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MULTIPLE POSITIVE SOLUTIONS OF DISCRETE FRACTIONAL
BOUNDARY VALUE PROBLEMS

N. S. GOPAL1,2 AND JAGAN MOHAN JONNALAGADD2,∗

Abstract. In this work, we deal with the following two-point non-linear Dirichlet
boundary value problem for a finite nabla fractional difference equation:{

−
(

∇α
ρ(a)u

)
(t) = f(u(t)), t ∈ Nb

a+2,

u(a) = u(b) = 0.

Here a, b ∈ R with b−a ∈ N3, 1 < α < 2, f : R → R+ ∪{0} is a continuous function,
and ∇α

ρ(a) denotes the αth order Riemann-Liouville nabla difference operator. First,
we construct an associated Green’s function and obtain some of its properties. Under
suitable conditions on the non-linear part of the difference equation, we deduce some
results for at least two and at least three positive solutions of the considered problem.
For this purpose, we use a few prominent conical shell fixed point theorems.

1. Introduction

In the year 1695, “L’Hospital inquires Leibniz on the differential operator dn

dtn : What
if the order will be 1

2? To which Leibniz replied: It will lead to a paradox from which
one day useful consequences will be drawn”. This question gave birth to a branch of
mathematics that we know today as fractional calculus. Although it started around
the same time as differential calculus, most of the early developments of fractional
calculus were confined to the basement for a long time. Today fractional calculus has
been successfully used for mathematical modelling in medical sciences, computational
biology, economics, physics and several areas of engineering. For further applications
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and historical literature, we refer here to a few classical texts on fractional calculus
[34,36,37] and [31].

On the other hand, discrete fractional calculus deals with arbitrary order differences
and sums defined on a discrete domain in either a forward (delta) or backward (nabla)
sense. The theory of discrete fractional calculus is relatively new, with the most
notable works done in the past decade. The notions of the nabla fractional difference
and sum can be traced back to the work [14] and [35]. In this line, Atici and Eloe [?]
developed the nabla fractional Riemann-Liouville difference operator, initiated the
study of nabla fractional initial value problem and established the exponential law,
product rule and nabla Laplace transform. Following their works, the contributions of
several mathematicians have made the theory of discrete fractional calculus a fruitful
field of research in science and engineering. We refer here to a recent monograph [12]
and the references therein.

The study of boundary value problems has a long past and can be followed back
to the work of Euler and Taylor on vibrating strings. On the fractional side, there is
a sudden growth in interest for the development of nabla fractional boundary value
problems. Many authors have studied nabla fractional boundary value problems re-
cently. To name a few, [2,16] and [19] worked with self-adjoint Caputo nabla boundary
value problem. Brackins [9] studied a particular class of self-adjoint Riemann-Liouville
nabla boundary value problem and derived the Green’s function associated with it
along with a few of its properties. Gholami et al. [17] obtained the Green’s function
for a non-homogeneous Riemann–Liouville nabla boundary value problem with Dirich-
let boundary conditions. Jonnalagadda [13, 20, 21, 23–25] analysed some qualitative
properties of two-point non-linear Riemann-Liouville nabla boundary value problem
associated with various types of boundary conditions.

There has been an increasing interest in multiple fixed-point theorems and their
applications to boundary value problems for differential equations and finite difference
equations. Interest in triple solutions was born from the Leggett–Williams multiple
fixed-point theorem [33]. Following this, two triple fixed-point theorems by Avery [5],
and Avery and Peterson [7] have been developed and applied to specific boundary
value problems for ordinary differential equations as well as for their discrete analogues
[3, 7]. Also, Avery and Henderson [6] have established twin fixed-point theorem by
dual application of Krasnosel’skii fixed-point theorem. The applications of the above
fixed-point theorems in discrete fractional calculus are scarce. To the best of our
knowledge, there has been no progress in this line, in the domain of nabla fractional
calculus.

Our purpose of this article is to establish sufficient conditions for the existence
of multiple positive solutions of the following standard two-point non-linear nabla
fractional boundary value problem with Dirichlet boundary conditions

(1.1)

−
(
∇α

ρ(a)u
)

(t) = f(u(t)), t ∈ Nb
a+2,

u(a) = 0, u(b) = 0,



MULTIPLE POSITIVE SOLUTIONS 27

where a, b ∈ R, with b − a ∈ N3, 1 < α < 2 and f : R → R+ ∪ {0}, using conical shell
fixed-point theorems such as Leggett-Williams [33] and Avery-Henderson [6].

The present article is organized as follows. Section 2 contains a few preliminaries
on nabla fractional calculus. In Sections 3, we present sufficient conditions on three
and two positive solutions of (1.1) using fixed-point theorems by Leggett-Williams
[33] and Avery-Henderson [6], respectively, on a suitable cone.

2. Preliminaries

Denote the set of all real numbers and positive integers by R and Z+, respectively.
We use the following notations, definitions and known results of nabla fractional
calculus [12]. Assume empty sums and products are 0 and 1, respectively.

Definition 2.1. For a ∈ R, the sets Na and Nb
a, where b − a ∈ Z+, are defined by

Na = {a, a + 1, a + 2, . . . }, Nb
a = {a, a + 1, a + 2, . . . , b}.

Definition 2.2. We define the backward jump operator, ρ : Na+1 → Na, by
ρ(t) = t − 1, t ∈ Na+1.

Let u : Na → R and N ∈ N1. The first order backward (nabla) difference of u is
defined by

(
∇u

)
(t) = u(t) − u(t − 1), for t ∈ Na+1, and the N th-order nabla difference

of u is defined recursively by
(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), for t ∈ Na+N .

Definition 2.3 ([12]). Let t ∈ R \ {. . . , −2, −1, 0} and r ∈ R such that (t + r) ∈
R \ {. . . , −2, −1, 0}. The generalized rising function is defined by

tr = Γ(t + r)
Γ(t) .

Here Γ(·) denotes the Euler gamma function. Also, if t ∈ {. . . , −2, −1, 0} and r ∈ R
such that (t + r) ∈ R \ {. . . , −2, −1, 0}, then we use the convention that tr = 0.

Definition 2.4 (See [12]). Let t, a ∈ R and µ ∈ R \ {. . . , −2, −1}. The µth-order
nabla fractional Taylor monomial is given by

Hµ(t, a) = (t − a)µ

Γ(µ + 1) ,

provided the right-hand side exists.

We observe the following properties of the nabla fractional Taylor monomials.

Lemma 2.1 ([19,24]). Let µ > −1 and s ∈ Na. Then the following hold.
(a) If t ∈ Nρ(s), then Hµ(t, ρ(s)) ≥ 0 and if t ∈ Ns, then Hµ(t, ρ(s)) > 0.
(b) If t ∈ Ns and −1 < µ < 0, then Hµ(t, ρ(s)) is an increasing function of s.
(c) If t ∈ Ns+1 and −1 < µ < 0, then Hµ(t, ρ(s)) is a decreasing function of t.
(d) If t ∈ Nρ(s) and µ > 0, then Hµ(t, ρ(s)) is a decreasing function of s.
(e) If t ∈ Nρ(s) and µ ≥ 0, then Hµ(t, ρ(s)) is a non-decreasing function of t.
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(f) If t ∈ Ns and µ > 0, then Hµ(t, ρ(s)) is an increasing function of t.
(g) If 0 < v ≤ µ, then Hv(t, a) ≤ Hµ(t, a), for each fixed t ∈ Na.

Definition 2.5 ([12]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum of u is
given by (

∇−ν
a u

)
(t) =

t∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na+1.

Definition 2.6 ([12]). Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that
N − 1 < ν ≤ N . The νth-order Riemann–Liouville nabla difference of u is given by(

∇ν
au
)
(t) =

(
∇N

(
∇−(N−ν)

a u
))

(t), t ∈ Na+N .

Now, we write the expression for the Green’s function corresponding to (1.1) and
state a few properties of the same, which will be used later.

Theorem 2.1 ([9, 17, 25]). Let 1 < α < 2 and f : R → R+ ∪ {0}. The equivalent
form of (1.1) is given by

(2.1) u(t) =
b∑

s=a+2
G(t, s)f(u(s)), t ∈ Nb

a,

where the Green’s function is given by

(2.2) G(t, s) =

G1(t, s) = Hα−1(t,a)
Hα−1(b,a)Hα−1(b, ρ(s)), t ∈ Ns−1

a ,

G2(t, s) = Hα−1(t,a)
Hα−1(b,a)Hα−1(b, ρ(s)) − Hα−1(t, ρ(s)), t ∈ Nb

s.

Theorem 2.2 ([9, 17,25]). The Green’s function G(t, s) defined in (2.2) satisfies the
following properties:

(a) G(a, s) = G(b, s) = 0, for all s ∈ Nb
a+1;

(b) G(t, a + 1) = 0, for all t ∈ Nb
a;

(c) G(t, s) > 0, for all (t, s) ∈ Nb−1
a+1 × Nb

a+2;
(d) max

t∈Nb−1
a+1

G(t, s) = G(s − 1, s), for all s ∈ Nb
a+2;

(e) ∑b
s=a+1 G(t, s) ≤ λ, for all (t, s) ∈ Nb

a × Nb
a+1, where

(2.3) λ =
(

b − a − 1
αΓ(α + 1)

)((α − 1)(b − a) + 1
α

)α−1

.

3. Multiple Positive Solutions

In this section, we establish sufficient conditions on the existence of at least two
and three positive solutions of (1.1) using Avery-Henderson [6] and Leggett-Williams
[33] fixed-point theorems respectively, on a suitable cone, by suitably constructing the
growth conditions on the non-linear part of the boundary value problem.

Definition 3.1 ([1]). Let B be a Banach space over R. A closed non-empty convex
set K ⊂ B is called a cone provided,



MULTIPLE POSITIVE SOLUTIONS 29

(i) eu + iv ∈ K, for all u, v ∈ K and all e, i ≥ 0;
(ii) u ∈ K and −u ∈ K implies u = 0.

Definition 3.2 ([28]). An operator T : B → B is called completely continuous, if it
is continuous and maps bounded sets into pre-compact sets.

Definition 3.3 ([1]). A functional α1 is said to be a non-negative continuous concave
functional on a cone K of a real Banach space B, if α1 : K → [0, +∞) is continuous
and

α1(tx + (1 − t)y) ≥ tα1(x) + (1 − t)α1(y),
for all x, y ∈ K and t ∈ [0, 1].

The following theorems which are useful for the main results has appeared in [13]
and the same has been proved here for the completeness of the article.

Lemma 3.1. Let a, b be two real numbers such that 0 < a < b and 1 < α < 2. Then
(a−s)α−1

(b−s)α−1 is a decreasing function of s for s ∈ Na−1
0 .

Proof. It is enough to show that ∇s

(
(a−s)α−1

(b−s)α−1

)
< 0. Consider

∇s

(
(a − s)α−1

(b − s)α−1

)

=−(b − s)α−1(α − 1)(a − ρ(s))α−2 + (a − s)α−1(α − 1)(b − ρ(s))α−2

(b − s)α−1(b − ρ(s))α−1

=
(α − 1)

(
(a − s)(a − ρ(s))α−2(b − ρ(s))α−2 − (b − s)(b − ρ(s))α−2(a − ρ(s))α−2

)
(b − s)α−1(b − ρ(s))α−1

=(α − 1)(b − ρ(s))α−2(a − ρ(s))α−2(−b + s + a − s)
(b − s)α−1(b − ρ(s))α−1

=(α − 1)(b − ρ(s))α−2(a − ρ(s))α−2(a − b)
(b − s)α−1(b − ρ(s))α−1

.

Since b > a, it follows from Lemma 2.1 that ∇s

(
(a−s)α−1

(b−s)α−1

)
< 0. The proof is

complete. □

Lemma 3.2. There exits a number γ ∈ (0, 1), such that

(3.1) min
t∈Nd

c

G(t, s) ≥ γ max
t∈Nb

a

G(t, s) = γG(s − 1, s),

where c, d ∈ Nb−1
a+1, such that c = a +

⌈
b−a+1

4

⌉
and d = a + 3

⌊
b−a+1

4

⌋
.

Proof. We make use Definition 2.4 and properties of Taylor monomials and Green’s
function from Lemma 2.1 and Theorem 2.2, respectively.



30 N. S. GOPAL AND J. M. JONNALAGADDA

Consider, for s ∈ Nb
a+2,

G(t, s)
G(s − 1, s) =


(t−a)α−1

(s−a−1)α−1 , for s > t,

(t−a)α−1

(s−a−1)α−1 − (t−s+1)α−1(b−a)α−1

(b−s+1)α−1(s−a−1)α−1 , for s ≤ t.

Now, for s > t and c ≤ t ≤ d, G1(t, s) is an increasing function with respect to t.
Then, we have

min
t∈Nd

c

G1(t, s) = G1(c, s) = (c − a)α−1(b − s + 1)α−1

(b − a)α−1Γ(α)
.

For t > s and c ≤ t ≤ d, G2(t, s) is a decreasing function with respect to t. Then, we
have

min
t∈Nd

c

G2(t, s) = G2(d, s) = (d − a)α−1(b − s + 1)α−1

(b − a)α−1Γ(α)
− (d − s + 1)α−1

Γ(α) .

Thus,

min
t∈Nd

c

G(t, s) =


G2(d, s), for s ∈ Nc

a+2,

min{G2(d, s), G1(c, s)}, for s ∈ Nd−1
c+1 ,

G1(c, s), for s ∈ Nb
d,

=

G2(d, s), for s ∈ Nr
a+2,

G1(c, s), for s ∈ Nb
r,

where c < r < d. Consider

mint∈Nd
c

G(t, s)
G(s − 1, s) =


(d−a)α−1

(s−a−1)α−1 − (d−s+1)α−1(b−a)α−1

(b−s+1)α−1(s−a−1)α−1 , for s ∈ Nr
a+2,

(c−a)α−1

(s−a−1)α−1 , for s ∈ Nb
r.

Thus,
min
t∈Nd

c

G(t, s) ≥ γ(s) max
t∈Nb

a

G(t, s),(3.2)

where

γ(s) = min
{

(c − a)α−1

(s − a − 1)α−1
,

(d − a)α−1

(s − a − 1)α−1
− (d − s + 1)α−1(b − a)α−1

(b − s + 1)α−1(s − a − 1)α−1

}
.

For s ∈ Nb
r, denote by

γ1(s) = (c − a)α−1

(s − a − 1)α−1
≥ (c − a)α−1

(b − a − 1)α−1
.

Similarly, for s ∈ Nr
a+2, we take

γ2(s) = 1
(s − a − 1)α−1

(
(d − a)α−1 − (d − s + 1)α−1(b − a)α−1

(b − s + 1)α−1

)
.
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By Lemma 3.1, we see that (d−s+1)α−1

(b−s+1)α−1 is a decreasing function for s ∈ Nr
a+2. Then

γ2(s) ≥ 1
(s − a − 1)α−1

(
(d − a)α−1 − (d − a − 1)α−1(b − a)α−1

(b − a − 1)α−1

)

>
1

(d − a)α−1

(
(d − a)α−1 − (d − a − 1)α−1(b − a)α−1

(b − a − 1)α−1

)
.

Thus,

min
t∈Nd

c

G(t, s) ≥ γ max
t∈Nb

a

G(t, s),(3.3)

where

(3.4) γ = min
{

(c − a)α−1

(b − a − 1)α−1
, 1 − (d − a − 1)α−1(b − a)α−1

(b − a − 1)α−1(d − a)α−1

}
.

Since G1(c, s) > 0 and G2(d, s) > 0, we have γ(s) > 0 for all s ∈ Nb
a+2, implying

that γ > 0. It would be suffice to prove that one of the terms (c−a)α−1

(b−a−1)α−1 , 1 −
(d−a−1)α−1(b−a)α−1

(b−a−1)α−1(d−a)α−1 is less than 1. It follows from Lemma 2.1 that

(c − a)α−1

(b − a − 1)α−1
< 1.

Therefore, we conclude that γ ∈ (0, 1). The proof is complete. □

Note that any solution u : Nb
a → R of (1.1) can be viewed as a real (b − a + 1)-tuple

vector of vector space Rb−a+1. Denote by

B = {u : Nb
a → R | u(a) = u(b) = 0} ⊆ Rb−a+1.

Clearly, B = (B, ∥ · ∥) is a Banach space equipped with the maximum norm, i.e.,

∥u∥ = max
t∈Nb

a

|u(t)|.

Define the operator T : B → B by

(3.5) (Tu) (t) =
b∑

s=a+2
G(t, s)f(u(s)), t ∈ Nb

a.

Since T is defined on a discrete finite domain, it is trivially completely continuous.
We also observe from (2.1) and (3.5), that u is a fixed point of T , if and only if u is a
solution of (1.1).

Define the cone

K =
{

u ∈ B | u(t) ≥ 0, for t ∈ Nb
a and min

t∈Nd
c

u(t) ≥ γ∥u∥
}

.
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First, we show that T : K → K. Let u ∈ K. Clearly, (Tu) (t) ≥ 0, for t ∈ Nb
a.

Consider

min
t∈Nd

c

(Tu) (t) = min
t∈Nd

c

(
b∑

s=a+2
G(t, s)f(u(s))

)

≥
b∑

s=a+2
min
t∈Nd

c

(G(t, s)) f(u(s)) ≥
b∑

s=a+2
γ max

t∈Nb
a

(G(t, s)) f(u(s))

≥ γ max
t∈Nb

a

(
b∑

s=a+2
G(t, s)f(u(s))

)
= γ∥Tu∥.

Thus, we have T : K → K. Take

(3.6) D =
b∑

s=a+2
G(s − 1, s).

We define the following sets
Kc′ = {u ∈ K | ∥u∥ < c′},

Kα2(a′, b′) = {u ∈ K | a′ ≤ α2(u), ∥u∥ ≤ b′},

where α2 : K → [0, +∞) is a non-negative continuous concave functional. We state
here the Leggett-Williams fixed-point theorem as follows. The proof of the same
can be found in [33] and applications can be found in [3, 8]. Also, we would like to
refer here to a paper by Kwong [30], which talks about the geometrical view of the
Leggett-Williams fixed point theorem.

Theorem 3.1. Let T : K̄c′ → K̄c′ be completely continuous and α2 be a non-negative
continuous concave functional on K, such that α2(x) ≤ ∥u∥, for all u ∈ K̄c′. Suppose
there exist 0 < d′ < a′ < b′ ≤ c′, such that

(a) {u ∈ Kα2(a′, b′) : α2(u) > a′} ≠ ∅ and α2(Tu) > a′, for u ∈ Kα2(a′, b′);
(b) ∥Tu∥ < d′, for ∥u∥ ≤ d′;
(c) α2(Tu) > a′, for u ∈ Kα2(a′, c′) with ∥Tu∥ > b′.

Then, T has at least three fixed points u1, u2, u3 satisfying
∥u1∥ <d′, a′ < α2(u2),
∥u3∥ >d′ and α2(u3) < a′.

We introduce here the growth conditions on the non-linear function f , in line
with [3].

Theorem 3.2. Suppose there exist numbers a′, b′, d′, where 0 < d′ < a′ < γb′ < b′,
such that f satisfies the following

(a) f(u) > a′

γD
, if u ∈ [a′, b′];

(b) f(u) < d′

D
, if u ∈ [0, d′];
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(c) There exists c′ such that c′ > b′ and if u ∈ [0, c′] then f(u) < c′

D
.

Then, the boundary value problem (1.1) has at least three positive solutions.

Proof. Define a non-negative continuous concave functional α2 : K → [0, ∞) with
α2(u) ≤ ∥u∥, for all u ∈ K, by

α2(u) = min
t∈Nd

c

u(t).

Claim 1. If there exists a positive number r such that u ∈ [0, r] implies f(u) < r
D

,
then T : Kr → Kr. Suppose that u ∈ Kr. Then,

∥Tu∥ = max
t∈Nb

a

(
b∑

s=a+2
G(t, s)f(u(s))

)

≤
b∑

s=a+2
max
t∈Nb

a

[G(t, s)] f(u(s))

=
b∑

s=a+2
G(s − 1, s)f(u(s))

<
r

D

b∑
s=a+2

G(s − 1, s) = r.

Thus, T : Kr → Kr. Hence, we have that if condition (c) holds, then there exists
a number c′ such that c′ > b′ and T : Kc′ → Kc′ . Note that with r = d′ and using
condition (b), we get that T : Kd′ → Kd′ .

Claim 2. {u ∈ Kα2(a′, b′) | α2(u) > a′} ≠ ∅ and α2(Tu) > a′ for u ∈ Kα2(a′, b′).
Since u = a′+b′

2 ∈ {u ∈ Kα2(a′, b′) : α2(u) > a′}, it is non-empty. Let u ∈ Kα2(a′, b′).
By using condition (a), we have

α2(Tu) = min
t∈Nd

c

(
b∑

s=a+2
G(t, s)f(u(s))

)

≥
b∑

s=a+2
min
t∈Nd

c

[G(t, s)] f(u(s)) ≥ γ
b∑

s=a+2
G(s − 1, s)f(u(s))

> a′.

Thus, if u ∈ Kα2(a′, b′), then α2(Tu) > a′.
Claim 3. If u ∈ Kα2(a′, c′) and ∥Tu∥ > b′, then α2(Tu) > a′. Suppose u ∈ Kα2(a′, c′)

and ∥Tu∥ > b′. Then,

α2(Tu) = min
t∈Nd

c

(
b∑

s=a+2
G(t, s)f(u(s))

)

≥
b∑

s=a+2
min
t∈Nd

c

(G(t, s)) f(u(s)) ≥ γ
b∑

s=a+2
max
t∈Nb

a

(G(t, s)) f(u(s))
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≥ γ max
t∈Nd

c

(
b∑

s=a+2
G(t, s)f(u(s))

)
= γ∥Tu∥
> γb′ > a′.

Thus, α2(Ax) > a′. Hence, all the hypothesis of Theorem 3.1 are satisfied. Therefore,
the boundary value problem (1.1) has at least three positive solutions. □

It has been observed that the flexibility of suitable choice of functionals over norms
is the main advantage of Avery-type fixed-point theorems over Leggett–Williams fixed-
point theorem [7, 30]. We define here the following subset of K for a positive number
q:

K(θ, q) = {u ∈ K | θ(u) < q},

and the set ∂K(θ, q) = {u ∈ K : θ(u) = q}, where θ is a non-negative continuous
functional on K.

The following is a twin fixed point theorem by Avery and Henderson [6].

Theorem 3.3. Let K be a cone in a real Banach space B. Let α1 and γ1 be increas-
ing, non-negative continuous functionals on K. Let θ be a non-negative continuous
functional on K with θ(0) = 0 such that for some positive constants r and M ,

α1(u) ≤ θ(u) ≤ γ1(u) and ∥u∥ ≤ Mα1(u),
for all u ∈ K(α1, r). Assume that there exist two positive numbers p and q with
p < q < r, such that

θ(ku) ≤ kθ(u), for 0 ≤ k ≤ 1 and u ∈ ∂K(θ, q).
Suppose there exist a completely continuous operator T : K(α1, r) → K, satisfying

(a) α1(Tu) > r, for all u ∈ ∂K(α1, r);
(b) θ(Tu) < q, for all u ∈ ∂K(θ, q);
(c) K(γ1, p) ̸= ∅ and γ1(Tu) > p, for all u ∈ ∂K(γ1, p).

Then, T has at least two fixed points u1 and u2 belonging to K(α1, r), such that
p < γ1(u1), with θ(u1) < q,

and
q < θ(u2), with α1(u2) < r.

We introduce growth conditions on the non-linear function f here in line with [10].
Set l = b − a + 1.

Theorem 3.4. Suppose that there exist positive constants p, q and r, such that p <
q < r and assume that function f satisfies the following conditions:

(a) f(u) > r
γlG(s−1,s) , for all u ∈ [r, r

γ
];

(b) f(u) < q
lG(s−1,s) , for all u ∈ [q, q

γ
];

(c) f(u) > p
lG(s−1,s) , for all u ∈ [γp, p].
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Then, the operator T has at least two fixed points, u1 and u2, such that
p < γ1(u1), with θ(u1) < q,

and
q < θ(u2), with α1(u2) < r.

Proof. We need to verify that the completely continuous operator T satisfies the
hypothesis of Theorem 3.3. Denote by

α1(u) = min
t∈Nd

c

u(t), θ(u) = max
t∈Nd

c

u(t), γ1(u) = ∥u∥.

For all u ∈ K, we have α1(u) ≤ θ(u) ≤ γ1(u). Let u ∈ K. Then,
α1(u) = min

t∈Nd
c

u(t) ≥ γ max
t∈Nb

a

u(t) = γγ1(u) = γ∥u∥.

Hence, for all k ≥ 0 and u ∈ K, we have
θ(ku) = max

t∈Nd
c

(ku(t)) = k max
t∈Nd

c

u(t) = kθ(u).

Claim 1. If u ∈ ∂K(α1, r), then α1(Tu) > r. Let u ∈ ∂K(α1, r), i.e., mint∈Nd
c

u(t) =
r. Then, α1(u) = r ≥ γ∥u∥, implying that

r ≤ ∥u∥ ≤ r

γ
, for u ∈ ∂K(α1, r).

Using condition (a), we have

α1(Tu) = min
t∈Nd

c

(
b∑

s=a+2
G(t, s)f(u(s))

)

≥
b∑

s=a+2
min
t∈Nd

c

(G(t, s)) f(u(s)) ≥ γ
b∑

s=a+2
max
t∈Nb

a

(G(t, s)) f(u(s))

> γ
r

γlG(s − 1, s) max
t∈Nb

a

(G(t, s)) l

= r.

Thus, condition (a) of Theorem 3.3 is satisfied.
Claim 2. If u ∈ ∂K(θ, q), then θ(Tu) < q. Let u ∈ ∂K(θ, q), i.e., maxt∈Nd

c
u(t) = q.

We have
θ(u) = q ≥ α1(u) ≥ γ∥u∥ and ∥u∥ ≥ θ(u) = q,

implying that
q ≤ ∥u∥ ≤ q

γ
, for u ∈ ∂K(θ, q).

Using condition (b), for u ∈ ∂K(θ, q), we have

θ(Tu) = max
t∈Nd

c

(
b∑

s=a+2
G(t, s)f(u(s))

)
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≤ max
t∈Nb

a

(
b∑

s=a+2
G(t, s)f(u(s))

)
≤

b∑
s=a+2

max
t∈Nb

a

(G(t, s)) f(u(s))

<
q

lG(s − 1, s) max
t∈Nb

a

(G(t, s)) l

= q.

Thus, condition (b) of Theorem 3.3 is satisfied. Now, since K(γ1, p) = {u ∈ K |
∥u∥ < p} ̸= ∅, we observe that p ≥ γ1(u) ≥ α1(u) ≥ γp, for u ∈ ∂K(γ1, p). Using
condition (c), we have

γ1(Tu) = max
t∈Nb

a

(
b∑

s=a+2
G(t, s)f(u(s))

)

≥
b∑

s=a+2
max
t∈Nb

a

(G(t, s)) f(u(s))

>
p

lG(s − 1, s) max
t∈Nb

a

(G(t, s)) l

= p.

Thus, all the conditions of Theorem 3.3 are satisfied. Hence, T has at least two fixed
points. The proof is complete. □

Conclusion

In the present article, we have established sufficient conditions for the existence
of multiple positive solutions of the standard two-point non-linear nabla fractional
boundary value problem with Dirichlet boundary conditions using fixed-point theorems
such as Leggett–Williams and Avery–Henderson on a suitable constructed cone. To
the best of our knowledge use of above conical shell fixed point theorem in nabla
fractional calculus is unknown.
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