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WEAVING CONTINUOUS CONTROLLED K-¢g-FUSION FRAMES
IN HILBERT SPACES

PRASENJIT GHOSH! AND TAPAS K. SAMANTA?

ABSTRACT. We introduce the notion of weaving continuous controlled K-g-fusion
frame in Hilbert space. Some characterizations of weaving continuous controlled K-
g-fusion frame have been presented. We extend some of the recent results of woven
K-g-fusion frame and controlled K-g-fusion frame to woven continuous controlled
K-g-fusion frame. Finally, a perturbation result of woven continuous controlled
K-g-fusion frame has been studied.

1. INTRODUCTION AND PRELIMINARIES

Duffin and Schaeffer [13] introduced frame for Hilbert space to study some fun-
damental problems in non-harmonic Fourier series. Later on, after some decades,
frame theory was popularized by Daubechies et al. [11]. At present, frame theory
has been widely used in signal and image processing, filter bank theory, coding and
communications, system modeling and so on.

Let H be a separable Hilbert space associated with the inner product (-, -). Frame
for Hilbert space was defined as a sequence of basis-like elements in Hilbert space.
A sequence {f; ;;Of C H is called a frame for H, if there exist positive constants
0 < A < B < +00 such that

+00
AllFIP <DL )7 < B||f||?, forall fe H.
i=1

The constants A and B are called lower and upper bounds, respectively.
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frame.
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Throughout this paper, H is considered to be a separable Hilbert space with
associated inner product (-,-) and H is the collection of all closed subspaces of H.
(X, 1) denotes abstract measure space with positive measure p. Iy is the identity
operator on H. B(H;, Hy) is a collection of all bounded linear operators from H; to
Hj. In particular, B(H) denotes the space of all bounded linear operators on H. For
S € B(H), we denote N(S) and R(S) for null space and range of S, respectively. Also,
Py € B(H) is the orthonormal projection of H onto a closed subspace M C H. The
set S(H) of all self-adjoint operators on H is a partially ordered set with respect to
the partial order < which is defined as for R, S € S(H)

R<S < (Rf, f)y<(Sf, f), forall feH.

GB(H) denotes the set of all bounded linear operators which have bounded inverse.
If S, R € GB(H), then R*, R~! and SR also belongs to GB(H). An operator U € B(H)
is called positive if (Uf, f) > 0 for all f € H. In notation, we can write U > 0. If
V € B(H) is positive then there exists a unique positive U such that V? = U. This
will be denoted by V' = UY2. Moreover, if an operator V' commutes with U then V
commutes with every operator in the C*-algebra generated by U and I, specially V'
commutes with U2, GB*(H) is the set of all positive operators in GB(H) and T, U
are invertible operators in GB(H). For each m > 1, we define [m| = {1,2,...,m}.

We present some theorems in operator theory which will be needed throughout this

paper.

Theorem 1.1 (Douglas’ factorization theorem [12]). Let S,V € B(H). Then the
following conditions are equivalent.
(1) R(S) € R(V).
(ii) SS* < N2VV* for some A > 0.
(13i) S = VW for some bounded linear operator W on H.

Theorem 1.2 ([15]). Let M C H be a closed subspace and T' € B(H). Then PyT* =
PyT*Pryz. If T is an unitary operator (i.e., T*T = Iy), then PrT = TPyy.

Theorem 1.3 ([8]). Let Hy, Hy be two Hilbert spaces and U : Hy — Hy be a bounded
linear operator with closed range Ry. Then, there exists a bounded linear operator
U': Hy — Hy such that UUTx = x for all x € Ry.

1.1. K-g-fusion frame. Construction of K-g-fusion frames and their dual were pre-
sented by Sadri and Rahimi [1] to generalize the theory of K-frame [16], fusion frame
9], and g-frame [35].

Definition 1.1 ([1]). Let {W;},_; be a collection of closed subspaces of H and {v;},_;
be a collection of positive weights, {H; }j ., be a sequence of Hilbert spaces. Suppose
A; € B(H, Hj) for each j € J and K € B(H). Then A = {(W;, A;,v;)}jes is called a
K-g-fusion frame for H respect to {H;},_; if there exist constants 0 < A < B < +00
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such that
2
ANKFIP < S0 |8 P, (D] < BIFIP,
jeJ
for all f € H. The constants A and B are called the lower and upper bounds of

K-g-fusion frame, respectively. If K = Iy then the family is called g-fusion frame
and it has been widely studied in [18-20, 31].

Define the space
2 (1)ses) = {{Uibies 1y € Hy SURIP < o0,
j
with inner product given by
{fitierdgitier) = ; {fi:9i)u, -
j

Clearly, (2 ({H j}j . J) is a Hilbert space with the pointwise operations [1].

1.2. Controlled K-g-fusion frame. Controlled frame is one of the newest gener-
alization of frame. P. Balaz et al. [6] introduced controlled frame to improve the
numerical efficiency of interactive algorithms for inverting the frame operator. In
recent times, several generalizations of controlled frame namely, controlled K-frame
[26], controlled g-frame [27], controlled fusion frame [23], controlled g-fusion frame
[34], controlled K-g-fusion frame [28] etc. have been appeared.

Definition 1.2 ([28]). Let K € B(H) and {W;},_; be a collection of closed subspaces
of H and {v;},.; be a collection of positive weights. Let {H;},_; be a sequence of
Hilbert spaces, T, U € §B (H ) and A; € B(H, H;) for each j € J. Then the family
Ary = {(Wj,Aj,v5)} e, is a (T, U)-controlled K-g-fusion frame for H if there exist
constants 0 < A < B < +o00o such that
(1.1) A|K* £ <S03 (A Pw,UF, A P, TF) < B f|1%,

jed
for all f € H. If Ay satisfies only the right inequality of (1.1) it is called a (T, U)-
controlled g-fusion Bessel sequence in H.

Let Ary be a (T, U)-controlled g-fusion Bessel sequence in H with a bound B. The
synthesis operator T : Ky, — H is defined as

* * 1/2 2k *
T ({o; (7P 05052, U) ™ £} ) = SRy s,
J€ jedJ

for all f € H and the analysis operator T¢, : H — X, is given by

Tef = {vj (T*PW].A;AJ-PWJ.U)l/2 f} . forall feH,

jeJ
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where

Ka, = {{“ﬂ' (T*PWjAjAJPWjUY/Qf} e H} C({H}yes)-

The frame operator S¢ : H — H is defined as follows:
Scf =TeTef =Y viT Py, AN Py, U f,

jed

jedJ

for all f € H and it is easy to verify that
(Scf, f) = v (\;Pw,Uf, AP, TF),

jeJ
for all f € H. Furthermore, if Apy is a (T, U)-controlled K-g-fusion frame with
bounds A and B, then AKK* < S¢c < Bly.

1.3. Continuous controlled g-fusion frame. In recent times, controlled frames
and their generalizations are also studied in continuous case by many researchers. P.
Ghosh and T. K. Samanta studied continuous version of controlled g-fusion frame
in [21].

Definition 1.3 ([21]). Let F': X — H be a mapping, v : X — R* be a measurable
function and {K}, . be a collection of Hilbert spaces. For each x € X, suppose that
Ay € B(F(z), K;)and T, U € GB*(H). Then Apy = {(F(x), Ay, v(x))},cx is called a
continuous (7', U)-controlled generalized fusion frame or continuous (7', U)-controlled
g-fusion frame for H with respect to (X, u) and v, if

(i) for each f € H, the mapping x +— Pp(;)(f) is measurable (i.e., is weakly
measurable);

(i7) there exist constants 0 < A < B < 400 such that

(12) AP < [ @) (MaPrU T, AePreoTF) de < BISIP
X

for all f € H, where Pp(y) is the orthogonal projection of H onto the subspace F(x).
The constants A, B are called the frame bounds. If only the right inequality of (1.2)
holds then Ay is called a continuous (7', U )-controlled g-fusion Bessel family for H.

Let Ary be a continuous (7, U)-controlled g-fusion Bessel family for H. Then the
operator S¢ : H — H defined by

(Scf.g) = / 0*(@) (T* Py A A PrnyU £, 9) dpta,
X

for all f,g € H, is called the frame operator. If Ay is a continuous (7', U)-controlled
g-fusion frame for H, then from (1.2), we get

A(f, Y <(Scf, f) < B{(f, f), forall fe H.
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The bounded linear operator T¢ : L? (X, K) — H defined by

(To®,9) = [ v*(2) (T" PooyNoDs Priy U £, 9) dite.
X
where for all f € H, & — {U(x) (7" Pri A3 A PriyU) f} and g € H, is called

zeX
synthesis operator and its adjoint operator is called analysis operator.

1.4. Weaving frame. Woven frame is a new notion in frame theory which has been
introduced by Bemrose et al. [7]. Two frames {f;},.; and {g;},; for H are called
woven if there exist constants 0 < A < B < 400 such that for any subset o C I the
family {fi},c, U {9i}icpe is @ frame for H. This frame has been generalized for the
discrete as well as the continuous case such as woven fusion frame [17], woven g-frame
[24], woven g-fusion frame [25], woven K-g-fusion frame [32], continuous weaving frame
[36], continuous weaving fusion frame [33], continuous weaving g-frames [3], weaving
continuous K-g-frames [5], controlled weaving frames [29], continuous controlled K-g-
frames [30] etc.

In this paper, woven continuous controlled K-g-fusion frame in Hilbert spaces is
presented and some of their properties are going to be established. We discuss sufficient
conditions for weaving continuous controlled K-g-fusion frame. Construction of woven
continuous controlled K-g-fusion frame by bounded linear operator is given. At the
end, we discuss a perturbation result of woven continuous controlled K-g-fusion frame.

2. WEAVING CONTINUOUS CONTROLLED K-¢g-FUSION FRAME

In this section, we first give the continuous version of controlled K-g-fusion frame
for H and then present weaving continuous controlled K-g-fusion frame for H.

Definition 2.1. Let K € B(H) and F : X — H be a mapping, v : X — R*
be a measurable function and {K,},  be a collection of Hilbert spaces. For each
x € X, suppose that A(z) € B(F(z),K,) and T,U € GB*(H). Then Ary =
{(F(x),A(z),v(x))},cx is called a continuous (7, U)-controlled K-g-fusion frame for
H with respect to (X, u) and v, if

(i) for each f € H, the mapping x — Pp(;)(f) is measurable (i.e., is weakly
measurable);

(i7) there exist constants 0 < A < B < 400 such that

@1 ANKSI < [ @) (M) PrwU S, Aw) P TF ) daa < BISIP
X

for all f € H, where P, is the orthogonal projection of H onto the subspace F(x).
The constants A, B are called the frame bounds.

Now, we consider the following cases.

(7) If only the right inequality of (2.1) holds, then Apy is called a continuous
(T, U)-controlled K-g-fusion Bessel family for H.
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(i7) If U = Iy, then Ay is called a continuous (7', I )-controlled K-g-fusion frame
for H.

(13i) If T = U = Iy, then Apy is called a continuous K-g-fusion frame for H (for
more details, refer to [4]).

(iv) If K = Iy, then Ary is called a continuous (7', U)-controlled g-fusion frame
for H.

Remark 2.1. 1f the measure space X = N and p is the counting measure then a
continuous (7, U)-controlled K-g-fusion frame will be the discrete (7', U)-controlled
K-g-fusion frame.

2.0.1. Example. Let H = R3 and {e1, €2, €3} be an standard orthonormal basis for H.
Consider

32{$€R3:HxH§1}.

Then it is a measure space equipped with the Lebesgue measure p. Let us now
consider that {B, By, B3} is a partition of B where u(By) > u(Bs) > u(Bs) > 1.
Let H = {W;, Wy, W3}, where Wi = Span{ej, e}, Wo = Span {es, e3} and Wy =
Span {e;, e3}. Define F': B — H by

Wy, if x € By,
F(x) =< W,, ifx € By,
W3, if x € Bs,
and v : B — [0,+00) by
1, if x € By,
v(x) =<2, ifx € By,
—1, ifx € B;s.

It is easy to verify that F' and v are measurable functions. For each x € B, define the

operators

A)(f) = MEB -(f e
k

f € H, where k is such that x € By and K : H — H by
K€1:€1, K€2:€2, K€3:O.

It is easy to verify that K*e; = e, K*es = ey, K*e3 = 0. Now, for any f € H, we

have
2

3
S (frew) Krerl| = [(f e+ [(f.e2)]* < £

i=1

Let T (f1, fa, f3) = (5.f1,4f2,5f3) and U (f1, fa, f3) = (%, %, %) be two operators on
H. Then it is easy to verify that T,U € §GB"(H) and TU = UT. Now, for any

I f|I* =
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f=(f1,fe, f3) € H, we have

[ v*@) (M@) PryU £, A (@) Pry Tf ) d

=3 [02(@) (M) PrilU £ M) Prof TS ) d

16 d
=i+ S+
This implies that

5 16
S fIP < / v}(2) (A@) PrU S, A@) Pro TS ) dp < I

Thus, Ary be a continuous (T, U)-controlled K-g-fusion frame for R3.
Now, we present woven continuous controlled K-g-fusion frame for H.

Definition 2.2. A family of continuous (7, U)-controlled K-g-fusion frames given by
{(Fi(z), Ai(z), vi(2)) }iepny eex for H is said to be woven continuous (7', U)-controlled
K-g-fusion frame if there exist universal positive constants 0 < A < B < 400 such
that for each partition {0}, of X, the family {(F;(z), Ai(2), vi(2)) }icpn) veo, 18 @
continuous (7', U)-controlled K-g-fusion frame for H with bounds A and B.

Each family {(F;(z), Ai(2), vi(2))}icjm) veo, 18 called a weaving continuous (7', U)-
controlled K-g-fusion frame. For abbreviation, we use W. C. C. K. G. F. F. instead
of the statement of woven continuous (7, U)-controlled K-g-fusion frame.

In the following proposition, we will see that every woven continuous controlled
K-g-fusion frame has a universal upper bound.

Proposition 2.1. Suppose for each i € [m], {(Fi(x),Ai(x), vi(x))},cx be a con-
tinuous (T,U)-controlled K-g-fusion Bessel family for H with bound B;. Then for
any partition {0}, of X, the family {(Fi(z), Ai(x), vi(2)) }ic ) veo, 8 a continuous
(T, U)-controlled K -g-fusion Bessel family for H.

Proof. Let {a,;}ie[m] be a arbitrary partition of X. For each f € H, we have

> [ @) (M) Pry U fs M) Pro T ) i

i€[m] g,
<> /U?(ﬂf) (Mi(@)Proy U f, Ail@) Pry T ) dp
i€[m] x
< (Z Bi) £,
1€[m]

This completes the proof. O
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Next, we give a characterization of W. C. C. K. G. F. F. for H in terms of an
operator.

Theorem 2.1. Let the families given by A = {(F(x),A(z),v(x))},cx and I' =
{(G(z),A(z),v(x))},cx be continuous (T, U)-controlled K -g-fusion frames for H. The
the following statements are equivalent.

(i) Aand T are W. C. C. K. G. F. F. for H.

(7i) For each partition o of X, there exist & > 0 and a bounded linear operator

O, : L2 (X,K) — H defined by
(6,0,9) = / 0*(@) (T" PeoyAw) M) Peoy U ) dita

+ / ) (T" Pao)D(2) T (x) Pa)U £, 9) dita,

g € H such that aKK* < 0,07, where

o’

2%, K) = {o=ouv: [ o2 < +ocf,
X
where for all f € H,
1/2
6= {v(:c) (7" Prw (@) A(2) Pro U) f}

rEoT

and

- {v(m) (7" Peoy T (@) D) Poy U) f}

Proof. (i) = (ii) Suppose that A and B are the universal lower and upper bounds
for A and I'. Take ©, = T2, for every partition o of X, where TZ is the synthesis
operator of

x€oc

{(F(2), M), v(2)) }pep U{(G(2), M), 0(2)) }ege -
Thus, for each ® € L2 (X, K), we have

(0,2, 9) = (122, 9)
—/ ) (T PryM@)* M) PrwyU £, g) dpts

+/ ) (T PeD(x) T(@) e U f,g) dpia, g € H.

Since A and I' are woven, for each f € H, we have
* o\ * 2 *
A fIP < (T2) FIF = 10 fII*
Thus, aKK* < 0,0%, a = A.
(17) = (i) Let o be a partition of X and f € H. Now it is easy to verify that

01 ={0(@) (T Prioy M) A(w) PrayU) f}m
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. . 1/2
U {U<x> (T* Py D(2) D) Pogy U) f}
Thus, for each f € H, we have

a|K* I < |OLfIF = / v(a) <A< ) Pria U f M) ProyTf ) dps

rECT®

+/ ) PoU .0 () Pay T ) dps.

Hence, A and I" are W. C. C. K. G. F. F. for H. This completes the proof. O

In the following theorem, we will construct W. C. C. K. G. F. F. for H by using a
bounded linear operator.

Theorem 2.2. Let {(Fi(x), Ai(2), vi(2)) }icpnyver, b€ @ W. C. C K. G. F. F. for H
with universal bounds A and B. If V € B(H) is invertible such that V* commutes
with T, U and V' commutes with K, then {(VE(x), Ai(:B)PFi(x)V*,vi(xD}
aW. C. C.K G F.F. forH.

i€[m],z€0;

Proof. Since Pp)V* = Pp,)V* Py, 2) for all € 0; and i € [m], the mapping
T Pyp e is weakly measurable For each f € H, we have

3 /vf(:c) (Ai(@) Pra)V* P iy U £, Aa(@) Prao) VE Py T ) dpi

i€lm] x

=D / < &) Ppyy VU f, Ai( )PFi(x)V*Tf> dyu,
i€[m] x

=2 / () (Mi(x) Pry) UV £, Ai(2) Pr oy TV £ ) dp
i€[m] x

<B|V*fI* < BIVI*I£I*
On the other hand, for each f € H, we have
S [ 2@) (M) Pro)V* Pon@U L, ) PV P TF )
i€lml x
SAIKVIP = AVE I > AV R
This completes the proof. 0

Corollary 2.1. Let {(Fi(2), Ai(2), vi(2)) }iepmweo; b€ @ W. C. C. K. G. F. F. for H
with universal bounds A and B. If V € B(H) is invertible such that V* commutes
with T,U and V' commutes with K, then {(VFZ(x), Ai(x)PFi(x)V*,vi(x))}
aW.C.C.VKV* G.F.F. for H.

i€[m],x€0;
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Proof. According to the proof of Theorem 2.2, universal upper bounds is B||V||?. On
the other hand, for each f € H, we have

A A 2 2
I(VEV) fI* = IVEV I < A KTV Fl
VI VI
<3 [ B@) (@) P UV Aul) Py TV ) di
ie[m] x
= Z / < )PVF Uf F( )PVFi(x)Tf> dfts,
iclm) X
where A;(x)Pp,z)V* = I'i(x). This completes the proof. O

Theorem 2.3. Let V € B(H) be invertible operator such that V* (V1" commutes
with T and U. Suppose {(VFi(x),Ai(x)PFi(x)V*,vi(x))},e[ oo, isa W. C. C. K. G.

F. F. for H with universal bounds A and B. Then {(F;(z), Ai(2), vi(2)) }icpm veo; V€
o« W.C.C.V'KV. G. F. F. for H.

Proof. Now, for each f € H, using Theorem 1.2, and taking A;(x)Pp,)V* = I'i(x),
we have

|V||2 H( )*fHZ - |V||2 HV*K* (v

<AHK*( Al

<3 [ (E@Pmt (V) LT Rt (V) 1) o
<3[R rEu () T (V) ) du
_E%/ () (Tu(x) (V1) UL Tilw) (V) T ) dps
-2 / ) (M) Pryo) U f, M) Pro) T f ) dp

On the other hand, for each f € H, it is easy to verify that
2
> [ 3@) (M) Prw U f ) Pro TS ) i < B[V 1512
’LG[m}X

This completes the proof. O

Next, we will see that the intersection of components of a W. C. C. K. G. F. F.
with a closed subspace is a W. C. C. K. G. F. F. for the smaller space.

Theorem 2.4. Let {F(z),A(x),v(7)},cx and {G(z),I'(z), w(z)},cx be W. C. C.
K. G. F. F. for H and W be a closed subspace of H. Then the families given by
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{F(x) N W, A(x),v(x)},cx and {G(x) "W, T'(x), w(x)}, .y are W. C. C. K. G. F. F.
for W.

Proof. The operators Pp)nw = Pp(z) (Pw) and Powyow = P (Pw) are orthogonal
projections of H onto F(x) N W and G(x) N W, respectively. Let o be a measurable
subset of X. Then for each f € W, we have

/ v(a) <A< ) PriayU f, Ma) Prgo) T ) diis

+ /w PoyU f,T(@) Po T f ) die
—/ x) PpoyPwU f, A(z )PF(z)PWTf> dftz
+ /w (I(2) Poga P U f,T(2) P Pw T ) dpiy
- / 2)Prow U f, A@) Prioyw T ) diia
* / w wrwUf.T(@) Peorw T ) dp.
This completes the proof. 0

The following theorem states the equivalence between W. C. C. K. G. F. F. and a
bounded linear operator.

Theorem 2.5. Let V € B(H) be an invertible operator such that V* commutes with
T,U. Suppose K be a bounded linear operator on H which have closed range. Let
Ay = {(F(z), Ai(2), vi(2)) }icpny veo, be @ W. C. C. K. G. F. F. for H with universal
bounds A and B. Then the family given by

Ay = {(Vﬂ(a:), Ai(2) Pry) V7, Uz‘(?l?)) }

i€[m],xz€0;
isa W. C. C. K. G. F. F. for H if and only if there exists a 6 > 0 such that for each
f € H, we have ||[V*f|| > § || K*f||.

Proof. Suppose that Apy is a W. C. C. K. G. F. F. for H with bounds C' and D.
Then for each f € H, using the Theorem 1.2, and taking A;(z)Pp,)V* = Ti(z), w
have

CIEfIP< Y /U?(l’) <Fz‘(17)PVFi(x)Ufa Fi(x)PVFi(x)Tf> dfiy

i€[m] X

= > / v} (@) (Mi(@) Pr@) VU £, i) Pr o) VT f ) dpte

i€[m] x

= Y [ 3@ (M@ Pr UV £, M) Pry TV ) i

i€[m] x
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< B|[V*f|*.
Thus,

IV*fll = \/C/BIK*fIl, forall f € H.

Conversely, suppose [|[V*f|| > § ||K*f|| for all f € H. Since K have a closed range,
by Theorem 1.3, for all f € H, we get

Vsl =| (&) K

< || v
Now, for f € H, we have

3 /uf(g;) (@) Pryo)V* PosoU f. Ai(@) PV Py i) TF ) dp

i€lm] x

= Z/ 2) (M) Proy UV f, i (@) Pro TV f ) dp

i€[m] x
S ARV = AR v > As KT e )1
This completes the proof. O

The next theorem shows that it is enough to cheek continuous weaving controlled
K-g-fusion woven on smaller measurable space than the original.

Theorem 2.6. Suppose for each i € [m], {(Fi(x), Ai(z),vi(z))},cx be a continuous
(T, U)-controlled K -g-fusion frame for H with universal bounds A; and B;. If there ex-
ists a measurable subset Y C X such that the family of continuous (T, U)-controlled K -
g-fusion frame {(Fi(x), Ai(2), vi(2)) }iepny vy s @ W. C. C. K. G. F. F. for H with uni-
versal frame bounds A and B. Then the family given by {(Fi(z), Ai(x), vi(2)) }ic i) zex
isa W. C. C. K. G. F. F. for H with universal frame bounds A and 3 ;¢ B

Proof. Let {o;}
p: X = Cby

icpm) b€ an arbitrary partition of X. For each f € H, we define

= > Xou(®@) (Ai(@) Py U f, Mil@) Proy Tf )

1€[m]
Then ¢ is measurable. Now, for each f € H, we have
> /vf(m) <Ai(x)PFl.(x)Uf, Ai(x)PFi(m)Tf> dpt,

i€[m] g,

<Z/ 2) (M@) Py U f, M) P T ) i

i€[m] x

< (Z Bi) £
1€[m]
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It is easy to verify that {o; MY}, is a partitions of Y. Thus, the family given by
{(Fi(z), Ai(2), vi(2)) }icpm) weoiny 18 @ continuous (T',U)-controlled K-g-fusion frame
for H with lowest frame bound A. Therefore,

S [ v ) (M) P U f. M) Pro TS ) di

i€[m] g,
> >, / vi () <Ai($)PFi(x)Uf7 Ai($)PFi(z)Tf> dptz
iE[m]o.imY
> Al £
This completes the proof. O

In the following theorem, we show that it is possible to remove vectors from con-
tinuous controlled K-g-fusion frames and still be left with woven frames.

Theorem 2.7. Let {(Fi(x), Ai(2), vi(2)) }icpnyves; b€ @ W. C. C. K. G. F. F. for H
with universal bounds A and B. If there exists 0 < D < A and a measurable subset
Y C X and n € [m] such that for f € H

> [ 0@ (M@ Prw UL i) Prw TF) dpe < DK
ie[m]\{”}x\y

then the family {(Fi(x), Ai(2), vi(2) }icpmwey 8 @ W. C. C. K. G. F. F. for H with
frame bounds A — D and B.

Proof. Suppose that {;},(,, and {7:};c,, are partitions of Y and X'\ Y, respectively.
For a given f € H, we define ¢ : Y — C by
P(x) = 3 Xou(2) (Ai(2) Proy U f, Ai(@) PRy T )
i€[m)|
and ¢ : X — C by
3(r) = D Xown () (M) PryU f, Ai(2) Pro Tf ) -

i€[m]

Since {(E($)> Az<x>7 Ui(x))}ie[m},memuw

frame for H and ¢ = ¢|y, ¢ and ¢ are measurable. So, for each f € H, we have

3 [ 03 @) (M) Pry U S Ase) Progoy T ) die

i€[m] g,

<Y [ @) (M@)PrwU . Adw) Pro T ) dus < BIF]12

ie[m]UiU’yi

is a continuous (7', U)-controlled K-g-fusion

Now, we assume that {;},.(,,, such that &, = 0. Then {§ Ui},
X and so for any f € H, we have

> [ v@) (Ml@) P U S, M) Pr T ) di

i€[m] g,

m) 18 a partition of
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= > [/Uz'2<x)<Ai(‘r)PFi(x)UfaAi<x)PFi(z)Tf>d,ulx

ielm\{n} Le o,
_/ %) Pryo)U £, Mi(@) Proy Tf ) dpta

+ [ v a) (M@ P U, M) P T dﬂx]
> 5[ 0 (M) P UM P )

ietnl\{n} Le, o,
— [ @) (M) Proy U1 M) Prooy T ) i

=Y [ 0@ (M@)PrU S Mi(@) P T ) dp

- > / v} (z) <Ai(m)PFi(a:)Ufa Ai(I)PFi(z)Tf> d

icm]\{n}x\y
>(A—D)|K [
This completes the proof.

Proposition 2.2. Let K € B(H) be a closed range operator, V € B(H) be a unitary

operator and {(F(x), A(x),v(x))}

wex be a continuous (T,U)-controlled K-g-fusion

frame for H with bounds A, B. If |1y — V| HKTHZ < A/B and V' commutes with

T,U, then

A ={(F(2), A@),v(@)}ex, A ={(VF(@), M)V, v(2)) }
are W. C. C. K. G. F. F. for Rg.

Proof. Let o be a partition of X. Since K € B(H) has a closed range, for f € Ry,

we have || f]|* < HKTHQ |K* f||°. Now, for each f € Ry, we have
/ o(2) (@) PeoyUf. Ale) Peoy Tf ) dits
+/ (A@)V Py 1pU f, M)V Py pio T f ) dt

- [ UL A@) P TS ) d
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+/ ) Pr)UV f, Az )PF(:c)TVf> dps
> / UL, M) Pry T ) dp
—/ (@) Py U (I = V) f, M@) ProyT (I = V) f ) dpe

> AIK S = B Ia = VI* |/
>ANK P~ B[ In — VI || 51
= (A= Bltn VI [K[) 15117
Hence, the families A and A" are W. C. C. K. G. F. F. for R. ([l

Next, we will see that under some sufficient conditions sum of two continuous
(T, U)-controlled K-g-fusion frames is woven with itself.

Theorem 2.8. Let K € B(H) be an invertible operator, the families given by
A ={(F(z),A(z),v(x))},ex and I' = {(G(z), A(z),v())},cx be continuous (T,U)-
controlled K -g-fusion frames for H with bounds A, B and C, D, respectively. Suppose
for each x € X

(i) F(x )CG( )t
(#0) A(x)Pp@yR(U) L A(x) P R(T);
(#i1) M) PraR(T) L A(x) Po@R(U).

If for any pa'r’tztzon o of X, (TZ)" is bounded below then

A =A{(F(z) + G(z), Ax), v(2))}pex
and N are W. C. C. K. G. F. F. for H.

Proof. Since for each z € X, F(z) C G(z)*, we have Pr(y)16(z) = Pr(x) + Prz). Now,
for each x € X, using the given conditions (ii) and (iii), we have

@) <A< ) Preycito)U S M) Py T ) dits

:/Uz Pr) + Pow)) Uf, M) (Pry + Paw) T ) dpta
= [ v3(2) (A@)ProyU f M@) Py T ) ds
22)  + / e ><A< )Py U f M) Poo T f ) dpss

X
<(B+D)|fII*
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On the other hand, from (2.2), we get

[ @) (M) Pryo@U f M) ProraT ) dpe > (A -+ O) | K
X
for all f € H. Thus, A is a continuous (7', U)-controlled K-g-fusion frame for H with
bounds (A + C) and (B + D).
Furthermore, since K is a invertible operator and for any partition o of X, (Tg)"
is bounded below, for each f € H, there exists M > 0 such that

ITR) FI° = M2|£)1° =

K*

Now, for each f € H, we have

/ v*(2) (M) Pr(ay iU S M) PegayrawTF ) dita

+/ (M) PrayU f, M) PrayTf ) it
= [ v*(@) (M) ProyU f, M) ProyTF ) dps

- / v}(@) (M@) PrwU f, M@) Ppeoy Tf ) dite

+ U/vz(a:) (A@) (Pr) + Pow) U, A@) (Pr) + Pow) TF ) dpts
_ / 22(:13) (A(@)PeoyU f. A(x) Py Tf ) dts

.,

/v2(x) <A( %) Pe)U f, A(x) Pg Tf> dpt,

* o\ ¥ M
ALK+ 7 A1 > (A4

On the other hand,

[ @) (A@) PreyamU f M) Py T ) di

+ / o(2) (A@) Prioy U f, A@) Prcoy T ) djts
< [ 0(@) (M) Priayso@U £, M) PreaysoTF) dis

X

+ [ v (@) (M) PryU f. M@) Peo Tf) die,

X

) Tl
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<(2B+ D)| f|I*.
Thus, A and A are W. C. C. K. G. F. F. for H. Similarly, it can be shown that A
and [ are W. C. C. K. G. F. F. for H. This completes the proof. U

In the following theorem, we present a sufficient condition for weaving continuous
controlled K-g-fusion frame in terms of positive operators associated with given
continuous controlled K-g-fusion frame.

Theorem 2.9. Let the families given by A = {(F(x),A(z),v(x))},cx and I' =
{(G(x),A(z),v(x))},ex be continuous (T,U)-controlled K-g-fusion frames for H.
Suppose for each x € X, the operator U, : H — H defined by

UalF)sg) = [ 0@ (T AU, ) dp

X

f,g € H, where A(x) = Pl (2)I'(2) Pa@) — Pra)N (2)A(2) Ppy, is a positive
operator. Then A and T" are W. C. C. K. G. F. F. for H.

Proof. Let A, B and C, D be frame bounds of A and I', respectively. Take o be any
partition of X. Then for each f € H, we have

AlEfI* < / o) <A(x)PF<x>Uf, @) P Tf ) dte

_/ ) Py U f, Mx) Pr)Tf ) dpts
+/ ) (7" Priay M) M) Proy U S £ ) dpss
_/ ) Ppa)U f, A(x) PpeayTf ) dpts
_/ 2)Uf, f) dpe
+ / ) (T" Py D) () Po U f, ) dp,
< [0 (M PrialU SN Prc T
+/ UL D) P TF) di
JB+DMN?

Thus, A and I"are W. C. C. K. G. F. F. for H with universal bounds A and B+D. []

Theorem 2.10. Suppose for each i € [m], {(Fi(z), Ai(x),vi(x))},cx be a continuous
(T, U)-controlled K-g-fusion frame for H with bounds A; and B;. Suppose Y be
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measurable subset X and there exists N > 0 such that for all i,k € [m] with i # k
0< [(Tulf.TiTf) dp < Nmin{®,Q}, [ € H,
Y

where
ik =07 (2)Ai(%) Pry () — vi(2) Ak (2) Pry (2
© :/U?(x) <Ai($)PFi(z)Uf7 Ai(x)PFi(x)Tf> iz,

Y
Q= [ 3(@) (M@ Pr@U f M) Pry o TF ) dte
Y

Then the family {(F;(x ) (), 0i(2) e xiepm 8 W. C. C. K. G. F. F. for H with
and B, where A = 3,1, Ai and B = 3¢ B

universal bounds W

Proof. Let {oi},c(,, be a partition of X. Then for f € H, we have
S ANKSIP < S [ o) (Mle) PreoU S, Aia) Pr Tf ) i

i€[m] i€[m] x

=y ¥ /vf(m) <Ai(ac)PFi($)Uf, Ai(x)PFi(w)Tf> dpiy

i€[m] ke[m]q,,

< 5 [ [0 (Moo F M0 P T

ie[m] Lg;

+ Z (iU, DT f) dpy
ke[m) kic,

+ > vi(2) <Ak(x)PFk(z)Uf7 Ak<x>PFk(x)Tf> d,um] ,
ke[ml] kg,
Lk :UE(CE)AZ‘(J/‘)PFZ.(QC) — UZ (ZL‘)Ak (I)PFk(I)
< 3 [ [0 (o) PrioU F Ao e

ie[m] Lg;

+ 3 (V1) [ R@) (Aa(@) P U S Aelw) Pri Tf>dux],

ke[m],k#i

=D 3" [ 02(@) (M) Pry U S, Mi(@) Pro TF ) it

i€lm]g,

where D = {(m — 1)(N 4+ 1) + 1}. Thus, for each f € H, we have

A
DN+ K1 ig;ﬂj ©) (i) Py U S, M) Py T f ) dp

<B|f|*
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This completes the proof. O

3. PERTURBATION OF WOVEN CONTINUOUS CONTROLLED ¢-FUSION FRAME

In frame theory, one of the most important problem is the stability of frame under
some perturbation. P. Casazza and Chirstensen [10] have been generalized the Paley-
Wiener perturbation theorem to perturbation of frame in Hilbert space. P. Ghosh
and T. K. Samanta have studied perturbation of dual g-fusion frame and continuous
controlled g-fusion frame in [18,21]. In this section, we will see that under some small
perturbations, continuous controlled K-g-fusion frames constitute woven continuous
controlled K-g-fusion frame.

Theorem 3.1. Let the families given by A = {(F(x),A(z),v(x))},cx and I' =
{(G(2),T(z),v(x))},cx be continuous (T, U)-controlled K-g-fusion frames for H with
bounds A, B and C, D, respectively. Suppose that there exist non-negative constants
A, Ay and p with 0 < Ap < 1, p < (1 = X) A — \oB such that for each f € H, we
have

o</ V(T AU, f) dpss

SM/U (x) <A($)PF(1)Uf7A('T)PF(:c)Tf> dpiy

X
+ 2z [ v3(2) (D(@) Pow U S, T (@) Pow Tf ) dpss + | K,

X

where A(z) = (Pp(x)A(x)*A(x)PF(I) — Po@)l'(2) T (2) Poo ) Then, A and I' are W.
C.C. K. G. F.F. forH.

Proof. Let o be a partition of X. Now, for each f € H, we have

> / U A@) Pecoy T dpts — / V(@) (T*A@)U S, f) dps
T / (a )<A( 2)PrnU f. M) Prioy T ) i
)Z ) PryU f, M) P Tf ) dit —)ZUQ(SU) (T"A@)Uf, [) dpe
> (1- ) / 2(2) (M) Pr(o) U f, M) Prcoy T ) dpt

- >\2/U (z) <F(1’)PG($)Uf,F(33)PG(z)Tf> dppe — || K ]

X
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>((1=A)A =B —p) ||K*f||2~
On the other hand,

/’U2 (l’) <A($)Pp(m)Uf, A(x)PF(x)Tf> d,ux
+ [ 02(@) (T(@) PowU £, T(2) Pogw TS ) i
< / o*(@) (A(@) Priy U f, M) Pego) T ) diis

X
'+‘/dﬂ(x)<leﬁ}%ﬂxﬂ]faF(x)Pwajif>dﬂx
X

<(B+D)|IfI*
This completes the proof. 0
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