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A FINITE DIFFERENCE TECHNIQUE FOR NUMERICAL
SOLUTION OF THE BOUNDARY VALUE PROBLEM IN ODES OF

ORDER THREE

PRAMOD KUMAR PANDEY

Abstract. In the article, we study the approximate numerical solution to the
boundary value problem in ordinary differential equations. In the present article,
a third-order two-point boundary value problem is considered for discussion. We
developed a second order accurate finite difference method for the approximate
numerical solution of the considered problem. We took a special boundary condition;
we did not find this boundary condition in the literature. We have discussed the
standard convergence analysis of the proposed method. Numerical experiments on
linear, nonlinear, and obstacle problems approve the order of accuracy and efficiency
of the method.

1. Introduction

The present article is aimed at finite difference method for the numerical solution
of the third-order boundary value problems of the following form

(1.1) u′′′(x) = f(x, u), a < x < b,

subject to the boundary conditions
u(a) = α, u′(b) = β and u′′(b) = γ,

where α, β and γ are real constants.
The importance of third order boundary value problems is well-established in the

physical and natural sciences. The analytical solution to such problems is subject
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to a variety of boundary conditions, and restricted forcing function f(x, u) has been
studied by many researchers. But for an arbitrary forcing function f(x, u), it is
difficult to find closed-form analytical solution.

The theory on the existence and uniqueness of the solution of higher order boundary
value problems can be found in [1]. The existence and uniqueness of the solution,
especially for the third order boundary value problem (1.1) in detail are discussed in
[2–5] and references therein. So, we have assumed the existence and uniqueness of
the solution for problem (1.1) with the considered boundary conditions.

There are a variety of approximation techniques available in the literature for
numerical solutions to third-order two-point boundary value problems. But not many
researchers considered the problem with the boundary conditions as described in this
article. For instance, among a substantial number of works, we refer to work reported
by [6, 7] and references therein for numerical approximation of the solution using the
finite difference method with different boundary conditions.

Based on the idea in [8], the purpose of the present article is to develop an algorithm
using the finite difference method to deal with the numerical solution of the third-order
boundary value problems that is accurate, inexpensive, and simple in its computational
efforts. We hope the present technique will supplement the existing literature on the
solution of third-order boundary value problems.

In this article, we have organised our work as follows. In Section 2, we have
derived our finite difference method. In Section 3, we have discussed and analysed the
standard convergence of the proposed method. The computational work presented in
Section 4 and a discussion on the computational performance of the proposed method
is presented in Section 5.

2. The Difference Method

We define a ≤ x0 < x1 < x2 < · · · < xN ≤ b, N − 1 number of nodal points
in the domain [a, b] of the problem (1.1). In this domain we wish to determine an
approximate numerical solution of the problem (1.1), using uniform step length h such
that xi = a+ih, i = 0, 1, 2, . . . , N . We wish to determine the numerical approximation
of the theoretical solution u(x) of the problem (1.1) at these discrete nodal points
xi, i = 1, 2, . . . , N . We denote the numerical approximation of u(x) by ui and source
function f(x, u(x)) by fi at nodes x = xi, i = 1, 2, . . . , N . Thus, the boundary value
problem (1.1) at node x = xi may be written as

(2.1) u′′′
i = fi, a ≤ xi ≤ b,

subject to the boundary conditions

u0 = α, u′
N = β and u′′

N = γ.

Let we define nodes xi± 1
2

= xi ± h
2 , i = 1, 2, . . . , N − 1, and denote the solution of the

problem (1.1) at these nodes as ui± 1
2
. Following the idea in [8] and using method of
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undetermined coefficients and Taylor series expansion, we discretize problem (2.1) at
these nodes in [a, b] as follows

15ui− 1
2

− 10ui+ 1
2

+ 3ui+ 3
2

= 8ui−1 + h3

16(15fi− 1
2

+ 25fi+ 1
2
) + Ti, i = 1,(2.2)

− ui− 3
2

+ 3ui− 1
2

− 3ui+ 1
2

+ ui+ 3
2

= h3

2 (fi− 1
2

+ fi+ 1
2
) + Ti, 2 ≤ i ≤ N − 2,

− ui− 3
2

+ 2ui− 1
2

− ui+ 1
2

= −h2u′′
i+1 − h3

24(25fi− 3
2

− 61fi− 1
2
) + Ti, i = N − 1,

− ui− 3
2

+ ui− 1
2

= hu′
i − h2u′′

i − h3

24(36fi− 3
2

− 49fi− 1
2
) + Ti, i = N,

where Ti, i = 1, 2, . . . , N are truncating terms. Also, in discretization we have used
boundary conditions in a natural way.

After neglecting the terms Ti in (2.2), at nodal points xi− 1
2
, i = 1, 2, . . . , N we will

obtain the N linear or nonlinear system of equations in N unknown namely ui− 1
2

which depends on the source function f(x, u). We have applied Gauss Seidel and
Newton-Raphson iterative method to solve system of linear and system of nonlinear
equations, respectively.

We compute numerical value of ui, i = 1, 2, . . . , N by using following second order
approximation

(2.3) ui =


1
2(ui+ 1

2
+ ui− 1

2
), 1 ≤ i ≤ N − 1,

1
2(3ui− 1

2
− ui− 3

2
), i = N .

3. Convergence Analysis

We will consider following linear test equation for convergence analysis of the
proposed method (2.2)

(3.1) u′′′(x) = f(x, u), a < x < b,

subject to the boundary conditions

u0 = α, u′
N = β and u′′

N = γ.

Let ui− 1
2

and Ui− 1
2

for i = 1, 2, . . . , N are, respectively approximate and exact solution
of (2.2). Let us define

Fi− 1
2

= f(xi− 1
2
, Ui− 1

2
), i = 1, 2, . . . , N,

and error that occur in approximate solution

ϵi− 1
2

= Ui− 1
2

− ui− 1
2
, i = 1, 2, . . . , N.
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Let we linearize source function f(xi− 1
2
, Ui− 1

2
) by application of Taylor series expansion,

i.e.,

f(xi− 1
2
, Ui− 1

2
) − f(xi− 1

2
, ui− 1

2
) = (Ui− 1

2
− ui− 1

2
)
(

∂f

∂u

)
i− 1

2

, i = 1, 2, . . . , N.

Thus, using these above definitions and boundary condition, we can write an equation
in (2.2) as follows

15ϵi− 1
2

− 10ϵi+ 1
2

+ 3ϵi+ 3
2

= h3

16

128
(

∂f

∂u

)
i− 1

2

+ 25
(

∂f

∂u

)
i+ 1

2

+ Ti, i = 1.

Similarly we can write remaining equations in (2.2). Thus, we can write proposed
method (2.2) in the matrix form as

(3.2) JE = T,

where J, E and T are matrices. These matrices are defined as

J = A + L,

A =



15 −10 3 0
−1 3 −3 1

. . . . . . . . . . . .
−1 3 −3 1

−1 2 −1
0 −1 1


N×N

,

L = −h3

48



384δ 1
2

75δ 3
2

0
24δ 3

2
24δ 5

2. . . . . .
24δN− 5

2
24δN− 3

2
−50δN− 5

2
122δN− 3

2
0 −72δN− 3

2
98δN− 1

2


N×N

,

where δ = ∂f
∂u

,

E =
(
ϵ 1

2
, ϵ 3

2
, . . . , ϵN− 3

2
, ϵN− 1

2

)T
and T = (T1, T2, . . . , TN−1, TN)T ,

where

Ti =



−19
40h5u

(5)
i− 1

2
, i = 1,

1
240h7u

(7)
i− 1

2
, 2 ≤ i ≤ N − 2,

−13
12h5u

(5)
i− 1

2
, i = N − 1,

−27
40h5u

(5)
i− 1

2
, i = N .



AN ALGORITHM FOR SOLVING THIRD ORDER BVP 249

Thus, we note from (3.2) that the convergence of the difference method (2.2) depends
on matrix J. So, we have determined A−1 = (ai,j) explicitly where

(3.3) ai,j =



(4j−1)+4(i−1)(2j−i)
8 , i < j < N,

2i−1
2 , i ≤ j = N,

1
8 , 1 = j ≤ i ≤ N,
4j2−1

8 , 1 < j < i ≤ N,
4j2−1

8 , 1 < j = i < N .

We observed that ai,j > 0 for all i and j. Also, we have calculated the row sum of
A−1 which are given as

Ri = 4i3 − 12i2 + 32i − 18
24 + (N − 1)(2i − 1)(2N − 2i + 1)

8 .

Thus, we have obtained

(3.4) RN = max
1≤i≤N

|Ri| = 4N3 − N2 + 23N − 15
24 .

Hence, it is easy from (3.4) to prove that

(3.5) ||A−1|| <
(b − a)3

6h3 .

Let square matrix M and identity matrix I have the same order and ||M|| < 1. Then
square matrix (I + M) is invertible [9–11] and

||(I + M)−1|| <
1

1 − ||M||
.

Let us assume ||A−1L|| < 1. Thus, from (3.2), we have

(3.6) ||E|| <
1

1 − ||A−1L||
||A−1|| · ||T||.

Let V = maxx∈[a,b] |u(5)(x)|, v = maxx∈[a,b] δi− 1
2

and v > 0. Thus, from (3.5) and (3.6)
we obtained

(3.7) ||E|| <
52(b − a)3V h2

9(32 − 51v(b − a)3) .

From equation (3.7), we conclude ||E|| is bounded above and as h → 0 implies
||E|| → 0. Thus, we have established the convergence of our proposed method (2.2).
The order of convergence of the proposed method is at least quadratic.
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4. Numerical Results

To test the computational efficiency and validity of the theoretical development of
the proposed method (2.2), we have considered two linear, a nonlinear, and an obstacle
model problem. In each model problem, we took a uniform step size h. In Table 1–4,
we have shown the maximum absolute error MAE in the computed solution u(x)
of the problem for different values of N. We have used the following formula in the
computation of MAE

MAE = max
1≤i≤N

|U(xi) − ui|,

where U(x) is the exact solution of the problem. All computations were performed on a
Windows 2007 Ultimate operating system in the GNU FORTRAN environment version
99 compilers (2.95 of gcc) on Intel Core i3-2330M, 2.20 GHz PC. The solutions are
computed on N nodes and iteration is continued until either the maximum difference
between two successive iterates is less than 10−10 or the number of iterations reached
106.

Problem 4.1. The linear model problem in [12] with different boundary conditions is
given by

u′′′(x) = xu(x) + (x3 − 2x2 − 5x − 3) exp(x), 0 < x < 1,

subject to boundary conditions

u(0) = 0, u′(1) = 1 and u′′(1) = −4 exp(1).

The analytical solution of the problem is u(x) = x(1−x) exp(x). The MAE computed
by method (2.2) for different values of N are presented in Table 1.

Table 1. Maximum absolute error in solution of Problem 1.1.
N

128 256 512 1024
MAE .21027867e-3 .61334344e-4 .15507685e-4 .38828002e-5

Problem 4.2. The linear model problem in [13] with different boundary conditions is
given by

u′′′(x) = −u(x) + (7 − x2) cos(x) + (x2 − x − 1) sin(x), 0 < x < 1,

subject to boundary conditions

u(0) = 0, u′(1) = 2 sin(1) and u′′(1) = 2 sin(1) + 4 cos(1).

The analytical solution of the problem is u(x) = (x2 − 1) sin(x). The MAE computed
by method (2.2) for different values of N are presented in Table 2.
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Table 2. Maximum absolute error in solution of Problem 2.1.

N
128 256 512 1024

MAE.98107150e-4 .22081891e-4 .55033015e-5 .34570694e-5

Problem 4.3. The nonlinear model problem in [14] with different boundary conditions
is given by

u′′′(x) = −2 exp(−3u(x)) + 4(1 + x)−3, 0 < x < 1,

subject to boundary conditions

u(0) = 0 , u′(1) = 1
2 and u′′(1) = −1

4 .

The analytical solution of the problem is u(x) = ln(1 + x). The MAE computed by
method (2.2) for different values of N are presented in Table 3.

Table 3. Maximum absolute error in solution of Problem 2.2.

N
32 64 128 256

MAE.70750713e-4 .24229288e-4 .68414956e-5 .19595027e-5

Problem 4.4. Let consider the following third-order obstacle problems [15]

u′′′(x) =


0, 0 ≤ x ≤ 1

4 ,

u(x) − 1, 1
4 ≤ x ≤ 3

4 ,

0, 3
4 ≤ x ≤ 1,

subject to boundary conditions
u(0) = 0, u′(1) = 0 and u′′(1) = a5.

The analytical solution of the problem is

u(x) =


1
2a1x

2, 0 ≤ x ≤ 1
4 ,

1 + a2 exp(x) + exp(−x
2 )
(
a3 cos

(√
3

2 x
)

+ a4 sin
(√

3
2 x
))

, 1
4 ≤ x ≤ 3

4 ,
1
2a5x(x − 2) + a6,

3
4 ≤ x ≤ 1,

where ai, i = 1, 2, . . . , 6 are constants. To determine these constants, we apply a
continuity condition to the solution, first and second derivatives of the solution of
the problem. Hence, we shall get a system of linear equations and solve the system
of equations in variable ai, i = 1, 2, . . . , 6. The maximum absolute error in domain
D1 = [0, 1

4 ], D2 = [1
4 , 3

4 ] and D3 = [3
4 , 1] in computed solution are presented in Table 4,

by the proposed method (2.2) for the different values of N. Hence, we presented the
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maximum absolute error in the computed solution in the considered domain D = [0, 1]
of the problem in Table 4.

Table 4. The maximum absolute error in solution of Problem 4.4.

Maximum Absolute Error in
N D1 D2 D3 D
16 .10749675e -3 .97104762e -4 .35469564e -3 .35469564e -3
32 .28237705e -4 .27046958e -4 .88673911e -4 .88673911e -4
64 .72459166e -5 .71096102e -5 .22168478e -4 .22168478e -4
128.18359854e -5 .18398562e -5 .55421195e -5 .55421195e -5
256.46230928e -6 .48803843e -6 .13855249e -5 .13855249e -5
512.14240736e -6 .14589006e -6 .34638247e -6 .34638247e -6

We have tested our finite difference method for the approximate numerical solution
of linear and nonlinear model problems. Observing the numerical result in the tables,
we found error in the computed solution decreases with a decrease in step size h in each
considered model problem. The order of accuracy in computed solution of Problem
4.1, 4.2 is quadratic, and the order of accuracy computed solution of Problem 4.3
is non quadratic. We observed from the tabulated result for Problem 4.4, that the
order of accuracy in the computed solution in the domain is quadratic. Hence, the
maximum absolute error in the computed solution is in the domain D3. We have noted
in numerical experiments that our method is efficient, convergent, and consistent with
theoretical development.

5. Conclusion

We considered a third-order two-point boundary value problem in ordinary differen-
tial equations for the approximate numerical solution. There are numerous techniques
for the approximate solution in the literature of numerical analysis. Hence, we have
developed an algorithm of quadratic order exact using the finite difference method
for the approximate numerical solution of third order boundary value problems. The
main concern in the present article is the boundary conditions. Some work with
these boundary conditions has been reported in the literature for a closed analytical
solution of the problem, but no algorithm or technique has been developed for an
approximate solution of the problem. We converted a differential equation, a contin-
uous problem, into a difference equation, a discrete problem, i.e., we discretized the
problem at discrete nodal points in the domain of the considered problem. Hence,
we have obtained a system of algebraic equations (2.2) and the solution of system
of equations (2.2) is an approximate numerical solution of the considered problem
(1.1). We considered four model problems, including an obstacle problem, to test the
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efficiency and accuracy of the proposed method (2.2). The numerical experiments
produced a good approximate numerical solution for model problems. The numerical
experiments approved the theoretical discussion on the order of accuracy and efficiency
of the proposed method (2.2). Thus, we arrived at the conclusion that our method is
computationally efficient and the order of accuracy is quadratic. The idea presented
in this article is simple and leads to the possibility of developing higher order finite
difference methods. Work in these directions and areas is in progress.
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