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LIPSCHITZ p-APPROXIMATE SCHAUDER FRAMES

K. MAHESH KRISHNA1 AND P. SAM JOHNSON2

Abstract. With the aim of representing subsets of Banach spaces as an
infinite series using Lipschitz functions, we study a variant of metric frames
which we call Lipschitz p-approximate Schauder frames (Lipschitz p-ASFs). We
characterize Lipschitz p-ASFs and their duals completely using the canonical
Schauder basis for classical sequence spaces. Similarity of Lipschitz p-ASF is
introduced and characterized.

1. Introduction

Grochenig in 1991 introduced the notion of Banach frames [17] as a generaliza-
tion of notion of frames for Hilbert spaces introduced by Duffin and Schaeffer in
1952 [11]. This notion originated from the study of atomic decompositions and
coorbit spaces arising from square integrable representations of locally compact
groups developed by Feichtinger and Grochenig in 1980’s [13–15]. Casazza, Han
and Larson in 2000 explored the connection between Banach frames and atomic
decompositions and introduced the notion of (unconditional) Schauder frames [8].
In 2001, Aldroubi, Sun and Tang introduced the notion of p-frames and p-Riesz
bases for Banach spaces, 1 ≤ p < +∞ [1]. These notions have been generalized
by Casazza, Christensen and Stoeva by introducing the notion of Xd-frames [5,9].
A slight variant notion of Xd-frames for Banach spaces was given by Terekhin
[24–26]. In 2014, Thomas, Freeman, Odell, Schlumprecht and Zsak [16, 27, 28]
introduced the notion of approximate Schauder frames as a generalization of
notion of Schauder frames by Casazza, Dilworth, Odell, Schlumprecht and Zsak
[4] (also see [10]). In 2021, Krishna and Johnson characterized some classes of
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approximate Schauder frames [21]. In 2022, Krishna and Johnson introduced
metric frames which have surprising connections with subsets of Banach spaces
using Lipschitz-free Banach spaces [22]. We now ask the following question which
is the main motivation for writing the paper.

Can we represent a subset (which need not be a subspace) of a Banach
space as an infinite series using Lipschitz maps and elements of the set?(1.1)

Note that we can not demand linear functionals in the above problem as we
are not considering subspaces. Motivated from 1.1 we study representation of
subsets (need not be subspaces) of Banach spaces using Lipschitz functions.

The paper is organized as follows. We introduce the notion of Lipschitz p-
approximate Schauder frame (Lipschitz p-ASF) for subsets of Banach spaces in
Definition 2.1. Followed by interesting Examples 2.1, 2.2 and 2.3, factorization
property of Lipschitz frame map is derived in Theorem 2.1. Lipschitz p-ASFs are
characterized in Theorem 2.2. Next we introduce the notion of dual frames in
Definition 2.2 and classify them in Theorem 2.4. Definition 2.3 introduces the
notion of similarity and Theorem 2.5 gives an operator-theoretic characterization
for similarity. Orthogonality of frames is introduced in Definition 2.4 and interpo-
lation result is derived in Theorem 2.6. We end by formulating an open Problem
in Section 3.

2. Lipschitz p-Approximate Schauder Frames

Let X be a real or complex Banach space and M be a non-empty subset of X.
The identity operator on M is denoted by IM. The set of all Lipschitz functions
from M to X is denoted by Lip(M,X). For 1 ≤ p < +∞, the canonical Schauder
basis for ℓp(N) is denoted by {en}n and its coordinate functionals are denoted by
{ζn}n. We introduce the following important notion as a first step in answering
Motivation 1.1.
Definition 2.1. For 1 ≤ p < +∞, let X be a Banach space and M be a subset
(need not be a subspace) of X. Let {τn}n be a sequence in M and {fn}n be
a sequence in Lip(M,X). The pair ({fn}n, {τn}n) is said to be a Lipschitz
p-approximate Schauder frame (we write Lipschitz p-ASF) if the following
conditions hold.

(i) The map (analysis map)
θf : M ∋ x 7→ θfx := {fn(x)}n ∈ ℓp(N)

is a well-defined Lipschitz map.
(ii) The map (synthesis operator)

θτ : ℓp(N) ∋ {an}n 7→ θτ {an}n :=
+∞∑
n=1

anτn ∈ X

is a well-defined bounded linear operator.
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(iii) The map (Lipschitz frame map)

Sf,τ : M ∋ x 7→ Sf,τ x :=
+∞∑
n=1

fn(x)τn ∈ M

is a well-defined invertible bi-Lipschitz map and

x =
+∞∑
n=1

fn(x)S−1
f,τ τn, for all x ∈ M.(2.1)

If Sf,τ = IM, then we say that ({fn}n, {τn}n) is a Lipschitz p-Schauder frame
(we write Lipschitz p-SF). If we do not impose the condition ‘invertible bi-Lipschitz’
and Equation (2.1) in (iii), then we say that ({fn}n, {τn}n) is a Lipschitz p-
Bessel sequence (we write Lipschitz p-BS) for M.

Whenever M = X, and fn’s are all linear, Definition 2.1 reduces to definition of
p-ASF given in [21]. It is important to note that the partial sums of series in (iii)
of Definition 2.1 need not be inside M (which may not be as it is only a subset)
but only demanding limit has to be inside M. Definition 2.1 says that there are
a, b, c, d > 0 satisfying following:

a∥x − y∥ ≤
∥∥∥∥∥

+∞∑
n=1

(fn(x) − fn(y))τn

∥∥∥∥∥ ≤ b∥x − y∥, for all x, y ∈ M,

(+∞∑
n=1

|fn(x) − fn(y)|p
) 1

p

≤ c∥x − y∥, for all x, y ∈ M,

∥∥∥∥∥
+∞∑
n=1

anτn

∥∥∥∥∥ ≤ d

(+∞∑
n=1

|an|p
) 1

p

, for all {an}n ∈ ℓp(N).

We call a as lower Lipschitz frame bound, b as upper Lipschitz frame bound, c
as Lipschitz analysis bound and d as Lipschitz synthesis bound. We give various
interesting examples of Lipschitz p-ASFs.

Example 2.1. Let X := C, p = 1 and

M :=
{

z ∈ C : |z| ≤ 1
2 |z + 1|

}
=
{

x + iy : x, y ∈ R,
(

x − 1
3

)2
+ y2 ≤

(2
3

)2}
.

For n ∈ N, define

fn : M ∋ z 7→ fn(z) :=
(

z

1 + z

)n

∈ C, τn := 1 ∈ M.

We first show that fn is Lipschitz for all n. For z ∈ M,

1 − |z + 1| ≤
∣∣∣1 − |z + 1|

∣∣∣ ≤
∣∣∣1 − (z + 1)

∣∣∣ = |z| ≤ 1
2 |z + 1|.
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Hence,

|z + 1| ≥ 2
3 , for all z ∈ M.

Let z, w ∈ M. Then for each n ∈ N,

|fn(z) − fn(w)| =
∣∣∣∣( z

1 + z

)n

−
(

w

1 + w

)n∣∣∣∣
=
∣∣∣∣ z

1 + z
− w

1 + w

∣∣∣∣ ·
∣∣∣∣∣
(

z

1 + z

)n−1
+ · · · +

(
w

1 + w

)n−1
∣∣∣∣∣

≤ |z − w|
|1 + z| · |1 + w|

· n

2n−1

≤ 9
4 · n

2n−1 |z − w|.

Therefore, each fn is Lipschitz. Set

r :=
+∞∑
n=1

n

2n−1 < +∞.

We then see that for z, w ∈ M,

∥θfz − θfw∥ =
+∞∑
n=1

|fn(z) − fn(w)| =
+∞∑
n=1

∣∣∣∣( z

1 + z

)n

−
(

w

1 + w

)n∣∣∣∣
≤

+∞∑
n=1

9
4 · n

2n−1 |z − w| = 9
4r|z − w|.

Therefore, θf is Lipschitz. Clearly,

θτ : ℓ1(N) ∋ {an}n 7→
+∞∑
n=1

an · 1 ∈ C

is a well-defined bounded linear operator. Finally, we observe that for z ∈ M, we
have |z|

|z+1| < 1 and hence

Sf,τ z =
+∞∑
n=1

fn(z)τn =
+∞∑
n=1

(
z

1 + z

)n

· 1 = 1
1 − z

1+z

− 1 = z, for all z ∈ M.

Thus, we proved that ({fn}n, {τn}n) is a Lipschitz 1-SF for M.

Example 2.2. Let X := R, p = 1 and M := [1, +∞) For n ∈ N ∪ {0}, define
fn : M → R by

f0(x) := 1, for all x ∈ M,

fn(x) := (log x)n

n! , for all x ∈ M, for all n ≥ 1
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and τn := 1 ∈ M. Then f ′
n(x) = (log x)(n−1)

(n−1)!x , for all x ∈ M, for all n ≥ 1. Since f ′
n

is bounded on M for all n ≥ 1, fn is Lipschitz on M for all n ≥ 1. For x, y ∈ M,
with x < y, we see that

∥θfx − θfy∥ =
+∞∑
n=0

|fn(x) − fn(y)| =
+∞∑
n=0

(log y)n

n! −
+∞∑
n=0

(log x)n

n!
= elog y − elog x = y − x = |x − y|.

Therefore, θf is Lipschitz. It is clear that θτ is a well-defined bounded linear
operator. For x ∈ M,

Sf,τ x =
+∞∑
n=1

fn(x)τn =
+∞∑
n=0

(log x)n

n! · 1 = x.

Hence, ({fn}n, {τn}n) is a Lipschitz 1-SF for M.

Example 2.3. For 1 ≤ p < +∞, let X be a Banach space and M be a subset of X.
Assume that there is a Lipschitz map U : M → ℓp(N), a bounded linear operator
V : ℓp(N) → X such that V U(M) ⊆ M, V en ∈ M for all n ∈ N, V U : M → M is
an invertible bi-Lipschitz map and

x =
+∞∑
n=1

ζn(Ux)(V U)−1V en, for all x ∈ M.

Let {en}n denote the canonical Schauder basis for ℓp(N) and let {ζn}n denote the
coordinate functionals associated with {en}n. Define

fn := ζnU, τn := V en, for all n ∈ N.

Then ({fn}n, {τn}n) is Lipschitz p-ASF for M. If V U = IM, then ({fn}n, {τn}n)
is a Lipschitz p-SF for M.

We show in the sequel that (in Theorem 2.2) every Lipschitz p-ASF can be
written in the form of Example 2.3. Following theorem gives various fundamental
factorization properties of Lipschitz p-ASFs whose proof is a direct calculation.

Theorem 2.1. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X. Then the
following hold.

(i) We have

x =
+∞∑
n=1

(fnS−1
f,τ )(x)τn, for all x ∈ M.(2.2)

(ii) ({fnS−1
f,τ }n, {S−1

f,τ τn}n) is a Lipschitz p-ASF for M.
(iii) The analysis map θf is injective.
(iv) The synthesis operator θτ is surjective.
(v) Lipschitz frame map Sf,τ factors as Sf,τ = θτ θf .
(vi) Pf,τ := θfS−1

f,τ θτ : ℓp(N) → ℓp(N) is a Lipschitz projection onto θf (M).
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Holub characterized frames for Hilbert spaces using standard orthonormal basis
for the standard Hilbert space [20]. This result has been derived for Banach spaces
in [21]. We show that such a result can be derived for Lipschitz p-ASFs.

Theorem 2.2. A pair ({fn}n, {τn}n) is a Lipschitz p-ASF for M ⊆ X if and only
if

fn = ζnU, τn = V en, for all n ∈ N,

where U : M → ℓp(N) is a Lipschitz map, V : ℓp(N) → X is a bounded linear
operator such that V U(M) ⊆ M, V en ∈ M for all n ∈ N, V U : M → M is an
invertible bi-Lipschitz map and

x =
+∞∑
n=1

ζn(Ux)(V U)−1V en, for all x ∈ M.

Proof. (⇐) Clearly θf is Lipschitz and θτ is a bounded linear operator. Now let
x ∈ M. Then

Sf,τ x =
+∞∑
n=1

fn(x)τn =
+∞∑
n=1

ζn(Ux)V en = V

(+∞∑
n=1

ζn(Ux)en

)
= V Ux.(2.3)

Hence, Sf,τ is an invertible bi-Lipschitz map.
(⇒) Define U := θf , V := θτ . Then (ζnU)(x) = (ζnθf)(x) = ζn({fk(x)}k) =

fn(x), for all x ∈ M, V en = θτ en = τn, for all n ∈ N and V U = θτ θf = Sf,τ

which is an invertible bi-Lipschitz map. □

Corollary 2.1. (i) A pair ({fn}n, {τn}n) is a Lipschitz p-SF for M ⊆ X if and
only if fn = ζnU, τn = V en, for all n ∈ N, where U : M → ℓp(N) is a Lipschitz
map, V : ℓp(N) → X is a bounded linear operator such that V U(M) ⊆ M,
V en ∈ M for all n ∈ N and V U = IM.

(ii) A pair ({fn}n, {τn}n) is a Lipschitz p-BS for M ⊆ X if and only if fn =
ζnU, τn = V en, for all n ∈ N, where U : M → ℓp(N) is a Lipschitz map, V :
ℓp(N) → X is a bounded linear operator such that V U(M) ⊆ M and V en ∈ M for
all n ∈ N.

Equations (2.1) and (2.2) lead us to define the notion of dual frame as follows.

Definition 2.2. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X. A Lipschitz
p-ASF ({gn}n, {ωn}n) for M ⊆ X is said to be a dual for ({fn}n, {τn}n) if

x =
+∞∑
n=1

gn(x)τn =
+∞∑
n=1

fn(x)ωn, for all x ∈ M.

We can give a characterization of dual frames by using analysis map and
synthesis operator.

Proposition 2.1. Given two Lipschitz p-ASFs ({fn}n, {τn}n) and ({gn}n, {ωn}n)
for M ⊆ X, the following are equivalent:
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(a) ({gn}n, {ωn}n) is a dual for ({fn}n, {τn}n);
(b) θτ θg = θωθf = IM.

Equations (2.1) and (2.2) show that the Lipschitz p-ASF ({fnS−1
f,τ }n, {S−1

f,τ τn}n)
is a dual for ({fn}n, {τn}n). We call ({fnS−1

f,τ }n, {S−1
f,τ τn}n) as the canonical dual

for ({fn}n, {τn}n). With this notion, the following theorem is evident.

Theorem 2.3. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X with frame
bounds a and b. Then the following statements hold good.
(a) The canonical dual for the canonical dual for ({fn}n, {τn}n) is itself.
(b) 1

b
, 1

a
are frame bounds for the canonical dual for ({fn}n, {τn}n).

(c) If a, b are optimal frame bounds for ({fn}n, {τn}n), then 1
b
, 1

a
are optimal

frame bounds for its canonical dual.

In 1995, Li derived a characterization of dual frames using standard orthonormal
basis for ℓ2(N) [23]. For Banach spaces, such a characterization using canonical
Schauder basis for ℓp(N) is derived in [21]. Now we derive such characterization
for Lipschitz p-ASF.

Lemma 2.1. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X. Then a
Lipschitz p-ASF ({gn}n, {ωn}n) for M is a dual for ({fn}n, {τn}n) if and only if

gn = ζnU, ωn = V en, for all n ∈ N,

where U : M → ℓp(N) is a Lipschitz right-inverse of θτ and V : ℓp(N) → X is a
linear bounded left-inverse of θf such that V U(M) ⊆ M, V en ∈ M for all n ∈ N,
V U is an invertible bi-Lipschitz map and

x =
+∞∑
n=1

ζn(Ux)(V U)−1V en, for all x ∈ M.

Proof. (⇐) Using the ‘if’ part of proof of Theorem 2.2, we get that ({gn}n, {ωn}n)
is a Lipschitz p-ASF for M. We check for duality of ({gn}n, {ωn}n): θτ θg = θτ U =
IM, θωθf = V θf = IM.

(⇒) Let ({gn}n, {ωn}n) be a dual Lipschitz p-ASF for ({fn}n, {τn}n). Then
θτ θg = IM, θωθf = IM. Define U := θg, V := θω. Then U : M → ℓp(N) is a
Lipschitz right-inverse of θτ and V : ℓp(N) → X is a linear bounded left-inverse
of θf such that the operator V U = θωθg = Sg,ω is invertible. Further,

(ζnU)x = ζn

(+∞∑
k=1

gk(x)ek

)
=

+∞∑
k=1

gk(x)ζn(ek) = gn(x), for all x ∈ M,

and V en = θωen = ωn, for all n ∈ N. □

Lemma 2.2. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X. Then,



224 K. MAHESH KRISHNA AND P. SAM JOHNSON

(i) R : M → ℓp(N) is a Lipschitz right-inverse of θτ if and only if

R = θfS−1
f,τ +

(
Iℓp(N) − θfS−1

f,τ θτ

)
U

where U : M → ℓp(N) is a Lipschitz map;
(ii) L : ℓp(N) → X is a bounded left-inverse of θf if and only if

L = S−1
f,τ θτ + V

(
Iℓp(N) − θfS−1

f,τ θτ

)
,

where V : ℓp(N) → X is a bounded linear operator.

Proof. (i) (⇐) θτ

(
θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
U
)

= IM + θτ U − IMθτ U = IM.
Therefore, θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
U is a Lipschitz right-inverse of θτ .

(⇒) Define U := R. Then,

θfS−1
f,τ +

(
Iℓp(N) − θfS−1

f,τ θτ

)
U =θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
R

=θfS−1
f,τ + R − θfS−1

f,τ = R.

(ii) (⇐)
(
S−1

f,τ θτ + V
(
Iℓp(N) − θfS−1

f,τ θτ

))
θf = IM + V θf − V θfIM = IM. There-

fore, S−1
f,τ θτ + V

(
Iℓp(N) − θfS−1

f,τ θτ

)
is a bounded left-inverse of θf .

(⇒) Define V := L. Then,

S−1
f,τ θτ + V

(
Iℓp(N) − θfS−1

f,τ θτ

)
=S−1

f,τ θτ + L
(
Iℓp(N) − θfS−1

f,τ θτ

)
=S−1

f,τ θτ + L − S−1
f,τ θτ = L. □

Theorem 2.4. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X. Then a
Lipschitz p-ASF ({gn}n, {ωn}n) for M is a dual for ({fn}n, {τn}n) if and only if

gn = fnS−1
f,τ + ζnU − fnS−1

f,τ θτ U,

ωn = S−1
f,τ τn + V en − V θfS−1

f,τ τn, for all n ∈ N,

such that
S−1

f,τ + V U − V θfS−1
f,τ θτ U

is an invertible bi-Lipschitz map, where U : M → ℓp(N) is a Lipschitz map,
V : ℓp(N) → X is a bounded linear operator, V U(M) ⊆ M, V en ∈ M for all
n ∈ N and

+∞∑
n=1

ζn

(
θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
U
)

x
[
S−1

f,τ + V U − V θfS−1
f,τ θτ U

]−1

×
(
S−1

f,τ θτ + V
(
Iℓp(N) − θfS−1

f,τ θτ

))
en = x, for all x ∈ M.

Proof. Lemmas 2.1 and 2.2 give the characterization of dual frame as
gn = ζnθfS−1

f,τ + ζnU − ζnθfS−1
f,τ θτ U = fnS−1

f,τ + ζnU − fnS−1
f,τ θτ U,

ωn = S−1
f,τ θτ en + V en − V θfS−1

f,τ θτ en = S−1
f,τ τn + V en − V θfS−1

f,τ τn, for all n ∈ N,
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such that(
S−1

f,τ θτ + V
(
Iℓp(N) − θfS−1

f,τ θτ

)) (
θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
U
)

is an invertible bi-Lipschitz map, where U : M → ℓp(N) is a Lipschitz map,
V : ℓp(N) → X is a bounded linear operator, V U(M) ⊆ M, V en ∈ M for all
n ∈ N and for all x ∈ M

+∞∑
n=1

ζn

(
θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
U
)

x

× W −1
(
S−1

f,τ θτ + V
(
Iℓp(N) − θfS−1

f,τ θτ

))
en = x,

where
W :=

(
S−1

f,τ θτ + V
(
Iℓp(N) − θfS−1

f,τ θτ

)) (
θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
U
)

.

Through expansion and simplification we get(
S−1

f,τ θτ + V
(
Iℓp(N) − θfS−1

f,τ θτ

)) (
θfS−1

f,τ +
(
Iℓp(N) − θfS−1

f,τ θτ

)
U
)

=S−1
f,τ + V U − V θfS−1

f,τ θτ U. □

Balan introduced the notion of similarity for frames for Hilbert space which
gives an equivalence relation on frames [3]. It has been done for Banach spaces by
Krishna and Johnson in [21]. We define the same for Lipschitz p-ASF as follows.

Definition 2.3. Two Lipschitz p-ASFs ({fn}n, {τn}n) and ({gn}n, {ωn}n) for
M ⊆ X are said to be similar or equivalent if there exist invertible bi-Lipschitz
map Tf,g : M → M and an invertible bounded linear operator Tτ,ω : X → X such
that Tτ,ω(M) ⊆ M and

gn = fnTf,g, ωn = Tτ,ωτn, for all n ∈ N.

Since maps giving similarity are invertible, similarity is an equivalence rela-
tion on the set {({fn}n, {τn}n) : ({fn}n, {τn}n) is a Lipschitz p-ASF for M}. Ob-
serve that for every Lipschitz p-ASF ({fn}n, {τn}n), both ({fnS−1

f,τ }n, {τn}n) and
({fn}n, {S−1

f,τ τn}n) are Lipschitz p-ASFs and are similar to ({fn}n, {τn}n). Balan
gave an operator algebraic characterization of similarity in Hilbert spaces [3]
and it is extended to Banach spaces by Krishna and Johnson in [21]. We derive
Lipschitz version in the following theorem.

Theorem 2.5. For two Lipschitz p-ASFs ({fn}n, {τn}n) and ({gn}n, {ωn}n) for
M ⊆ X, the following are equivalent:
(a) gn = fnTf,g, ωn = Tτ,ωτn, for all n ∈ N, for some invertible bi-Lipschitz

map Tf,g : M → M, for some invertible linear map Tτ,ω : X → X such that
Tτ,ω(M) ⊆ M;

(b) θg = θfTf,g, θω = Tτ,ωθτ , for some invertible bi-Lipschitz map Tf,g : M → M,
for some invertible linear map Tτ,ω : X → X such that Tτ,ω(M) ⊆ M;
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(c) Pg,ω = Pf,τ .

If one of the above conditions is satisfied, then invertible maps in (i) and (ii)
are unique and given by Tf,g = S−1

f,τ θτ θg, Tτ,ω = θωθfS−1
f,τ . In the case that

({fn}n, {τn}n) is a Lipschitz p-SF, then ({gn}n, {ωn}n) is a Lipschitz p-SF if
and only if Tτ,ωTf,g = IM if and only if Tf,gTτ,ω = IM.

Proof. (i) ⇒ (ii) Let x ∈ M and {an}n ∈ ℓp(N). Then
θgx ={gn(x)}n = {fn(Tf,gx)}n = θf (Tf,gx),

θω({an}n) =
+∞∑
n=1

anωn =
+∞∑
n=1

anTτ,ωτn = Tτ,ωθτ {an}n.

(ii) ⇒ (iii) Sg,ω = θωθg = Tτ,ωθτ θfTf,g = Tτ,ωSf,τ Tf,g and
Pg,ω = θgS−1

g,ωθω = (θfTf,g)(Tτ,ωSf,τ Tf,g)−1(Tτ,ωθτ ) = Pf,τ .

(ii) ⇒ (i) ∑+∞
n=1 gn(x)en = θg(x) = θf (Tf,gx) = ∑+∞

n=1 fn(Tf,gx)en, for all x ∈ M.
This gives (i).

(iii) ⇒ (ii) θg = Pg,ωθg = Pf,τ θg = θf(S−1
f,τ θτ θg) and θω = θωPg,ω = θωPf,τ =

(θωθfS−1
f,τ )θτ . We show that S−1

f,τ θτ θg and θωθfS−1
f,τ are invertible. For,

(S−1
f,τ θτ θg)(S−1

g,ωθωθf ) = S−1
f,τ θτ Pg,ωθf = S−1

f,τ θτ Pf,τ θf = IM,

(S−1
g,ωθωθf )(S−1

f,τ θτ θg) = S−1
g,ωθωPf,τ θg = S−1

g,ωθωPg,ωθg = IM

and
(θωθfS−1

f,τ )(θτ θgS−1
g,ω) = θωPf,τ θgS−1

g,ω = θωPg,ωθgS−1
g,ω = IM,

(θτ θgS−1
g,ω)(θωθfS−1

f,τ ) = θτ Pg,ωθfS−1
f,τ = θτ Pf,τ θfS−1

f,τ = IM.

Let Tf,g, Tτ,ω : M → M be invertible bi-Lipschitz maps and gn = fnTf,g, ωn =
Tτ,ωτn, for all n ∈ N. Then θg = θfTf,g says that θτ θg = θτ θfTf,g = Sf,τ Tf,g

which implies Tf,g = S−1
f,τ θτ θg. Similarly, θω = Tτ,ωθτ says that θωθf = Tτ,ωθτ θf =

Tτ,ωSf,τ . Hence, Tτ,ω = θωθfS−1
f,τ . □

In Definition 2.2 we defined the notion of dual frames [2,18,19] and for Banach
spaces in [21]. We can define the orthogonality for Lipschitz p-ASFs as follows.

Definition 2.4. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X. A Lipschitz
p-ASF ({gn}n, {ωn}n) for M is said to be orthogonal for ({fn}n, {τn}n) if

0 =
+∞∑
n=1

gn(x)τn =
+∞∑
n=1

fn(x)ωn, for all x ∈ M.

Similar to Proposition 2.1 we have the following proposition.

Proposition 2.2. Given two Lipschitz p-ASFs ({fn}n, {τn}n) and ({gn}n, {ωn}n)
for M ⊆ X, the following are equivalent:
(a) ({gn}n, {ωn}n) is orthogonal for ({fn}n, {τn}n);
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(b) θτ θg = θωθf = 0.

Using orthogonality we derive following interpolation result. For the Hilbert
space frames this is derived by Han and Larson in [19] and for Banach spaces
in [21].

Theorem 2.6. Let ({fn}n, {τn}n) and ({gn}n, {ωn}n) be two Lipschitz p-SF for
M ⊆ X which are orthogonal. If A, B : M → M are bi-Lipschitz maps, C, D : X →
X are bounded linear operators, C(M) ⊆ M, D(M) ⊆ M and CA + DB = IM,
then ({fnA + gnB}n, {Cτn + Dωn}n) is a Lipschitz p-SF for M. In particular, if
scalars a, b, c, d satisfy ca+db = 1, then ({afn +bgn}n, {cτn +dωn}n) is a Lipschitz
p-SF for M.

Proof. We find

θfA+gBx = {(fnA + gnB)(x)}n = {fn(Ax)}n + {gn(Bx)}n

= θf (Ax) + θg(Bx), for all x ∈ M

and

θCτ+Dω{an}n =
+∞∑
n=1

an(Cτn + Dωn)

= Cθτ {an}n + Dθω{an}n, for all {an}n ∈ ℓp(N).

So

SfA+gB,Cτ+Dω = θCτ+DωθfA+gB = (Cθτ + Dθω)(θfA + θgB)
= Cθτ θfA + Cθτ θgB + DθωθfA + DθωθgB

= CSf,τ A + 0 + 0 + DSg,ωB = CIMA + DIMB = IM. □

We use Theorem 2.5 to relate three notions duality, similarity and orthogonality.

Proposition 2.3. Let ({fn}n, {τn}n) be a Lipschitz p-ASF for M ⊆ X. Then
the canonical dual ({fnS−1

f,τ }n, {S−1
f,τ τn}n) is the only dual Lipschitz p-ASF that is

similar to ({fn}n, {τn}n).

Proof. Let ({gn}n, {ωn}n) be a Lipschitz p-ASF for M ⊆ X which is both sim-
ilar and dual for ({fn}n, {τn}n). Then there exist invertible bi-Lipschitz maps
Tf,g, Tτ,ω : M → M such that gn = fnTf,g, ωn = Tτ,ωτn, for all n ∈ N. Theorem
2.5 then gives

Tf,g = S−1
f,τ θτ θg = S−1

f,τ IM = S−1
f,τ and Tτ,ω = θωθfS−1

f,τ = IMS−1
f,τ = S−1

f,τ .

Hence, ({gn}n, {ωn}n) is the canonical dual for ({fn}n, {τn}n). □

Proposition 2.4. Let ({fn}n, {τn}n) and ({gn}n, {ωn}n) be two similar Lipschitz
p-ASFs for M ⊆ X. Then ({fn}n, {τn}n) is not orthogonal for ({gn}n, {ωn}n).
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Proof. Since ({fn}n, {τn}n) and ({gn}n, {ωn}n) similar, there exist invertible bi-
Lipschitz maps Tf,g, Tτ,ω : M → M such that gn = fnTf,g, ωn = Tτ,ωτn, for all n ∈
N. Theorem 2.5 then says θg = θfTf,g, θω = Tτ,ωθτ . Therefore,

θτ θg = θτ θfTf,g = Sf,τ Tf,g ̸= 0.

Orthogonality condition demands θτ θg = 0 whereas above equation says it is not
true. □

Another use of orthogonal frames is to take direct sum. Given Lipschitz maps
f, g : M → K, we define f ⊕ g : M ⊕ M ∋ x ⊕ y 7→ f(x) + g(y) ∈ K.

Theorem 2.7. Let ({fn}n, {τn}n) and ({gn}n, {ωn}n) be two Lipschitz p-ASFs
for M ⊆ X which are orthogonal. Then ({fn ⊕ gn}n, {τn ⊕ ωn}n) is a Lipschitz
p-ASF for M ⊕ M ⊆ X ⊕ X.

Proof. Let x ⊕ y ∈ M ⊕ M. Then,

Sf⊕g,τ⊕ω(x ⊕ y) =
+∞∑
n=0

(fn ⊕ gn)(x ⊕ y)(τn ⊕ ωn)

=
(+∞∑

n=0
fn(x)τn +

+∞∑
n=0

gn(x)τn

)
⊕
(+∞∑

n=0
fn(x)ωn +

+∞∑
n=0

gn(x)ωn

)
= (Sf,τ x + 0) ⊕ (0 + Sg,ωy) = (Sf,τ ⊕ Sg,ω)(x ⊕ y). □

3. An Open Problem

Motivated from the approximation properties of Banach spaces (Schauder basis
problem) [6,12] and from the failure of atomic decompositions for (even separable)
Banach spaces (see [7]), we formulate the following interesting (high-end) problem:
Can anyone classify subsets of a Banach space having a Lipschitz p-ASF, for some
1 ≤ p < +∞? In particular, does every subset of a Banach space have Lipschitz
p-ASF, for some 1 ≤ p < +∞?

4. Conclusions

In the literature, only frames coming from inner products and linear functionals
are studied. The paper [22] is the first one to introduce and make a systematic
study of frames for metric spaces by using Lipschitz functions. In this paper, we
define a class of non-linear frames for subsets (need not be subspaces) of Banach
spaces which can be characterized using standard Schauder basis and Lipschitz
functions on sequence spaces. We derived Holub’s theorem [20] in non-linear form.
Duals and similar frames in non-linear form are also characterized.
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