Some bounds on the energy of signed complete bipartite graphs

S. Akbari¹, Y. Bagheri², and S. Saadat Akhtar³

¹Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, s_akbari@sharif.edu
²Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran, yousefbagherizzz@gmail.com
³Department of Mathematical, College of Fundamental Sciences, Tehran Science and Research Branch Islamic Azad University, Tehran, I. R. Iran, simasaadatzzz3@gmail.com

A signed graph G^σ is a pair (G, σ), where G is a graph, and $\sigma : E(G) \rightarrow \{-1, +1\}$ is a function. Assume that $m \leq n$ are two positive integers. Let

$$A = \begin{bmatrix} 0 & B \\ B^t & 0 \end{bmatrix}$$

is the adjacency matrix of $K^\sigma_{m,n}$. In this talk we show that for every sign function σ, $2\sqrt{mn} \leq E(K^\sigma_{m,n}) \leq 2m\sqrt{n}$, where $E(K^\sigma_{m,n})$ is the energy of $K^\sigma_{m,n}$. Also it is proved that the equality holds for the upper bound if there exists a Hadamard matrix of order n for which B is an m by n submatrix of H. Also if the equality holds, then every two distinct rows of B are orthogonal. We prove that for the lower bound the equality holds if and only if $K^\sigma_{m,n}$ is switching equivalent to $K_{m,n}$.

References

