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ON THE EXISTENCE AND UNIQUENESS OF FUZZY MILD
SOLUTION OF FRACTIONAL EVOLUTION EQUATIONS

AZIZ EL GHAZOUANI!, FOUAD IBRAHIM ABDOU AMIR!, M'THAMED ELOMARI!,
AND SAID MELLIANT!

ABSTRACT. In this paper, the nonlocal Cauchy problem is discussed for the fuzzy
fractional evolution equations in an arbitrary Banach space for order ¢ € (1,2) and
the criteria on the existence and uniqueness of mild fuzzy solutions are obtained by
using Schauder’s fixed point theorem. An example to illustrate the applications of
main results is also given.

1. INTRODUCTION

Fuzzy set theory has been attracting increasing interest in recent years as it is widely
used in several fields such as mechanics, electrical engineering, signal processing, etc.
As a result, in recent decades, fuzzy set theory has become a hot and current topic
and has received much attention from researchers (see for instance [16,17]).

Note that Kaleva [11] discussed the properties of differentiable fuzzy set-valued
mappings by means of the concept of H-differentiability due to Puri and Ralescu
[12], gave the existence and uniqueness theorem for a solution of the fuzzy differential
equation

(1.1) u'(t) = f(tu(®),  u(0) = uo,

when f: [ x E" — E" satisfies the Lipschitz condition.
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In [13] Bhaskar Dubey and Raju K. George studied the linear time-invariant systems
with fuzzy initial condition

(1.2) u'(t) = Au(t) + Be(t), u(to) = uo,

where c(t) € (E*)™ a control and A, B, are n x n,n x m real matrices, respectively,
ty > 0.

In [14] Nguyen Thi Kim Son demonstrate the efficiency of theoretical results by
studying the existence of fuzzy mild solutions of nonlinear fuzzy fractional evolution
equations

(1.3)

gHqu(t) = Ax(t) + f(t,z(t)), te€]0,al,
z(0) = o,

where gCHﬂq is the fuzzy Caputo fractional derivative of order ¢ € (0,1), and A is the
infinitesimal generator of a strongly continuous semigroup {7'(¢)};>0 on T the set of
all triangular fuzzy numbers.

Building on this work, we have opted for the fuzzy Caputo derivative to prove the
existence and uniqueness of the soft solution of the fuzzy initial value problem of the
fractional evolution equation of order ¢ € (1,2)

CuDix(t) = Ax(t) + f (t,x(t),gHqulx(tD , tel0,a],1 <qg<2,
(14)  {2(0) =z
Sy DTi(0) =z, i=1,...,|ql,

where A is a linear operator and f is a continuous function.

The purpose of this study is to develop an original kind of fuzzy initial value
problem of the fractional evolution equation of order ¢ € (1,2) utilizing fuzzy Caputo
derivative of order ¢ € (1,2), and also to show the existence and uniqueness of its
mild solutions.

The following is a breakdown of the paper’s structure. After this Introduction
we give Preliminaries which will be used throughout this paper, Fractional Integral
Equation can be found in Section 3, The existence of mild solutions of the Cauchy
problem for fractional evolution equations is studied in Section 4. In Section 5,we
provide an example to present the applications of the results obtained in the abstract.

2. PRELIMINARIES
In this part we recall some basic notions that will be useful in the rest of our article.
2.1. The metric space E'.

Definition 2.1. A fuzzy number is a fuzzy set x : R — [0,1] that satisfies the
following conditions:

1. z is normal, i.e., there is a ty € R such that z (¢y) = 1;
2. x is a fuzzy convex set;
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3. x is upper semi-continuous;
4. x closure of {t € R: z(t) > 0} is compact.

We denote by E' the space of all fuzzy numbers on R.
E'={x:R —[0,1] : z satisfies 1-4. below}.
For all @ € (0,1] the a-cut of an element of E' is defined by
z*={teR:a(t) > a}.

By the former parcels we can write

(2.1) % = [z(a), z(a)].

The distance between two element of £ is given by (see [1])

(2.2) d(x,y) = Sup max{[Z(a) —y(a)], |z(a) = y(a)l}-
ac(0,

And the following properties are valid:
l.dx+ 2,y + 2z) = d(z,y);
2. d(Az, \y) = |Ald(z, y);
3. dx+y,w+z) <d(x,w)+d(y, z).
The operations of addition and scalar multiplication of fuzzy numbers on Rs have
the form

(2.3) [Tdyl*=[z]"+[y]* and [NOz]*=Az]*, NER,
where

(2.4 (27 + [y)" = {a+b: a € [2]7,b e 4]}

is the Minkowski sum of [z]* and [y]* and

(2.5) AMz]*={)Xa:a€ [z]}.

For z,y € Ry, the gH difference 2] of z and y, denoted by = ©,p vy, is defined as the
element z € R such that

(2.6) ropy=ze{(i)z=y+z or (ii)y=x+(-1)z}.
In terms of a-levels we have
(z ©grr y)* = [min{z(a) —y(a), #(a) — y(a)}, max{z(a) — y(a), () — y() }].
And the conditions for the existence of z =z &,y € E' are:
case (i):
o [EO) = o)~ (o) and 2(0) = 7(e) - 3)
' with z(«) increasing, z(«) decreasing, z(a) < z(«);
case (ii):

2.8 {z(a) = 7(a) — g(a) and Z(a) = z(a) — y(a),

with z(«) increasing, z(«) decreasing, z(a) < z(«),
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for all « € [0, 1].

In general, with € Ry, there does not exist y € Ry such that x & y = 0.
Then, unfortunately, R4 is not a linear space with addition and scalar multiplication.
Consequently, (Rg, || - ||) is not a Banach space, where ||z|| = ds(z,0), = € Ry.

Denote T by the set of all triangular fuzzy numbers in Ry. (7T, dy,) is a subspace of the
metric space (Ry, d). It is a complete metric space. Moreover, Bede [3] showed that if
x,y € T, then the difference 26,5y always exists in T and 26,5y = (—1) O (y Sy ).

Let X be a subset of Ry, J C R, and denote C(J, X) by the set of all continuous
mappings f:J — X.

2.2. Hukuhara’s derivative. Let f : [a,b] C R — E' a fuzzy-valued function. The
a-level of f is given by

£t a) = {f(t,a),f(t,a)}, for all £ € [a,],a € [0, 1].

Definition 2.2 ([4]). Let ¢, € (a,b) and h be such that ¢ty + h € (a,b), then the
generalized Hukuhara derivative of a fuzzy value function f : (a,b) — E' at t; is
defined as

f(to+h) =g [ (to) ,
h 9 JgH (t())

(2.9) lim

h—0

=0.
1
If fou (to) € E' satisfying (3.4) exists, we say that f is generalized Hukuhara differ-
entiable (gH-differentiable for short) at .

Definition 2.3 ([4]). Let f : [a,b] — E* and ¢, € (a,b), with f(¢,«) and f(t, @) both
differentiable at tg.

We say that
1. fis [(i) — gH|-differentiable at ¢, if
(2.10) Flon (to) = [£/(t,0), (£, 0)] ;
2. fis [(11) — gH]-differentiable at ¢ if
(2.11) Fligr (to) = [F(t,0), f'(t,0)].

Theorem 2.1 ([6]). Let f: JCR — E' and ¢ : J — R and t € J. Suppose that ¢(t)
is differentiable function at t and the fuzzy-valued function f(t) is gH -differentiable
at t. So,

(2.12) (fo)g(t) = (f'd), (8) + (f&'), (1)

Definition 2.4 ([5]). Let f : [a,b] — E' and f/H(t) be gH-differentiable at t; €
(a,b), moreover there isn’t any switching point on (a,b) and f(¢, @) and f(¢, «) both
differentiable at 5. We say that

o f'is [(i) — gH]-differentiable at to, if

floato) = 't ), T (z,0)|;
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o f'is [(11) — gH]-differentiable at t¢, if
fign(to) = [ F'(t,), f'(t, ) |.

2.3. Fuzzy fractional derivative. We present generalized fuzzy fractional derivative
and their properties.

Definition 2.5 ([9]). Let f € L? ([a,b]). The fuzzy Riemann-Liouville integral of
fuzzy-valued function f is defined as following:

(2.13) Ih f(t) = F(lq) O] /at(t —8)7 ® f(s)ds, a<s<t,0<qg<]l.

Definition 2.6 ([6], Riemann-Liouville fractional derivative-RL). Let us consider
f e L ([a,b]) is a fuzzy number valued function,

1 d\" s n—q—1
. _ m®(3> P(s—=t)" 7 © f(t)dt, n—1<q<n,
(214) DRLng(S) - {(i)nl f(5)7 d=n—1.

Definition 2.7 ([6]). In the definition of RL fractional derivative, suppose the integer
order of the derivative is an operator inside of the integral and operating on operand
function f(t) € E',t € [a,b]. We get the definition of Caputo gH derivative of f(¢)

2.15) ., D1 5(s) = {FZ O ( — )t o fWdt, n—1<q<n,
(I) qg=mn-—1.
Also we say that f is [(i) —
(2.16) o1 Dif(z,t;0) = [D"f(x,;0), D'f(x,t;0)|, forall g € (0,1),
and f is [(it) — gH]-differentiable at tg, if

(2.17) Dl f(x,ta) = [qu(x,t;a),i(x,t; a)} , forall ¢ €(0,1).

gH]-differentiable at to, if

Definition 2.8 ([10]). Let f : [0,400) — X C Ry be a continuous function such that
e **' @ f(t) is integrable. Then the fuzzy Laplace transform of f, denoted by L[f(t)],
is
+00
(2.18) LIf(1)] == F(s) :/ et © f(t)dt, s> 0.
0
A fuzzy-valued function f is exponent bounded of order 3 if there exists M > 0

similar that
(3to > 0)d o (f(1),0) < MeP',  for all t > t,.

Proposition 2.1. If z(t) is a fuzzy peace-wise continuous function on [0, 4+00] and
of exponential order a, then

(2.19) L((zxy)(t)) = L(x(t)) © L(y(t)),

where y(t) is a peace-wise continuous real function on [0, +00).
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Proof. We have

L) o L) = ([ e oumir) o ([ e oyon)

= /0+oo (/04'00 e~5(T+0) :U(T)d7-> ® y(o)do.

Let us to hold 7 fixed in the interior integral, substituting t = 7 4+ ¢ and do = dt, we
obtain

L(z(t) © Ly(t)) = /+°° (/m & o(r) © y(t — T)dt> ir
= /+Oo/ O a(r) Oyt — T)dtdr

_/ et & (/ (t—a)@y(a)dT)da

= L((z *y)(1)). m
Definition 2.9 ([15]). 1. The Gamma function is given by
+oo
(2.20) D(z) = / 2= le~tdt, for all z > 0.
0
2. The B function is defined by

1
(2.21) B(z,y) = / " N1 -yt forall w,y > 0.
0

Proposition 2.2 ([15]). 1. For all z,y € R%, B(z,y) = Fégi;?

2. Forallz >0, I'(x + 1) = 2I'(z). It is easy to show the following lemma.

Proposition 2.3. For all a > 0, we get the following result

(2.22) / "Bt (As®)ds = tEa s (AL).
Proof.
t t +oo
/0 E,1(As%)ds = / (ot 1)A”ds
o Z f() nads n
F(na+1)
+oo tnaJrl

n

- = (na+ 1)I'(na + 1)A
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Lemma 2.1. For all o € [1,2] and s > 0, we have

15271 (s — )_ =2 (Ea,1 (At?)) (s);
2. 5972 (s — A) " = L (tEa2 (At*)) (s);
B (50— A7 = i 2 (e 9 2Fn (A7) ).
Proof. 1. For s > 0,
+o0o tamAn
L (Eop (A1) (s) = & <ZO W)

400 A"
B ;::O-g@ ) I'(an+1)

+oo 1
- Z Sna+1A
n=0
=527l (52— A)7".
2. For s > 0, %' (s* — A)™' = 2 (E, (At*)) (s), then
Soa—Z(Soz_A)* s 18a 1(8 _A)fl

= Z(1)(s)Z (Eaa (At%)) (s)
Ea, (At%)) (s)

=2 (1%
$</Ea1Ata> 5)
=Z(

tEas (17A)) (s).

3. From (1), we get
(8¢ — A)_l =gl (B (AtY)) (s)

:g@éfnyzmﬂmmﬂ@

toz—Q N
=% (F(a—l) * B, (At )) (s)

:z<[$&T:mAM%wyw

hence the desired result.

955

O

Lemma 2.2 ([10]). (1) Let f,g:[0,+00) — X be continuous functions, ci,co € RT.

Then
Lla© f(t) +co0g(t)] =a 0 L[f(t)] +c © Lg(t)).
(2) Let f :[0,400) = X be a continuous function. Then

Lle" @ f(t)] = F(s—a), s—a>0.
(3) Let f € C'([0,+00), X) be exponent bounded of order 3. Then
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(i) if [ is [(i) — gH| differentiable, then L [D;Hf(t)} =sOL[f(t)] e f(0);
(ii) if f is [(i)—gH) differentiable, then £ [Diy f(t)] = (1)@ f(0)S(—s)OL[f(1)].

Now, we recall Schauder’s fixed point theorem and the Ascoli-Arzela theorem as
follows.

Theorem 2.2 (Schauder fixed point theorem). Let Y be a nonempty, closed, bounded
and convex subset of a Banach space X, and suppose that P : Y — Y is a compact
operator. Then P has at least one fized point in 'Y .

Theorem 2.3 (Ascoli-Arzela). Let ¢,(t) be a sequence of functions from [a,b] to
R which is uniformly bounded and equicontinuous. Then, ¢,(t) has a uniformly
convergent subsequence.

3. Fuzzy FRACTIONAL INTEGRAL EQUATION

In this section, we have performed the Cauchy problem for fuzzy fractional evolution
equations involving Caputo gH derivatives

CuDix(t) = Ax(t) + f (tx(t), 5D 'x (1)), t€[0,al,
(3.1) 2(0) =z, 1<g<2,
gHﬂq_ix(O) =z, i=1,...,]q|,

where 5H®q is the fuzzy Caputo fractional derivative of order g € (1,2), and A is the
infinitesimal generator of a strongly continuous semigroup {7(t) };>0 on 7.

Using Caputo’s fuzzy fractional derivative definition, applying the Riemann-Liouvi-
lle mixed fractional integral operator #*J, member to member in (3.1) and using the
Newton-Leibnitz formula for the gH derivative [3], we get

(32 w(t) Oyn 2(0) Syr t ©2'(0) = I (Aa(t) +  (1a(t), Sy DT a(t)).

From the definition of gH difference and (3.1), we get the following assertions.
(i) If z is Caputo [(i) — gH] differentiable, then

(33)  2(t) =x(0) +t ©2'(0) + "I (Ax(t) + f (t,2(1), 5D a(1))) .
(ii) If x is Caputo [(i7) — gH] differentiable, then
(34)  a(t) = 2(0) +t©2'(0) © (~1) © "IE, (Ax(t) + f (t,2(1), 5D (1)) .

By applying the fuzzy Laplace transform in [10], we obtain the precise integral
formula of the Cauchy problem (3.1) as follows.

Lemma 3.1. (i) If x is Caputo [(i) — gH| differentiable satisfying the Cauchy problem
(3.1), then

(35) l‘(t) :EqJ (Atq) ® i +t0O Eq’Q (Atq) ® x

(3.6) + /0 t / t m © Eqy (A0 = 5)) @ f (5,2(s), 5y D" (s)) dods.
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(1) If x is Caputo [(ii) — gH| differentiable satisfying the Cauchy problem (3.1), then
(3.7)

x(t) :Eq,l (Atq) ® o +t0O Eq72 (Atq) ® T

3.8) ©(-1)o /Ot /: (;(_6)(1_; OFE (A —9)) o f (S, z(s), gHDq_lx(sD ddds.

1
Here, E,1 (At1) is the Mz’ttZg—Leﬁ‘ler function.
Proof. Set
(3.9) X(s) = O[z(t)] = /0 T et o z(t)dt
and
(3.10) F(s) = L[f(1)] = /J Tet o f (1 alt), GyDT (b)) d.

Case 1. Assume that x is Caputo [(i) — gH| differentiable on [0, +0c0). Then from
(3.3) and [10] we have
(1) = (0) + 1 © (0) + 7495 (Ax(t) + F (1.2(0), 5D 0(1)),

X(s) = L(x(0)) + £t ©2'(0) + £ (P98, (Ax(t) + f (t,2(t), Sy D" 2(1)))) ,
:i@xg—l—;@a:l—l—;@AX(s)—i—;@F(s),
which implies
10 X(s) =" Oxg+ s Ox + AX(s) + F(s),
(570 I1do A)® X(s) =s" O xg + 572 + F(s),
X6)=(s10Idc AT os™ 0ry+ (s10Ido A ©sT? o

+(s70Ido A ® F(s)

or
(s Ide A 0 s = £ (B, (At?)) (s),
(320 Ido AT ©sT?=L(te E,o (At)) (s),
(570 Ido A)" = F(ql_ 5oL (/Ot(t )2, (ArY) dT) |
which give
(3.11) X(s) =L (B (At) O xo+ L(t O Eyo (At) 0 a1+ L (g* f),

t -2
with g(t) = | G © By (AT7) dr.

Applying the inverse Laplace transformation, we get:

(312) .CE(t) :Eq,l (Atq) ® xg + t® Eq72 (A#]) © 2
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(3.13) + / / fre 1 OB, (AG— s @ J (s,(5), Gy D (s)) dods.

Case 2. Assume that z is Caputo [(i7) — gH| differentiable on [0, 4+00). Then from
(3.4) we have in the same way

(3.14)

iL'(t) :Eq 1 (Atq) ® To + t® Eq 2 (Atq) ®x
(3.15) / / o 1 © By (A(S — )) © f (s,2(s), D" a(s)) ddds.
This completes the proof. 0

4. EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS

Definition 4.1. By a mild fuzzy solution in type 1 of the Cauchy problem (3.1), we
mean a function z € €([0, a],T) that satisfies (3.5). By a mild fuzzy solution in type
2 of the Cauchy problem (3.1), we mean a function z € C([0, a], T) that satisfies (3.7).

The following hypotheses will be used in the next results.

(H1) For almost all ¢ € [0, a, the function f € C(]0,a] x T x T, T) is continuous and
for each z € €([0,al, T), the function f(-,z,55 D7 'z) : [0,a] — T is strongly
measurable.

(H2) There exist g2 € [0,q), B, := {93 €T dy(x,0) < r} CcT,r>0,and p(-) €
L ([0,a], RT) such that for any x,y € C ([0, a], B,) we have

(4.1)

doo (f(t,2(t), gy DT (1)), f(t,y(1), g DT 'y (1)) < plt)doo((t), y(t)), t € [0,a].

(H3) There exists a constant ¢; € [0,q) and m € Lar ([0,a], RT) such that

(4.2) doo(f (£, (1), gu D" 2(1)), 0) < m(t),
for all z € €([0,a],T) and for almost all t € [0, al.
(H4) E, ., (At9) is a compact operator for every ¢ > 0 and n € N.

Theorem 4.1. Under hypotheses (Hy)-(Hy4) the Cauchy problem (3.1) has a mild
fuzzy solution in type 1 in space C([0,al,T).

Proof. Let x € €(]0,a],T). Since z is continuous with respect to ¢ and hypothesis
(Hy), f(s,2(s), 55D 'x(s)) is a measurable function on [0, a]. Let

q—1
My = ||ml|

4.3 b= .
( ) 1— ql’ Li[o,a]

For t € [0, a], by applying Holder’s inequality and (H3), we have

doo (/Ot(t —5)17"® f(s,2(s), Sy DT a(s))ds, 6)
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< (=) © dal (5. 2(5), G4 D (), 0)ds
<([@-svas) "l 40,1

M, a1+ (=)
— (14b)te

Therefore, we obtain

() ( q—1 © Eyt (A = 57) & 1 (50060, 607 o)) s, 0
</ / I'(q - 1 doo (Eq1 (A(G = 9)1) © £ (5,2(5), 5D 'a(s)) , 0) dods

SW @/0 (t —5)1 o (f (s, x(s),gCH@q_lx(s)> ,0)ds

My M a0 (a1
~ I(g)(L+ )’
Then

for all t € [0, a].

/ / & B (A~ 57) . (5,0(6), S a(9) s

is bounded for all ¢ € [0, a.
For z € ©(]0,a],T), we define

(Fi) (1) = ql(Atq)®$0+t®Eq,2 (At) © z1, te€[0,a],
(Fhx) ( / / g — 1 @ Eq (A6 —s)) O f (8, :U(s),gCHqulx(s)) ddds.
Set

My M q(+0)(1=a1)
L(g)(L+b)t-a

and By, := {2(-) € C([0,a],T) : doo(x(t),0) < ko for all ¢ € [0,a]}. We will prove that
Fix 4+ Fyx has a fixed point on By, .

Step 1. We show for every x € By, Fix+ Fhx € By,. Indeed, with 0 <, <ty < a
we have

doo ((F2) (t2) (le‘) ( 1))
(/152 /t2 t2 q — 1 @ Eq,l (A((S — 3)‘1) ® f (S,$(S),§H®q_lx(s)) d(;dS,

ko = M ([lzoll + all:[]) +

/tl /t1 1 ;E 1) © Eg1 (A0 =5)1) O f <S7x(3)a§H®q_1!E(S)) d5ds>
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=d (/:2 /Stz (to ;i)iQ ® By (A6 —s))) O f (371‘(3),5]{@(1_11’(8)) dSds

+ / ! / " t2;_ O Fur (A6 =5 © f (s,2(5), Sy D (s)) déds

[ 1;: W (A0 = 8)1) © f(s,x(s),gH@q1x(s))d5ds,©>
i (/tt /:2 =0 (A6~ $)) @ f (s,2(s), 5y D" (s)) dods

+/ § / "l t2_ q__ 3 —" & B, (AG - 5)1)

© f (s,2(s), Sy D" (s )) déds

[ tz;_l w1 (A6 = 5)1) © £ (s,0(s), 54 D" a(s)) d5d3,6>

<d., (/tt /:2 (t2 = t 1) Ey1 (AG = 8)) © f (s,2(s), G4 D™a(s) d5ds,ﬁ>

4 (/tl/tl (8 = 0)° q_?_(s)q L o By (A — 8

® f (s,a(s), 5D (s ))déds o)

( / " /tt (2 = o 1 w1 (A= 8)) © f (5,2(5), Gy D" a(s)) d5ds,6>

“L + I+ I,

where

I —d.. ( /tt / “ t2;_ - © Bt (A0 = 5)%) @ f (s.2(s). 50" (5) d5ds,0>
Ir =ds, < / " /“ (tz — 0 q— —9)17] ® B, (A(5 — 5)7)

- 1)

O f (s x(s), gHDq 2 d6ds O)

I3 =dy (/tl /: (t2 ;_ 0 (A0 —9)) o f (s,x(s),gHﬂq_lz(sD dods, @) :

We have:

I =dy (/: /:2 <tr2‘(; i); OFE 1 (A6—9)) 0 f (s, x(s), ?Hﬁq_lx(s)) dods, ﬁ)
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T (=)
MM,

(1+0b)t-1T(q)

IN

IN

(t2 _ tl)(b-&-l)(l—tll)7

also
ot (B —0)72 — (8 — 6)77 g
I :doo</0 / =D ® Ey1 (A(6 — 5)7)
of (s,x(s),gHDq_lx(s)) déds,@)
<o ([ =9 = =9 = -]
® dy (f (s, x(s),gH”Dq’lx(s)) ds, 6) )
SFJZ) (/Otl [(tg — )t —(t; — s)q_l} © doo (f (s, x(s),?HDq_lx(s)) ds, f))
— /0t1 (ty — )T ' O do (f <s,m(s),§H®q_1x(s)> ds, @))
SFJZJ) (/Otl [(t2 —5)" = (t2 — S)b}liql OM —(t2 = 1) © 75}q1M1)
S fl—]\illr(q) (<t = )"+ 85— 0 — (b — )7 (b 1))
Likewise
ot (ty —0)17? q g-1 0
I3 = dw (/0 /t1 Ta-1 OFE 1 (A6—9))0Of (s,x(s),gHﬂ x(s)) dods, 0)
M /ot B - A
< @ </0 (ty — )T ' O dy (f (s,a:(s),gCHﬂ x(s)) ds,O))
MM (ts — tl)q_ltl—ql

I(q) '
Then it is straightforward that I, I, and I3 tend to 0 as ty — t; — 0. So, (Fyx) (t) is
continuous in t € [0, a]. It is easy to see that (Fix) () is also continuous in t € [0, a).
Now, for any x € By, and t € [0, a, we have
My M a0 (-a1)
< ko.
[(q)(1+0)t-o

(4.4)  doo (Faz) (t) + (Fox) (),0) < M (|lao| + al|2a [)) +

Then F} + F5 is an operator from By, into By, .

Step 2. We prove that Fj; is a fully continuous operator that can be decomposed
into several small steps.

First, we show that F} is continuous in By, .
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Let {x,} C By, with z,, — x on By,. Applying hypothesis (Hz), we get

(4.5) f (s,xn(s),gHqulxn(SD — f (s,x(s),gH@q’lx(s)) , asmn — 400,

almost everywhere ¢ € [0, a].
From the hypothesis (H3),

doo (f (S,xn(s),gCHDq_lxn(s)) f (s,x(s),gCHﬂq_lx(s)» < 2m(s).

Therefore, by the domination convergence theorem, we get

Ao ((Fﬁn)() (sz)())
< [ R @ (1 (s D ()  f (5 2(6), 4D () ) b

</ (t—s) qu) ©® doo (f (s,mn(s),gHQq_lmn(s)) f (s,m(s),?Hﬂq_lm(s))) ds

when n — +o00, This means Fj is continuous.

Next, we show that F; (By,) is relatively compact. This is the family of functions
{For :x € By, } and {(Fyx) (t)} relative compactness: x € By,, where ¢ € [0, al.

We proved this for all x € By, and 0 <t; <ty <a

doo ((Fgﬂ?) (tQ) N (FQZL’) (tl)) S [1 + IQ + 13.

We now have

M M,y
I; < to — 1) A—a1)
S+ b)l—qu(q)( >~ h) ’
MM
I < : (—(752 — )" T T = (t — )T (0 + 1)1““) ,

(b+1)t-uT(q)
MM, (ts — 2fl)q_lt1
I'(q) '
From Step 1, it is easy to see that F; (By,) is equicontinuous.
Proving this is enough for each t € [0,a], V(t) = {(F2x) (t) : @ € By, } is relatively
compact. For any fixed 0 <t < a, for all € € (0,¢) and for all 6 > 0, let the operator
F. s be define as

(Fes) (t)

_/ ) / i q_1 © Eg1 (A6 = 5)") © f (5,3(s), 5y D' a(s) ) dods

I3 < B

‘/te/ﬂ q—1 " © By (A5 — )1 — Al — €) + Al — )

o f (s,x(s),gHDq 1x(s)) dods
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- /t€/+n Fq—l © Eq1 (A(6 — )" — A(n —€))

of (s,x(s),gHDq 196(3)) dods,

Where x € By,. From hypothesis (H4) , E,1 (A(n — €)) is the compact operator, then
Ves(t) = {(Fesz) (t) : @ € By, } is relatively compact. Moreover, for all z € By, and
we have

=doo /Ot ' F(q — 1 @ E,1 (A0 —s)Y) o f (s, z(s), SHﬂq_lx(sD dods

( e
/Ot e/st (t—20)* OFE (A0 —9)) o f (S,w(S),gH@q_lx(s)) d6d3>

+n I'(g—1)
dos ( /Of /s+n (t qé_ iy © Bar (A0 =) © f (s.2(s), Sy DT a(s) ) dods
b e 0 B (4G = 9 0 (5,091, Do) s
- L;Iw_if@&me—@%@f@ﬂ@»;@ww@»@@ﬁ>

<d < Ot /S+’7 (t qd_ 0 OE (A6 —9)) O f (3,93(3),51{9(1_1:17(3)) d5d$,0>

+ duo </tte s:n g - 1 O E, (A—8))0of (s, x(s),gCHﬂq’lx(sD ddds, 0)
MM b+1 b1 |, b1\ 0 b+1 b1\ 19
< i (07 = @ ) T () e
—0,

when 7, ¢ — 0. Then we have a relatively compact set arbitrarily close to V' (¢), t > 0,
which means that V' (¢), t > 0, is also relatively compact.
Applying the Ascoli-Arzela theorem shows that Fy (By, ) is relatively compact. Since
F, is continuous and Fy (By,) is relatively compact, F» is a fully continuous operator.
According to Schauder’s fixed point theorem, F; + F; has a fixed point at By,. So
the nonlocal Cauchy problem (3.1) has a mild fuzzy solution of type 1. O

Set
F[x] (t) =E,1 (At?) ® o + tEq 9 (Atq) ®

@// q—1 @Eq,l(A(5_S)q)

of <s,x(s),gHDq 1$(3)) ddds
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and
(4.6) C([0,a],T) = {m € €([0,a],T) : Flz](t) exists for all t [O,GL}} :
The following results show that there exists a mild fuzzy solution for type 2 in the
space C([0,al, T).
Theorem 4.2. The hypothesises (H1)-(H4) are true and
(Q2) C([0,a),T) £ 0; S
(Q3) if x € C([0,a],T), hence Flz] € C([0,al,T).
In this case the Cauchy problem (3.1) has a mild fuzzy solution of type 2 in space
C([0,d], 7).
Proof. For z € C([0,a],T), Flz](t) = (Fiz) (t) © (—1) ® (Fyz) (¢).

Set
My Ma00-a)

[(g)(1 +b)t—a
Using a similar method as before with the Caputo [(i) — gH] derivative, we get:
Fiz & (—1) © Fyy € By, for any pair 2,y € By, C C([0,a],T), where (Fiz) (t) and
(Fyx) (t) are continuous in ¢ € [0, a.

Now for any z,y € By,, we have

doo ((F17) (1) © (=1) © (Fy2) (£),0) < do ((Fi2) (1),0) + duo ((F2) (1), 0)
My Ma00-a)
L(g)(1+0)t-o

ko = M ([[zoll + allz[]) +

< M ([[zoll + allz1]]) +

= kOa

which means that F} © (—1) ® Fy is an operator from By, into By, .

Since Fy is a fully continuous operator, according to the Schauder fixed point
theorem F} © (—1) ® F; has a fixed point on By,, this means that the Cauchy problem
(3.1) has a mild fuzzy solution of type 2. O

5. AN EXAMPLE

Consider the following equations

(5.1)
Dt = gute, o)+ o () (e oot
w(t,0) = u(t, 1) = 0, €01,

u(0,2) = 9(2), @ €1

CDEu(0,2) = 6(a). z €0, 1]
We choose X = C([0, 1] x T,T) and we do not forget the operator A : D(A) C X —» X
defined by

0
D(A) = {UGX.(%UEXaHd u(0,0):u((),l):()}’ Au:au.
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Then, we get
(5.2) D(A) = {ueX:u(t,0)=u(t1)=0}.

This implies that A satisfies (H4).

As is well known that A generates a compact Cy-semigroup E, ., (At?) on D(A).
Let’s pose X (t) = u(t,-), that is X(¢)(z) = u(t,x), for all (¢,z) €]0,1[x]0,1].

In this example, we have the function f :]0,1[xT — T is given by

et (_1X@)
t, X(t .
J(t:X(®) = 9—|—et<1—|—]X(t)\

It is clear that for all X, Y € €([0, 1], B,) we have

—t

9+ et

doo (f (8, X (), f(1,Y (1)) < p(t)doo (X (¢), Y (£)),  with p(t) = e Lt

for all ¢ €]0, 1], and that

doo (F(£, X (1),0) <m(t),  with m(t) = 5 €L, forall €]0,1]

Moreover, f is continuos, therefore it is strongly measurable. Hence, according to
Theorem 4.1 and Definition 4.1, problem (5.1) admits two types of solutions expressed
as follow

0 0
X(t) E <8t )@Io—Ft@qu(@t )@l’l

0 q e’ [ X (s)]
// q—l QEq’l<as(5_3)>®9+es<1+|X(s)|>d5d8
and

0 0
X(t) :Eq,l <attq> @ Zo + t @ Eq72 (attq> @ I

/ / g - 1 ® E,. (aas(é — s)q> ® 96;6 <1 F&l)!) déds.

6. CONCLUSION

In this work, the nonlocal Cauchy problem of fuzzy evolutionary equations in arbi-
trary Banach spaces of order ¢ € (1,2) is discussed, and the existence and uniqueness
criteria for mild fuzzy solutions are determined utilizing the Schauder fixed point
theorem. An example illustrating the application of the main results is also provided.
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