Some bounds on the energy of signed complete bipartite graphs

S. Akbari¹, Y. Bagheri², and S. Saadat Akhtar³

¹Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, s_akbari@sharif.edu

²Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran, yousefbagherizzz@gmail.com

³Department of Mathematical, College of Fundamental Sciences, Tehran Science and Research Branch Islamic Azad University, Tehran, I. R. Iran, simasaadatzzz3@gmail.com

A signed graph G^{σ} is a pair (G, σ) , where G is a graph, and $\sigma : E(G) \longrightarrow \{-1, +1\}$ is a function. Assume that $m \leq n$ are two positive integers. Let

$$A = \begin{bmatrix} 0 & B \\ B^t & 0 \end{bmatrix}$$

is the adjacency matrix of $K_{m,n}^{\sigma}$. In this talk we show that for every sign function σ , $2\sqrt{mn} \leq E(K_{m,n}^{\sigma}) \leq 2m\sqrt{n}$, where $E(K_{m,n}^{\sigma})$ is the energy of $K_{m,n}^{\sigma}$. Also it is proved that the equality holds for the upper bound if there exists a Hadamard matrix of order *n* for which *B* is an *m* by *n* submatrix of *H*. Also if the equality holds, then every two distinct rows of *B* are orthogonal. We prove that for the lower bound the equality holds if and only if $K_{m,n}^{\sigma}$ is switching equivalent to $K_{m,n}$.

References

- S. Akbari, E. Ghorbani and M. Oboudi, Edge addition, singular values, and energy of graphs and matrices, Linear Algebra Appl. 430(8-9) (2009), 2192–2199.
- [2] A. M. Bhat and S. Pirzada, On equienergetic signed graphs, Discrete Appl. Math. 189 (2015), 1–7.
- [3] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer Science, Business Media, New York, 2011.

- [4] W. H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem. 68 (2012), 653–659.
- [5] R. Rangarajan, M. S. Subramanya, K. Reddy and P. Siva, Neighbourhood signed graphs, Southeast Asian Bull. Math. 36(3) (2012), 389–397.
- [6] D. S. Watkins, Fundamentals of Matrix Computations, John Wiley and Sons, New York, 2004.