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SYMMETRIC N-ADDITIVE MAPPINGS ADMITTING SEMIPRIME
RING

KAPIL KUMAR!

ABSTRACT. Let R be a ring with centre Z(R). An n-additive map D : R" — R
is called symmetric n-additive if D(x1,...,2,) = D(2r), ..., Tx(y)) for all z; € R
and for every permutation (7(1),7(2),...,7(n)). A mapping A : R — R defined
by A(z) = D(z,x,...,z) is called the trace of D. In this paper, we prove that a
nonzero Lie ideal L of a semiprime ring R of characteristic different from (2" —2) is
central, if it satisfies any one of the following properties: (i) A([x,y]) F 2y € Z(R);
(i) Az, y) Fly, 2] € Z(R); (iii) Alzy) FA@) F [z, y] € Z(R); (iv) A[2,y]) Fyz €
Z(R); (v) Alzy) F AWY) F [2,y] € Z(R).

1. INTRODUCTION

Throughout the paper, R always represents an associative ring, Z(R) is its centre.
Let z,y,z € R. We write the notation [y, z] for the commutator yx — xy and make
use of the identities [zy, 2| = [z, 2]y + x[y, 2] and [z, yz] = [z, y]z + y[z, z]. Recall that
R is prime if aRb = {0} implies that either a = 0 or b = 0 semiprime if aRa = {0}
implies that a = 0. Let R and 8 be abelian groups. A map ¢ : R — 8 is called the
trace of a biadditive map if there exists a biadditive map B : R x R — & such that
q(z) = B(x,z) for all x € R. Assuming further that R C R’ are rings, we say that ¢
is commuting if [¢(z), x] = ¢(x)x — xq(x) = 0 for all x € R. An example is a map of
the form ¢(z) = A\x? + pu(x)x + v(z) where A € C, the centre of 8 and p,v : R — C,
w1 is additive and v is the trace of a biadditive map. Quite often it turns out that
this obvious example is in fact the only possible example of a commuting trace of a
biadditive map of R into 8. The basic result of this type states that this is true in the
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case when R is a prime ring with char(R) # 2 and 8 is its central closure provided,
however that R does not satisfy s4, the standard polynomial identity of degree 4 ([11],
Theorem 1). This theorem has turned out to be the key for solving different problems
and to a great extent it initiated the development of the theory of functional identities.
We studies about bidervations and the traces of mapping in articles [1,9, 10, 12] for
details. A map f : R — R is centralizing on R if [f(z),z] € Z(R) for all z € R.
An additive map D : R — R is called a derivation if it satisfies the Leibnitz rule
D(zy) = D(x)y + xD(y) for all x,y € R. Let n > 2 be a fixed positive integer. A
map D : R X R x -+ x R — Ris said to be symmetric (or permuting), if the equation

n—times
D(z1,22,...,2,) = D(2r1), Tr(2), - - -, Tn(n)) for all x; € R and for every permutation
(m(1),m(2),...,m(n)). Let us consider the following maps Let n > 2 be a fixed positive
integer. An n-additive map

D RxRx - xR—=>R

n—times

will be called an n-derivation if the relations

D(zyxy, 29, ... xn) =D(x1, %2, ..., 2n) 21" + 21D (21 20, . .., 24),
D(xy,20x9 ;... ) =D (21, %o, ..., Tp) T2 + 2o D(xy, 29, 1),
D(xy, @, ... x,) =D (21,22, ..., Tp) Ty + 2o D(21, 22, ..., 2),

are valid for all x;, x;/ € R. Of course, an 1-derivation is a derivation and a 2-derivation
is called a bi-derivation. If D is symmetric, then the above inequalities are equivalent
to each other. Let n > 2 be a fixed positive integer. If R is commutative, then a map

D:RXRx--xR—=R,

n—times

defined by
(x1,22,...,2,) = D(x1)D(x3) --- D(x,), forallz; e R,i=1,2,... n,

is a symmetric n-derivation, where D is a derivation on R. Let n > 2 be a fixed positive
integer and let a map A : R — R defined by A(z) = D(z,x,...,x) forall x € R,
where

D:RXxRx-++xR—=>R

n—times

is a symmetric map, be the trace of D. It is obvious that, in case when

D:RXxRx-+ xR—=>R

n—times
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is a symmetric map which is also n-additive, the trace A of D satisfies the relation

n—1
Az +y)=A0)+ Ay) + Z (Z) hi(z,y), forall z,y € R,
k=1

and

hk<$7?/) :D(xaxa"'axayayw"?y)'

(n—k)—times k—times

Gy. Maksa [3] introduced the concept of a symmetric biderivation (see also [2],
where an example can be found). It was shown in [3] that symmetric biderivations are
related to general solution of some functional equations. Some results on symmetric
biderivation in prime and semiprime rings can be found in [12] and [5]. The notion of
additive commuting mappings is closely connected with the notion of biderivations.
Every commuting additive mapping f : R — R gives rise to a biderivation on R.
Namely linearizing [z, f(z)] = 0 for all z € R, we get

[f(2), 9] = [z, f(y)], forallz e,

and hence we note that the mapping (z,y) — [f(x),y] is a biderivation (moreover, all
derivations appearing are inner). Motivated by the aforementioned results we prove
that a nonzero Lie ideal L of a semiprime ring R of characteristic different from (2" —2)
is central, if it satisfies any one of the following properties: (i) A([z, y])Fxy € Z(R); (ii)
Alz, y)Fly, 2] € Z(R); (iii) Alzy) FA(2)Fz, y] € Z(R); (iv) A[z, y]) Fyz € Z(R);
(v) A(ay) F DY) F [2,9] € Z(R).

2. PRELIMINARY RESULTS
We make extensive use of basic commutator identities
[zy, 2] = @, 2]y + 2[y, 2], [7,y2] = [7,y]z + ylw, 2].
Moreover, we shall require the following lemmas.

Lemma 2.1 ([5], Lemma 1.1.5). If R is a semiprime ring, then the center of a nonzero
one sided ideal is contained in the center of R. As an immediate consequence, any
commutative one sided ideal is contained in the center of R.

Lemma 2.2. Let R be a semiprime ring and L be a nonzero Lie ideal of R. If
[L,L) C Z(R), then L C Z(R).

Proof. Since xzy € Z(R) for all z,y € L, xy — yxr = [z,y] € Z(R) for all z,y € L.
Using Lemma 2.1 we get the required result. O
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3. MAIN RESULTS

Theorem 3.1. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and
be the trace of D. If A([z,y]) Faxy € Z(R) for all z,y € L, then L C Z(R).

Proof. Let
(3.1) Az, y]) —zy € Z(R), forall z,y € L.
Replacing y by y + z in (3.1), we have
ANz, y] + [z, 2]) —zy —xz € Z(R), forall z,y,z € L.
This implies that
n—1
B + B + 3 ()l 5D — oy 2 € 23),

k=1
By using (3.1), we obtain

:Zl (Z)hk([l‘,y], [x,z2]) € Z(R), forall z,y,z € L.

This gives that
(3.2) @ halle, gl 2, 2)) + (Z) ha([z,y], [, 2]) + <§> ha([z, 9], [z, 2))
L (nﬁ 1) o[z, 9], [2, 2]) € Z(R).

Substituting y for z in (3.2), we obtain

n

(T) hu([z, 9], [z, 4]) + (Z) halle, v, [, y)) + (3) olle ) 1)

n—1

+..-+( " )hm([x,y},[x,y])ezwa.

This implies that

() Pl ool o)) + () Pl sl el )
(n—1)—times 1—times (n—2)—times 2—times
T <nﬁ 1)9(@,[95,% 2,9, [z, y]) € Z(R).
1—times (n—1)—times

This shows that

<<T> (o) () e 1>>D<[x’y]’[x’y]’---a[ﬂ%y]) € 2(®).
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We obtain
(3.3) (2" = 2)D([x, ], [z, y], ..., [x,y]) € Z(R), forall z,y € L.
Since R is not of characteristic (2" — 2), we get

D([z,y], [z, y],...,[z,y]) € Z(R), forall z,y € L.
Applying the definition of the trace
(3.4) A([z,y]) € Z(R), forall z,y € L.

Using (3.1), we get 2y € Z(R) for all z,y € L. This implies that [z,y] € Z(R). By
using Lemma 2.2, we get L C Z(R).
Similarly, we can prove the result if f([z,y]) + zy € Z(R) for all z,y € L. d

Theorem 3.2. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and /\
be the trace of D. If A([z,y]) F [y, z] € Z(R) for all z,y € L, then L C Z(R).

Proof. Using the same argument as in Theorem 3.1. U

Theorem 3.3. Let R be a semiprime ring of characteristic not (2" —2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and A\
be the trace of D. If A(xy) F Nz) F [z, y] € Z(R) for all x,y € L, then L C Z(R).

Proof. Suppose
(3.5) A(zy) — A(z) — [z,y] € Z(R), forall z,y € L.
Replacing = by = + z in (3.5), we have
A(x+2)y)+Dx+2)—[z+2,y € Z(R), foraluzy,ze L.
This implies that
A(zy + 2y) — Az + 2) — [z,y] — [2,y] € Z(R), forall z,y,z € L.
This gives that

Blan) + e + 3 () uto9) = 5(6) - 5()

- ni <n>hk($72) — [z,y] = [2,y] € Z(R).

This implies that
Azy) — Alz) — [z,y] + D(2y) — A(2) = [2,9]

+ :2;1 (Z) hi(zy, zy) — (Z) hi(z,2) € Z(R).

n—1

k=1
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n—1 n—1
(k)hk Y, 2Y) Z( >hkxz € Z(R), forall z,y,z€ L.

k=1
This shows that

(1>h1 xy, 2y) + ( ) (xy, zy) -+ (nﬁ 1)hn_1(azy, zy)
—( )hlﬂfz ( >h2332’ —<n21>hn_1(x,Z)€Z(fR)-

Substituting x for z in (3.6), we have

(g)wy,m ; (g) tatan) o+ (" st

(- (- e
We find that

(3.6)

n n
D(zy,xy,...,zy, zy )+ D(zy,xy,...,zy, zy )
(n—1)—times 1—times (n—2)—times  2—times

n—1

+-- 4 ( " )D( 2y, XY, Y, .., xy) € Z(R).
1-times  (n—1)—times
This implies that
(2" — 2) (D(xy, xy,...,2y) — D(z,x,...,x)) € Z(R), forall z,y € L.
Since R is not of characteristic (2" — 2),
D(zy,xy,...,zy) — D(z,x,...,x) € Z(R), forall z,y,z € L.
By definition of the trace, we get
(3.7) A(zy) — A(x) € Z(R), forall z,y € L.
Using (3.5), [z,y] € Z(R) for all x,y € L. Arguing similar manner as in the Theo-

rem 3.1, we get the result. Similarly, we can prove the result if A(xy)+A(x)+[z,y] €
Z(R) for all z,y € L. O

Theorem 3.4. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero Lie ideal of R. Let D : R" — R be a symmetric n-additive mapping and A\
be the trace of D. If A([z,y]) F yx € Z(R) for all x,y € L, then L C Z(R).

Proof. Using the same argument as in Theorem 3.3. 0

Theorem 3.5. Let R be a semiprime ring of characteristic not (2" — 2) and L be a
nonzero left ideal of R. Let D : R™ — R be a symmetric n-additive mapping and /\
be the trace of D. If A(zy) F Ay) F [x,y] € Z(R) for all x,y € L, then L C Z(R).
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Proof. Suppose
(3.8) AN(zy) — Aly) — [x,y] € Z(R), forall z,y € L.
Replacing y by y + z in (3.8), we obtain

ANzy+2) —Ay+2)—[r,y+ 2z € Z(R), forall z,y,ze€ L.

This shows that

A(zy) + A(zz) + kz:l <k:> (zy,x2) — A(y)

Z ( )hk y,2) — [z, y] — [1,2] € Z(R).

We find that
n—1
AN(zy) — A(y) — [z, y] + ( )hk xy,rz) + N(xz)
k=1
n—1 n
— A(z f hi(y, z) € Z(R).
k=1
Using (3.8), we have
- n—1 n
Z ( >hk Ty, xz) — Y (k‘)hk(‘y’ z) € Z(R).
k=1 k=1

On simplifying,

(T) hi(zy, zz) + (Z) ho(zy, x2) + -+ + ( " )hn_l(my, xz)
(3.9)

Substituting y for z in (3.9), we get

(= (et~ (" sty € 20

= ()t = ()atnr == (" Jtaaton € 200

761
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This implies that

n n
D(zy,...,zy, zy )+ D(zy,zy,...,zy, xy )
1 -~ 2 AR ARG

(n—1)—times 1—times (n—2)—times  3—times
n n
+-+ D( Ty ,xy,xy,...,my)— D(y7y7"'7y7 ) )
n—1 -~ —— 1 2 <~
1—times (n—1)—times (n—1)—times l—times
n n
- D(y,y,....y, y )—-— D(y ,yy,...,y) € Z(R).
2 —_— =~ n—1 - D
(n—2)—times 2—times 1—times (n—1)—times

Now solving the above equation, we get

((1) ) (@) (nﬁl))puy,xy,...,xy)
. (@ N @ ' (g) R (njl>)p<y,y,...,y> € Z(R).

This gives that
(2" = 2) (D(zy, zy,...,xy) — D(y,y,...,y)) € Z(R), forall z,y € L.
Since R is not characteristic (2" — 2), we find
D(zy,zy,...,zy) — D(y,y,...,y) € Z(R), forall x,y € L.
This shows that
(3.10) A(zy) — A(y) € Z(R), forall z,y € L.

Using (3.8) and (3.10), we have [z,y] € Z(R) for all z,y € L. Arguing in similar
manner as in Theorem 3.1, we get the result. Similarly, we can prove the result if
A([z,y]) + A(y) + [z,y] € Z(R) for all z,y € L. O

4. EXAMPLES

The following examples illustrate that R to be semiprime and characteristic not
(2" — 2) for n > 1 is essential in the hypothesis of the above theorem.

Ezxample 4.1. Let R = g g | p,q,r € Z, ring of integers } and the Lie ideal

0 0
L:{<08>\CJEZ}. ThenZ(fR):{<€p>|p€Z}. Define a map
D :

RxRx--+xR—Rby

n—times

pl( P @ P2 @ Pn Gn _ [ Pwp2ps---pn O
0 7 )2\ 0 g )7L 0 n, 0 0/
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Then D is symmetric n-additive with trace A defined by A : R — R such that

A((g g)) =D<<g g>’<€ g>,7<g g)) satisfying hypothesis of

the above theorems. However, L ¢ Z(R).

z 0
Yy oz

LZ{(S 8) |y€Z}. ThenZ(fR):{<g 2) |JJEZ}. Define a map

D:RxRx---xR—=Rby

Example 4.2. Let R = | x,y,2 € Z, ring of integers } and the Lie ideal

n—times

(o) o) (o 2)) =0 e )
D : = :
Y1z Yo 22 Yn Zn 0 2120232,

Then D is symmetric n-additive with trace A defined by A : R — R such that

z 0 z 0 z 0 r 0 o .
A((y Z)>:D<<y z)’(y Z)""’(y Z))SatlsfymghypotheSlsof

the above theorems. However, L ¢ Z(R).
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