Kragujevac Journal of Mathematics Volume 50(2) (2026), Pages 205–215.

CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY LINEAR MULTIPLIER FRACTIONAL q-DIFFERENTIAL OPERATOR

C. R. KRISHNA¹, N. RAVIKUMAR², AND B. A. FRASIN³

ABSTRACT. This paper introduces a novel subclass of analytic and bi-univalent functions that are linked to a linear multiplier fractional q-differential operator, defined in the open unit disk \mathbb{D} . The authors establish the upper bounds for the coefficients $|a_2|$ and $|a_3|$ for the functions that belong to this new subclass and its subclasses.

1. Introduction and preliminaries

Let the class of functions \mathcal{A} be of the form:

(1.1)
$$\eta(z) = z + \sum_{k=2}^{+\infty} a_k z^k,$$

which are analytic on the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Also let S indicates the functions of all subclasses in \mathcal{A} , which are univalent in \mathbb{D} . Since univalent functions are one-to-one, they are invertible. Although the inverse functions of single-valued functions are inverse functions, they do not need to be defined for the entire unit disk \mathbb{D} . Certainly, according to Koebe's quarter theorem [1], the disk with radius $\frac{1}{4}$ is in the image \mathbb{D} . Thus, every univalent function η has an inverse η^{-1} that satisfies $\eta^{-1}(\eta(z)) = z, z \in \mathbb{D}$, and $\zeta(w) = \eta^{-1}(\eta(w)) = w, |w| < r_0(\eta), r_0(\eta) \ge \frac{1}{4}$, where

(1.2)
$$\eta^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

2020 Mathematics Subject Classification. Primary: 30C45. Secondary: 30C50.

DOI 10.46793/KgJMat2602.205K

Received: April 12, 2023. Accepted: August 23, 2023.

 $Key\ words\ and\ phrases.$ Analytic function, univalent function, bi-univalent function, starlike function, convex function, q-derivative operator.

A function $\eta \in \mathcal{A}$ is bi-univalent in \mathbb{D} if both $\eta(z)$ and $\eta^{-1}(z)$ are univalent \mathbb{D} . Let Σ be the class of bi-univalent functions on \mathbb{D} given by (1.1). Example of functions in the class Σ are

$$\frac{z}{1-z}$$
, $\log \frac{1}{1-z}$, $\log \sqrt{\frac{1+z}{1-z}}$.

However, the familiar Koebe function is not a member of Σ . Other common examples of functions in $\mathbb D$ such as

$$\frac{2z - z^2}{2} \quad \text{and} \quad \frac{z}{1 - z^2}$$

are also not members of Σ .

The widely-cited by Srivastava et al. [2] actually revived the study of analytic and bi-univalent functions in recent years, and it has also led to a flood of papers on the subject by (see, for example, [3–23]).

If |q| < 1, the q-shifted factorial, also known as the q-Pochhammer symbol, is defined for all $n \in \mathbb{N}$ by

$$(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k),$$

where a and q are complex numbers. When $n = +\infty$, the product becomes

$$(a;q)_{+\infty} = \prod_{k=0}^{+\infty} (1 - aq^k).$$

If |q| < 1, then the product converges absolutely, and we can define the q-shifted factorial for $n = +\infty$ as the limit of the sequence of partial products

$$(a;q)_{+\infty} = \lim_{n \to +\infty} (a;q)_n = \lim_{n \to +\infty} \prod_{k=0}^{n-1} (1 - aq^k).$$

Therefore, when |q| < 1, the q-shifted factorial remains meaningful for $n = +\infty$ as a convergent infinite product.

The q-gamma function is a q-analogue of the gamma function, defined by the recurrence relation $\Gamma_q(y+1) = [y]_q \Gamma_q(y)$, where $[y]_q = \frac{(1-q^y)}{(1-q)}$ is the q-analogue of y.

Jackson's [24] q-derivative and q-integral of a function η defined on a subset of $\mathbb C$ are given by

$$D_q^a \eta(x) = \frac{\eta(q^a x) - \eta(x)}{(1 - q^a)x - x}, \quad I_q^a \eta(x) = (1 - q^a)x \sum_{n=0}^{+\infty} q^{an} \eta(q^n x),$$

where $a \in \mathbb{C}$ is a fixed parameter. These operators are also known as the q-difference and q-integral operators, respectively. The theory of q-calculus operators are used in describing and solving various problems in applied science such as ordinary fractional calculus, optimal control, q-difference and q-integral equations, as well as geometric function theory of complex analysis. The application of q-calculus was initiated by Jackson [24]. Recently, many researchers studied q-calculus such as Srivastava et al.

[25], Muhammad and Darus [26], Kanas and Răducanu [27], (see also, [28–33]) and also the reference cited therein.

Definition 1.1 ([34]). The fractional integral operator $I_{q,z}^{\delta}$ of order $\delta > 0$, for the function $\eta(z)$ is defined by

$$I_{q,z}^{\delta} = D_{q,z}^{-\delta} \eta(z) = \frac{1}{\Gamma_q(\delta)} \int_0^z (z - rq)_{1-\delta} \eta(r) d_q r,$$

where $\eta(z)$ is the analytic of the simply connected regions of the z plane containing the origin. Here, the term $(z - rq)_{\delta-1}$ is a q-binomial function defined by

$$(z - rq)_{\delta - 1} = z^{\delta - 1} \prod_{k = 0}^{+\infty} \left[\frac{1 - (\frac{rq}{z})q^k}{1 - (\frac{rq}{z})q^\delta + k - 1} \right] = z^{\delta} {}_1 \phi_0 \left[q^{-\delta + 1}; -; q, \frac{rq^{\delta}}{z} \right].$$

Definition 1.2. The fractional q-derivative operator $D_{q,z}^{\delta}$ of a $\eta(z)$ of order $0 \leq \delta < 1$, is defined by

$$D_{q,z}^{\delta} \eta(z) = D_{q,z} I_{q,z}^{1-\delta} \eta(z) = \frac{1}{\Gamma_q(1-\delta)} D_q \int_0^z (z - rq)_{-\delta} \eta(r) d_q r,$$

where $\eta(z)$ is suitably constrained and the multiplicity of $(z - rq)_{-\delta}$ is removed as in Definition 1.1 above.

Definition 1.3. Under the hypotheses of Definition 1.2, the fractional q-derivative for the function $\eta(z)$ of order δ is defined by

$$D_{q,z}^{\delta}\eta(z) = D_{q,z}^{n}I_{q,z}^{n-\delta}\eta(z),$$

where $n - 1 \le \delta < n, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}.$

Definition 1.4 ([35]). The definition of the fractional q-differentegral operator $\Omega_{q,z}^{\delta}$ is as follows. For a function $\eta(z)$ of the form (1.1), we define

$$\Omega_q^{\delta} \eta(z) = \Gamma_q(2 - \delta) z^{\delta} D_{q,z}^{\delta} \eta(z),$$

where $D_{q,z}^{\delta}$ denotes the fractional δ order of the q-integral $\eta(z)$ when $-\infty < \delta < 0$ and the fractional δ order q-derivative of $\eta(z)$ if $0 < \delta < 2$.

The expression for $\Omega_q^{\delta} \eta(z)$ in terms of the coefficients a_k of the power series expansion of $\eta(z)$ is given by

$$\Omega_q^{\delta} \eta(z) = z + \sum_{k=2}^{+\infty} \frac{\Gamma_q(k+1)\Gamma_q(2-\delta)}{\Gamma_q(k+1-\delta)} a_k z^k.$$

Definition 1.5 ([34]). A linear multiplier fractional q-differentegral operator is defined as

$$\begin{split} &\mathcal{L}_{q,\lambda}^{\delta,0}\eta(z) = &\eta(z), \\ &\mathcal{L}_{q,\lambda}^{\delta,1}\eta(z) = &(1-\lambda)\Omega_q^\delta\eta(z) + \lambda z\mathcal{L}_q\left(\Omega_q^\delta\eta(z)\right), \\ &\mathcal{L}_{q,\lambda}^{\delta,2}\eta(z) = &\mathcal{L}_{q,\lambda}^{\delta,1}\left(\mathcal{L}_{q,\lambda}^{\delta,1}\eta(z)\right), \\ & : \end{split}$$

(1.3) $\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z) = \mathcal{L}_{q,\lambda}^{\delta,1}\left(\mathcal{L}_{q,\lambda}^{\delta,n-1}\eta(z)\right).$

We note that if $f \in \mathcal{A}$ is given by (1.1), then by (1.3), we have

$$\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z) = z + \sum_{k=2}^{+\infty} C(k,\delta,\lambda,n,q) a_k z^k,$$

where

$$C(k, \delta, \lambda, n, q) = \left(\frac{\Gamma_q(k+1)\Gamma_q(2-\delta)}{\Gamma_q(k+1-\delta)} \left[([k]_q - 1)\lambda + 1 \right] \right)^n.$$

We define two new subclasses of the function class Σ by utilizing the linear multiplier fractional q-differential operator of a function $\eta \in \mathcal{A}$. Then, we provide coefficient estimates for $|a_2|$ and $|a_3|$ for functions belonging to these new subclasses of the function class Σ .

First, we have to follow the lemma to get the main results.

Lemma 1.1 ([36]). Let \mathcal{H} be the family of all functions \mathfrak{h} that are analytic in the open unit disk \mathbb{D} and satisfy $\mathfrak{h}(0) = 1$ and $\mathfrak{R}(\mathfrak{h}(z)) > 0$ for all $z \in \mathbb{D}$. If a function $\mathfrak{h} \in \mathcal{H}$ is given by $\mathfrak{h}(z) = 1 + d_1 z + d_2 z^2 + \cdots$ for $z \in \mathbb{D}$, then $|d_k| \leq 2$ for all $k \in \mathbb{N}$.

2. Coefficient Bounds for the Function Class $M_{\Sigma}(q,\alpha,\tau,\delta,\lambda,n)$

Definition 2.1. A function $\eta(z)$ given by (1.1) is said to be in the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$ if the following conditions are satisfied: $\eta \in \Sigma$ and

$$\left| \frac{zD_q \left(\mathcal{L}_{q,\lambda}^{\delta,n} \eta(z) \right)}{\tau z D_q \left(\mathcal{L}_{q,\lambda}^{\delta,n} \eta(z) \right) + (1 - \tau) \mathcal{L}_{q,\lambda}^{\delta,n} \eta(z)} \right| < \frac{\alpha \pi}{2},$$

where $0 < \alpha \le 1$, $0 \le \tau < 1$, $\delta \le 2$, $\lambda > 0$, $n \in \mathbb{N}_0$, $z \in \mathbb{D}$, and

$$\left| \frac{w D_q \left(\mathcal{L}_{q,\lambda}^{\delta,n} \zeta(w) \right)}{\tau w D_q \left(\mathcal{L}_{q,\lambda}^{\delta,n} \zeta(w) \right) + (1-\tau) \mathcal{L}_{q,\lambda}^{\delta,n} \zeta(w)} \right| < \frac{\alpha \pi}{2},$$

where $0 < \alpha \le 1$, $0 \le \tau < 1$, $\delta \le 2$, $\lambda > 0$, $n \in \mathbb{N}_0$, $w \in \mathbb{D}$ and function ζ is given by (2.1) $\zeta(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$

We note that the following hold.

- (a) When we set $\delta = 0$, $\lambda = 1$, and $q \to 1^-$, the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$ reduces to the class $S_{\Sigma}^{n,\tau}(\alpha)$, where $0 < \alpha \le 1$, $0 \le \tau < 1$, and $n \in \mathbb{N}_0$. This class was previously introduced and studied by Jothibasu [37].
- (b) If we set $\delta = 0$, $\lambda = 1$, $q \to 1^-$, n = 0, and $\tau = 0$ in the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$, it reduces to the class of strongly bi-starlike functions $S_{\Sigma}^{\star}(\alpha)$ of order α introduced and studied by Brannan and Taha [38], where $0 < \alpha \le 1$.

Theorem 2.1. Let $\eta(z)$ given by (1.1) be in the class $M_{\Sigma}(q, \alpha, \tau, \delta, \lambda, n)$, $0 < \alpha \le 1$, $0 \le \tau < 1$, $\delta \le 2$, $\lambda > 0$. Then

$$(2.2) |a_2| \le \frac{2\alpha}{\sqrt{2\alpha Y q(q+1)(1-\tau) - 2X^2 \alpha q(1-\tau) \left[\tau q+1\right] + X^2 (1-\alpha)^2 (1-\tau)^2}}$$

and

(2.3)
$$|a_3| \le \frac{4\alpha^2}{X^2 q^2 (1-\tau)^2} + \frac{2\alpha}{Y q(q+1) (1-\tau)},$$

where $X = C(2, \delta, \lambda, n, q)$ and $Y = C(3, \delta, \lambda, n, q)$.

Proof. It follows from the Definition 2.1

(2.4)
$$\frac{zD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)\right)}{\tau zD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)\right) + (1-\tau)\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)} = \left[s(z)\right]^{\alpha}$$

and

(2.5)
$$\frac{wD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)\right)}{\tau wD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)\right) + (1-\tau)\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)} = \left[t(w)\right]^{\alpha},$$

respectively, where s(z) and t(w) satisfy the following inequalities: $\Re(s(z)) > 0$, $z \in \mathbb{D}$, and $\Re(t(w)) > 0$, $w \in \mathbb{D}$.

Furthermore, the functions s(z) and t(w) have the forms

(2.6)
$$s(z) = 1 + s_1 z + s_2 z^2 + s_3 z^3 + \cdots,$$

(2.7)
$$t(w) = 1 + t_1 w + t_2 w^2 + t_3 w^3 + \cdots$$

Now, equating the coefficients in (2.4) and (2.5), we get

$$(2.8) a_2 Xq (1-\tau) = \alpha s_1,$$

(2.9)
$$a_3 Y q(q+1) (1-\tau) - a_2^2 X^2 q (1-\tau) [\tau q+1] = \alpha s_2 + \frac{\alpha (\alpha - 1)}{2} s_1^2,$$

$$(2.10) -a_2 Xq(1-\tau) = \alpha t_1$$

and

(2.11)
$$-a_3Yq(q+1)(1-\tau) + 2a_2^2Yq(q+1)(1-\tau) - a_2^2X^2q(1-\tau)[\tau q+1]$$

$$= \alpha t_2 + \frac{\alpha(\alpha-1)}{2}t_1^2.$$

From (2.8) and (2.10), we get

$$(2.12) s_1 = -t_1$$

and

(2.13)
$$2a_2^2X^2q^2(1-\tau)^2 = \alpha^2(s_1^2+t_1^2).$$

From (2.9), (2.11) and (2.13), we obtain

$$a_{2}^{2} = \frac{\alpha^{2} (s_{2} + t_{2})}{2\alpha Y q(q+1) (1-\tau) - 2X^{2} \alpha q (1-\tau) \left[\tau q + 1\right] + X^{2} (1-\alpha) q^{2} (1-\tau)^{2}}.$$

Applying Lemma 1.1 to the coefficients s_2 and t_2 , we immediately get

$$|a_2| \le \frac{2\alpha}{\sqrt{2\alpha Y q(q+1)(1-\tau) - 2X^2 \alpha q(1-\tau) \left[\tau q+1\right] + X^2(1-\alpha) q^2(1-\tau)^2}}$$

This gives the value of $|a_2|$ as shown in (2.2)

Next, in order to find the bound on $|a_3|$, by subtracting (2.11) from (2.9), we get

(2.14)
$$2a_3Yq(q+1)(1-\tau) - 2a_2^2Yq(q+1)(1-\tau)$$

$$= \alpha(s_2 - t_2) + \frac{\alpha(\alpha - 1)}{2}(s_1^2 - t_1^2).$$

It follows from (2.12), (2.13) and (2.14) that

$$|a_3| = \frac{\alpha^2 (s_1^2 + t_1^2)}{2X^2 q^2 (1 - \tau)^2} + \frac{\alpha (s_2 - t_2)}{2Y q (q + 1) (1 - \tau)}.$$

Applying Lemma 1.1 again to the coefficients s_1 , s_2 , t_1 and t_2 , we easily get

$$|a_3| \le \frac{4\alpha^2}{X^2 q^2 (1-\tau)^2} + \frac{2\alpha}{Y q(q+1) (1-\tau)}.$$

This end the proof of Theorem 2.1.

Utilizing the parameters setting of Definition 2.1 in the Theorem 2.1, we get the following corollaries.

Corollary 2.1. If $\eta(z)$ given by (1.1) be in the class $S_{\Sigma}^{n,\tau}(\alpha)$, $0 < \alpha \le 1$, $0 \le \tau < 1$ and $n \in \mathbb{N}_0$. Then

$$|a_2| \le \frac{2\alpha}{\sqrt{4\alpha (1-\tau) 3^n + \left[2\alpha (\tau^2 - 1) - (\alpha - 1) (1-\tau)^2\right] 2^{2n}}}$$

and

$$|a_3| \le \frac{\alpha}{3^n (1-\tau)} + \frac{4\alpha^2}{2^{2n} (1-\tau)^2}.$$

Corollary 2.2. If $\eta(z)$ given by (1.1) and in the class $S_{\Sigma}^{\star}(\alpha)$, $0 < \alpha \leq 1$. Then

$$|a_2| \le \frac{2\alpha}{\sqrt{\alpha+1}}$$
 and $|a_3| \le 4\alpha^2 + \alpha$.

3. Coefficient Bounds for the Function Class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$

Definition 3.1. A function $\eta(z)$ given by (1.1) is said to be in the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$ if the following conditions are satisfied: $\eta \in \Sigma$ and

$$\Re\!\left(\frac{zD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)\right)}{\tau zD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)\right) + (1-\tau)\,\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)}\right) > \gamma,$$

where $0 \le \gamma < 1$, $0 \le \tau < 1$, $\delta \le 2$, $\lambda > 0$, $n \in \mathbb{N}_0$, $z \in \mathbb{D}$, and

$$\Re\left(\frac{wD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)\right)}{\tau wD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)\right) + (1-\tau)\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)}\right) > \gamma,$$

where $0 \le \gamma < 1$, $0 \le \tau < 1$, $\delta \le 2$, $\lambda > 0$, $n \in \mathbb{N}_0$, $w \in \mathbb{D}$.

The function ζ is defined as given in equation (2.1).

- (a) If we set $\delta = 0$, $\lambda = 1$, and $q \to 1^-$ in the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$, it reduces to the class $S_{\Sigma}^{n,\tau}(\gamma)$ introduced and studied by Jothibasu [37], where $0 \le \gamma < 1$, $0 \le \tau < 1$ and $n \in \mathbb{N}_0$.
- (b) When $\delta = 0$, $\lambda = 1$, $q \to 1^-$, n = 0 and $\tau = 0$, the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$ simplifies to the class of strongly bi-starlike functions $S_{\Sigma}^{\star}(\gamma)$ of order γ introduced and studied by Brannan and Taha [38].

Theorem 3.1. Let $\eta(z)$ given by (1.1) be in the class $B_{\Sigma}(q, \gamma, \tau, \delta, \lambda, n)$, $0 \le \gamma < 1$, $0 \le \tau < 1$, $\delta \le 2$, $\lambda > 0$. Then

(3.1)
$$|a_2| \le \sqrt{\frac{2(1-\gamma)}{Yq(q+1)(1-\tau) - X^2q(1-\tau)[\tau q+1]}}$$

and

(3.2)
$$|a_3| \le \frac{4(1-\gamma)^2}{X^2 q^2 (1-\tau)^2} + \frac{2(1-\gamma)}{Y q(q+1)(1-\tau)},$$

where $X = C(2, \delta, \lambda, n, q)$ and $Y = C(3, \delta, \lambda, n, q)$.

Proof. It follows from the Definition 3.1 that there exist s(z) and $t(w) \in \mathcal{H}$ such that

(3.3)
$$\frac{zD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)\right)}{\tau zD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)\right) + (1-\tau)\mathcal{L}_{q,\lambda}^{\delta,n}\eta(z)} = \gamma + (1-\gamma)s(z),$$

(3.4)
$$\frac{wD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)\right)}{\tau wD_q\left(\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)\right) + (1-\tau)\mathcal{L}_{q,\lambda}^{\delta,n}\zeta(w)} = \gamma + (1-\gamma)t(w),$$

where s(z) and t(w) in \mathcal{H} and have the forms (2.6) and (2.7), respectively.

Equating the coefficients in (3.3) and (3.4) yields

(3.5)
$$a_2 X q (1 - \tau) = (1 - \gamma) s_1,$$

(3.6)
$$a_3 Y q(q+1) (1-\tau) - a_2^2 X^2 q (1-\tau) [\tau q + 1] = (1-\gamma) s_2,$$

$$-a_2 X q (1 - \tau) = (1 - \gamma) t_1$$

and

(3.8)
$$-a_3Yq(q+1)(1-\tau) + 2a_2^2Yq(q+1)(1-\tau) - a_2^2X^2q(1-\tau)[\tau q+1]$$
$$= (1-\gamma)t_2.$$

From (3.5) and (3.7), we get $s_1 = -t_1$ and

(3.9)
$$2a_2^2X^2q^2(1-\tau)^2 = (1-\gamma)^2(s_1^2+t_1^2).$$

Also, from (3.6) and (3.8), we find that

$$2a_2^2Yq(q+1)(1-\tau) - 2a_2^2X^2q(1-\tau)[\tau q+1] = (1-\gamma)(s_2+t_2).$$

Applying Lemma 1.1 to the coefficients s_2 and t_2 , we immediately get

$$|a_2| \le \sqrt{\frac{2(1-\gamma)}{Yq(q+1)(1-\tau) - X^2q(1-\tau)[\tau q + 1]}},$$

which is the bound on $|a_2|$ as given in (3.1). Then, to get the limit of $|a_3|$ by subtracting (3.8) from (3.6),

$$2a_3Yq(q+1)(1-\tau) - 2a_2^2Yq(q+1)(1-\tau) = (1-\gamma)(s_2-t_2),$$

or, equivalently

$$a_3 = a_2^2 + \frac{(1-\gamma)(s_2 - t_2)}{2Yq(q+1)(1-\tau)}.$$

Substituting the values of a_2^2 into (3.9), we get

$$a_3 = \frac{(1-\gamma)^2 (s_1^2 + t_1^2)}{2X^2 q^2 (1-\tau)^2} + \frac{(1-\gamma) (s_2 - t_2)}{2Y q(q+1) (1-\tau)}.$$

After applying Lemma 1.1 to the coefficients s_1 , s_2 , t_1 and t_2 , we get

$$|a_3| \le \frac{4(1-\gamma)^2}{X^2q^2(1-\tau)^2} + \frac{2(1-\gamma)}{Yq(q+1)(1-\tau)}.$$

This completes the proof of Theorem 3.1.

Utilizing the parameters setting of Definition 3.1 in the Theorem 3.1, we get the following corollaries.

Corollary 3.1. If $\eta(z)$ given by (1.1) is in the class $S_{\Sigma}^{n,\tau}(\gamma)$, $0 \le \gamma < 1$, $0 \le \tau < 1$ and $n \in \mathbb{N}_0$, then

$$|a_2| \le \sqrt{\frac{2(1-\gamma)}{2^{2n}(\tau^2-1)+2(1-\tau)3^n}}$$

and

$$|a_3| \le \frac{4(1-\gamma)^2}{2^{2n}(1-\tau)^2} + \frac{(1-\gamma)}{3^n(1-\tau)}.$$

Corollary 3.2. If $\eta(z)$ given by (1.1) and in the class $S_{\Sigma}^{\star}(\gamma)$, $0 \leq \gamma < 1$, then

$$|a_2| \le \sqrt{2(1-\gamma)}$$
 and $|a_3| \le 4(1-\gamma)^2 + (1-\gamma)$.

4. Conclusions

The main contribution of this paper is the introduction of new subclasses of biunivalent functions defined by the linear multiplier fractional q-differential operator. Additionally, we provide upper bounds for the coefficients $|a_2|$ and $|a_3|$ for functions belonging to this new subclass and its subclasses.

References

- [1] P. Duren, Geometric Function Theory, Linear and Complex Analysis Problem, Book 3, 1994, 383–422.
- H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23(10) (2010), 1188-1192. https://doi.org/10.1016/ j.aml.2010.05.009
- [3] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics 8(5) (2020), 1–11. https://doi.org/10.3390/math8050783
- [4] S. Altinkaya and S. Yalcin, Fekete-Szegö inequalities for certain classes of biunivalent functions, Int. Sch. Res. Notices 1726 (2016), Paper ID 020078. https://doi.org/10.1063/1.4945904
- [5] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevič functions of order $\vartheta + i\delta$ associated with (p;q)-Lucas polynomials, AIMS Math. **6**(5) (2021), 4296–4305. https://doi.org/10.3934/math.2021254
- [6] A. Amourah, B. A. Frasin, M. Ahmad and F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry 14(147) (2022), 8 pages. https://doi.org/10.3390/sym14010147
- [7] A. Alsoboh, M. Darus, A. Amourah and W. G. Atshan, A certain subclass of harmonic meromorphic functions with respect to k-symmetric points, International Journal of Open Problems in Complex Analysis 15(1) (2023), 1–16.
- [8] B. Alshlool, A. abu Alasal, A. Mannaâa, A. Alsoboh and A. Amourah, Consolidate a certain class of (p;q)-Lucas polynomial based bi-univalent functions with a specific discrete probability distribution, International Journal of Open Problems in Complex Analysis 15 (1) (2023), 26–37.
- [9] A. O. Mostafa and Z. M. Saleh, Coefficient bounds for a class of bi-univalent functions defined by Chebyshev polynomials, International Journal of Open Problems in Complex Analysis 13 (3) (2021), 1–10.
- [10] F. Yousef, A. Amourah, B. A. Frasin and T. Bulboaca, An avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms 11(6) (2022), Paper ID 267. https://doi. org/10.3390/axioms11060267
- [11] L. I. Cotirla, New classes of analytic and bi-univalent functions, AIMS Math. 6(10) (2021), 10642-10651. https://doi.org/10.3934/math.2021618
- [12] L. I. Cotirla and A. K. Wanas, Coefficient-related studies and Fekete-Szegö inequalities for new classes of bi-starlike and bi-convex functions, Symmetry 14(11) (2022), Paper ID 2263. https://doi.org/10.3390/sym14112263

- [13] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. **24**(9) (2011) 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048
- [14] B. A. Frasin, S. R. Swamy and J. Nirmala, Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Mat. 32 (2020), 631-643. https://doi.org/10.1007/s13370-020-00850-w
- [15] Q-H. Xu, Y-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(6) (2012), 990-994. https://doi.org/10. 1016/j.aml.2011.11.013
- [16] Q-H. Xu, H-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218(23) (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034
- [17] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abst. Appl. Anal. 2013 (2013). https://doi.org/10.1155/ 2013/573017
- [18] Z. Peng, G. Murugusundaramoorthy and T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Anal. 2014 (2014). https://doi.org/10.1155/2014/693908
- [19] F. M. Sakar and S. M. Aydogan, *Inequalities of bi-starlike functions involving Sigmoid function and Bernoulli lemniscate by subordination*, International Journal of Open Problems in Computer Science and Mathematics **16** (2023), 71–82.
- [20] S. R. Swamy and A. K. Wanas, A comprehensive family of bi-univalent functions defined by (m,n)-Lucas polynomials, Boletin De La Sociedad Matematica Mexicana 28 (2022). https://doi.org/10.1007/s40590-022-00411-0
- [21] A. K. Wanas, F. M. Sakar and A. Alb Lupaş, Applications Laguerre polynomials for families of bi-univalent functions defined with (p,q)-Wanas operator, Axioms 12(5) (2023), Paper ID 430. https://doi.org/10.3390/axioms12050430
- [22] F. Yousef, S. Alroud and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletin De La Sociedad Matematica Mexicana 26 (2019), 329–339. https://doi.org/10.1007/s40590-019-00245-3
- [23] F. Yousef, S. Alroud and M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys. 11(58) (2021), Article ID 58. https://doi.org/10.1007/s13324-021-00491-7
- [24] F. H. Jackson, On q-functions and a certain difference operator, Earth and Environmental Science Transactions of the Royal Society of Edinburgh 46(2) (1909), 253–281. https://doi.org/10.1017/S0080456800002751
- [25] R. Srivastava and H. M. Zayed, Subclasses of analytic functions of complex order defined by q-derivative operator, Stud. Univ. Babeş-Bolyai Math. **64** (2019), 71–80. https://doi.org/10.24193/subbmath.2019.1.07
- [26] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik **65**(4) (2013), 454–465.
- [27] S. Kanas and D. Răducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca 64(5) (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9
- [28] C. Ramachandran, S. Annamalai and B. A. Frasin, The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Parana. Mat. **39**(1) (2021), 133–146. https://doi.org/10.5269/bspm.32913
- [29] C. Ramachandran, T. Soupramanien and B. A. Frasin, New subclasses of analytic function associated with q-difference operator, Eur. J. Pure Appl. 10(2) (2017), 348–362.
- [30] F. M. Sakar, M. Naeem, S. Khan and S. Hussain, Hankel determinant for class of analytic functions involving q-derivative operator, J. Adv. Math. Stud. 14 (2021), 265–278.

- [31] T. M. Seoudy and M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal. 2014 (2014). https://doi.org/10.1155/2014/846719
- [32] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10 (2016), 135–145. https://doi.org/10.7153/jmi-10-11
- [33] A. Amourah, B. A. Frasin and T. Al-Hawary, Coefficient estimates for a subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Gegenbauer polynomials, Kyungpook Math. J. **62**(2) (2022), 257–269.
- [34] S. D. Purohit and R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica 55(78) (2013).
- [35] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), 55–70. https://doi.org/10.7146/math.scand.a-15177
- [36] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, 1975.
- [37] J. Jothibasu, Certain subclasses of bi-univalent functions defined by salagean operator, Electron. J. Math. Anal. Appl. 3(1) (2015), 150–157.
- [38] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl. (1988), 53–60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7

Email address: krishnargowda91@gmail.com
Email address: ravisn.kumar@gmail.com
Email address: bafrasin@yahoo.com

¹PG DEPARTMENT OF MATHEMATICS,

Bharathi College PG and RC, Maddur TQ., Mandya - 571 422, India

²PG DEPARTMENT OF MATHEMATICS,

JSS College of Arts, Science and Commerce, Mysore 570 006, India

³FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS,

AL AL-BAYT UNIVERSITY, MAFRAQ, JORDAN