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THE PERFECT LOCATING SIGNED ROMAN DOMINATION OF
SOME GRAPHS

ABOLAPE DEBORAH AKWU1, TAYO CHARLES ADEFOKUN2, AND OPEYEMI OYEWUMI3

Abstract. In this paper, we introduce the concept of Perfect locating signed
Roman dominating functions in graphs. A perfect locating signed Roman dominating
PLSRD function of a graph G = (V, E) is a function f : V (G) → {−1, 1, 2}
satisfying the conditions that for (i) every vertex v with f(v) = −1 is adjacent
to exactly one vertex u with f(u) = 2; (ii) any pair of distinct vertices v, w with
f(v) = f(w) = −1 does not have a common neighbor u with f(u) = 2 and (iii)
f(v) +

∑
u∈N(v) f(u) ≥ 1 for any vertex v. The weight of PLSRD- function is the

sum of its function values over all the vertices. The perfect locating signed Roman
domination number of G denoted by γP

LSR(G) is the minimum weight of a PLSRD-
function in G. We present the upper and lower bonds of PLSRD- function for trees.
In addition, for grid graph G, we show that γP

LSR(G) ≤ 3
4 |G|.

1. Introduction and Preliminaries

In this paper, we continue the study of variant of Roman dominating function. Let
G = (V, E) be an undirected graph with vertex set V and edge set E. The order
and size of graph G is the number of vertices and edges in G, respectively. The open
neighborhood of vertex u in G is the set of all neighbors of u in G; that is NG(u) =
{v ∈ V | uv ∈ E(G)}. The closed neighborhood of u in G is G[u] = {u} ∪ NG(u).
The degree of u is dG(u) = |NG(u)|. We write Pn for the path of order n.

A leaf of a tree is a vertex of degree one and the support vertex is a vertex adjacent
to a leaf. Let S(T ) and L(T ) denotes the set of all support vertices and the set of
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leaves in T , respectively. We denote |L(T )| = l(T ) and s(T ) = |S(T )|. Let L(u)
denote the set of all leaves adjacent to a support vertex u and l(u) = |L(u)|.

Let G1 and G2 be two graphs. The cartesian product of graphs G1 and G2,
denoted by G1□G2 is the graph with vertex set V (G1) × V (G2) and two vertices
(u1, v1), (u2, v2) ∈ G1□G2 are adjacent if either

• u1, u2 ∈ E(G1) and v1 = v2, or
• v1, v2 ∈ E(G2) and u1 = u2.
The graph Pn□Pm has n rows and m columns. If G = Pn□Pm, then |G| = |nm|.
A subset D ⊂ V is a dominating set of G if every vertex in V \ D has a neighbor

in D. The domination number γ(G) is the minimum cardinality of a dominating set
of G. Let α ∈ {−1, 1, 2} and for any vertex u ∈ G, we denote the set of vertices with
f(u) = α by Vα.

The study of locating dominating sets in graphs was first studied by Slater [19, 20]
whereby many graph related problems with various types of protection are studied.
The objective of the work is to locate the intruder. A locating dominating set D ⊂
V (G) is a dominating set with the property that for each vertex u ∈ V (G) − D, the
set N(u) ∩ D is unique. The locating dominating set of G with minimum cardinality
is known as locating domination number of G. The concept of locating domination
has been considered for several domination parameters, for more result, see [6, 8–10].

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF ) on G if
for every vertex v ∈ V (G) with f(v) = 0 is adjacent to at leaast one vertex u with
f(u) = 2. The weight of RDF denoted by w(f) is the value f(V (G)) = ∑

v∈V (G) f(v).
The RDF on G with minimum weight is known as Roman domination number and
denoted by γR(G). Cockayne et al. [13] introduced Roman domination which was
motivated by the work of Re Velle and Rosing [18] and Stewart [21]. More results on
Roman domination can be found in [11,12].

A perfect Roman dominating function (PRD-function) is a Roman dominating
function f : V (G) → {0, 1, 2} such that for every vertex v ∈ V (G) with f(v) = 0
is adjacent to exactly one vertex u with f(u) = 2. The weight of f is the sum∑

v∈V (G) f(v) denoted by w(f). The perfect Roman domination number denoted by
γP

R(G) is the PRD-function with minimum weight. Henning et al. [14] first study
perfect Roman domination. More work on PRD can be found in [5, 16,17].

A signed Roman dominating function (SRD-function) on a graph G is a function
f : V (G) → {−1, 1, 2} with the condition that for every v ∈ V (G), f(N [v]) ≥ 1.
This concept was introduced by Abdollahzadeh Ahangar in [3]. Further results on
SRD-function can be found in [1, 2].

A RD-function is called a locating Roman dominating function (LRD-function)
if for any pair of vertices u, v with f(u) = f(v) = 0, N(u) ∩ V2 ̸= N(v) ∩ V2 where
w ∈ V (G). The minimum weight of LRD-function is known as the locating Roman
domination number denoted as γL

R(G). See [15] for more result on LRD-function.
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In this paper, we consider the case whereby there will be optimal security control,
that is, the whole empire will be secured in case of multiple attacks at the same time.
This lead to the study of perfect locating signed Roman dominating function.

A perfect locating signed Roman dominating function of a graph G, abbrevated
PLSRD-function is a function f : V (G) → {−1, 1, 2} satisfying the conditions that
(i) every vertex v with f(v) = −1 is adjacent to exactly one vertex u with f(u) = 2;
(ii) for any pair of distinct vertices v, w of V−1, N(v) ∩ V2 ̸= N(w) ∩ V2 and (iii)
f(v) +∑

u∈N(v) f(u) ≥ 1 for any vertex v ∈ G. In Section 2, we present the lower and
upper bonds of PLSRD-functions for trees and in Section 3, we present the upper
bond of PLSRD-functions for the grid graph.

2. Perfect Locating Signed Roman domination of trees

In this section, we presents the lower and upper bounds of PLSRD-functions for
trees. We begin with the following observations and existing result.

Observations.
• For any star graph Sn, γP

LSR(Sn) = n − 1.
• If f is a PLSRD-function, then |D| = |V2|, where D is a minimum dominating

set in T .
Theorem 2.1 ([6]). For any tree T of order n ≥ 2, γL(T ) ≥ ⌈n+1

3 ⌉.
Lemma 2.1. If T is a tree with l leaves, s support vertices and f : V (T ) → {−1, 1, 2}
is a perfect locating signed dominating function, then |V1| ≥ l − s.
Proof. For any support vertex u and an arbitrary vertex x ∈ T with f(x) = 1, we
have |L(u) ∩ V1| ≥ l(u) − 1, then

|V1| ≥
∑
u∈S

(l(u) − 1) =
∑
u∈S

l(u) −
∑
u∈S

1 = l − s. □

Lemma 2.2. For any tree T of order n ≥ 2 with minimum dominating set D, l leaves
and s support vertices, the |D| ≥ n−l+2s

3 .
Proof. Consider the PLSRD-function on the vertices of T by assigning 2 to each
support vertex u and −1 to only one leaf adjacent to support vertex u. Also, assign
1 to the remaining leaves adjacent to support vertex u. The assigned values on the
support vertices and leaves in T follows from the definition of PLSRD-function.

Next, let T ′ be a tree of order n′ obtained from T by deleting all support vertices
and leaves, then n′ = n − l − s. Next, divide the vertices in T ′ into q connected sets
of cardinality 3, i.e. n′ = 3q + r, where q ≥ 0 and 0 ≤ r ≤ 2. Assign 2 to at least one
vertex in each q set. Let the vertices {x, v, w} ∈ T ′ such that r contains one vertex,
say w and {v, w} ∈ E(T ′). If f(v) = {1, 2}, then assign 1 to vertex w. Also, assign
2 to vertex w if f(v) = −1 and there is no vertex x adjacent to v with label 2. If
f(x) = 2 and f(v) = −1, then assign w with label 1.

Let r contain two vertices say {w, y} and {x, v, w, y} is a path in T ′. Set f(w) = −1
and f(y) = 2 if f(v) = 1. Also, set f(w) = −1 and f(y) = 1 if f(v) = 2 and there
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is no adjacent vertex x to v with f(x) = −1, otherwise set f(w) = f(y) = 1. Set
f(w) = 1 = f(y) if f(v) = −1.

The assigned values produces PLSRD-function f . Let V ′
2 denote the set of vertices

in T ′ with label 2. Also for an arbitrary vertex u ∈ T ′ with f(u) = 2, |V ′
2 | ≥ n′

3 , Now,
for an arbitrary vertex u ∈ T with f(u) = 2, we have

|V2| ≥ n′

3 + s = n − l − s

3 + s = n − l + 2s

3 .

Applying observation 2 above, we have |D| = |V2| ≥ n−l+2s
3 . □

Theorem 2.2. For any tree T of order n ≥ 2 with l leaves and s support vertices,
γP

LSR(T ) ≥ n+2l−s
3 .

Proof. Let T be the tree of order n and f : V (T ) → {−1, 1, 2} be a PLSRD-function
defined on T . The set V2 is a minimum dominating set of T . Clearly, D is the locating
dominating set for T , i.e. γL(T ) ≤ |D|. By Lemma 2.2, |D| ≥ n−l+2s

3 which implies
that |V2| ≥ n−l+2s

3 . Also, |V2| = |V−1| since f is perfect and locating dominating
function. Let x ∈ V (T ) such that f(x) = 1, then by Lemma 2.1, |V1| ≥ l − s. Hence,

γP
LSR(T ) =|V−1| + |V1| + |V2| = 2|V2| + |V1| (since |V2| = |V−1|)

≥|V2| + |V1| ≥ n − l + 2s

3 + l − s = n + 2l − s

3 . □

Corollary 2.1. For any tree T of order n ≥ 2, γP
LSR(T ) ≥ n

3 .

Proof. The proof follows from Theorem 2.2. □

Theorem 2.3. If T is a tree of order n ≥ 3, then γP
LSR(T ) ≤ 3

4n, where T is not a
star of order n ≥ 5.

Proof. We proof the result by induction on the order n of the tree. If n = 3, then
γP

LSR(T ) = 2 ≤ 3
4n. Now, let n ≥ 4, if T is a star graph Sn with maximum degree 3,

then γP
LSR(T ) = 3 ≤ 3

4n. Observation 1 applies if maximum degree in Sn is greater
than 3. Assume that T ∗ and T are trees of order n∗ and n respectively, with n∗ ≥ 3
and n∗ < n. Then, γP

LSR(T ∗) ≤ 3
4n∗.

Let the diam(T ) ≥ 3. Suppose diam(T ) = 3, let T be a double star S(r, t), where
r ≥ t ≥ 1 with maximum degree 4. Let v, w be the vertices of T that are not
leaves such that v and w has r and t leaf neighbors, respectively. The function f
assign 2 to each vertices v and w, −1 to only one leaf neighbor of each vertex v
and w, 1 to the remaining leaves in T is a PLSRD-function with weight r + t. So,
γP

LSR(T ) = r + t ≤ 3
4(r + t + 2) = 3

4n. Hence, assume that diam(T ) ≥ 4.
Let v and w be two vertices in T with maximum distance apart. This implies that

v and w are leaves and d(v, w) = diam(T ). Let root the tree at the vertex w and let
{v, u, x, y, r, . . . , w} be a path in T . Note that if diam(T ) = 4, then r = w; otherwise
r ̸= w. The remaining part of the theorem is split into the following claims.

Claim 1. If dT (u) ≤ 4, then γP
LSR(T ) ≤ 3

4n.
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Suppose dT (u) ≤ 4. Let T ∗ be the tree obtained from T by deleting vertex u and
its children. Let T ∗ be of order n∗, then n∗ = n − dT (u). Note that n∗ ≥ 3 since
diam(T ) ≥ 4. Apply induction on tree T ∗, γP

LSR(T ∗) ≤ 3
4n∗ ≤ 3

4(n − 3). Let f ∗ be a
γP

LSR(T ∗)-function. If f ∗(x) ∈ {1, 2}, then f ∗ can be extended to a PLSRD-function f
of T by assigning 2 to vertex u, weights −1 and 1 to vertex v and other leaf neigbhor
of u respectively. Furthermore, if f ∗(x) = −1, this implies that there exist a neighbor
vertex of x (say y) with weight 2. Then f can be obtained from f ∗ as follows:

If dT ∗(y) = 1, re-assigning weights 2, −1 to vertices x, y respectively. If dT ∗(y) ≥ 2
and f ∗(r) = 1, re-assign f ∗(x), f ∗(y), f ∗(r) with weights 1, −1, 2 respectively and
leave the weight of the remaining vertices under f ∗ unchanged. If dT ∗(y) ≥ 2 and
f ∗(r) = 2, re-assign f ∗(x) and f ∗(y) with 1 and leave the weights of the remaining
vertices under f ∗ unchanged.

Also, if dT ∗(y) ≥ 2 and y has a leaf neighbor, re-assign one of the leaf neighbor of
y with −1 and re-assign vertex x with weight 1, leave the weight of the remaining
vertices under f ∗ unchanged.

From the illustration above, f ∗(x) = −1 has been reassign weight 1. Next, extend
f ∗ to a PLSRD-function f as given above whenever f(x) ∈ {1, 2}. Therefore, we
have

γP
LSR(T ) = w(f) ≤ w(f ∗) + dT (u) − 1

≤ 3
4(n − dT (u)) + dT (u) − 1

= 3
4n + dT (u)

4 − 1

≤ 3
4n.

Next, assume that every child of vertex x in T has at most degree 3. For i = 1, 2, 3,
let qi be the number of children of x with degree i. The leaf neighbor of vertex x is
q1. Note that q2 + q3 ≥ 1 since vertex u has degree 2 or 3.

Claim 2. If q3 ≥ 1, then γP
LSR(T ) ≤ 3

4n.
Suppose that q3 ≥ 1, let T ∗ be the tree obtained from T by deleting q3 children of

vertex x and their leaf neighbors. Let n∗ ≥ 3 be the order of tree T ∗ and n∗ = n − 3q3.
Applying induction on T ∗, γP

LSR(T ∗) ≤ 3
4n∗ = 3

4(n − 3q3).
If f ∗(x) ∈ {1, 2}, then we can extend f ∗ to a PLSRD-function f of T by assigning

weight 2 to each child of x with degree 3 and weight 1 and −1 to the leaf neighbors
of each child of x. The resulting function f is a PLSRD-function of T since each
vertex with weight −1 is adjacent to exactly one neighbor with weight 2, vertices with
weight −1 do not have a common vertex with weight 2 and the sum of weights of
each vertex and its neighbors is greater than 1. The weight w(f) = w(f ∗) + 2q3 ≤
3
4(n − 3q3) + 2q3 = 3

4n − q3
4 ≤ 3

4n.
If f ∗(x) = −1, only one leaf of x can have weight 2 and each child of x with degree 3

and their leaf neigbhors will have weight 1. Furthermore, if f ∗(x) = −1, one child of x
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with degree 3 can be assign weight 2 and the remaining child of x of degree 3 and their
leaves neighbors will have weight 1 each. This will produce another γP

LSR(T ∗)-function
that assign larger weight than when f ∗(x) ∈ {1, 2}. Hence, vertex x cannot have
weight −1.

Claim 3. If q3 = 0, then γP
LSR(T ) ≤ 3

4n.
Suppose q3 = 0, then every child of x is a support vertex of degree 2 or a leaf. Let

T ∗ be the tree obtained from T by deleting the vertex x and all its descendants. Let
n∗ be the order of the tree T ∗ where n∗ = n − q1 − 2q2 − 1. Note that n∗ ≥ 2 since
{y, r} ⊆ V (T ∗).

Suppose q1 = 0, then the tree T has the order n = n∗ + 2q2 + 1, assign 1, 2, −1
to vertex x, support vertex adjacent to x and the leaf adjacent to the child of x,
respectively. The assigned weight produces a PLSRD-function f of T of weight

w(f) = w(f ∗) + q2 + 1 = 3
4(n − 2q2 − 1) + q2 + 1 = 3

4n − q2

2 + 1
4 ≤ 3

4n.

Suppose q2 ≥ q1 ≥ 1, then the tree T has the order n = n∗ + 2q2 + q1 + 1. Assign 2
to vertex x and all the support vertices adjacent to x. Also, assign −1 to only one
leaf adjacent to x and the leaf adjacent to child of x. Assign 1 to the remaining leaf
adjacent to x. The assigned weight produces a PLSRD-function f of T of weight

w(f) =w(f ∗) + q2 + q1 = 3
4(n − 2q2 − q1 − 1) + q2 + q1 = 3

4n − q2

2 + q1

4 − 3
4 ≤ 3

4n.

Suppose q2 = 0 and 0 < q1 ≤ 3, then the tree T has the order n = n∗ + q1 + 1. Assign
2 to vertex x, −1 to only one leaf adjacent to x and 1 to the remaining leaf adjacent
to x. The assigned weight produces a PLSRD-function f of T of weight

w(f) = w(f ∗) + q1 = 3
4(n − q1 − 1) + q1 = 3

4n + q1

4 − 3
4 ≤ 3

4n.

Claim 4. If q2 = 0, then γP
LSR(T ) ≤ 3

4n.
Suppose q2 = 0, then every child of x has a vertex with degree 3 or a leaf. Let T ∗

be the tree obtained from T by deleting the vertex x and all its descendants. Let n∗

be the order of the tree T ∗ with n∗ = n − 3q3 − q1 − 1. We consider the claim for
q3 ≥ q1 ≥ 1. Assign 2 to vertex x and each child of x with degree 3. Also assign −1
to only one leaf adjacent to vertex x and one leaf adjacent to child of x with degree 3.
Assign 1 to the remaining leaves adjacent to vertex x and the child of x with degree
3. The assigned weight produces a PLSRD-function f of T of weight

w(f) = w(f ∗) + 2q3 + q1 = 3
4(n − 3q3 − q1 − 1) + 2q3 + q1 = 3

4n − q3

4 + q1

4 − 3
4

≤ 3
4n.

Suppose q1 = 0, then claim 2 holds. If q3 = 0, claim 3 holds.
Claim 5. If q1 = 0, then γP

LSR(T ) ≤ 3
4n.

Suppose q1 = 0, then every child of x has vertices of degree 2 and 3. Let T ∗ with
order n∗ be the tree obtained from T by deleting the vertex x and its descendants.
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Then n∗ = n − 3q3 − 2q2 − 1. Assign 1 to vertex x and 2 to the child of x with degree
2 and degree 3. Also assign −1 to only one leaf adjacent to child of x and 1 to the
remaining leaf adjacent to child of x. The assigned weights produced PLSRD-function
f of T of weight

w(f) = w(f ∗) + q2 + 2q3 + 1

= 3
4(n − 3q3 − 2q2 − 1) + 2q3 + q2 + 1 = 3

4n − q3

4 − q2

2 − 1
4

≤ 3
4n.

Suppose q2 = 0, then claim 2 holds. If q3 = 0, then claim 3 holds.
In all these cases, w(f) ≤ 3

4n. Hence, for n ≥ 3, γP
LSR(T ) ≤ 3

4n. This complete the
proof. □

3. Perfect Locating Signed Roman Domination of Cartesian Product
Graph

In this section, we present an upper bond for the perfect locating signed Roman
domination number of the Grid graph G = Pn□Pm. Let i, 1 ≤ i ≤ n and j, 1 ≤ j ≤ m
denotes the rows and columns in the graph Pn□Pm We denote the vertex in the row
i and column j by uij.

Theorem 3.1. Let n > 5 and m ≥ 2. If G = Pn□Pm, then γP
LSR(G) ≤ 3

4 |G|.

Proof. Define the function f : V (G) → {−1, 1, 2} as shown in figure 1 as follows: For
vertex uij ∈ V (G), we have

f(uij) =



1, if i ≡ 0 or 1 (mod 6) and j even,
1, if i ≡ 3 or 4 (mod 6) and j odd,
−1, if i ≡ 0 or 1 (mod 6) and j odd,
−1, if i ≡ 3 or 4 (mod 6) and j even,
2, if i ≡ 2 (mod 3) for all j.

The function f has a pattern that reoccur at every six rows and every two columns.
The above function f define on the vertices of G gives the PLSRD-function on G,
since each vertex with label −1 is adjacent to only one vertex with label 2, any pair
of vertices uij, vij with label −1 does not have a common neighbor vertex with label
2 and f(uij) +∑

vij∈N(uij) f(vij) ≥ 1. The result will be prove in the following cases.
Case 1: when n ≡ 0 (mod 6) and m a positive integer.
From the above function f , the total sum of labels on each column j is 4n

6 . Therefore,
we have

w(f) = 4nm

6 ≤ 2
3nm + 1

12nm = 3
4nm = 3

4 |G|.

Case 2: when n ≡ 1 (mod 6) and m a positive integer.
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(b) n ≡ 3 (mod 6)

Figure 1. The function f , m odd in (a) and m even in (b)

Define a function f ∗ : V (G) → {−1, 1, 2} as follows:

f ∗(uij) =

1, if i = n and j odd,
f(uij), otherwise.

The above function f ∗ gives PLSRD-function which follows from the definition of
PLSRD-function. From the function f ∗, the total sum of the labels on each column
j is 4(n−1)

6 + 1.
Hence, we have

w(f ∗) = m

(
4(n − 1)

6 + 1
)

≤ 2
3nm + 1

12nm = 3
4nm = 3

4 |G|.

Case 3: when n ≡ 2 (mod 6) and m a positive integer.
Define a function f ∗ : V (G) → {−1, 1, 2} as follows:

f ∗(uij) =

1, if i = n and j even,
f(uij), otherwise.

The above function f ∗ gives PLSRD-function. From the function f ∗, the total sum
of the labels on each odd column j is 4(n−2)

6 + 1 and 4(n−2)
6 + 2 on even column j.
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If m is odd, we have

w(f ∗) = m + 1
2

(
4(n − 2)

6 + 1
)

+ m − 1
2

(
4(n − 2)

6 + 2
)

= 2
3nm + 1

6m − 1
2

≤ 2
3nm + 1

12nm

= 3
4nm = 3

4 |G|.

If m is even, we have

w(f ∗) = m

2

(
4(n − 2)

6 + 1
)

+ m

2

(
4(n − 2)

6 + 2
)

= 2
3nm + 1

6m

≤ 2
3nm + 1

12nm

= 3
4nm = 3

4 |G|.

Case 4: when n ≡ 3 (mod 6) and m a positive integer.
From the above function f , the total sum of the labels on each column j is 4(n−3)

6 +2.
Therefore, we have

w(f) = m

(
4(n − 3)

6 + 2
)

≤ 2
3nm + 1

12nm = 3
4nm = 3

4 |G|.

Case 5: when n ≡ 4 (mod 6) and m a positive integer.
Define a function f ∗ : V (G) → {−1, 1, 2} as follows:

f ∗(uij) =

1, if i = n and j even,
f(uij), otherwise.

The above function f ∗ gives PLSRD-function. From the function f ∗, the sum of the
labels on each column j is 4(n−4)

6 + 3.
Hence, we have

w(f ∗) = m

(
4(n − 4)

6 + 3
)

= 2
3nm + 1

3m

≤ 2
3nm + 1

12nm

= 3
4nm = 3

4 |G|.

Case 6: when n ≡ 5 (mod 6) and m a positive integer.
Define a function f ∗ : V (G) → {−1, 1, 2} as follows:

f ∗(uij) =

1, if i = n and j odd,
f(uij), otherwise.
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The above function f ∗ gives PLSRD-function which follows from the definition. From
the function f ∗, if j is odd, the sum of the labels on each column j is

4(n − 5)
6 + 4 and 4(n − 5)

6 + 3.

for each even column j.
Therefore, if m is odd, we have

w(f ∗) = m + 1
2

(
4(n − 5)

6 + 4
)

+ m − 1
2

(
4(n − 5)

6 + 3
)

= 2
3nm + 1

6m + 1
2

≤ 2
3nm + 1

12nm

= 3
4nm = 3

4 |G|.

Also, if m is even, we have

w(f ∗) = m

2

(
4(n − 5)

6 + 4
)

+ m

2

(
4(n − 5)

6 + 3
)

= 2
3nm + 1

6m

≤ 2
3nm + 1

12nm

= 3
4nm = 3

4 |G|.

Hence, the result follows. □
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