KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 50(2) (2026), PAGES 187-204.

STUDY OF A STOCHASTIC DIFFERENTIAL SYSTEM OF
ARBITRARY ORDER UNDER G-BROWNIAN MOTION

EL-HACENE CHALABI', AMAR OUAOUA2, AND SALIM MESBAHI?

ABSTRACT. In this paper, we study the existence and uniqueness of the solution
for a class of stochastic differential systems of arbitrary order driven by G-Brownian
motion. We prove under certain suitable conditions that our system has a unique
solution. We also prove a stability theorem for our system.

1. INTRODUCTION

The theory of nonlinear expectations are a generalization of the classical mathe-
matical concept of expectation. Unlike the classical expectation, which is linear, the
nonlinear expectation allows for nonlinearity, which makes it a useful tool in modeling
situations involving uncertainty and risk. Nonlinear expectations have found many
applications in finance, where they are used to model and measure risk. In particular,
they are used in the context of super-hedging, which is a risk management strategy
used to minimize the potential losses of an investment portfolio. By using them,
investors can account for the possibility of extreme market events, which may not
be captured by traditional linear models. They also have applications in other fields,
such as decision theory, statistics, and machine learning. They are used to model
situations where the outcome depends on a combination of factors, rather than just
a single factor, and where there is uncertainty about the relationship between these
factors and the outcome. We find models and applications in different fields in Denis
et al. [2], Y. Lin [9], Peng [13], Ren et al. [15,16], Soumana-Hima [17], Yang [18] and
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corresponding references therein; where we also find techniques and methods used to
discuss such problems.

Peng [14] (for more details see Peng [11]-[13]) introduced the theory of nonlinear
expectation, G-Brownian motion and defined the related stochastic calculus, especially
stochastic integrals of 1t6’s type with respect to G-Brownian motion and derived the
related It6’s formula. Also, the notion of G-normal distribution plays the same
important role in the theory of nonlinear expectation as that of normal distribution
with the classical probability. Gao [5] studied pathwise properties and homeomorphic
property with respect to the initial values for stochastic differential equations driven
by G-Brownian motion. Later Faizullah et al. extended this theory, see for example
[3] and [4].

The existence and uniqueness theorem for some stochastic differential equations
under G-Brownian motion (G-SDEs) with Lipschitz continuous coefficients was de-
veloped by Peng and Gao. This theorem is established by using the stated method
under the Lipschitz and the linear growth conditions.

(1.1) X (t) =X (0) + /Otf(s,X (s))ds + Z /Ot gij(s, X (s))d<Bi,Bj> (s)

+§;/Othj (5, X (5))dB’ (s), tel0,7],

where T' is a positive constant.

The existence and uniqueness of the solution X (¢) for G-SDEs (1.1) under different
conditions was proved by Bai and Y. Lin [1], Faizullah [3,4], Gao [5], Q. Lin [7], Y. Lin
8], Peng and Falei [10], Ren et al. [16], Zhang and Chen [19]. In this paper, we study
the existence, uniqueness and stability of the solution for the following stochastic
differential system driven by G-Brownian motion (SG-SDEs)

X (t) = Xl(dO) + [ fils, X1(s),..., X, (s))ds
+‘Zlf(§ fl,i,j (57X1 (5> )t 7Xn (8)) d<BZ7 Bj> (5>

0 (5 X (5) o X (9) 4B ().
(12 ;
Xo(8) = X (0) 4 [ fou (5, X1 (), X0 (5)) ds

+ ilfg Fois (5, X1(5) -2 X0 (5)) d (B, BIY (s)

7’7]‘:

+§1 JE fos (5. X0 (5) o, X (5)) dBY ().

where (X (0),..., X, (0)) is a given initial condition, ((B*, B7)(t)),s, is the qua-
dratic variation process of the G-Brownian motion (B (t)),s, and all fi (¢, 21, ..., Ty),
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frij (E 1,0 xy), fuj (o, . x,) for t € [0, T], k =1, 2,...,n and i,j =
1, 2,...,d are the integral-Lipschitz coefficients with respect to (z1,...,z,).

The paper is organized as follows. In the following section, we provide some
definitions, remarks and lemmas necessary to fully understand the content of this
work. The third section is devoted to our first contribution, where we prove the
existence and uniqueness of the solution of System (1.2). The last section is devoted
to our second contribution, where we prove another important result on the stability
of solutions.

2. PRELIMINARIES

In this section, we recall some of the basic concepts, definitions, and lemmas that
we will use in this work. More details can be found in Gao [5], Hu and Li [6].

Let € be a given non-empty set and let H be a linear space of real valued functions
defined on €2 such that any arbitrary constant is an element of H, and if X € H then
| X| € H. We consider that 3 is the space of random variables.

Definition 2.1 ([14]). A functional E : H{ — R is called sublinear expectation, if for
all X, Y in H, cin R and A > 0, the following properties are satisfied:

(i) (Monotonicity): if X <Y, then E[X] <E[Y];

(ii) (Constant preserving): E [c] = ¢;

(iii) (Sub-additivity): E[X + Y] <E[X]+ E[Y];

(iv) (Positive homogeneity): E [AX] = AE [X].

The triplet (2, H,E) is called sublinear expectation space.

We assume that if Xi, Xs,..., X, € H, then (X, Xs,...,X,) € H for each

¢ € CrLip(R™), where Cy1ip(R™) is the space of linear functions ¢ defined as follows,
for all z,y € R”

Crup(R") ={p:R" = R:fp(z) =) < CA+[z[" + [y|") [z — y[},
where C' is a positive constant and m € N* dependent only on ¢.
Definition 2.2 ([13]). Let X, Y be two n-dimensional random vectors defined on
nonlinear expectation spaces (€, Hi,E;) and (Qq, Hy, Es), respectively. They are
called identically distributed, denoted by X < Y, if E, [0 (Y)] = E; [¢ (X)] for each
¢ € Cprip(R™).

Definition 2.3 ([6]). In a sublinear expectation space (2, H,E), a random vector Y
€ H"™ is said to be independent from another random vector X € H™ if

Elp(X,Y)] =E[E[p(5,Y)],_y], forall € Cprp(R™ x R").
X is called an independent copy of X, if X L X and X is independent from X.

Remark 2.1. Under a sublinear expectation space, Y is independent from X means
that the distributional uncertainty of Y does not change after the realization of
X =z. Or, in other words, the conditional sublinear expectation of ¥ knowing X is
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E[p(z,Y)],_x. In the case of linear expectation, this notion of independence is just
the classical one.

Remark 2.2. It is important to note that Y is independent from X does not imply
that X is independent from Y.

Let S¢ be the space of d x d symmetric matrices. I is a given non-empty, bounded
and closed subset of S?. For A = (Am-)d € S? given, we define G : S? — R by

i,j=1

G(A) = ;sup tr (fwT’"A) :

ver

where 47" is the transpose matrix of v, and tr (VVT’"A> is the trace of a matrix
(1™ 4).
Definition 2.4 ([8]). In a sublinear expectation space (€2, H,E), a d-dimensional vec-
tor of random variables X € H¢ is G-normal distributed, if for each ¢ € Cj 1;,(R?), the
function u (t,z) = E (90 (x +VtX )) is the unique viscosity solution of the following
parabolic equation called the G-heat equation

Ju

i G (DQU) . with u(0,2) = ¢ (z), (t,r) € Ry x RY,

d
where D%y = (8;1;]“) _is the Hessian matrix of u.
/L?-]

Remark 2.3. In fact, if d = 1 we have G (a) = 5 (o™ —¢’a™), where 72 =
E[X?], ¢ = —E[-X?], a™ = max{«,0} and o~ = max {—a,0}. We write X ~
N(0; [2?,77]).
Definition 2.5 ([14]). A process (B (t)),s in a sublinear expectation space (€, 3, E)
is called a G-Brownian motion if the following properties are satisfied:

(1) B(0) = 0;

(ii) for each ¢, s > 0, the increment B (t + s) — B (t) is N(0; [0?s, 7%s])-distributed
and is independent from (B (¢1),...,B (t,)) foreachn e Nand 0 <¢; <-.-<t, <t

d
Remark 2.4. For any a € RY, B%(t) := Y a,B* (t) is a one-dimensional G,-Brownian
k=1

motion, where

G, (6) - ;Sup tr (677TTGGTT> - ; (O-aaTT6+ + O-faaTTB_) ) 6 € Ru

el
and
OgaTr = SUP tr (WVTTaaTT) . O_gqTr = —suptr (—WWTTaaTT) )
~ver ~yel

We denote by Q = Cy(R) the space of all R-valued continuous functions w defined on
R, such that w (0) = 0, equipped with the distance

+m>1

plwi,wz) = ];27%% [H{ws (t) — w2 ()] A 1]



STOCHASTIC SYSTEM UNDER G-BROWNIAN MOTION 191

For each fixed T' > 0, let Q7 = {w (A7) : w € Q},

Lip(Qr) ={@(B (t1),...,B(tm)) :m>1, t1,...,tnm € [0,T], ¢ € CrLip(R™)},
and let

Lip(Q2) = DO Lip (©

Peng [13] constructs a sublinear expectation E on (€2, Lip(€2)) under which the
canonical process (B (t)),s, (i-e., B(t,w) = w (t)) is a G-Brownian motion. In what
follows, we consider this G-Brownian motion.

We denote by L¢(Qr), p > 1, the completion of Lip(Qr) under the norm ||X||, =

(E[|X |p]) Similarly, we denote L7(Q) the completion of Lip(Q2). We can represent
this sublinear expectation by the following theorem.

Theorem 2.1 ([13]). In a sublinear expectation space (Q,H,E), a sublinear expecta-

tion E[-] has the following representation: there exist a family of probability measures
P on Q such that
E(X) =supE” [X], for X € L; (%),
PeP

where BT stands for the linear expectation under the probability P.

For a finite partition of [0, T, mr = {to,t1,...,tn}, We set

,LL(7TT) = max{]tkﬂ — tk‘ k= O, 1, . ,N — 1}
Consider the collection M5’ (0, T) of simple processes defined by

Zﬁk [[tk tk+1[( )

where &, € L%, (Q,), k=0,1,...,N — 1, and p > 1.
The completion of M%° (0, T) under the norm

il = (7 )

is denoted by ME(0,T). Note that MA(0,T) C M&(0,T) for 1 <p <gq.

B =

Definition 2.6. For each n € M2’0(0 T), the G-It0’s integral is defined by

100 = [ 0(6) 48 (5 = 6B () = B 1)

The mapping n — I(n) can be extended contmuously to MZ(0,T).

Definition 2.7. The increasing continuous process ((B%) (t)),~q, with (B%) (0) =
0 defined by -
N—1

(BYY (1):= lim Y (B () - B (1)) = (B (1))* -2 /0 "B () dB° (s)

,u,(ﬂ‘iN)%O k=0
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is called the quadratic variation process of (B (t)),-

Definition 2.8. Define a mapping Qo1 : M5’ (0,T) — L% (Qr) as follows

T N—-1
Qor (1) = /O n(s)d(B?) (s) == Y &(B") (trs1) — (B) (tr))-
k=0
Then Qo7 can be uniquely extended to M} (0,7). We still denote this mapping by

Qur () = [ n()d(BY) (), neM;0.T).

Burkholder-Davis-Gundy (BDG) inequalities play an important role in the study
of G-stochastic differential equations. There has been an increased interest in the
following lemmas, see Gao [5].

Lemma 2.1 ([5]). Letp>1,n€ M5(0,T), a, a € R and 0<s<t<T. Then
u _ p

‘A n(r)d (B, B7) (r) ]

O (ata)ata)™ + O a—a)(a-a)7" ) 1 !

<< etmera” * Ty >T> (t— ) 1/5 E [n (u)"] du.

Lemma 2.2 ([5]). Letp>2,n€ ME(0,T),a € R and 0 < s <t <T. Then

s | [0y aze )

where C, > 0 is a constant independent of  and a.

Elsup

s<u<t

P
2

p p_q [t »
<Gyt lt=s* [ Elln )] du,

In the following, we also need the following two important lemmas.

Lemma 2.3 (Bihari’s inequality, [1]). Let ¢ : R, — Ry be a continuous and in-
creasing function that ¢ (07) = 0 and fol % = +o00. Let u be a measurable and

nonnegative function defined on Ry that satisfies

zmwga+éﬂugwm@»@,

where a € RY and « is a positive function and Lebesgue integrable. We have the
following.

i) Ifa=0, thenu(t) =0, t € RT.

i1) If a > 0, then

u(t) <ot (v(a)—l—/otoz(s)ds>,

where

v (t) ::/otgpd(i)’ te R,

Lemma 2.4 ([11]). Let ¢ : R — R be a continuous increasing concave function, then
for each X € L (Q) and t > 0, we have the following Jensen inequality holds

e(E[X |Q]) > Ep(X) | Q.
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3. EXISTENCE AND UNIQUENESS RESULT

In this section, we will present our first contribution to this paper, which results
from the study of the existence and uniqueness of the solution of SG-SDEs (1.2), where

(X1(0),..., X, (0) € (R))", and for k=1,... ,nand i,j =1,....d, fi, frij fr; €

ME (0, T: ]Rd) the completion of the collection Mg (O, T: ]Rd) of simple processes de-
fined by

N-1
n(w) = Y& (W) iy pn(t), w € Q7
k=0

Inll = (; [ E () dt)é,

where & € LZ(Q, ), k=0,1,...,N — 1.

We assume the following assumptions (A1) and (A2) about J = f, fx; or frij.
k=1,...,nandi,j=1,...,d.

(A1)

under the norm

9t < o (OF + 0 (Sl
k=1

for each zy,...,7, € R4 t € [0,T], oy € MZ(0,T) and a5 € R,
(A2)

() — I (g < Ja (B (Z - —ykﬁ) ,
k=1

for each w1, y1, ..., 7y, Yo € RYand t € [0, 7], ais a positive function square integrable
on [0,7] and ¢ : Ry — R, is a continuous, increasing and concave function satisfying

n 1 ds
e (0) =0, /O(p(s)=+oo

The space of processes in (MCQ; (O, T, Rd»n equipped with the norm

(X0, X)) = B3 [Sup (z”: 2 (t>l2>]

0<t<T \}—1

is a Banach space.
Now we can state our first contribution of this work, it is the following theorem.

Theorem 3.1. Under assumptions (A1) and (A2), System (1.2) has a unique solution
(X1 (1), Xu (1) € (M (0,T;RY))"

Proof. We will prove the theorem in four steps.
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Step 1. Suppose that (X (¢),..., X, (¢)) and (Y1 (t),...,Y, (t)) are two solutions
of System (1.2) with initial conditions (X3 (0),..., X, (0)) and (Y1 (0),...,Y,(0)),
respectively. Then, we have for 1 < k <n

Xy () — Y5 (¢)
=X} (0) — Y% (0) +/t [fi (5, X1 (8) .-, X0 (8) — fu(s,Y1(s),...,Yn(s))]ds

+2/ i (5. X1 (8) 1 X (8)) = frag (5.2 (5) ... Y ()] d (B, BY) (s)

3,7=1

+;/0 s (5, X1 (5) 0oy X (8)) = fos (5, Y (). Yo ()] dB (s).

By using the inequality, (a + b+ ¢ + d)2 <4(a®>+V* + c* + d*), we obtain

| X () = Ya (1)

§4|Xk(0)—Y;<;(0)|2+4’/Ot[f,§(s,x1 (8), s X (8) = e (,Y1(5),..., Yo (s))] ds
+4 21/0 [frig (5, X1 (8),..., X (s ))—fk,@-,j(s,Yl(s),...,Yn(s))]d<Bz,BJ>s
+4 Z:l/ot [fk;,j (S’Xl (S>7"'7Xn (3)) _fk,j (Syyl(S),...,Yn (s))] ng

We use the fact that (f:l ai) <d dl a?, for each positive constants a;, i = 1,...,d,

we have . .
RAGESAGI

<41Xy (0) — Yy (0)|2+4’/0t [ (5, X1 (8) oo, X (8)) — fu (8,Y1(5), ..., V()] ds
+4d? Z /Ot (frig (s, X1(8), ... X0 (8)=fiji(s,Y1(s),..., Y (s))] d<Binj> (s)

ijl
2

(8),- s Xn (8)) = frg (5, Y1(5) ..., Ya (s))] dBY (s)

Taking the supremum and the G-expectation, we have

E Ls;qit | X% (s) — Yi (3)’21

<4|X; (0) — Yz (0)?
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+ 4E l sup

0<s<t

d
425" E
+ad 5B s

a(B.57) () |

d
+4d» E | sup
jzl L<s<t

Ui (X0 () X () = S (YA (1), Yo ()

By the Holder inequality and Lemmas 2.1 and 2.2, we have

= g 50 - %

<4|X;, (0) — Y3 (0)[

+4T/0tE “fk: (5, X1(8),..., Xn(s) = fu(s,Y1(s),..., Yx (5))|2d5}

+ 40, Td? > /OtE [|szj (5, X1(8) .-, Xn(8) = frij(s,Y1i(s),..., Y, (s))|2 ds}

ij=1

d st
+ 402d2/0 E |:|fk,] (87X1 (S) g 7Xn (S)> - fk,j <S7)/1 (S) y e 7YTL (S>>|2 dS:| ’
j=1
and by assumption (A2), we obtain

5| s, 136) -V ]

0<s<t

<410 =3 OF 47 [ (9 E o (321509 = i 0 s

ey [aGFE o (3166 - v oF) o

+ 4Cdz/ O E [ (32 140 = ¥i (9 .
Then

E l sup | X (s) — Yy (5)|2]

0<s<t

t
<4|X} (0) — Y (0)]2 +4(T+01Td4+02d2)/ la (s)2E
0

. (Z Xe ()~ i <s>|2>] s
k=1
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and

E im(w—wﬂ <E [sup X (s) — Yk<s>|2]
DA

0<s<t

()] +4 (T + C1Td* + Cod?) n

< [los |E[ (321009~ vi ) .

Since, ¢ is a concave function, by Lemma 2.4, we have

n

E Y 1Xk () = Y (1))

k=1

<4Z X5 (0) = Vi (0) +4 (T + C1Td* + Cod?) m

<[Py (E (3100 = Vo) ) .

Taking (X7 (0),..., X, (0)) = (Y1 (0),...,Y,(0)), we get

4ki X, (0) = Y (0)% = 0.

By Lemma 2.3, we see that for ¢ € [0, T
| (3 10— v 0F) | =0
k=1
which implies

(X1 (t),...,. X, () =1 (t),..., Y, (t)), foreachte[0,T].

n

Step 2. We define a Picard sequence (X" () ,..., X" (+)),,en IR (Mé (O, T; Rd))n
by the following

(XY ), X0 (1) = (@1, )

and for each integer k =1,...,nand ¢t € [0, T

X (1) =+ /t Fo (s, X (), X™ (5)) ds

+ Z/fm (5. X" () ... X7 (3)) d{B", B) (s)

+ ;/0 fri (5, X7 (5) ..., X () dBY (s)

We will prove that is a Cauchy sequence for each ¢t € [0,7]. First, we prove an a

priory estimate for <E {Z | X (t)|2D . By the same arguments, we have for each
k=1 meN



STOCHASTIC SYSTEM UNDER G-BROWNIAN MOTION 197

m e N,
Uxmﬂ () ] <4fanf? +4 (T + C1Td? + Cad) (/OtE [los (s)/?] ds
v ['E[Ixp ()] as)
2 0 k )
then
e (xpe @ < o (1l + [ & [l ()] ds+ 3 [ E[IXE )] ds ),
where C' = max {4,4 (T + C,Td* + Cyd)} .

Let
0()) = e (janf + [ B[ ()] ds).

then ¢ (-) is a solution of the following ordinary differential equation

q(t) <]ku +/ |a1 ds—l—%/o (s) ds).
By induction, it is easy that for each m € N
B | ¢ (0] < na).
k=1
| <a@)

Suppose for each m, E UX,T ()] t), then

UXm“ )’ ] <C <|xk| +/ a )} ds + a3 /OtE“X,Q” (s)ﬂ ds)
<C’(|xk| +/ a )}ds—l—ozz/otp(s)ds):q(t)

and

B |32 1N 0F] < e [Ixr (0F] < na 0

k=1
Step 3. For each I,m € N, by the definition of (X7"(.),..., X" (-)), we have

n
X]l€+1+m (t) o X,lg—H (t)

:/Ot [ (5, X1 (5) . X5 (5)) = fi (5. XD (5) 0, X ()] ds

+Z/ fk” sX{J“m() ...,X,lfm(S))—fk,z‘,j (S’X{(s),_..,Xfl(s))}d<Bi,BJ'>(s)

1,j=1
+ Z/Ot [fk,j (s,Xum (8),...,X5m (s)) — frj (s,X{ (8),..., X} (3))} dB (s).
j=1

Using the inequality, (a + b+ ¢)* < 3 (a? 4+ b* 4 ¢2) , we obtain

2
[ XEEEm @) - X (1)
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2

<3 ’/Ot [ (5. XE™ (5) . X5 (5)) = i (5, X3 () XL ()] ds

2

d -t
+3 Z/o [fk,i,j (S,X{er (s),...,XHm (3))_fk7i7j (s,X{ (s),..., X% (3))}d<Bi’Bj> (s)

,j=1

2

+3

d
S [ [ (5. X857 () X (5)) = iy (5.6 (9), o XD (90)] B9 (9
j=1

Taking the supremum and the G-expectation, by using the Hoélder inequality and
lemmas 2.1, 2.2, 2.4 and assumption (A2), we obtain

e (o, i o) - i )
0<s<t

<3 (T + CiTd" + Cad?) /0 t la (s)* ¢ <§nj\x,g+m (s) — X! <s)\2> ds.
k=1

Let
By, (t) = sup [E ( sup > ‘X}jm (s) — X} (5)‘2” , 0<t<T,
meN 0<s<t p—1
t
0 < bt (1) < Cs [ fa(s)” ¢ (e (5)) ds.
We define
(3.1) g(t) .= lm sup hy,,(t),

l—+o00 0<t<T

which is uniformly bounded by 4ngq (t). By using the Fatou-Lebesgue theorem to (3.1),
we deduce

t
091 <Cy [ fa()plg(s)ds.
By Lemma 2.3, we obtain
g(t)=0, 0<t<T,

which implies that (X7 (-),..., X]" (-)),,en is @ Cauchy sequence under the norm

o ()

Step 4. We will prove that the limite (X; (¢),..., X, (t)) in (M(Q; (0, T, Rd))n of
(X7 (t),..., X (t)) is the solution of system (1.2). By the same arguments as those
used in Step 1, we have for each m € N

S, [E (é [ X5 (1) = X (t)!2>] SC?,/OT!a(t)\Q ¢ <E (i [ X5 (1) = Xk (t)\2>>dt

k=1
<C /Tya(t)|2 sup B (3 IX7 (6) - Xe (0 ) )
=3 0 v ogth =1 g g
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n
<Cy < sup E <Z X0 (1) — Xi (t)|2>> :
o<t<rT  \{Z;

By the continuity of ¢ and ¢ (0%) = 0, we know that

(s (310 @) - %0 ) o

0<t<T \j—1

and sup
0<t<T

is a successive approximation to (X; (¢),..., X, (t)), which is a solution to SG-SDEs

(1.2) in (M2 (0,T;RY))". 0

E (él X (1) — X, (t)|2>} converge to 0. Thus, (X" (-),..., X ())

meN

4. STABILITY THEOREM

In this section, we prove another important result on the stability of the solutions
of (1.2). We consider the following perturbed SG-SDEs (4.1) whith a parameter € > 0,
for0<t<T

Xi(t) = ng())+f§ff(8,Xf(8),---7X£(S))ds
+,Zlf[l)t flﬁ,i,j (Sva (S) ) 7Xrez (S)) d<Bi7Bj> (S)

/L?J:

S (5 X (5) o X (9) A ().

(4.1) ;
X (1) = X;CSO)+fotf5(S;Xf(8)7---,XE(S))dS
+ijZ:1 fg rEL,i,j <S7Xf (S> ) 7X'rEL (8)) d <Bi7 Bj> (S>

503 12 (5, X () o XS () BT (5),

where (X5 (0),..., X5 (0)) € (RY)" and fi, fuij, fr; € M2 (0,T;RY).

Now, we make the following assumptions.

For any € > 0, a, € RY, J< = f& fi,; or fi; € ME(0,T;RY), X (0) € RY,
1<k<nand1<i,j<d

(B1)

() < Jan (O + a2 (Z |xk|2) ,
k=1

for each zy, ..., 7, € R% where a; € MZ (0,7) and oy € Ry
(B2)

|<]e (t7x17"'7xn) - J (t7y17"'7yn)|2 S |Oé(t)|2go (Z ’Ik _yk|2> )
k=1
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for each x1,v1,...,Tn, yn € R? where « is a positive and square integrable function
on [0,7] and ¢ : Ry — R, is a continuous, increasing and concave function satisfying
o (0M) =0, [ % = +o00.
(B3)
(i) For all t € [0, T7,

t
lim E{

e—0 /o

(i) lim (X{ (0)..... X (0)) = (X (0)..... X2 (0).

T (5, X0 () o X0 (s)) = (S,Xg’(s),...,Xg(s))ﬂ ds = 0.

Remark 4.1. Assumptions (B1) and (B2) guarantee, for any € > 0, the existence of
unique solution (X§ (¢),..., XS (1)) € (Mé (O, T; Rd))n of our system while assump-
tion (B3) will allows us to deduce the following stability theorem for the system.

Theorem 4.1. Under assumptions (B1), (B2) and (B3) we have

lim E [fj X5 (1) — X} (t)ﬂ =0, foralltel0,T].
k=1

e—0

Proof. For all 1 < k < n, we have
Xi(t) = X;ZC(lO)+f(ff;§(8,Xf(8),.-',XE(S))dS
ﬂ_.lzlf(l)t f/f;,z’,j (SaXf (5) ) ’sz (S)> d <Bi’ Bj) (5)

17.]:

55 I3 (5,5 0), o, X5 () B ().

XO() = XP(0) 4+ LS (5, X0 (s),..., X0 (s)) ds
d . .
+ Zlf(f fl(c),'i,j <S7X? (8) gt 7X2 (S)) d<Bl7 B]> (8)

1,j=

F5 L (5, X0 () o XD () B (5),

and
Xi () = X3 ()

=Xz<0>—X2<0>+/Ot fE (5, X5 (5) s X5 () = f2 (5, XD (), ..., X0 (5))] ds

+ 3 /Ot {f,;i’j (5, X5 (5),..., X5 () — fris (s,X? (s),..., X" (s))] d<Biij>

,j=1

d ¢ |
+ 2_:/0 fe, (5. X1 (s), o X (5) = £ (s, XD (s), ., X0 ()| dBYs.

We have
2
X5 (8) = xR (1)

s
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2
<4|x; (0) — X0 (0)] +4 0

L 2
+4Z /0 |:fk](8 Xl (3) 7777 Xn(s))_f]ij (S X?(S) ..... X ( ))} dBJ( )
j=1
and
‘Xk X3P (t)‘2
<4 X5 (0) - X2 (O) +4 /t [ (5. X (5) o X5 () = i (5. X0 (5) ... X0(s)) ] ds 2
d t
40 30| [ [ (5 X (5) s X ()= S (X0 )1 X0(9)) [ d (B BY) (5) 2
3,0=1
d | rt
Fady | [ [fh o X0 X6 Sy (5500, X2 (0) | 4B ()]
j=1

Taking the supremum and the G-expectation, we have

2
E [ sup ’Xk - X7 (s)‘ 1
0<s<t

<4E “Xk — XD (o)ﬂ

s 2
+aEswp | [ [ XT () X)) = S (R XD (), X2 (0)]
0<s<t [J0O
+ 4d? ZlEoqut /0 (s XE () oy X5 (1)

g (r X0 X0 )] (BB ()]
d

+4d» E su
jgl Ogsgt

/ s XS 0) s XS0 [ (XY @) X0 ()] a8 ()

By lemmas 2.1, 2.2 and Hélder’s inequality, we have

2
E Liugt’Xk - X7 (s)’ ]
< 4E ka ) — X0 (O)ﬂ

+8T/ E|[[ff (5. X5 (). X5 ()~ S (5. X0 (5) ..., X0()] [ ds

+8T/OE\ (s, X0 ()., X9(5)) ~ £ (5. X0(s) ... x0(9))] [ ds
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+801TdQZE/ i (5 X5 (8) oo X5(5) — Sy (5. X0 (5) . X0.(9)) [ ds

1,j=1

+801Td22E/ ‘f,”] s, X5(s),.. ., XS(S))—JCISJ‘J (s,X?(s),...,Xg(s))‘st

2,j=1

+802dZE/0 [f5 (5. X5 () X5 () = iy (5. XD (5) .o X0 (s))’2ds
j=1

5CutSB f, (0010 XE00) 1 (3000 000t
j=1

then by assumption (B2) we obtained

2
<Ck’e / |OZ

n

<E [so S (X () - 2 <s>]2)] s,

k=1

E [Sup ’Xk - X} (s)’

0<s<t

where

Che (1)
B[ x; (0) - X2 )]

+8T/t]E ,g (5, X0(5), ..., X0()) = £2 (5, X0(5) ..., X0 (5))["ds
LSOTES (5. X0(5) ooy X0(8)) = S0 (5. X0 ()1 X0(s)) | ds
1,j=1
+8C, (s,xf (8) ey X2(8)) — Sy (5. X0 (). X2 (9))| s,
j=1

and Cd (t) =8 (t + Cltdz + ng) 3 then
£ [Z X (1) = X0 ()
n n 0 2
g it -xtef <y s |59 - x20)|

<Cpe (T) +nCy (T /|a |]El (;]X;(s)—xg(g]?)]ds,

’ 2

where C, (T) = éc’“ (7).
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Since ¢ is a continuous concave function, by Lemma 2.4, we have
n 2
| %0 - xpof
k=1

<o (1) +0Ca(1) [ ()¢ (&[S0 0) = X2 0] ) .

Since C,  (T') — 0 when ¢ — 0, we get by Lemma 2.3

e—0 J

lim B [30[X5 () - X0 )| | =0, forallte[0,7],
j=1
that is what we want to prove. 0
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