z in (3.8), we obtain

$$\triangle(x(y+z)) - \triangle(y+z) - [x, y+z] \in Z(\mathcal{R}), \text{ for all } x, y, z \in L.$$

This shows that

$$\triangle(xy) + \triangle(xz) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(xy, xz) - \triangle(y)$$
$$- \triangle(z) - \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z) - [x, y] - [x, z] \in Z(\mathcal{R}).$$

We find that

$$\triangle(xy) - \triangle(y) - [x, y] + \sum_{k=1}^{n-1} \binom{n}{k} h_k(xy, xz) + \triangle(xz)$$
$$- \triangle(z) - [x, z] - \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z) \in Z(\mathcal{R}).$$

Using (3.8), we have

$$\sum_{k=1}^{n-1} \binom{n}{k} h_k(xy, xz) - \sum_{k=1}^{n-1} \binom{n}{k} h_k(y, z) \in Z(\mathcal{R}).$$

On simplifying,

(3.9)
$$\binom{n}{1} h_1(xy, xz) + \binom{n}{2} h_2(xy, xz) + \dots + \binom{n}{n-1} h_{n-1}(xy, xz) \\ - \binom{n}{1} h_1(y, z) - \binom{n}{2} h_2(y, z) - \dots - \binom{n}{n-1} h_{n-1}(y, z) \in Z(\mathbb{R}).$$

Substituting y for z in (3.9), we get

$$\binom{n}{1}h_1(xy, xy) + \binom{n}{2}h_2(xy, xy) + \dots + \binom{n}{n-1}h_{n-1}(xy, xy) - \binom{n}{1}h_1(y, y) - \binom{n}{2}h_2(y, y) - \dots - \binom{n}{n-1}h_{n-1}(y, y) \in Z(\mathbb{R}).$$

This implies that

$$\binom{n}{1}D(\underbrace{xy,\ldots,xy},\underbrace{xy}_{1-\text{times}}) + \binom{n}{2}D(\underbrace{xy,xy,\ldots,xy}_{3-\text{times}},\underbrace{xy}_{3-\text{times}}) + \cdots + \binom{n}{n-1}D(\underbrace{xy}_{1-\text{times}},\underbrace{xy,xy,\ldots,xy}_{(n-1)-\text{times}}) - \binom{n}{1}D(\underbrace{y,y,\ldots,y}_{(n-1)-\text{times}},\underbrace{y}_{1-\text{times}}) - \cdots - \binom{n}{n-1}D(\underbrace{y,y,\ldots,y}_{1-\text{times}},\underbrace{y,y,\ldots,y}_{1-\text{times}}) \in Z(\mathcal{R}).$$

Now solving the above equation, we get

$$\left(\binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n-1}\right) D(xy, xy, \dots, xy) \\
- \left(\binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n-1}\right) D(y, y, \dots, y) \in Z(\mathbb{R}).$$

This gives that

$$(2^n-2)(D(xy,xy,\ldots,xy)-D(y,y,\ldots,y))\in Z(\mathcal{R}), \text{ for all } x,y\in L.$$

Since \Re is not characteristic (2^n-2) , we find

$$D(xy, xy, \dots, xy) - D(y, y, \dots, y) \in Z(\mathcal{R}), \text{ for all } x, y \in L.$$

This shows that

(3.10)
$$\Delta(xy) - \Delta(y) \in Z(\mathcal{R}), \text{ for all } x, y \in L.$$

Using (3.8) and (3.10), we have $[x,y] \in Z(\mathbb{R})$ for all $x,y \in L$. Arguing in similar manner as in Theorem 3.1, we get the result. Similarly, we can prove the result if $\Delta([x,y]) + \Delta(y) + [x,y] \in Z(\mathbb{R})$ for all $x,y \in L$.

4. Examples

The following examples illustrate that \mathcal{R} to be semiprime and characteristic not $(2^n - 2)$ for n > 1 is essential in the hypothesis of the above theorem.

$$\begin{aligned} & \textit{Example 4.1. Let } \, \mathcal{R} = \left\{ \left(\begin{array}{c} p & q \\ 0 & r \end{array} \right) \mid p,q,r \in \mathbb{Z}, \, \text{ring of integers} \, \right\} \, \text{and the Lie ideal} \\ & L = \left\{ \left(\begin{array}{c} 0 & q \\ 0 & 0 \end{array} \right) \mid q \in \mathbb{Z} \right\} \!. \quad \text{Then } \, Z(\mathcal{R}) = \left\{ \left(\begin{array}{c} p & 0 \\ 0 & p \end{array} \right) \mid p \in \mathbb{Z} \right\} \!. \quad \text{Define a map} \\ & D : \underbrace{\mathcal{R} \times \mathcal{R} \times \dots \times \mathcal{R}}_{n-\text{times}} \to \mathcal{R} \, \, \text{by} \end{aligned}$$

$$D\left(\left(\begin{array}{cc}p_1 & q_1\\0 & r_1\end{array}\right), \left(\begin{array}{cc}p_2 & q_2\\0 & r_2\end{array}\right), \ldots, \left(\begin{array}{cc}p_n & q_n\\0 & r_n\end{array}\right)\right) = \left(\begin{array}{cc}p_1p_2p_3\cdots p_n & 0\\0 & 0\end{array}\right).$$

Then D is symmetric n-additive with trace \triangle defined by $\triangle: \mathcal{R} \to \mathcal{R}$ such that $\triangle\left(\begin{pmatrix}p&q\\0&r\end{pmatrix}\right) = D\left(\begin{pmatrix}p&q\\0&r\end{pmatrix},\begin{pmatrix}p&q\\0&r\end{pmatrix},\dots,\begin{pmatrix}p&q\\0&r\end{pmatrix}\right)$ satisfying hypothesis of the above theorems. However, $L \nsubseteq Z(\mathcal{R})$.

Example 4.2. Let
$$\Re = \left\{ \begin{pmatrix} x & 0 \\ y & z \end{pmatrix} \mid x, y, z \in \mathbb{Z}, \text{ ring of integers} \right\}$$
 and the Lie ideal $L = \left\{ \begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix} \mid y \in \mathbb{Z} \right\}$. Then $Z(\Re) = \left\{ \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \mid x \in \mathbb{Z} \right\}$. Define a map $D : \underbrace{\Re \times \Re \times \dots \times \Re}_{x \text{ times}} \to \Re$ by

$$D\left(\left(\begin{array}{cc} x_1 & 0 \\ y_1 & z_1 \end{array}\right), \left(\begin{array}{cc} x_2 & 0 \\ y_2 & z_2 \end{array}\right), \dots, \left(\begin{array}{cc} x_n & 0 \\ y_n & z_n \end{array}\right)\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & z_1 z_2 z_3 \cdots z_n \end{array}\right).$$

Then D is symmetric n-additive with trace \triangle defined by $\triangle: \mathcal{R} \to \mathcal{R}$ such that $\triangle\left(\begin{pmatrix}x&0\\y&z\end{pmatrix}\right) = D\left(\begin{pmatrix}x&0\\y&z\end{pmatrix},\begin{pmatrix}x&0\\y&z\end{pmatrix},\dots,\begin{pmatrix}x&0\\y&z\end{pmatrix}\right)$ satisfying hypothesis of the above theorems. However, $L \nsubseteq Z(\mathcal{R})$.

References

- [1] A. Ali and K. Kumar, Traces of permuting n-additive mappings in *-prime rings, J. Algebra Relat. Topics 8(2) (2020), 9–21. https://doi.org/10.22124/JART.2020.16288.1200
- [2] Gy. Maksa, A remark on symmetric biadditive functions having non-negative diagonalization, Glas. Mat. 15(35) (1980), 279–282. https://doi.org/10.2298/FIL1103001A
- [3] Gy. Maksa, On the trace of symmetric biderivations, C. R. Math. Acad. Sci. Soc. R. Can. 9 (1987), 303-307. https://doi.org/10.2298/FIL1103001A
- [4] I. N. Herstien, *Rings with Involution*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, III, USA, 1976.
- [5] I. N. Herstien, On Lie structure of an associative ring, J. Algebra 14(4) (1970), 561–571. https://doi.org/10.1016/0021-8693(70)90103-1
- [6] J. Vukman, Symmetric biderivations on prime and semiprime rings, Aequationes Math. 38 (1989), 245–254. https://doi.org/10.1007/BF01840009
- [7] J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes Math. 40 (1990), 181–189. https://doi.org/10.1007/BF02112294
- [8] K. Kumar, *-alpha-derivation on prime *-rings, J. Algebra Relat. Topics 10(1) (2022), 63–69. https://doi.org/10.22124/JART.2021.20488.1312
- [9] K. H. Park, On prime and semiprime rings with symmetric n-derivations, J. Chungcheong Math. Soc. 22 (2009), 451–458.
- [10] K. H. Park and Y. S. Jung, On permuting 3-derivations and commutativity in prime near rings, Commun. Korean Math. Soc. 25 (2010), 1–9. https://doi.org/10.4134/CKMS.2010.25.1.001
- [11] M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. **335** (1993), 525–546. https://doi.org/10.2307/2154392
- [12] M. Bresar, Functional identities: A survey, Contemporary Math. 259 (2000), 93–109.

¹DEPARTMENT OF MATHEMATICS INSTITUTE OF APPLIED SCIENCES AND HUMANITIES GLA, UNIVERSITY MATHURA-281406, INDIA Email address: 01kapilmathsamu@gmail.com