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TOPOLOGICAL DEGREE METHOD FOR A CLASS OF
Ψ-CAPUTO FRACTIONAL DIFFERENTIAL LANGEVIN

EQUATION

HAMID LMOU1∗, KHALID HILAL1, AND AHMED KAJOUNI1

Abstract. This paper deals with the existence and uniqueness of solution for a
new class of Ψ-Caputo fractional differential Langevin equation. The suggested
study is based on some basic definitions of topological degree theory and fractional
calculus. We established the existence result by using the topological degree method
for condensing maps, and by means of Banach’s fixed point theorem we obtained the
uniqueness result. As application, we give an illustrative example to demonstrate
our theoretical result.

1. Introduction

Newly, fractional differential equations have attracted the interest of many math-
ematicians, because it can represent and verified to be effective modeling of many
phenomena in several fields of science as physics, mechanics, biology, chemistry, and
control theory, and other domains for exemple, see [8, 13,16,19,27,33].

In 1908 Paul Langevin, introduced the Langevin equation of the form md2w
dτ2 =

−λdw
dτ

+ η(τ) where, dw
dτ

is the velocity of the particle, and m is its mass and a noise
term η(τ) representing the effect of the collisions with the molecules of the fluid. For
the removal of the noise term, mathematicians used fractional order differential equa-
tions, for this reason it is very important to study Langevin equations via fractional
derivatives, for more details see [3, 4, 22–25,28,31].

Key words and phrases. Ψ-Caputo fractional derivative, Langevin equations, condensing maps, Ψ-
Caputo fractional differential Langevin equations, topological degree method, fractional differential
Langevin equations.
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There are several definitions of fractional integrals and derivatives, the popular
definitions are the Riemann-Liouville and the Caputo fractional derivatives, in [15],
Almeida introduce the generalization of these derivatives under the name of Ψ-Caputo
fractional derivative, for more details for Ψ-Caputo fractional derivative, we direct
readers to the papers [2, 17,20,21,29,30]. Furthermore, distinct version of fixed point
theorems are commonly utilized to prove the existence and uniqueness of solutions for
various classes of fractional differential equations, Isaia [12] proved a new fixed theorem
that was obtained via coincidence degree theory for condensing operators. This fixed
point theorem due to Isaia was utilized by researchers to establish the existence of
solutions for several classes of nonlinear differential equations [1, 5, 11,14,18].

Recently, Baitiche et al. [6], discussed the existence and uniqueness of solutions
to some nonlinear fractional differential equations involving the Ψ-Caputo fractional
derivative with multi-point boundary conditions based on the technique of topological
degree theory for condensing maps and the Banach contraction principle. Faree and
Panchal [9], investigated the existence and uniqueness of solutions to boundary value
problems involving the Caputo fractional derivative in Banach space by topological
structures with some appropriate conditions. Hilal et al. [10], discussed the existence
and uniqueness of solution for a boundary value problem for the Langevin equation and
inclusion, based on Krasnoselskii’s fixed point theorem, Banach’s contraction principle
and Leray-Schauder’s alternative. Rizwan [26], considered a non local boundary value
problem of nonlinear fractional Langevin equation with non-instantaneous impulses.
Baitiche et al. [32], proved the Ulam-Hyers stability of solutions for a new form of
nonlinear fractional Langevin differential equations involving two fractional orders in
the Ψ-Caputo sense.

Motivated by the mentioned works, and by using topological degree methods we
investigate the existence and uniqueness result for the following problem

(1.1)


CDp;Ψ

a+

[C
Dq;Ψ

a+ + λ
]
w(τ) = φ(τ, w(τ)), τ ∈ Υ := [a, b],

w(a) = 0, w′(a) = 0, w(b) =
n∑

i=1
ιiI

βi;Ψ
a+ w(κi).

The originality of this work is studing a new and a challenging case of fractional
derivative named the Ψ-Caputo fractional derivative [15], this kind of fractional
derivative generalize the well-known fractional derivatives, for different values of
function Ψ such as the following.

⋆ If Ψ(τ) = τ , then Problem (1.1) reduces to Caputo-type fractional derivative.
⋆ If Ψ(τ) = log(τ), then Problem (1.1) reduces to Caputo-Hadamard-type frac-

tional derivative.
⋆ If Ψ(τ) = τ ρ, then Problem (1.1) reduces to Caputo-Katugampola-type frac-

tional derivative.
The rest of the paper is organized as follows. In Section 2, we recall some theorems,

notations, lemmas, and definitions from fractional calculus and important results of



Ψ-CAPUTO FRACTIONAL DIFFERENTIAL LANGEVIN EQUATION 233

topological degree method that will be used throughout this study. In Section 3, based
on the application of topological degree method, we discuss the existence result for
the problem (1.1), and by making use of Banach’s contraction principle we prove the
uniqueness of solution. In Section 4, we give an example to support the main result.

2. Preliminaries

In this section, we introduce some definitions, lemmas and useful notations that
we can used throughout this paper.

Denote by X a Banach space and ΓX the class of non-empty and bounded subsets
of X. C(Υ,R) denote the Banach space of all continuous functions from Υ into R
with the norm defined by ∥φ∥ = supτ∈Υ{|φ(τ)|}. We denote by Cn(Υ,R) the n-times
absolutely continuous functions given by Cn(Υ,R) =

{
φ : Υ → R : φ(n−1) ∈ C(Υ,R)

}
.

Bρ(0) denote the closed ball centered at 0 with radius ρ.

Definition 2.1 ([15]). For p > 0, φ ∈ L1(Υ,R) and Ψ ∈ Cn(Υ,R), with Ψ′(τ) > 0,
for all τ ∈ Υ, the Ψ-Riemann-Liouville fractional integral of order p of a function φ
is defined by

(2.1) Ip;Ψ
a+ φ(τ) = 1

Γ(p)

∫ τ

a
Ψ′(τ)(Ψ(τ) − Ψ(s))p−1φ(s)ds,

where Γ(·) represents the gamma function.

Definition 2.2 ([15]). For p > 0, φ ∈ Cn−1(Υ,R) and Ψ ∈ Cn(Υ,R), with Ψ′(τ) > 0,
for all τ ∈ Υ, the Ψ-Caputo fractional derivative of order p of a function φ is defined
by

CDp;Ψ
a+ φ(τ) = In−p;Ψ

a+ φ
[k]
Ψ (τ) = 1

Γ(n − p)

∫ τ

a
Ψ′(τ)(Ψ(τ) − Ψ(s))n−p−1φ

[k]
Ψ (s)ds,

where φ
[k]
Ψ (τ) =

(
1

Ψ′ (τ) · d
dτ

)n
, n − 1 < p < n, n = [p] + 1 and [p] denotes the integer

part of the real number p.

Lemma 2.1 ([15]). Let p, q > 0. Then we have the following semigroup property
given by
(2.2) Ip;Ψ

a+ Iq;Ψ
a+ φ(τ) = Ip+q;Ψ

a+ φ(τ), τ > a.

Proposition 2.1 ([15]). Let p > 0, υ > 0 and τ ∈ Υ. Then
(i) Ip;Ψ

a+ (Ψτ) − Ψ(a))υ−1 = Γ(υ)
Γ(υ+p)(Ψ(τ) − Ψ(a))υ+p−1;

(ii) CDp;Ψ
a+ (Ψ(τ) − Ψ(a))υ−1 = Γ(υ)

Γ(υ−p)(Ψ(τ) − Ψ(a))υ−p−1;
(iii) CDp;Ψ

a+ (Ψ(τ) − Ψ(a))k = 0, for all k < n ∈ N.

Lemma 2.2 ([15]). If φ ∈ Cn(Υ,R), n − 1 < p < n, then

(2.3) Ip;Ψ
a+ (CDp;Ψ

a+ φ)(τ) = φ(τ) −
n−1∑
k=0

φ
[k]
Ψ

k! (Ψ(τ) − Ψ(a))k,
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for all τ ∈ Υ, where φ
[k]
Ψ (τ) :=

(
1

Ψ′ (τ) · d
dτ

)k

φ(τ).

Definition 2.3 ([7]). The Kuratowski measure of non-compactness is the mapping ϑ :
ΓX → R+ defined by ϑ(B) = inf{ξ > 0 : B can be covered by finitely many sets with
diameter less or equal to ξ}.

Proposition 2.2 ([7]). The Kuratowski measure of noncompactness ϑ satisfies the
following properties

1. ϑ(A) = 0 if and only if A is relatively compact;
2. A ⊂ B ⇒ ϑ(A) ≤ ϑ(B);
3. ϑ(A) = ϑ(A) = ϑ(conv(A)), where A and conv(A) denote the closure and the

convex hull of A, respectively;
4. ϑ(A + B) ≤ ϑ(A) + ϑ(B);
5. ϑ(kA) = |k|ϑ(A), k ∈ R.

Definition 2.4. Let F : A → X be a continuous bounded map. The operator F is
said to be ϑ-Lipschitz if there exists l ≥ 0 such that
(2.4) ϑ(F(B)) < lϑ(B), for every B ⊂ A.

Furthermore, if l < 1, then F is a strict ϑ-contraction.

Definition 2.5. F : A → X is called ϑ-condensing if
(2.5) ϑ(F(B)) < ϑ(B),
for every bounded and nonprecompact subset B of A, with ϑ(B) > 0.

Definition 2.6. We say that the function F : A → X is Lipschitz if there exists l > 0
such that
(2.6) ∥F(w) − F(v)∥ ≤ l∥u − v∥, for all w, v ∈ A,

Furthermore, if l < 1, then F is a strict contraction.

Proposition 2.3 ([7,12]). If F,Y : A → X are ϑ-Lipschitz mapping with constants l1
and l2 respectively, then F + Y : A → X is ϑ-Lipschitz mapping with constant l1 + l2.

Proposition 2.4 ([7, 12]). If F : A → X, is compact, then F is ϑ-Lipschitz mapping
with constant l = 0.

Proposition 2.5 ([7, 12]). If F : A → X is Lipschitz mapping with constant l, then
F is ϑ-Lipschitz mapping with the same constant l.

Theorem 2.1 ( [12]). Let W : A → X be ϑ-condensing and
(2.7) Πϵ = {w ∈ X : w = ϵWw, for some 0 ≤ ϵ ≤ 1}.

If Πϵ is a bounded set in X, so there exists r > 0, such that Πϵ ∈ Br(0), then the
degree
(2.8) deg (I − ϵW,Br(0), 0) = 1, for all ϵ ∈ [0, 1].
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Consequently, W has at least one fixed point and the set of the fixed points of W lies
in Br(0).

3. Main Result

Definition 3.1. A function w ∈ C(Υ,R) is said to be a solution of Problem (1.1),
if w satisfies the equation CDp;Ψ

a+

[
CDq;Ψ

a+ + λ
]

w(τ) = φ(t, w(τ)), a.e. on Υ with the

conditions w(a) = 0, w′(a) = 0, w(b) =
n∑

i=1
ιiI

βi;Ψ
a+ w(κi).

Lemma 3.1. Let a ≥ 0, 0 < p ≤ 1, 0 < q ≤ 2 and h ∈ C(Υ,R). Then the function
w is a solution of the following boundary value problem

(3.1)


CDp;Ψ

a+

[
CDq;Ψ

a+ + λ
]

w(τ) = h(τ), τ ∈ Υ := [a, b],

w(a) = 0, w′(a) = 0, w(b) =
n∑

i=1
ιiI

βi;Ψ
a+ w(κi), a < κi < b,

if and only if

w(τ) =Ip+q;Ψ
a+ h(τ) − λIq;Ψ

a+ w(τ) + (Ψ(τ) − Ψ(a))q

∆Γ(q + 1)

(
Ip+q;Ψ

a+ h(b)

− λIq;Ψ
a+ w(b) −

n∑
i=1

ιiI
p+q+βi;Ψ
a+ h(κi) + λ

n∑
i=1

ιiI
q+βi;Ψ
a+ w(κi)

)
,(3.2)

where

(3.3) ∆ =
n∑

i=1
ιi

(Ψ(κi) − Ψ(a))q+βi

Γ(q + βi + 1) − (Ψ(b) − Ψ(a))q

Γ(q + 1) ̸= 0.

Proof. Applying the Ψ-Riemann-Liouville fractional integral of order p to both sides
of (3.1) and by using Lemma 2.2 we get

(3.4) CDq;Ψ
a+ w(τ) + λw(τ) = Ip;Ψ

a+ h(τ) + d0, τ ∈ Υ,

where d0 is a constant, applying the Ψ-Riemann-Liouville fractional integral of order
q to both sides of (3.4) we obtain by using Lemma 2.2

(3.5) w(τ) = Ip+q;Ψ
a+ h(τ) − λIq;Ψ

a+ w(τ) + d0
(Ψ(τ) − Ψ(a))q

Γ(q + 1) + d1 + d2(Ψ(τ) − Ψ(a)),

where d1 and d2 are constants, next by using the boundary condition w(a) = 0 in
(3.5) we obtain that d1 = 0. Then, we get

(3.6) w(τ) = Ip+q;Ψ
a+ h(τ) − λIq;Ψ

a+ w(τ) + d0
(Ψ(τ) − Ψ(a))q

Γ(q + 1) + d2(Ψ(τ) − Ψ(a)).

It follows that

(3.7) w′(τ) =
(
Ip+q;Ψ

a+ h(τ)
)′

− λ
(
Iq;Ψ

a+ w(τ)
)′

+ d0
qΨ′(τ)(Ψ(τ) − Ψ(a))q−1

Γ(q + 1) + d2Ψ′(τ),
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by using w′(a) = 0, in (3.7) we find d2 = 0 (Definition 2.2: Ψ′(τ) > 0, for all τ ∈ Υ).
Then,

(3.8) w(τ) = Ip+q;Ψ
a+ h(τ) − λIq;Ψ

a+ w(τ) + d0
(Ψ(τ) − Ψ(a))q

Γ(q + 1) .

By making use of the boundary condition w(b) =
n∑

i=1
ιiw(κi), in (3.8) we find

(3.9)

d0 = 1
∆

(
Ip+q;Ψ

a+ h(b) − λIq;Ψ
a+ w(b) −

n∑
i=1

ιiI
p+q+βi;Ψ
a+ h(κi) + λ

n∑
i=1

ιiI
q+βi;Ψ
a+ w(κi)

)
.

Substituting the value of d0 in (3.8) we obtain the integral equation in (3.2). The
converse follows by direct computation. □

In this part, we deal with the existence and uniqueness of solution for the problem
(1.1), for that to simplify the computations, we use the following notation

Λ1 =(Ψ(b) − Ψ(a))p+q

Γ(p + q + 1)

+ (Ψ(b) − Ψ(a))q

|∆|Γ(q + 1)

(
(Ψ(b) − Ψ(a))p+q

Γ(p + q + 1) +
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))p+q+βi

Γ(p + q + βi + 1)

)
,(3.10)

Λ2 =|λ|

(Ψ(b) − Ψ(a))q

Γ(q + 1)

+ (Ψ(b) − Ψ(a))q

|∆|Γ(q + 1)

(Ψ(b) − Ψ(a))q

Γ(q + 1) +
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))q+βi

Γ(q + βi + 1)

.(3.11)

Assume that the following hold.
(H1) There exists a constant Lφ > 0 such that

(3.12) |φ(τ, w) − φ(τ, v)| ≤ Lφ|w − v|, for each τ ∈ Υ and w, v ∈ C(Υ,R).

(H2) There exist two constants Kφ,Nφ > 0 and α ∈ (0, 1) such that

(3.13) |φ(τ, w)| ≤ Kφ|w|α + Nφ, for each τ ∈ Υ and w ∈ C(Υ,R).

From Lemma 3.1 we define the operators F,Y : C(Υ,R) → C(Υ,R) by

Fw(τ) =Ip+q;Ψ
a+ φ(τ, w(τ)) + (Ψ(τ) − Ψ(a))q

∆Γ(q + 1)

×
(
Ip+q;Ψ

a+ φ(b, w(b)) −
n∑

i=1
ιiI

p+q+βi;Ψ
a+ φ(κi, w(κi))

)
, τ ∈ Υ,(3.14)

and

(3.15) Yw(τ) = −λIq;Ψ
a+ w(τ)+ (Ψ(τ) − Ψ(a))q

∆Γ(q + 1)

(
−λIq;Ψ

a+ w(b) + λ
n∑

i=1
ιiI

q+βi;Ψ
a+ w(κi)

)
,
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then, the fractional integral equation (3.2) can be written as follows
(3.16) Ww(τ) = Fw(τ) + Yw(τ), τ ∈ Υ.

Theorem 3.1. Suppose that (H1) and (H2) are satisfied, then Problem (1.1) has at
least one solution w ∈ C(Υ,R) as long as Λ2 < 1. Moreover, the set of the solution
of Problem (1.1) is bounded in C(Υ,R).

As a way to prove Theorem 3.1, we will demonstrate it in several lemmas.

Lemma 3.2. Y is ϑ-Lipschitz with the constant Λ2, where Λ2 is given by (3.11).

Proof. Let w, v ∈ C(Υ,R), then we get

|Yw(τ) − Yv(τ)| ≤|λ|Iq;Ψ
a+ |w(τ) − v(τ)| + (Ψ(τ) − Ψ(a))q

|∆|Γ(q + 1)

(
|λ|Iq;Ψ

a+ |w(b) − v(b)|

+ |λ|
n∑

i=1
|ιi|Iq+βi;Ψ

a+ |w(κi) − v(κi)|
)

≤|λ|(Ψ(b) − Ψ(a))q

Γ(q + 1) |w(τ) − v(τ)| + (Ψ(b) − Ψ(a))q

|∆|Γ(q + 1)

×

|λ|(Ψ(b) − Ψ(a))q

Γ(q + 1) |w(b) − v(b)|

+ |λ|
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))q+βi

Γ(q + βi + 1) |w(κi) − v(κi)|


≤|λ|

(Ψ(b) − Ψ(a))q

Γ(q + 1) + (Ψ(b) − Ψ(a))q

|∆|Γ(q + 1)

×
(

(Ψ(b) − Ψ(a))q

Γ(q + 1) +
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))q+βi

Γ(q + βi + 1)

)∥w − v∥,

≤Λ2∥w − v∥,

where Λ2 is given by (3.11). Taking the supremum over τ , we obtain
∥Yw − Yv∥ ≤ Λ2∥w − v∥.

Then, Y is Lipschitz with the constant Λ2 and by Proposition 2.5, Y is ϑ-Lipschitz
with the same constant Λ2. □

Lemma 3.3. F is continuous and satisfies the inequality given below

(3.17) ∥Fw∥ ≤ Λ1
(
Kφ∥w∥α + Nφ

)
,

where Λ1 is given by (3.10).

Proof. Let wn, w ∈ C(Υ,R) such that wn converging to w in C(Υ,R), implies that
there exists µ > 0 such that ∥wn∥ ≤ µ for all n ≥ 1, in addition by taking limits, we



238 H. LMOU, K. HILAL, AND A. KAJOUNI

get ∥w∥ ≤ µ. By using the fact that φ is continuous and (H2), for every τ ∈ Υ we
have

|φ(τ, wn(τ)) − φ(τ, w(τ))| ≤ |φ(τ, wn(τ))| + |φ(τ, w(τ)| ≤ 2(Kφµα + Nφ).
The function s 7→ 2(Kφµα + Nφ) is integrable for s ∈ [0, τ ], τ ∈ Υ by making use of
Lebesgue dominated convergence theorem we get

|Fwn(τ) − Fw(τ)| ≤Ip+q;Ψ
a+ |φ(τ, wn(τ)) − φ(τ, w(τ))| + (Ψ(τ) − Ψ(a))q

|∆|Γ(q + 1)

×
(
Ip+q;Ψ

a+ |φ(b, wn(b)) − φ(b, w(b))|

+
n∑

i=1
|ιi|Ip+q+βi;Ψ

a+ |φ(κi, wn(κi)) − φ(κi, w(κi))|
)

→ 0 as n → ∞.

Then, ∥Fwn − Fw∥ → 0 as n → ∞, implies that F is continuous.
In addition, for every τ ∈ Υ we get

|Fw(τ)| ≤Ip+q;Ψ
a+ |φ(τ, w(τ))| + (Ψ(τ) − Ψ(a))q

|∆|Γ(q + 1)

×
(
Ip+q;Ψ

a+ |φ(b, w(b))| +
n∑

i=1
|ιi|Ip+q+βi;Ψ

a+ |φ(κi, w(κi)|
)

,

≤

(Ψ(b) − Ψ(a))p+q

Γ(p + q + 1) + (Ψ(b) − Ψ(a))q

|∆|Γ(q + 1)

×
(

(Ψ(b) − Ψ(a))p+q

Γ(p + q + 1) +
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))p+q+βi

Γ(p + q + βi + 1)

)(Kφ∥w∥α + Nφ

)
,

implies that ∥Fw∥ ≤ Λ1
(
Kφ∥w∥α + Nφ

)
. □

Lemma 3.4. F is compact, as a consequence F is ϑ-Lipschitz with zero constant.

Proof. To prove that F is compact, let M be a bounded set, such that M ⊂ Bρ.
It remain to prove that F(M) is relatively compact in C(Υ,R). For this reason let
w ∈ M ⊂ Bρ and by making use of (3.17), we obtain

(3.18) ∥Fw∥ ≤ Λ1
(
Kφρα + Nφ

)
:= υ.

Then, F(M) ⊂ Bυ, as a consequence, F(M) is bounded.
For the equicontinuity of F, let τ1, τ2 ∈ Υ with τ1 < τ2 and for w ∈ M we have

|Fw(τ2) − Fw(τ1)|

≤Ip+q;Ψ
a+ |φ(τ2, w(τ2)) − φ(τ1, w(τ1))| + (Ψ(τ2) − Ψ(a))q − (Ψ(τ1) − Ψ(a))q

|∆|Γ(q + 1)

×
(
Ip+q;Ψ

a+ |φ(b, w(b))| +
n∑

i=1
|ιi|Ip+q+βi;Ψ

a+ |φ(κi, w(κi)|
)
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≤
(Kφρα + Nφ

)
Γ(p + q)

∣∣∣∣ ∫ τ1

a
Ψ′(s)

(
(Ψ(τ2) − Ψ(s))p+q−1

− (Ψ(τ1) − Ψ(s))p+q−1
)

ds +
∫ τ2

τ1
Ψ′(s)(Ψ(τ2) − Ψ(s))p+q−1ds

∣∣∣∣
+ (Ψ(τ2) − Ψ(a))q − Ψ(τ1) − Ψ(a))q

|∆|Γ(q + 1)

×
(

(Ψ(b) − Ψ(a))p+q

Γ(p + q + 1) +
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))p+q+βi

Γ(p + q + βi + 1)

)(
Kφρα + Nφ

)
,

By using the continuity of the function Ψ, the right hand side of the above inequality
tends to 0 as τ2 tends to τ1, this implies that F(M) is equicontinuous. It follows by
using Arzelá-Ascoli’s theorem that F is compact as a consequence of Proposition 2.4,
F is ϑ-Lipschitz with zero constant. □

Since all the conditions are satisfied we demonstrate the validity of our main result
as Theorem 3.1.

Proof of Theorem 3.1. Let F, Y and W, be the operators given by (3.14), (3.15), (3.16),
respectively. These operators are continuous and bounded. Furthermore, by making
use of Lemma 3.2 , Y is is ϑ-Lipschitz with constant Λ2, and by using Lemma 3.4, F
is ϑ-Lipschitz with constant zero, hence W is a strict ϑ-contraction with constant Λ2,
finally W is ϑ-condensing because Λ2 < 1.

Next, let us consider the following set
(3.19) Πϵ = {w ∈ X : w = ϵWw, for some 0 ≤ ϵ ≤ 1}.

It remains to show that the set Πϵ is bounded in C(Υ,R), for that let w ∈ Πϵ then
we have w = ϵWw = ϵ(Fw + Yw). It follows, by using Lemma 3.3 and 3.2,

∥w∥ = ϵ∥Fw + Yw∥,

≤ ∥Fw∥ + ∥Yw∥ ≤ Λ1
(
Kφ∥w∥α + Nφ

)
+ Λ2∥w∥ ≤

Λ1
(
Kφ∥w∥α + Nφ

)
1 − Λ2

,

where Λ1 and Λ2 are given by (3.10) and (3.11), respectively. Then, the set Πϵ is
bounded in C(Υ,R). If the set Πϵ is not bounded, then we suppose that χ := ∥w∥ →
+∞ and by using the above inequality we get

(3.20) 1 ≤ lim
χ→+∞

Λ1
(
Kφχα + Nφ

)
χ(1 − Λ2)

= 0,

which is a contradiction. Thus by using Theorem 2.1, W has at least one fixed point
which is the solution of Problem (1.1). Moreover, the set of solution of Problem (1.1)
is bounded in C(Υ,R). □

To deal with the uniqueness of solution for Problem (1.1), we use Banach’s contrac-
tion principle.



240 H. LMOU, K. HILAL, AND A. KAJOUNI

Theorem 3.2. Assume that (H1) hold. If LφΛ1 + Λ2 < 1, then Problem (1.1) has a
unique solution on C(Υ,R).

Proof. For every w, v ∈ C(Υ,R) and τ ∈ Υ we have

|Ww(τ) − Wv(τ)|
≤|Fw(τ) − Fv(τ) + Yw(τ) − Yv(τ)|
≤|Fw(τ) − Fv(τ)| + |Yw(τ) − Yv(τ)|

≤Ip+q;Ψ
a+ |φ(τ, w(τ)) − φ(τ, v(τ))| + (Ψ(τ) − Ψ(a))q

|∆|Γ(q + 1)

Ip+q;Ψ
a+ |φ(b, w(b)) − φ(b, v(b))|

+
n∑

i=1
|ιi|Ip+q+βi;Ψ

a+ |φ(κi, w(κi)) − φ(κi, v(κi))|


+ |λ|Iq;Ψ
a+ |w(τ) − v(τ)| + (Ψ(τ) − Ψ(a))q

|∆|Γ(q + 1)

[
|λ|Iq;Ψ

a+ |w(b) − v(b)|

+ |λ|
n∑

i=1
|ιi|Iq+βi;Ψ

a+ |w(κi) − v(κi)|


≤

(Ψ(b) − Ψ(a))p+q

Γ(p + q + 1) + (Ψ(b) − Ψ(a))q

|∆|Γ(q + 1)

×
(

(Ψ(b) − Ψ(a))p+q

Γ(p + q + 1) +
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))p+q+βi

Γ(p + q + βi + 1)

)Lφ|w(τ) − v(τ)|

+ |λ|

(Ψ(b) − Ψ(a))q

Γ(q + 1) + (Ψ(b) − Ψ(a))q

|∆|Γ(q + 1)

×
(

(Ψ(b) − Ψ(a))q

Γ(q + 1) +
n∑

i=1
|ιi|

(Ψ(κi) − Ψ(a))q+βi

Γ(q + βi + 1)

)|w(τ) − v(τ)|

≤(LφΛ1 + Λ2)∥w − v∥,

where Λ1 and Λ2 are given by (3.10) and (3.11), respectively. Then, by taking the
supremum over τ , we get ∥Ww − Wv∥ ≤ (LφΛ1 + Λ2)∥w − v∥. Using the fact that
LφΛ1 + Λ2 < 1, it follows that W is a contraction. Finally, by the Banach fixed point
theorem, W has a unique fixed point which is a unique solution of Problem (1.1). □

4. Example

Consider the following problem

(4.1)


CD

1
2 ;eτ

0+

(
CD

3
2 ;eτ

0+ + 1
5

)
w(τ) = e−τ

eτ +10

(
1 + |w(τ)|

1+|w(τ)|

)
, 0 ≤ τ ≤ 1,

w(0) = 0, w′(0) = 0, w(1) = 3
5I

2
7 ;eτ

0+ w
(

1
4

)
+ 4

5I
2
5 ;eτ

0+ w
(

1
2

)
,
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where p = 1
2 , q = 3

2 , λ = 1
5 , a = 0, b = 1, Υ = [0, 1], n = 2, ι1 = 3

5 , ι2 = 4
5 , β1 = 2

7 ,
β2 = 2

5 , κ1 = 1
4 , κ2 = 1

2 and Ψ(τ) = eτ .
For (τ, w) ∈ Υ × R+, we define φ(τ, w) = e−τ

eτ +10

(
1 + w(τ)

1+w(τ)

)
. Function φ is a

continuous function, in addition for every τ ∈ Υ and for every w, v ∈ R+ we have

|φ(τ, w) − φ(τ, v)| ≤
∣∣∣∣∣ e−τ

eτ + 10

∣∣∣∣∣ ·
∣∣∣∣∣ w − v

(1 + w)(1 + v)

∣∣∣∣∣ ≤ 1
11 |w − v|.

Then, Hypotheses (H1) holds with Lφ = 1
11 > 0. In addition, for every τ ∈ Υ and

w, v ∈ R+ we have

|φ(τ, w)| ≤
∣∣∣∣∣ e−τ

eτ + 10

∣∣∣∣∣(1 + |w|
)

≤ 1
11
(
1 + |w|

)
.

Then, Hypotheses (H2) holds with Kφ = Nφ = 1
11 > 0 and α = 1 moreover Λ2 =

0.70263036 < 1. Finally, all the conditions of Theorem 3.1 are satisfied, consequently
Problem (4.1) has at least one solution defined on [0, 1].

To deal with the uniqueness we use the data given above, we get, |∆| ≃ 1.74138859,
Λ1 = 2.9745821, Λ2 = 0.70263036 < 1, and Lφ = 1

11 = 0.09. Then, LφΛ1 + Λ2 =
0.09 × 2.9745821 + 0.70263036 = 0.97034275 < 1.

Accordingly, by Theorem 3.2, Problem (4.1) has a unique solution on [0, 1].

5. Conclusion

In this article, we have studied and discussed the existence and uniqueness of solu-
tion for a class of Ψ-Caputo fractional differential Langevin equation. The suggested
study is based on some basic definitions of fractional calculus and topological degree
theory. The novelty of this work is that it is more general than the works based on
the well-known fractional derivatives such as (Caputo fractional derivative, Caputo-
Hadamard fractional derivative and Caputo-Katugampola fractional derivative) for
different values of function Ψ. Additionally, as a scope of future direction, by studying
this specific case of fractional derivative, it can be used as an overview to studying the
general case known by the Ψ-Hilfer fractional derivative. In this paper we proved the
existence and uniqueness results for Problem (1.1), by using the topological degree
method and Banach’s fixed point theorem. Finally, a numerical example is presented
to clarify the theoretical result.

Acknowledgements. The authors would like to thank the referees for the valuable
comments and suggestions that improve the quality of our paper.
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