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A NOVEL SHIFTED JACOBI OPERATIONAL MATRIX METHOD
FOR LINEAR MULTI-TERMS DELAY DIFFERENTIAL

EQUATIONS OF FRACTIONAL VARIABLE-ORDER WITH
PERIODIC AND ANTI-PERIODIC CONDITIONS

HAMID REZA KHODABANDEHLO1, ELYAS SHIVANIAN1∗, AND SAEID ABBASBANDY1

Abstract. This paper investigates the generalized linear multi-terms delay frac-
tional differential equation of variable order with periodic and anti-periodic condi-
tions. In this work, a novel shifted Jacobi operational matrix technique is applied
to solve a class of these equations, so that the original problem becomes a system of
algebraic equations that can be solved by numerical methods. The proposed tech-
nique is successfully applied to the aforementioned problem. Sufficient and complete
numerical tests are presented to demonstrate the accuracy, generality, efficiency of
presented technique and the flexibility of this scheme. The numerical results of
this method are compared with other existing methods such as fractional backward
differential formulas (FBDF ). Comparing the outcomes of these schemes, as well as
comparing the current technique (NSJOM) with the exact solution, demonstrates
the efficiency and validity of this method. It should be noted that the implemen-
tation of current method is considered very easy and general for many numerical
techniques. Furthermore, the error and its bound are estimated.

1. Introduction

In the last three decades, analysis and applications of fractional calculus have been
the fastest growing active area of research. Currently, it has become an important
tool because of its vast applications in different scientific fields for example, physics,
chemistry, blood circulation phenomena, electrodynamics, biophysics, capacitor theory,
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Complex environment, polymer rheology, experimental data fitting, dynamic systems,
etc. (see [4–7,11] and references therein). The increasing development of efficient and
suitable methods with high accuracy to solve FDEs has caused the interest of many
researchers to increase in this field. There are many important and popular methods
for estimating of numerical solution of FDEs which can be implied to both linear
and nonlinear FDEs, namely fractional linear multi-steps methods and convolution
quadrature are presented by Lubich [12]. Galeone and Garrappa presented Fractional
Adams-Molton methods for FDEs [13]. Trapezoidal methods to solve FDEs is
proposed via Garrappa in [15]. The numerical solution to solve linear multi-term
FDEs: systems of equations have presented by Edwards et al. [16]. Ford and Diethelm
have suggested the multi-order FDE and their numerical solution in [17] and the
numerical analysis for distributed-order DEs is given by these authors [18] and etc.

Incorporating the delay into FDEs creates new perspectives, especially in the field
of bioengineering[10],because the realization of dynamics occurring in biological tissues
is improved in bioengineering by fractional derivatives [8, 10].

In mathematical sciences, the DDEs are a kind of DEs in that the derivative of
an unknown function at a definite time is presented in terms of the values of the
function at prior times. The DDEs are also called time-delay systems, systems of
deed-time or systems of aftereffect, differential-difference type equations, hereditary
systems, deviating arguments equations [21].

Fractional DDEs differ from the ordinary type in which the derivative at any time
depends on the solution (and when the equations are neutral then related to the
derivative) at previous times. Many real-world happenings can be modeled as the
FDDEs [11]. The FDDEs have many usages in different scientific areas by modeling
different problems like electro dynamics, economy, biology, finance, control, physics,
chemistry and etc. [21–27].

In the past years, numerical solution of the FDDEs analyzed and approximated by
Margado et al. in [28]. Cermak et al. in [29] examined the stability areas of systems of
FDDEs. Lazarovic and Spansic in [30] analyzed the stability for systems of FDDEs
by means of Grünwalds approach. A New Predictor-Corrector method (NPCM)
and new iteration technique have proposed in [31, 32], to numerically solve FDEs.
A predictor-corrector method for solving nonlinear FDDEs in [14] have peresented
via Bhalekar and Daftardar-Gejji. In [9], the algorithm of Adams-Bashforth-moulton
which was peresented in [6, 20, 33], is proposed for solving the FDDEs. A new
technique to solve nonlinear FDDEs have presented by Varsha et al. [10]. The
Reproducing kernel Hilbert Space method to solve nonlinear FDDEs have employed
via Ghasemi et al. [21]. In have [8] authors provided a new numerical method for
solving FDDEs and Khodabandehlo et al. in [1–3] have proposed a NSJOM technique
for nonlinear variable-order FDDEs.

Furthermore, the spectral techniques that depend on an orthogonal polynomials
set, are applied to solve the FDEs. The classical Jacobi polynomials are one of the
most famous, which are as follows:
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P (α,β)
n (t), β > −1, α > −1, n ≥ 0.

These polynomials have been used widely in mathematical analysis and practical
applications owning to they have the benefits of getting the numeric solutions in
parameters β and α. Then, the systematic study of Jacobi polynomials with general
indexes α and β will be useful and obviously, this case, in addition to extending the
time interval t ∈ [0, I], can be considered as one of the goals and novelties of this
version [19]. Moreover, in recent years interest of researchers has increased in this
area (area of variable FDEs) [34–38].

In this paper, generalize the orthogonal polynomials in the base of solution is the
our goal. In fact, we present a NSJOM method for the fractional derivatives to solve
a class of linear multi-terms variable FDDEs with periodic condition which as follow:

n∑
s=1

βsD
ζs(t)z(t) + βn+1z(t− τ) = f(t), 0 ≤ t ≤ T,(1.1)

z(t) = k(t), t ∈ [−τ, 0],
z(0) = zT ,

where zT = z(T ). Also, the linear multi-terms variable FDDEs with anti-periodic
condition is:

n∑
s=1

βsD
ζs(t)z(t) + βn+1z(t− τ) = f(t), 0 ≤ t ≤ T,(1.2)

z(t) = k(t), t ∈ [−τ, 0],
z(0) = −zT ,

where βs ∈ R, s = 1, 2, . . . , n + 1, βn+1 ̸= 0, 0 < T and Dζs , s = 1, 2, . . . , n, are the
Caputo’s derivative of variable-order fractional.

Note 1. If ζs(t), s = 1, 2, . . . , n, are constants, then (1.1) and (1.2) will be as follow:
n∑

s=1
βsD

ζsz(t) + βn+1z(t− τ) = f(t), 0 ≤ t ≤ T,

z(t) = k(t), t ∈ [−τ, 0],
z(0) = zT ,

and
n∑

s=1
βsD

ζsz(t) + βn+1z(t− τ) = f(t), 0 ≤ t ≤ T,

z(t) = k(t), t ∈ [−τ, 0],
z(0) = −zT .

Also note that: we can use many polynomials such as Gegenbauer, Legendre,
Fibonacci, all Chebyshev, Lucas, Vieta-Lucas polynomials, and etc. in our novel
suggestion scheme.
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The numerical outcomes gained for the mentioned equation in this paper reveal
that the current technique has high efficiency and accuracy. By comparing numerical
results getted via this technique with other available methods, and focusing on them,
we find out that the suggested method capable of solving the variable-order FDDE,
playing role of a powerful effective and practical numerical technique.

2. Fundamentals and Preliminaries

In this section, some of the mos basic fractional calculus theory properties will be
mentioned. Then, some important features of Jacobi polynomials, that are relevant
for the development of the proposed technique, will be presented [39,42,43].

Definition 2.1. The left and right-sided Caputo fractional derivatives of order ζ,
q − 1 < ζ ≤ q, are determined as

Dζ
−z(t) = (−1)q

Γ(q − ζ)

∫ T

t

z′(s)
(s− t)ζ−q+1ds,

Dζ
+z(t) = 1

Γ(q − ζ)

∫ t

0

z′(s)
(t− s)ζ−q+1ds.

that

Dζ
+t

m =


0, for m ∈ N0 and m < ⌈ζ⌉,

Γ(m+ 1)
Γ(m− ζ + 1)t

m−ζ , for m ∈ N0 and m > ⌈ζ⌉.

and

Dζ
−(T − t)m =


0, for m ∈ N0 and m < ⌈ζ⌉,
(−1)mΓ(m+ 1)
Γ(m− ζ + 1) (T − t)m−η, for m ∈ N0 and m > ⌈ζ⌉.

where ⌈·⌉ is the ceiling function and N0 = {0, 1, 2, . . . }. And for constants δ and γ,
we will have Dζ

±(δψ(t) + γη(t)) = δDζ
±(ψ(t)) + γDζ

±(η(t)).

Definition 2.2. The Caputo derivative with fractional variable-order ζ(t) for z(t) ∈
Cm[0, T ] is as follows [35,40]:

(2.1) Dζ(t)z(t) = 1
Γ(1 − ζ(t))

∫ t

0+

z′(s)
(t− s)ζ(t)ds+ z(0+) − z(0−)

Γ(1 − ζ(t)) t−ζ(t).

At the starting point and for 0 < ζ(t) < 1, we have:

Dζ(t)z(t) = 1
Γ(1 − ζ(t))

∫ t

0+

z′(s)
(t− s)ζ(t)ds.

Also, for constants a and b we have Dζ(t)(a z1(t) + b z2(t)) = aDζ(t)z1(t) + bDζ(t)z2(t).
Using (2.1), then: Dζ(t)K = 0, K is a constant.
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On the other hand

(2.2) Dζ(t)tm =


0, for m = 0,

Γ(m+ 1)
Γ(m+ 1 − ζ(t))t

m−ζ(t), for m = 1, 2, . . .

2.1. Shifted Jacobi polynomials and their properties. Suppose P (α,β)
n (s), β >

−1, α > −1 as the n-th degree Jacobi orthogonal polynomial in −1 ≤ s ≤ 1.
As any classical orthogonal polynomials, P (α,β)

n (s) form an orthogonal system with
respect to weight function ω(α,β)(s) = (1 − s)α(1 + s)β, namely [39]:∫ 1

−1
P

(α,β)
ℓ (s)Pα,β)

k (s)ω(α,β)ds = h
(α,β)
k δℓ,k,

where
h

(α,β)
k = 2α+β+1Γ(k + α + 1)Γ(k + β + 1)

(2k + α + β + 1)k!Γ(k + β + α + 1) ,

δℓ,k is the Kronecker function and

(2.3) P
(α,β)
ℓ (s) =

ℓ∑
j=0

Γ(α + ℓ+ 1)Γ(α + ℓ+ 1 + β + j)
Γ(α + β + ℓ+ 1)Γ(α + 1 + j)Γ(j + 1)Γ(ℓ− j + 1)

(
s− 1

2

)j

,

is the analytical form of the ℓ-th order Jacobi polynomial [19]. The polynomials given
in (2.3) can be obtained as follow:

yα,β
1,ℓ P

(α,β)
ℓ (s) = yα,β

2,ℓ P
(α,β)
ℓ−1 (s) − yα,β

3,ℓ P
(α,β)
ℓ−2 (s), ℓ = 2, 3, . . . ,

where
yα,β

1,ℓ =2l(α + ℓ+ β)(α + 2l − 2 + β),
yα,β

2,ℓ =(α + 2l − 1 + β)(α2 − β2 + (α + 2l + β)(α + 2l + β − 2)s),
yα,β

3,ℓ =2(α + ℓ− 1)(β + ℓ− 1)(α + 2l + β).
That start values as follow

P
(α,β)
0 (s) = 1 and P

(α,β)
1 (s) = 1

2[(α + β + 2)s+ (α− β)].

In order to use the polynomial of (2.3) on the interval 0 ≤ t ≤ T , we need to change
the variable s =

(
2t
T

− 1
)
. Therefore, the shifted Jacobi orthogonal polynomials

P
(α,β)
j

(
2t
T

− 1
)

which marked by P
(α,β)
T,j (t) will be constructed . Then P

(α,β)
T,j (t) form

an orthogonal system with ω(α,β)
T (t) = tβ(T − t)α as the weight function for 0 ≤ t ≤ T

with the following orthogonal feature:∫ T

0
P

(α,β)
T,ℓ (t)Pα,β)

T,k (t)ω(α,β)
T dt = h

(α,β)
T,k δℓ,k,

where
h

(α,β)
T,k =

(
T

2

)α+β+1
h

(α,β)
k .
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Also,

P
(α,β)
T,ℓ (t) =

ℓ∑
j=0

(−1)ℓ+j Γ(β + 1 + ℓ)Γ(α + j + ℓ+ 1 + β)
Γ(α + ℓ+ 1 + β)Γ(β + 1 + j)Γ(j + 1)Γ(ℓ− j + 1)T j

tj

=
ℓ∑

j=0

Γ(ℓ+ 1 + α)Γ(α + j + ℓ+ β + 1)
Γ(α + ℓ+ 1 + β)Γ(α + 1 + j)Γ(j + 1)Γ(ℓ− j + 1)T j

(T − t)j

is the analytical form of the ℓ-th order Shifted Jacobi polynomial [19] and we have

P
(α,β)
T,ℓ (0) = (−1)ℓ Γ(β + ℓ+ 1)

Γ(β + 1)Γ(j + 1) ,

P
(α,β)
T,ℓ (T ) = Γ(α + ℓ+ 1)

Γ(α + 1)Γ(j + 1) ,

in the endpoint values.

Note 2. The Jacobi’s shifted orthogonal polynomials constitute infinite number of
orthogonal polynomials such as the shifted Chebyshev polynomials of the first, second,
third and fourth kinds TT,ℓ(t), UT,ℓ(t), VT,ℓ(t) and WT,ℓ(t), respectively; the shifted
Gegenbauer polynomials G(α,β)

T,ℓ (t) and the shifted Legendre polynomials ℓT,ℓ(t). These
polynomials, which are all orthogonal, are related to P (α,β)

T,ℓ (t) as follow:

ℓT,ℓ(t) = P
(0,0)
T,ℓ (t),

G
(α,β)
T,ℓ (t) =

Γ(ℓ+ 1)Γ
(
α + 1

2

)
Γ

(
α + 1

2 + ℓ
) P

(α− 1
2 ,β− 1

2)
T,ℓ (t),

TT,ℓ(t) =
Γ(ℓ+ 1)Γ

(
1
2

)
Γ

(
1
2 + ℓ

) P
(− 1

2 ,− 1
2)

T,ℓ (t),

UT,ℓ(t) =
Γ(ℓ+ 2)Γ

(
1
2

)
2Γ

(
3
2 + ℓ

) P
( 1

2 , 1
2)

T,ℓ (t),

VT,ℓ(t) = 22l(Γ(ℓ+ 1))2

Γ(2l + 1) P
(− 1

2 , 1
2)

T,ℓ (t),

WT,ℓ(t) = 22l(Γ(ℓ+ 1))2

Γ(2l + 1) P
( 1

2 ,− 1
2)

T,ℓ (t).

3. Function Approximation by Shifted Jacobi Polynomials

Consider the function z(t) to be square integrable with respect to ω(α,β)
T (t) in [0, T ],

then, we have (see [19,39]):

(3.1) z(t) =
∞∑

j=0
ajP

(α,β)
T,j (t),
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that the coefficients of the series (aj) are gained by

aj = 1
h

(α,β)
T,k

∫ T

0
ω

(α,β)
T P

(α,β)
T,j (t)z(t)dt, j = 0, 1, . . .

So, we will obtain the approximate solution by finite number of terms from the series
in (3.1), then

(3.2) z(t) ≃ zM(t) =
M∑

j=0
ajP

(α,β)
T,j (t) = AT ΦT,M(t),

where A = [a0, a1, . . . , aM ]T and ΦT,M(t) = [P (α,β)
T,0 (t), P (α,β)

T,1 (t), . . . , P (α,β)
T,M (t)]T .

We consider that
S(t) = [1, t, t2, t3, . . . , tM ]T .

By (3.2), the vector ΦT,M(t) can be shown as

(3.3) ΦT,M(t) = R(α,β)S(t),

that R(α,β) is a square matrix of order (M + 1) × (M + 1), as follows

rℓ+1,k+1 =

(−1)ℓ−k (α + ℓ)!(α + β + k + ℓ)!
(α + β + ℓ)!(α + k)!(k!)(ℓ− k)!T k

, ℓ ≥ k,

0, otherwise.

for 0 ≤ ℓ, k ≤ M .
Let M = 4, α = β = 0, then

R(0,0) = 1
T i


1 0 0 0 0

−1 2 0 0 0
1 −6 6 0 0

−1 12 −30 20 0
1 −20 90 −140 70

 .

Hence, using (3.3), we get

(3.4) S(t) = R−1
(α,β)ΦT,M(t).

Note 3. We can caculate this matrix R(α,β) for other orthogonal polynomials as well.
For instance, let M = 4, β = −1

2 , α = 1
2 , then the orthogonal polynomials will be of the

fourth kind shifted Chebyshev type, hence R(α,β) of order 4 × 4 for these polynomials
as follows

R( 1
2 , −1

2 ) = 1
T i


1 0 0 0 0

−1 4 0 0 0
1 −12 16 0 0

−1 24 −80 64 0
1 −40 240 −448 256

 .
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4. Novel Shifted Jacobi Polynomials Operational Matrix(NSJOM)

Operational matrix, which are applied in different areas of numerical analysis and
to solve problems of different types and topics are of especial importance such as
integral equations, DEs, integro-DEs, ordinary and partial FDEs [36, 39–41,44–52].
In this part, we investigate the (SJOM) of fractional variable-order to support the
numerical solution of (1.1), (1.2). Therefore, we convert the problem into the system
of algebraic of equations which is solved numerically in collocation points.

At first, we deduce Dζℓ(t)ΦT,M(t), ℓ = 1, 2, . . . , n, as follow.
According to the previous content, we have: ΦT,M(t) = R(α,β)S(t), thus

(4.1)
Dζℓ(t)ΦT,M(t) = Dζℓ(t)(R(α,β)S(t)) = R(α,β)D

ζℓ(t)[1, t, . . . , tM ]T , ℓ = 1, 2, . . . , n.

Combining (2.2) and (4.1), gives:

Dζℓ(t)ΦT,M(t) = R(α,β)D
ζℓ(t)(S(t))

= R(α,β)

[
0, Γ(2)t(1−ζℓ(t))

Γ(2 − ζℓ(t))
, · · · , Γ(M + 1)t(M−ζℓ(t))

Γ(M + 1 − ζℓ(t))

]T

= R(α,β)



0 0 0 · · · 0
0 Γ(2)t−ζℓ(t)

Γ(2−ζℓ(t)) 0 · · · 0
0 0 Γ(3)t−ζℓ(t)

Γ(3−ζℓ(t)) · · · 0
... ... ... . . . ...
0 0 0 · · · Γ(M)t−ζℓ(t)

Γ(M+1−ζℓ(t))




1
t
t2

...
tM



= R(α,β)Gℓ(t)S(t), ℓ = 1, 2, . . . , n,

where

Gℓ(t) =



0 0 0 · · · 0
0 Γ(2)t−ζℓ(t)

Γ(2−ζℓ(t)) 0 · · · 0
0 0 Γ(3)t−ζℓ(t)

Γ(3−ζℓ(t)) · · · 0
... ... ... . . . ...
0 0 0 · · · Γ(M)t−ζℓ(t)

Γ(M+1−ζℓ(t))


, ℓ = 1, 2, . . . , n.

Using (3.4), we have

Dζℓ(t)ΦT,M(t) = R(α,β)Gℓ(t)R−1
(α,β)ΦT,M(t), ℓ = 1, 2, . . . , n.

The operational matrix of Dζℓ(t)ΦT,M(t), ℓ = 1, 2, . . . , n, is R(α,β)Gℓ(t)R−1
(α,β).
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Here, we estimate the variable-order fractional of the calculated function that
obtained in (3.2) as follows

Dζℓ(t)z(t) ≃ Dζℓ(t)(AT ΦT,M(t)) =ATDζℓ(t)ΦT,M(t)
=ATR(α,β)Gℓ(t)R−1

(α,β)ΦT,M(t), ℓ = 1, 2, . . . , n.(4.2)

By using (4.2), hence (1.1) turned into

(4.3)
n∑

s=1
βs(ATR(α,β)Gs(t)R−1

(α,β)ΦT,M(t)) + βn+1A
T ΦT,M(t− τ) = f(t), t ∈ [0, T ],

with periodic condition
AT ΦT,M(0) = AT ΦT,M(T )

or anti-periodic condition as

AT ΦT,M(0) = −AT ΦT,M(T ).

Finally, we use tk, k = 0, 1, 2, . . . ,m, where they are the roots of P (α,β)
T,m+1(t). Therefore,

(4.3) converted into the following form
n∑

s=1
βs(ATR(α,β)Gs(tℓ)R−1

(α,β)ΦT,M(tℓ)) + αn+1A
T ΦT,M(tℓ − τ) = f(tℓ),(4.4)

ℓ = 0, 1, 2, . . . ,m.

So, we can solve the system in (4.4) with the conditions mentioned numerically for
determining the vector A. Therefore, the numerical solution that presented in (3.2)
can be obtained.

5. Error Analysis

In this part, for estimating an upper bound for the absolute error, the Lagrange
interpolation polynomials is used. Namely, by using the current technique (NSJOM)
with error approximation and the residual correction method [53,54], an effective error
estimation will be gained for the variable-order FDEs.

5.1. Error bound. Now, let z(t) on [0, T ] be the smooth function and suppose that
zM(t) ∈ ∏α,β

M is the best approximation for it. Our aim is to obtain an analytical form
of norm of error for zM(t) by developing it into Jacobi polynomials. assume

α,β∏
M

= Span
{
P

(α,β)
T,i (t), i = 0, 1, 2, . . . ,M

}
.

According to concept and definition of the best approximation, we can write

for all vM(t) ∈
α,β∏
M

∥z(t) − zM(t)∥∞ ≤ ∥z(t) − vM(t)∥∞.
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Let vM(t) be the interpolating polynomials at node points ti, i = 0, 1, . . . ,m (where
ti are the roots of P (α,β)

T,m+1(t)). It is clear that vM(t) satisfies in the above inequality.
Then by the Lagrange interpolation polynomials formula and its error formula, have

z(t) − vM(t) = z(M+1)(ξ)
(M + 1)!

M∏
j=0

(t− tj),

that 0 < ξ < T , and

∥z(t) − vM(t)∥∞ ≤ max
0≤t≤T

|z(M+1)(ξ)|
∥ ∏M

j=0(t− tj)∥∞

(M + 1)! .

Note that z(t) on [0, T ] is smooth, therefore, there is a constant C1, as

(5.1) max
0≤t≤T

|z(M+1)(ξ)| ≤ C1.

We want to minimize the factor ∥ ∏M
j=0(t− tj)∥∞ as follows

One-to-one mapping t = T
2 (w + 1) between the interval [−1, 1] and [0, T ] is used to

deduce that [39,55]

min
0≤ti≤T

max
0≤t≤T

|
M∏

i=0
(t− ti)| = min

−1≤wi≤1
max

−1≤w≤1

∣∣∣∣∣
M∏

i=0

T

2 (w − wi)
∣∣∣∣∣

=
(
T

2

)M+1
min

−1≤wi≤1
max

−1≤w≤1

∣∣∣∣∣
M∏

i=0
(w − wi)

∣∣∣∣∣(5.2)

=
(
T

2

)M+1
min

−1≤wi≤1
max

−1≤w≤1

∣∣∣∣∣∣P
(α,β)
M+1 (w)
µ

(α,β)
M

∣∣∣∣∣∣ ,
where µ(α,β)

M = Γ(2M+α+β+1)
2M M !Γ(M+α+β+1) is the last factor of P (α,β)

M+1 (w) and wj are the roots of
P

(α,β)
M+1 (w). It is clear that

max
−1≤w≤1

|P (α,β)
M+1 (w)| = P

(α,β)
M+1 (1) = Γ(β +M + 2)

Γ(β + 1)(M + 1)! .

Using (5.1) and (5.2), gives the following result

∥z(t) − zM(t)∥∞ ≤ C1

(
T
2

)M+1
Γ(β +M + 2)

µ
(α,β)
M ((M + 1)!)2Γ(β + 1)

.

Therefore, an upper bound for absolute error between the exact and approximate
solutions was stimated.

5.2. Error function estimation. In this subsection, we have introduced the error
approximation based on the error function of residual of the proposed scheme and the
approximate solution (3.2) is refined by the residual correction technique. The error
approxmation of residual was used to ontain the error of some methods for different
equations [41,54,56,57].
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At first, we mark eM(t) = zM(t) − z(t) be the error function for the NSJOM
approximation zM(t) to z(t), that z(t) is the truaccurate solution of (1.1) or (1.2).

Therefore, zM(t) satisfies the following relation

(5.3)
n∑

s=1
βsD

ζs(t)zM(t) + βn+1zM(t− τ) = f(t) +RM(t), 0 ≤ t ≤ T,

with periodic condition as
zM(0) = zM(T )

or anti-periodic condition as
zM(0) = −zM(T ),

where RM(t) is the residual function of (1.1) or (1.2), which is approximated by
replacing the zM(t) with z(t) in (1.1) or (1.2). By subtract (1.1) or (1.2) from (5.3),
the error problem is constructed in the form of

n∑
s=1

βsD
ζs(t)eM(t) + βn+1eM(t− τ) = RM(t), 0 ≤ t ≤ T,(5.4)

eM(0) = eM(T ) or eM(0) = −eM(T ),

Thus, the (5.4) can be solved like the way it was presented in the previous section
and we obtain the following estimation to eM(t)

eM(t) =
M∑

s=0
dsP

(α,β)
T,i (t) = DT ΦT,M(t),

Note that if the accurate solution of the problem (1.1) or (1.2) is unknown, then we
can gain the estimation of maximum amount of absolute errors by

EM(t) = max{eM(t), 0 ≤ t ≤ T}.

The above estimation of error, is influenced by the rate of expansions convergence in
Jacobi polynomials. Thus, the rates of convergence in temporal discretizations, are
provided by it [39,57].

6. Numerical Experiences

In this section, several numerical examples are presented to demonstrate the appli-
cability, efficiency, accuracy, generality of this scheme. We obtain the outcomes of the
current method by Mathematica 10 software. To test our technique, we have com-
pared in terms of absolute errors of exact solution with current method and fractional
backward differential formulas (FBDF ) which defined as: |zexact(t) − zn(t)|.

Gathering of the outcomes obtained via this method with the true solution of each
example displays that our scheme is in the best agreement compared to other methods.
As this method is easy to implement, consistent and stable, it is therefore more reliable
and applicable.
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Example 6.1 ([11]). Consider the below FDDE for 0 < ζ ≤ 1

Dζz(t) + z(t− τ) = Γ(3)z(t)2−ζ

Γ(3 − ζ) − Γ(2)z(t)1−ζ

Γ(2 − ζ) + (t− τ)2 − (t− τ) − 1,(6.1)

z(t) = t2 − t− 1, t ∈ [−τ, 0],
z(0) = −z(T ).

With anti-periodic condition. The true solution is z(t) = t2 − t − 1 and T = 2,
0 ≤ t ≤ T , τ = 1, ζ = 0.2.

According to the presented concepts, we approximate the solution of this example
and observe that results of this scheme are in the best agreement with the accurate
solution compared to method (FBDF ). From table 1, where the absolute errors (at
t = 1) of the exact solution with our scheme and method in [11] are recorded, we
find that the numerical results which getted by our method are very close to the
exact solution and we achieved an excellent estimation for the true solution by using
current technique. In figure 1 compared the exact and calculated solution which
acknowledges the utility, accuracy and validity of NSJOM scheme. Furthermore, in
figure 2 the absolute error of exact solution with our scheme for this instance has been
drawn. In this instance for M = 2 and M = 4, we have A = [−0.66667, 1,+0.66667]T ,
A = [−0.66667, 1,+0.66667,−4.82688 × 10−16,−1.16563 × 10−16]T , respectively.

Table 1. Comparison of absolute error of true solution with scheme in
[11] and current method with β = 0, α = 0 at t = 1.0. for Example 6.1

Current method M = 2 4.44089 × 10−16

M = 4 6.66134 × 10−16

M = 20 1.73817 × 10−2

M = 40 1.02509 × 10−2

M = 200 2.87569 × 10−3

Scheme in [11] M = 400 1.65502 × 10−3

M = 2000 4.57442 × 10−4

M = 4000 2.62785 × 10−4

M = 20000 7.25263 × 10−5

Example 6.2 ([11]). Consider the below FDDE for 0 < ζ1 < ζ2 ≤ 1, with periodic
condition

Dζ2z(t) +Dζ1z(t) + z(t− τ)

(6.2)

=Γ(3)z(t)2−ζ2

Γ(3 − ζ2)
− Γ(2)z(t)1−ζ2

Γ(2 − ζ2)
+ Γ(3)z(t)2−ζ1

Γ(3 − ζ1)
− Γ(2)z(t)1−ζ1

Γ(2 − ζ1)
+ (t− τ)2 − (t− τ),
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(a) Accurate solution (b) Estimate solution

Figure 1. Comparison of accurate and estimate solution (z2) of
NSJOM scheme for Example 6.1

Figure 2. The absolute error between true and estimate solution (z2)
for Example 6.1

z(t) = t2 − t, t ∈ [−τ, 0],
z(0) = z(T ).

In this problem the true solution is z(t) = t2 − t and T = 1, 0 ≤ t ≤ T , ζ1 = 0.3,
ζ2 = 0.4, τ = 1.

Using the process mentioned in Example 6.1, we get the solution of this example
and compare the obtained results with FBDF scheme. The outcomes show that our
method is much better than the mentioned method. In table 2, the absolute errors of
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Table 2. Comparison of absolute error of true solution with method
in [11] and our scheme with β = 0, α = 0, at t = 1.0. for Example 6.2

Current method M = 2 2.22045 × 10−16

M = 4 1.62195 × 10−15

M = 20 1.55922 × 10−3

M = 40 5.10934 × 10−4

M = 200 3.67922 × 10−5

Scheme in [11] M = 400 1.18622 × 10−5

M = 2000 8.59612 × 10−7

M = 4000 2.78025 × 10−7

our technique and scheme in [11] (at t = 1) are given and compared. In figure 3 the true
and caculated solution are compared and in figure 4 the absolute error of exact solution
with our scheme for this instance has been shown. Not that these figures and Tables
show a good agreement between accurate and approximate solution. In this problem
for M = 2 and M = 4, we have A = [−0.166667,−6.78159 × 10−18,+0.166667]T ,
A = [−0.166667,−6.78159 × 10−18,+0.166667,−2.40920 × 10−16,−6.46958 × 10−17]T ,
respectively.

(a) Accurate solution (b) Estimate solution

Figure 3. Comparison of accurate and estimate solution (z2) of
NSJOM scheme for Example 6.2

Example 6.3. Consider the variable-order FDDE with anti-periodic condition

Dζ(t)z(t) + z(t− τ) = Γ(3)z(t)2−ζ(t)

Γ(3 − ζ(t)) − Γ(2)z(t)1−ζ(t)

Γ(2 − ζ(t)) + (t− τ)2 − (t− τ) − 1,(6.3)

z(t) = t2 − t− 1, t ∈ [−τ, 0],
z(0) = −z(T ).
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Figure 4. The absolute error between true and estimate solution (z2)
for Example 6.2

Table 3. Absolute errors of true solution and our method (zM(t)) with
β = 0, α = 0 and T = 2 for Example 6.2

t ∈ [0, T ] Current method, M = 2 Current method, M = 3
0 0 0

0.2 0 0
0.4 0 0
0.6 0 0
0.8 0 0
1.0 0 0
1.2 0 0
1.4 0 0
1.6 0 0
1.8 0 0
2.0 0 0

CPU time 0.171601s 3.19802s

True solution is z(t) = t2 − t− 1 and T = 2, 0 ≤ t ≤ T , τ = 1, ζ(t) = t
7 .

In this example, we estimated the solution of (6.3) for several values of α and β, by
our NSJOM scheme and recorded the needed consumption time (CPU time), the
results related to the relative and absolute errors of this estimated solution with the
exact solution in tables 3–8. Moreover, we show the absolute error with α = 1, β = 1
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Table 4. Relative errors of true solution and our method (zM(t)) with
β = 0, α = 0 and T = 2 for Example 6.3

t ∈ [0, T ] Current method, M = 2 Current method, M = 3
0.2 0 0
0.4 0 0
0.6 0 0
0.8 0 0
1.0 0 0
1.2 0 0
1.4 0 0
1.6 0 0
1.8 0 0
2.0 0 0

Table 5. Absolute errors of true solution and our method (zM(t)) with
β = 1, α = 1 and T = 2 for Example 6.3

t ∈ [0, T ] Current method, M = 2 Current method, M = 3
0 0 0

0.2 0 0
0.4 0 0
0.6 0 0
0.8 0 0
1.0 0 0
1.2 0 0
1.4 0 0
1.6 0 0
1.8 0 0
2.0 0 0

CPU time 0.156001s 9.001258s

in Figure 6 and relative errors for various value of α and β in figures 7–9 for this
instance. In this instance, we have:

- For α = 0, β = 0 and M = 2, have A = [−0.66667, 1,+0.66667]T ;
- For α = 0, β = 0 and M = 3, have A = [−0.66667, 1,+0.66667, 0]T ;
- For α = 1

2 , β = 1
2 and M = 2, have A = [−0.75, 0.66667, 0.4]T ;

- For α = 1
2 , β = 1

2 and M = 3, have A = [−0.75, 0.66667, 0.4, 1.94241 × 10−16]T ;
- For α = 1, β = 1 and M = 2, have A = [−0.8, 0.5, 0.26667]T ;
- For α = 1, β = 1 and M = 3, have A = [−0.8, 0.5, 0.26667, 0]T .
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Table 6. Relative errors of true solution and our method (zM(t)) with
β = 1, α = 1 and T = 2 for Example 6.3

t ∈ [0, T ] Current method, M = 2 Current method, M = 3
0.2 0 0
0.4 0 0
0.6 0 0
0.8 0 0
1.0 0 0
1.2 0 0
1.4 0 0
1.6 0 0
1.8 0 0
2.0 0 0

Table 7. Absolute errors of true solution and our method (zM(t)) with
β = 1

2 , α = 1
2 and T = 2 for Example 6.3

t ∈ [0, T ] Current method, M = 2 Current method, M = 3
0 4.440 × 10−16 1.776 × 10−15

0.2 4.440 × 10−16 1.554 × 10−15

0.4 2.220 × 10−16 1.110 × 10−15

0.6 2.220 × 10−16 6.661 × 10−16

0.8 2.220 × 10−16 2.220 × 10−16

1.0 2.220 × 10−16 4.440 × 10−16

1.2 0 8.881 × 10−16

1.4 5.551 × 10−17 1.276 × 10−15

1.6 4.093 × 10−16 1.366 × 10−15

1.8 1.276 × 10−15 1.387 × 10−15

2.0 8.881 × 10−16 1.776 × 10−15

CPU time 0s 0s

Example 6.4. Consider the following variable-order FDDE

Dζ2z(t) +Dζ1z(t) + z(t− τ)

(6.4)

=Γ(3)z(t)2−ζ2

Γ(3 − ζ2)
− Γ(2)z(t)1−ζ2

Γ(2 − ζ2)
+ Γ(3)z(t)2−ζ1

Γ(3 − ζ1)
− Γ(2)z(t)1−ζ1

Γ(2 − ζ1)
+ (t− τ)2 − (t− τ),

z(t) = t2 − t, t ∈ [−τ, 0],
z(0) = z(T ).
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Table 8. Relative errors of true solution and our method (zM(t)) with
β = 1

2 , α = 1
2 and T = 2 for Example 6.3

t ∈ [0, T ] Current method, M = 2 Current method, M = 3
0.2 8.330 × 10−16 1.776 × 10−15

0.4 9.362 × 10−16 2.004 × 10−15

0.6 9.221 × 10−16 2.551 × 10−15

0.8 1.004 × 10−15 3.276 × 10−15

1.0 1.389 × 10−15 4.551 × 10−15

1.2 2.320 × 10−15 6.351 × 10−15

1.4 3.531 × 10−15 7.440 × 10−15

1.6 4.089 × 10−15 8.241 × 10−15

1.8 4.224 × 10−15 8.878 × 10−15

2.0 5.551 × 10−15 7.983 × 10−15

(a) Accurate solution (b) Estimate solution

Figure 5. Comparison of accurate and estimate solution (z2) of
NSJOM scheme for Example 6.3 (ζ(t) = 0.5t).

This problem is the periodic conditions type and the true solution is z(t) = t2 − t and
0 ≤ t ≤ T , T = 1, ζ1(t) = t

2 , ζ2 = t
4 , τ = 1.

We estimated the solution of (6.4) for various values of α and β, by our NSJOM
scheme and presented the CPU time required for our scheme, the results related to
the relative and absolute errors of this estimated solution with the exact solution in
tables 9–14. Moreover, we show the absolute error with α = 1, β = 1 in Figure 6 and
relative errors for various value of α and β in figures 12–13 for this instance. In this
instance, we have:

- For α = 0, β = 0 and M = 2, have A = [−0.16667, 0,+0.16667]T ;
- For α = 0, β = 0 and M = 4, have A = [−0.16667, 0,+0.16667, 0, 0]T ;
- For α = 1

2 , β = 1
2 and M = 2, have A = [−0.1875, 0, 0.1]T ;

- For α = 1
2 , β = 1

2 and M = 4, have A = [−0.1875, 0, 0.1, 0, 0]T ;
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Figure 6. The absolute error between true and estimate solution (z2)
for Example 6.3 (ζ(t) = 0.5t)
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Figure 7. The relative error between accurate and estimate
solution(z2) with β = 0, α = 0, at T = 2.0 for Example 6.3
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Figure 8. The relative error between accurate and estimate solution
(z2) with β = 1, α = 1, at T = 2.0 for Example 6.3
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Figure 9. The relative error between accurate and estimate solution
(z2) with β = 1

2 , α = 1
2 , at T = 2.0 for Example 6.3
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Table 9. Absolute errors of true solution and our method (zM(t)) with
β = 0, α = 0 and T = 1 for Example 6.4

t ∈ [0, T ] Current method, M = 2 Current method, M = 4
0 0 0

0.12 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1 0 0

CPU time 0.093601s 4.007500s

Table 10. Relative errors of true solution and our method (zM(t))
with β = 0, α = 0 and T = 1 for Example 6.4

t ∈ [0, T ] Current method, M = 2 Current method, M = 4
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1 0 0

- For α = 1, β = 1 and M = 2, have A = [−0.2, 0, 0.06667]T ;
- For α = 1, β = 1 and M = 4, have A = [−0.2, 0, 0.06667, 0, 0]T .

Example 6.5. Consider the below FDDE for 0 < ζ ≤ 1

Dζz(t) − z(t− τ) + z(t) = g(t),

(6.5)

g(t) = 2 exp(t)(−1 + t)
1 + exp(2) − 2 exp(t− τ)(−1 + t− τ)

1 + exp(2)
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Table 11. Absolute errors of true solution and our method (zM(t))
with β = 1, α = 1 and T = 1 for Example 6.4

t ∈ [0, T ] Current method, M = 2 Current method, M = 4
0 0 0

0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1 0 0

CPU time 0s 0.062400s

Table 12. Relative errors of true solution and our method (zM(t))
with β = 1, α = 1 and T = 1 for Example 6.4

t ∈ [0, T ] Current method, M = 2 Current method, M = 4
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1 0 0

− 2tζ(−2 + ζ)(t2 + exp(t)tτ (−1 + t+ ζ)Γ(2 − η) − exp(t)tζ(−1 + t+ ζ)Γ(2 − ζ, t))
Γ(3 − ζ)(1 + exp(2)) ,

z(t) = 2 exp(t)(−1 + t)
1 + exp(2) − 2 exp(2)

1 + exp(2) + 1, t ∈ [−τ, 0],

z(0) = −z(T ).
This problem is the anti-periodic conditions type and the true solution is z(t) =
2 exp(t)(−1+t)

1+exp(2) − 2 exp(2)
1+exp(2) + 1 and 0 ≤ t ≤ T , T = 2, τ = 0.01 exp(−t), ζ = 0.2.

The solution of (6.3) for several values of α and β, by our NSJOM scheme is
stimated and is recorded the CPU time required for our scheme, the results related
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Table 13. Absolute errors of true solution and our method (zM(t))
with β = 1

2 , α = 1
2 and T = 1 for Example 6.4

t ∈ [0, T ] Current method, M = 2 Current method, M = 4
0 0 0

0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1 0 0

CPU time 0.109201s 51.339929s

Table 14. Relative errors of true solution and our method (zM(t))
with β = 1

2 , α = 1
2 and T = 1 for Example 6.4

t ∈ [0, T ] Current method, M = 2 Current method, M = 4
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1 0 0

to the absolute and relative errors of this estimated solution with the exact solution
in tables 15 and 16. In Figure 14 compared the exact and calculated solution which
acknowledges the utility, accuracy and validity of NSJOM technique. Furthermore,
in Figure 15 the absolute error of exact solution with our scheme for this instance has
been drawn. In this instance, we have:

- For α = 0, β = 0 and M = 10, have A = [−0.523188, 0.854347, 0.49638, 0.142,
0.0264148, 0.00361749, 3.90992 × 10−4, 3.48 × 10−5, 2.64 × 10−6, 1.72 × 10−7, 1.076 ×
10−8]T ;



62 H. R. KHODABANDEHLO, E. SHIVANIAN, AND S. ABBASBANDY

(a) Accurate solution (b) Estimate solution

Figure 10. Comparison of accurate and estimate solution (z2) of
NSJOM scheme for Example 6.4.

Figure 11. The absolute error between true and estimate solution (z2)
for Example 6.4.

- For α = 1
2 , β = 1

2 and M = 10, have A = [−0.58565, 0.54580, 0.29286, 0.08042,
0.014593, 0.0019657, 2.09955×10−4, 1.885×10−5, 1.3976×10−6, 9.0947×10−8, 5.641×
10−9]T ;

- For α = 1, β = 1 and M = 10, have A = [−0.622464, 0.396745, 0.192682, 0.049892,
0.008714, 0.00114289, 1.1968×10−4, 1.0416×10−5, 7.75225×10−7, 5.0021×10−8, 3.077×
10−9]T .
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Figure 12. The relative errors between estimate solution (z4) and
accurate solution with β = 0, α = 0, at t = 1.0. for Example 6.4.
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Figure 13. The relative error between exact and estimate solution
(z4) with β = 1, α = 1, at t = 1.0. for Example 6.4.
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Table 15. Absolute errors of true solution and our method (zM(t))
with M = 10 and T = 2 for Example 6.5 by NSJOM .

t ∈ [0, T ] α = 1, β = 1 α = 0, β = 0 α = 0.5, β = 0.5
0 1.025 × 10−10 9.479 × 10−11 2.289 × 10−10

0.2 3.779 × 10−9 3.953 × 10−9 4.087 × 10−9

0.4 9.779 × 10−10 9.667 × 10−10 1.100 × 10−9

0.6 6.661 × 10−10 7.927 × 10−10 9.265 × 10−10

0.8 3.614 × 10−10 5.863 × 10−10 7.199 × 10−10

1.0 6.661 × 10−10 5.181 × 10−10 6.502 × 10−10

1.2 5.453 × 10−10 4.376 × 10−10 5.645 × 10−10

1.4 4.185 × 10−10 4.157 × 10−10 5.281 × 10−10

1.6 3.271 × 10−10 3.433 × 10−10 4.215 × 10−10

1.8 6.981 × 10−10 4.248 × 10−10 4.307 × 10−10

2.0 2.003 × 10−10 9.479 × 10−11 2.288 × 10−10

CPU time 1.076407s 1.076407s 1.544410s

Table 16. Absolute errors of true solution and our method (zM(t))
with M = 15 and T = 2 for Example 6.5 by NSJOM .

t ∈ [0, T ] α = 1, β = 1 α = 0, β = 0 α = 0.5, β = 0.5
0 6.661 × 10−15 8.881 × 10−16 2.377 × 10−15

0.2 7.016 × 10−14 3.352 × 10−14 3.907 × 10−13

0.4 3.753 × 10−14 1.487 × 10−14 8.705 × 10−15

0.6 2.775 × 10−14 9.547 × 10−15 8.635 × 10−13

0.8 2.442 × 10−14 7.549 × 10−15 2.615 × 10−13

1.0 2.152 × 10−14 5.772 × 10−15 6.163 × 10−13

1.2 2.087 × 10−14 5.551 × 10−15 5.394 × 10−13

1.4 1.909 × 10−14 3.996 × 10−15 9.005 × 10−146

1.6 1.909 × 10−14 3.556 × 10−15 2.132 × 10−13

1.8 2.131 × 10−14 3.330 × 10−15 4.916 × 10−13

2.0 1.187 × 10−14 1.110 × 10−15 2.373 × 10−13

CPU time 2.552407s 2.558416s 3.000810s

7. Conclusions

In this work, we have presented the (NSJOM) technique for the generalized linear
variable-order FDDE with anti-periodic and periodic condition by turning the main
problem to an algebraic equations system that this system is solved numerically. We
have shown that the presented method has good convergence, its concepts are simple
and it’s easy to implement. The obtained results are excellent compared to other
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(a) Accurate solution (b) Estimate solution

Figure 14. Comparison of accurate and estimate solution (z15) of
NSJOM method for Example 6.5

Figure 15. The absolute error between exact and estimate solution
(z15) for Example 6.5

method. Finally, the numerical results have been reported to clarify the validity and
efficiency of this method.

Acknowledgements. We are grateful to the anonymous reviewers for their helpful
comments, which undoubtedly led to the definite improvement in the paper.



66 H. R. KHODABANDEHLO, E. SHIVANIAN, AND S. ABBASBANDY

References
[1] H. R. Khodabandehlo, E. Shivanian and S. Abbasbandy, Numerical solution of nonlinear

delay differential equations of fractional variable-order using a novel shifted Jacobi operational
matrix, Engineering with Computers 3(38) (2022), 2593–2607. https://doi.org/10.1007/
s00366-021-01422-7

[2] H. R. Khodabandelo, E. Shivanian and S. Abbasbandy, A novel shifted Jacobi operational
matrix method for nonlinear multi-terms delay differential equations of fractional variable-
order with periodic and anti-periodic conditions, Math. Meth. Appl. Sci. 45(1) (2022), 1–20.
https://doi.org/10.1002/mma.8358

[3] H. R. Khodabandehlo, E. Shivanian and S. Abbasbandy, A novel shifted Jacobi operational
matrix for solution of nonlinear fractional variable-order differential equation with proportional
delays, International Journal of Industrial Mathematics 14(4) (2022), 415–432. https://dx.
doi.org/10.30495/ijim.2022.64043.1555

[4] D. Bojović and B. Jovanović, Fractional order convergence rate estimates of finite difference
method on nonuniform meshes, Comput. Methods Appl. Math. 1(3) (2001), 213–221. http:
//dx.doi.org/10.2478/cmam-2001-0015

[5] D. Baleanu, R. L. Magin, S. Bhalekar and V. Daftardar-Gejji, Chaos in the fractional order
nonlinear Bloch equation with delay, Commun. Nonlinear Sci. Numer. Simul. 25(1–3) (2015),
41–49. http://dx.doi.org/10.1016/j.cnsns.2015.01.004

[6] K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method,
Numer. Algorithms 36(1) (2004), 31–52. http://dx.doi.org/10.1023/B:NUMA.0000027736.
85078.be

[7] Y. Kuang, Delay Differential Equations: with Applications in Population Dynamics, Academic
Press, London, 1993.

[8] A. Jhinga and V. Daftardar-Gejji, A new numerical method for solving fractional delay differ-
ential equations, J. Comput. Appl. Math. 38(166) (2019), 18 pages. http://dx.doi.org/10.
1007/s40314-019-0951-0

[9] Z. Wang, A numerical method for delayed fractional-order differential equations, Hindawi
Publishing Corporation Journal of Applied Mathematics (2013), Article ID 256071. http:
//dx.doi.org/10.1155/2013/256071

[10] V. Daftardar-Gejji, Y. Sukale and S. Bhalekar, Solving fractional delay differential equations:
a new approach, International Journal for Theory and Applications 18(2) (2015), http://dx.
doi.org/10.1515/fca-2015-0026

[11] M. SaedshoarHeris and M. Javidi, On fractional backward differential formulas for fractional
delay differential equations with periodic and anti-periodic conditions, Appl. Numer. Math. 118
(2017), 203–220. http://dx.doi.org/10.1016/j.apnum.2017.03.006

[12] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17(3) (1984), 704–719. http:
//dx.doi.org/10.1137/0517050

[13] L. Galeonea and R. Garrappa, On multistep methods for differential equations of frac-
tional order, Mediterr. J. Math. 3(3-4) (2006), 565–580. http://dx.doi.org/10.1007/
s00009-006-0097-3

[14] S. Bhalekar and V. Daftardar-Gejji, A predictor-corrector scheme for solving non-linear delay
differential equations of fractional order, J. Fract. Calc. Appl. 1(5) (2011), 1–8.

[15] R. Garrappa, Trapezoidal methods for fractional differential equations: theoretical and compu-
tational aspects, Math. Comput. Simul. 110 (2015), 96–112. http://dx.doi.org/10.1016/j.
matcom.2013.09.012

[16] J. T. Edwards, N. J. Ford and A. C. Simpson, The numerical solution of linear multi-term
fractional differential equations: systems of equations, J. Comput. Appl. Math. 148(2) (2002),
401–418. http://dx.doi.org/10.1016/S0377-0427(02)00558-7

https://doi.org/10.1007/s00366-021-01422-7
https://doi.org/10.1007/s00366-021-01422-7
https://doi.org/10.1002/mma.8358
https://dx.doi.org/10.30495/ijim.2022.64043.1555
https://dx.doi.org/10.30495/ijim.2022.64043.1555
http://dx.doi.org/10.2478/cmam-2001-0015
http://dx.doi.org/10.2478/cmam-2001-0015
http://dx.doi.org/10.1016/j.cnsns.2015.01.004
http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be
http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be
http://dx.doi.org/10.1007/s40314-019-0951-0
http://dx.doi.org/10.1007/s40314-019-0951-0
http://dx.doi.org/10.1155/2013/256071
http://dx.doi.org/10.1155/2013/256071
http://dx.doi.org/10.1515/fca-2015-0026
http://dx.doi.org/10.1515/fca-2015-0026
http://dx.doi.org/10.1016/j.apnum.2017.03.006
http://dx.doi.org/10.1137/0517050
http://dx.doi.org/10.1137/0517050
http://dx.doi.org/10.1007/s00009-006-0097-3
http://dx.doi.org/10.1007/s00009-006-0097-3
http://dx.doi.org/10.1016/j.matcom.2013.09.012
http://dx.doi.org/10.1016/j.matcom.2013.09.012
http://dx.doi.org/10.1016/S0377-0427(02)00558-7


A NSJOM METHOD FOR LINEAR MULTI-TERMS VARIABLE-ORDER F DDE 67

[17] K. Diethelm, N.J. Ford, Multi-order fractional differential equations and their numeri-
cal solution, Appl. Math. Comput. 154(3) (2004), 621–640. http://dx.doi.org/10.1016/
S0096-3003(03)00739-2

[18] K. Diethelm and N. J. Ford, Numerical analysis for distributed-order differential equations, J.
Comput. Appl. Math. 225(1) (2009), 96–104. http://dx.doi.org/10.1016/j.cam.2008.07.
018

[19] A. A. El-Sayed, D. Baleanu and P. Agarwal, A novel Jacobi operational matrix for numerical so-
lution of multi-term variable-order fractional differential equations, Journal of Taibah University
for Science 14(1) (2020), 963–974. http://dx.doi.org/10.1080/16583655.2020.1792681

[20] K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical
solution of fractional differential equations, Nonlinear Dynamics 29 (2002), 3–22. http://dx.
doi.org/10.1023/A:1016592219341

[21] M. Ghasemi, M. Fardi and R. Khoshsiar Ghaziani, Numerical solution of nonlinear delay dif-
ferential equations of fractional order in reproducing kernel Hilbert space, Appl. Math. Comput.
268 (2015), 815–831. http://dx.doi.org/10.1016/j.amc.2015.06.012

[22] J. R. Ockendona and A. B. Tayler, The dynamics of a current collection system for an electric
locomotive, Proc. R. Soc. Lond. Ser. A 322 (1971), 447–468. https://doi.org/10.1098/rspa.
1971.0078

[23] M. D. Buhmann and A. Iserles, Stability of the discretized pantograph differen-
tial equation, J. Math. Comput. 60 (1993), 575–589. http://dx.doi.org/10.1090/
S0025-5718-1993-1176707-2

[24] F. Shakeri and M. Dehghan, Solution of delay differential equations via a homotopy perturbation
method, Math. Comput. Model. 48 (2008), 486–498. http://dx.doi.org/10.1016/j.mcm.
2007.09.016

[25] F. Shakeri and M. Dehghan, The use of the decomposition procedure of a domian for solving a
delay diffusion equation arisingin electrodynamics, Phys. Scr. Phys. Scr. 78(065004) (2008), 11
pages. http://dx.doi.org/10.1088/0031-8949/78/06/065004

[26] S. Sedaghat, Y. Ordokhani and M. Dehghan, Numerical solution of the delay differential
equations of pantograph type via Chebyshev polynomials, Commun. Nonlin. Sci. Numer. Simul.
17 (2012), 4125–4136. http://dx.doi.org/10.1016/j.cnsns.2012.05.009

[27] W. G. Ajello, H. I. Freedmana and J. Wu, A model of stage structured population growth with
density depended time delay, SIAM J. Appl. Math. 52 (1992), 855–869. http://dx.doi.org/
https://doi.org/10.1137/015204

[28] M. L. Morgado, N. J. Ford and P. Lima, Analysis and numerical methods for fractional
differential equations with delay, J. Comput. Appl. Math. 252 (2013), 159–168. http://dx.
doi.org/10.1016/j.cam.2012.06.034

[29] J. Čermák, J. Horníček and T. Kisela, Stability regions for fractional differential systems
with a time delay, Commun. Nonlinear Sci. Numer. Simul. 31(1) (2016), 108–123. http:
//dx.doi.org/10.1016/j.cnsns.2015.07.008

[30] M. P. Lazarević and A. M. Spasić, Finite-time stability analysis of fractional order time-
delay systems: Gronwall’s approach, Math. Comput. Model. 49(3) (2009), 475–481. http:
//dx.doi.org/10.1016/j.mcm.2008.09.011

[31] V. Daftardar-Gejji and H. Jafari, An iterative method for solving non linear functional equations,
J. Math. Anal. Appl. 316(2006), 753–763. http://dx.doi.org/10.1016/j.jmaa.2005.05.
009

[32] V. Daftardar-Gejji, Y. Sukale and S. Bhalekar, A new predictor-corrector method for fractional
differential equations, Appl. Math. Comput. 244 (2014), 158–182. http://dx.doi.org/10.
1016/j.amc.2014.06.097

[33] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. 265(2)
(2002), 229–248. http://dx.doi.org/10.1006/jmaa.2000.7194

http://dx.doi.org/10.1016/S0096-3003(03)00739-2
http://dx.doi.org/10.1016/S0096-3003(03)00739-2
http://dx.doi.org/10.1016/j.cam.2008.07.018
http://dx.doi.org/10.1016/j.cam.2008.07.018
http://dx.doi.org/10.1080/16583655.2020.1792681
http://dx.doi.org/10.1023/A:1016592219341
http://dx.doi.org/10.1023/A:1016592219341
http://dx.doi.org/10.1016/j.amc.2015.06.012
https://doi.org/10.1098/rspa.1971.0078
https://doi.org/10.1098/rspa.1971.0078
http://dx.doi.org/10.1090/S0025-5718-1993-1176707-2
http://dx.doi.org/10.1090/S0025-5718-1993-1176707-2
http://dx.doi.org/10.1016/j.mcm.2007.09.016
http://dx.doi.org/10.1016/j.mcm.2007.09.016
http://dx.doi.org/10.1088/0031-8949/78/06/065004
http://dx.doi.org/10.1016/j.cnsns.2012.05.009
http://dx.doi.org/https://doi.org/10.1137/015204
http://dx.doi.org/https://doi.org/10.1137/015204
http://dx.doi.org/10.1016/j.cam.2012.06.034
http://dx.doi.org/10.1016/j.cam.2012.06.034
http://dx.doi.org/10.1016/j.cnsns.2015.07.008
http://dx.doi.org/10.1016/j.cnsns.2015.07.008
http://dx.doi.org/10.1016/j.mcm.2008.09.011
http://dx.doi.org/10.1016/j.mcm.2008.09.011
http://dx.doi.org/10.1016/j.jmaa.2005.05.009
http://dx.doi.org/10.1016/j.jmaa.2005.05.009
http://dx.doi.org/10.1016/j.amc.2014.06.097
http://dx.doi.org/10.1016/j.amc.2014.06.097
http://dx.doi.org/10.1006/jmaa.2000.7194


68 H. R. KHODABANDEHLO, E. SHIVANIAN, AND S. ABBASBANDY

[34] D. Tavares, R. Almeida and D. F. M. Torres, Caputo derivatives of fractional variable order:
numerical approximations, Commun Nonlinear Sci. Numer. Simul. 35 (2016), 69–87. http:
//dx.doi.org/10.1016/j.cnsns.2015.10.027

[35] J. Liu, X. Lia dn L. Wu, An operational matrix of fractional differentiation of the second kind
of Chebyshev polynomial for solving multi-term variable order fractional differential equation,
Math. Probl. Eng. (2016), 10 pages. http://dx.doi.org/10.1155/2016/7126080

[36] A. M. Nagy, N. H. Sweilam and A. A. El-Sayed, New operational matrix for solving multi-term
variable order fractional differential equations, J. Comp. Nonlinear Dyn. 13 (2018), 011001–
011007. http://dx.doi.org/10.1115/1.4037922

[37] A. A. El-Sayed and P. Agarwal, Numerical solution of multi-term variable-order fractional
differential equations via shifted Legendre polynomials, Math. Meth. Appl. Sci. 42(11) (2019),
3978–3991. http://dx.doi.org/10.1002/mma.5627

[38] F. Mallawi, J. F. Alzaidy and R. M. Hafez, Application of a Legendre collocation method to the
space-time variable fractional-order advection-dispersion equation, Journal of Taibah University
for Science 13(1)(2019), 324–330. http://dx.doi.org/10.1080/16583655.2019.1576265

[39] A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi tau approximation for solving
multi-term time-space fractional partial differential equations, J. Comput. Phys. (2014). http:
//dx.doi.org/10.1016/j.jcp.2014.10.060

[40] Y. M. Chen, L. Q. Liu, B. F. Li and Y. Sun, Numerical solution for the variable-order
linear cable equation with Bernstein polynomials, Appl. Math. Comput. 238 (2014), 329–341.
http://dx.doi.org/10.1016/j.amc.2014.03.066

[41] S. Abbasbandy and A. Taati, Numerical solution of the system of nonlinear Volterra integrod-
ifferential equations with nonlinear differential part by the operational Tau method and error
estimation, J. Comput. Appl. Math. 231(1) (2009), 106–113. http://dx.doi.org/10.1016/
j.cam.2009.02.014

[42] G. Szegö, Orthogonal polynomials, Am. Math. Soc. Colloq. Pub. 23 (1985).
[43] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application

for solving fractional differential equations, Appl. Math. Model. 36 (2012), 4931–4943. http:
//dx.doi.org/10.1016/j.apm.2011.12.031

[44] S. A. Yousefi and M. Behroozifar, Operational matrices of Bernstein polynomials and
their applications, Inter. Systems Sci. 32 (2010), 709–716. http://dx.doi.org/10.1080/
00207720903154783

[45] W. Labecca, O. Guimaraesa dn J. R. C. Piqueira, Dirac’s formalism combined with complex
Fourier operational matrices to solve initial and boundary value problems, Commun Nonlinear
Sci. Numer. Simul. 19.8 (2014), 2614–2623. http://dx.doi.org/10.1016/j.cnsns.2014.01.
001

[46] M. Razzaghi and S. Yousefi, Legendre wavelets method for the nonlinear Volterra-Fredholm
integral equations, Math. Comput. Simul. 70 (2005), 1–8. http://dx.doi.org/10.1016/j.
matcom.2005.02.035

[47] H. Danfu and S. Xufeng, Numerical solution of integro-differential equations by using CAS
wavelet operational matrix of integration, Appl. Math. Comput. 194 (2007), 460–466. http:
//dx.doi.org/10.1016/j.amc.2007.04.048

[48] S. H. Behiry, Solution of nonlinear Fredholm integro-differential equations using a hybrid of
block pulse functions and normalized Bernstein polynomials, J. Comput. Appl. Math. 260
(2014), 258–265. http://dx.doi.org/10.1016/j.cam.2013.09.036

[49] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differ-
ential equations, Comput. Math. Appl. 59 (2010), 1326–1336. http://dx.doi.org/10.1016/
j.camwa.2009.07.006

[50] A. Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications,
Appl. Math. Model. 38 (2014), 1365–1372. http://dx.doi.org/10.1016/j.apm.2013.08.007

http://dx.doi.org/10.1016/j.cnsns.2015.10.027
http://dx.doi.org/10.1016/j.cnsns.2015.10.027
http://dx.doi.org/10.1155/2016/7126080
http://dx.doi.org/10.1115/1.4037922
http://dx.doi.org/10.1002/mma.5627
http://dx.doi.org/10.1080/16583655.2019.1576265
http://dx.doi.org/10.1016/j.jcp.2014.10.060
http://dx.doi.org/10.1016/j.jcp.2014.10.060
http://dx.doi.org/10.1016/j.amc.2014.03.066
http://dx.doi.org/10.1016/j.cam.2009.02.014
http://dx.doi.org/10.1016/j.cam.2009.02.014
http://dx.doi.org/10.1016/j.apm.2011.12.031
http://dx.doi.org/10.1016/j.apm.2011.12.031
http://dx.doi.org/10.1080/00207720903154783
http://dx.doi.org/10.1080/00207720903154783
http://dx.doi.org/10.1016/j.cnsns.2014.01.001
http://dx.doi.org/10.1016/j.cnsns.2014.01.001
http://dx.doi.org/10.1016/j.matcom.2005.02.035
http://dx.doi.org/10.1016/j.matcom.2005.02.035
http://dx.doi.org/10.1016/j.amc.2007.04.048
http://dx.doi.org/10.1016/j.amc.2007.04.048
http://dx.doi.org/10.1016/j.cam.2013.09.036
http://dx.doi.org/10.1016/j.camwa.2009.07.006
http://dx.doi.org/10.1016/j.camwa.2009.07.006
http://dx.doi.org/10.1016/j.apm.2013.08.007


A NSJOM METHOD FOR LINEAR MULTI-TERMS VARIABLE-ORDER F DDE 69

[51] M. H. Atabakzadeh, M. H. Akrami and G. H. Erjaee, Chebyshev operational matrix method for
solving multi-order fractional ordinary differential equations, Appl. Math. Model. 37 (2013),
8903–8911. http://dx.doi.org/10.1016/j.apm.2013.04.019

[52] A. H. Bhrawy and A. S. Alofi, The operational matrix of fractional integration for shifted
Chebyshev polynomials, Appl. Math. Lett. 26 (2013), 25–31. http://dx.doi.org/10.1016/j.
aml.2012.01.027

[53] F. A. Oliveira, Collocation and residual correction, Numer. Math. 36 (1980), 27–31. http:
//dx.doi.org/10.1007/BF01395986

[54] S. Shahmorad, Numerical solution of the general form linear Fredholm-Volterra integrodifferen-
tial equations by the Tau method with an error estimation, Appl. Math. Comput. 167 (2005),
1418–1429. http://dx.doi.org/10.1016/j.amc.2004.08.045

[55] J. de Villiers, Mathematics of Approximation, Atlantis Press, 2012.
[56] S. Yöuzbasi, An efficient algorithm for solving multi-pantograph equation systems, Comput.

Math. Appl. 64(4) (2012), 589–603. http://dx.doi.org/10.1016/j.camwa.2011.12.062
[57] Z. Zlatev, I. Faragó and Á. Havasi, Richardson extrapolation combined with the sequential

splitting procedure and θ-method, Central European Journal of Mathematics 10(1) (2012),
159–172. http://dx.doi.org/10.2478/s11533-011-0099-7

[58] A. G. Ulsoy, Analytical solution of a system of homogeneous delay differential equations via
the lambert function, in: Proceedings of the American Control Conference, Chicago, IL, 2000.

1Department of Applied Mathematics,
Imam Khomeini International University,
Qazvin, 34148-96818, Iran
Email address: khodabandelo.hamidreza@yahoo.com
Email address: shivanian@sci.ikiu.ac.ir
Email address: abbasbandy@ikiu.ac.ir

∗Corresponding Author

http://dx.doi.org/10.1016/j.apm.2013.04.019
http://dx.doi.org/10.1016/j.aml.2012.01.027
http://dx.doi.org/10.1016/j.aml.2012.01.027
http://dx.doi.org/10.1007/BF01395986
http://dx.doi.org/10.1007/BF01395986
http://dx.doi.org/10.1016/j.amc.2004.08.045
http://dx.doi.org/10.1016/j.camwa.2011.12.062
http://dx.doi.org/10.2478/s11533-011-0099-7

	1. Introduction
	2. Fundamentals and Preliminaries
	2.1. Shifted Jacobi polynomials and their properties

	3. Function Approximation by Shifted Jacobi Polynomials
	4. Novel Shifted Jacobi Polynomials Operational Matrix(NSJOM)
	5. Error Analysis
	5.1. Error bound
	5.2. Error function estimation

	6. Numerical Experiences
	7. Conclusions
	Acknowledgements.

	References

