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GENERALISATION OF COMPANION OF OSTROWSKI’S TYPE
INEQUALITY VIA RIEMANN-LIOUVILLE FRACTIONAL

INTEGRAL FOR MAPPINGS WHOSE 1st DERIVATIVES ARE
BOUNDED WITH APPLICATIONS

FARAZ MEHMOOD∗1,2, ASIF R. KHAN3, MUHAMMAD AWAIS SHAIKH3,
AND MOHAMMAD W. ALOMARI4

Abstract. We apply Riemann-Liouville fractional integral to get generalisation
of companion of Ostrowski’s type integral inequality for differentiable mappings
whose 1st derivatives are bounded. The present article recapture all results of M.
W. Alomari’s article and also for one more article of different authors. Applications
are also deduced for numerical integration, probability theory and special means.

1. Introduction

In the development of mathematics, inequalities are one of the most powerful tools.
From two decades back, scholars researched on fractional calculus because of its
importance in inequalities.

We quote from [4]: “The subject of fractional calculus (that is, calculus of integrals
and derivatives of an arbitrary real or complex order) was planted over 300 years ago.
Since that time the fractional calculus has drawn the attention of many researchers
in. In recent years, the fractional calculus has played a significant role in many areas
of science and engineering.”

Due to worth of fractional integral inequalities, many scholars have mentioned
certain generalisations of fractional integral inequalities (see [3, 17–19]).
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In 1938, A. M. Ostrowski gave an inequality (see [16]). Now-a-days this inequality is
called Ostrowski inequality and this result had obtained by applying the Montgomery
identity. For more discussion about Ostrowski inequality (see [9–12]).

Here, we present an inequality from article [6] that is given below. Throughout the
article I ⊂ R and I◦ is the interior of the interval I.
Proposition 1.1. Suppose g : I → R is a differentiable mapping in the interval Io

such that g′ ∈ L[a, b], where a, b ∈ I and a < b. If |g′(θ)| ≤ M for all θ ∈ (a, b), where
M > 0 is constant. Then∣∣∣∣∣g(θ) − 1

b − a

∫ b

a
g(τ)dτ

∣∣∣∣∣ ≤ M(b − a)
1

4 +

(
θ − a+b

2

)2

(b − a)2

.

The value 1
4 is the best possible constant that this can not be replaced by the smallest

one.
The following integral inequality which establishes a connection between the integral

of the product of two functions and the product of the integrals of the two functions
is well known in the literature as Grüss inequality [9, 14].
Proposition 1.2. Let f, g : [a, b] → R be both integrable functions such that m1 ≤
f(τ) ≤ M1 and m2 ≤ g(τ) ≤ M2 for all τ ∈ [a, b], where m1, M1, m2, M2 are real
constants, then∣∣∣∣∣∣ 1
b − a

∫ b

a
f(τ)g(τ)dτ − 1

b − a

∫ b

a
f(τ)dτ · 1

b − a

∫ b

a
g(τ)dτ

∣∣∣∣∣∣ ≤ 1
4(M1 − m1)(M2 − m2).

In [7], S. S. Dragomir has derived the following companion of the Ostrowski inequal-
ity.
Proposition 1.3. Let g : I → R be an absolutely continuous function on [a, b], where
a, b ∈ I. Then we have the inequalities∣∣∣∣∣g(θ) + g(a + b − θ)

2 − 1
b − a

∫ b

a
g(τ)dτ

∣∣∣∣∣

≤



1
8 + 2

(
θ − 3a+b

4
b − a

)2 (b − a)∥g′∥∞, g′ ∈ L∞[a, b],

2
1
q

(q + 1)
1
q

(θ − a

b − a

)q+1

+
(

a+b
2 − θ

b − a

)q+1 1
q

(b − a)
1
q ∥g′∥[a,b],p ,

p > 1, 1
p

+ 1
q

= 1, and g′ ∈ Lp[a, b],

[
1
4 +

∣∣∣∣∣θ − 3a+b
4

b − a

∣∣∣∣∣
]

∥g′∥[a,b],1,

(1.1)

for all θ ∈ [a, a+b
2 ].
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In 2011, M. W. Alomari has proved the following result about a companion inequal-
ity for differentiable functions whose derivatives are bounded (see [1]).

Proposition 1.4. Let g : I → R be a differentiable function in the interval I◦ and
let a, b ∈ I with a < b. If g′ ∈ L1[a, b] and m2 ≤ g′(θ) ≤ M2, for all θ ∈ [a, b], then
the following inequality holds
∣∣∣∣∣g(θ) + g(a + b − θ)

2 − 1
b − a

∫ b

a
g(τ)dτ

∣∣∣∣∣ ≤ (b − a)
 1

16 +
(

θ − 3a+b
4

b − a

)2 (M2 − m2),

for all θ ∈ [a, a+b
2 ].

We need here to define Riemann-Liouville fractional integral (RLFI) (see [8]) for
proving our next main result in the second section.

Definition 1.1. The Riemann-Liouville fractional integral operator of order γ > 0 is
stated as

Jγ
a g(θ) = 1

Γ(γ)

∫ θ

a
(θ − τ)γ−1g(τ)dτ, J0

ag(θ) = g(θ),

where gamma function Γ(γ) is defined as

Γ(γ) =
∫ ∞

0
θγ−1e−θdθ.

In 2009, Z. Liu [13] introduced some companions of an Ostrowski type inequality
for functions whose second derivatives are absolutely continuous. In 2009, Barnett
et. al [5] have derived some companions for Ostrowski inequality and the generalised
trapezoid inequality. In 2012, M. W. Alomari [2] obtained a companion inequality of
Ostrowski’s type using Grüss result with applications. Recently, authors [15] gave a
companion of weighted Ostrowski’s type inequality using Grüss result with application.

In the present article we would prove a companion of weighted Fractional Ostrowski’s
type inequality by applying Grüss result and then we would give its applications.

2. Generalisation of Companion of Ostrowski’s Type Inequality Via
Riemann-Liouville Fractional Integral

Under present section we would give our results about companion of Ostrowski’s
type inequality which are as follow.

Theorem 2.1. Suppose g : [a, b] → R is a differentiable mapping in the interval (a, b)
and a < b and w : [a, b] → R is a probability density function. If g′ ∈ L1[a, b] and
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m2 ≤ g′(τ) ≤ M2, for all τ ∈ [a, b], then∣∣∣∣∣∣g(θ)
∫ a+b

2

a
w(τ)dτ + g(a + b − θ)(b − θ)1−γ(θ − a)γ−1

∫ b

a+b
2

w(τ)dτ

− (b − θ)1−γΓ(γ)Jγ
a (w(b)g(b)) + (γ − 1)Jγ−1

a (P (θ, b)g(b))

∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2)(2.1)

holds for all θ ∈ [a, a+b
2 ].

Proof. For the sake of proof we state the weighted kernel as

(2.2) P (θ, τ) = (b − θ)1−γΓ(γ)



∫ τ

a
w(u)du, if τ ∈ [a, θ],∫ τ

a+b
2

w(u)du, if τ ∈ (θ, a + b − θ],∫ τ

b
w(u)du, if τ ∈ (a + b − θ, b],

for all θ ∈ [a, a+b
2 ].

Applying RLFI operator and by parts formula of integration, obtain

Jγ
a (P (θ, b)g(b)) = 1

Γ(γ)

∫ b

a
(b − τ)γ−1P (θ, τ)g′(τ)dτ

=g(θ)
∫ a+b

2

a
w(τ)dτ + g(a + b − θ)(b − θ)1−γ(θ − a)γ−1

∫ b

a+b
2

w(τ)dτ

− (b − θ)1−γΓ(γ)Jγ
a (w(b)g(b)) + (γ − 1)Jγ−1

a (P (θ, b)g(b)).

It is clear that for all τ ∈ [a, b] and θ ∈ [a, a+b
2 ], we have

θ − a + b

2 ≤ P (θ, τ) ≤ θ − a.

Applying Proposition (1.2) to the mappings P (θ, ·) and (b − ·)γ−1g′(·), we obtain

∣∣∣∣∣∣ 1
Γ(γ)

∫ b

a
(b − τ)γ−1P (θ, τ)g′(τ)dτ −

∫ b

a
P (θ, τ)dτ · 1

b − a

∫ b

a
(b − τ)γ−1g′(τ)dτ

∣∣∣∣∣∣
(2.3)

≤ 1
4Γ(γ)

(
θ − a −

(
θ − a + b

2

))
= 1

8Γ(γ)(b − a)(M2 − m2),

for all θ ∈ [a, a+b
2 ]. Since

∫ b
a P (θ, τ)dτ = 0, then (2.3) implies

(2.4)

∣∣∣∣∣∣ 1
Γ(γ)

∫ b

a
(b − τ)γ−1P (θ, τ)g′(τ)dτ

∣∣∣∣∣∣ ≤ 1
8Γ(γ)(b − a)(M2 − m2).
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Finally, we obtain desired result (2.1) from (2.4). □

Remark 2.1. If we put γ = 1 and w = 1
b−a

in Theorem 2.1, then we recapture the
Theorem 2.1 of [2].

Remark 2.2. If we put γ = 1 in Theorem 2.1, then we recapture the result of Theo-
rem 2.1 of [15].

Corollary 2.1. In the inequality (2.1), select
(i) θ = a+b

2 to obtain the following:∣∣∣∣∣∣g
(

a + b

2

)∫ b

a
w(τ)dτ −

(
b − a

2

)1−γ

Γ(γ)Jγ
a (w(b)g(b))

+ (γ − 1)Jγ−1
a

(
P

(
a + b

2 , b

)
g(b)

) ∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2);

(ii) θ = 3a+b
4 to obtain the following:∣∣∣∣∣∣g
(

3a + b

4

)∫ a+b
2

a
w(τ)dτ + 31−γg(a + 3b

4 )
∫ b

a+b
2

w(τ)dτ

−
(3

4(b − a)
)1−γ

Γ(γ)Jγ
a (w(b)g(b)) + (γ − 1)Jγ−1

a

(
P

(
3a + b

4 , b

)
g(b)

) ∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2);(2.5)

(iii) θ = 2a+b
3 to obtain the following:∣∣∣∣∣∣g
(

2a + b

3

)∫ a+b
2

a
w(τ)dτ + 21−γg(a + 2b

3 )
∫ b

a+b
2

w(τ)dτ

−
(2

3(b − a)
)1−γ

Γ(γ)Jγ
a (w(b)g(b)) + (γ − 1)Jγ−1

a

(
P

(
2a + b

3 , b

)
g(b)

) ∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2).

In the following we present special case of (iii) of Corollary 2.1.
Special Case. If put w = 1

b−a
and γ = 1 in (iii) of Corollary 2.1, then we get∣∣∣∣∣∣g(2a+b

3 ) + g(a+2b
3 )

2 − 1
b − a

∫ b

a
g(τ)dτ

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).
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Remark 2.3. (i) First by putting γ = 1 and w = 1
b−a

in Theorem 2.1 and then put
θ = a in obtained inequality, we recapture Corollary 2.1 (a) of [2].

(ii) By putting γ = 1 and w = 1
b−a

in (i) of Corollary 2.1, we recapture Corollary 2.1
(c) of [2].

(iii) By putting γ = 1 and w = 1
b−a

in (ii) of Corollary 2.1, we recapture Corollary 2.1
(b) of [2].
Remark 2.4. (i) First by putting γ = 1 in Theorem 2.1 and then put θ = a in obtained
inequality, we recapture Corollary 2.3 (i) of [15].

(ii) By putting γ = 1 in (i) of Corollary 2.1, we recapture Corollary 2.3 (ii) of [15].
(iii) By putting γ = 1 in (ii) of Corollary 2.1, we recapture Corollary 2.3 (iii) of

[15].
(iv) By putting γ = 1 in (iii) of Corollary 2.1, we recapture Corollary 2.3 (iv) of

[15].
Ostrowski’s type inequality can be defined in the form of following corollary.

Corollary 2.2. Let the suppositions of Theorem 2.1 be valid. Further, if g is sym-
metric about the θ-axis, i.e., g(a + b − θ) = g(θ), then∣∣∣∣∣∣g(θ)

∫ a+b
2

a
w(τ)dτ + g(θ)(b − θ)1−γ(θ − a)γ−1

∫ b

a+b
2

w(τ)dτ

− (b − θ)1−γΓ(γ)Jγ
a (w(b)g(b)) + (γ − 1)Jγ−1

a (P (θ, b)g(b))

∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2)(2.6)

holds.
Remark 2.5. First by putting γ = 1 and w = 1

b−a
in Corollary 2.2 and then put θ = a

in obtained inequality, we recapture Corollary 2.2 of [2].
Remark 2.6. First by putting γ = 1 in Corollary 2.2 and then put θ = a in obtained
inequality, we recapture Corollary 2.5 of [15].

3. Application to Numerical Integration

Let In : a = θ0 < θ1 < · · · < θn = b be division of interval [a, b] and hi = θi+1 − θi,
i = 0, 1, 2, . . . , n − 1.

Consider the quadrature formula

Qn(In, g) :=
n−1∑
i=0

g(3θi + θi+1

4 )
∫ θi+θi+1

2

θi

w(τ)dτ + 31−γg

(
θi + 3θi+1

4

)

×
∫ θi+1

θi+θi+1
2

w(τ)dτ + (γ − 1)Jγ−1
θi

(
P

(
3θi + θi+1

4 , θi+1

)
g(θi+1)

).
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We give following result.

Theorem 3.1. Suppose g : I → R is a differentiable mapping in interval I◦ and
w : [a, b] → R is a probability density function, where a, b ∈ I with a < b. If
g′ ∈ L1[a, b] and m2 ≤ g′(θ) ≤ M2, for all θ ∈ [a, b], then the following holds

(3.1) Γ(γ)
n−1∑
i=0

(3
4hi

)1−γ

Jγ
θi

(w(θi+1)g(θi+1)) = Qn(In, g) + Rn(In, g),

where Qn(In, g) is stated as above and the following remainder Rn(In, g) satisfies the
estimates

(3.2) |Rn(In, g)| ≤ 1
8Γ(γ)(M2 − m2)hi.

Proof. Applying inequality (2.5) on the intervals [θi, θi+1], we get

Ri(Ii, g) =Γ(γ)
(3

4hi

)1−γ

Jγ
θi

(w(θi+1)g(θi+1))

(3.3)

−

g

(
3θi + θi+1

4

)∫ θi+θi+1
2

θi

w(τ)dτ + 31−γg

(
θi + 3θi+1

4

)∫ θi+1

θi+θi+1
2

w(τ)dτ

+ (γ − 1)Jγ−1
θi

(
P

(
3θi + θi+1

4 , θi+1

)
g(θi+1)

).

Summing (3.3) over i from 0 to n − 1, then

Rn(In, g) =Γ(γ)
n−1∑
i=0

(3
4hi

)1−γ

Jγ
θi

(w(θi+1)g(θi+1))

−
n−1∑
i=0

g

(
3θi + θi+1

4

)∫ θi+θi+1
2

θi

w(τ)dτ + 31−γg

(
θi + 3θi+1

4

)

×
∫ θi+1

θi+θi+1
2

w(τ)dτ + (γ − 1)Jγ−1
θi

(
P

(
3θi + θi+1

4 , θi+1

)
g(θi+1)

),
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which follows the form of (2.5), i.e.,

|Rn(In, g)| =

∣∣∣∣∣∣Γ(γ)
n−1∑
i=0

(3
4hi

)1−γ

Jγ
θi

(w(θi+1)g(θi+1))

−
n−1∑
i=0

g

(
3θi + θi+1

4

)∫ θi+θi+1
2

θi

w(τ)dτ + 31−γg

(
θi + 3θi+1

4

)

×
∫ θi+1

θi+θi+1
2

w(τ)dτ + (γ − 1)Jγ−1
θi

(
P

(
3θi + θi+1

4 , θi+1

)
g(θi+1)

)∣∣∣∣∣∣
≤ 1

8Γ(γ)(M2 − m2)
n−1∑
i=0

hi.

This completes the required proof. □

Remark 3.1. By putting γ = 1 and w = 1
b−a

in Theorem 3.1, we recapture the result
of Theorem 3.1 of [2].

Remark 3.2. By putting γ = 1 in Theorem 3.1, we recapture the result of Theorem 3.1
of [15].

4. Applications to Probability Theory

Throughout this section we consider w : [a, b] → [0, 1]. Suppose Y is a random
variable taking values in the finite interval [a, b] with probability density function
g : [a, b] → [0, 1] and with cumulative distribution function G : [a, b] → [0, 1] is
introduced and defined by us, i.e.,

G(θ) = P (Y ≤ θ) = Γ(γ)Jγ
a (w(θ)g(θ)) =

∫ θ

a
(θ − τ)γ−1w(τ)g(τ)dτ, a ≤ θ ≤ a + b

2 ,

and

E(Y ) =
∫ b

a
τg(τ)dτ, Ew(Y ) =

∫ b

a
τw(τ)g(τ)dτ,

Ewf (Y ) =Γ(γ)Jγ
a (bw(b)g(b)) =

∫ b

a
τ(b − τ)γ−1w(τ)g(τ)dτ,

Ewf1(Y ) =Γ(γ)Jγ−1
a (bw(b)g(b)) =

∫ b

a
τ(b − τ)γ−2w(τ)g(τ)dτ,

Ewf2(Y ) =Γ(γ)Jγ
a (bw′(b)g(b)) =

∫ b

a
τ(b − τ)γ−1w′(τ)g(τ)dτ,

Ewf3(Y ) =Γ(γ)Jγ
a (bw(b)g′(b)) =

∫ b

a
τ(b − τ)γ−1w(τ)g′(τ)dτ,

are the expectation, weighted expectation and weighted fractional expectation of
random variable ‘Y ’ in interval [a, b], respectively. Then we can write the following
theorem.
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Theorem 4.1. Suppose g : [a, b] → R is a differentiable mapping in the interval (a, b)
and a < b. If g′ ∈ L1[a, b] and m2 ≤ g′(τ) ≤ M2, for all τ ∈ [a, b]. Further, suppose
that function w is differentiable, then

∣∣∣∣∣∣G(θ)
∫ a+b

2

a
w(τ)dτ + G(a + b − θ)(b − θ)1−γ(θ − a)γ−1

∫ b

a+b
2

w(τ)dτ

(4.1)

− (b − θ)1−γ

(
(γ − 1)Ewf1(Y ) − Ewf2(Y ) − Ewf3(Y )

)
+ (γ − 1)Jγ−1

a (P (θ, b)G(b))

∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2)

holds for all θ ∈ [a, a+b
2 ].

Proof. Select g = G, we obtain (4.1), by applying the identity

Γ(γ)Jγ
a (w(b)g(b)) =

∫ b

a
(b − τ)γ−1w(τ)g(τ)dτ

= (γ − 1)Ewf1(Y ) − Ewf2(Y ) − Ewf3(Y ).
Since G(a) = 0 and G(b) = 1.

We left the details to research scholars. □

Corollary 4.1. Select γ = 1 in Theorem 4.1. Then get the following∣∣∣∣∣∣G(θ)
∫ a+b

2

a
w(τ)dτ + G(a + b − θ)

∫ b

a+b
2

w(τ)dτ + Ew(Y )+
∫ b

a
τw′(τ)G(τ)dτ − bw(b)

∣∣∣∣∣∣
≤1

8(b − a)(M2 − m2)

holds for all θ ∈ [a, a+b
2 ], where Ew(Y ) is the weighted expectation of Y .

Remark 4.1. If we put w = 1
b−a

in Corollary 4.1 and taking the expectation E(Y ) =∫ b
a τG(τ)dτ = b −

∫ b
a G(τ)dτ , we recapture Theorem 4.1 of [2].

Corollary 4.2. Select θ = 3a+b
4 in Theorem 4.1, we get∣∣∣∣∣∣G

(
3a + b

4

)∫ a+b
2

a
w(τ)dτ + G

(
a + 3b

4

)(
3
4(b − a)

)1−γ(
b − a

4

)γ−1 ∫ b

a+b
2

w(τ)dτ

−
(

3
4(b − a)

)1−γ(
(γ − 1)Ewf1(Y ) − Ewf2(Y ) − Ewf3(Y )

)

+ (γ − 1)Jγ−1
a

(
P

(
3a + b

4 , b

)
G(b)

) ∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2).
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Remark 4.2. By putting γ = 1 and w = 1
b−a

in Corollary 4.2, we recapture Corollary 4.1
of [2].
Corollary 4.3. In Theorem 4.1, if G is symmetric about the θ−axis, i.e., G(a+b−θ) =
G(θ), then∣∣∣∣∣∣G(θ)

∫ a+b
2

a
w(τ)dτ + G(θ)(b − θ)1−γ(θ − a)γ−1

∫ b

a+b
2

w(τ)dτ

− (b − θ)1−γ

(
(γ − 1)Ewf1(Y ) − Ewf2(Y ) − Ewf3(Y )

)
+ (γ − 1)Jγ−1

a (P (θ, b)G(b))

∣∣∣∣∣∣
≤ 1

8Γ(γ)(b − a)(M2 − m2)

holds for all θ ∈ [a, a+b
2 ].

Remark 4.3. By putting γ = 1 and w = 1
b−a

in Corollary 4.3, we recapture Corollary 4.2
of [2].

Before application to special means, we would present some special means and these
means will apply in the 5th section.

Special Means. These means can be found in [20].
(a) The Arithmetic Mean

A(a, b) = a + b

2 , a, b ≥ 0.

(b) The Geometric Mean
G = G(a, b) =

√
ab, a, b ≥ 0.

(c) The Harmonic Mean

H = H(a, b) = 2
1
a

+ 1
b

, a, b > 0.

(d) The Logarithmic Mean

L = L(a, b) =
{

a, if a = b,
b−a

ln b−ln a
, if a ̸= b,

a, b > 0.

(e) Identric Mean

I = I(a, b) =


a, if a = b,

ln


(

bb

aa

) 1
b−a

e

 , if a ̸= b,
a, b > 0.

(f) p-Logarithmic Mean

Lp = Lp(a, b) =

 a, if a = b,(
bp+1−ap+1

(p+1)(b−a)

) 1
p , if a ̸= b,
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where p ∈ R\{−1, 0}, a, b > 0. It is known that Lp monotonically increasing over
p ∈ R, L0 = I and L−1 = L.

5. Application to Special Means

Example 5.1. Consider γ = 1, g(θ) = θp, p ∈ R\{−1, 0}. Then for a < b, we have
1

(b − a)

∫ b

a
g(τ)dτ = Lp

p(a, b), g(a) + g(b)
2 = A(ap, bp),

and a+b
2 = A(a, b), where θ ∈ [a, a+b

2 ]. Therefore, (2.1) becomes∣∣∣∣∣∣θ
p + (2A − θ)p

2 − Lp
p(a, b)

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).

If we choose θ = a (or θ = b) in (2.1), we get∣∣∣∣∣∣A(ap, bp) − Lp
p(a, b)

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).

Example 5.2. Consider γ = 1, g(θ) = 1
θ
, θ ̸= 0. Then

1
b − a

∫ b

a
g(τ)dτ = L−1(a, b), g(a) + g(b)

2 = A

G2 ,

and a+b
2 = A(a, b), where θ ∈ [a, a+b

2 ] ⊂ (0, ∞).
Therefore, (2.1) becomes∣∣∣∣∣∣ A

θ(a + b − θ) − L−1(a, b)

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).

If we choose θ = a (or θ = b) in (2.1), we get∣∣∣∣∣∣ A

G2 − L−1(a, b)

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).

Example 5.3. Consider γ = 1, g(θ) = ln θ, θ ∈ (0, ∞). Then
1

b − a

∫ b

a
g(τ)dτ = ln(I(a, b)), g(a) + g(b)

2 = ln G,

and a+b
2 = A(a, b), where θ ∈ [a, a+b

2 ] ⊂ (0, ∞). Therefore, (2.1) becomes∣∣∣∣∣∣ ln
 [θ(2A − θ)] 1

2

I(a, b)

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).

If we choose θ = a (or θ = b) in (2.1), we get∣∣∣∣∣∣ ln
 G

I(a, b)

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).
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Example 5.4. Consider γ = 1, g(θ) = eθ, θ ∈ (−∞, ∞). Then

1
b − a

∫ b

a
g(τ)dτ = eb − ea

b − a
,

g(a) + g(b)
2 = A(ea, eb),

and a+b
2 = A(a, b), where θ ∈ [a, a+b

2 ]. Therefore, (2.1) becomes∣∣∣∣∣∣e
θ + e(2A−θ)

2 − eb − ea

b − a

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).

If we choose θ = a (or θ = b) in (2.1), we get∣∣∣∣∣∣A(ea, eb) − eb − ea

b − a

∣∣∣∣∣∣ ≤ 1
8(b − a)(M2 − m2).

Example 5.5. Consider γ = 1, g(θ) = tan θ, θ ̸= π
2 ± nπ. Then

1
b − a

∫ b

a
g(τ)dτ = ln

[
sec b

sec a

]b−a

,
g(a) + g(b)

2 = A(tan a, tan b),

and a+b
2 = A(a, b), where θ ∈ [a, a+b

2 ]. Therefore, (2.1) becomes∣∣∣∣∣∣tan θ + tan(2A − θ)
2 − ln

[
sec b

sec a

]b−a
∣∣∣∣∣∣ ≤ 1

8(b − a)(M2 − m2).

If we choose θ = a (or θ = b) in (2.1), we get∣∣∣∣∣∣A(tan a, tan b) − ln
[

sec b

sec a

]b−a
∣∣∣∣∣∣ ≤ 1

8(b − a)(M2 − m2).

6. Conclusion

In this article our target was to generalise the results of [2] and [15]. We have
obtained generalisation of companion of Ostrowski’s type integral inequality for differ-
entiable mappings whose 1st derivatives are bounded by using the Riemann-Liouville
fractional integral. By applying suitable substitutions we have recaptured all results
of M. W. Alomari’s article [2] and also recaptured all results of one more article [15]
of different authors. Moreover, we have given applications to numerical integration,
probability theory and special means.
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[16] A. M. Ostrowski, Über die Absolutabweichung einer Differentiebaren Funktion von Ihren
Integralmittelwert, Comment. Math. Helv. 10 (1937), 226–227. https://doi.org/10.1007/
BF01214290

[17] M. Z. Sarikaya, H. Filiz and M. E. Kiris, On some generalized integral inequalities for Riemann-
Liouville fractional integrals, Filomat 29(6) (2015), 1307–1314.

[18] M. Z. Sarikaya, H. Yaldiz and N. Basak, New fractional inequalities of Ostrowski Grüss type,
Le Matematiche 69(1) (2014), 227–235. https://doi.org/10.4418/2014.69.1.17

[19] M. Z. Sarikaya and H. Ogunmez, On new inequalities via Riemann Liouville fractional integra-
tion, Abst. Appl. Anal. 2012 (2012), Article ID 428983, 10 pages. https://doi.org/10.1155/
2012/428983

https://www.emis.de/journals/JIPAM/images/207_09_JIPAM/207_09.pdf
https://www.emis.de/journals/JIPAM/images/207_09_JIPAM/207_09.pdf
http://www.ilirias.com/jiasf/repository/docs/JIASF9-2-2.pdf
http://www.ilirias.com/jiasf/repository/docs/JIASF9-2-2.pdf
https://doi.org/10.1016/j.mcm.2009.04.005
https://doi.org/10.1016/j.mcm.2009.04.005
https://doi.org/10.1007/978-94-017-2519-4
https://doi.org/10.1007/978-94-017-2519-4
http://bkms.kms.or.kr/journal/list.html?pn=vol&TG=vol&sm=&s_v=42&s_n=2&year= 2005
http://bkms.kms.or.kr/journal/list.html?pn=vol&TG=vol&sm=&s_v=42&s_n=2&year= 2005
https://doi.org/10.1007/978-3-7091-2664-6_5
https://doi.org/10.1007/978-3-7091-2664-6_5
https://doi.org/10.1007/BF01201355
http://dx.doi.org/10.22436/jmcs.028.03.02
http://dx.doi.org/10.22436/jmcs.028.03.02
http://scik.org/index.php/jmcs/article/view/6794
http://scik.org/index.php/jmcs/article/view/6794
http://paper.ijcsns.org/07_book202110/20211024.pdf
https://www.emis.de/journals/JIPAM/images/041$_$09$_$JIPAM/041$_$09.pdf
https://www.emis.de/journals/JIPAM/images/041$_$09$_$JIPAM/041$_$09.pdf
https://doi.org/10.1007/978-94-017-1043-5
https://www.ripublication.com/gjpam20/gjpamv16n4$_$01.pdf
https://www.ripublication.com/gjpam20/gjpamv16n4$_$01.pdf
https://doi.org/10.1007/BF01214290
https://doi.org/10.1007/BF01214290
https://doi.org/10.4418/2014.69.1.17
https://doi.org/10.1155/2012/428983
https://doi.org/10.1155/2012/428983


286 F. MEHMOOD, A. R. KHAN, M. A. SHAIKH, AND M. W. ALOMARI

[20] F. Zafar, Some Generalizations of Ostrowski Inequalities and Their Applications to Numerical
Integration and Special means, Bahauddin Zakariya University Multan, Pakistan, 2010. http:
//prr.hec.gov.pk/jspui/bitstream/123456789/1154/1/747S.pdf

1Department of Mathematics,
Samarkand State University,
University boulevard 15, Samarkand 140104, Uzbekistan
2Department of Mathematics,
Dawood University of Engineering and Technology,
New M. A. Jinnah Road, Karachi-74800, Pakistan
Email address: faraz.mehmood@duet.edu.pk

3Department of Mathematics,
University of Karachi,
University Road, Karachi-75270 Pakistan
Email address: asifrk@uok.edu.pk
Email address: m.awaisshaikh2014@gmail.com

4Department of Mathematics,
Faculty of Science and Information Technology, Jadara University,
P.O. Box 733, Irbid, P.C. 21110, Jordan
Email address: mwomath@gmail.com

http://prr.hec.gov.pk/jspui/bitstream/123456789/1154/1/747S.pdf
http://prr.hec.gov.pk/jspui/bitstream/123456789/1154/1/747S.pdf

	1. Introduction
	2. Generalisation of Companion of Ostrowski's Type Inequality Via Riemann-Liouville Fractional Integral
	3. Application to Numerical Integration
	4. Applications to Probability Theory
	5. Application to Special Means
	6. Conclusion
	References

