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FROM MONOTONICITY OF A CLASS OF BESSEL
DISTRIBUTION FUNCTIONS TO NEW BOUNDS FOR RELATED

FUNCTIONALS

DRAGANA JANKOV MAŠIREVIĆ1 AND TIBOR K. POGÁNY2

Dedicated to Academician Gradimir V. Milovanović on the occasion of his 75th birthday

Abstract. In this note we prove a monotonicity result with respect to the param-
eter ν of the cumulative distribution function for the McKay Iν Bessel distribution
and uniform upper bounds for a bilinear expression containing modified Bessel func-
tion of the first kind Iν . Certain implications, among others with the Horn function
Φ2 and for the Gaussian hypergeometric function close the exposition.

1. Introduction

The first results about probability distributions involving Bessel functions can be
traced back to the early work of McKay [4] in 1932 who considered two classes of
continuous distributions called Bessel distributions.

For reader’s convenience, let us recall the definition of the modified Bessel function
of the first kind Iν of the order ν [6, p. 249, Eq. 10.25.2]

Iν(z) =
∑
k≥0

1
Γ(ν + k + 1) k!

(
z

2

)2k+ν

, Re (ν) > −1, z ∈ C .

On a standard probability space (Ω,F, P) we consider a random variable (r.v.) ξ
which follows a distribution which is a McNolty’s variant of the McKay Iν Bessel law.
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This means that ξ is a nonnegative r.v. with the following probability density function
(density in short) [5, p. 496, Eq. (13)]

fI(x; a, b; ν) =
√

π(b2 − a2)ν+1/2

(2a)νΓ
(
ν + 1

2

) e−bxxνIν(ax), x ≥ 0.

The density fI depends on three real parameters a, b, ν, where ν > −1/2 and b > a > 0.
The corresponding distribution function of ξ is as follows:

(1.1) FI(x; a, b; ν) =
√

π(b2 − a2)ν+1/2

(2a)νΓ
(
ν + 1

2

) ∫ x

0
e−bttνIν(at) dt, x ≥ 0.

In the sequel we use any of the notations ξ ∼ McKayI(a, b, ν), ξ ∼ fI(x; a, b; ν),
ξ ∼ FI(x; a, b; ν).

Recently, Jankov Maširević and Pogány [2] reported on the expression of the distri-
bution function FI , see (1.1), in terms of the Horn confluent hypergeometric function
[8, p. 25, Eq. (17)]

Φ2(b, b′; c; x, y) =
∑

m,n≥0

(b)m(b′)n

(c)m+n

· xm yn

m! n! , max{|x|, |y|} < +∞ .

So, for all ν > −1/2, b > a > 0 and for all x ≥ 0 this result is [2, p. 149, Theorem 3]

(1.2) FI(x; a, b; ν) = (b2 − a2)ν+1/2x2ν+1

Γ(2ν + 2) Φ2
(
ν + 1

2 , ν + 1
2 ; 2ν +2; (a− b)x, −(a+ b)x

)
.

It is natural to ask about important characteristics of the Bessel distribution (1.1).
While, as we know, the positive integer order moments play a great role in Probability
and Statistics, here we can find an explicit expression for the moment ms of order s,
for s ∈ C. Thus,

ms = E [ξs] =
√

π(b2 − a2)ν+1/2

(2a)νΓ
(
ν + 1

2

) ∫ +∞

0
e−bxxν+s Iν(ax)dx .

We see that up to a constant factor, ms is the Laplace transform of the input function
xν+s Iν(ax). Applying a result [7, p. 313, Eq. 3.15.1.2.] for complex valued µ, ν, p, α,
we obtain∫ +∞

0
e−pxxµ Iν(αx) dx = αν Γ(µ + ν + 1)

2νpµ+ν+1Γ(ν + 1)2F1

[ 1
2(µ + ν + 1), 1

2(µ + ν) + 1
ν + 1

∣∣∣∣α2

p2

]
.

This formula is valid for all µ, ν, p, α, provided Re (µ + ν) > −1, Re (p) > |Re (α)|.
Now together with the Legendre duplication formula for the gamma function, we
conclude that for all Re (s) > −2ν − 1 there holds

(1.3) ms = (b2 − a2)ν+1/2Γ(2ν + s + 1)
Γ(2ν + 1) b2ν+s+1 2F1

[
ν + 1

2(s + 1), ν + s
2 + 1

ν + 1

∣∣∣∣a2

b2

]
.

One of our goals is to prove the monotonicity of the distribution function FI with
respect to ν. This result implies an attractive uniform bound upon a bilinear function
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built with modified Bessel functions of the first kind which orders are contiguous with
the input parameter ν occuring in McKayI(a, b, ν). We end the presentation with
Turán type inequalities for Gauss hypergeometric function derived by certain moment
inequalities.

2. Main Results

Sun et al. in [9] proved the next integral inequality. Let X and Y be positive
independent random variables (r.v.), where X is absolutely continuous with density
function fX , while Y is arbitrary, either continuous or discrete; no density at the latter
case. Let further, g : (0, +∞) → (0, +∞) be a nondecreasing positive function. Then,
provided FY (0) < 1 and the integrals exist, compare [9, p. 1169, Lemma 1] (actually,
this inequality is a consequence of the fact that if X and Y are positive r.v.s, X + Y
is stochastically larger than X), the following inequality holds true for each x > 0:

(2.1)
∫ +∞

x
g(t) fX+Y (t) dt >

∫ +∞

x
g(t) fX(t) dt.

With the help of this inequality we prove a strict monotonicity of the generalized
distribution function (1.2) and two consequences of this monotone behaviour of FI .

Theorem 2.1. For all ν1 > −1
2 , ν2 > −1

2 and b > a > 0 there holds

(2.2) FI

(
x; a, b; ν1 + ν2 + 1

2

)
< FI(x; a, b; ν1), x ≥ 0 .

Moreover, for the same parameter range, the following inequality holds true

Iν1+ν2+1/2(ax) ∓ Iν1+ν2+3/2(ax)
Iν1(ax) ∓ Iν1+1(ax) <

Γ(ν1 + ν2 + 2)
Γ(ν1 + 3

2)

(
2a

(b2 − a2)x

)ν2+1/2

.

Finally, for all x > 0 we have

(2.3) x2ν2+1 Φ[ν1+ν2+1]
2 (x)
Φ[ν1+ 1

2 ]
2 (x)

<
Γ(2ν1 + 2ν2 + 3)

(b2 − a2)ν2+ 1
2 Γ(2ν1 + 2)

,

where we have used the quantity

Φ[η]
2 (x) = Φ2

(
η, η; 2η + 1; (a − b)x, −(a + b)x

)
.

Proof. The moment generating function of the r.v. ξ ∼ McKayI(a, b; ν) equals

Mξ(s) = E [esξ] =
∫ +∞

0
esxfI(x; a, b; ν) dx

=
√

π(b2 − a2)ν+1/2

(2a)νΓ
(
ν + 1

2

) ∫ +∞

0
e−(b−s)xxνIν(ax) dx

=
(

1 − s(2b − s)
b2 − a2

)−ν− 1
2

, s ∈ R, |b − s| > a,
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see again the Laplace transform [7, p. 313, Eq. 3.15.1.3]. Clearly, the moment
generating function Mξ exists if we find a proper interval of zero, say (−sl, sr), where
sl > 0, sr > 0, such that for all s ∈ (−sl, sr) it is Mξ(s) < +∞.

Now, letting X ∼ fI(x; a, b; ν1) and Y ∼ fI(x; a, b; ν2) be two independent r.v.s.
Hence, the moment generating function of the r.v. X + Y becomes

MX+Y (s) = MX(s)MY (s) =
(

1 − s(2b − s)
b2 − a2

)−ν1−ν2−1
, |b − s| > a,

which implies that r.v. X + Y ∼ fI(x; a, b; ν1 + ν2 + 1/2). Rewriting the inequality
(2.1) in the form

(2.4)
∫ x

0
g(t)fX+Y (t) dt <

∫ x

0
g(t)fX(t) dt,

and taking g(x) = 1 for all x > 0 we conclude∫ x

0
fI(t; a, b; ν1 + ν2 + 1/2) dt <

∫ x

0
fI(t; a, b; ν1) dt,

which is equivalent to the first stated result.
As to the second inequality, observe that from (2.4) there follows

(b2 − a2)ν2+1/2Γ(ν1 + 1/2)
(2a)ν2+1/2Γ(ν1 + ν2 + 1)

∫ x

0
g(t)e−bt tν1+ν2+1/2Iν1+ν2+1/2(at) dt

<
∫ x

0
g(t)e−bt tν1Iν1(at) dt,

and choosing the positive non-decreasing function g(x) = e(b±a)x we conclude

(b2 − a2)ν2+1/2Γ(ν1 + 1/2)
(2a)ν2+1/2Γ(ν1 + ν2 + 1)

∫ x

0
e±attν1+ν2+1/2Iν1+ν2+1/2(at) dt

<
∫ x

0
e±attν1Iν1(at) dt.

By virtue of [6, p. 259, Eq. 10.43.7]∫ x

0
e±ttνIν(t) dt = e±xxν+1

2ν + 1 (Iν(x) ∓ Iν+1(x)), Re (ν) > −1/2 ,

and applying the substitution at 7→ u it follows that

Γ(ν1 + 3/2)
Γ(ν1 + ν2 + 2)

(
(b2 − a2)x

2a

)ν2+1/2 (
Iν1+ν2+1/2(ax) ∓ Iν1+ν2+3/2(ax)

)
<Iν1(ax) ∓ Iν1+1(ax).

The rest is obvious.
Finally, inserting the Horn function representation (1.2) of the distribution function

FI into (2.2), we arrive at (2.3). □
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To close the exposition we apply the well-known Turán inequality for the raw
moments ms = E[ξs], s > 0, of non-negative random variables [3, p. 28, Eqs. (1.4.6)]
m2

s+r ≤ ms ms+2r, s, r > 0, which is an immediate consequence of the CBS inequality.
Firstly, we define the Turánian ratio for the moment ms with respect to the increment
r > 0 as

Tr(ms) := m2
s+r

ms · ms+2r

,

which one transforms the previous inequality into
(2.5) Tr(ms) ≤ 1.

To establish the bounding inequality for the Gaussian hypergeometric function 2F1,
we insert into (2.5) the expression (1.3).
Proposition 2.1. For all b > a > 0, ν > −1/2 and s, r > 0 we have{

2F1[s + r]
}2

2F1[s] · 2F1[s + 2r] ≤ Γ(2ν + s + 1)Γ(2ν + s + 2r + 1)
Γ2(2ν + s + r + 1) ,

where the abbreviation

2F1[s] := 2F1

[
ν + 1

2(s + 1), ν + s
2 + 1

ν + 1

∣∣∣∣a2

b2

]
.

However, to derive another bound for 2F1[s] we take into account the integral
moment inequality [1, p. 143, Theorem 192]
(2.6) Mr(h, p) < Ms(h, p), 0 < r < s,

where
Mr(h, p) =

∫ β

α
hr(t) p(t) dt ,

for a suitable, integrable non-negative input function h, the integration interval
(α, β) is either finite or infinite, and the non-negative weight function p has inte-
gral

∫ β
α p(t) dt = 1. In our case the shorthand Ms(xs, fI) = (ms)1/s is adopted to

the McKayI(a, b, ν) distribution, (α, β) = R+. Inserting ms from (1.3) into moment
inequality (2.6) we obtain the following result.
Proposition 2.2. For all b > a > 0, ν > −1/2 and s > r > 0 there holds true{

2F1[r]
}1/r

{
2F1[s]

}1/s
≤
(

1 − a2

b2

)(ν+1/2)(1/s−1/r) (2ν + 1)1/s
s

(2ν + 1)1/r
r

,

where the hypergeometric terms remain the same as in the previous proposition.
Remark 2.1. According to Lukacs [3, p. 393, a)] for all 0 < r ≤ s there holds the
moment inequality m2

s+r ≤ m2s · m2r. We notice that this inequality is implied by
virtue of the CBS inequality, using re-scaling of the integrand in ms+r. However, to
imply another bound for 2F1[s] via this inequality and/or the Lyapunov inequality we
leave to the interested reader.
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