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EXISTENCE OF SOLUTIONS FOR INHOMOGENEOUS
BIHARMONIC PROBLEM INVOLVING CRITICAL

HARDY-SOBOLEV EXPONENTS

ABDELAZIZ BENNOUR1, SOFIANE MESSIRDI1, AND ATIKA MATALLAH2

Abstract. This paper is devoted to the study of biharmonic problems. More
precisely, we consider the following inhomogeneous problem{

∆2u − µ
(

u
|x|4

)
=
(

|u|2∗(s)−2u
|x|s

)
+ λ

(
u

|x|4−α

)
+ f(x), x ∈ Ω,

u = ∂u
∂n = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN and N ≥ 5, under sufficient conditions on
the data and the considered parameters, we prove the existence and multiplicity
of solutions, by virtue of Ekeland’s Variational Principle and the Mountain Pass
Lemma.

1. Introduction

In this paper, we consider the following inhomogeneous problem

(1.1)

∆2u − µ
(

u
|x|4
)

=
(

|u|2∗(s)−2u
|x|s

)
+ λ

(
u

|x|4−α

)
+ f(x), x ∈ Ω,

u = ∂u
∂n

= 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN , N ≥ 5, containing 0 in its interior, 0 < µ <

µ := N2(N−4)2

16 , λ > 0, 0 ≤ s, α < 4, α ̸= 0, f ∈ H−2(Ω) (H−2(Ω) denotes the dual
space of the Sobolev space H2

0 (Ω)), ∆2 is the biharmonic operator and 2∗(s) = 2(N−s)
N−4

is the Sobolev critical exponent.

Key words and phrases. Palais-Smale condition, Ekeland’s variational principle, critical Hardy-
Sobolev exponent, singularity, biharmonic problem.
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The nonlinearity has a critical growth imposed by the critical exponent of Sobolev
and the singular potentials, which causes a loss of compactness of the considered
problem, consequently the classical methods cannot be applied directly, which make
the study hard and more difficult.

We quote here some realized problems: The regular case in our problem, i.e.,
µ = λ = s = 0 has been studied by Deng et al. [5]. By using Ekeland’s Variational
Principle [6] and the Mountain Pass Lemma [1], they proved the existence of multiple
solutions for f ̸= 0 satisfying a suitable assumption.

For s = λ = 0 and f ≡ 0, D’Ambrosio and Jannelli in [2], proved that there exists
radial solutions Uµ positive, symmetric, decreasing and solve

∆2u − µ

(
u

|x|4

)
= |u|2∗−2u, x ∈ RN , u(x) > 0.

In [7], Kang and Xu studied the following problem∆2u − µ
(

u
|x|4
)

=
(

|u|2∗(s)−2u
|x|s

)
+ λ|u|q−2u, x ∈ Ω,

u = ∂u
∂n

= 0, x ∈ ∂Ω,

where 0 ≤ s < 4 and 2 ≤ q < 2∗ = 2N
N−4 . By variational arguments the existence of

nontrivial solutions of the problem is established.
In what follows, we state our main results for which we consider the following

hypothesis

(1.2) 0 < inf

CN(T (u))
N−2s+4

8−2s −
∫
Ω

fudx : u ∈ H2
0 (Ω),

∫
Ω

(
|u|2∗(s)

|x|s

)
dx = 1

 ,

where

CN =
(8 − 2s

N − 4

)(
N − 4

N − 2s + 4

)N−2s+4
8−2s

and
T (u) =

∫
Ω

(
|∆u|2 − µ

(
u2

|x|4

)
− λ

(
u2

|x|4−α

))
dx.

Theorem 1.1. i) Let µ ∈]0, µ[, λ ∈]0, λ1[ and f satisfying the condition (1.2), then
the problem (1.1) has at least a solution.

ii) There exists µ̂ ∈]0, µ[ such that, for µ ∈]0, µ̂[, λ ∈]0, λ1[ and f satisfying the
condition (1.2), then (1.1) has at least two solutions, if

1) 0 < α ≤ 1
2 for N ≥ 5;

2) 1
2 < α < 4 for 5 ≤ N < 12.

The positive constants λ1 and µ̂ will be given later.
This paper is organized as follows. In the forthcoming section, we give some

preliminaries and technical lemmas used in our work. In section 3 we give a detailed
proof of Theorem 1.1.
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2. Preliminary Results

2.1. Definitions and notations. Throughout this article, ∥ · ∥− denotes the norm
of the Sobolev H−2(Ω), on(1) is any quantity which tends to zero as n goes to infinity
and O(εs) verifies |O(εs)

εs | ≤ C, where C is a positive constant.
Problem (1.1) is related to the following Rellich inequality [8]

(2.1)
∫
Ω

u2

|x|4
dx ≤ 1

µ

∫
Ω

|∆u|2dx, for all u ∈ H2
0 (Ω),

where H2
0 (Ω) is the completetion of C∞

0 (Ω) with respect to the norm (
∫
Ω
(|∆u|2dx) 1

2 .
Then the following best constant is defined

(2.2) Aµ,s(Ω) := inf
u∈H2

0 (Ω)\{0}

∫
Ω

(
|∆u|2 − µ u2

|x|4
)

dx(∫
Ω

|u|2∗(s)

|x|s dx

) 2
2∗(s)

, for 0 < µ < µ.

Note that it is well known that Aµ,s(Ω) is independent of any Ω ⊂ RN and that is
not obtained except in the case with Ω = RN . Moreover, the minimizers of Aµ,s(Ω)
have been investigated by [7]. Thus, we will simply denote Aµ,s(Ω) = Aµ,s(RN) = Aµ,s.

The authors in [2, 7] proved that Aµ,s is attained in RN by the functions{
yε(x) = ε

4−N
2 Uµ

(
x

ε

)
: ε > 0

}
,

and achieved∫
Ω

(
|∆yε(x)|2 − µ

(
|yε(x)|2

|x|4

))
dx =

∫
Ω

(
|yε(x)|2∗(s)

|x|s

)
dx = A

(N−s
4−s )

µ,s ,

such as Uµ satisfies for µ ∈]0, µ[:
(a) lim

ρ→0
ρa(µ)Uµ(ρ) = k1, lim

ρ→0
ρa(µ)+1U ′

µ(ρ) = k3;
(b) lim

ρ→+∞
ρb(µ)Uµ(ρ) = k2, lim

ρ→+∞
ρb(µ)+1U ′

µ(ρ) = k4,

where ki ∈ R, i = 1, . . . , 4 and b(µ) = (N−4
2 )(2 − θ(µ

µ
)), a(µ) = (N−4

2 )θ(µ
µ
), θ : [0, 1] →

[0, 1] is given by

θ(t) = 1 −

√
(N − 2)2 + 4 −

√
16(N − 2)2 + t(N − 4)2N2

N − 4 .

Let us define ϑ : [0, 1] → [0, 1] as follows:

ϑ(t) = t(t − 2)((N − 4)t + 4)((N − 4)t − 2N + 4)
N2 .

Let us put

ςα = 1
16(N − 4 − α)(N − 4 + α)(N2 − α2),
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ζs =(N − 4)2(s − 4)
(N + 4)4

[
N2s3 − (2N3 + 4N2)s2

+ (N4 + 10N3 − 20N2 + 64N − 64)s − 6N4 + 20N3 − 64N2 + 64N
]
,

and set µ̂ = min(ςα, ζs).

Remark 2.1. (a) θ is continuous and strictly increasing.
(b) ϑ is an increasing homeomorphism and its inverse is θ.

In this paper, we use H2
0 (Ω) to denote the completetion of C∞

0 (Ω) with respect to
the norm,

∥u∥2 :=
∫
Ω

(
|∆u|2 − µ

(
u2

|x|4

))
dx.

By (2.1), this norm is equivalent to the usual norm (
∫
Ω
|∆u|2dx) 1

2 .

Let u ∈ H2
0 (Ω) be a weak solution of (1.1) if for all φ ∈ H2

0 (Ω),∫
Ω

∆u∆φ−
∫
Ω

(
µ

|x|4

)
uφdx−

∫
Ω

(
|u|2∗(s)−2

|x|s

)
uφdx−

∫
Ω

(
λ

|x|4−α

)
uφdx−

∫
Ω

fuφdx = 0.

It is true that the weak solutions of Problem (1.1) are equivalent to the nonzero
critical points of the energy functional associated to (1.1) given by the following
expression:

I(u) = 1
2T (u) − 1

2∗(s)

∫
Ω

|u|2∗(s)

|x|s
dx −

∫
Ω

fudx, for all u ∈ H2
0 (Ω).

Definition 2.1. A functional I ∈ C1(H2
0 (Ω);R) satisfies the Palais-Smale condition

at level c, ((PS)c for short), if any sequence (un) ⊂ H2
0 (Ω) such that

I(un) → c and I ′(un) → 0 in H−2(Ω),
contains a strongly convergent subsequence.

2.2. Eigenvalue problem. Due to the Rellich inequality, the operator Lu := ∆2u −
µ u

|x|4 is definite on H2
0 (Ω). Moreover, the following eigenvalue problem with Hardy

potentials and singular coefficient∆2u − µ
(

u
|x|4
)

= λ
(

u
|x|4−α

)
, x ∈ Ω,

u = ∂u
∂n

= 0, x ∈ ∂Ω,

where 0 < α < 4, λ ∈ R, has the first eigenvalue λ1 given by:

λ1 = inf
u∈H2

0 (Ω)\{0}

∫
Ω

(
|∆u|2 − µ

(
u2

|x|4
))

dx∫
Ω

u2

|x|4−α dx
.

Since the embedding H2
0 (Ω) ↪→ L2(Ω, |x|α−4) is compact, by choosing a minimizing

sequence, we easily infer that λ1 can be obtained in H2
0 (Ω) and λ1 > 0.
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2.3. Nehari manifold. As the energy functional I is well defined in H2
0 (Ω) and

belongs to C1(H2
0 (Ω),R) and is not bounded from below on H2

0 (Ω), we consider it on
the Nehari manifold

N := {u ∈ H2
0 (Ω) : ⟨I ′(u), u⟩ = 0}.

It is usually effective to consider the existence of critical points in this smaller subset
of the Sobolev space. We can split N for:

N+ :={u ∈ N : ⟨I ′′(u), u⟩ > 0},

N− :={u ∈ N : ⟨I ′′(u), u⟩ < 0}

and
N0 := {u ∈ N : ⟨I ′′(u), u⟩ = 0}.

Denote inf
N

I = c0.

2.4. Some technical lemmas.

Lemma 2.1. If µ ∈]0, µ[, α > 0 and 0 < λ < λ1, then

inf

(T (u)) 1
2 :

∫
Ω

|u|2∗(s)

|x|s
dx = 1

 = M > 0.

Proof. We know that

λ1

∫
Ω

u2

|x|4−α
dx ≤

∫
Ω

(
|∆u|2 − µ

(
u2

|x|4

))
dx,

we deduce that
T (u) ≥

(
1 − λ

λ1

)∫
Ω

(
|∆u|2 − µ

(
u2

|x|4

))
dx.

Thus, by Rellich inequality, we get(
1 − λ

λ1

)(
1 − µ

µ

)∫
Ω

|∆u|2dx ≤ T (u) ≤
∫
Ω

|∆u|2dx.

Then (T (u)) 1
2 ≥

√
KS > 0 for all u ∈ H2

0 (Ω) such that
∫
Ω

|u|2∗(s)

|x|s dx = 1. Here S =

inf
u∈H2

0 (Ω)\{0}

∫
Ω

|∆u|2dx.∫
Ω

|u|2∗(s)
|x|s dx

and K = (1 − λ
λ1

)(1 − µ
µ
). We immediately have that M > 0. □

Lemma 2.2. Let f ̸= 0 satisfying condition (1.2). Then N0 = ∅.

Proof. Suppose that N0 ̸= ∅, then for u ∈ N0 we have

T (u) = (2∗(s) − 1)
∫
Ω

|u|2∗(s)

|x|s
dx.
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Thus,

(2.3) 0 = ⟨I ′′(u), u⟩ = T (u)−
∫
Ω

|u|2∗(s)

|x|s
dx−

∫
Ω

fudx = (2∗(s)−2)
∫
Ω

|u|2∗(s)

|x|s
dx−

∫
Ω

fudx.

From (1.2) and (2.3), we obtain

0 < CN(T (u))
N−2s+4

8−2s −
∫
Ω

fudx

= (2∗(s) − 1)


 T (u)

(2∗ − 1)

∫
Ω

|u|2∗(s)

|x|s
dx


N−2s+4

8−2s

− 1

 ∫
Ω

|u|2∗(s)

|x|s
dx

= 0,

which yields a contradiction. □

Lemma 2.3. Let f ̸= 0 satisfying (1.2). For every u ∈ H2
0 (Ω), u ̸= 0 there exists a

unique t+ = t+(u) > 0 such that t+u ∈ N−. In particular,

t+ >

 T (u)
(2∗(s) − 1)

(
N−2s+4

8−2s

)


N−2s+4
8−2s

= tmax(u) and I(t+u) = max
t≥tmax

I(tu).

Moreover, if
∫
Ω
fudx > 0, then there exists a unique t− = t−(u) > 0 such that t−u ∈

N+, t− < tmax(u) and I(t−u) = min
0≤t≤tmax

I(tu).

Proof. The lemma is proved in the same way as in [5]. □

Lemma 2.4. Let f ̸= 0 satisfying (1.2). For each u ∈ N \ {0}, there exist ε > 0
and a differentiable function t = t(w) > 0, w ∈ H2

0 (Ω) \ {0}, ∥w∥ < ε, satisfying the
following there conditions:

t(0) = 1,

t(w)(u − w) ∈ N, for all ∥w∥ < ε,

⟨t′(0), v⟩ =

∫
Ω
[2∆u∆v − 2

(
µ

|x|4 + λ
|x|4−α

)
uv − 2∗(s) |u|2∗(s)−2

|x|s uv − fv]dx

T (u) − (2∗(s) − 1)
∫
Ω

|u|2∗(s)

|x|s dx
.(2.4)

Proof. Define the map F : R × H2
0 (Ω) → R,

F (t, w) = sT (u − w) − t2∗(s)−1
∫
Ω

|u − ω|2∗(s)

|x|s
dx −

∫
Ω

(u − w)fdx.

Since F (1, 0) = 0, ∂F
∂t

(1, 0) = T (u) − (2∗(s) − 1)
∫
Ω

|u|2∗(s)

|x|s dx ̸= 0, applying the implicit
function theorem at the point (1, 0), we can get the result of this lemma. □
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In the following lemma, we prove that N− is closed and disconnects H2
0 (Ω) in exactly

two connected components E1 and E2.

E1 =
{

u ∈ H2
0 (Ω) : u = 0 or ∥u∥ < t+

(
u

∥u∥

)}
and

E2 =
{

u ∈ H2
0 (Ω)\{0} : ∥u∥ > t+

(
u

∥u∥

)}
.

Lemma 2.5. Assume that condition (1.2) is satisfied, then
(a) N− is closed;
(b) H2

0 \N− = E1 ∪ E2;
(c) N+ ⊂ E1.

Proof. Let (un) ⊂ N− and w = lim
n→+∞

un, then w ∈ N. Assume by contradiction that
w /∈ N−, then

(2.5) T (un) − (2∗(s) − 1)
∫
Ω

|un|2∗(s)

|x|s
dx < 0,

T (w) − (2∗(s) − 1)
∫
Ω

|w|2∗(s)

|x|s dx = 0. So, w ∈ N0 this implies that w = 0. From (2.5) and

Lemma 2.1, we get KS2 < (2∗(s) − 1)
∫
Ω

|un|2∗(s)

|x|s dx, so KS2 < (2∗(s) − 1)
∫
Ω

|w|2∗(s)

|x|s dx,

which yields to a contradiction.
Let u ∈ N− and v = u

∥u∥ , then t+(u) = 1, and there exists a unique t+(v) such that
t+(v)v ∈ N−. As t+(v)v = t+

(
u

∥u∥

)
1

∥u∥u ∈ N−, then t+
(

u
∥u∥

)
1

∥u∥ = t+(u) = 1. Thus,
if u ∈ H2

0 (Ω) and t+
(

u
∥u∥

)
1

∥u∥ ̸= 1, then u /∈ N− and H2
0 (Ω) = E1 ∪ E2.

Let u ∈ N+. Then t−
(

u
∥u∥

)
1

∥u∥ = t−(u) = 1. Since t+(u) > t−(u), it follows that
t+(u) = t+

(
u

∥u∥

)
1

∥u∥ > 1. So, ∥u∥ < t+
(

u
∥u∥

)
, and we conclude that N+ ⊂ E1. □

Let the cut-off function φ(x) = φ(|x|) ∈ C∞
0 (Ω) such that 0 ≤ φ(x) ≤ 1 in B(0, R)

and φ(x) = 1 in B(0, R
2 ). Set uε = φ(x)yε(x), the following asymptotic properties

hold.

Proposition 2.1. Suppose that N ≥ 5, µ ∈]0, µ[. Then

(1)
∫
Ω

(
|∆uε|2 − µ

(
|uε|2
|x|4

))
dx = A

(N−s
4−s )

µ,s + O(ε2b(µ)−N+4);

(2)
∫
Ω

|uε|2∗(s)

|x|s dx = A
(N−4

4−s )
µ,s + O(ε2∗(s)b(µ)−N+s);

(3)
∫
Ω
|x|α−4|uε|2dx = O(εα);

(4)
∫
Ω

|uε|2∗(s)−1u0
|x|s dx = ε

N−4
2 u0(0)E+O(εN−4

2 ), where E =
∫
RN

U
2∗(s)−1
µ (x)

|x|s dx and µ < ζs.
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Proof. For the estimates (1), (2) one can see in [7], we only verify (3) and (4).
Take R > 0 small enough such that B(0, R

2 ) ⊂ Ω∫
Ω

|x|α−4u2
εdx =

∫
Ω\B(0, R

2 )

|x|α−4u2
εdx +

∫
B(0, R

2 )

|x|α−4u2
εdx

= O(ε4−N+2b(µ)) + ωN

∫
0

R
2
ρα−4y2

ε(ρ)ρN−1dρ

= O(ε4−N+2b(µ)) + ωNε4−N
∫
0

R
2
ρα−4−N−1U2

µ

(
ρ

ε

)
ρN−1dρ

= O(εα),
because ∫

Ω\B(0, R
2 )

|x|α−4u2
εdx ≤ ωN

∫
R
2

R

ρα−4y2
ε(ρ)ρN−1dρ

= ωNε4−N
∫
R
2

R

ρα−4U2
ε

(
ρ

ε

)
ρN−1dρ

= O(ε4−N+2b(µ))
and

ωNε4−N
∫
0

R
2
ρα−4+N−1U2

µ

(
ρ

ε

)
dρ = ωNεα

∫
0

R
2ε

ρα−4+N−1−2b(µ)dρ.

Since α − 4 + N − 1 − 2b(µ) < −1, we get that

ωNε4−N
∫
0

R
2
ρα−4−N−1U2

µ

(
ρ

ε

)
ρN−1dρ = Kεα.

It follows from
∫

Ω\B(0, R
2 )

|x|α−4u2
εdx = O(ε4−N+2b(µ)) and 0 < α < 2b(µ) + 4 − N, that

∫
Ω

|x|α−4u2
εdx =O(εα),

∫
Ω

|x|−su2∗(s)−1
ε u0(x)dx =ε

N−4
2

∫
RN

|y|−s[φ2∗(s)−1(εy) − 1]U2∗(s)−1
ε (y)u0(εy)dy

+ ε
N−4

2

∫
RN

|y|−sU2∗(s)−1
ε (y)[u0(εy) − u0(0)]dy

+ ε
N−4

2

∫
RN

|y|−sU2∗(s)−1
ε (y)dy

=O
(
ε

N−4
2
)

+ ε
N−4

2 u0(0)E,
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where

E =
∫
RN

U2∗(s)−1
µ (x)

|x|s
dx = ωN

∫
0

+∞
U2∗(s)−1

µ (r)rN−s−1dr

≤C1

∫
0

R

rN−s−1−(2∗(s)−1)a(µ)dr + ωN

∫
R

M

U2∗(s)−1
µ (r)rN−s−1dr

+ C2

∫
M

+∞
rN−s−1−(2∗(s)−1)b(µ)dr.

Let N − s − (2∗(s) − 1)a(µ) − 1 > −1 and N − s − (2∗(s) − 1)b(µ) − 1 < −1, thus
µ < ζs. □

3. Proof of Theorem 1.1

The current section contains two subsections. In the first subsection we consider
0 < λ < λ1 and 0 < µ < µ, in the second subsection, we take 0 < λ < λ1 and
0 < µ < µ̂.

3.1. Existence of solution in N+. Using Ekeland’s variational principl, we prove
the existence of a solution in N+.

Proposition 3.1. Let f satisfying (1.2). Then c0 = inf
u∈N

I(u) is achieved at a point
u0 ∈ N+, which is a critical point and even a local minimum for I.

Proof. We start by showing that I is bounded from below in N. Indeed, for u ∈ N we
have:

T (u) −
∫
Ω

|u|2∗(s)

|x|s
dx −

∫
Ω

fudx = 0.

Thus,

I(u) = 1
2T (u) − 1

2∗(s)

∫
Ω

|u|2∗(s)

|x|s
dx −

∫
Ω

fudx

=
(

4 − s

2(N − s)

)
T (u) −

(
N + 4 − 2s

2(N − s)

)∫
Ω

fudx

≥ − (N + 4 − 2s)2

8(N − s)(4 − s)∥f∥2
−.

In particular,

c0 ≥ − (N + 4 − 2s)2

8(N − s)(4 − s)∥f∥2
−.

From Lemma 2.3, we can get t0 = t0(v) such that t0v ∈ N and I(t0v) > 0. Moreover,

I(t0v) = 1
2t2

0T (v) − t
2∗(s)
0

2∗(s)

∫
Ω

|v|2∗(s)

|x|s
dx − t0

∫
Ω

fvdx
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= −1
2t2

0T (v) +
(

1 − 1
2∗(s)

)
t
2∗(s)
0

∫
Ω

|v|2∗(s)

|x|s
dx

< − 4 − s

2(N − s)t2
0T (v) < 0.

Hence,
(3.1) c0 ≤ I(t0v) < 0.

Applying the Ekeland’s variational principle to the minimization problem (1.1), we
can get a minimizing sequence (un) ⊂ N+ satisfying :

(i) I(un) < c0 + 1
n
;

(ii) I(un) ≤ I(w) + 1
n
∥w − un∥, for all w ∈ N.

By taking n large enough, we get from (3.1):

I(un) = 4 − s

2(N − s)T (un) − N + 4 − 2s

2(N − s)

∫
Ω

fundx < c0 + 1
n

≤ − 4 − s

2(N − s)t2
0T (un).

This implies that

(3.2)
∫
Ω

fundx ≥ (4 − s)t2
0

N + 4 − 2s
T (un),

consequently, un ̸= 0 and we have:

(3.3) 4 − s

N + 4 − 2s
· t2

0
∥f∥−

T (un) ≤ ∥un∥ ≤ N + 4 − 2s

(4 − s)ρ ∥f∥−,

where the constant ρ > 0 verifies:
(3.4) T (u) ≥ ρ∥u∥2.

Next we shall prove that ∥I ′(un)∥ → 0 as n → +∞. Hence, let us assume ∥I ′(un)∥ >

0 for n large enough. By Applying Lemma 2.4, with u = un and w = σ
(

I′(un)
∥I′(un)∥

)
,

σ > 0, we can find some tn(σ) = tσ
(

I′(un)
∥I′(un)∥

)
such that

wσ = tn(σ)
[
un − σ

I ′(un)
∥I ′(un)∥

]
∈ N.

By condition (ii), we obtain:
1
n

∥w − un)∥ ≥ I(un) − I(wσ)

= (1 − tn(σ))⟨I ′(wσ), un⟩ + σtn(σ)
〈

I ′(wσ), I ′(un)
∥I ′(un)∥

〉
+ on(σ).

Dividing by σ and passing to the limit as σ goes to zero we derive that:
1
n

(1 + |t′
n(0)| ∥un∥) ≥ −t′

n(0)⟨I ′(un), un⟩ + ∥I ′(un)∥ = ∥I ′(un)∥,
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where t′
n(0) = ⟨t′(0), I′(un)

∥I′(un)∥⟩. So, we conclude that

∥I ′(un)∥ ≤ C

n
(1 + |t′

n(0)|), C > 0.

The proof will be completed once we have shown that |t′
n(0)| uniformly bounded with

respect to n. From (2.4) and the estimate (3.3), we get:

|t′
n(0)| ≤ C1∣∣∣∣T (un) − (2∗(s) − 1)

∫
Ω

|un|2∗(s)

|x|s dx

∣∣∣∣ ,
C1 is a suitable constant. Hence, we must prove that |T (un) − (2∗(s) − 1)

∫
Ω

|un|2∗(s)

|x|s dx|
is bounded away from zero. Arguing by contradiction, assume that for a subsequence
still called (un), we have

(3.5)

∣∣∣∣∣∣T (un) − (2∗(s) − 1)
∫
Ω

|un|2∗(s)

|x|s
dx

∣∣∣∣∣∣ = on(1).

According to (3.3) and (3.5), there exists a constant C2 > 0 such that∫
Ω

|un|2∗(s)

|x|s
dx ≥ C2.

In addition, from (3.5) and by the fact that un ∈ N, we get∫
Ω

fundx = (2∗(s) − 2)
∫
Ω

|un|2∗(s)

|x|s
dx + on(1).

This together with (1.2) imply that

0 < (2∗(s) − 2)


 T (un)

(2∗(s) − 1)
∫
Ω

|un|2∗(s)

|x|s dx


2∗(s)−1
2∗(s)−2

− 1

 = on(1),

which is clearly impossible.
In conclusion,

(3.6) I ′(un) → 0 as n → +∞.

Let u0 ∈ H2
0 (Ω) be the weak limit in H2

0 (Ω) of (un). From (3.2) we derive that∫
Ω
fu0 > 0, and from (3.6) that ⟨I ′(u0), w⟩ = 0, for all w ∈ H2

0 (Ω), i.e., u0 is a weak
solution for (1.1). In fact, u0 ∈ N and c0 ≤ I(u0) ≤ lim

n→+∞
I(un) = c0. So, we deduce

that un → v strongly in H2
0 (Ω) and I(u0) = c0 = inf

u∈N
I(u). Moreover, u0 ∈ N+. So u0

is a local minimum for I. □
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3.2. Existence of solution in N−. In this subsection, for proof of the existence of
a solution in N−, we shall find the range of c where I verifies the (PS)c condition.

Lemma 3.1. Let (un) be any sequence of H2
0 (Ω) satisfying the following conditions:

(a) I(un) → c with c < c0 + 4−s
2(N−s)A

(N−s
4−s )

µ,s ;
(b) ∥I ′(un)∥ → 0 as n → +∞.

Then (un) has a strongly convergent subsequence.

Proof. We have I(un) = c + on(1) and

(3.7) ⟨I ′(un), un⟩ = T (un) −
∫
Ω

|un|2∗(s)

|x|s
dx −

∫
Ω

fundx + on(1).

Then
4 − s

2(N − s)

∫
Ω

|un|2∗(s)

|x|s
dx + on(1) = c + 1

2

∫
Ω

fundx − 1
2⟨I ′(un), un⟩ + O(1).

By using Hölder inquality, we get

(3.8) 4 − s

2(N − s)

∫
Ω

|un|2∗(s)

|x|s
dx ≤ c + 1

2∥f∥−∥un∥ + 1
2∥I ′(un)∥−∥un∥.

From (3.4), (3.7) and (3.8), we have for all ε > 0 :

ρ∥un∥ ≤ T (un) ≤
∫
Ω

|un|2∗(s)

|x|s
dx +

∫
Ω

fundx + ⟨I ′(un), un⟩

≤ 2(N − s)
4 − s

c + N + 4 − 2s

4 − s
(∥f∥− + ∥I ′(un)∥−)∥un∥ + ε∥un∥.

So, T (un) is uniformly bounded. For a subsequence of (un), we can get a u ∈ H2
0 (Ω)

such that un ⇀ u. So, from (b), we obtain that
⟨I ′(u), w⟩ = 0, for all w ∈ H2

0 (Ω).
Then u is a weak solution for (1.1). In particular u ̸= 0, u ∈ N and I(u) ≥ c0. We
have:

un ⇀ u weakly in H2
0 (Ω),

un ⇀ u weakly in L2(Ω, |x|−4) and L2∗(s)(Ω, |x|−s),
un → u strongly in L2(Ω, |x|α−4),
un → u strongly in Lq(Ω) for all 1 ≤ q < 2∗(s).

Let un = u+vn. So, vn ⇀ 0 in H2
0 (Ω). As in Brezis-Lieb Lemma (see [4]), we conclude

that
(3.9) c + on(1) = I(u) + I(vn) +

∫
Ω

fvndx
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and
on(1) = I ′(vn) +

∫
Ω

fvndx.

Without loss of generality, as n → +∞ we may assume that

T (vn) → l,
∫
Ω

|vn|2∗(s)

|x|s
dx → l.

From (2.2) we obtain

l ≥ A
(N−s

4−s )
µ,s .

By (3.9), we deduce that I(u) = c− 4−s
2(N−s) l ≤ c− 4−s

2(N−s)A
(N−s

4−s )
µ,s < c0, which contradicts

the fact that c0 = inf I. Hence, l = 0 and un → u strongly in H2
0 (Ω) as n → +∞. □

Lemma 3.2. Let f ≠ 0 satisfying (1.2) and if 0 < α ≤ 1
2 for N ≥ 5 or 1

2 < α < 4
for 5 ≤ N < 12, then for all t > 0, there exists ε0 > 0 such that for 0 < ε < ε0

(3.10) I(u0 + tuε) < c0 + 4 − s

2(N − s)A
(N−s

4−s )
µ,s .

Proof. We infer from [3] that:∫
Ω

|u0 + tuε|2
∗(s)

|x|s
dx =

∫
Ω

|u0|2
∗(s)

|x|s
dx + t2∗(s)

∫
Ω

|uε|2
∗(s)

|x|s
dx

+ 2∗(s)t
∫
Ω

|u0|2
∗(s)−2u0uε

|x|s
dx + 2∗(s)t2∗(s)−1

∫
Ω

|uε|2
∗(s)−1u0

|x|s
dx

+ O
(
ε2b(µ)+4−N

)
.

Since u0 ∈ N is a solution of (1.1) and from Proposition 2.1, we obtain:

I(u0 + tuε) =I(u0) + t2

2 T (uε) − t2∗(s)

2∗(s)

∫
Ω

|uε|2
∗(s)

|x|s
dx

− 1
2∗(s)

∫
Ω

|u0 + tuε|2
∗(s) − |u0|2

∗(s) − |tuε|2
∗(s) − 2∗(s)|u0|2

∗(s)−2u0tuε

|x|s
dx

=I(u0) + t2

2 T (uε) − t2∗(s)

2∗(s)

∫
Ω

|uε|2
∗(s)

|x|s
dx − t2∗(s)−1

∫
Ω

|uε|2
∗(s)−1u0

|x|s
dx

−O(ε2b(µ)+4−N)

=I(u0) + t2

2 A
(N−s

4−s )
µ,s − t2∗(s)

2∗(s)A
(N−s

4−s )
µ,s − t2∗(s)−1ε

N−4
2 u0(0)E

+ O
(
ε2∗(s)b(µ)−N+s

)
− O (εα) + on

(
ε

N−4
2
)

+ O
(
ε2b(µ)−N+4

)
.
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Define
g(t) = t2

2 A
(N−s

4−s )
µ,s − t2∗(s)

2∗(s)A
(N−s

4−s )
µ,s − t2∗(s)−1ε

N−4
2 u0(0)E, t > 0,

and assume that g(t) achieves its maximum at t0 > 0. Since

t0A
(N−s

4−s )
µ,s − t

2∗(s)−1
0 A

(N−s
4−s )

µ,s = (2∗(s) − 1)t2∗(s)−2
0 ε

N−4
2 u0(0)E,

necessarly 0 < t0 < 1 and t0 → 1 as ε → 0.

Note that t → t2

2 A
(N−s

4−s )
µ,s − t2∗(s)

2∗s
A

(N−s
4−s )

µ,s rises monotonically on [0, 1], so,

I(u0 + tuε) <c0 + 4 − s

2(N − s)A
(N−s

4−s )
µ,s − t2∗−1ε

N−4
2 u0(0)E + O

(
ε2∗(s)b(µ)−N+s

)
− O (εα) + on

(
ε

N−4
2
)

+ O
(
ε2b(µ)+4−N

)
.

We distinguish the following two cases.
Case 1. When 2∗(s)b(µ) − N > 2b(µ) + 4 − N > N−4

2 ≥ α if 5 ≤ N , we have
0 < µ ≤ ςα and 0 < α ≤ 1

2 , then, for µ ∈]0, µ̂[, we obtain:

I(u0 + tuε) < c0 + 4 − s

2(N − s)A
(N−s

4−s )
µ,s .

Case 2. When 2∗(s)b(µ) − N > 2b(µ) + 4 − N > α > N−4
2 if 5 ≤ N < 12, we have

0 < µ < ςN−4
2

and 1
2 ≤ α < 4, then, for µ ∈]0, µ̂[, we obtain:

I(u0 + tuε) < c0 + 4 − s

2(N − s)A
(N−s

4−s )
µ,s . □

Finally, it remains to show the following proposition.

Proposition 3.2. Suppose that f verifies conditions of Lemma 3.2. Then I has a
minimizer u1 ∈ N− such that c1 = I(u1). Moreover, u1 is a solution of Problem (1.1).

Proof. Let (vn) ⊂ N− such that
I(vn) → c1 and I ′(vn) → 0, in H−2(Ω).

For u ∈ H2
0 (Ω) such that ∥u∥ = 1. By Lemma 2.3, there exists a unique t+(u) > 0

such that t+(u)u ∈ N− and I(t+(u)u) = max
s≥tmax

I(su). According to Lemma 2.5, we
have u0 ∈ E1, we can choose a constant c′, which satisfies 0 < t+(u) ≤ c′, for all
∥u∥ = 1, we claim that
(3.11) u0 + t0uε ∈ E2,

where t0 =
(

|c′2−∥u0∥2|
∥uε∥

) 1
2 + 1. In fact, a direct computation shows that:

∥u0 + t0uε∥2 =∥u0∥2 + t2
0∥uε∥2 + 2t0

∫
Ω

(
∆u0∆uε − µ

u0uε

|x|4

)
dx

=∥u0∥2 + t2
0∥uε∥2 + on(1)
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>c′2 ≥
[
t+
(

u0 + t0uε

∥u0 + t0uε∥

)]2

,

for ε > 0 small enough. Thus, claim (3.11) holds. We fix ε > 0 such that both (3.10)
and (3.11) hold by the choice of t0. We set

Γ = {γ ∈ C([0; 1] : H2
0 (Ω)) : γ(0) = u0, γ(1) = u0 + t0uε},

and take h(t) = u0 + tt0uε, which belongs to Γ. From Lemma 3.1, we conclude that:

c = inf
h∈Γ

max
t∈[0;1]

I(h(t)) < c0 + 4 − s

2(N − s)A
(N−s

4−s )
µ,s .

Since every h ∈ Γ intersects N−, we get that:

c1 = inf
N−

I ≤ c < c0 + 4 − s

2(N − s)A
(N−s

4−s )
µ,s .

Using Lemma 3.2, we deduce that vn converges strongly to u1 in H2
0 (Ω). Thus, u1 ∈ N−

and c1 = I(u1). Then I ′(u1) = 0, and thus u1 is a solution of Problem (1.1). We
conclude that Problem (1.1) admits also a solution in N−. □

Proof of Theorem 1.1. By Porpositions 3.1, 3.2 and as N+ ∩ N− = ∅ we deduce that
the problem (1.1) admits two solutions u0 and u1 with u0 ̸= u1. □
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