
Kragujevac Journal of Mathematics
Volume 50(2) (2026), Pages 287–296.

EVALUATION SUBGROUPS OF A MAP BETWEEN RATIONAL
FINITE H-SPACES

ABDELHADI ZAIM

Abstract. We use the theory of Sullivan minimal models and derivation to com-
pute the evaluation subgroups and moreover the relative evaluation subgroups of a
map f : X → Y between rational finite H-spaces. As a consequence, we show that
the G-sequence is exact if f induces a zero map on rational homotopy groups.

1. Introduction

In this paper all spaces are assumed to be simply connected CW-complex and are
of finite type over Q, that is, have finite dimensional rational cohomology in each
degree.

An important problem in homotopy theory is the computation of the Gottlieb
groups. It is often difficult to describe these groups fully and the best that can be
hoped for is some partial information about them. As is well known, the homotopy
theory of rational spaces, i.e., spaces whose homotopy groups are vector spaces over
Q, is equivalent to the homotopy theory of minimal commutative differential graded
algebras over Q. More precisely, there is an equivalence between the homotopy
category of rational spaces and the homotopy category of minimal cdgas. However, it
is known that the category of continuous map between rational spaces is equivalent
to the category of morphism between corresponding models.

Now, let us recall the definition of Gottlieb groups. Given a based space X,
the n-th Gottlieb group or the n-th evaluation subgroups of X is the subgroup
of πn (X) consisting of homotopy classes of map h : Sn → X such that the wedge
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(h ∨ IdX) : Sn ∨ X → X extends to a map H : Sn × X → X. Alternately, it is known
that

Gn (X) = Im (ev♯ : πn (aut1 (X)) → πn (X)) ,

where aut1 (X) is the set of self-homotopy equivalences of X which are homotopic to
the identity map. These groups were discovered and studied by Gottlieb in the early
1960’s (the interested reader may consult [4]). They have led to many interesting
results in algebraic topology, especially, in theory of fibrations.

The generalization of Gottlieb groups was initiated by Woo and Kim [10]. Let
f : X → Y be a based map of spaces, then the n-th evaluation subgroups of f , also
called the n-th generalized Gottlieb group is given by:

Gn (Y, X; f) = Im (ev♯ : πn (map (X, Y ; f)) → πn (Y )) .

Here map(X, Y ; f) means that the space of all maps from X to Y that are homotopic
to f . Note that

Gn (X, X; IdX) = Gn (X) ,

and in general we have Gn (Y ) ⊂ Gn (Y, X; f).
The Gottlieb groups and the generalized Gottlieb groups play a profound role in

the homotopy theory of fibrations. But, until now, there are not many explicit compu-
tations of G∗ (X) and G∗ (Y, X; f). Since a map of spaces does not necessarily induce
a corresponding homomorphism of Gottlieb groups, Woo and Lee was introduced the
n-th relative evaluation subgroups Grel

n (Y, X; f), also called the n-th relative Gottlieb
group [11]. The authors showed also that these groups fit in the following G-sequence
(1.1) · · · → Grel

n+1 (Y, X; f) → Gn (X) → Gn (Y, X; f) → Grel
n (Y, X; f) → · · ·

The computation of rational relative evaluation subgroups have been receiving a
growing attention and have become a popular subject of study with a lot of progresses
(see [3, 6, 12,13] for instance). Our goal in this paper is to compute these subgroups
in some new cases. So, by using Sullivan minimal models and other invariants in
rational homotopy theory we compute the relative Gottlieb groups of a map between
rational finite H-spaces. These spaces form a very well-studied and interesting class
of spaces which appear abundantly in geometry and topology. They include products
of rational spheres.

The paper is organized as follows. In Section 2, we introduce our notation and
recall some background of rational homotopy theory, namely Sullivan minimal models,
derivations and mapping cone. Next, we use them to recall the algebraic version of
all terms involved in the G-sequence (1.1). Section 3 is devoted to our results and
their proofs.

2. Preliminaries

We will work with Q as ground field and our principal tools are Sullivan minimal
models. A detailed description of these and the standard tools of rational homotopy
theory can be found in [1]. For our purposes, we recall the following.
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A commutative differential graded algebra (abbreviated cdga) (A, d) consists of
graded vector spaces A = ⊕i≥0A

i with a multiplication Ai ⊗Aj → Ai+j satisfying ab =
(−1)ij ba and a map d : Ai → Ai+1, such that d2 = 0 and d (ab) = d (a) b + (−1)i ad (b)
for all a ∈ Ai and b ∈ Aj. A cdga (A, d) is called simply connected if H0(A, d) = Q
and H1(A, d) = 0. Denote by

V even = ⊕i≥1V
2i and V odd = ⊕i≥1V

2i+1.

We say that a simply connected cdga (A, d) is a Sullivan minimal algebra if it is of
the form

(ΛV, d) = (S(V even) ⊗ E(V odd), d),
such that dV ⊂ Λ≥2V .

For a simply connected CW-complex X of finite type, there is a cdga APL(X)
verifying

H∗(APL(X)) ∼= H∗(X;Q).
Then the Sullivan minimal model of X is defined to be the Sullivan minimal model
of APL(X) which is unique up to isomorphism [1]. Moreover, the rational homotopy
type of X is completely determined by its Sullivan minimal model (ΛV, d), that is,
Hom(V,Q) ∼= π∗(X) ⊗ Q as graded vector spaces.

Now, we go to generalize this situation to any map f : X → Y of simply connected
spaces. A Sullivan model of f is a morphism of cdga’s

ϕ : (ΛW, dW ) → (ΛV, dV ) ,

where (ΛV, dV ) and (ΛW, dW ) are the Sullivan minimal models of X and Y , respec-
tively.

Next, consider ϕ : (ΛW, dW ) → (ΛV, dV ) a morphism of cdga’s. A ϕ-derivation θ of
degree n is a linear map

θ : (ΛW )m → (ΛV )m−n

verifying θ (xy) = θ (x) ϕ (y)+(−1)n|x| ϕ (x) θ (y) for x and y are in W . In the following,
we denote by Dern (ΛW, ΛV ; ϕ) the vector space of ϕ-derivations of degree n and when
n = 1, we require additionally that all derivations are cycles, that is,

dV ◦ θ = −θ ◦ dW .

There is a differential
δ : Dern (ΛW, ΛV ; ϕ) → Dern−1 (ΛW, ΛV ; ϕ) ,

given by
δ (θ) = dV ◦ θ − (−1)n θ ◦ dW .

Moreover, let
Der∗ (ΛW, ΛV ; ϕ) = ⊕nDern (ΛW, ΛV ; ϕ) ,

and in particular
Der∗ (ΛV, ΛV ; IdΛV ) = Der∗ (ΛV ) .
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Further, it is easy to see that there is an isomorphism of graded vector spaces
Der∗ (ΛW, ΛV ; ϕ) ∼= Hom∗ (W, ΛV ) .

Thus, we denote by (w, v) ∈ Der|w|−|v| (ΛW, ΛV ; ϕ) the unique ϕ-derivation sending
an element w ∈ W to v ∈ ΛV and the other generators to zero, and in particular
(w, 1) = w∗ for an element w ∈ W .

In the remainder of this section, we give a description in rational homotopy theory
of all terms involved in the G-sequence (1.1) (see [5]). For this, let us consider the aug-
mentation map ε : ΛV → Q which induces ε∗ : Der∗ (ΛW, ΛV ; ϕ) → Der∗ (ΛW,Q; ε).
Thus, the n-th evaluation subgroups of ϕ is given by
Gn (ΛW, ΛV ; ϕ) = Im {Hn (ε∗) : Hn (Der (ΛW, ΛV ; ϕ)) → Homn (W,Q)} , for n ≥ 2.

So, an element w∗ in Homn (W,Q) is in Gn (ΛW, ΛV ; ϕ) if and only if w∗ extends to
a cycle-derivation θ of Dern (ΛW, ΛV ; ϕ).

A special case of the preceding that is of interest to us is the one in which ΛW ∼= ΛV
and ϕ = IdΛV . In this case, we get:

Gn (ΛV ) = Im {Hn (ε∗) : Hn (Der (ΛV )) → Homn (V,Q)} , for n ≥ 2,

which is called the n-th Gottlieb group of (ΛV, dV ).
The following result is due to S.B. Smith which shows that the rational evaluation

subgroups of a map are completely determined only by the graded vector space of
derivations (see [9]).

Theorem 2.1. Suppose ϕ : (ΛW, dW ) → (ΛV, dV ) is a Sullivan model of a map
f : X → Y between simply connected CW-complexes such that X is finite. Then

Gn (Y, X; f) ⊗ Q ∼= Gn (ΛW, ΛV ; ϕ) , n ≥ 2.

Next, let us remind the notion of mapping cone which is very useful to characterize
the rational relative evaluation subgroups in terms of derivations.

Suppose ϕ : (A, dA) → (B, dB) is a map of differential graded vector spaces. We
define differential graded vector spaces (Rel∗ (ϕ) , D), called the mapping cone of ϕ,
as follows

Reln (ϕ) = An−1 ⊕ Bn.

The differential
D : Reln (ϕ) → Reln−1 (ϕ)

is given by
D (a, b) = (−dA (a) , ϕ (a) + dB (b)) .

Furthermore, we define the following maps
J : Bn → Reln (ϕ) and P : Reln (ϕ) → An−1

by
J (b) = (0, b) and P (a, b) = a, for (a, b) ∈ A × B.
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Next, suppose given a differential graded algebra map ϕ : (ΛW, dW ) → (ΛV, dV ) of
a map f : X → Y . Then, we can constructed a map of chain complexes

ϕ∗ : Der∗ (ΛV ) → Der∗ (ΛW, ΛV ; ϕ) , given by ϕ∗(θ) = ϕ ◦ θ.

The consideration above induces the following commutative diagram

Der∗ (ΛV ) Der∗ (ΛW, ΛV ; ϕ) Rel∗(ϕ∗)

Der∗ (ΛV,Q; ε) Der∗ (ΛW,Q; ε) Rel∗(ϕ̂∗)

ϕ∗

ε∗

J

ε∗ (ε∗,ε∗)

ϕ̂∗ Ĵ

.

In this diagram, ε denotes the augmentation of either ΛV or ΛW . So, the n-th relative
evaluation subgroups of ϕ is defined as follows

Grel
n (ΛW, ΛV ; ϕ) = Im

{
Hn (ε∗, ε∗) : Hn(Rel(ϕ∗)) → Hn(Rel(ϕ̂∗))

}
, for n ≥ 2.

We finish this section by some notations and conventions. The cohomology of a
cdga (A, d) is denoted H∗ (A, d) or just H∗ (A) and let [x] ∈ H∗ (A, d) stand for the
cohomolgy class of the cocycle x ∈ A. In the sequel, all spaces appearing in this paper
are assumed to be rational simply connected CW-complexes, i.e., all spaces satisfy
X = XQ.

3. Relative Evaluation Subgroups of a Map Between Rational Finite
H-Spaces

Our aim in this section is devoted to compute in terms of Sullivan minimal models
and derivations the rational evaluation subgroups and moreover the rational relative
evaluation subgroups of a map between finite H-spaces.

3.1. Evaluation subgroups of a map between rational finite H-spaces. In the
first place, we are interested in determining the evaluation subgroups of a rational
H-space.

Proposition 3.1. Suppose X is a rational H-space. Then G∗ (X) ∼= π∗ (X).

Proof. It is easy, but for the sake of completeness we write a proof. It is well known
that a rational H-space X has the rational homotopy type of a product of Eilenberg-
MacLane spaces, i.e., X ≃Q

∏
i K(Q, ni) (see [8, Corollary 1]). It follows that

G∗ (X) ∼= G∗

(∏
i

K(Q, ni)
)

∼= ⊕iG∗ (K(Q, ni)) ∼= ⊕iπ∗ (K(Q, ni)) ∼= π∗(X),

as required. □

We note that Proposition 3.1 can also be showed by using the Sullivan minimal
model of a rational H-space.

Now let’s move on to evaluation subgroups of a map between rational finite H-spaces.
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Proposition 3.2. Let f : X → Y be a map between rational finite H-spaces, then

G∗ (Y, X; f) ∼= π∗ (Y ) .

Proof. From [1, Example 3, p. 143] we know that the Sullivan minimal model of Y is
given by

(ΛW, 0) = (Λ (y1, y2, . . . , yp) , 0)
and the Sullivan minimal model of X is of the form

(ΛV, 0) = (Λ (x1, x2, . . . , xq) , 0) ,

where p = dim π∗(Y ) and q = dim π∗(X). Now, denote by (yj, 1) the derivation θj in
Der|yj | (ΛW, ΛV ; ϕ) for 1 ≤ j ≤ p. Since the differential on ΛV and ΛW are trivial, it
follows that the differential δ on Der∗ (ΛW, ΛV ; ϕ) is trivial. It is therefore automatic
that θj is closed and not a boundary. Further, we consider

ε∗ : Der∗ (ΛW, ΛV ; ϕ) → Hom(W,Q),

which is given by ε∗(θj) = y∗
j for 1 ≤ j ≤ p. Hence, combining the preceding we

obtain

G∗ (ΛW, ΛV ; ϕ) = ⟨y∗
1, y∗

2, . . . , y∗
p⟩ ∼= Hom(W,Q),

which completes the proof. □

3.2. Relative evaluation subgroups of a map between rational finite H-
spaces. In this subsection, we will present our main result concerning the relative
evaluation subgroups of a map between rational finite H-spaces. First, we offer one
example to illustrate the general idea and then give a summary result.

Example 3.1. Suppose f : X → Y is a map of rational H-spaces which its Sullivan
model

ϕ : (ΛW, 0) = (Λ (x3, y4, z8) , 0) → (ΛV, 0) = (Λ (u3, v5, w9) , 0)
is given on generators by ϕ (x) = u, ϕ (y) = 0 and ϕ (z) = uv. In both Sullivan
minimal models, subscripts denote degrees. We compute Grel

∗ (ΛW, ΛV ; ϕ) as follows.
Let us consider

ϕ∗ : Der∗ (ΛV ) → Der∗ (ΛW, ΛV ; ϕ) ,

which is given by ϕ∗ (u∗) = x∗ + (z, v), ϕ∗ (v∗) = (z, u) and ϕ∗ (w∗) = 0. Thus, we
have immediately

D (u∗, 0) = (0, x∗ + (z, v)) , D (v∗, 0) = (0, (z, u)) and D (w∗, 0) = 0.

Further, it is easy to see that

D (0, x∗) = D (0, y∗) = D (0, z∗) = 0.

An easy argument shows that the elements [(w∗, 0)], [(0, y∗)] and [(0, z∗)] are nonzero
in H∗ (Rel (ϕ∗)). Next, denote by ε∗ (a∗) = â∗ for an element a in W or V . Since,
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we have H∗ (ε∗, ε∗) ([(w∗, 0)]) =
[(

ŵ∗, 0
)]

, H∗ (ε∗, ε∗) ([(0, y∗)]) =
[(

0, ŷ∗
)]

and also
H∗ (ε∗, ε∗) ([(0, z∗)]) =

[(
0, ẑ∗

)]
are nonzero in H∗

(
Rel

(
ϕ̂∗
))

. It follows that

Grel
∗ (ΛW, ΛV ; ϕ) =

〈[(
ŵ∗, 0

)]
,
[(

0, ŷ∗
)]

,
[(

0, ẑ∗
)]〉

.

The following discussion will fix our notation. Suppose f : X → Y is a map between
rational finite H-spaces and denote by ϕ : (ΛW, 0) → (ΛV, 0) the Sullivan model of
f . Let {y1, . . . , yr, yr+1, . . . , ys, ys+1, . . . , yp} be a basis for W and let us consider
{x1, . . . , xr, xr+1, . . . , xt, xt+1, . . . , xq} be a basis for V . By using part (a) of ([2],
Proposition 2.2) and a change of KS-basis, we can write ϕ (yi0) = xi0 for 1 ≤ i0 ≤ r,
ϕ (yi1) ∈ Λ≥2 (x1, . . . , xt) -contains only decomposable elements- for r + 1 ≤ i1 ≤ s
and ϕ (yi2) = 0 for s + 1 ≤ i2 ≤ p. Hence, it is easy to see that ϕ is well defined.

Now, we may extend the argument explained in Example 3.1 to give our main result
in this section.

Theorem 3.1. With the same notation as above, let f : X → Y be a map between
rational finite H-spaces and ϕ : (ΛW, 0) → (ΛV, 0) its Sullivan model. Then

Grel
∗ (ΛW, ΛV ; ϕ) =

〈[(
x̂∗

j2 , 0
)]

,
[(

0, ŷ∗
i1

)]
,
[(

0, ŷ∗
i2

)]〉
,

for t + 1 ≤ j2 ≤ q, r + 1 ≤ i1 ≤ s and s + 1 ≤ i2 ≤ p.

Proof. First, as recalled above denote by
ϕ : (Λ (y1, . . . , yp) , 0) → (Λ (x1, . . . , xq) , 0)

the Sullivan model of f in which is given by ϕ (yi0) = xi0 for 1 ≤ i0 ≤ r, ϕ (yi1) ∈
Λ≥2 (x1, . . . , xt) for r + 1 ≤ i1 ≤ s and ϕ (yi2) = 0 for s + 1 ≤ i2 ≤ p. Thus, it induces
the following map

ϕ∗ : Der∗ (ΛV ) → Der∗ (ΛW, ΛV ; ϕ) ,

where ϕ∗
(
x∗

i0

)
= y∗

i0 + (yi1 , vi1) such that vi1 = x∗
i0 (ϕ (yi1)) , ϕ∗

(
x∗

j1

)
= (yi1 , wi1) such

that wi1 = x∗
j1 (ϕ (yi1)) for r + 1 ≤ j1 ≤ t and finally, ϕ∗

(
x∗

j2

)
= 0 for t + 1 ≤ j2 ≤ q.

Here, since ϕ (yi1) is decomposable, we note that the elements vi1 and wi1 are in
Λ+ (x1, . . . , xt). Further, an easy computation gives that

D
(
x∗

i0 , 0
)

=
(
0, y∗

i0 + (yi1 , vi1)
)

, D
(
x∗

j1 , 0
)

= (0, (yi1 , wi1)) and D
(
x∗

j2 , 0
)

= 0.

Hence, for r + 1 ≤ i1 ≤ s and s + 1 ≤ i2 ≤ p, we have

D
(
0, y∗

i1

)
= D

(
0, y∗

i2

)
= 0.

Next, an easy argument by contradiction shows that
(
x∗

j2 , 0
)

,
(
0, y∗

i1

)
and

(
0, y∗

i2

)
are

not D-boundaries. This means that
[(

x∗
j2 , 0

)]
,
[(

0, y∗
i1

)]
and

[(
0, y∗

i2

)]
are non null

in H∗ (Rel (ϕ∗)) . Otherwise, we see that

Rel∗
(
ϕ̂∗
)

= Der∗−1 (ΛV,Q; ε) ⊕ Der∗ (ΛW,Q; ε) .
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Moreover, we recall that for a ∈ V

ε∗ : Der∗ (ΛV ) → Der∗ (ΛV,Q; ε) , ε∗ (a∗) = â∗,

and let also for b ∈ W

ε∗ : Der∗ (ΛW, ΛV ; ϕ) → Der∗ (ΛW,Q; ε) , ε∗ (b∗) = b̂∗

Next to determine H∗
(
Rel

(
ϕ̂∗
))

, we need to compute the differential D̂ in Rel∗
(
ϕ̂∗
)
.

For this, let
ϕ̂∗ : Der∗ (ΛV,Q; ε) → Der∗ (ΛW,Q; ε) ,

which is defined as follows: ϕ̂∗
(
x̂∗

i0

)
= ŷ∗

i0 and ϕ̂∗
(
x̂∗

j1

)
= ϕ̂∗

(
x̂∗

j2

)
= 0. Hence, in a

similar fashion as above, we prove that the elements
(
x̂∗

j2 , 0
)
,
(
0, ŷ∗

i1

)
and

(
0, ŷ∗

i2

)
are

cycles which are not D̂-boundaries. Then, by summarizing all the above we get

H∗ (ε∗, ε∗)
([(

x∗
j2 , 0

)])
=
[(

x̂∗
j2 , 0

)]
, for t + 1 ≤ j2 ≤ q,

H∗ (ε∗, ε∗)
([(

0, y∗
i1

)])
=
[(

0, ŷ∗
i1

)]
, for r + 1 ≤ i1 ≤ s,

and also
H∗ (ε∗, ε∗)

([(
0, y∗

i2

)])
=
[(

0, ŷ∗
i2

)]
, for s + 1 ≤ i2 ≤ p.

In summary, we have proved that

Grel
∗ (ΛW, ΛV ; ϕ) =

〈[(
x̂∗

j2 , 0
)]

,
[(

0, ŷ∗
i1

)]
,
[(

0, ŷ∗
i2

)]〉
,

for t + 1 ≤ j2 ≤ q, r + 1 ≤ i1 ≤ s and s + 1 ≤ i2 ≤ p. □

Proposition 3.3. Given a map f : X → Y of rational finite H-spaces. Suppose that
f induces an injective morphism on rational homotopy groups, then

Grel
∗ (Y, X; f) ∼= π∗ (Y )⧸π∗ (X) .

Proof. Denote by (ΛW, 0) and (ΛV, 0) the Sullivan minimal models respectively of
Y and X. Let {x1, . . . , xq} be a homogeneous basis for V . As f induces an injec-
tive morphism on rational homotopy groups, we may choose yq+1, . . . , yp such that
{x1, . . . , xq, yq+1, . . . , yp} is a homogeneous basis for W . Further, let us denote by

ϕ : (Λ (x1, . . . , xq, yq+1, . . . , yp) , 0) → (Λ (x1, . . . , xq) , 0)

the Sullivan model of f which is defined as follows: ϕ(xi) = xi for 1 ≤ i ≤ q and
ϕ(yj) = 0 for q + 1 ≤ j ≤ p. Of course, we have ϕ∗(x∗

i ) = x∗
i for 1 ≤ i ≤ q. Then by

using a similar argument given in the proof of Theorem 3.1, we obtain that

Grel
∗ (ΛW, ΛV ; ϕ) =

〈[
(0, ŷj

∗)
]

for q + 1 ≤ j ≤ p
〉

∼=π∗ (Y )⧸π∗ (X) , as graded vector spaces. □

Various conditions are known under which the G-sequence of a map is exact [5, 7].
However, in general there is not information about the exactness of the G-sequence.
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Corollary 3.1. Let f : X → Y be a map between rational finite H-spaces in which f
induces an injective morphism on rational homotopy groups. Then the G-sequence of
f splits into short exact sequence

0 → G∗ (X) → G∗ (Y, X; f) → Grel
∗ (Y, X; f) → 0.

Proof. It follows directly from Proposition 3.1, Proposition 3.2 and Proposition 3.3
together with the G-sequence (1.1). □
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