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ON HADAMARD-CAPUTO IMPLICIT FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS WITH BOUNDARY
FRACTIONAL CONDITIONS
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ABSTRACT. The purpose of this paper is to investigate the existence and unique-
ness of solutions for nonlinear fractional implicit integro-differential equations of
Hadamard-Caputo type with fractional boundary conditions. The reasoning is in-
spired by diverse classical fixed point theory, such as the Schauder and Banach fixed
point theorems. The theoretical findings are illustrated through an example.

1. INTRODUCTION

In mathematical analysis, fractional calculus (FC) is a subject that studies different
approaches of defining non-integer order derivatives (i.e., fractional differential calcu-
lus (FDC)) and integrals (i.e., fractional integral calculus (FIC)). Fractional calculus
is widely and efficiently used to describe many phenomena arising in physics, engineer-
ing, bioengineering and biomedical sciences, finance, viscoelasticity, control theory,
stochastic processes and economy. Recently, fractional differential equations (FDEs)
have attracted many authors (see for example [1-3,8,13] and references therein).

By flipping the differential and integral sections of the Hadamard derivative, a
novel method known as the Hadamard-Caputo derivative is created. The primary
distinction between the Hadamard fractional derivative and the Hadamard-Caputo
fractional derivative, notwithstanding the various demands placed on the function
itself, is that the Hadamard-Caputo derivative of a constant is zero [24]. The most
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significant benefit of the Hadamard-Caputo derivative is that it gave rise to a new
concept that can be used to establish the integer order beginning conditions for
fractional.

For more details and properties of Hadamard-Caputo derivative and Hadamard
fractional derivatives, integrals see [10,11,26].

The implicit fractional differential equations (IFDEs) are a very important class of
fractional differential equations. This type of equation is derived from the implicit
ordinary differential equation (IODE) of the following form

H(0.G(0),G (0),...,G" V) (0)) =0,

with different kind of initial or boundary conditions, for more details see [6,14,15,23].
Benchohra et al. [7,9] and Nieto et al. [28,30] have initiated the study of implicit
fractional differential equations (IFDEs) of the form

DG (o) = H (0,G (0), D*G (0)),

with different kind of initial or boundary conditions.This sort of equation is crucial
in many different fields of science and engineering [34].

In [33], Vivek et al. showed that a class of boundary value systems for nonlinear
IFDEs with complex order have a solution and are stable

‘DG (o) = H (Q,G(Q) ,CDGG(Q)) , O=m+ia, peY :=]0,x],

aG (0) +bG (x) = c.
where § € C, °D? is the Caputo fractional derivative. Suppose m € (0,1], o € Ry,
0<a<1, H:Y xR? - R is a continuous function. Further a,b,c € R with
a+ b # 0. The results are based upon the Schaefer’s fixed point theorem and Banach
contraction principle.

In [27] Karthikeyan and Arul stydied the uniqueness of integral BVP for IFDEs
involving Hadamard-Caputo fractional derivative

D¢ (o) = H (0,¢(0) " DC(0)), 0€&:=[n,x],
() =0, C)=9[ (Wdv, n<o<y

where Q € R,n <o <y, 1 <60 <2, DY is the Hadamard-Caputo fractional
derivative, and H : ¢ x R? — R is a continuous function.
In [12] N. Derdar established the uniqueness of solutions for the system:

GD"v () =W (0.v(e).5 D'v (o)),
v(1)=0, «axglvn)+ 85D (V) =)\

by using different fixed point theorem.
Recently, many authors focus on the development of techniques for discussing the
solutions of FIDEs.
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Balachandran and Trujillo [5], investigated the existence of a unique solution for
FIDEs with boundary value conditions.

DS (v) = / (v,0,f(0))do, 0<a<l.

In [32] the authors investigated the uniqueness of solution for iterative integro-
differential system:

Dow +/ w (w (s)) ds,
w(O) = wy.

In [17] A. A. Hamoud established the uniqueness and stability for fractional nonlinear
Fredholm—Volterra system:

0 v
CDew (o) = H (o) +/O 9 (0,8) w (w (s)) ds + /O 0 (0, ) w (w(s)) ds,
w(0)+bw(¥)=r¢c, a,bceR.
For some other results on FIDE, see [4,5,16,18-22,25,29].
Motived by the above papers and the reference [12], we study the theoretical analysis

of solutions for a class of system for nonlinear implicit FIDEs of Hadamard-Caputo
type with fractional boundary conditions

4
(L1) G000 =1 (0.0(0) 5070 (@), [ K (e.s.0())ds).
v(1) =0, agl(n)+ 7D (V) =)
where ;17 is the standard Hadamard fractional integral, § D" is the Hadamard-Caputo

fractional derivative, f : € x R® — R, K : £ x £ x R — R are given functions,
ne&=(1,V],V>1and a, A, § are real constants.

2. PRELIMINARIES AND BACKGROUND MATERIALS

Let us introduce some necessary notations and definitions which will be utilised
throughout the entire process [28,29,31,33-35].

We represent by the symbol C' (£, R) the space of all continuous functions v : { — R
in Banach space with the supremum norm

[v]lo =sup{|v ()] : 0 € &} .

Let now [b, c], —00 < b < ¢ < 400, is finite interval and we suppose AC ([, c],R) is
the space of functions 1 : [b, ¢] — R that are absolutely continuous.

Assume § = g% dp is the Hadamard derivative, 6" = 6 (6"!), we consider the set
of functions:

AC3 (Ib,c],R) = {¢ : [b,c] = R : 6" (o) € AC (]b, ], R) }.
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Definition 2.1 ([28]). The Hadamard fractional integral of order @ > 0 for a contin-
uous function ¢ : [1, +00) — R is given by

ntto @) = o [ (102) " w0 5

where log (+) = log, (-) and I'(+) is Gamma function.

Definition 2.2 ([31]). For a function ¢ € ACY ([b,c],R), the Hadamard-Caputo
fractional derivative of order « is given by

1 d\" re o\ 1 ds
CDoz — t / <] ) — —1l<a<
H 177/}(9) F(TL—OZ) dt 1 OgS ¢(3> 3 ) n Q n,
where 0" = (gd%)n, n = [a] + 1, and [a] denotes the integer part of a.

Lemma 2.1 ([24]). Let v € AC} [b,c] or ¢ € C§ [b,c] and a € C. Then,

n=1 s(k) k
nli (5050) (0) = (o)~ X 1 (10g 2)".

Proposition 2.1 ([24]). Let « >0, 8 >0, n=[a] + 1, and b > 0. Then,

LoV T(B) e
(HIbJr <1Og b) > (v) “TB+a) (10?; b) ;
B—-1 r B—a—1
(f;}Dl?; <10g z> ) (v) :1“(B<f)cx) (log Z) ., a<p.
Theorem 2.1. [24] Let v (p) € AC} [b,c], 0 <b<c¢ <400 and a >0, 5> 0. Then,

“Dg (I"v) (o) = (I"~"v) (o),
“D* (°D”) (o) =© D** (g).

Theorem 2.2 (Schauder’s fixed point [35]). Suppose that E be a Banach space, and
P be a nonempty, conver and closed subset of E. Assume that A : P — P be a
continuous mapping and A (P) is a relatively compact subset of E. Then A admits at
least one fized point in P.

3. MAIN RESULTS
Definition 3.1. A function v € AC? (£, R) is said to be a solution of the system (1.1)
if v satisfies the equation ¢ D"v () = f (Q, v (o), §D"v (o), [LK (0,5,v(s)) ds), and
satisfies the conditions v (1) = 0, a ygl% (n) + B $DYv (¥) = \.

In what follows, we present the following lemma to show the existence of solutions
of the system (1.1).
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Lemma 3.1 ([12]). Suppose that h : [0, +00) — R is a continuous. A function v is a
solution of the following system

g (2
v loig l)\ P (no; . /1 ! (log Z)W_l h(s) d,j

3 v g\ T s
_F(H—’}/)/l <10gs> h(s)s] ’

_a(logn)™ B (logw)”
I'(q+2) [2-v)
s equivalent to v is a solution of the following problem
D" (0) = h (o)
v(1)=0, agl(n) +4EDw(T) =X ¢7€l01].

where

Now, we prove the existence of a solution of the system (1.1).

Our hypotheses are as follows.

(H1) f: & x R* — R is continuous.

(H2) There exist three constants L; > 0,0 < Ly < 1 and L3 > 0 as follows

|f(Q,§,Q0,'LU) _f(497?7¢7w>| S Ll ‘g_f‘ +L2‘SO_¢| +L3|w_w‘7

for each ¢, ¢, w, T, p and w € R for a.e. p € £.
(H3) There exists a function & (o, s) € C'[0, 1], as follows:

K (0,8,v(5)) = K (0,8,y (5))] < k(o 8) |v(s) =y (s)].

Also, we denote

e
Of = sup |K(Q7S70>|d87
o€ /1

oy, =sup o (0),
0€€

o
B =sup [k (0,5)| ds.

ocg J1
Theorem 3.1. Let the assumptions (H1)-(H3) be true. If
_ L+ Brls [ (log¥)*  |a| (log ¥) (logn)*™ |3] (log )"
- 1-Ly |[T'(k+1) IAIT (k+q+1) IAIT (k —v+1)
then the system (1.1) has a unique solution v € AC? (£,R) on €.
Proof. Let F': C (§,R) — C (&,R) be defined as

Fu (o) ZF(lﬁ) /1@ <log g)m oy (8) Cis

(3.1)

<1,
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log o ! U n\ et ds
g
* A l I'(k+4q) )1 8% 7 (S>s

(32) i (1g‘1’) 7. (5) d] ,

where

oy (5) :f(s,v(s),pws),/ISK(S,T,MT))dT).

Clearly, the fixed points of F' are solutions of the system (1.1).
Let v,y € ACZ (£, R). Then for each ¢ € £ we obtain

t ds

(F (@)~ 0 @1 =5 [ (on ) ()

s
log o Q n n\ a1 ds
g )
LY [ I'(k+q) /1 8% 7 (8)3

ri ) (oel) S
el )
—_— “’) 7 (5) d]
R
bl [ (o) o9 - 0y 01

Blloge v (, W\ ds
(33) b (oY) e -l T

70(0) = (0.0(0). 00 (0), [ K (0,50 (5)) ds )

7 (0) = f (29000, (). [ K (0.5.5()ds)
By using (H2), we find

[ Koo [ Klasiye

S/lgk(Q,S) lv () —y (o)l ds
<Br |lv =yl
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and
7(e) = oy (@ =7 (0.0 (@) o (). [ K (05,0 () ds )
1 (tule)o (o), [ K (s (s)ds) |
<Lyfv(e) =y (o) + Laloy (0) — oy ()| + Labk [[v =yl -
Thus,
(3.4 70 (0) = 0y (0] < Z 2 oy

Replacing (3.4) in (3.3), we obtain
|(F'v) (0) = (Fy) (0)]

g (B [ (bgg)“ o) -y~

lallogo (L1 + BiLs 77 ”q*l B ds
Tt o o (10 0(s) — y (s)]
B3| log o Ly + Bpls\ Y o _ ds
At " To T, /1 log v () =y (s)] =

<

F(/{) 1_L2 1 S S

la| log o Ly + BpLs [ n\ "=t ds
_%MHXK+®< 1—L2)Lf0%s> 5

|Bllog o Ly + Bpls\ Y T s
e () L (e S]|v<>—y<s>|

< <L1 + /3kL3>

1— L,

[(bgﬂ')“ || (log W) (log )™ || (log ¥)" "
I'(k+1) AT (k+q+1) IAIT (k —v+1)

[106) =601

Hence,

1(F'v) (0) = (Fy) (9)]lc < pllv =yl
for v,y € AC? (¢, R), where
_ Li+BiLs [ (log )" | |af (log W) (logn)™*"  |8] (log ¥)" """
1—Ly |T'(k+1) AT (k+q+1) IA|T (k—~v+1)
Consequently by (3.1), F' is a contraction. As a consequence of Banach’s contraction

principle, we conclude that F' admits a unique fixed point which is the solution of the
system (1.1). O
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Next, we study the second result, by using the fixed point theorem of Schauder.

(H4) There exist p,p,w,z € C({,Ry), with z* = sup,c 2(0) < 1, w* =
SUP,ee w (0) < 1, " = sup,ee 0 (0) < 1 and p* = sup,c.p(0) < 1, such that

flos,o,w) <plo) + ¢ (o) s +w(o) ol + 2 (o) w],
for any ¢,p,w € R for a.e. p € &.
Theorem 3.2. Assume that (H1), (H3) and (H4) are true. Moreover if
(3.5) w4+ M (v + fr2") < 1,

with
_ (log )" |af(log¥) (logn)™™  [5] (log ¥)" "
S T(a+1) AT (k+q+1) IAIT (k —v+1)
then the system (1.1) admits at least one solution.

Proof. Let

* * %k |)\\(1—w*)log\11
M (p* + ojpz") + P

ST (o M (ot Ber)
and consider Ap = {v e C ({,R) : |[v]|, < R}. It is clear that the subset Ay is closed,
convex and bounded. We will use Schauder’s fixed point theorem to demonstrate that
F defined by (3.2) admits a fixed point.
This could be proved through three steps.
Step 1: F'is a continuous mapping.
Let {v,} be a sequence as follows v,, — v in AC? (£, R). Then for any o € &

[(Fun) (0) — (Fv) (o)

<t [ (05) e v
bl [ o) o) - w91

’B’ log 0 v v ds
b (o) e vl
(log )" |a|(log W) (logn)™™  |B] (log ®)* """
T(a+1)  [A[T(k+qg+1) AT (k—~y+1)
where 9,1, € C (£, R) are

<

J10n w01
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Since 1 is a continuous functions (i.e., f is continuous), then from the Lebesgue
theorem of dominated convergence, we get

1E (vn) (0) = (Fv) (0)llo = 0, asn — +o0

Hence, F' (v,) (0) = (Fv) (0) as n — 400 which implies that F is continuous.
Step 2: F(Ag) C Ag.
Let v € Ag. We demonstrate I (v) € Ag, for all p € £, we find

1 0 o\ 1! ds
o) g | (e ) Wl
lafloge 1/ m\te? ds
+]A|F(/f—|—q)/1 (logs) W)
Blloge ¥ (, @\ ds  |Alog g
(3.6) +|A|F(m—7)/1 (10g8> |¢(3)|?+ T

where ¢ € C' (§,R) is

From (H3), we get
/QK(Q,S,U(S))ds—/QK(Q,S,O)ds+/QK(Q,3,O)d3
1 1 1

< [k Ges)llv(@)lds + [*IK (o,5,0)] ds
<By[lvll.. + 0% (0) -
From (H4), for p € £ we get
vl = (v 0. [ K(esv(s)ds)

<p(e)+¢(o)|v(o)]+wlo)|v(o)|+ Brz (o) vl + ok (o) z (0)
<P+ opzt 4 (0" + B”) ]l + w0 ¥ (0)] -

Hence,
p* o+ (0" + Brz*) R

. < .
(3.7) ¥ (0)] < T

In the inequality (3.6), we obtain by substituting (3.7)
1 e o\" ! ds || log o n n\rta-t ds
P < (os) () B
Pol <prs [ (l022) w1 T s [ (o) el

Blloge ¥ (, w\" ds [\ logo
|A|F(/{—7)/1 IOgs [ (s) s+ |A|

< (p* + 052" + (" + Brz¥) R)
- 1 — w*
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(log )" |al(log¥) (logn) ™ |8 (log )] |A|log W

I'(k+1) IAIT (k+q+1) IA|T (k —v+1) |A|
M (p* + ofz" 4+ (¢* + Brz") R)  |A|log W
= +
1 —w* |A|

<R.

Step 3: We demonstrate that the expression F' (Ag) is equicontinuous.
It is clear from step 2 that F' (Ag) C Ag is bounded. For the F' (Ag) equicontinuity.
Let p, po € (1, W], py < po and let v € Ag. Then

|[(Fv) (p2) — (Fv) ()]
et o) o - () o

r
=l " [oe2) 7 (st2) e
+r(1m) :2 <l f)n_lw(s)is
1 ) )
UL (oet) ™
S ) ()
P +a,€lz_+w§so + Brz*) /ﬂ < >H 1625

- (1-wH)T(k+1)

P 4 of 4+ (0" + Bre*) R
- l-w)D(k+1)
—0, as p; — po.

P (e ey |

|

(log p1)" + <10g 2) — (log ua)“‘ + ‘ <log m)
M1 M1

|(log p11)" — (log p2)"|

The Arzela-Ascoli theorem shows that F' is relatively compact in both scenarios, and
Schauder’s fixed point theorem states that F' has a fixed point. Then, F' is a solution
of the system (1.1). O

4. APPLICATIONS

FExample 4.1. Assume that the nonlinear system is,

D4 (0= f (200 G0N0 (). [ K(esv(s)ds). e,
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v(1) =0, axlsv(y)+ 8 GD70(T) =
Weseethat/ﬁ:%,q:g,7:%,77:2,04:% 8 =3, /\—g U = e, and
4
0 q 3 1
= + + —— cosp + —w, €|l,el, s, o,weR.
TR P R 7R A A AR

Clearly, f is a continuous, and for g € [1,¢] and w, ¢,¢,w,3, % € R, we get

If(Q,cso,) [(0,5,%,W)| < Li|s =35 + La|p — @[ + L |w — w]
LQ ,ngland

(o, s, 0,w

21’

1 0 K—1
K - K < —log |~ -
1K (0,5,v) = K (0, 8,9)| < o Og(s) lv—yl,
e 1 e o\*tds (logo)" 1
o i<} (51 s 12
b Sup/1 (0.5)ds 31 %8s s 3k T 3k 9
Hence, conditions (H2) and (H3) are satisfied. Moreover,

a(logn)™'  B(log®)' "
I'(qg+2) [2-7)

2

= 3.4887.

Thus,
_ Li+ BiLs [ (log®)" | |al(log ¥) (log )™ |5] (log ¥)" """
' 1-Ly, |[I'(k+1) IAIT (k+q+1) AT (k—~y+1)

Thus, the given system has a unique solution v € C§ ([1,¢],R), according to Theo-
rem 3.1,

] =0.75728 < 1.

4

0 <]
7g7 7w S +

so condition (H4) is satisfied with

po) =l e =g wlo)= g 0= toa (L)

b leosel + 5-log (£) 7 Jsinus
— |COS — 10 — S w
70? I3 ’

11+ 0%’ 210%’ T0% 3s s
and
et wWw = — z =
(p 217 77
We have

_ (log¥)* o] (log ®) (logn)**  |B| (log @)
['(a+1) IAIT (k+q+1) AT (k=7 +1)
We will demonstrate that condition (3.5) is true for U = e. Indeed,
W'+ M (" + Brz”) = 0.96048 < 1.

= 1.9712.

Simple calculations demonstrate that conditions of Theorem 3.2 are all satisfied.
Example 4.1 must thus have at least one solution specified on [1, ¢].
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