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The aim of the software development process is to produce the best possible
product with the given resources (money, time). As a part of the development process,
quality assurance must also be rationalized. To do so, an abstract space is defined
(software testing space), where software product is presented using graph theory. Test
graph presents software product with all its functionalities. Test cases in a test graph
are connections between vertices and vertices represent unit tests. Test suite and test
phase are defined as subgraphs of test graph. The weights in test graph represent the
cost and value of implementation for functionality. The first optimization algorithm
(A1), designed as the first step in the optimization of the software testing process,
eliminates duplicated test cases. The second algorithm (A2) alters the quantity of test
cases for a given test phase. It is the method of drastically reducing the testing cost
while jeopardizing the quality of the product. The third algorithm is a construction
of an Optimal Test Phase (OTP), it is A3 - OTP Construction. This optimization
means that a maximum quality, given the resources, is reached. Depending on the
circumstances algorithms A1 and A2, and A1 and A3 can be used together.
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