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ON THE GENERALIZED LEONARDO QUATERNIONS AND
ASSOCIATED SPINORS

MUNESH KUMARI1,2, KALIKA PRASAD1,2∗, HRISHIKESH MAHATO1,
AND PAULA MARIA MACHADO CRUZ CATARINO3

Abstract. In this paper, we introduce and study a new family of sequences called
the generalized Leonardo spinors by defining a linear correspondence between the
generalized Leonardo quaternions and spinors. We start with defining the generalized
Leonardo quaternions and then present their some important properties such as Binet
type formula, Catalan’s identity, d’Ocagne’s identity, series sums, etc. We give some
interrelations of these quaternions with the Fibonacci and Lucas quaternions. Then,
we present the generating functions, sum formulae, various well-known identities,
etc. for the Leonardo spinors and show their connection with the Fibonacci and
Lucas spinors.

1. Introduction

At the beginning of the 13th century, Leonardo of Pisa solved the famous rabbit
growth problem based on idealized assumptions and that solution became a fascinating
recursive integer sequence famed as the Fibonacci sequence [11]. For n ≥ 0, the
Fibonacci sequence {Fn}n≥0 is given as Fn+2 = Fn+1 + Fn with F0 = 0, F1 = 1.

Recently, Catarino and Borges [2] studied the recurrence relations and various prop-
erties for the Leonardo numbers, in continuation Alp and Koçer [22] investigated their
interesting properties. Kuhapatanakul and Juthamas [12] extended this study to the
generalized Leonardo numbers along with their matrix representation and also in [20]
the authors studied the matrix representation of Leonardo numbers. Karatas [10]
defined the complex Leonardo numbers and studied their combinatorial properties.
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İşbilir et al. [23] investigated the Pauli-Leonardo quaternions. Some recent develop-
ments on Leonardo numbers, their generalizations and interesting properties can be
seen in [3, 5, 14–19,22]. Here we restate some of them.

For k ∈ Z+, the generalized Leonardo numbers {Lk,n} are defined [12] by the
recurrence relation

Lk,n+2 = Lk,n+1 + Lk,n + k, n ≥ 0, with Lk,0 = Lk,1 = 1.

In negative subscript, these numbers are given as Lk,−n = (−1)n(Lk,n−2 + k) − k.
The Binet type formula for the generalized Leonardo numbers is

Lk,n = (k + 1)
(

λn+1 − ξn+1

λ − ξ

)
− k,(1.1)

where λ = (1 +
√

5)/2 and ξ = (1 −
√

5)/2.
In non-homogeneous form, the generalized Leonardo numbers satisfy the third order

recurrence relation:
Lk,n+1 = 2Lk,n − Lk,n−2.

These numbers are associated with the Fibonacci numbers by the relation
Lk,n = (k + 1)Fn+1 − k.

In 1963, Horadam [8] defined quaternion sequences with components as Fibonacci
and Lucas numbers. The Fibonacci quaternion Qn is defined as

Qn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3 = (Fn, Fn+1, Fn+2, Fn+3), n ≥ 0,(1.2)
and Lucas quaternion Tn as

Tn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3 = (Ln, Ln+1, Ln+2, Ln+3), n ≥ 0,

where {e0 = 1, e1, e2, e3} is the quaternion basis satisfying
e2

1 = e2
2 = e2

3 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

Iyer [9] studied the relations between Fibonacci and Lucas quaternions. Further, Halici
[7] obtained Binet’s formula, generating functions and finite sum of these quaternions.
The Binet’s formulae for the Fibonacci and Lucas quaternions are given, respectively,
by

Qn = λ∗λn − ξ∗ξn

√
5

and Tn = λ∗λn + ξ∗ξn,

where λ∗ = 1 + λe1 + λ2e2 + λ3e3 and ξ∗ = 1 + ξe1 + ξ2e2 + ξ3e3.
For Fibonacci quaternions, Cassini’s identity is given by

Qn−1Qn+1 − Q2
n = (−1)n(2Q1 − 3e3),(1.3)

and Catalan’s identity is
Qn−rQn+r − Q2

n = (−1)n−r+1(2FrQr − 3F2re3).(1.4)

Theorem 1.1 (Sum formulae). For n ≥ 0, we have
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(a) ∑n
j=0 Qj = Qn+2 − Q1;

(b) ∑n
j=0 Q2j = Q2n+1 − (1, 0, 1, 1);

(c) ∑n
j=0 Q2j+1 = Q2n − Q0.

This paper will relate a new sequence of the generalized Leonardo quaternions and
spinors that was motivated by a recent study of spinors with the Fibonacci numbers
by Erişir and Güngör [6] and with the k-Fibonacci numbers by Kumari et al. [13].

This paper is structured as follows. In Section 2 we present a new quaternions
sequence - the generalized Leonardo quaternions and study some properties of them.
Section 3 is dedicated to the introduction of the generalized Leonardo spinors by
defining a correspondence between the generalized Leonardo quaternions and spinors.
We start the section recalling the important results involving spinors and we finish
showing the relationship among the generalized Leonardo spinors and Fibonacci and
Lucas spinors.

2. The Generalized Leonardo Quaternions

In this section, we first define the generalized Leonardo quaternions and then
investigate their algebraic properties which we need later to prove some identities for
spinors.
Definition 2.1. For n ≥ 0, nth generalized Leonardo quaternion QLk,n is defined as

QLk,n = Lk,ne0 + Lk,n+1e1 + Lk,n+2e2 + Lk,n+3e3.

And the conjugate QLk,n is defined as
QLk,n = Lk,ne0 − Lk,n+1e1 − Lk,n+2e2 − Lk,n+3e3.(2.1)

The above defined generalized Leonardo quaternions can be written in recurrence
form as

QLk,n+2 = QLk,n+1 + QLk,n + kγ, where γ = e0 + e1 + e2 + e3.(2.2)
From Definition 2.1 and (2.1), we get

QLk,nQLk,n = QLk,nQLk,n = (k + 1)[3(k + 1)F2n+5 − 2kLn+4] + 4k2.

Similar to the generalized Leonardo numbers, the generalized Leonardo quaternions
can also be extended in negative indices given in the following definition.
Definition 2.2. For n > 0, the generalized Leonardo quaternions with negative
subscript QLk,−n are defined as

QLk,−n = (−1)n
3∑

r=0
(−1)r(Lk,n−2−r + k)er − kγ.

The conjugate of QLk,−n is given as

QLk,−n = (−1)n(Lk,n−2 + k) + (−1)n+1
3∑

r=1
(−1)r(Lk,n−2−r + k)er − kγ,
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where γ = e0 − e1 − e2 − e3.
Now we give some relations among generalized Leonardo quaternion, Fibonacci

quaternion and Lucas quaternion in the next theorem.

Theorem 2.1. For n ≥ 0, the following identities are verified:
(a) QLk,n+3 = 2QLk,n+2 − QLk,n;
(b) QLk,n = (k + 1)Qn+1 − kγ;
(c) QLk,−n = 2QLk,−n+2 − QLk,−n+3;
(d) QLk,−n = (k + 1)Q−n+1 − kγ;

(e) QLk,n + QLk,−n =

(k + 1)FnT1 − 2kγ, n is odd,
(k + 1)LnQ1 − 2kγ, n is even;

(f) QLk,−n + QLk,−n = 2Lk,−n.

Proof. The first identity follows from expression (2.2) and the second identity uses
Lk,n = (k + 1)Fn+1 − k and (1.2). To prove third and fourth statements, we use
Definition 2.2 and definition of the Fibonacci quaternions, respectively. Fifth and
sixth identities follow from the definitions of QLk,−n and its conjugate. □

In the next theorem, we present the Binet type formula for the generalized Leonardo
quaternions and with the help of that we investigate some well known identities and
properties of these quaternions.

Theorem 2.2 (Binet type formula). For n ≥ 0, we have

QLk,n = k + 1√
5

(
λn+1λ∗ − ξn+1ξ∗

)
− kγ,

where λ∗ = 1 + λe1 + λ2e2 + λ3e3, ξ∗ = 1 + ξe1 + ξ2e2 + ξ3e3 and γ = e0 + e1 + e2 + e3.

Proof. Using (2.1) and Binet’s formula (1.1), we write

QLk,n =
3∑

r=0
Lk,n+rer,

=
3∑

r=0

(k + 1)(λn+r+1 − ξn+r+1) −
√

5k√
5

er,

= (k + 1)
3∑

r=0

(λn+r+1 − ξn+r+1)√
5

er − k
3∑

r=0
er

= k + 1√
5

(
λn+1

3∑
r=0

λrer − ξn+1
3∑

r=0
ξrer

)
− k

3∑
r=0

er,

= k + 1√
5

(
λn+1λ∗ − ξn+1ξ∗

)
− kγ. □

Theorem 2.3. For n ≥ 0, the following identities are verified:
(a) QLk,n = k+1

2

(
Tn+2 − Qn+2

)
− kγ;
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(b) QLk,n = k+1
5

(
Tn + Tn+2

)
− kγ.

Proof. (a) Using the Binet’s formula of Fibonacci and Lucas quaternions, we have

Tn+2 − Qn+2 =
(
λ∗λn+2 + ξ∗ξn+2

)
−
(

λ∗λn+2 − ξ∗ξn+2
√

5

)
= 1√

5
(λ∗λn+2(

√
5 − 1) + ξ∗ξn+2(

√
5 + 1))

= 1√
5

(−2ξλ∗λn+2 + 2λξ∗ξn+2)

= 2√
5

(−λξ(λn+1λ∗ − ξn+1ξ∗))

= 2√
5

(λn+1λ∗ − ξn+1ξ∗)

= 2
(
QLk,n + kγ

k + 1

)
.

Thus, on simplification

QLk,n = k + 1
2

(
Tn+2 − Qn+2

)
− kγ.

(b) Similar to (a), we have

Tn + Tn+2 = (λ∗λn + ξ∗ξn) + (λ∗λn+2 + ξ∗ξn+2)

= λξ
(λ∗λn + ξ∗ξn

λξ

)
+ (λ∗λn+2 + ξ∗ξn+2)

= −λn+1λ∗(ξ − λ) + ξn+1ξ∗(ξ − λ)
=

√
5(λn+1λ∗ − ξn+1ξ∗)

=
√

5
( √

5
k + 1(QLk,n + kγ)

)
,

as required. □

Theorem 2.4 (Catalan’s identity). For n, r ∈ N such that n ≥ r, we have

QLk,n−rQLk,n+r − QL2
k,n =(k + 1)2[(−1)n−r+2(2FrQr − 3F2re3)]

+ k(k + 1)(Qn+1 − Qn+1−r)γ
+ k(k + 1)γ(Qn+1 − Qn+1+r).

Proof. Using (b) of Theorem 2.1 and identity of (1.4), we have

QLk,n−rQLk,n+r − QL2
k,n

=
(

(k + 1)Qn−r+1 − kγ
)(

(k + 1)Qn+r+1 − kγ
)

−
(

(k + 1)Qn+1 − kγ
)2
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=
(

(k + 1)2Qn−r+1Qn+r+1 − (k + 1)kQn−r+1γ − k(k + 1)γQn+r+1

+ k2(γ)2
)

−
(

(k + 1)2Q2
n+1 + k2(γ)2 − (k + 1)kQn+1γ − (k + 1)kγQn+1

)
=(k + 1)2(Qn+1−rQn+1+r − Q2

n+1) + k(k + 1)(Qn+1 − Qn+1−r)γ
+ k(k + 1)γ(Qn+1 − Qn+1+r)

=(k + 1)2[(−1)n−r+2(2FrQr − 3F2re3)]
+ k[(QLk,n − QLk,n−r)γ − γ(QLk,n − QLk,n+r)]. □

If we substitute r = 1 in the above identity, the Cassini’s identity for Leonardo
quaternions QLk,n is obtained which is stated in the next theorem.

Theorem 2.5 (Cassini’s identity). For any natural number n, we have

QLk,n−1QLk,n+1 − QL2
k,n

=(k + 1)2[(−1)n+1(2Q1 − 3e3)] + k[QLk,n−2γ + γQLk,n−1 + 2kγ].

Theorem 2.6 (d’Ocagne’s identity). For n, r ∈ N such that n ≥ r, we have

QLk,rQLk,n+1 − QLk,r+1QLk,n

=(k + 1)2[(−1)r+1(Fn−rT0 + Ln−r(Q0 − 3e3))] + k(k + 1)[Qrγ − γQn].

Proof. Using identity (2) of Theorem 2.1, we have

QLk,rQLk,n+1 − QLk,r+1QLk,n =
(

(k + 1)Qr+1 − kγ
)(

(k + 1)Qn+2 − kγ
)

−
(

(k + 1)Qr+2 − kγ
)(

(k + 1)Qn+1 − kγ
)

=(k + 1)2(Qr+1Qn+2 − Qr+2Qn+1)
− k(k + 1)[(Qr+1 − Qr+2)γ + γ(Qn+2 − Qn+1)]

=(k + 1)2(Qr+1Qn+2 − Qr+2Qn+1)
+ k(k + 1)[Qrγ − γQn].

Now, using the d’Ocagne’s identity for the Fibonacci quaternions, i.e., Qr+1Qn+2 −
Qr+2Qn+1 = (−1)r+1[Fn−rT0 + Ln−r(Q0 − 3e3)], we get

QLk,rQLk,n+1 − QLk,r+1QLk,n =(k + 1)2[(−1)r+1(Fn−rT0 + Ln−r(Q0 − 3e3))]
+ k(k + 1)[Qrγ − γQn]. □

Theorem 2.7. The generating function for the generalized Leonardo quaternions is

ϕ(t) = QLk,0 − QLk,−2t − QLk,−1t
2

1 − 2t + t3 .

Proof. Let the generating function for sequence {QLk,n}+∞
n=0 is ϕ(t) = ∑+∞

n=0 QLk,ntn.
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Now using relation (2) of Theorem 2.1, we write

ϕ(t) =
+∞∑
n=0

((k + 1)Qn+1 − kγ)tn = (k + 1)
+∞∑
n=0

Qn+1t
n − kγ

+∞∑
n=0

tn.

Taking into account the generating function of the Fibonacci quaternions, i.e.,∑+∞
n=0 Qn+1t

n = Q1+Q0t
1−t−t2 , we have

ϕ(t) = (k + 1) Q0 + Q0t

1 − t − t2 − kγ
1

1 − t

= (k + 1)[Q1 − (Q1 − Q0)t − Q0t
2] − kγ(1 − t − t2)

(1 − t − t2)(1 − t)

= QLk,0 − QLk,−2t − QLk,−1t
2

1 − 2t + t3 . □

In the next theorem, we give the sum of finite terms of QLk,n and also with even
and odd subscripts.

Theorem 2.8 (Finite sum formulae). For any positive integer n, we have
(a) ∑n

r=0 QLk,r = QLk,n+2 − QLk,1 − k(n + 1)γ;
(b) ∑n

r=0 QLk,2r = QLk,2n+1 − QLk,−1 − k(n + 1)γ;
(c) ∑n

r=1 QLk,2r−1 = QLk,2n − QLk,0 − knγ.

Proof. Using (b) of Theorem 2.1 and sum identity (a) of Theorem 1.1, we have
n∑

r=0
QLk,r =

n∑
r=0

((k + 1)Qr+1 − kγ)

= (k + 1)
n∑

r=0
Qr+1 − k

n∑
r=0

γ

= (k + 1)(Qn+3 − Q1 − Q0) − kγ(n + 1)
= QLk,n+2 − QLk,1 − k(n + 1)γ.

Proof of identities (b) and (c) are similar using the finite sum formulae for even (b)
and odd (c) of Theorem 1.1, respectively. □

Theorem 2.9. For n ∈ N, the following identity is verified.
n∑

r=0

(
n

r

)
QLk,r = QLk,2n − k(2n − 1)γ.(2.3)

Proof. The identity can be easily proved by making use of relation (2) of Theorem
2.1 and identity ∑n

r=0

(
n
r

)
Qr = Q2n for the Fibonacci quaternions. □
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3. The Generalized Leonardo Spinors

Spinors are vectorial objects without their multilinear features for the mathemati-
cians. A French Mathematician, Elie Cartan discovered the spinors first time. In
3-dimensional Euclidean space, there are many possible approaches to spinor theory
like spinor ring algebra, Cartan’s isotropic vectors, Clifford algebra, stereographic
projection etc.

Here, we restate the definition given by the E. Cartan [1]. Consider a 3-dimensional
space C3. Let (x, y, z) ∈ C3 be an isotropic vector. Then this vector can be associated
with two numbers Ψ1 and Ψ2 given by

x = Ψ2
1 − Ψ2

2, y = i(Ψ2
1 + Ψ2

2), z = −2Ψ1Ψ2.

And solutions of these equations are

Ψ1 = ±
√

x − iy

2 and Ψ2 = ±
√

−x − iy

2 .

Thus spinor is the two-dimensional complex vectors described as

Ψ = (Ψ1, Ψ2) ≡
[
Ψ1
Ψ2

]
.

A different approach to spinors derived from Euler’s theorem was presented by Vivarelli
[21] in 1984. He studied quaternions and one-index spinors by defining a linear and
injective correspondence between them.

The correspondence Φ : H → S between the set of quaternions H and spinors S is
defined as

Φ(a + be1 + ce2 + de3) =
[
d + ia
b + ic

]
≡ Q, a + be1 + ce2 + de3 = p ∈ H.

And, the product of two quaternions (qp) associated to a spinor-matrix product is
given by qp 7→ −iQ̂P, where P is the spinor corresponding to the quaternion q and
Q̂ is the square(complex) unitary matrix given as[

d + ia b − ic
b + ic −d + ia

]
.(3.1)

E. Cartan [1] introduced the spinor conjugate to Ψ given as

Ψ̃ = iAΨ,

where Ψ is complex conjugate of Ψ and A =
[

0 1
−1 0

]
.

Castillo [4] defined the mate of spinor Ψ as

Ψ̌ = −AΨ,
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Recently, Erişir and Güngör [6] studied the spinors with Fibonacci and Lucas num-
bers components and obtained their properties. They defined the Fibonacci spinors
sequence {Sn}n≥0 as

S0 =
[

2
1 + i

]
, S1 =

[
3 + i
1 + 2i

]
, Sn+2 = Sn+1 + Sn,

and Lucas spinors sequence {S
′
n}n≥0 as

S
′

0 =
[
2 + 2i
1 + i

]
, S

′

1 =
[

4 + i
1 + 3i

]
, S

′

n+2 = S
′

n+1 + S
′

n.

The Binet type formulae for the Fibonacci and Lucas spinors are, respectively,

Sn = 1√
5

[
λ3 + i

λ + iλ2

]
λn − 1√

5

[
ξ3 + i
ξ + iξ2

]
ξn

and

S
′

n =
[

λ3 + i
λ + iλ2

]
λn +

[
ξ3 + i
ξ + iξ2

]
ξn.

Motivated by the work of Erişir and Güngör [6], we are extending this study to the
generalized Leonardo numbers and introducing a new sequence of the generalized
Leonardo spinors.

Let L and S denote the set of generalized Leonardo quaternions and set of spinors,
respectively. Then the generalized Leonardo spinor Ln given by a linear and injective
correspondence Φ : L → S is defined as

Φ(Lk,ne0 + Lk,n+1e1 + Lk,n+2e2 + Lk,n+3e3) =
[
Lk,n+3 + iLk,n

Lk,n+1 + iLk,n+2

]
≡ Ln.

Spinor L∗
n corresponding to the conjugate quaternion QLk,n is given as

L∗
n =

[
−Lk,n+3 + iLk,n

−Lk,n+1 − iLk,n+2

]
.

Definition 3.1. For n ≥ 0, the sequence of generalized Leonardo spinors {Ln}n≥0

is defined recursively as Ln+2 = Ln+1 + Ln + kJ, where L0 =
[
(2k + 3) + i
1 + i(k + 2)

]
, L1 =[

(4k + 5) + i
(k + 2) + i(2k + 3)

]
and J =

[
1 + i
1 + i

]
.

Lemma 3.1. For generalized Leonardo spinors, the following identities are verified.
Ln+3 = 2Ln+2 − Ln and Ln = (k + 1)Sn+1 − kJ.(3.2)

In the next lemma, we present conjugates and mate of the generalized Leonardo
spinors.

Lemma 3.2. For generalized Leonardo spinors Ln, we have



434 M. KUMARI, K. PRASAD, H. MAHATO, AND P. CATARINO

(a) Complex Conjugate: Ln =
[
Lk,n+3 − iLk,n

Lk,n+1 − iLk,n+2

]
;

(b) Spinor Conjugate: L̃n =
[
Lk,n+2 + iLk,n+1
−Lk,n − iLk,n+3

]
;

(c) Mate of Spinor: Ľk,n =
[
−Lk,n+1 + iLk,n+2
Lk,n+3 − iLk,n

]
.

Proof. Using the definition of spinor conjugate and mate of spinor, above results can
be easily established. □

Theorem 3.1 (Binet type formula). For n ≥ 0, we have

Ln = k + 1√
5

([
λ3 + i

λ + iλ2

]
λn+1 −

[
ξ3 + i
ξ + iξ2

]
ξn+1

)
− kJ.(3.3)

Proof. We prove this theorem by induction on n. For n = 1, the R.H.S of (3.3) is

L1 = (k + 1)S2 − kJ = k + 1√
5

([
(λ5 − ξ5) + i(λ2 − ξ2)
(λ3 − ξ3) + i(λ4 − ξ4)

])
− kJ.

Assume expression (3.3) is true for n = m, i.e.,

Lm = k + 1√
5

([
λ3 + i

λ + iλ2

]
λm+1 −

[
ξ3 + i
ξ + iξ2

]
ξm+1

)
− kJ.

By Definition 3.1 and taking into account the fact λ2 = λ + 1 and ξ2 = ξ + 1, we get
Lm+1 = Lm + Lm−1 + kJ

= k + 1√
5

([
λ3 + i

λ + iλ2

]
λm+1 −

[
ξ3 + i
ξ + iξ2

]
ξm+1

)
− kJ

+ k + 1√
5

([
λ3 + i

λ + iλ2

]
λm −

[
ξ3 + i
ξ + iξ2

]
ξm

)
− kJ + kJ

= k + 1√
5

([
λ3 + i

λ + iλ2

]
(λm+1 + λm) −

[
ξ3 + i
ξ + iξ2

]
(ξm+1 + ξm)

)
− kJ

= k + 1√
5

([
λ3 + i

λ + iλ2

]
λm(λ + 1) −

[
ξ3 + i
ξ + iξ2

]
ξm(ξ + 1)

)
− kJ

= k + 1√
5

([
λ3 + i

λ + iλ2

]
λm+2 −

[
ξ3 + i
ξ + iξ2

]
ξm+2

)
− kJ.

This completes the proof. □

By replacing n with −n in Binet type formula (3.3), we extend the generalized
Leonardo spinors in negative direction. Thus,

L−n = k + 1√
5

([
λ3 + i

λ + iλ2

]
λ−n+1 −

[
ξ3 + i
ξ + iξ2

]
ξ−n+1

)
− kJ = (k + 1)S−n+1 − kJ.
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In next theorem, we state some relations among Ln, L∗
n,L−n and L∗

−n by omitting
their proofs, as proofs of these identities can be seen easily using their definitions.

Theorem 3.2. For the generalized Leonardo spinors, we have
(a) L−n = 2L−n+2 − L−n+3;
(b) L−n = (k + 1)S−n+1 − kJ;

(c) Ln + L−n =

(k + 1)LnS1 − 2kJ, n is even,
(k + 1)FnS

′
1 − 2J, n is odd;

(d) Ln + L∗
n =

[
i2Lk,n

0

]
;

(e) L−n + L∗
−n =

[
i2Lk,−n

0

]
.

Theorem 3.3. For n ≥ 0, the following relations among the generalized Leonardo,
Fibonacci and Lucas spinors hold

Ln = k + 1
2

(
S

′

n+2 − Sn+2
)

− kJ(3.4)

and

Ln = k + 1
5

(
S

′

n + S
′

n+2

)
− kJ.(3.5)

Proof. By using relation S
′
n = Sn−1 + Sn+1 in the R.H.S. of expression (3.4), we write

k + 1
2

(
S

′

n+2 − Sn+2
)

− kJ = k + 1
2

(
2Sn+1

)
− kJ = Ln.

Similarly, (3.5) follows from the identity 5Sn = S
′
n−1 + S

′
n+1. □

Theorem 3.4. The generating function for the generalized Leonardo spinors is

f(t) = −1
1 − 2t + t2

[
[(k + 2)t2 + t − (2k + 3)] − i[kt2 − t + 1]

[t2 − kt − 1] + i[t2 + t − (k + 2)]

]
.

Proof. Let f(t) = ∑+∞
n=0 Lntn be the ordinary generating function. Now consider

the recurrence relation Ln+3 = 2Ln+2 − Ln. Then multiplying it by tn+3 and taking
summation, we have

+∞∑
n=0

Ln+3t
n+3 − 2

+∞∑
n=0

Ln+2t
n+3 +

+∞∑
n=0

Lntn+3 = 0

=⇒ (f(t) − L0 − L1t − L2t
2) − 2t(f(t) − L0 − L1t) + t2f(t) = 0

=⇒ f(t)(1 − 2t + t2) = L0 + t(L1 − 2L0) + t2(L2 − 2L1)

=⇒ f(t) = L0 + t(L1 − 2L0) + t2(L2 − 2L1)
1 − 2t + t2

=⇒ f(t) = −1
1 − 2t + t2

[
[(k + 2)t2 + t − (2k + 3)] − i[kt2 − t + 1]

[t2 − kt − 1] + i[t2 + t − (k + 2)]

]
. □
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Theorem 3.5 (Finite sum formulae). We have the following.
Sum of first n + 1 terms

n∑
r=0

Lk,r = Lk,n+2 − (k + 1)S2 − nkJ.(3.6)

Sum of first n + 1 even indexed terms
n∑

r=0
Lk,2r = Lk,2n+1 − (k + 1)S0 − nkJ.(3.7)

Sum of first n + 1 odd indexed terms
n∑

r=0
Lk,2r+1 = Lk,2n+2 − (k + 1)S1 − nkJ.(3.8)

Proof. Using relation (3.2) and sum identity ∑n
r=1 Sr = Sn+2 − S2, we have

n∑
r=0

Lk,r =
n∑

r=0
[(k + 1)Sr+1 − kJ] = (k + 1)

n∑
r=0

Sr+1 −
n∑

r=0
kJ

= (k + 1)[Sn+3 − S2] − (n + 1)kJ
= Lk,n+2 − (k + 1)S2 − nkJ.

This proves expression (3.6).
The rest of the two expressions (3.7) and (3.8) follow directly from the identities∑n
r=1 S2r = S2n+1 − S1 and ∑n

r=1 S2r−1 = S2n − S0, respectively. □

4. Conclusion

In summary, we defined and studied the generalized Leonardo quaternions and a
new sequence of spinors by considering a linear and injective correspondence between
the set of quaternions and the set of spinors. For generalized Leonardo quaternions, we
obtained various identities, interrelations with the Fibonacci and Lucas quaternions,
Catalan’s identity, d’Ocagne’s identity, generating functions, finite sum formulas,
etc. For spinors, we presented the closed form formula, several identities, generating
functions, finite sums with odd and even indexed terms, etc.
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