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ABSTRACT. In this paper, we introduce the hyperbolic k-Mersenne and k-Mersenne-
Lucas octonions and investigate their algebraic properties. We give Binet’s formula
and present several interrelations and some well-known identities such as Catalan
identity, d’Ocagne identity, Vajda identity, generating functions, etc. of these octo-
nions in closed form. Furthermore, we investigate the relations between hyperbolic
k-Mersenne octonions and hyperbolic k-Mersenne-Lucas octonions.

1. INTRODUCTION

Number sequences have been studied by researchers for a long time. In particular,
the most important and remarkable of these numbers are the Fibonacci numbers.
Until today, Fibonacci numbers have been studied and many generalizations have
been made. Lucas, Jacobsthal, Jacobsthal-Lucas, Pell, Pell-Lucas, etc. numbers can
be given as examples of these generalizations [2,5,8,14, 15,19-21,23].

One of these numbers is the Mersenne number. They are named after Marin
Mersenne, a French Minim friar, who studied them in the early 17th century. Mersenne
numbers have been studied in the literature and various generalizations such as
Mersenne-Lucas, k-Mersenne, k-Mersenne-Lucas have been studied [1,4,6,7,17,22,25—
27].

Definition 1.1. The Mersenne sequence { M, },>o is defined recursively as
Mn+2 = 3Mn+1 - 2Mn, with MO = 0, M1 = ]_, n Z 0.
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Definition 1.2. The Mersenne-Lucas sequence {m,, },>¢ is defined recursively as
Mpyo = 3Mpiq1 — 2my,, with meg=2, m; =3, n>0.

Definition 1.3. The k-Mersenne sequence { My, }>0 is given recursively as

(1.1) My g2 = 3kMy py1 — 2My, Mo =0, M1 =1, n>0.

Definition 1.4. The k-Mersenne-Lucas sequence {my , }n>0 is given recursively as

(1.2) Mint2 = kMg nt1 — 2Mpn,  Mpo =2, mp1 =3k, n>0.

The characteristic equation corresponding to the recurrence relations (1.1) and (1.2)
is a2 — 3ka + 2 = 0 and its roots are qq = kv =8 V29k2_8 = 3k=VOk®-8 V29k2_8. These
characteristics roots hold the following properties

(13) a1+ Qo = 3]{?, 109 = 2, a; — g =V 9k?2 — 8.

The Binet formulas of k-Mersenne and k-Mersenne-Lucas sequences are given, respec-
tively, by

and oy

al —al
(1.4) Mgy = +af and My, = —2.
a1 — 2

The quaternion, an algebraic structure, was first described in 1843 by William
Rowan Hamilton [11]. Hamilton defined a quaternion as the quotient of two directed
lines in a three-dimensional space, or, equivalently, as the quotient of two vectors.
Multiplication of quaternions is noncommutative. A. F. Horadam defined the nth
Fibonacci and nth Lucas quaternions and gave their some properties in 1963 [12].
Thus, Macfarlane defined the hyperbolic quaternions and studied their properties
[18]. Recently, these numbers have been examined and studies have been carried
out [10,13,24]. The hyperbolic k-Fibonacci and k-Fibonacci-Lucas, hyperbolic k-
Jacobsthal and k-Jacobsthal-Lucas quaternions were defined and given some of their
properties [10,24]. In mathematics, the octonions are a normed division algebra over
the real numbers, a kind of hypercomplex number system. Octonions have eight
dimensions; twice the number of dimensions of the quaternions, of which they are
an extension. They are noncommutative and nonassociative, but satisfy a weaker
form of associativity; namely, they are alternative. They are also power associative.
Octonions are not as well known as quaternions and complex numbers, which are
much more widely studied and used.

A. Cariow and G. Cariow defined the hyperbolic octonions [3]. A hyperbolic
octonion O has the form

O = ho + hlil + hgig + hgig + h4i4 + h5i5 + h6i6 + h7i7
= (h07 h’l? h?a h37 h’47 h57 h67 h’7)a
where i1, 19,73 are quaternion imaginary units and hg, hy, ho, hs, hy, hs, hg, h7 are the

real components, i4 (i,> = 1) is a counter imaginary unit, and the bases of hyperbolic
octonions are defined as in Table 1.
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P P P R T A
i | =1 |43 | —ia |45 |is | —i7 | s
is | —is | —1 |41 g |i7 |ia | —is
is iz | —i1 | =1 |7 | —ig |i5 |44
ia | —is | —ig | —i7 |1 i1 |iz |43
is | —i4 | —i7 |dg | —i1 |1 |iz | —ie
is |47 | —is | —is | —da | —i3 |1 |4,
ir | —ig |45 | —i4 | —iz |49 | —i; |1

Table 1: Multiplication rule for hyperbolic octonions units.

Godase A. defined the hyperbolic k-Fibonacci and k-Fibonacci-Lucas octonions and
gave some of their properties [9]. Ozkan E. et al. defined the hyperbolic k-Jacobsthal
and k-Jacobsthal-Lucas octonions and gave some of their properties [23]. Kumari
M. et al. defined the k-Mersenne, k-Mersenne-Lucas octonions and examined some
properties of these numbers [16]. As a new generalization of this study [16], we
examine the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions and give their
features.

2. HYPERBOLIC k-MERSENNE OCTONIONS

In this section, we introduce the hyperbolic k-Mersenne octonions and establish
their Binet formula. Furthermore, we study some well-known identities of them.

Definition 2.1. For n > 0, the hyperbolic k-Mersenne octonions H»Mj, ,, are defined
by
HMyp = My + My 101 + My pyoio + - - - + My i 7in
= (Miyn, My i1, My nto, Mings, My psa, My nts, Miggo, My ni7)-

Definition 2.2. The sequence can be extended to negative indices n, HMj, _, is
defined by

1 1 , 1 , 1 .
:}{:Mk,—n = - 27Mk,n - FMk,n—lll - WMk,n—QZQ - WMk,n—ﬂs
1 . .
= ons ~on s Mien—s15 — ﬁMk,n—fi%‘ - FMk,n—ﬂ?-

Definition 2.3. Let the scalar and vector parts of the hyperbolic k-Mersenne octo-
nions HMj , be denoted by S(HMy,,) and V(HMy,,), respectively, and are defined
as follows
(j—{:Mk n) Mk ny
V<:}(:Mk‘ ) (Mk,nJrl’ Mk,n+27 Mk,n+37 Mk,n+47 Mk,n+5> Mk,n+67 Mk,nJr?)-

Thus, KMj.,, = S(HMj.,.) + V(HM.,,).
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Definition 2.4. For n > 0, the conjugate of the hyperbolic k-Mersenne octonions
H My, is defined by

HM = My — My i1in — My yois — -+ — My pyrin
= (Mg, =My i1, =My iz, =My gz, —Mynya, —=Minys, =My e, —Mingr).
Theorem 2.1. The following equation is provided
HMyn + HM ., = 2S(HMy ) = 2Mp, .
Proof. From Definition 2.4, we have
HMyp + HM ., = S(HMy ) + V(HM, ) + S(HMy ) — V(HMy,)
= 25(HMy,,) = 2Mj; . O

Definition 2.5. The norm of the hyperbolic k-Mersenne octonions HMj, ,, is defined
by

N(}CMICJI) - \/Mlg,n +eeet Ml?,n—i—fi - Ml?,n+4 - M/?,n—l—S - Ml?,n—l—ﬁ - Ml?,n+7‘

Theorem 2.2. The recurrence relations of the H My, ,, and H My, are as follows:
(a) H M1 = 3kH My, — 2H My 15
(b) HM i1 = 3kH My, — 2H M j; 1.

Proof. (a) We have
HMy 41 = My 1 + My g2ty + My pqzto + My piais + My pisiq + My pi6is
+ Mg ny7ie + My nqsiv
= (3k Mo — 2M 1) + (3kMynsr — 2Min)is + (3kMypro — 2Mnsn )iz
b 3k Mpys — 2Mynya)is + (3kMpnis — 2Mynss)ia + (3kMynss
— 2My pya)is + (3k My e — 2Mp nys)is + (3k My 7 — 2My pv6)i7
= 3k(Mp, + M 101 + My pyoio + My nysis + My niaia + My pp505
+ My ntoie + My pniriz) — 2(Mg 1 + My nis + My pi1io + My piois
+ My oy 3ia + My niais  + My nisie + Miniein)
— 3kH My, — 2H M.
The proof of (b) is similar to that of (a). O

Theorem 2.3 (Binet Formula). The Binet formulas for the hyperbolic k-Mersenne
octonions are

afa® — ﬁ*an
HM,,,, = ——"——2.
(a) FHM, ooy
Oé*Oén _ 6*an
b) KMy, = ————2;
(b) K, p——
PP i Bt
Fmn ™ om a1 — Qo ’
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where

o =1+ aq01 + Oé%’ig + Olil)’ig + O/ll'i4 + Oé?i5 + C‘é?% + OZIZ-7
= (17 Qi O‘%? azfv 0/117 O‘?? O‘?? O‘I)a
B* =1+ iy + a3ia + aiiz + aiiy + abis + aSig + adiy
- (L Qg, Oz%, aga a? O./g, O./g, Oég),
a*=1-— Ozﬂl — a%ig — Ozi)ig — 0/112'4 — a?i5 — O./?iG — OéI’i7
- (17 —Qq, —Oé%, _04?7 _0/117 —Oé?, —Oé?, _Og%
b =1—agi; — agig — agig — 0/212'4 - ag’zg — 0432'6 — 04;2'7
= (17 —Qg, _05%7 _agv _0/217 —Oég, —Oég, _a;>'
Proof. (a) Using Definition 2.1 and the Binet formula of M}, ,,, we have
HMpn =My + My 181 + My ppoio + My nisiz + My pqais + My pysis

+ M nt6t + My piriy

Oé?—()ég a;H*l a;+1 ‘ Oé?+7 Oéng? .
=—2)+(———— )+ -+ | ——— )iy

a1 — Qg a1 — Qg a1 — Q2
o al
1 . 7 2 . 7.
=———(14+ayiy + -+ ayir) — ——— (1 + agiy + - - - + agiy)
041—042 Q1 — Qg
_0425
a1 — Qg

The proofs of (b) and (c) are similar to (a), by using Definition 2.4 and Definition 2.2,
respectively. O

Theorem 2.4. Forr,s,n € N such that s > r, the generating functions for hyperbolic
k-Mersenne octonions are given as

s HM, HMy1 — 3kHM,
S H My ot = Zk0 F (M ) L) T,
o 1 —3kx + 22
> HMy — 27"HMy, s
b E HMy sparz™ = : : .
() = Ry 1 —my sz + 2522

The exponential generating functions for hyperbolic k-Mersenne octonions are
[e.e] g_ch sn:L,'fL * Oé x 5* a2rp

(€ > — > —= :

= n! a1 — Qo
S
2 HMy gprx™ « o/{e"‘ 1% — B*ahe*2”

(d) > — =

= n! o — Qg

0
Proof. (a) Let G(x) = >0 s HMj, ,a™. We have

= 3" HMypz" = KMy + HMj 1z + HMyox® + HM 27 + - - |
n=0



770 M. UYSAL, M. KUMARI, B. KULOGLU, K. PRASAD, AND E. OZKAN

3kxG(x) = HMy,03kz + H My 1 3ka® + HM, 23ka® + H My 33ka* + -+
22°G(x) = fHMk,onz + ?{Mk7123:3 + f}CMk722334 + H My 322° + - -+ .
If the necessary mathematical operations are performed, we get the following
(1 — 3kz + 22°)G () = HMyo + (H My, — 3kFH My) =,
KMy + (Mg — 3kH My o) x
1 — 3kx + 222 '
The proofs of (b), (¢) and (d) are similar to that of (a).

G(z)

Theorem 2.5. For k # 1, we have
i 2H My, — H My 1 + HMy 1 + (1 — 3k)H My
S HM,, = o , ’ 3
= 3(1—k)

Proof. Using Theorem 2.3, we obtain

i=0 i=0 a1 — @z
* n * n
_ .« i B
= >0 — >
a1 — Q2 ;T qp — Qg C

o
0
(1 —ay — o™t +alay) — (1 — g — bt + b ay)
(g —a2)(1 — (g + ag) + aqa)
ot — 6* _ a1a2(a*a;1 _ B*OZEI) _ (Oé*o/lwrl _ *ag+1)
(g —a2)3(1 — k)
aas(a’ay — fray)
(on — a0)3(1 — k)
 HMyp — 2H My, 1 — H My i1 + 2H My,
B 3(1 — k)
2K My, — H My + H My + (1= 3k)H Mg
B 3(1 — k) ’

+

(from Theorem 2.3)

as required.

Lemma 2.1. We have

(a) a* — B = 6H My,

(b) a* + aF =myo = 2;

(¢) a* + 3% =2 + 6HMy;
(d) a*f* = (227, —83ay + 85a, 1902 — 1703, —15a3 + 1703 + 34as — 34ay,

—13af + 1503, 505 — 3a5 — 1003 + 1003, —af + 3a5 + 402 — 4a3,

al +ab + 208 — 205 — 403 + 4ai — 8ay + 8ap) = ay.
(e) f*a* = (227,851 — 83, —17a? + 1903, 1703 — 1503 + 34a; — 34as,

15a] — 1303, —3a3 + 5a5 + 1003 — 10a3, 308 — af — 402 + 4a2,

al +ab — 203 + 205 + 4o — 4ai + 8ay — 8ap) = ay.
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Proof. The proof of the lemma can be easily seen by substituting the values of the
roots and performing the necessary operations. 0

Theorem 2.6 (Catalan’s Identity). For any positive integers n, s such that n > s,
we have
a5 — a0
g{Mk,n—sg{Mk,n-l—s - J{Mlzn = 2n_SMk,512721
’ (a1 — az)

Proof. By using the Binet formula of the hyperbolic k-Mersenne octonions, we have

1 fo%: of
a*ﬂ*anan 1_72 _’_ﬂ*a*anan< _1>‘|

(al—ag)zl 12 ( af) 271 aj

_ (002)"(af — ag) o*Fa3 — Fa*af

H My s H M s — HME,, =

(1 — ap)? (rap)s
_ ajoy — axaf
= (o))" My ——————
( 1 2) k‘,S (0{1 _ 052)
_ 2n—sMk ailag - @ai
S
" (o — ap)

Theorem 2.7 (Cassini’s Identity). Forn > 1, we have
ajtp — G200
9k2 -8
Proof. By substituting s = 1 in the Catalan Identity, we obtain the required result. [

H My 1 H My 1 — HME, = 27

Theorem 2.8 (d’Ocagne’s Identity). Let n,s > 0, then we have

aja] " —agas "

9k? — 8

Proof. By using the Binet formula of the hyperbolic k-Mersenne octonions, we have

g{Mk,sg_CMk,nJrl - :H:Mk,s+1j{Mk,n =2"

o*frajay(ar — az) + frarasal (s — ax)

H M H M1 — HM 1 HMy o =

(a1 — ap)?
o (alaQ)n(al - 0[2) * Q% S—n % % _s—n
)
T L 0
9k2 — 8

Theorem 2.9 (Vajda Identity). For any natural numbers n,i and j, we have
aiod, — apo]
9k? —8

Proof. Proof is similar to Theorem 2.8 by using Binet formula of hyperbolic k-
Mersenne octonions. ]

HMy i HM g5 — HMp n H M pyyiy = —2" My
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3. HYPERBOLIC k-MERSENNE-LUCAS OCTONIONS

In this section, we introduce the hyperbolic k-Mersenne-Lucas octonions and es-
tablish their Binet formula. Furthermore, we study some well-known identities of
them.

Definition 3.1. For n > 0, the hyperbolic k-Mersenne-Lucas octonions Hmy,, are
defined by

Hmpp = M + Mg 181 + Mg pgale + 0 4 Mg pirly

= (mk,n, Mg n+1, MEn+2, MEn43, Mk ntd, Mk n+5, Mk n+6, mk,n+7)-

Definition 3.2. For n > 0, the conjugate of hyperbolic k-Mersenne-Lucas octonions
Hmy,, is defined by

Hmpp = My — Mpg 181 — Mpgppale — 0 — M py7ly
= (mk,n, —MEkn+1, —MEkn+2, Mk n+3, —MEgn+4, —Mkn+5, ~TMEn+6, _mk,n+7)~

If we use Definition 1.2 in Definition 3.1, then we can define the hyperbolic k-
Mersenne-Lucas octonions recursively as

Hmypnyo = 3kHmy pp1 — 2Hmy,,, n > 0.
Theorem 3.1 (Binet Formula). The Binet formulas for the hyperbolic k-Mersenne-
Lucas octonions and their conjugate are
(a) Hmy, = a*aof + Bray;
a%af + Froj,

=
&
3

I

o =1+ ayiy + ajis + ajis + ajis + ajis + ajis + ajir

_ 2 3 4 5 6 7
- (17041’0417041704170417a17a1)7

. 2. 3. 4. 5 - 6 - 7.
B* =1+ Q] + e 2YD) + Q53 + Qoly + Q55 + Q5le + Qol7

_ 2 3 4 5 6 7
- (17 2, Oy, Uy, Oy, Uy, Uy, 062),

=1- Oélil — Oé%iQ - Oé?i:g - 0/112'4 — Oé?i5 — OéfliiG - Oé’lzl.7

2 3 4 5 6 7
= <1a —Qq, —Qy, —Qq, —Qy, =0y, —Qy, _a1>7

Q
*

ﬂ* =1- O@il — O{%iQ — Of%ig — Oég’i4 — (Igls — OfgiG — O[;’i7
= (1, —g, —a3, —ai3, —ay, —a5, —as, —ap).
Proof. (a) Using Definition 3.1 and the Binet formula of my_,, we have
Hmpp =mpp + My 191 + My pyoio + -+ My g7y
=(af + o)+ (a1 + af ) ir + (a2 + a5 iy + (o + a3 ™) iy

4 4\ - . .
+ <0/f+ +abt ) is + (0/1”5 + a§+5) is + (0/1”6 + a§+6) ig
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+ ( nt7 4 an-}—?) i
=a}(1+ aqiy + ajiz + -+ - + afiz) + ah (1 + agit + a3iz + - - - + alir)
—a"a} + B"aj
The proof of (b) is similar to (a) by using the Definition 3.2. O

Lemma 3.1. We have

(a) a* + B* = Hmyo;
(b) a* — * = Hmyo — 2.

Proof. The proof of the lemma can be easily seen by substituting the values of a* and
£* and performing the necessary operations. 0

Theorem 3.2 (Catalan’s Identity). For any positive integers n, s such that n > s,
we have

Hmg s Hmp ngs — U{mim = 2" My VIK? — 8(f " a] — o f%a3).

Proof. By using the Binet formula of the hyperbolic k-Mersenne-Lucas octonions, we
have

Hnge s Himg s — Hmi,, = (a*a’f S+ Bray S) (a*a?*s + o ”*S)
— (a’a} + B ag)’
(Oé*)2 2n+a 6* n—s n+s+6*a*a711+s n— s+(6*)2agn
— ((@)ad" + " Bafes + B*a"afag + (5)°03")

—Oé*ﬁ* n—s n+s + 6*a*a?+s n—s — ﬂ*&?ag 6*06*04?Ckg

—(cna)" [a 5 (i - 1) + Bar (2 _ 1)]
o= (-5

—(ma)"(af - 0f) Forat e

ajas
=2"" M}, sVIk? — 8(B a"al — a* " as),
as required. O
Theorem 3.3 (Cassini’s Identity). Forn > 1, we have
Hmpg 1 Hmpg i1 — U-szyn =" IOk — 8 (fratay — o ).
Proof. By substituting s = 1 in the Catalan identity, we obtain the required result. [J
Theorem 3.4 (d’Ocagne’s Identity). Let n,s > 0, then we have
Hmye, s Hmy nr — Homy s 1 Hmy,, = 2”\/@(5*0/‘&3 " —atfrai ).
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Proof. By using the Binet formula of the hyperbolic k-Mersenne-Lucas octonions, we
have

Hoy s Hmp 1 — Hmy g1 Hmy
= (a*a’ + B*as) (a*a?—&-l 1 B*a n+1) _ (a*ai“ + B*a s+1> (a*af + B*al)
—(0")2aH 4 @ Bradal 4 frarattial + (BF)2antet
_ ((a )2an+s+1 o Bral s+1n +ﬁ*a*a’fa§+1 + (5*)20/2”3“)
=[*aatas (o — ag) — " frajal (o — aw)
=(a1o)" (1 — a2)(B a3 — "B a7 ™)
=2"V9k2 — §(Bafas™ — o frai ™). O
Theorem 3.5 (Vajda Identity). For any natural numbers n,i and j, we have
HmppriHmy oy — Hmp nHmg iy = 2" Mkl\/7< B 042 5*04*04{)

Proof. Proof is similar to Theorem 3.4 by using Binet formula of hyperbolic k-
Mersenne-Lucas octonions. 0

Theorem 3.6. Forr,s,n € N such that r > s, the generating functions for hyperbolic
k-Mersenne-Lucas octonions are given as
Hmpo— x (Hmpomps — Hmy
(a) XnZo Hrmpana™ = o= ¢ OO 5 ’S>"

1 —my o+ 252
Hmy, ., — 2°Hmy, ,_ox
b) >0y Hm " = : : ;
( ) ano k,sn+r 1— My, 5T + 231.2

(¢) The exponential generating function is given as

oo n

S Hkon®® _ oo . grente,
n!

n=0 :

Proof. (a) Using the Theorem 3.1, we have

o0 o0 (e 9]
> Hmp ez =) (a*af" + ffa5") 2" = o Z ajx)" + p* Z asz)"
n=0 n=0

. 1 1
- (1—@1:76)—'—5 (1—a§:v>

_ ("4 5) —z(Bra] + o))
1= (a5 +ad)x + (agan)sa?
(a4 ) —x(Bra] + Bras — fras + afas + afal — afaf)
B 1 — (o + a)x + (arae)sa?
_ (@ +5%) —z(a” + ) (o] + a5) — (@] + §a3)]
1—(af + a3)r + (aqag)sx?
Hmyo — x (Fomy gomy,,s — Hmy, S)
1 —my sz + 2522
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The proofs of (b) and (c) are similar to that of (a). O

Theorem 3.7. For k # 1, we have
i 2Hmy , — Hmpg 1 + Hmyg 1 + Hmy (1 — 3k)
S g = o ’ : , |

3(1—k)
Proof. Using Theorem 3.1, we obtain
Zﬂ{mk?i:Z(a*al—i-B ) o ol 4+ 80 b
i=0 i=0 i=0 i=0

_ a?-ﬁ-l 1 +1 1
_O‘<a1—1)+ <a2—1>
aran(afal + Bral) — (a*aft + Brabth) — (afag + Bray) + (o + 3%)
ajas — (o + ag) + 1

. 29‘ka7n — J-ka,n—i-l + g{mm + J’(mk’o(l - 3k})
B 3(1 — k) '

O

4. RELATIONS BETWEEN HYPERBOLIC k-MERSENNE AND k-MERSENNE-LUCAS
OCTONIONS

In this section, we have given theorems showing the relations between hyperbolic
k-Mersenne octonions and hyperbolic k-Mersenne-Lucas octonions.

Theorem 4.1. For s,n € N, a generalization of the generating function of hyperbolic
k-Mersenne octonions is as follows

) HM, M, JH — HM,
Z FM, 2" = k0 T (M sFHmy g ks) X
= ’ 1 —my v + 2522

Proof. Using the Theorem 2.3, we have
o0 oo a*asn /6* sn a* o0 /8* o0
HM;, gpx™ = ( ! )x" = asz)" — as5x)”
a* 1 5* 1

a1 — Qo ' 1—ajz a1 —a ' 1 —asx
(@ =)+ (Fai—atays

(a1 —a2)(1 = (af + a3)x + (araz)*2?)
_ (af =)+ (Baf + fras — fas — afaf +afal —afay)x
n (1 — )1 — (o + &)z + (ya0)2?)
(0= )+ (01 — ag)(0* + B7) — (e’ — Bad)) v

(g — o)1 — (0 + a5)z + (ran)2?)

. g{Mk,o + (Mk,sg{mk,o — g‘CMhs) xXr
- 1 — my, oz + 2522

as required. O

Y
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Theorem 4.2. For any integer t, we have

Ok? — 7)S} 5 + (9K — 9)2!(ar + @z
(a) :}CMI?,t + j{m%,t _ ( ) k2t ( ) (Cl1 az) .

(9= 9Kty - (9R 21 >’
9 —9k4)S*r,, — (9k* — 7)2'(a; + a5
(b) HME, — Hmi, = k72t(9k2 —8) — ’

where @y and @ are given in Lemma 2.1.
Proof. (a) From the Binet formulas of the hyperbolic k-Mersenne and k-Mersenne-
Lucas octonions, we write
HM, + Hmi,
:(a*)Z(al)zt —a*fraja; — B a*ahag + (8%)*(a2)*
9k2 —
+ (") (0n)* + o’ Braj0; + 5*04*0450/1 (8)*(az)”
_ (14 (9% = 8))((a")*(en)* + (B")*(a2)*) + ((9K* — 8) — Dajas(a”B" + 5a)

9k%2 — 8
(9%% = T)Sf o, + (9K — 9)2"(a1 + @)
B 9k? — 8 '
The proof (b) is similar to that of (a). O

Theorem 4.3. For every integer r,s > t, there is the following equation
HMpe s Hmge e — H My it Homye s = (a1 + @2)2" " My 5.
Proof. We write
%Mk,r+sj—cmk,r+t - :H:Mk,r‘+tj{mk,r+s

a*Brafag(ajah — ajes) + Bratajah(aje) — ofas)

a1 — Q9
s—t s—t
_ (k% * ok r—t Q1 — Qg
=(a"B" + f*a®) (1) o o
=(a@r +a2)2" My s O

Theorem 4.4. For any integers s and t, we have
(a) HMysmyy = H My o + 2"H My oy
(b) Hmp s My = Homyg st + 2'Hmy 5.

Proof. (a) We have

o s+t B* s+t N (a1a2) (oz*o[{ t B*Ofg_t)

J{Mk,smk,t =
Q1 — Q2 ap — 2
= %Mk,s-i—t + th_CMk,s—t'
The proof of (b) is similar to that of (a). O

Theorem 4.5. For any integer t > s, the following equations are true.
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( ) 28(0‘71 - @)Mk‘,tfs .
9k2 -8
(b) %mk7sﬂ{mk,t — iHmk?tf}ka’S = 28\/ 9k‘2 — 8(&71 — @)Mk,t—s;
)
)

a j‘ka,sfH:Mk,t — :H:Mk:,tj{Mk,s =

(c) FHMy FHmy, s — HMy FHmy,, = 2°(ay + @) M i—s; )

— t—=s =
(d HMy: Hmy, s — Hmy  HM, s = _9s+l 10y — ngl

Proof. (a) We have

S ) ) s T

(1 — ap)?
_ (@5 = o) (afog)(of — af )
N (1 — ap)?
_2%(@y — ag) My s
B o2 -8
The other equations are proved similarly to that of (a). U

5. CONCLUSION

In this study, we introduced the hyperbolic k-Mersenne and k-Mersenne-Lucas
octonions. We obtained Binet formula, Cassini identity, Catalan identity, d’Ocagne
identity, Vajda identity, ordinary and exponential generating function, etc. of these
octonions. Also, many properties were obtained and studied the relations between
hyperbolic k-Mersenne and k-Mersenne-Lucas octonions. As a consequence, for £ = 1
results hold for hyperbolic Mersenne and Mersenne-Lucas octonions.

Acknowledgements. The authors are grateful to the editor and the anonymous
reviewers for their careful reading of our manuscript and rapid review.
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