CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY LINEAR MULTIPLIER FRACTIONAL q-DIFFERENTIAL OPERATOR

C. R. KRISHNA ${ }^{1}$, N. RAVIKUMAR ${ }^{2}$, AND B. A. FRASIN ${ }^{3}$

Abstract

This paper introduces a novel subclass of analytic and bi-univalent functions that are linked to a linear multiplier fractional q-differential operator, defined in the open unit disk \mathbb{D}. The authors establish the upper bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions that belong to this new subclass and its subclasses.

1. Introduction and preliminaries

Let the class of functions \mathcal{A} be of the form:

$$
\begin{equation*}
\eta(z)=z+\sum_{k=2}^{+\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic on the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Also let S indicates the functions of all subclasses in \mathcal{A}, which are univalent in \mathbb{D}. Since univalent functions are one-to-one, they are invertible. Although the inverse functions of single-valued functions are inverse functions, they do not need to be defined for the entire unit disk \mathbb{D}. Certainly, according to Koebe's quarter theorem [1], the disk with radius $\frac{1}{4}$ is in the image \mathbb{D}. Thus, every univalent function η has an inverse η^{-1} that satisfies $\eta^{-1}(\eta(z))=z, z \in \mathbb{D}$, and $\zeta(w)=\eta^{-1}(\eta(w))=w,|w|<r_{0}(\eta), r_{0}(\eta) \geq \frac{1}{4}$, where

$$
\begin{equation*}
\eta^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

Key words and phrases. Analytic function, univalent function, bi-univalent function, starlike function, convex function, q-derivative operator.

2020 Mathematics Subject Classification. Primary: 30C45. Secondary: 30C50.
DOI 10.46793/KgJMat2602.205K
Received: April 12, 2023.
Accepted: August 23, 2023.

A function $\eta \in \mathcal{A}$ is bi-univalent in \mathbb{D} if both $\eta(z)$ and $\eta^{-1}(z)$ are univalent \mathbb{D}. Let Σ be the class of bi-univalent functions on \mathbb{D} given by (1.1). Example of functions in the class Σ are

$$
\frac{z}{1-z}, \quad \log \frac{1}{1-z}, \quad \log \sqrt{\frac{1+z}{1-z}}
$$

However, the familiar Koebe function is not a member of Σ. Other common examples of functions in \mathbb{D} such as

$$
\frac{2 z-z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ.
The widely-cited by Srivastava et al. [2] actually revived the study of analytic and bi-univalent functions in recent years, and it has also led to a flood of papers on the subject by (see, for example, [3-23]).

If $|q|<1$, the q-shifted factorial, also known as the q-Pochhammer symbol, is defined for all $n \in \mathbb{N}$ by

$$
(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)
$$

where a and q are complex numbers. When $n=+\infty$, the product becomes

$$
(a ; q)_{+\infty}=\prod_{k=0}^{+\infty}\left(1-a q^{k}\right)
$$

If $|q|<1$, then the product converges absolutely, and we can define the q-shifted factorial for $n=+\infty$ as the limit of the sequence of partial products

$$
(a ; q)_{+\infty}=\lim _{n \rightarrow+\infty}(a ; q)_{n}=\lim _{n \rightarrow+\infty} \prod_{k=0}^{n-1}\left(1-a q^{k}\right)
$$

Therefore, when $|q|<1$, the q-shifted factorial remains meaningful for $n=+\infty$ as a convergent infinite product.

The q-gamma function is a q-analogue of the gamma function, defined by the recurrence relation $\Gamma_{q}(y+1)=[y]_{q} \Gamma_{q}(y)$, where $[y]_{q}=\frac{\left(1-q^{y}\right)}{(1-q)}$ is the q-analogue of y.

Jackson's [24] q-derivative and q-integral of a function η defined on a subset of \mathbb{C} are given by

$$
D_{q}^{a} \eta(x)=\frac{\eta\left(q^{a} x\right)-\eta(x)}{\left(1-q^{a}\right) x-x}, \quad I_{q}^{a} \eta(x)=\left(1-q^{a}\right) x \sum_{n=0}^{+\infty} q^{a n} \eta\left(q^{n} x\right)
$$

where $a \in \mathbb{C}$ is a fixed parameter. These operators are also known as the q-difference and q-integral operators, respectively. The theory of q-calculus operators are used in describing and solving various problems in applied science such as ordinary fractional calculus, optimal control, q-difference and q-integral equations, as well as geometric function theory of complex analysis. The application of q-calculus was initiated by Jackson [24]. Recently, many researchers studied q-calculus such as Srivastava et al.
[25], Muhammad and Darus [26], Kanas and Răducanu [27], (see also, [28-33]) and also the reference cited therein.

Definition 1.1 ([34]). The fractional integral operator $I_{q, z}^{\delta}$ of order $\delta>0$, for the function $\eta(z)$ is defined by

$$
I_{q, z}^{\delta}=D_{q, z}^{-\delta} \eta(z)=\frac{1}{\Gamma_{q}(\delta)} \int_{0}^{z}(z-r q)_{1-\delta} \eta(r) d_{q} r
$$

where $\eta(z)$ is the analytic of the simply connected regions of the z plane containing the origin. Here, the term $(z-r q)_{\delta-1}$ is a q-binomial function defined by

$$
(z-r q)_{\delta-1}=z^{\delta-1} \prod_{k=0}^{+\infty}\left[\frac{1-\left(\frac{r q}{z}\right) q^{k}}{1-\left(\frac{r q}{z}\right) q^{\delta}+k-1}\right]=z^{\delta}{ }_{1} \phi_{0}\left[q^{-\delta+1} ;-; q, \frac{r q^{\delta}}{z}\right] .
$$

Definition 1.2. The fractional q-derivative operator $D_{q, z}^{\delta}$ of a $\eta(z)$ of order $0 \leq \delta<1$, is defined by

$$
D_{q, z}^{\delta} \eta(z)=D_{q, z} I_{q, z}^{1-\delta} \eta(z)=\frac{1}{\Gamma_{q}(1-\delta)} D_{q} \int_{0}^{z}(z-r q)_{-\delta} \eta(r) d_{q} r,
$$

where $\eta(z)$ is suitably constrained and the multiplicity of $(z-r q)_{-\delta}$ is removed as in Definition 1.1 above.

Definition 1.3. Under the hypotheses of Definition 1.2, the fractional q-derivative for the function $\eta(z)$ of order δ is defined by

$$
D_{q, z}^{\delta} \eta(z)=D_{q, z}^{n} I_{q, z}^{n-\delta} \eta(z),
$$

where $n-1 \leq \delta<n, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
Definition 1.4 ([35]). The definition of the fractional q-differintegral operator $\Omega_{q, z}^{\delta}$ is as follows. For a function $\eta(z)$ of the form (1.1), we define

$$
\Omega_{q}^{\delta} \eta(z)=\Gamma_{q}(2-\delta) z^{\delta} D_{q, z}^{\delta} \eta(z),
$$

where $D_{q, z}^{\delta}$ denotes the fractional δ order of the q-integral $\eta(z)$ when $-\infty<\delta<0$ and the fractional δ order q-derivative of $\eta(z)$ if $0<\delta<2$.

The expression for $\Omega_{q}^{\delta} \eta(z)$ in terms of the coefficients a_{k} of the power series expansion of $\eta(z)$ is given by

$$
\Omega_{q}^{\delta} \eta(z)=z+\sum_{k=2}^{+\infty} \frac{\Gamma_{q}(k+1) \Gamma_{q}(2-\delta)}{\Gamma_{q}(k+1-\delta)} a_{k} z^{k} .
$$

Definition 1.5 ([34]). A linear multiplier fractional q-differintegral operator is defined as

$$
\begin{align*}
\mathcal{L}_{q, \lambda}^{\delta, 0} \eta(z)= & \eta(z) \\
\mathcal{L}_{q, \lambda}^{\delta, 1} \eta(z)= & (1-\lambda) \Omega_{q}^{\delta} \eta(z)+\lambda z \mathcal{L}_{q}\left(\Omega_{q}^{\delta} \eta(z)\right), \\
\mathcal{L}_{q, \lambda}^{\delta, 2} \eta(z)= & \mathcal{L}_{q, \lambda}^{\delta, 1}\left(\mathcal{L}_{q, \lambda}^{\delta, 1} \eta(z)\right) \\
& \vdots \tag{1.3}\\
\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)= & \mathcal{L}_{q, \lambda}^{\delta, 1}\left(\mathcal{L}_{q, \lambda}^{\delta, n-1} \eta(z)\right) .
\end{align*}
$$

We note that if $f \in \mathcal{A}$ is given by (1.1), then by (1.3), we have

$$
\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)=z+\sum_{k=2}^{+\infty} C(k, \delta, \lambda, n, q) a_{k} z^{k}
$$

where

$$
C(k, \delta, \lambda, n, q)=\left(\frac{\Gamma_{q}(k+1) \Gamma_{q}(2-\delta)}{\Gamma_{q}(k+1-\delta)}\left[\left([k]_{q}-1\right) \lambda+1\right]\right)^{n} .
$$

We define two new subclasses of the function class Σ by utilizing the linear multiplier fractional q-differential operator of a function $\eta \in \mathcal{A}$. Then, we provide coefficient estimates for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to these new subclasses of the function class Σ.

First, we have to follow the lemma to get the main results.
Lemma 1.1 ([36]). Let \mathcal{H} be the family of all functions \mathfrak{h} that are analytic in the open unit disk \mathbb{D} and satisfy $\mathfrak{h}(0)=1$ and $\mathfrak{R}(\mathfrak{h}(z))>0$ for all $z \in \mathbb{D}$. If a function $\mathfrak{h} \in \mathcal{H}$ is given by $\mathfrak{h}(z)=1+d_{1} z+d_{2} z^{2}+\cdots$ for $z \in \mathbb{D}$, then $\left|d_{k}\right| \leq 2$ for all $k \in \mathbb{N}$.
2. Coefficient Bounds for the Function Class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$

Definition 2.1. A function $\eta(z)$ given by (1.1) is said to be in the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$ if the following conditions are satisfied: $\eta \in \Sigma$ and

$$
\left|\frac{z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)}{\tau z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)}\right|<\frac{\alpha \pi}{2}
$$

where $0<\alpha \leq 1,0 \leq \tau<1, \delta \leq 2, \lambda>0, n \in \mathbb{N}_{0}, z \in \mathbb{D}$, and

$$
\left|\frac{w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)}{\tau w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)}\right|<\frac{\alpha \pi}{2},
$$

where $0<\alpha \leq 1,0 \leq \tau<1, \delta \leq 2, \lambda>0, n \in \mathbb{N}_{0}, w \in \mathbb{D}$ and function ζ is given by

$$
\begin{equation*}
\zeta(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2.1}
\end{equation*}
$$

We note that the following hold.
(a) When we set $\delta=0, \lambda=1$, and $q \rightarrow 1^{-}$, the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$ reduces to the class $S_{\Sigma}^{n, \tau}(\alpha)$, where $0<\alpha \leq 1,0 \leq \tau<1$, and $n \in \mathbb{N}_{0}$. This class was previously introduced and studied by Jothibasu [37].
(b) If we set $\delta=0, \lambda=1, q \rightarrow 1^{-}, n=0$, and $\tau=0$ in the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$, it reduces to the class of strongly bi-starlike functions $S_{\Sigma}^{\star}(\alpha)$ of order α introduced and studied by Brannan and Taha [38], where $0<\alpha \leq 1$.

Theorem 2.1. Let $\eta(z)$ given by (1.1) be in the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n), 0<\alpha \leq 1$, $0 \leq \tau<1, \delta \leq 2, \lambda>0$. Then
(2.2) $\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2 \alpha Y q(q+1)(1-\tau)-2 X^{2} \alpha q(1-\tau)[\tau q+1]+X^{2}(1-\alpha)^{2}(1-\tau)^{2}}}$
and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{X^{2} q^{2}(1-\tau)^{2}}+\frac{2 \alpha}{Y q(q+1)(1-\tau)}, \tag{2.3}
\end{equation*}
$$

where $X=C(2, \delta, \lambda, n, q)$ and $Y=C(3, \delta, \lambda, n, q)$.
Proof. It follows from the Definition 2.1

$$
\begin{equation*}
\frac{z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)}{\tau z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)}=[s(z)]^{\alpha} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)}{\tau w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)}=[t(w)]^{\alpha}, \tag{2.5}
\end{equation*}
$$

respectively, where $s(z)$ and $t(w)$ satisfy the following inequalities: $\mathfrak{R}(s(z))>0$, $z \in \mathbb{D}$, and $\mathfrak{R}(t(w))>0, w \in \mathbb{D}$.

Furthermore, the functions $s(z)$ and $t(w)$ have the forms

$$
\begin{gather*}
s(z)=1+s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots, \tag{2.6}\\
t(w)=1+t_{1} w+t_{2} w^{2}+t_{3} w^{3}+\cdots . \tag{2.7}
\end{gather*}
$$

Now, equating the coefficients in (2.4) and (2.5), we get

$$
\begin{equation*}
a_{2} X q(1-\tau)=\alpha s_{1}, \tag{2.8}
\end{equation*}
$$

$$
\begin{align*}
a_{3} Y q(q+1)(1-\tau)-a_{2}^{2} X^{2} q(1-\tau)[\tau q+1] & =\alpha s_{2}+\frac{\alpha(\alpha-1)}{2} s_{1}^{2} \tag{2.9}\\
-a_{2} X q(1-\tau) & =\alpha t_{1} \tag{2.10}
\end{align*}
$$

and

$$
\begin{align*}
& -a_{3} Y q(q+1)(1-\tau)+2 a_{2}^{2} Y q(q+1)(1-\tau)-a_{2}^{2} X^{2} q(1-\tau)[\tau q+1] \tag{2.11}\\
= & \alpha t_{2}+\frac{\alpha(\alpha-1)}{2} t_{1}^{2} .
\end{align*}
$$

From (2.8) and (2.10), we get

$$
\begin{equation*}
s_{1}=-t_{1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a_{2}^{2} X^{2} q^{2}(1-\tau)^{2}=\alpha^{2}\left(s_{1}^{2}+t_{1}^{2}\right) . \tag{2.13}
\end{equation*}
$$

From (2.9), (2.11) and (2.13), we obtain

$$
a_{2}^{2}=\frac{\alpha^{2}\left(s_{2}+t_{2}\right)}{2 \alpha Y q(q+1)(1-\tau)-2 X^{2} \alpha q(1-\tau)[\tau q+1]+X^{2}(1-\alpha) q^{2}(1-\tau)^{2}}
$$

Applying Lemma 1.1 to the coefficients s_{2} and t_{2}, we immediately get

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2 \alpha Y q(q+1)(1-\tau)-2 X^{2} \alpha q(1-\tau)[\tau q+1]+X^{2}(1-\alpha) q^{2}(1-\tau)^{2}}}
$$

This gives the value of $\left|a_{2}\right|$ as shown in (2.2)
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.11) from (2.9), we get

$$
\begin{align*}
& 2 a_{3} Y q(q+1)(1-\tau)-2 a_{2}^{2} Y q(q+1)(1-\tau) \tag{2.14}\\
= & \alpha\left(s_{2}-t_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(s_{1}^{2}-t_{1}^{2}\right) .
\end{align*}
$$

It follows from (2.12), (2.13) and (2.14) that

$$
\left|a_{3}\right|=\frac{\alpha^{2}\left(s_{1}^{2}+t_{1}^{2}\right)}{2 X^{2} q^{2}(1-\tau)^{2}}+\frac{\alpha\left(s_{2}-t_{2}\right)}{2 Y q(q+1)(1-\tau)}
$$

Applying Lemma 1.1 again to the coefficients s_{1}, s_{2}, t_{1} and t_{2}, we easily get

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{X^{2} q^{2}(1-\tau)^{2}}+\frac{2 \alpha}{Y q(q+1)(1-\tau)}
$$

This end the proof of Theorem 2.1.
Utilizing the parameters setting of Definition 2.1 in the Theorem 2.1, we get the following corollaries.
Corollary 2.1. If $\eta(z)$ given by (1.1) be in the class $S_{\Sigma}^{n, \tau}(\alpha), 0<\alpha \leq 1,0 \leq \tau<1$ and $n \in \mathbb{N}_{0}$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha(1-\tau) 3^{n}+\left[2 \alpha\left(\tau^{2}-1\right)-(\alpha-1)(1-\tau)^{2}\right] 2^{2 n}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha}{3^{n}(1-\tau)}+\frac{4 \alpha^{2}}{2^{2 n}(1-\tau)^{2}}
$$

Corollary 2.2. If $\eta(z)$ given by (1.1) and in the class $S_{\Sigma}^{\star}(\alpha), 0<\alpha \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\alpha+1}} \quad \text { and } \quad\left|a_{3}\right| \leq 4 \alpha^{2}+\alpha
$$

3. Coefficient Bounds for the Function Class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$

Definition 3.1. A function $\eta(z)$ given by (1.1) is said to be in the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$ if the following conditions are satisfied: $\eta \in \Sigma$ and

$$
\mathfrak{R}\left(\frac{z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)}{\tau z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)}\right)>\gamma
$$

where $0 \leq \gamma<1,0 \leq \tau<1, \delta \leq 2, \lambda>0, n \in \mathbb{N}_{0}, z \in \mathbb{D}$, and

$$
\mathfrak{R}\left(\frac{w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)}{\tau w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)}\right)>\gamma,
$$

where $0 \leq \gamma<1,0 \leq \tau<1, \delta \leq 2, \lambda>0, n \in \mathbb{N}_{0}, w \in \mathbb{D}$.
The function ζ is defined as given in equation (2.1).
(a) If we set $\delta=0, \lambda=1$, and $q \rightarrow 1^{-}$in the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$, it reduces to the class $S_{\Sigma}^{n, \tau}(\gamma)$ introduced and studied by Jothibasu [37], where $0 \leq \gamma<1$, $0 \leq \tau<1$ and $n \in \mathbb{N}_{0}$.
(b) When $\delta=0, \lambda=1, q \rightarrow 1^{-}, n=0$ and $\tau=0$, the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$ simplifies to the class of strongly bi-starlike functions $S_{\mathrm{\Sigma}}^{\star}(\gamma)$ of order γ introduced and studied by Brannan and Taha [38].

Theorem 3.1. Let $\eta(z)$ given by (1.1) be in the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n), 0 \leq \gamma<1$, $0 \leq \tau<1, \delta \leq 2, \lambda>0$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\gamma)}{Y q(q+1)(1-\tau)-X^{2} q(1-\tau)[\tau q+1]}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\gamma)^{2}}{X^{2} q^{2}(1-\tau)^{2}}+\frac{2(1-\gamma)}{Y q(q+1)(1-\tau)} \tag{3.2}
\end{equation*}
$$

where $X=C(2, \delta, \lambda, n, q)$ and $Y=C(3, \delta, \lambda, n, q)$.
Proof. It follows from the Definition 3.1 that there exist $s(z)$ and $t(w) \in \mathcal{H}$ such that

$$
\begin{gather*}
\frac{z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)}{\tau z D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \eta(z)}=\gamma+(1-\gamma) s(z), \tag{3.3}\\
\frac{w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)}{\tau w D_{q}\left(\mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)\right)+(1-\tau) \mathcal{L}_{q, \lambda}^{\delta, n} \zeta(w)}=\gamma+(1-\gamma) t(w), \tag{3.4}
\end{gather*}
$$

where $s(z)$ and $t(w)$ in \mathcal{H} and have the forms (2.6) and (2.7), respectively.

Equating the coefficients in (3.3) and (3.4) yields

$$
\begin{align*}
a_{2} X q(1-\tau) & =(1-\gamma) s_{1}, \tag{3.5}\\
a_{3} Y q(q+1)(1-\tau)-a_{2}^{2} X^{2} q(1-\tau)[\tau q+1] & =(1-\gamma) s_{2}, \tag{3.6}\\
-a_{2} X q(1-\tau) & =(1-\gamma) t_{1} \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
& -a_{3} Y q(q+1)(1-\tau)+2 a_{2}^{2} Y q(q+1)(1-\tau)-a_{2}^{2} X^{2} q(1-\tau)[\tau q+1] \tag{3.8}\\
= & (1-\gamma) t_{2} .
\end{align*}
$$

From (3.5) and (3.7), we get $s_{1}=-t_{1}$ and

$$
\begin{equation*}
2 a_{2}^{2} X^{2} q^{2}(1-\tau)^{2}=(1-\gamma)^{2}\left(s_{1}^{2}+t_{1}^{2}\right) . \tag{3.9}
\end{equation*}
$$

Also, from (3.6) and (3.8), we find that

$$
2 a_{2}^{2} Y q(q+1)(1-\tau)-2 a_{2}^{2} X^{2} q(1-\tau)[\tau q+1]=(1-\gamma)\left(s_{2}+t_{2}\right)
$$

Applying Lemma 1.1 to the coefficients s_{2} and t_{2}, we immediately get

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\gamma)}{Y q(q+1)(1-\tau)-X^{2} q(1-\tau)[\tau q+1]}}
$$

which is the bound on $\left|a_{2}\right|$ as given in (3.1). Then, to get the limit of $\left|a_{3}\right|$ by subtracting (3.8) from (3.6),

$$
2 a_{3} Y q(q+1)(1-\tau)-2 a_{2}^{2} Y q(q+1)(1-\tau)=(1-\gamma)\left(s_{2}-t_{2}\right)
$$

or, equivalently

$$
a_{3}=a_{2}^{2}+\frac{(1-\gamma)\left(s_{2}-t_{2}\right)}{2 Y q(q+1)(1-\tau)}
$$

Substituting the values of a_{2}^{2} into (3.9), we get

$$
a_{3}=\frac{(1-\gamma)^{2}\left(s_{1}^{2}+t_{1}^{2}\right)}{2 X^{2} q^{2}(1-\tau)^{2}}+\frac{(1-\gamma)\left(s_{2}-t_{2}\right)}{2 Y q(q+1)(1-\tau)} .
$$

After applying Lemma 1.1 to the coefficients s_{1}, s_{2}, t_{1} and t_{2}, we get

$$
\left|a_{3}\right| \leq \frac{4(1-\gamma)^{2}}{X^{2} q^{2}(1-\tau)^{2}}+\frac{2(1-\gamma)}{Y q(q+1)(1-\tau)} .
$$

This completes the proof of Theorem 3.1.
Utilizing the parameters setting of Definition 3.1 in the Theorem 3.1, we get the following corollaries.

Corollary 3.1. If $\eta(z)$ given by (1.1) is in the class $S_{\Sigma}^{n, \tau}(\gamma), 0 \leq \gamma<1,0 \leq \tau<1$ and $n \in \mathbb{N}_{0}$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\gamma)}{2^{2 n}\left(\tau^{2}-1\right)+2(1-\tau) 3^{n}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4(1-\gamma)^{2}}{2^{2 n}(1-\tau)^{2}}+\frac{(1-\gamma)}{3^{n}(1-\tau)}
$$

Corollary 3.2. If $\eta(z)$ given by (1.1) and in the class $S_{\Sigma}^{\star}(\gamma), 0 \leq \gamma<1$, then

$$
\left|a_{2}\right| \leq \sqrt{2(1-\gamma)} \quad \text { and } \quad\left|a_{3}\right| \leq 4(1-\gamma)^{2}+(1-\gamma)
$$

4. Conclusions

The main contribution of this paper is the introduction of new subclasses of biunivalent functions defined by the linear multiplier fractional q-differential operator. Additionally, we provide upper bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to this new subclass and its subclasses.

References

[1] P. Duren, Geometric Function Theory, Linear and Complex Analysis Problem, Book 3, 1994, 383-422.
[2] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23(10) (2010), 1188-1192. https://doi.org/10.1016/ j.aml.2010.05.009
[3] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics 8(5) (2020), 1-11. https://doi.org/10.3390/math8050783
[4] S. Altinkaya and S. Yalcin, Fekete-Szegö inequalities for certain classes of biunivalent functions, Int. Sch. Res. Notices 1726 (2016), Paper ID 020078. https://doi.org/10.1063/1.4945904
[5] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevič functions of order $\vartheta+i \delta$ associated with ($p ; q$)-Lucas polynomials, AIMS Math. 6(5) (2021), 4296-4305. https://doi.org/10.3934/math. 2021254
[6] A. Amourah, B. A. Frasin, M. Ahmad and F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry 14(147) (2022), 8 pages. https://doi.org/10.3390/sym14010147
[7] A. Alsoboh, M. Darus, A. Amourah and W. G. Atshan, A certain subclass of harmonic meromorphic functions with respect to k-symmetric points, International Journal of Open Problems in Complex Analysis 15(1) (2023), 1-16.
[8] B. Alshlool, A. abu Alasal, A. Mannaâa, A. Alsoboh and A. Amourah, Consolidate a certain class of $(p ; q)$-Lucas polynomial based bi-univalent functions with a specific discrete probability distribution, International Journal of Open Problems in Complex Analysis 15 (1) (2023), 26-37.
[9] A. O. Mostafa and Z. M. Saleh, Coefficient bounds for a class of bi-univalent functions defined by Chebyshev polynomials, International Journal of Open Problems in Complex Analysis 13 (3) (2021), 1-10.
[10] F. Yousef, A. Amourah, B. A. Frasin and T. Bulboaca, An avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms 11(6) (2022), Paper ID 267. https://doi. org/10.3390/axioms11060267
[11] L. I. Cotirla, New classes of analytic and bi-univalent functions, AIMS Math. 6(10) (2021), 10642-10651. https://doi.org/10.3934/math. 2021618
[12] L. I. Cotirla and A. K. Wanas, Coefficient-related studies and Fekete-Szegö inequalities for new classes of bi-starlike and bi-convex functions, Symmetry 14(11) (2022), Paper ID 2263. https://doi.org/10.3390/sym14112263
[13] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24(9) (2011) 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
[14] B. A. Frasin, S. R. Swamy and J. Nirmala, Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Mat. 32 (2020), 631-643. https://doi.org/10.1007/s13370-020-00850-w
[15] Q-H. Xu, Y-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(6) (2012), 990-994. https://doi.org/10. 1016/j.aml.2011.11.013
[16] Q-H. Xu, H-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218(23) (2012), 11461-11465. https://doi.org/10.1016/j.amc.2012.05.034
[17] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abst. Appl. Anal. 2013 (2013). https://doi.org/10.1155/ 2013/573017
[18] Z. Peng, G. Murugusundaramoorthy and T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Anal. 2014 (2014). https: //doi.org/10.1155/2014/693908
[19] F. M. Sakar and S. M. Aydogan, Inequalities of bi-starlike functions involving Sigmoid function and Bernoulli lemniscate by subordination, International Journal of Open Problems in Computer Science and Mathematics 16 (2023), 71-82.
[20] S. R. Swamy and A. K. Wanas, A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials, Boletin De La Sociedad Matematica Mexicana 28 (2022). https: //doi.org/10.1007/s40590-022-00411-0
[21] A. K. Wanas, F. M. Sakar and A. Alb Lupaş, Applications Laguerre polynomials for families of bi-univalent functions defined with (p, q)-Wanas operator, Axioms 12(5) (2023), Paper ID 430. https://doi.org/10.3390/axioms12050430
[22] F. Yousef, S. Alroud and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletin De La Sociedad Matematica Mexicana 26 (2019), 329-339. https://doi.org/10.1007/s40590-019-00245-3
[23] F. Yousef, S. Alroud and M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys. 11(58) (2021), Article ID 58. https: //doi.org/10.1007/s13324-021-00491-7
[24] F. H. Jackson, On q-functions and a certain difference operator, Earth and Environmental Science Transactions of the Royal Society of Edinburgh 46(2) (1909), 253-281. https://doi. org/10.1017/S0080456800002751
[25] R. Srivastava and H. M. Zayed, Subclasses of analytic functions of complex order defined by q-derivative operator, Stud. Univ. Babeş-Bolyai Math. 64 (2019), 71-80. https://doi.org/10. 24193/subbmath.2019.1.07
[26] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65(4) (2013), 454-465.
[27] S. Kanas and D. Răducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca 64(5) (2014), 1183-1196. https://doi.org/10.2478/s12175-014-0268-9
[28] C. Ramachandran, S. Annamalai and B. A. Frasin, The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Parana. Mat. 39(1) (2021), 133-146. https://doi.org/10.5269/bspm. 32913
[29] C. Ramachandran, T. Soupramanien and B. A. Frasin, New subclasses of analytic function associated with q-difference operator, Eur. J. Pure Appl. 10(2) (2017), 348-362.
[30] F. M. Sakar, M. Naeem, S. Khan and S. Hussain, Hankel determinant for class of analytic functions involving q-derivative operator, J. Adv. Math. Stud. 14 (2021), 265-278.
[31] T. M. Seoudy and M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal. 2014 (2014). https://doi.org/10.1155/ 2014/846719
[32] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10 (2016), 135-145. https://doi.org/10.7153/ jmi-10-11
[33] A. Amourah, B. A. Frasin and T. Al-Hawary, Coefficient estimates for a subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Gegenbauer polynomials, Kyungpook Math. J. 62(2) (2022), 257-269.
[34] S. D. Purohit and R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica 55(78) (2013).
[35] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), 55-70. https://doi.org/10.7146/math.scand. a-15177
[36] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, 1975.
[37] J. Jothibasu, Certain subclasses of bi-univalent functions defined by salagean operator, Electron. J. Math. Anal. Appl. 3(1) (2015), 150-157.
[38] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl. (1988), 53-60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7

Email address: krishnargowda91@gmail.com
Email address: ravisn.kumar@gmail.com
Email address: bafrasin@yahoo.com
${ }^{1}$ PG Department of Mathematics, Bharathi College PG and RC, Maddur Tq., Mandya - 571 422, India
${ }^{2}$ PG Department of Mathematics, JSS College of Arts, Science and Commerce, Mysore 570 006, India
${ }^{3}$ Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan

